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Stability of Tall Buildings 
 
DAVID GUSTAFSSON & JOSEPH HEHIR 
Department of Civil and Environmental Engineering 
Division of Structural Engineering 
Concrete Structures 
Chalmers University of Technology 

 

ABSTRACT    

The methods used for stability calculations of columns, solid shear walls, pierced 
shear walls, coupled and uncoupled components, cores, single storey structures and 
multi storey structures have been examined. The examination performed in order to 
ascertain short comings or advantages for different stabilising components and 
systems.  

Analyses were made of deflection and buckling combining bending and shear for 
columns, solid shear walls and pierced shear walls. Calculation methods for single 
and multi storey structures concerning deflection and buckling due to translation, 
rotation or a combination of the two are analysed and the results are compared with 
finite element analyses results. The importance of pure torsion is somewhat neglected 
in these methods and therefore a method was devised for including a components 
torsional resistance in the calculations. 

The calculation methods are computer assisted through the use of Mathlab, Mathcad 
and Excel. Comparisons of results are made between the calculation methods and 
Finite Element Analysis performed with a programme called SOLVIA. 

Vianello’s method for calculating critical buckling loads, of columns and solid shear 
walls, due to bending has proven its worthiness. The method for calculating stability 
of pierced shear walls, according to studied, has proven itself to be in need of 
improvements. The use of the polar moment of inertia has proven to give inaccurate 
results. The result comparison of the single storey structures concerning translation, 
rotation and combined rotation and translation show that the calculation methods are 
satisfactory. Concerning multi storey structures subjected to translation or rotation a 
question arose concerning the interaction between the stabilising components and the 
floor slabs. The inclusion of a central cores own torsional resistance into the 
calculation methods led to improved results. 

The results showed that further investigation of the calculation methods concerning 
stability of tall buildings is advisable and that specifically methods for determining 
the interactive behaviour of stabilising systems joined by floor slabs should be 
researched. 

Key words: Tall buildings; Stability; 2nd order effects; Global buckling; Vianello; 
Shear angle;  Stiffness; Torsion;  Warping; 
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a  Length of floor slab  
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1

0
−r  Initial curvature  
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t  Thickness, time 
w  Displacement 
x  Distance from the structure’s rotational centre to the individual unit’s 

rotational centre in the x-direction  
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the x-direction  
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y  Deflection, distance from the structure’s rotational centre to the individual 
unit’s rotational centre in the y-direction 

0y  1st order deflection, total deflection used in Vianello’s method 

RTy  y-coordinate that describes the position of the rotational centre of the 
structure 
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M∆  Secondary moment (2nd order)  
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crN )(Σ  Total critical buckling load  
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ScrN ,)(Σ  Total critical load, considering shear  

 

Greek lower case letters 

α  General symbol for angles, variable used in calculating deflections in 
pierced shear walls 

mα  Inclination factor 

Sα   Angle of deflection due to shear  
β  Shape factor for magnification factor (A/B) 

cβ  Factor describing development of creep 

sβ  Factor describing development of strain 

erγ  Angle describing elastic restraint  

bendt ,γ  Component of shear angle concerning bending in the transverse part of a 
pierced shear wall  

sheart ,γ  Component of shear angle concerning shear in the transverse part of a 
pierced shear wall  

bendv,γ  Component of shear angle concerning bending in the vertical part of a 
pierced shear wall  
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shearv,γ  Component of shear angle concerning shear in the vertical part of a 
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identify the situation of a specific parameter. Directions are represented by 
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1 Introduction 
 

1.1 Background 

The increased demand for taller structures requires that a structural engineer is 
familiar with the buckling phenomena that can occur in such a building and so 
complete competent calculations. The engineer must have an understanding of 
workable calculation methods for designing this type of structure and must also be 
confident in using them.  

Reinertsen Sverige AB were interested in instigating a Masters Thesis on this subject 
and The Division of Structural Engineering at The Department of Civil and 
Environmental Engineering at Chalmers University of Technology, Gothenburg, 
Sweden obliged. This thesis would provide the company with a deeper understanding 
of the phenomena that are involved in stability calculations and hopefully a workable 
method for future calculations. 

 

1.2 Aim and scope 

The aim of this thesis is to provide a concise and usable method for analysing stability 
of tall structures. The respective calculation methods published by Westerberg (1999) 
and Lorentsen et al. (2000) are standard works in Sweden which have been chosen for 
investigation. A basic understanding of the parameters involved in the calculations 
shall be provided. These existing calculation methods will be presented and analysed 
in order to identify discrepancies that may exist in the methods. Analytical 
calculations of components, individual and in combinations shall be demonstrated and 
FE-analysis will be performed to compare the results and in order to ascertain how 
much the results concur. This thesis is produced in a pedagogical format in order for it 
to be used educationally. 

