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ABSTRACT

Understanding strength and stability of interfaces between dissimilar materials or
phases is a highly active field of contemporary materials research. Knowledge of in-
terface structure and energetics is important for modeling of complex materials both
on a mechanical and thermodynamical level as well as for many functional prop-
erties. Interfaces is a collective term including surfaces, interphase boundaries and
grain boundaries. A general interface can be sharp or diffuse, planar or corrugated.
The interface between two crystals is usually quite sharp, and can be classified as
coherent, semicoherent or incoherent depending on the mismatch between the ad-
joining crystals.

The goal of this Thesis is to obtain a better understanding of interfacial structures
and energetics, in particular of semicoherent interfaces. Previous first-principles
work in the field has often excluded the effect of misfit. Therefore, we present
a simple model combining the interfacial interaction from first-principles methods
with a continuum description to account for the elastic displacements. The accuracy
of the model has been satisfactorily tested against atomistic modelling.

We investigate the effect of misfit on interfaces in two classes of materials: steels
and cemented carbides. In the first case, we study the interface between Fe and a VN
precipitate. The results show that even a small misfit (2%) has a large influence on
the interface energy. In the second case, we apply the method to the semicoherent
¥ = 2 twist boundary found in both tungsten carbide powder and sintered cemented
carbides. The results are discussed in the context of grain boundary evolution during
sintering.

Keywords: interfaces, misfit, first-principles calculations, density-functional theory,
DFT, cemented carbides, WC-Co, hard metals, grain boundaries, microstructure,
VN precipitates, semicoherent interfaces, Peierls-Nabarro model.
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CHAPTER 1

Introduction

Materials properties depend on phenomena on several different length scales from
Angstroms, where the electronic bonds gluing the atoms into solids are the important
constituents, up to millimeters, where the microstructure with its different phases
and boundaries is the subject of study. Eventually, at the macroscopic level, the finer
scales are merged into a continuum description. Navigating through these scales
and understanding how atomic structure relates to the final properties of the material
poses a true challenge for the modern materials scientist. It is not clear how macro-
scopically measurable quantities, such as hardness, strength and ductility, connect
to total energy and electronic structure.

The subject of this Thesis is interfaces which belongs to a group of structures
of length scale one step above the single atom. Understanding strength and stabil-
ity of interfaces between dissimilar materials or phases is a highly active field of
contemporary materials research. Knowledge of interface structure and energetics
is important for modeling of complex materials both on a mechanical and thermo-
dynamical level as well as for many functional properties. Interfaces is a collective
term including surfaces, interphase boundaries and grain boundaries. A general in-
terface can be sharp or diffuse, planar or corrugated. The interface between two
crystals is usually quite sharp, and can be classified as coherent, semicoherent or
incoherent depending on the mismatch between the adjoining crystals.

In this Thesis, we have modeled interfaces using first-principles methods. Due
to their predictive power, first-principles calculations are extra valuable as it comes
to determining interfacial properties, since these are utterly difficult to determine
experimentally. E. g. measurements of interface energies often come from wetting
experiments, which has limited bearing to solid-solid interfaces. Moreover, model-
ing of interfaces is also a difficult task due to the restrictions of system size imposed
by the available computational power. In most first-principles modeling, the inter-
face is assumed to be sharp, planar and coherent, although the latter assumption is
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nearly always violated for real interfaces. In addition, temperature-dependent ef-
fects are often neglected. Today, only vibrational degrees of freedom in a solid can
be rigourously included in a first-principles calculation, and pronounced entropic
systems, such as the solid-liquid interface, are still waiting for a first-principles treat-
ment.

The semicoherent interface between crystals adds a bit of extra complexity com-
pared to the coherent interface. Due to its well-defined structure of misfit disloca-
tions, it is in reach of first-principles methods. However, the required system size is
currently beyond our computational capacity. In this Thesis, we present a method of
combining first-principles calculations in the framework of density functional theory
(DFT) with elasticity theory to assess the effect of misfit on interfacial structure and
energetics. The idea originates from the Peierls-Nabarro model of dislocations, and
is here applied to two cases: the interphase Fe/VN interface, and, in some detail, the
special £ = 2 twist grain boundary in WC.

The technique of combining different scales in modeling is called multiscale
modeling and explains the title of the present Thesis. The passing of information
across scales — from the atomistic to the continuum level — is often denoted sequen-
tial multiscale modeling in contrast to concurrent multiscale modeling techniques,
where the scales are coupled seamlessly.

The following sections of Chapter 1 provide a brief background to the materials
under study, namely steels and cemented carbides. In Chapter 2, some basics of the
continuum description of materials are presented. Chapter 3 deals with the atomistic
description of materials, from first-principles density functional theory to model po-
tentials. In Chapter 4, a method for determining energies of semicoherent interfaces
is developed and applied. Chapter 5 summarizes and concludes the work performed
and also contains some proposals of future work on interface modeling.

1.1 Steels

Steels represent not only the most widely used metallic materials, but also perhaps
the most complex group of alloys. Despite the mechanical weakness of pure iron,
steels show a diversity in mechanical properties with yield stresses spanning from
200MPa to 5500MPa [1]. The common denominator among steels is the addition
of carbon to iron. Such low concentrations of carbon as 0.5 atomic percent have a
decisive strengthening effect on iron.

As suggested in the 1930s by Taylor, Orowan, and Polanyi, plastic deformation
in many crystals occurs by slip mediated by the movement of dislocations. Com-
pared to Fe atoms, C atoms have such small atomic size that they usually become
interstitial solute atoms of high diffusivity. Due to the mismatch in size with the sur-
rounding matrix, the solute atoms will give rise to an elastic field and are likely to
be found in the vicinity of dislocations, where the distorted lattice provides room for
favorable interstitial sites. Effectively, the C atoms acts as hinders for the dislocation
movement thus increasing the strength of the metal.

2



1.1 Steels

Several other important strengthening methods exist. Grain boundaries limit the
mean free path for the dislocation making a fine-grained material more likely to re-
sist plastic deformation. One must however keep in mind, that, at least for incoherent
boundaries, the resistance towards grain boundary sliding is low and this mode of
plastic deformation may dominate a fine-grained material. During work hardening,
the metal undergoes mechanical work of high enough frequency and magnitude to
not only move dislocations, but also to create new ones. The created dislocations
entangle and lock each other. Too aggressive hardening will, however, make the ma-
terial brittle, since the lack of mobile dislocations will instead induce the formation
of cracks when the material is put under tension.

A phase-diagram of the Fe-C system is given in Figure 1.1. In the low temper-
ature regime, the magnetic o-phase of bcc structure also known as ferrite is stable.
For pure Fe, a phase transformation to the non-magnetic y-phase known as austen-
ite takes place at 912°C, but the temperature of transformation drops rapidly with
carbon content and has stabilized at 723 ° C already at 0.1 weight% C. Addition of
carbon will cause iron carbides (FezC known as cementite) to form existing in equi-
librium with the a- and y-phases. An effect of adding metallic alloying elements is
to change the size and shape of the y-field region of the phase diagram and support
the formation of either austenite or ferrite. As an example, Ni is an austenite former
used in stainless steels [1]. For applications in environments of high stress levels,
a-Fe is preferred, whose formation is promoted by e. g. Nb and V.

The strengthening mechanism of interest in this work is precipitation formation.
The first step of the strengthening is to form a solid solution of carbon, nitrogen,
and other metallic alloying elements. Cooling will lead to a supersaturation of the
solid solution and during a subsequent application of an appropriate heat treatment,
excess solutes will precipitate to form a second phase. Examples of precipitates
are M3Cq, MX, and M, X, where M is a metal atom and X is C or N [1]. In the
appended papers, examples of the nacl MN (VN, TiN, ScN) phase are studied.

The role of the precipitates is to act as obstacles for gliding dislocations. If a
dislocation moving along its glide plane encounters a precipitate, it can proceed by
cutting through the particle or avoid it by bowing out around the particle, eventually
leaving a dislocation loop around the precipitate [2]. At higher temperatures, it is
possible for the dislocation to climb and continue gliding past the precipitate. These
obstacle avoiding processes all require energy and therefore enhances the strength
of the material.

The formation of precipitates is directly dependent on the interface energy be-
tween the precipitate and the matrix, since it governs the rate of nucleation and
growth. Hence an understanding of these processes is essential to be able to predict
long-term structural changes in steel, or, more specifically, its creep resistance, i. €.
its ability to withstand stress applied during a long time period.
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Figure 1.1: A phase diagram of the Fe-C system from [3].

1.2 Cemented carbides

By its unique combination of hardness and toughness, the class of materials known
as cemented carbides has been a true success ever since its conception in the 1920s.
Today, the material has found its way into a diversity of applications ranging from
tire studs over tomato crushing to rock drilling. A comparison of hardness and
toughness for different classes of materials is given in Figure 1.2.

The history of cemented carbides began in the end of the 19th century, when
the French scientist Henri Moissan synthesized and characterized hard compounds
formed by transition metals in combination with boron, carbon, and nitrogen. Around
1920, the German scientists in the Osram Studiengesellschaft were given the task of
finding replacements for diamond in the drawing dies used in tungsten filament pro-
duction. Earlier attempts by German scientists of utilizing Moissan’s findings had
given a coarse-grained material that, indeed, was very hard but also brittle. The
Osram team had long experience of tungsten metallurgy due to its applications in
the electrical industry, and found a way of synthesizing tungsten and carbide pow-
der into a fine-grained tungsten carbide. However, it was not until the addition of a
metal from the iron group that the group made its important break-through. Even-
tually, cobalt turned out to be the best additive. Originally, the material was called
‘Hartmetall’, but the term has been replaced by its American counterpart, ‘cemented
carbides’, where the latter name regards the carbide grains as cemented in the cobalt
binder phase.

From the first attempts of the Osram team, the properties of cemented carbides
developed steadily in the forthcoming decades by the introduction of other carbide
formers such as Ti, Ta, and Nb, and grain growth inhibitors such as Cr and V. A
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Figure 1.2: A comparison of hardness and toughness for different classes of materials from

[4].

major leap in development was taken with the introduction of alumina coatings in
the late 1960s. An excellent account of the history of cemented carbides is given in

[4].

1.2.1 Manufacturing

Production of cemented carbides is done through means of powder metallurgy. The
brittleness and high melting temperature of WC (well above 3000K) excludes con-
ventional metallurgical methods such as casting. Instead the method of sintering is
used, where the material is heated to a temperature below the melting temperature
of the carbides, but above the melting temperature of the binder, until the carbide
grains adhere to each other.

Today, powders of carbides and binder are commercially available products,
whose manufacture, although interesting from a chemical perspective, will not be
considered here. The first step of the cemented carbide production is milling the
powder to obtain a homogeneous mixture and the desired average carbide grain size.
Both alcohol, used as a milling liquid, and a wax providing firmness to the unsin-
tered product, are added during this stage. After drying the milled powders from the
alcohol, the agglomerated powder (the so called green body) is pressed, usually uni-
axially, to the desired shape. The shape will be approximately retained throughout
the sintering, while the linear shrinkage will be 17 — 25 % [5].

The objective of the sintering is to strengthen the material by reducing the num-
ber of pores and creating strong intergrain adhesion. In practice, this is accomplished
by inserting the green body into a heat furnace of well-controlled temperature and at-
mosphere. The heat treatment is performed in several steps [6]. During the first step,
the temperature is ramped up to around 400° C, which eliminates the wax added at
the milling stage. From this level, the temperature is gradually increased to the final
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sintering temperature of around 1400° C with some holds along the way to permit
outgassing of oxides originating from oxygen residing on the powder surfaces. The
melting of the binder at around 1300° C divides the sintering into solid-state sinter-
ing and liquid-phase sintering.