 

1.3 Scientific approach 

A substantial literary study has been completed while obtaining relevant information 
on calculation methods for designing for stability in tall buildings. Numerical 
examples; of calculating buckling loads for single and multi storey structures; of 
deflections and buckling in solid shear walls; of deflections, buckling and stress 
distributions of pierced shear walls; of force distributions in single storey structures; 
of coupled and uncoupled approach to calculating U-shaped core elements; of force 
distribution in a multi storey structure, are presented and compared with FE-results in 
order to draw conclusions on the reliability of the calculation methods. 
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1.4 Methods presented 

Westerberg (1999) and Lorentsen (2000) approaches for considering the contribution 
from 2nd order effects for calculating stability on single and multi storey structures are 
examined.  

The Vianello method for calculating critical buckling loads due to bending is 
introduced and compared with the approximate method and FE-analyses.  

Regarding pierced shear walls, two methods are presented. One method is utilised for 
establishing the buckling load for the wall and a second method is used for deriving 
the top deflection of the wall subjected to a horizontal distributed load. Both methods 
are taken from Lorentsen et al. (2000) 

Two methods concerning the calculation of a complete structure are investigated. One 
approach regards only the calculation of the critical buckling load for the whole 
structure. The second method is used for one storey structures and is more accurate as 
the load distribution is taken into account in a more exact manner.  

A method for including torsional resistance in the stability calculations is devised by 
the authors of this thesis. 

 

1.5 Limitations 

Stability analysis of tall buildings is a huge subject which requires years of active 
study in order to attain a relatively complete understanding. In order to contain the 
thesis to a workable size it has been decided to limit the study to linear analysis. All of 
the concrete elements in this thesis are assumed to be uncracked and the effects of 
temperature, creep and shrinkage are not taken into account. Non-linear analysis may 
be investigated by a follow up group of graduate engineers.  Dynamics is an advanced 
field of theory which shall not be dealt with here. This work shall concentrate on 
static problems. Stabilising systems consisting of frameworks, façades and tubes, are 
mentioned and their functionality is ascertained while calculations, on these types of 
stabilising elements, are not pursued. Methods concerning treatments of connections 
are not included in this thesis but the problems are brought up.  

In this thesis the limitations has been drawn to study problems or inaccuracy 
concerning stabilising structures consisting of shear walls, towers and columns. 
Problems concerning detailing, such as joints and connecting details, for transferring 
loads between different parts through a building are not studied in detail. Some of 
these problems are discussed as they are important to consider especially in cases 
where twisting occurs.  
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2 Tall buildings  
To define a tall building it is best to decide from whose perspective one is looking. A 
bureaucrat may decide that anything over 5 storeys is a tall building and from this 
decision he may categorise accordingly and be very satisfied. For a structural engineer 
it is not so simple. A tall building is, from a structural engineer’s perspective, to be 
considered tall when, due to its height, the lateral forces suffered by the structure play 
a significant role in the design. [Smith and Coull (1991)] 

 

2.1 Evolution of tall buildings through the ages 

The great metropolises of the world share common dilemmas. Increased population 
densities due to the migration of people from the countryside to the cities, combined 
with the rising price of developable land and the environmental politics of the day 
provide the city councillors with no better solution than to build higher. Human nature 
also compels us to achieve that which has previously not been accomplished and all 
through history, from The Tower of Babel to The Empire State Building, has man 
endeavoured to reach the sky. 

From an historical point of view it has been defence, power and religion that have 
driven humanity to build high. Defensive fortifications had to be high and robust in 
order to be effective. Figure 2.1 shows an Irish Round Tower, built by Christian 
Monks around 1000 AD, which stretched 30 meters into the sky and was used as a 
refuge for when the Vikings would come plundering. The material used is granite 
stones joined by mortar. Great respect is due the monks who built this tower because 
they built a stabile structure using little structural engineering knowledge and only 
using materials that were ready at hand. The choice of design is worth noting because 
these monks opted for a structure which is both aerodynamic and resistant to torsion, 
because of its uniform form. [Ireland Mid-West (2004)] 

 

 

Figure 2.1:  Kilmacduagh Round Tower Ireland, 30 metres high (circa 1000 AD). 
[Interactive Interpretative Centre of the Burren (2004)] 
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Building tall to display power can be exemplified by the biblical story of the Tower of 
Babel, Figure 2.2, and how the descendents of Noe built a tower in the land of Sennar 
(modern day Iraq) in order to reach the skies and so show God how mighty they had 
become. Of course God was not happy about this and demolished the Tower and 
scattered the descendents of Noe across the globe. This was in prehistoric times, about 
5,500 BC, so no real records survive. King Nebachadnezzer II of Babylon             
(605 – 562 BC) is reputed to have built a tower on the foundations of the original. His 
tower is historically verifiable and he managed to build a tower 90 metres high using 
only baked bricks made of mud and straw, joined by a mortar made of bitumen, which 
is a mixture of tar like hydrocarbons which are derived from petroleum.            
[Global Security (2004)]. Great rulers had to build great monuments to show how 
powerful they were. The victories of Nelson and Napoleon inspired the inauguration 
of tall monuments to show the world how great these men, and how powerful the 
nations they defended, were. Even today there is a certain respect given to the 
countries that can build the highest in that their ability to build high represents their 
might. 