The driving force in the sintering process is the reduction of surface and inter-
face energies. Already in the solid-state sintering there is a significant diffusion of
especially carbon atoms into the binder. Further elevated temperatures increase both
diffusivity and solubility of carbon and tungsten in the binder. The liquid-phase
sintering is divided into three stages: Rearrangement, solution reprecipitation, and
coarsening.

In the rearrangement process, densification occurs when the carbide grains con-
tract due to capillarity from the penetrating binder phase spreading along the WC
surfaces. For fine-grained materials, this process starts already during solid-state
sintering. The liquid phase will dissolve surface layers of the carbide grains and
separate polycrystalline carbide particles by penetrating the grain boundaries. Since
small grains have large surface energy, they will dissolve into the melt and tungsten
and carbon will reprecipitate in equal amounts on the larger grains. This step yields
a change in morphology, since reprecipitation preferably occurs on low-energetic in-
terfaces making the grains more prismatic. The time and temperature of sintering are
important process parameters. On one hand, full densification and uniformity of the
material is desired, but on the other hand, grain coarsening leads to embrittlement.

The carbon activity is a critical parameter, which needs to be carefully tuned in
order to reach the desired window of the phase diagram as seen in Figure 1.3. Lack
of carbon induces the formation of n-phase MgC, whereas a surplus yields graphite
precipitates. Both act strongly deteriorating on materials properties. Guidance to a
correct initial composition is today accurately provided by mathematical models of
phase equilibria and thermodynamical databases, as implemented in the Thermocalc
program [7]. However, carbon activity is affected by traces of oxygen in the powder
and the atmosphere of the furnace. Maintaining the correct activity is therefore a
matter of experience.

1.2.2 Microstructure

A typical microstructure of the sintered WC-Co system is depicted in Figure 1.4.
As the name suggests, the hard carbide grains are cemented in the tough binder.
A tendency for the grains to be of truncated triangular shape is seen — as typical
for WC grains sintered in Co [9]. The material in the image has the composition
Co 9.89wt%, C 5.41 wt% and W 84.70wt% and an average grain size of 0.708 um
[10]. The average grain size is here taken as the equivalent circle diameter, which is
linearly related to the actually measured grain size in the image.

WC has a hexagonal structure of space group P6m2 of lattice parameters a =
2.906 A and ¢ =2.837 A [5]. Two sets of planes are of special interest. These are the
basal planes {0001} and the prismatic planes {1010}. Due to the geometry, the sur-
faces of the prismatic planes come in two non-equivalent versions depending on the

6
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Co from [8].

EHT = 5.00 kW WD= 4mm Signal A = QBSD Date :23 Apr 2007

Mag = 30.00 K Signal B = InLens Time :13:20:53

Figure 1.4: A SEM image of a typical microstructure of WC-Co without dopants. The bright
parts correspond to the carbide grains. The binder is dark. Courtesy of J. Weidow.
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Top Active

Front.

Figure 1.5: The lattice structure of hexagonal WC from [12]. The lattice vectors are d; = aX,
dy = —a/2%++/3/29 and & = c3. At the bottom left, the structure is viewed from a point
in the [0001] direction towards the basal plane. At the top left, the structure is viewed from
a point in the [0110] direction towards a prismatic plane. At the bottom right, the (2110)
plane is depicted.

interplanar distance between the first and second layer of atoms. During sintering,
the WC grains grow preferably on the prismatic and basal planes [9], which results
in the truncated triangle shape of the grains. The equilibrium relationship in area
between the two types of prismatic planes and the basal plane has been investigated
both experimentally and from first-principles [11]. The results show that the grain
shape attains more truncation when increasing the carbon activity.

Due to its good wetting properties, Co is the most commonly used binder in ce-
mented carbides. The stable structure of Co is hcp up to 417° C, where the fcc phase
becomes stable. In a sintered cemented carbide, the fcc phase clearly dominates the
binder. The metastable fcc phase is believed to be stabilized by dissolved tungsten
and carbon [9]. A notable property of the binder phase is its large grain size. Reports
of grains of millimeter size exist [13]. The large grain sizes have been explained by
the scarcity of nucleation sites for the binder phase, which allows a single grain to
grow substantially before facing another grain.



CHAPTER 2

Continuum description of materials

The continuum description of materials is a versatile theory applicable to such differ-
ent problems as understandig crystal defects to constructing bridges and thus spans a
range of valid length scales from nanometers to meters and beyond. Treating a crys-
tal as an elastic body effectively involves the reduction of all microscopic degrees of
freedom into a few material parameters, elastic constants, and replacing the discrete
positions of atoms by a single displacement field.

2.1 Linear elasticity theory

In this chapter, focus will be paid to a particular form of continuum theory, namely
the linear elasticity theory. The theory is widely used and has been extensively
studied. The basic assumptions will be briefly introduced, and, in order to do so, we
need first to consider some elementary concepts of continuum theory [14, 2]. Albeit
seemingly simple, elasticity theory is in itself a complex mathematical theory.

2.1.1 Stress and strain

The theory of elasticity deals with concepts like stress, strain, and displacement.
Space is assumed to be filled by a continuous medium through which forces and
stresses may be transmitted. Each small volume AV of the continuum is acted upon
by an arbritrary set of forces, which can be body forces or surface forces (tractions).
To quantify these concepts, let 7i be the unit normal to the surface AS enclosing AV
located at position X (see Figure 2.1). The material lying outside of AS (with respect
to 42) will exert a force per unit area T' on the material inside. The stress tensor G; (%)

9



2 Continuum description of materials

Y

AS

Figure 2.1: The setup used in the definition of the stress tensor G;;.

1s defined, so that
3
Y oijni=T1j, (2.1
i=1

or o;jn; = Tj, where double indices imply summation. Subsequently, the latter no-
tation will be used. The diagonal elements of the stress tensor represent tensile
(611 > 0) or compressive stress (617 < 0) and the off-diagonal elements represent
shear stresses. For a purely hydrostatic pressure P, the stresses will be 6;; = —P9;;,
S0 in a way, stress may be viewed as a generalization of pressure.

In the state of force equilibrium,

)
a—)q()',’j()?) = 0, (2.2)

or G;j; = 0, where ,i means differentiation with respect to x;. By also letting the

volume be subject to a body force density f (a typical example is gravity or electric
force on a charged material), the static equilibrium condition reads

fi+0i,i=0. (2.3)

When a body is subjected to stress it will deform. A piece of material originally
situated at ¥ will be displaced to ¥ = X+ ii(¥) (see Figure 2.2), where #(X) is the
displacement field. Most often i is a continuous field, although the continuity is
sometimes given up, €. g. in the case of dislocations. The displacement field gives
a complete description of the deformed body. However, it does not distinguish rigid
body motion from deformation. Only the latter will induce stresses in the body.
Therefore, the strain tensor €;; is used as a measure of deformation. A general
definition follows: Consider two neighbouring points in the body and let dsg be the
square of the distance between these prior to deformation and let ds® be the distance
after deformation. Now, €;; is defined as

ds? — ds§ = 2¢;;dx; dx;, (24)

10



2.1 Linear elasticity theory

Figure 2.2: The displacement #(X).

where we take dx; to be a vector between the two points in the originally undeformed
body. After the deformation, the point at x; has moved to x; + ;. Hence, ds(z) =
d;jdx;dx; and ds? = (8 +ux;) (8 ik -+ uk, j) dx; dx;. After a bit of algebra, one arrives
at

1
E(u,-,j—i-uj,,-—i-uk’,-uk,j). 2.5)

The first assumption of linear elasticity is to assume that the second order term of
2.5 is negligible, which is valid when the spatial variation of # is sufficiently small.
Therefore, one defines the linear strain as

€j=

&j= %(u,’,j + uj,i). (2.6)
The diagonal elements of €;; represent expansion (€11 > 0) or compression (€11 < 0)
and the off-diagonal elemens represent shearing.

Using the definition of linear strain 2.6 valid for infinitesimal strains, it can be
shown that the work per unit volume dw needed to deform the small volume dV
is dw = 0;;dg;;. To proceed, we assume that the deformation is elastic, i. €. the
deformation is thermodynamically reversible, so that all work performed by exter-
nal forces to the body is stored as potential energy within the body, which will be
released by a subsequent removal of the external forces. In reality, also plastic de-
formations occur in which potential energy is not conserved. A typical example is
the motion of dislocations.

For thermodynamically reversible work we can write the change in internal en-
ergy per unit volume

de = TdS-l-ijdEij, 2.7
where ds is the change in entropy per unit volume, from which follows
de
R 2.8

for an adiabatic process. Corresponding free energies can also be introduced.

11



2 Continuum description of materials

2.1.2 Materials description

Up to now, no assumptions regarding the material response have been made. To pro-
ceed, a useful simple relationship between stress and strain needs to be determined.
By considering the total energy of a material from an atomistic perspective, we know
that for sufficiently small forces, deformation is elastic and proportional to the force.
With this motivation, classical linear elasticity theory postulates a generalization of
Hooke’s law, which states that the stresses G;; in the body are linearly related to the
strains through

Cij = Cijki€xl> 2.9

where the coefficients c;ji; are the elastic constants given by

d%e
Cijkl = (738”- e ) S (2.10)

For a given material, elastic constants can be determined from an ab initio calcula-
tion, albeit straight-forwardly only for 7 = 0. Experimentally, elastic constants are
often measured by acoustic means [15].

Hooke’s law 2.9 implies that the work per unit volume dw performed to deform
the volume dV in a reversible process is

dw = Cijki€ij deg;. (2.11)

Because of the reversibility, we can define a strain energy density w, which is given
by an integration of the differential work, so that

w= %c,-jk,s,-jek,. (2.]2)

When calculating the energy density, the volume element is assumed to be ho-

mogeneously deformed. A strong assumption of linear elasticity theory is that this

relation holds not only for a finite volume element, but also pointwise, so that the

energy stored in a body of spatially varying deformation can be obtained by sum-

ming the energy of each infinitesimal volume element as if it was homogeneously
deformed, and thus the elastic energy E,| stored in a volume V is given by

1
E. = /VECijkIEijgkl dv. (2.13)

Through the use of 2.9, the static equilibrium conditon 2.3 concretizes into the
basic field equations for displacements

Ji+ cijriurj = 0. (2.14)

Wee see that the elastic constants contain all information about how a linear elastic
body will react to external forces. The quantity c;jx is a fourth-rank tensor con-
taining 3% = 81 elements which relate the nine elements of stress o; j to the nine

12
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elements of strain €. However, the number of independent elements is reduced by
noting that, for a body in rest, 6;; = G;, and from the definition of linear strain 2.6,
€;j = €j;. These equations lead to ¢;jx; = ¢ji = Cijik = Cjik- Furthermore, since the
energy e is an exact differential, the differentiation in 2.10 is independent of order in
which it is performed, making c;jx; = c¢x;j. The maximum number of independent
elastic constants is hence reduced to 21. For crystals, this number is further reduced
due to additional symmetries. E. g. cubic crystals have only three independent elas-
tic constants, whereas hexagonal crystals have five.