 

 

Figure 2.2:  Bruegel’s depiction of The Tower of Babel. [Museum of unnatural 
mystery (2004)] 

Religion has always inspired people to build tall structures. The pyramids of Egypt 
and Mexico are fine examples of this. The building of cathedrals in Europe, pagodas 
in Japan, mosques in The Middle East and temples in India have brought forth the 
ingenuity of the builders and have shone as beacons to their respective worshipers. 
Looking at a wonderfully huge, graceful and artfully carved structure the believers 
were filled with awe for the power of the respective God/Gods who inspired the 
edifice. In Europe the construction of cathedrals led to the establishment of a quasi-
religious status for the masons who were designing these amazing structures. Cologne 
Cathedral was begun in 1248, Figure 2.3, and the masons used their knowledge to 
build a structure that must have installed awe in all who looked upon her. They were 
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very secretive of there calculation methods, there chemical compositions of mortar 
and there methods of construction. The finances to build high came from the church 
but the knowledge came from the masons/engineers. 

 

 

Figure 2.3:  Cologne Cathedral, 156 metres high. [Service t-online (2004)] 

Considering the buildings constructed for the common people it is best to start with 
the Romans. Before Nero’s fire of 64 AD, Rome had a multitude of four storey 
tenements built of wood. After the fire, the four storey wooden tenements were 
replaced by tenements built with new brick and concrete materials which were used to 
form arches and curved dome structures. Over the centuries there were no great leaps 
in material science so timber and masonry were the norm. The timber structures were 
not strong enough to build over five storeys and they were very susceptible to fire. 
The masonry possessed high compressive strength and it was fire resistant but its 
lower supports could not take the weight of very high buildings. Most cities in Europe 
have experienced catastrophic fires because their buildings were mostly made of 
wood. The great fire of London in 1666 led to a possibility to rebuild the city in brick. 
A similar fire occurred in Chicago in 1871 which also made way for construction in 
brick. The best that could be done, height wise, with masonry was achieved in 1891, 
in Chicago, when the 16 storey Monadok Building was erected by the engineers 
Burnham and Root. To build this structure the bottom floor had to have 2 m thick 
walls which quite depleted the usefulness of that floor. [Smith and Coull (1991)] 
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To build higher than this it was necessary for new materials to be produced and their 
properties examined. The industrial revolution provided the materials wrought iron 
and steel and also provided the social impetus for building higher as more workers 
from the countryside were required to work in the factories, so houses had to be 
provided for them. The necessity of having workers near at hand to the factories and 
that land was in short supply led to the solution of building higher. The term high-rise 
began to be used to describe tall buildings and with the development in steel 
production more and more, ever higher, buildings were being built. The first steel 
frame structure, Rand-McNally Building in Chicago Figure 2.4, was built in 1889 by 
Burnham and Root and was 10 storeys high. (Smith, Coull 1991) 

 

 

Figure 2.4:  Rand-McNally Building Chicago, 10 storeys, 1889. [American Institute 
of steel construction (2004)] 

A mile stone was reached in 1891 when diagonal bracings, used to form vertical 
trusses, were used in the 22 storey Masonic Temple, Chicago Figure 2.5. This is the 
forefather of today’s shear wall and braced frame constructions. The engineers, 
Burnham and Root, decided on introducing the above mentioned diagonal bracings 
above the 10th floor. They chose steel for the rigid frames and wrought iron as the 
material for the bracings. This building remained the tallest in Chicago until the 
1920’s because the city council enacted height restrictions after its inauguration. 
[Smith and Coull (1991)] 

One further important factor in building higher was the invention of the elevator. One 
could not expect people to spend time and energy climbing stairs and the rents for the 
top floors were actually lower than rents for the lower floors, so the elevator had to be 
incorporated into designs. The first elevator was installed in The Equitable Life 
Insurance Building in New York in 1870, designed by Gilman, Kendell and Post, led 
to the landlords being able to charge equal rents for the lower and upper floors as they 
were now equally accessible. The invention of the electric elevator in 1890 made it 
possible for landlords to build even higher buildings without having to worry about if 
they could effectively rent out the floor space on the higher floors.                       
[Smith and Coull (1991)] 
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Figure 2.5:  Masonic Temple, Chicago, 22 storeys, 1891. [The skyscraper museum 
(2004)] 

Design methods became more sophisticated and construction techniques were refined 
until in 1913 The Woolworth Building in New York, Figure 2.6, designed by Cass 
Gilbert (architect) and Gunvald Aus (structural engineer), reached a height of           
58 storeys. This building remained the tallest building in the world until 1930. The 
structure was built to withstand winds of up to 360 km/h, it contained thirty elevators 
and it was the first building to have its own steam turbines installed. When building 
such a huge structure it is very important to envisage the foundation required for a soil 
consisting of alluvial mud and sand for depth of 30 m. Gunvald Aus chose pneumatic 
caissons (French for big box), which use air pressure to expel water, for founding the 
66 concrete piers that would connect the structure to the ground. A caisson is a large 
hollow box, made of steel, which is driven into the ground, excavated and then filled 
with concrete. The basements themselves began at 16.5 m below ground level. In 
order to withstand the 360 km/h winds that the building was designed for Gunvald 
decided to have different stabilising systems in different parts of the building. The 
lower stories employed a portal system of braces, that is a combination of struts and 
ties which lie in the plane of the inclined braces, were used to transfer wind pressure 
from the upper parts of the trusses to an abutment. The tower construction was more 
complicated and girder and knee brace stiffening was chosen. Two design solutions, 
for the tower, that could have been better thought out were that the wall columns did 
not get direct column support from below and were therefore carried by girders and 
that where the columns were counterbalanced, the transfer of wind shear in the outer 
faces of the tower must have be made through the floor. [Smith and Coull (1991)] 
[The skyscraper museum (2004)] 
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Figure 2.6: The Woolworth Building, New York, 1913.[ Kent State University (2004)] 

The end of the skyscraper era was heralded by the building of The Empire State 
Building in New York (1931). A steel riveted frame was used and the building 
reached a height of 102 storeys which wasn’t surpassed until the raising of the first 
tower of the World Trade Centre in 1973. As The Empire State Building was the 
largest project undertaken up to that time, three structural engineering companies 
were employed. The structure was so well designed that, in 1945, it withstood the 
impact of a B-25 bomber on the 79th floor. Fourteen people were killed when one of 
the engines passed through the entire building but the structure held, only sustaining 
damage to the outer wall. [Emporis (2004)] 
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Figure 2.7: Time line of structure height in storeys.  
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Figure 2.7 shows how building height increased from 1850 to 1930 in the USA. After 
1931 and the construction of The Empire State Building, the United States fell into a 
depression and the consecutive commencement of World War II meant that further 
increase in building height was halted until 1973, when the first tower of The World 
Trade Centre was erected. [Smith and Coull (1991)] 

The World Trade Centre, 110 storeys, used an innovative structural model designed 
by John Skilling and Les Robertson who chose a system that was simplistic but 
effective. This building was the first to use no brick or stonework. They used the steel 
façade as a wind bracer to provide the stability while the central core took all the self 
weight. The wind bracing façade, made of closely spaced steel columns, was attached 
to the central core by steel floor trusses. The central core itself contained the elevator 
shafts which were specially designed. The engineers were worried about the air 
pressure which could lead to buckling of the shafts, so the elevator designers created a 
system of elevators that was divided between a local and an express system. A 
traditional system would have meant that half the area of the lower stories would have 
been taken up by elevator shafts so stop off points for the elevators were installed on 
the 44th and the 78th floor. After the aeroplane collisions of the 11th of September 2001 
it is widely assumed that the steel trusses connecting the façade to the central core 
over heated and lost their rigidity leading to a progressive collapse of the structure. It 
is although notable that the structures did withstand the impact of the passenger 
planes. [Department of Civil Engineering, University of Sydney (2004)] 

After the cessation of combat in World War I reinforced concrete was used to imitate 
steel forms. The full potential of reinforced concrete had not been fully realised 
although The Exchange Building in Seattle, 1930, did reach 23 storeys. It was not 
until after World War II that radically new structural and architectural solutions were 
propagated through the realisation that reinforced concrete can be easily formed in 
order to satisfy architectural specifications and structural integrity.                       
[Smith and Coull (1991)] 

In the past, city councils have commissioned land on the outskirts of their cities for 
development but the advances in environmental science over the last decades have 
recognised the vital importance, for the atmosphere, of maintaining land in its natural 
state, plus the importance of arable farming for providing fresh provisions for the 
cities. The availability of fresh produce may not be so problematic in the western 
world, because of the advanced infrastructure, but the developing nations see this as a 
major quandary. The tides of human migration are as unstoppable as population 
growth but the cities of developing lands have to decide whether to commandeer more 
arable land or to build higher. Here, in the West, are many large urban areas that are 
slowly eating up the natural land which exists around them. Large conurbations such 
as the Ruhrgebeit in Germany and the Lille area of Northern France are facing health 
problems due to their difficulties in holding down pollution levels. One can especially 
look to South-East Asia where cities such as Hong Kong, Shanghai and Singapore 
have chosen to build higher, in order to accommodate their citizens, instead of 
succumbing to urban sprawl. Table 2.1 gives the heights achieved depending on the 
usage of the building in order to show that tall structures are not only office buildings. 
[Emporis (2004)] 
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Table 2.1:  The current highest buildings according to usage, and some Swedish 
buildings. 