For actual calculations, one often makes the simplifying assumption that the
medium is elastically isotropic, i. €. the elastic properties are equal in all directions
in which case only two independent elastic constants are needed. These constants
may be chosen as the shear modulus y and the Lamé constant A. In an isotropic
medium, ¢;j = y(SikSJ’[ + 5,'18jk) + 7\.5,'j8k1.

2.1.3 Validity of linear elasticity theory

To conclude, classic linear elasticity contains three assumptions:
e The deformed state is accurately described by the linear strain 2.6.

e Hooke’s law holds, from which follows that the elastic energy is proportional
to the square of the strain.

e The elastic energy of an arbitrarily deformed body is given by treating each
volume element as if it was part of a homogeneously deformed body.

The validity of Hookes’ law can for a given material easily be tested. In Fig-
ure 2.3 the elastic energy of a uniformly compressed and expanded cell of bce-Fe
is given both by DFT and EAM calculations and elasticity theory. We see that the
agreement is reasonable up to a few percent of expansion. The plot shows some gen-
eral deficits of elasticity theory, namely that it usually underestimates energy due to
compression, but overestimates energy due to expansion. One should note, that for
the largest deformations, also the DFT and EAM results are questionable. To get a
better agreement between elasticity theory and atomistic modelling, one could add
higher-order terms to the energy density 2.12. For the description of inhomoge-
nously strained materials, corrections that take the gradient of strain into account
would be benificial.

2.2 Solving the equations

Now that all relevant quantities are defined, attention can be paid towards the more
difficult business of solving the basic field equations 2.14 for a given set of boundary
conditions. As in many other area of physics, Green’s functions provide a way of
reaching the answer. In this context, the Green’s function Gj; is defined as follows:

13



2 Continuum description of materials
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Figure 2.3: Elastic energy per atom of a uniformly expanded cell of bce-Fe as given by
different methods.
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2.2 Solving the equations

Consider a point force F acting at the point ¥’. The displacement at X is then given
as u; = G,‘j()_C’—)_C'I)Fj.

In the case of a linear anisotropic, homogeneous, and infinitely extending body,
the Green’s function can be shown to be (see [14] for a derivation)

1
C4m|R— |

Gij(x—%) = QOij, (2.15)

where Q;; is an orientation dependent quantity to be defined below. This Green’s
function is of use when dealing with point defects and inclusions. For other cases,
the Green’s functions have to be modified in order to cope with the boundary condi-
tions. One such case is a semi-infinite body with a free surface, where a single-point
force cannot give rise to a traction-free surface.

To solve a general elasticity problem numerically, a finite element method is
most often the preferred choice. Today, an abundant number of both commercially
and free computer codes exist for this purpose.

2.2.1 Sextic and integral formalism

In the appended papers, we have studied the interface energetics between semico-
herent interfaces residing misfit dislocations. For a special class of elastic problems
including dislocations and other two-dimensional (plane) problems, a methodology
involving complex variables was developed by Eshelby and Stroh [16, 17], the so
called sextic formalism. It was later cast into a slightly different form, the integral
formalism, by Lothe and coworkers [18, 19, 20].

Let us begin by looking at the sextic formalism. The problem setup involves an
infinite homogeneous anisotropic elastic body. Let 7, 7, and 7 be three mutually
orthogonal unit vectors and let X be a point in the body. The method deals with
problems where the elastic fields do not depend on 7- . The solution to the basic
field equation 2.14 in absence of body forces,

Cijkiuk,j =0, (2.16)
is sought among the functions
U :Akf(fﬁ')_f-i-ph’-)_f), 2.17)

where Ay is a complex vector, p is a complex constant, and f is an analytical func-
tion. By letting A = i - X+ p#i - X = mx; + pn;ix;, 2.16 holds if
d*f
Cijki (m; + pn;) (my +pnl)AkW =0. (2.18)

Non-trivial solutions exist when det (c;jx (m; + pn;) (m; + pn;)) =0, which is a sixth-
order polynomial in p, and thus have six roots. Associated with each root pg is an
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2 Continuum description of materials

eigenvector Axy. The most general solution to 2.18 is a linear combination of the
solutions corresponding to each py, 1. e.

6
up = Y AxoDof (- X+ pii - X), (2.19)
a=1
where the Dy, are constants to be determined by the boundary conditions at hand.
The theory is further extended by defining an associated vector L jq, = —n;C; ks (m;+

Pani)Arq- The vectors A and L are known as the Stroh eigenvectors. Interesting
orthogonality, completeness and invariance relations of these vectors have been de-
rived, and are put to use in the so called integral formalism. In the integral formalism,
the awkward solving of sixth-order polynomials is replaced by angle-dependent in-
tegrals. E. g. the quantity Q;; mentioned above in relation to the Green’s function of
a linear anisotropic, homogeneous, and infinitely extended body, can be expressed
in two ways,

6 2
— 1 T _
o=1 TJo

where the first form is in the sextic formalism and the second in the integral for-
malism. In the sextic formalism expression, the upper (lower) sign apply for o0 =
1,2,3(4,5,6) and the ordering of Ay is such that Impy > O for oo = 1,2,3, and
Impg < 0 for oo =4,5,6. In the integral formalism expression, the matrix (nn) =
n;cijrn and the angle o is the angle of rotation of 7 and 77 around some fixed vector
in the plane spanned by 7 and m. Among the advantages of the integral formal-
ism is that it avoids the problem of root degeneracy which may occur in the sextic
formalism, e. g. in the important case of isotropy.

2.2.2 Application to dislocations

The theory described in the previous section fits well for the mathematical descrip-
tion of an infinitely long straight dislocation, whose elastic field is a planar object,
which has no variation along the dislocation line. In order to obtain the displace-
ment field of the dislocation, one needs to find constants Dy, and a function f which
accurately yields the correct boundary conditions appropriate for a dislocation.

A dislocation is described by its Burgers vector b, which is a measure of the
discontinuity of the displacement field associated with the dislocation. If we imagine
i pointing to the right of the paper, 7 to the top, and 7 out of the paper, we can choose
to make a cut halfway into the material along the halfplane 7 -X > 0,7i- X = 0. The
cut ends at the dislocation line 7. Before welding the parts together, we displace the
lower part relative to the upper part by b. The Burgers condition then reads

wi(m-X>0,i-X=07) —w(m-X>0,i-¥=07) = b;. (2.21)
A function with this property is
1 6
U= ——— Y AjgDgIn(m-X+ poii-X), 2.22
i 275\/—_10;1 oo ( Pa ) ( )
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2.2 Solving the equations

where the branch cut of the logarithmic function is chosen along /71 -X > 0,7 - X = 0.
The boundary conditions for the Dy, is firstly the Burgers condition

6
Y £AiuDo = bi, (2.23)
o=1

which gives three equations for the six unknowns Dg. Secondly, further equations
can be acquired by studying the curve integral

Tj = 74 G,'jNJ'dS, (2.24)
C

where C is the curve around the dislocation line 7 in a positive sense and o;; is the
stress from the dislocation. The integral represents the net traction associated with
the dislocation and, with a line force f acting along the dislocation line, the integral
2.24 reduces to

6
Y +LiaDo = —f;. (2.25)

a=1

For a pure dislocation f = 0. The two equations 2.23 and 2.25 completely specifies
the displacement 2.22. One may note, that this dislocation, known as a Volterra
dislocation, is a highly idealized one, in the sense that it is localized only to the
dislocation line, on which the strain diverges and therefore it is applicable only to a
true continuum. Eshelby [21] considers dislocations to be built by a distribution of
Volterra dislocations, each one with an infinitesimal Burgers vector b. This view is
more appropriate when dealing with lattices, and is put to use in the Peierls-Nabarro
model of dislocations (see 4.1).

The situation treated in the appended papers is a bit more involved than the prob-
lem of a dislocation in a homogeneous material described above, since we studied
dislocations at the interface between two dissimilar materials. It is, however, possi-
ble to construct a function with the same form as 2.22, but with different constants
Dy, (and py) for each half-space. Together with the Burgers condition and the zero
net traction, one also applies the boundary conditions of continuous displacements
along 7 -X < 0 and continuous traction over the whole interface, which in total re-
sults in twelve conditions needed for the twelve unknowns [22].

Generally, the elastic energy per unit length due to a dislocation is found by use
of 2.13. However, when integrating over all space, the energy of an ideal disloca-
tion is found to be logarithmically divergent. The solution is to consider a hollow
cylinder of inner radius rp and outer radius R around the dislocation. By the use the

divergence theorem [14], the energy Egg contained within the cylinder is found to
be

R
Egig =EIn—,
ro

(2.26)

where
E =b;B;jb;. (2.27)
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2 Continuum description of materials

The quantity E is called the prelogarithmic energy factor [2]. For a dislocation in a
homogeneous material, the expression for B;; in the sextic formalism is

1 6
e +LioLiq- 2.28
475\/_—1(1;1 104~ O ( )

Often it is more convenient to define the energy cofficient K;; of a dislocation, which
equals 47 B;; resulting in E = b;K;;b; /4w. In an isotropic material, an edge dislo-
cation has energy coefficient K. = u/(1 — V), where Vv is the Poisson’s ratio, and a
screw dislocation Ky = u. For a dislocation at an interface, similar expressions exist
[22].

Returning to the energy of a dislocation 2.26, there are two parameters R and ry
which need to be defined. A common choice is to let ro =~ b and R to be the average
grain size of the material. However, for comparison of different dislocations it is
more well-defined to consider the energy factor E.

Bij:
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CHAPTER 3

Atomistic description of materials

Both the continuum and atomistic description of materials seek to measure the en-
ergy of a physical system as a function of the system’s geometry. Whereas the geo-
metric description in the continuum description is locked into a displacement field,
the atomistic description deals with all atomic coordinates of the system.

For a complete microscopic description of the total energy, the quantum me-
chanical ground state of the system is found by taking into account all nuclear and
electronic degrees of freedom. The first step towards a tractable atomistic descrip-
tion is the Born-Oppenheimer approximation [23], which assumes that the many
body wave function including both electrons and nuclei may be separated into an
electron and a nuclear part. Because of the large ratio between the nucleus and elec-
tron masses, it is assumed that the electrons instantaneously adapt to a change in
nuclear positions and hence that the nuclei always move on the potential energy sur-
face given by the electronic ground state. The electronic wave function will depend
only parametrically on the nuclear positions. In most applications, it is not necessary
to calculate a nuclear wave function. Instead, the energy and motion of the nuclei
are described classically. One is therefore left with the task of finding an energy
function

E =E(Ry), (3.1)

where Ry, is a set of all atomic coordinates of the system.

Basically, there are two different ways of deriving the potential £ (Ea). The most
fundamental one is the first-principles method, which gives E(R,,) with no other in-
put than the atomic species and positions. It is often a reliable, yet computationally
demanding method. The alternative is to find £ (I_é(x) semi-empirically, where a func-
tional form for the potential is guessed from physical reasoning and parameters are
fitted to experiments and/or first-principles calculations. In the subsequent sections,
examples from both methods will be mentioned.