Usage Name  City Height 
(m) Floors Year

Offices Taipei 101 Taipei 509 101 2004

Lodging Ryugyoug Hotel* Pyongyang 330 105 1992

Residential 21st Century 
Tower Dubei 269 55 2003

Education Moscow 
University Moscow 240 36 1953

Hospital Guy's Tower London 143 34 1974

Offices Kista Tower Stockholm 128 32 2001

Residential Turning Torso Malmö 190 54 2004

Lodging Gothia Tower W. Gothenburg 70 23 2001

* Structurally complete but not yet in use. 

It is evident, due to the existence of tall buildings, like Kista Tower, that the skills and 
knowledge to build higher do exist in Sweden. Gothenburg is not as crowded as the 
cities of South-East Asia but it is hoped that the City Fathers are beginning to see the 
advantages of constructing taller buildings. To build further on the outskirts of 
Gothenburg means that more farm land and more forest will be lost. Gothenburg is 
still experiencing an increase in population due to economic migration of workers and 
so shall further accommodation, to work, to play and to live, be required. Obviously 
people who work in the city may also want to live near to their place of work in the 
city. This involves the economic aspect of supply and demand, where if there are 
enough customers who are willing to pay then industry will find a way to provide for 
them. 

 

2.2 Loads 

This chapter will discuss how loads are applied, the estimations and assumptions that 
have to be studied and the implications of 2nd order effects. The use of codes will be 
explained and the assumptions used for implementing service limit state, SLS, and 
ultimate limit state, ULS, will be clarified. 
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2.2.1 Load distribution 

With tall buildings it is important to understand how and which loads are applied 
where on the building.  The loads can be divided very simply between vertical and 
horizontal burdens. The vertical loads are the weight of the building, imposed load 
and snow load. The horizontal loads are wind and the unintended inclinations.  

The vertical loads are taken up by the bearing walls, columns or towers and are led to 
the foundations. The loads occurring from the wind are first taken by the façades and 
are then further distributed to the slabs.  

 

 

Figure 2.8: Multi-storey structure with applied wind load. 

The floor slabs act as diaphragms and are often considered to be stiff in their plane 
and deformations in its plane is usually disregarded. The slabs are connected to the 
stabilising units, such as shear walls, towers or stabilising columns. Figure 2.8 shows 
a multi storey building with the wind loads applied as they are interpreted to be.  

Some facades also have columns attached directly to them and in these cases the loads 
are first transferred to the columns resulting in concentrated loads on the floor slabs. 
See Figure 2.9. 
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Figure 2.9: Wind load on facade causing concentrated loads in a floor slab. 

If the façade which takes the wind load is supported by the floor slabs, then the floor 
slabs will be subjected to a distributed load, see Figure 2.10. Compared to Figure 2.9 
the different load application causes a different stress distribution in the slab. The 
stress distributions have to be dealt with through careful planning of how the slabs 
and the facade are connected. Floor slabs are often considered to be stiff, and the 
horizontal load distribution through the building is due to the stiffness of the different 
stabilising components. If the floor slab is not stiff enough, or slip occurs in joints 
between slab elements in the same plane, then the displacement of the floor slab will 
not be the same along the loaded side of the floor slab, as in Figure 2.9. Stress 
distribution in floors depends on both loads and supports. 

. 
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Figure 2.10:  Façade attached directly on the floor slab. 

How the floor slab will react to a distributed load is shown in Figures 2.11 and 2.12. If 
the slab is assumed to be stiff then the load is distributed according to the stiffnesses 
of the stabilising units i.e. stiffer units will attract a greater part of the applied force 
than weaker units. Figure 2.11 describes a load case which assumes a uniform lateral 
movement seen from the top of the structure. The dotted line represents the original 
position of the slabs and the shear walls. This load situation can be compared to a stiff 
beam standing on spring supports and if the supports have equal stiffness then the 
load will be evenly divided among them, see Figure 2.11.  

Figure 2.12 shows a load case where the slab is not assumed to be completely rigid 
and bending occurs due to the distributed load. Now a system is presented where the 
load distribution along the three supports is not only dependent on the stiffness of the 
supports. With normal beam theory it is assumed that the supports are endlessly stiff 
and the load is distributed among the supports according to elastic theory. In a case 
with 3 supports the middle support will attract 10/8 qL of the load and the outer 
supports will attract 3/8 qL. L refers to the span between the supports. Figure 2.12 
shows a situation where the load distribution is hard to establish or predict. Here there 
is a combination of load distribution depending on both the stiffness of the supporting 
walls and the bending in the slab due to elastic theory.  

 

Wind 

Floor slab 
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Figure 2.11: Load case which assumes a uniform lateral movement of the slab. 

 

 

Figure 2.12: Load case where the slab is not assumed to be completely rigid and 
bending occurs due to the distributed load. 
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If the floor slabs are assumed to be stiff and the case shown in Figure 2.11 presents a 
model resembling the real structure, it is of vital importance to ascertain that bending 
does not occur in the slabs themselves. In Figure 2.12 it is shown that the middle wall 
is subjected to greater deflections than the outer walls, subtracting greater forces than 
it is dimensioned for.  