Before describing atomistic calculations in detail, it is instructive to see how the
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3 Atomistic description of materials

continuum description of a material as treated in Chapter 2 can be derived from a
first-principles theory. Assuming that the energy E(Rg) is fully known from first-
principles, how does one arrive at linear elasticity theory? The first step [23] in
finding the connection is to expand the energy E (Eq) to second order around its
equilibrium value Ey, giving

E= E0+Za u,a+z ios 5~ au ujp + O(Uial jgliky), (3.2)

where u;q, 1s the displacement of atom o.. Note that the second term of 3.2 is zero, due
to force equilibrium. By assuming that the atomic displacements vary only slightly
from lattice site to lattice site, it is possible to consider a continuous displacement
field #(X) that takes the value i at lattice site o, and additionally, under the same
assumption,

du,
Xi |3=Rq,
for nearby o and . With these simplifications, the expansion 3.2 reduces to
1
E:E0+§za:uj,i s=#, Bij R, (3.4)
where
1 0’E
Ejju=-Y =~Rpg=———Ryg. 3.5
ijkl %, S Rip dujoduu kB (3.5)

In deriving E;jy;, reference is made to the fact that the atoms are positioned on a
Bravais lattice, which makes 0°E /(0u joOu;p) invariant under a translation of o and
B with a lattice vector. Without a Bravais lattice, E; ikt would depend on .

To proceed, one demands that the energy should be constant for an arbitrary ro-
tation of the material. This implies that the energy depends only on a symmetrical
combination &;; = %(u,-’ j+uji), which is recognized as the linear strain. By replac-
ing the sum of 3.4 with an integral, we arrive at an expression for the energy which
is identical (apart from the constant energy shift Egy) to 2.13 derived from linear
elasticity theory, namely

1
E=Ey+ /V Eeijcijklekl dv, (3.6)

where V is the volume of the crystal and the elastic constants c;j; are reintroduced,
but here with the definition

1
Cijkl = 7y (Eiju + Ejiki + Eijik + Ejuk ) - (3.7

20



3.1 First-principle methods

3.1 First-principle methods

At the basis of all first-principles methods lies the time-independent Schrodinger
equation, which, under the Born-Oppenheimer approximation, takes the form

HY (7 Ro) = E(Ro) ¥ (g; Ra), (3.8)

The set of electronic coordinates is denoted 7g and explicit reference is made to the
fact that the energy and wavefunctions are parametrically dependent on the nuclear
coordinates Ry. The Hamiltonian consists of three parts

H =T+ Vee + Vext; (3.9)

where T is the kinetic energy, Ve, the electron-electron interaction, and Vex; the po-
tential from the nuclei including also the constant energy shift due to the interaction
between the nuclei themselves.

For a piece of real material containing an Avogadrian number of particles, so-
lutions to the Schrodinger equation are computionally not feasible. In fact, only
a handful electrons can be treated exactly. The problematic part is the electron-
electron interaction Vg which hinders the total wavefunction from decomposing into
a product of one-particle wavefunctions. An approximate treatment or neglect of
electron-electron interaction is therefore a common feature of many electron struc-
ture calculations.

There are two choices of fundamental variable for characterizing an electronic
system in the ground state: the wavefunction or the electronic density. In the Hartree
and Hartree-Fock methods, the former is used, whereas density functional theory
(DFT) uses the latter. DFT is, in principle, capable of treating the electron-electron
interaction exactly, but in practice it must be approximated. The applicability of DFT
depends strongly on the accuracy of these approximations. In the appended papers,
we have used DFT to evaluate the energetics of interfaces. In the next section, some
basics of DFT will be given.

3.1.1 Theoretical background of density functional theory

Since its formulation in the 1960s, DFT has grown to become one the most suc-
cessful computational methods in atomistic calculations. A thorough introduction is
given by Martin [24]. The basis of DFT is formed by two theorems of Hohenberg
and Kohn [25]. The first Hohenberg-Kohn theorem states that the electron density
may be used in place of the potential as the basic function uniquely characterizing
the system, or in other words, the ground state density n(7) uniquely determines the
external potential Vex(¥), up to an arbitrary constant. According to the variation
principle, the ground state energy E is found by

where the minimization is over all antisymmetric N electron wavefunctions . How-
ever, it would be easier to search for an electron density n(7), since this is a function
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3 Atomistic description of materials

of only three space variables compared to the 3N coordinates of the wavefunction.
By defining a functional

F [n] = min(¥[T + Vee| '¥), (3.11)

where the minimization is over all antisymmetric wavefunctions ¥ that gives a par-
ticular density n, the search in 3.10 can be reformulated into [26]

E:n?<mﬂ+/%ﬂnma&> (3.12)

where the minimization is over all N electron charge densities n. Now, the second
Hohenberg-Kohn theorem states that there exists a single universal functional F [n],
i. e. it is independent of the external potential, which should be evident from 3.11.
By introducing a functional E[n] (defined as in 3.12 excluding the minimization) and
a Lagrange multiplier u for the fixed particle number constraint,

N:/&mm (3.13)
one seeks to minimize E[n] — uN through the Euler-Lagrange’s equation
OF
~= + Vext(F) = 1. 3.14
5]’1(?) + eXt(r) u ( )

This would be a convenient way of determining the ground state properties of any
external potential if only the functional F [n] was known. It is, however, not and the
importance of the Hohenberg-Kohn theorems could therefore seem to be primarily
theoretical.

Luckily, Kohn and Sham [27] found a mathematically tractable way of solving
the original many-body problem. In the Kohn-Sham formulation, the starting point
is to separate F[n] into different parts,

F[n] = Ti[n] + Eu[n] + Exc[n], (3.15)

where Tj[n] is the kinetic energy functional for non-interacting electrons, and Ey|n|
is the Hartree energy, which is the electrostatic energy stored in a charge density

n(7), given by
1 _ yn(An(7)

The remaining term of 3.15, Ex.[n], is called the exchange and correlation energy,
which should capture all errors arising from replacing 7 + Vi by 75+ Eg. The
essential result of the Kohn-Sham formulation, is that the Euler-Lagrange’s equation
3.14 for the functional 3.15 is exactly fulfilled for a set of non-interacting electrons
obeying the one-electron Schrdodinger equation (in atomic units),

(—%Vz + ks (7)> 0i(7) = €0i(7) (3.17)
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3.1 First-principle methods

where Vg 1s a density-dependent potential, given by

0Ly [I’l(?)] i OEx. [n(?)] )

Vis (7) = Vext(7) + —5 @ 57 (3.18)
From a comparison of 3.15 and 3.17 it is deduced that
OEx [n(F
E =) figi— En[n(F)] + Exc[n(7)] - / d?n(?)%?g””, (3.19)

where f; is the occupational number of the electronic Kohn-Sham state i. To find
the energy E in practice, one has to solve the Kohn-Sham equation 3.17 iteratively,
since Vks depends on the solution itself. Starting with a reasonable first guess for
the density, the equations are solved until self-consistency.

Some points are worth noting. In principle, the Kohn-Sham equations are exact
and yield the exact density. Since the equations are single-particle equations, they
are much easier to solve than the original coupled Schrddinger equation. In return,
however, the electron-electron interaction energy has to be approximated. By sep-
arating the interaction into Ey[n] and FEx.[n], where the former is known exactly, it
turns out that the latter is more amenable to efficient approximations.

3.1.2 Exchange correlation approximations

A first approximation of Ex.[n] was suggested already in the original Kohn-Sham
paper [27] and is known as the local density approximation (LDA). In the LDA,
the exchange correlation energy at a point 7 is set to equal the exchange correlation
energy €xc(n) of a homogeneous electron gas of density »n(7), making

Exln] = / dFn(Fex (n(7)). (3.20)

For the homogeneous electron gas, an exact expression can be derived for the ex-
change energy by calculating a Fock integral for a Slater determinant of orbitals.
This motivates that the exchange correlation energy is split into two parts: €xc =
€x 1 €. The correlation part can be found from Monte Carlo simulations [28].

To treat spin-polarized systems, one introduces spin densities, such that

n=ny+n (3.21)

(see e. g. [24]), where ny (n}) is the density of spin-up (down) electrons. Gener-
alization to an arbitrary direction is possible. The local spin density approximation
(LSDA) is the spin-polarized generalization of LDA. The kinetic and exchange en-
ergy in the LSDA can be found by spin-scaling arguments. The correlation energy
as a function of spin-polarization must, however, be extracted from Monte Carlo
calculations.

LDA has proven to be a surprisingly good approximation for exchange and cor-
relation, at least in solids. The reason is that exchange and correlation effects are
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3 Atomistic description of materials

short-ranged and one can therefore expect that LDA will work best for solids resem-
bling a homogeneous gas and worst for inhomogeneous systems, like free atoms or
molecules. However, LDA also works for some cases of varying density, which is
considered to be a consequence of the fact that it describes the exchange-correlation
hole created around an electron correctly according to certain sum rules [24].

To better deal with inhomogeneous systems, a more elaborate approximation
includes also the gradients of the density. In the popular generalized gradient ap-
proximations (GGA), the exchange-correlation energy takes the form

Ex[n] = / dFn(P)exc(n(F), Va(?)). (3.22)

This functional form is called semi-local, since it takes account of the density not
just at 7, but also in the infinitesimal vicinity of 7. In the beginning of the DFT era, it
was believed that the gradient expansion approximation (GEA), which expands the
true exchange correlation functional with an increasing number of density differen-
tiations and powers would lead to better accuracy. This is, however, not the case
which has lead to a diversity in the formulation of GGAs. In the appended papers,
the GGA version by Perdew and Wang (PW91) [29] has been used.

3.1.3 Pseudopotentials and plane-wave implementation

Despite the simplification introduced by the Kohn-Sham approach to DFT, one is
still left with the quite overwhelming problem of solving the Kohn-Sham equations
for all electrons of the system. For isolated atoms and molecules this is doable
by using localized basis sets. For solids, however, the natural choice of basis set
is plane waves. Consequently, periodical boundary conditions are imposed on the
computational cell. Then, the conditions for Bloch’s theorem are fulfilled, meaning
that the wavefunctions can be written as

¥ () =u, (e, (3.23)

where u, ;(7) has the periodicity of the lattice, 7 is the band index, and k is a vector
in the first Brillouin zone. Due to the periodicity, u, () can be expanded in plane
waves with wave vectors of the reciprocal lattice,

U,z (M) =Y, 67 (3.24)
j "V,

— — 2
To create a finite basis set, only reciprocal lattice vectors of kinetic energy ‘k + G‘ /2

less than some predefined cutoff are included in the sum.

When modeling defects, the system often lacks periodicity in one or more di-
mensions. Defects are therefore treated by imposing an artificial periodicity, e. g. a
surface is modeled by creating a slab and a layer of vacuum, which in fact yields
two surfaces. Of course, care has to be taken to choose the slab size thick enough to
avoid interaction between the two surfaces.
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3.2 Model potentials

The drawback of using a delocalized basis set such as plane waves, is the need
of a large basis set to accurately describe localized functions, such as the charge
density in the vicinity of the nucleus. Often, only the valence electrons are there-
fore included in the DFT calculation. The effect of the core electrons and nucleus is
replaced by a pseudopotential, which is chosen such that the true all electron wave-
function and the pseudo wavefunction coincide outside some appropriately chosen
core radius. Using this construction, the often complicated structure of the true
wavefunction near the nuclei is simplified into a smoother version, which allows a
smaller basis set. Luckily, the core electron states are often negligibly affected by
the atomic environment under reasonable conditions (exceptions being €. g. extreme
pressures), and only valence electrons contribute to chemical bonding, which ex-
plains the success of the pseudopotential approach for describing actual solid-state
properties of materials.

3.2 Model potentials

Although bonding between atoms is of quantum mechanical origin, where electrons
act as a glue between the positively charged nuclei, it is often desirable to remove the
explicit dependence of the electrons on the total energy, and only consider the energy
as a function of atomic coordinates, where the electrons are effectively integrated
into the energy function E(Ry,).

3.2.1 Pair potentials

The simplest example of an energy function E (Ra) takes the form

E= ZV(R,- i) (3.25)
2

where V is a pair potential and R;; is the distance between atom i and j. The total en-
ergy is here decomposed into contributions from interactions between pair of atoms.
The most familiar and thoroughly investigated pair potential is the Lennard-Jones

potential, where
V(Ri;) = 4¢ [(9)12— (9.)6]. (3.26)

r r

¢ is the depth of and ¢ the distance where the potential changes sign from repulsive
to attractive. The potential can be used to study systems of closed-shell atoms, where
interaction occurs mainly due to polarization.

The advantage of pair potentials is the ability to quickly calculate total energies
and forces. Therefore they are attractive for molecular dynamics simulations and
thermodynamical calculations. The physical justification of their use is however
weak and the problems are both qualitative and quantitative. As an example of the
former, the energy of a bond between two atoms will always be the same, regardless
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3 Atomistic description of materials

of the environment. Quantitatively, pair potentials cannot accurately describe even
the simple case of elastic deformation of a solid. A material of cubic symmetry, will,
using pair potentials, always fulfill the so called Cauchy relation, c¢12 = ca4.

3.2.2 Embedded atom method

To remedy some of the mentioned shortcomings of pair potentials, it is necessary
to account for the environmental dependence of the bond strength. This can be
accomplished by including an additional term to the total energy function,

E=Y V(Rij)+) F(pi), (3.27)
i,j i

i<j

where the physical interpretation and expression for F(p;) varies among different
workers. This functional form was used extensively in the 1980s to predict properties
of defects in solids, and has appeared with different names such as Finnis-Sinclair
potential [30], effective medium theory [31] (EMT), and embedded atom method
[32] (EAM).

The Finnis-Sinclair potential is derived from a tight-binding model. By utilizing
information about the second moment y; of the local density of states, it turns out
that F (p;) is proportional to the square root of u;. It is further argued that u; can be
taken as a sum of pairwise interactions between neighboring atoms, which leads to
a functional form F(p;) o ,/p;, where p; is given by an expression similar to 3.28
below.

The physical idea behind the EMT and EAM is that there is a certain energy cost
F (p;) associated with placing an atom in an electron gas. If one considers a metal
in a periodic structure, one can think of one particular atom i as being embedded in
the electron density p; given by the rest of the atoms. In EMT, F(p;) is determined
explicitly from DFT by calculating the energy of placing an atom in jellium at den-
sity p;- In EAM, however, F(p;) is determined semi-empirically and the density at
atom i is taken to be a sum

pi= Y f(Rij)- (3.28)
J#i
of contributions f(R;;) from its neighbors.

By combining a pair potential to describe the Coulombic interaction between the
nuclei with an embedding energy for the electron gas, EAM has successfully been
used for modeling metals of non-directional bonding. From a computational point
of view, EAM is only twice as time-consuming as a simple pair potential.

In one of the appended papers, an EAM implementation for Fe has been used
[33]. In this implementation, the energy function is fitted to cohesive energy, lat-
tice parameter, elastic constants, and vacancy formation energy. The contribution
to the electron density at atom i from a neighboring atom j is chosen as f(R;;) =
exp(—PBR;;)/Rij, which matches the functional form of the Thomas-Fermi screening
function. By first adopting the pair potential V(R;;), the embedding energy F (p;)
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3.2 Model potentials

is found by making a uniform expansion and compression of the lattice and fit-
ting the result to Rose’s expression [34] for the total energy as a function of lattice
parameter. The Rose zero temperature equation of state is based on experimental
pressure-volume data and has the form

E(a*) = —Econ(1+a")exp(—a*), (3.29)

where Eq is the cohesive energy and the dimensionless parameter a* = (a —ag) /1.
a is the actual lattice parameter, ag the lattice parameter in equilibrium, and [ is a
length scale given by I? = a%9BQ/ Econ, where B is the bulk modulus and Q the
atomic volume of the material.

3.2.3 Angular dependent and bond-order potentials

To treat materials of covalent bonding, it is often necessary to include angular terms.
A well-known example of an angular dependent potential is the Stillinger-Weber
potential [35] for Si. It has its origin in the expansion of the energy E (Ea) as a sum of
additive one-body, two-body, three-body etc. contributions. In the Stillinger-Weber
potential, the three-body contribution V3(R;, R j,I_ék) is taken to be a sum of functions
of the form h(R;;,R,0;jr), where 6, is the angle between R; and R; measured
from R j- h(Rij,Rjk,8;jx) contains a factor (cos8;j; + 1/ 3)2, which minimizes at the
tetrahedral angle of ;; ~ 109.5°. Thus the Stillinger-Weber potential stabilizes the
diamond structure, which cannot be done by a simple pair potential.

The Stillinger-Weber potential, as well as any other implementation of additive
N-body potentials, lacks the environmental dependence of bonding energy that EAM
incorporates. This motivated Tersoff [36] to formulate a bond order potential (BOP)
that takes the coordination number into account when calculating the bond strength
(bond order). In the BOP, the energy is written

1
E=3 Z.V(R,- i) (3.30)
i#]
where
V(Rij) = fc(Rij) (aijfr(Rij) +bijfa(Rij)) - (3.31)

Here fr is a repulsive energy, fi an attractive bonding energy, and fc a cutoff func-
tion. a;; is a range-limit function of no physical interest. The new physics comes
into b;;, which is written

1
b= (14 B'G) > 632
where environmental and angular dependence enter through
Gi= Y fo(Ri)g(0ij) exp(A(rij — rix)?) (3.33)
k#ij
and ) )
g®) =1+ < (3.34)

d>  d?+ (h—cosB)?’
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BOP has the ability of treating both metallic and covalent systems and can there-
fore be used where the more simple EAM potentials fail. In fact, BOP can be consid-
ered as an extension of EAM [37]. One example of successful application of BOP is
Ga-As [38], where the potential must describe both the metallic pure Ga phase and
the semiconducting GaAs phase. Another example is Pt-C [39], which are immisci-
ble systems that do not form carbides. The challenge here is that when the carbon
bonds are saturated, the chemical interaction between C and Pt is essentially non-
bonding, but the potential must nevertheless have local minima for experimentally
reported thermodynamically unstable compounds. Recently, Juslin et al developed
a BOP for the W-C-H system [40]. In this system, the constituents can take on many
different phases, €. g. a cubic W phase, which is metallic, and the hexagonal WC
phase, which contains both metallic W-W bonds and covalent W-C bonds. The abil-
ity to predict relative stabilities between different phases is a test of the versatility of
the BOP formalism.
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CHAPTER 4

Modeling of interfaces

In reality, the properties of a material are to a large degree determined by the pres-
ence of defects. In condensed matter theory, the object of study is often a solid of
crystalline form, which is well defined by its Bravais lattice and atomic basis. The
response of a perfectly periodical solid to external stimuli such as pressure and elec-
tric field is mostly well-understood. However, crystalline materials contain point
defects such as vacancies and interstitials, line defects such as dislocations, and pla-
nar defects such as interfaces, surfaces, and stacking faults. A big challenge for the
material theoretician is to understand how defects on an atomic level influence the
macroscopic properties of the material. In this work, focus is on the modeling of in-
terfaces. The abundance of interfaces in polycrystalline materials, such as cemented
carbides, clearly motivates a thorough understanding of interfacial structures and
energetics.

A fundamental quantity when discussing interface energetics is the interface free
energy per unit area Y, which is often referred to as simply the interface energy. y
plays an important role in determining equilibrium shapes and sizes of crystals. It
also influences the stability and adhesion of interfaces, and is related to wetting
behaviour and microstructural development during sintering. Reliable quantitative
values of 7y for all interfaces in a system is therefore desirable. The prohibitive diffi-
culties of experimentally measuring interface energies make theoretical calculations
a valuable tool. In order to discuss how such calculations are performed, we first
need a proper definition of Y, which relates the interface energy to the thermody-
namics of the interface.

For a system containing a planar interface of area A dividing two phases, the
most convenient definition from our perspective, is [41]

1
T=7 (G—Z_mM>, 4.1)
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4 Modeling of interfaces

where G is the total Gibbs free energy of the system and y; is the chemical potential
of constituent i. Since the sum }'; i;V; is the total Gibbs free energy of the separated
phases, 7 is the excess Gibbs free energy per unit interface area associated with the
presence of the interface. In the present Thesis, we concentrate on the contribution to
G from the internal energy £. Some comments on possible termperature dependent
effects are given in Paper II.

To be able to reach a computationally feasible model of an interface, several
simplifications have to be made. A real interface can be sharp or diffuse, planar or
non-planar, contain impurities of segregant atoms not present in the respective bulk
phases, precipitates, vacancies, dislocations, reconstructions, etc. Incorporation of
some of these effects into an atomistic model can be made, but a fully realistic
description of an interface remains intractable.

In the appended papers, the problem of modeling an interface between two crys-
tals of differing interatomic distances parallel to the interface is studied, i. €. an
interface with a misfit. We assume that the interface is planar and sharp. The two
crystals have lattice parameters aV) and a@ (@Y > a@) in the interface plane. Then
we can define the misfit

all — a2
% (a(l) + a(2)) ’

Depending on the value of f, the interfaces are divided into three groups: Coherent,
semicoherent and incoherent.

The coherent interface has zero misfit (f = 0) and the lattices of the adjoining
crystals match perfectly at the interface. In reality, coherent interfaces between dis-
similar materials is of course rarely seen, but if the thickness of one of the (or both)
phases is finite, the thinner phase can be strained to coherence, as is the case when
growing thin films on substrates. A coherent interface can also be the result of in-
troducing stand-off dislocations to accomodate the misfit. In some special cases,
coherent interfaces can form between solids of the same constituents but different
Bravais lattices, such as fcc-Co and hep-Co in the (111)gc || (0001)pp interface.

A semicoherent interface has a small misfit, 0 < f < 0.2. By considering a film
growing on a substrate, it is apparent that for some thickness, it is energetically
favorable to relieve the coherency strain and instead let the misfit be taken up by
misfit dislocations. The name misfit dislocation could be misleading, since these
dislocations are not defects, but a consequence of the geometry of the interface.
If the interaction across the interface is pronounced enough to produce localized
misfit dislocations, the interface will be characterized by large regions of good fit
between the crystals (the coherent region) and small areas in the vicinity of the
misfit dislocations where the atomic structure is distorted.

An incoherent interface is the result of a large misfit f 2> 0.2 and/or weak bond-
ing across the interface. As misfit grows, the misfit dislocations will approach each
other, and eventually the atomic displacements due to neighboring dislocations will
cancel. An incoherent interface can also come from joining two crystals with differ-
ing patterns in the interface plane, such as a high-angle grain boundary. Incoherent
interfaces do not show the long-range correlation in atomic displacement as semico-

f= 4.2)

30



4.1 PN modeling of semicoherent interfaces

herent interfaces do.

The goal of the model presented in the appended papers is to find the interface
energy as well as the individual atomic relaxations due to the interface for misfits
ranging from zero to the incoherent limit. As a first step, rigid body translations
of one crystal relative to the other are considered. The interface energy for a cer-
tain translation state 7 with respect to some origin is denoted y(T). By calculating
interface energies for all 7', the so called y-surface is mapped out. For the coherent
interface, where there is a translational symmetry in the interface plane, the y-surface
will be periodic with the cell of all non-equivalent in-plane translations [41]. Note
that the y-surface is actually a three-dimensional object, since it is defined for both
in- and out-of-plane translations.