The floor is supported by the stabilising units through a shear force distributed along 
the width of the wall. The walls are subjected to both bending and shear deformations 
but in low robust walls the bending contribution is negligible. See Figure 2.13. If 
slender units are used for stabilising then bending mainly occurs and shear 
deformation is negligible.  

 

 

Figure 2.13: Bending and shear deformations. 

 

When the entire structure is considered, even though shear walls are considered as 
low and robust in each floor, the shear wall becomes more slender in taller structures. 
It is therefore necessary to consider both bending and shear when calculating on tall 
buildings. Figure 2.14 presents shear and bending deformation of a tall shear wall 
subjected to a distributed load along the height. The deformation from bending is 
curved in the opposite direction to the shear deformation. The deformation from shear 
is due to the shear forces applied through the floor slabs in each storey. As the loads 
accumulate and increase through the building the largest singular deformation occurs 
at the first floor for the shear contribution. Figure 2.15 shows a FE-analysis 
representation of a pierced shear wall subjected to both bending and shear. 

 

Shear deformation Bending deformation 
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Figure 2.14: Shear and bending deformation of a tall shear wall subjected to a 
distributed load along the height. 

 

 

Figure 2.15:  FE-analysis representation of a pierced shear wall subjected to both 
bending and shear. 

 

Bending deformation Shear deformation 
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2.2.2 Estimates concerning loads, environment and material 

Considering how accurately the stability of a tall building can be calculated, 
concerning functionality during the entire projected service life of the structure, one 
must make certain assumptions concerning the external and the internal environment, 
degradation of the material and accidental impacts or loadings, and natural disasters.    

External climate conditions will affect the stability of a structure through wind, 
humidity, rain and temperature variation. The treatment of wind loads, specifically in 
tall buildings, is very well documented in Eurocode (1991). [Zalka (1992)] 

 

First a reference wind velocity is ascertained:     

0,refALTTEMDIRref vCCCv ⋅⋅⋅=      (2.1)  

The value vref,0 is defined as the 10 minute mean wind velocity at 10 metres above the 
ground of terrain category II (urban terrain) having a mean return period of 50 years. 
Different terrains have different factors depending on if the structure will be on a 
shore line, urban, countryside or suburban. The value itself is derived from the 
extensive records that are kept on wind conditions in each country. From this value it 
can be plainly seen that stronger winds may occur and especially for tall buildings 
where wind loading is vital, this value will have to be altered. Coefficients of 
direction, CDIR, season, CTEM, and altitude, CALT, will be taken in to account to derive a 
reference wind velocity. This value will be used to attain the reference wind velocity 
pressure. 

2

2 refref vq ⋅=
ρ ;        ρ = air density      (2.2)  

This value will be further altered through coefficients for exposure, topography, 
roughness, gust wind response, aerodynamics, external pressure and also specifically 
for tall buildings the structure will be divided into different heights where different 
roughness and exposure factors will be applied. While determining the load cases, 
consideration must also be given to suction that will occur on walls and roofs due to 
the wind. All of these factors are based on intense investigation but are still models of 
reality and extreme buildings have to take into account even more extreme conditions 
which lead to the design engineers of extremely tall buildings having to sometimes 
develop their own extreme factors. [Eurocode (1991)] 

The effects of rain, humidity and temperature variation on a structure which has 
stability components on the outer shell may be hazardous over a long period of time. 
The engineer has to establish a relevant period of time before reparations to the 
structural components have to be made. Here again the engineer has to rely on 
weather statistics developed over the last century and then further take into account 
the extreme conditions that may occur. Again the engineer has to work with a model 
of reality. 

The internal environment of a building is controlled by the heating and ventilation 
systems. The stability components of the structure should be isolated against internal 
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influences and there should not really be a problem concerning the internal 
environment. What the engineer has to be careful with here is the materials that are 
used for protecting the stability components. Whether it is paint, wood or concrete the 
engineer has to be aware of their material values concerning for example permeability 
which could, under extreme conditions, allow damaging moisture to reach the 
material of the stabilising components. Service life analysis of these materials would 
be necessary in order to determine maintenance episodes and so protect the stability 
system. Assumptions are again made while determining for example humidity or 
water spillage. 