To determine the y-surface in practice, the interface must be commensurate to
fit within a supercell of finite size. An interface is rendered coherent by an artifi-
cial compression (expansion) of the corresponding phases which yields a common
interface lattice parameter a. 'Y(T) is then calculated within DFT as

WT) =5, (E(T) —Z_EM) ! (43)

where E (T) is the energy of the interface system, ; is the number of constituent i in
the interface system, and E; is the energy per atom i retrieved from a bulk calculation
of the respective compressed (expanded) phases. This procedure excludes any direct
elastic contributions to the interface energy. A factor of 1/2 (cf. 4.1) is included to
take care of the fact, that in the supercell, two interfaces are present due to periodic-
ity. The choice of a in the interval a? <a< a!) is somewhat arbitrary and is not
critical to the calculated y-surface. In this work, we have chosen a to minimize the
elastic energy of the strained bulk systems.

For a coherent interface, an obvious estimation of the interface energy is the min-
imum of the y-surface. For an incoherent interface of infinite dimension, neglecting
individual atomic relaxations will reduce the y-surface to a constant value regardless
of the translation. We take this constant value as the mean of the y-surface of its
artificially coherent counterpart. Due to the atomic relaxations in the semicoherent
interface, the interface energy will in this case lie somewhere between the coherent
and incoherent limits, and the exact value of the interface energy depends also on the
energy for creating misfit dislocations. In an interface between two soft materials,
misfit dislocations will easily be created and the resulting interface energy should
be close to the coherent limit. Making a quantitative determination of the interface
energy in the semicoherent interface requires a model of the elastic response of the
adjoining crystals, which is the subject of the next section.

4.1 PN modeling of semicoherent interfaces

The original model of Peierls-Nabarro [42, 43] (PN) was derived with the aim of
describing the displacement field of a dislocation and the critical shear stress for its
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4 Modeling of interfaces

motion, motivated by the fact that plastic deformation of crystals is to a large extent
caused by motion of dislocations along the glide planes. In the simplest formulation
of the PN model, an infinite crystal is divided into two elastic parts by a glide plane
of the lattice. An edge dislocation with a Burgers vector b is introduced into the di-
viding plane, e. g. by the insertion of an extra half plane in the upper half space. The
displacement just above (below) the glide plane is denoted u(! (x) (u(? (x)), where
x is a coordinate along b. The dislocation is viewed as a distribution of infinitesimal
Burgers vectors [21] of size —du(x)/dx dx (the sign corresponds to the definition of
Burgers vector in 2.21), where u(x) = ul") (x) — u(?) (x) is the relative displacement
of the two half spaces. The atomic nature of the solid is only apparent in the glide
plane, where the relative displacement u(x) gives rise to restoring forces F (u(x))
acting on the surface of each half space. The effect of the lattice is reflected in F,
which has the same periodicity a, as the glide plane.

The PN integrodifferential equation is obtained by equating the integrated elastic
stresses with the restoring atomic forces in the glide plane, which yields

Ke [~ 1 ou(x)
o[ Y = Fuw) 4.4)

with the boundary conditions u(ec) = —b and u(—c) = 0. K, is the energy coefficient
of the dislocation (see 2.2.2) which determines the elastic response as given by the
elastic constants (and therefore the crystal structure) and the direction of the Burgers
vector.

In the case where the restoring force is assumed sinusoidal, an analytical solution
of 4.4 for u(x) exists, as shown already by Peierls in Ref. [42]. In a more realistic
treatment, the restoring force is taken from the derivative of the one-dimensional

Y-surface
Flu(x) = — ag(;(%)) , 4.5)

as proposed by Christian and Vitek [44].

An important quantity describing the motion of dislocations is the Peierls stress
op, which is the minimum stress required to move the dislocation. Although the
PN model as described above incorporates a periodic restoring force, the dislocation
will move without resistance, since in the continuum description, the energy is inde-
pendent of the position of the dislocation. This is implied by the notion that if u(x)
is a solution to the PN equation 4.4, so is u(x — T), where 7T is an arbitrary translation
of the dislocation. The natural resolution of this issue is to consider a misfit energy
W () given by the sum of the y-surface evaluated at the atomic positions,

W@ =Y ag¥ulnag ). .6)

n=—o0

W () has a periodicity of a, and its amplitude is defined as the Peierls barrier Wp.
The Peierls stress is the stress needed to overcome this barrier,

1 dw
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4.1 PN modeling of semicoherent interfaces

An analytical solution for op in the case of a sinusoidal restoring force has been
derived [45].

In the appended papers, we have taken on a PN approach to describe the structure
and energetics of misfit dislocations in interfaces. Some differences compared to
the PN model arise though, because of the different geometry. As a first example,
consider a planar interface, where £ and y are two perpendicular unit vectors in the
interface plane and 7 is the interface normal. For simplicity, we will first consider an
interface between two dissimilar crystals with misfit only in the £ direction, which
allows to consider the y-surface at a fixed value of y, since the atoms of the respective
bulk phases will not be displaced in this direction. A reduction to one dimension is
possible, e. g. by fixing the interphase distance, making y depend only on x.

The misfit gives rise to an array of misfit edge dislocations with a periodicity
given by

aVa®?
P= a0
Similarly to the original PN model, we define a relative displacement across the
interface, u(x) = u(!)(x) — u® (x) imposing the boundary conditions u(—p/2) =
u(p/2) = 0. The energy due to misfit is however not directly related to the relative
displacement, as in the original PN model, but rather to the disregistry U (x) of the
atomic planes in the interface. We define

(4.8)

U@ =3+ () 4.9)

which gives U(—p/2) =0 and U (p/2) = a, where a is the common interface lattice
parameter in the coherent interface as previously mentioned. The boundary condi-
tions of U (x) corresponds to one extra atomic plane in the lower crystal.
A basic assumption is that the total interface energy Ei,; can be decomposed into
two terms
Eiot = Ee) + Echems (4.10)

where the elastic energy Ee results from displacements of atoms, and the chemical
energy Echem from the breaking of bonds at the interface. From elasticity theory, it
is possible to derive an expression of the elastic energy contained in the two semiin-
finite crystals given by

p/2 rp/2
Eel [ = / In

du(x') du ()dx’dx 4.11)
47tP -p/2J—p/2

s1n —x) R

where it is worth noting that E; depends only on the relative displacement u(x),
which is due to an assumption of continuous stress fields across the interface. The
energy coefficient K. depends in a non-trivial way on the elastic constants of both
materials in the interface as described in 2.2.2.
The chemical energy is a simple integral of the y-surface,
1 rr/2
Ecpem ()] = [ v ar (4.12)

—p/2
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4 Modeling of interfaces

The interface energy can now be found by minimizing E;y; with respect to the relative
displacement u(x). As for the PN model, analytical solutions exist when 7y(x) is
sinusoidal [46, 47].

4.2 Example: The Fe/VN interface

As a first application of the methodology described above, we studied the semicoher-
ent interface between Fe and VN as presented in Paper 1. In steels, VN precipitates
as small discs of nacl structure within the bcc-Fe grains. An image from an atom
probe analysis is given in Figure 4.1. The flat side shows a low misfit of only 2 %
with the surrounding Fe matrix, which gives an experimentally well established in-
terface structure of Baker-Nutting relation (001) ., || (001)y..,[100] . || [110]p-
As seen in the high resolution electron microscopy (HREM) image in Figure 4.2, the
misfit is taken up by misfit dislocations. The side of the disc is incoherent (f = 44 %)
with the matrix. A previous study [48] of the Fe/VN interface neglected the elastic
energy, and found a slightly negative (~ —0.1J/m?) interface energy. The result is
physically unreasonable, since it would imply that the respective bulk phases are un-
stable. This fact motivated the need for a more detailed description of the interface
taking semicoherency into account.

The basic input to the calculation is the y-surface, which we calculated for six
high symmetry points in the artificially coherent interface. For these six points, we
calculated vy also as a function of intergrain distance z. The Fe/VN interface has a
misfit in both directions of the interface, and, as a consequence atoms will relax both
in the interface plane, but also perpendicularly due to local Poisson effects and the
corrugation of the y-surface. To allow an analytical solution for the interface energy
within the PN model, the dimensionality of the problem must be reduced. To go
from 3D to 2D, we remove the z-dependence in the y-surface by using the optimal
intergrain distance at all points, i. e. Y(x,y) = min;Y(x,y,z). To reach the 1D case,
we must choose a cut of constant y in the y-surface. The preferred interfacial site
for Fe is on top of N, which suggested us to use a cut between these sites, which is
further motivated by the fact that it gives the lowest chemical energy. Furthermore, if
the true y-surface is approximated by a single cosine-function an analytical solution
exists.

To extend the 1D interface energy to the physically relevant situation of a 2D

dislocation network, we multiply the deviation from the coherent interface by 2,
which makes

Etot,lD = 2Eel + 2(Echem - Ecoh) + ECOha (4-]3)

where Eqp, is the energy of the coherent interface. Errors induced by this formula
will be significant only in the region where dislocations intersect. For a low misfit
interface, the area of this region will be small compared to the total interface area,
and hence the approximation is valid in the low misfit limit.

An assessment of the validity of the computational models was performed by
comparing the analytical solution with an atomistic model. The Fe phase was de-
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4.2 Example: The Fe/VN interface

Figure 4.1: An atom probe analysis of steel. VN is seen as discs. The original image is
published in [49].
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4 Modeling of interfaces

Figure 4.2: An HREM image of the Fe/VN interface from Ref. [50] showing the (110),.
and (111),,, lattice fringes. Two misfit dislocations are present in the image. Their separa-
tion agrees well with the theoretical prediction of p = 141 A (the vertical bar corresponds to

60A).

scribed by an EAM potential [33], but since no model potential for VN is available
in the literature, we regarded the VN phase as rigid. An atomistic description, where
atoms are free to relax, allows an explicit comparison of the effects of going from
3D to 1D and to use a single cosine functon instead of utilizing all information in
the y-surface. For the analytical solutions, we also compared the effect of assuming
that the Fe phase is elastically isotropic.

The agreement between all computational models was good and the total inter-
face energy was found to be ~ 0.5J/m? with differences between the models around
0.01 —0.05J/m?2. The largest discrepancy between analytical and atomistic models
was found in the case when Fe is assumed to be isotropic, which yields an overesti-
mation of the interface energy of 0.06J/m?. To continue, we also made an analytical
calculation in the case where both Fe and VN are treated as elastic media with ap-
propriate elastic constants and found an interface energy of 0.32J/m?, which is our
final estimate of the interface energy.

An important conclusion from the work in paper I is that such small misfit as
2% has a large influence on the interface energy. When studying semicoherent in-
terfaces, elastic effects cannot be neglected and our method provides a fast way
of assessing the interface energy. In Paper II, the method was applied also to the
Fe/ScN and Fe/TiN interfaces.
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4.3 Example: Special grain boundaries in cemented carbides

4.3 Example: Special grain boundaries in cemented
carbides

When studying a magnified image (e. g. Figure 1.4) of a sintered cemented carbide,
it is apparent that the mechanical properties of the final product is far from being
completely described just by the bulk properties of the carbide grains and binder
that make up the material. The structure, strength and thermodynamics of interphase
and grain boundaries are of great importance for the microstructure. Examples of
frequently used quantitative measures of microstructure include composition of the
phases, distribution of carbide grain size and the amount of binder between grains.

The distribution of misorientation in grain boundaries has not traditionally been
used to quantify a microstructure, because of the tedious experimental work required
for determining the orientation of interfacing grains. In the TEM, diffraction patterns
in neighboring grains have been used to find the relative orientation. Difficulties in
acquiring proper specimens and finding measurable grain boundaries have limited
the number of investigated grain boundaries to at most a few tens for a normal study.
The introduction of the electron backscatter diffraction technique (EBSD) [51] has
made a definite improvement of the experimental situation and now allows exper-
imentalists to investigate thousands of grain boundaries within a couple of hours.
Today, EBSD can be used as an important tool for characterizing microstructure. By
scanning the surface of a specimen, a computer quickly determines the orientation
of grains pixel by pixel by examining the corresponding diffraction pattern.

In order to specify a grain boundary, some geometrical considerations are needed.
Let us denote the interfacing grains 1 and 2. The lattices of grain 1 and 2 are thought
to be extended over all space. Then lattice 1 is rotated around a common rotation axis
(possible followed by a translation) until the lattice sites of 1 and 2 coincide. The
angle of rotation around the axis is the misorientation angle. A complete definition
of the grain boundary also requires knowledge of the interface planes.

A frequently used parameter to characterize a grain boundary is its X value,
which is related to the coincident site lattice (CSL) of the boundary [41]. To con-
struct a CSL, the two lattices of grain 1 and 2 are, once again, thought to be extended
over all space. Then lattice 1 is translated until one of its sites coincide with a site of
lattice 2. The CSL is now the lattice of all coincident sites. The value of X is defined
as the ratio of the volume of a unit cell of the CSL to the volume of a unit cell of the
crystal lattice. An arbitrary grain boundary does not need to have a finite X. A low X
can be an indication of a low-energetic boundary. If we consider stacking faults as a
special class of grain boundaries, these would give £ = 1 and often a lower energy
than the average grain boundary [52].

Since the ratio ¢/a = 0.976 for WC is close to 1, it is possible for WC to form
low X boundaries in the ¢/a = 1 approximation. Hagege et al [53] have characterized
several low X grain boundaries. The lowest possible in a hexagonal system is £ = 2,
which is formed by rotating one half of a crystal by 90° around the prismatic [IOTO}
axis. Note that the ¥ = 2 criterion does not put any constraint on the planes of
interface.
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4 Modeling of interfaces

Figure 4.3: Simple sketches of the (left) pure twist and (right) pure tilt ¥ = 2 boundaries.
The common rotation axis is the prismatic [1010] axis.

In an arbitrary grain boundary, there will be no simple relationship between the
axis of rotation and the interface plane. However, there are two types of boundaries
that are simpler than other: the pure tilt and pure twist boundaries. In a twist bound-
ary, the rotation axis is perpendicular to the interface, and in a tilt boundary the rota-
tion axis lies in the interface. For the rotation of an arbitrary boundary, a decomposi-
tion into twist and tilt components is possible. A sketch of the special types of £ =2
boundaries for WC is given in Figure 4.3. Denoting the adjoining crystals 1 and 2,
the interface relation for the twist boundary is (1010) , || (1010),,[0001], || [1210],
and for the tilt boundary (0001), || (1210),, [1010], || [1010].,.

4.3.1 Experimental findings

An example of an image created from EBSD data of a WC-Co specimen is given
in Figure 4.4. The gray scale of the image is related to the orientation of the grain.
The corresponding misorientation distribution is found in Figure 4.5, where it is
plotted together with a random distribution for a microstructure without texture. An
outstanding feature of the plot is the distinct peak at 90°. The plot only gives infor-
mation about the misorientation angle. A complete description of the misorientation
would include also the common rotation axis of the grains. This information can
be presented in an axis-angle plot, which for each misorientation angle gives the
stereographic projection of the distribution of rotation axes.

The distribution presented in Figure 4.5 is well in line with published exper-
imental work. Kim et al [54] performed EBSD studies of a WC-Co material of
6 weight % Co and found two peaks larger than the random distribution. The largest
peak corresponding to 11 % of the grain boundaries was found at 90°. The major-
ity of these grain boundaries had a rotation axis of [IOTO} terminated by {1010}
planes and are thus ¥ = 2 twist boundaries. In contrast to the distribution in Fig-
ure 4.5, they also found a peak corresponding to 3 % of the grain boundaries at 30°.
These were identified with a twist [0001] boundary and an asymmetric [0001] tilt
boundary terminated by {1010} and {1210} planes.

The cause of the high frequency of ¥ = 2 boundaries has during recent years
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Figure 4.4: An image created from EBSD data of a WC-Co specimen. Black boundaries
correspond to a general grain boundary. Boundaries with a misorientation within approx-
imately £10° from 90° are dark gray. The misorientation makes them candidate ¥ = 2

boundaries. Courtesy of J. Weidow.

Grain Boundaries W O

Figure 4.5: A misorientation frequency plot for the specimen in Figure 4.4. The frequency
for a random distribution is given in light gray. Courtesy of J. Weidow.
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been of both theoretical and experimental interest. Some clues are provided by older
experimental work on cobalt segregation to grain boundaries. During sintering of
cemented carbides, cobalt will wet carbide surfaces and penetrate grain boundaries.
An old controversy in the cemented carbide society was whether a contiguous car-
bide skeleton exists or if the WC grain boundaries contain a film of segregated cobalt
breaking the contiguity. A number of experimental investigations have been con-
ducted to determine the propensity of cobalt segregation to grain boundaries.

Sharma et al [55] used STEM equipped with an X-ray detector to measure the
atomic Co/W ratio in grain boundaries and in grains. They found that the Co/W
ratio was at least three times larger in the grain boundaries, which they interpreted
as evidence for the presence of a thin intergranular Co film. Henjered et al [56]
used atom probe field ion microscopy and analytical TEM and deduced that WC
grain boundaries contain Co in a zone of monolayer thickness and that the amount
corresponds to about half a monolayer. Using STEM with an X-ray detector, Vicens
et al [57, 58] found two special grain boundaries of WC that did not show any
signs of cobalt segregation. These were the ¥ = 2 twist boundary and a X = 5 twist
boundary of the same rotation axis, but with a 53 ° misorientation angle.

Theoretically, it is known that the ¥ = 2 twist boundary has an exceptionally low
grain boundary energy [59], as will be further elucidated later in this Thesis. The low
energy interface configuration would provide a strong torque for grains to rotate into
the ¥ = 2 relation during the rearrangement stage of the sintering process. The ab-
sence of cobalt in some X = 2 boundaries means either that all Co has been squeezed
out of the grain boundary during the rearrangement, or that the initial powder con-
tains ¥ = 2 boundaries, into which Co does not diffuse. The latter explaination is
more plausible, especially when considering the TEM investigation of WC powder
by Lay et al [60], which indeed verified the presence of £ = 2 boundaries in the
powder.

Tungsten carbide powder was also studied by Kim et al [61]. They prepared two
different WC materials: the first sintered in 40 weight % Cu and the second sintered
with 25 weight% Co and small amounts of Mo,C. The mutual solubility between
Cu and WC is negligible causing the grain shape to be conserved during sintering.
When sintering in the presence of Mo, the shape of the initial grain will be outlined
by a film of precipitated Mo, which makes it possible to distinguish between grain
boundaries present in the powder and grain boundaries formed during sintering. By
EBSD analysis, they found varying misorientation angles in the WC-Cu material,
but with some preference of misorientation angles of 30°, 45°,75°, and 90°. In the
WC — Mo,C — Co material, the remaining boundaries had misorientation angles of
30°, 72°, and, in particular, approximately 40 % were 90° boundaries. Of the 90°
boundaries, most were reported to have a common prismatic axis and are therefore
¥ = 2 boundaries.

In a recent study, Kumar er al [62] studied the distribution of misorientation
angles of grain boundaries as a function of sintering temperature. They too found
peaks in the misorientation distribution for angles of 30° and 90°, but, more inter-
estingly, they found that when increasing the sintering temperature from 800°C to
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1400° C the length fraction of ¥ = 2 boundaries decreased from 11 % to 6 %.

4.3.2 Previous calculations

The experimental findings can be compared with the first-principles calculations by
Christensen and Wahnstrom [59, 63], where WC grain boundary energies Ywc/wc
and WC/Co interface energies Ywcico were calculated. An interesting property,
which was studied, is the grain boundary’s resistance against Co phase penetration
given by the criterion

Yworwe — 2¥weico > 0. (4.14)

The calculations were performed for the £ = 2 twist and tilt boundaries and also for
a 27° twist boundary with interfacing prismatic planes. For Ywc/co two bounds were
used. In the lower bound of Ywc/co, the most favorable translation state of Co with
respect to WC was used, and in the upper bound a mean of several translation states
was used.

All grain boundaries, except the ¥ = 2 twist, fulfilled the phase penetration cri-
terion 4.14. For the ¥ = 2 tilt boundary, also substitutional cobalt segregation in
half a monolayer proportion was studied. For certain combinations of translation
states and terminations of the boundary, cobalt segregation lowered the WC grain
boundary energy, which reduces the expression in 4.14. For a W-terminated (0001)-
plane joined with a (1210) -plane, cobalt segregation actually leads to a boundary
that could be resistant towards Co phase penetration. The uncertainty comes from
the determination of Ywc/co. Depending on the chosen bound on Ywc/co, the phase
penetration criterion 4.14 is either positive or negative. For no combination of sub-
stituted atom (W/C), termination of the (0001)-plane, and translation state a decisive
conclusion of resistance against Co penetration could be made.

4.3.3 Current calculations

The calculations presented in [59, 63] rely exclusively on the ¢ = a approximation.
The ¥ = 2 twist boundary is known to contain a defect structure in the form of atomic
steps as imaged using HREM by several different workers [64, 65, 66]. An example
of the defect is given in Figure 4.6.

The defect is a geometrical necessity due to the misfit of the crystals which
will increase the grain boundary energy compared with the coherent approximation
(c = a). To assess this effect, we applied the method developed earlier in this Chapter
to the misfit in the ¥ = 2 twist boundary. In order to do this, a detailed model of the
geometry is required.

First of all, with a = 2.906 A and ¢ = 2.837 A, the periodicity of the interface
is given by p = 119.5A, which approximately equals 41a ~ 42c. Here we propose
that each step takes care of half of the misfit on the distance p, so that the steps are
separated by an average distance of p/2 = 59.7 A, which is the case in the image of
Figure 4.6. Also double steps have been reported [64], but these are more seldomly
seen and will not be treated here.
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Figure 4.6: A X = 2 twist boundary in cemented carbides from [66]. The steps are marked
with white lines. The boundary is imaged using HREM.

The two crystals at the interface can be terminated in three ways: W-W, W-C,
or C-C, and we choose to use the W-C termination, since this termination has the
largest margin against Co phase penetration. The ¥ = 2 twist boundary contains
two non-equivalent choices of dividing planes, as explained in Figure 4.7. We here
choose to make a Type I boundary, since it has a lower mean energy.