 

2.2.3 Loading assumptions 

The loads on a building are modelled through investigating the buildings usage, 
situation and dimensions. Concerning dimensions there are no assumption made as all 
dimensions are real. On the other hand the usage of the building and the situation of 
the building require a closer look. The engineer has access to codes which describe 
specifically how load combinations are calculated using factors, considering situation 
and usage, in order to ascertain loading values for Service Limit State, SLS and 
Ultimate Limit State, ULS. Considering usage it is important for the engineer to pay 
considerable attention to the imposed loads. For this the engineer has access to codes 
which give values per m2 of floor space for different activities and also factors to be 
used when establishing load cases. All of these factors and values are based on 
assumptions which are designed to always keep the engineers calculations on the safe 
side. [Eurocode (1991)] 

Considering the calculations of load cases concerning SLS and ULS one must first 
look at the engineering community and how it works. As mentioned previously, a 
structural engineer’s primary concern is safety. The engineering community today 
tends to produce specialised engineers who are not experts in all the fields of study 
required to build a safe building, but rather produces engineers who are specialised in 
for example materials, climate control, structural integrity and geotechnics. This 
requires that the engineering team are able to understand the assumptions made by 
each other. Ideally the engineers will use the most appropriate design and construction 
techniques, the best available materials and the most up to date environmental data. 
On top of this, safety factors will be applied in order to insure that the calculations 
will be pessimistic and so shall the building be considered safe. [Zalka (1992)] 

Consider a building where the designer knew exactly the material properties of the 
components, knew exactly how they would behave under the projected life time of the 
building, knew exactly how the building would be serviced and also had access to 
exact data concerning internal/external environment and the projected loading 
histories of the building. This building would require no safety factors. Because of 
these discrepancies the structural engineer is required to incorporate partial factors 
into his/her design calculations at an early stage. These factors are multiplied to the 
basic variables in order to give pessimistic values concerning the variables 
performance. [Zalka (1992)] 

It is analytical theory based on elastic and non-elastic behaviour that has led to the 
development of load conditions i.e. SLS and ULS. In the beginning of the design 
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process the structural engineer will directly reduce the material property values of the 
components by using partial factors which are applied to either ULS or SLS. It seems 
logical to assume that a structure designed for SLS should by definition be safe; 
meaning that it will not collapse, because in order for the building to be serviceable it 
must be safe, but this is not the case because it is ULS that considers collapse. Should 
the engineer then wholly disregard SLS and only calculate in ULS? 

ULS considers ultimate loading in different load combinations. It is not possible to 
evaluate a specific safety factor which describes the safety margin that exists between 
SLS and ULS. The way the theory of SLS and ULS works is that the loading factors 
applied in ULS describe initially an assumed structural behaviour of the building, not 
if it will actually fail or not. Reality is not the same as the model. [Zalka (1992)] 

Loads have to be assigned load-paths. These are determined through establishing how 
the loads are applied, how the loads will transfer through the stabilising system and 
finally how these loads will be taken up by the foundations. A relationship exists 
where the number of potential load-paths and the number of stabilising elements is 
related to the number of potential load-carrying mechanisms within the elements and 
the joints between them. A particular loading case will only initiate a certain number 
of the load paths available. Interdependence must exist between each path in order for 
a structure to retain stability while each successive mechanism comes into effect. To 
increase the possibility of sustaining a system of load-paths it is advised to insure that 
the load-paths are intertwined meaning that the more integrated the stabilising system 
is the better the system will absorb loads. [Zalka (1992)] 

A further affect on loading is obtained through the unintentional inclination of 
supporting elements. Inclinations, of columns, that may exist in the building are 
assumed through using the factor αm in the equation below which determines the 
horizontal load due to inclination, Hinclination. 

This value is derived through the equation below where n is the number of columns 
above the storey being examined. 

nm
012.00003.0 +=α        (2.3)   

mninclinatio NH α⋅Σ=        (2.4) 

 It is often regular for the engineer to assume that the stabilising components of a 
structure are fully fixed. This assumption implies that the stabilising component in 
question and the ground it is anchored in react in union. This assumption assumes that 
the ground itself is solid and does not have elastic properties. This assumption is fine 
for structures anchored in the bedrock but those anchored in soil present more 
difficulties. Anchorage in soil leads to it being necessary to calculate with elastic 
restraint included. This requires that the soil properties of the ground in question have 
to be examined and it is well known that it is difficult to determine soil properties 
exactly. It is therefore important for the engineer to remember that the restraint values 
determined by the geological investigation are in error to a degree of 30%.   
[Lorentsen et al. (2000)]  
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2.2.4  1st and 2nd order theory 

In order to understand stability one has to first understand the theory that is utilised 
while calculating. When calculating with columns, shear walls and towers one has to 
take into account both 1st and 2nd order theory. 1st order theory explains the direct 
results of actions, moments and deflections. 2nd order theory takes into account the 
additional moments that occur because of the 1st order deflections combined with 
axial loads. [Westerberg (1999)] 

A transverse load is applied at the centre of the column, Figure 2.16. From this load, a 
deflection y0 and a moment M0 occur. With the application of an axial load is gained a 
further deflection ∆y and a compliment moment ∆M. M0 and y0 are 1st order effects 
and ∆M and ∆y are 2nd order effects. See chapter 3.1.5 on the derivation of the 
magnification factor. The 2nd order effects are due to axial loads combined with the  
1st order deflection  

 

Figure 2.16: 1st and 2nd order deflections and moments. Based on Westerberg  
(1999). 