The y-surface is interpolated from the data given in [59] and is plotted in Fig-
ure 4.8. Apart from a couple of values along the [1213} , direction, three different
translations states were used for mapping out the y-surface. The translation state
depicted in Figure 4.7 is the minimum energy configuration corresponding to a
value of y = 0.02J/m? and is used as the origin in Figure 4.8. Making a transla-
tion 1/6 [1210], (1/2[0001},) of grain 2 yields Y= 4.67J/m?* (y = 2.82J/m?).

Due to symmetry, the y-surface has two equal minima. This can be understood
by studying the sequence of translations in Figure 4.9. In correspondence with the
description for making a dislocation in Section 2.2.2, we can imagine making a cut
along the interface plane halfway into the boundary. One half of grain 2 is then
translated, first with 1/6 [1210}1 as in the first drawing of Figure 4.9 and then an
additional translation of 1/2[0001],. As seen, the resulting translation 1/6 [1213],
brings the interface back to its original translation state, except that the boundary has
moved one atomic layer perpendicularly from its original plane. The atomic step in
the HREM image of Figure 4.6 can be interpreted as the resulting dislocation of this
procedure.

With the misfit dislocation line along [0001],, we note that the translation 1/6 [1213]
contains both an edge and a screw component. Therefore, the displacement becomes
two-valued (u, and uy) and the equation for elastic energy 4.11 is generalized to two
dimensions. For the case of ordinary dislocations, this has been done previously by
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4.3 Example: Special grain boundaries in cemented carbides

Grain 1
Grain 2
Type |
[1210], [0001],
[1010], [1010],

Figure 4.7: The geometry of the X = 2 twist boundary. The gray line marks the dividing
plane creating a Type 1 boundary. By moving the line one atomic step to the right, a Type
II boundary is created. Circles or squares denote different atomic species. White or black
denotes height (raised or lowered).
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Figure 4.8: The y-surface of the X = 2 twist boundary. The black dots mark the points used
in the interpolation.
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4 Modeling of interfaces

Figure 4.9: Two translations from the original in configuration in Figure 4.7 brings the
interface back to its original, except that the boundary plane is moved one atomic plane.
The first drawing corresponds to a translation of 1/6 [1 210] , and the second to 1/6 [1?1 3] .
Circles or squares denote different atomic species. White or black denotes height (raised or
lowered).
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4.3 Example: Special grain boundaries in cemented carbides

Schoeck [67, 68], and for the case of misfit dislocations we find

p/2 rp/2
Ee [ux(x),uy(x)] = 4Tl:p/p/2/p/2ln sin — x’)‘
(Keaux( 2 0us) | du) )

(4.15)

ox ox S ox ox

where K. and K; are the energy coefficients for edge and screw dislocations in the
interface. Using the elastic constants of WC from [69], we get K. = 362 GPa and
K = 300GPa. The chemical energy changes to

p/2
Eon 00, 15090) = [ 5[0 )], @.16)
where the disregistries Uy(x) and Uy(x) are defined in analogy with 4.9.

The calculations are done for two different geometrical setups as shown in the
upper part of Figure 4.10. To the left, the steps are ordered in a repeating up-down
sequence, which mimics one of the images given in [64]. To the right, the modeled
structure consists of a ladder of steps as imaged in Figure 4.6. The resulting atomic
positions projected onto the y-surface, or rather the resulting disregistry (Uy, Uy)
evaluated at the positions of the atoms, are plotted in the lower part of the figure.
The resulting grain boundary energies are 0.35J/m? and 0.37J/m?, respectively, as
compared to Y= 0.02J/m? in the coherent limit. These energies are still very low
and can be seen as a minor correction of the coherent approximation. E. g. we
have calculated stacking-fault energies on the basal planes which yielded an energy
of 0.69J/m2. We have also calculated the grain boundary energy when treating
the misfit dislocation as a pure edge dislocation, which corresponds to putting the
atoms in a straight line on the y-surface of Figure 4.10. For this case, the energy
is 0.52J/m?, from which we conclude that the Burgers vector of the step is indeed
1/6[1213],.

For the £ = 2 twist boundary, the result of including the defect has little effect on
the resistance towards phase penetration. For the type I boundary, the margin against
phase penetration using the data from [59] is Ywc/we — 2Ywc/co = —1.92]/m?,
which would decrease to about —1.6J/m? with the present calculation. Still, the
¥ =2 twist boundary must be regarded as stable.

To our knowledge, a defect structure at the ¥ = 2 tilt boundary has not been
imaged. Its grain boundary energy is reported to be 2.1 —2.6J/m? [63] depending
on the C chemical potential (the lower value in the 1-limit). Since the defect struc-
ture is not known, a rigorous calculation of the effect of the misfit between the a
and ¢ parameters on the grain boundary energy cannot be made. However, since
the mismatch is the same as in the twist boundary, it is plausible to believe that the
correction would be of the same order. The margin against Co phase penetration
for the tilt boundary with half a monolayer of segregated Co is somewhere between
0-1J/ m? depending on termination, substituted atom, and translation state [63].
Adding around 0.4 /m? to the grain boundary energy to account for the misfit de-
creases this margin, but does not completely eliminate it for all cases.

) Y’ dx,
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4 Modeling of interfaces

Figure 4.10: Upper part: The modeled structure of steps. Lower part: The circles denote
atomic positions in the y-surface.

The stability of the ¥ = 2 twist boundary is at first sight challenged by the find-
ings of Kumar et al [62]. Their study of the length fraction of ¥ = 2 boundaries as
function of sintering temperature suggests that ¥ = 2 boundaries are eliminated in
greater proportion than other grain boundaries during sintering. However, the au-
thors do not separate the different types of X = 2 boundaries. As the current and
previous results show, the driving force for eliminating the grain boundary is one or-
der of magnitude larger for the tilt than the twist boundary. Another interesting result
of the Kumar study is the correlation between grain growth and the elimination of
¥ = 2 boundaries. Due to the correlation combined with the short sintering time in
the experiment (1 minute), the authors suggest that grain growth in the early stages
of sintering occurs not through a dissolution-reprecipitation process, but through
grain boundary diffusion.

We have studied one mechanism of diffusion of the ¥ = 2 twist grain boundary
involving a movement of the atomic steps. In the most low-energetic state, the steps
will be equally separated a distance 21c¢ or 20.5a. Imagining a situation as imaged
in Figure 4.6, where the formation of the steps resemble stairs, moving the steps in
the same direction would grow one of the adjoining crystals. An intermittent step of
this procedure is depicted in Figure 4.11. The energy difference between the state
of Figure 4.11 and the most low-energetic is AE ~ 0.003J/m?, making the energy
difference for a length L of the step AE pL. By forming a kink-antikink pair [2],
the length L can be reduced. Assuming L = p/2 and neglecting the kink formation
energy, we get (AE r*/ 2) /ksT ~ 10 where T = 1500K is the temperature and kg
is Boltzmann’s constant. Assuming further that the activation energy of moving the
step is in the same order, it cannot be ruled out that the steps move by thermal acti-
vation. Without explicit atomistic modeling of the boundary motion, no information
on the prefactor of such motion can be obtained. However, some information can
be drawn from experiments. In an image published in [64], sequential steps are sep-
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Figure 4.11: A proposed mechanism of grain boundary diffusion in the ¥ = 2 twist bound-
ary. Above the grain boundary, atomic planes are separated a distance a, and below a dis-
tance c.

arated by 32 and 9 atomic planes showing that such a state is reachable. Similar
processes could be responsible for diffusion of tilt boundaries, where the driving
force for elimination is larger. The distance traveled by a single atom in such a
transformation is small, tenths of an Angstrém maximally.

Near an arbitrary grain boundary, the stoichiometry of W and C may be offset
from the ideal. In such case, grain boundary diffusion would require individual
atoms to diffuse much longer distances than Angstroms. Co infiltration will probably
act as a hinder to grain boundary diffusion, since the low solubility of Co in bulk WC
requires that the Co atoms would have to diffuse along with the grain boundary.

To conclude, the defect structure at the ¥ = 2 twist boundary is identified as a step
of Burgers vector 1/6 [121 3] ;- Including the effect of the misfit to the grain bound-
ary energy increases its value from 0.02J /m? in the coherent approximation to about
0.35]/m?2. This correction should have little implication for the twist boundary’s re-
sistance against Co phase penetration. We have also proposed a likely mechanism
for grain boundary diffusion of £ = 2 boundaries, that involves motion of the defect
structure due to misfit. Such mechanism should not be possible in a more arbitrary
grain boundary or in a grain boundary infiltrated by Co.
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CHAPTER 5

Summary and Outlook

The goal of this Thesis has been to obtain a better understanding of interfacial
structures and energetics, in particular of semicoherent interfaces. Previous first-
principles work in the field has often excluded the effect of misfit. Therefore,
we have presented a simple model combining the interfacial interaction from first-
principles methods with a continuum description to account for the elastic displace-
ments. The accuracy of the model has been satisfactorily tested against atomistic
modelling.

We have investigated the effect of misfit on interfaces in two classes of materi-
als: steels and cemented carbides. In the first case, we studied the Fe/VN interface.
The results showed that even a small misfit (2 %) has a large influence on the inter-
face energy. In the second case, we applied the method to the semicoherent ¥ = 2
twist boundary found in both tungsten carbide powder and sintered cemented car-
bides. The results were discussed in the context of grain boundary evolution during
sintering.

As a continuation on the research on cemented carbides, several interesting is-
sues have arisen during our work. It is well-known that additions of V and Cr act
as grain growth inhibitors. The exact mechanism is however not known. To some
degree, the dopants alter both the solidus-liquidus temperature of the binder and
the solubility of W in the melt during sintering thereby affecting the dissolution-
reprecipitation process. It is generally accepted [70] that the growth mechanism in
WC-Co is controlled by the reaction rates of the dissolution or reprecipitation at
the surfaces of the carbide grains and not by the diffusion of W in the liquid phase.
Therefore, the answer to the question of grain growth inhibiting mechanism should
be sought for at the WC-binder interface.

HREM images of VC-doped WC-Co show the presence of thin films of cubic
(V,W)C, at WC-Co interfaces and between WC grains [71, 66, 72]. The cubic phase
has also been seen as small precipitates in pockets between WC grains and binder.
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5 Summary and Outlook

Similar studies have been performed also for Cr-doped WC-Co. Some workers [73]
report a thin face-centered cubic layer at the interface between WC and Co, whereas
others [74] do not see films at the interfaces but nevertheless a Cr segregation to both
WC/Co and WC/WC interfaces. A recent HREM study [75] of WC-Co without
dopants also revealed a thin cubic WC, film in the WC/Co interface. It has been
speculated that these films hinder the dissolution-reprecipitation process and/or that
they are involved in the growth mechanism of WC. It is, however, not known if the
films exist during sintering or if they form during cooling. It is also suspected that
they act detrimentally on the adhesion between WC and Co.

A thorough theoretical investigation of the prerequisites for formation of thin
films in the WC/Co interface in both doped and undoped material is therefore a
good proposal for future work. Such an investigation must take into account both
the effect of temperature and composition of the film. To predict the conditions
for formation, first-principles calculations must be combined with thermodynamical
data of the Gibbs free energy for the bulk phases at hand.

From a modeling perspective, it would be interesting to study the propensity
for segregation of grain growth inhibitors to the interface between liquid phase and
solid WC using both first-principles and classical molecular dynamics at sintering
temperatures. Such a study would aim at understanding the binding of grain growth
inhibitors to the WC interface in the environment of a liquid and could provide
valuable insights into the growth mechanism of WC grains.
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