 

2.3 Buckling and torsional phenomena 

 

2.3.1 Bending and shear 

Buckling is a phenomenon which occurs when a structure is subjected to axial load 
suffers uncontrolled large displacement, transverse to the load. Transversal buckling, 
i.e. in plane, has two contributions, bending and shear. The bending deformation 
causes a curved shape. The shear deformation results in straight inclined shape. 
Combined they result in the critical buckling mode displayed in Figure 2.17. 
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Figure 2.17: Combined bending and shear. 

 

2.3.2 Torsion 

The occurrence of torsional buckling in tall buildings is a well studied phenomenon 
which is generally not adequately applied by structural engineers.                       
[Smith and Coull (1991)] Torsion involves a twisting action, due to applied vertical or 
horizontal loads. When a vertical load is applied buckling through translation may be 
replaced by a first buckling mode due to twisting. Observe in Figure 2.18a how the 
torque about the rotation centre occurs. Here is shown a stabilising component which 
does not have a coinciding centre of gravity and rotational centre. The applied vertical 
load results in a torsional action about the centre of rotation, behind the tower where 
the rotation centre is situated. Figure 2.18b shows how a cross section of the 
stabilising component is influenced by tension and compression occurring because of 
the stresses due to the torsion.  Displacement due to twisting will occur. The bottom 
end of the element is assumed to be fixed to the ground. 
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Figure 2.18: Core showing how applied torque on the rotational centre causes 
tensions and compressions in the cross section. 

Eccentric horizontal loading of a stabilising element leads to torsion and sectional 
torsional moments along the length of the element. In order to calculate the torsional 
moment at a specific point in the stabilising component it is necessary to consider two 
contributing factors. The equation below shows the relationship. 

'',, θθ WVVtwistStwisttwist EKGKMMM −=+=     (2.5) 

 twistM = Torsional moment around the x axis 

 StwistM , = St. Venant component of torsional moment 

VtwistM , = Vlasov component of torsional moment 

G = Shear modulus 

 vK = Twisting stiffness cross-sectional factor 

 wK =Warping stiffness cross-sectional factor 

 θ  = Twist per unit height 

Figure 2.19 below shows how the patterns of shear flow due to torsion occur in 
different stabilising element forms. Observe how the closed cross-section b) has an 
overall closed shear flow while example c) shows a dramatic change in the shear flow 
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due to the cross section being open. Example a) shows how the shear flow in an         
I-girder is mapped. 

 

Figure 2.19: Shear flow due to torsion in three cross sections.  

 

St. Venant torsion is observed when the torsional cross-sectional moments are entirely 
taken up by the shear stresses. If axial stresses occur then they participate in taking up 
the torsional moment through warping resistance. This effect is called Vlasov 
torsional resistance. Observe Equation (2.5) and how the St. Venant and the Vlasov 
components combined make up the total torsional moment. How this equation is 
developed is explained in Samuelsson and Wiberg (1993). 

 

a)  I-girder 

b) Closed box cross section 

c) Open box cross section 
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Figure 2.20: Torsional moment distortions [Gambhir ( 2004)] 

Figure 2.20 shows three girders subjected to different torsional moments. The first 
girder, marked a) is simply supported and torque is applied from both ends. Observe 
that rotation about the x-axis is allowed which means that the girder is not restrained 
and therefore has no warping displacement which leads to the conclusion that no 
warping stresses exist. Uniform torsion is observed, which induces only St. Venant 
stresses. This means that the flanges will remain straight. [Gambhir (2004)] 

The second girder, marked b), is restrained with pronged supports at the ends and a 
torque is applied at the centre. Now the girder can not rotate about the x-axis which 
leads to the development of warping stresses; hence shall the flanges not remain 
straight. Observe that, due to symmetry, the St. Venant contribution is highest at the 
ends and abate towards the centre while the Vlasov contribution is at its maximum in 
the centre and diminish towards the ends. This symmetry causes the elimination of 
warping displacements at the centre. [Gambhir (2004)] 

The third girder, marked c) is a cantilever which actually represents half the girder 
represented in case b). Here the girder is fixed at one end and the torque is applied at 
the end. Here we see the occurrence of warping. The Vlasov stresses are highest at the 
top and the St. Venant stresses are highest at the fixed end. [Gambhir (2004)] 

If this girder is placed in the vertical, then a core in a tall building is represented, see 
Figure 2.21. The displacement of the flanges due to warping causes points a) and c) 
descend while the points b) and d) ascend. This axial displacement is due to Vlasov 
stresses. Observe that in this example the rotational centre is positioned at the centre 
of the web. This is due to the double symmetry that exists in an I-girder with flanges 
of equal length. 
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Figure 2.21: Torque in an I-shaped core due to Vlasov unrestrained stresses. 

 

 

Figure 2.22: St. Venant and Vlasov contributions to the twisting moment. 

Figure 2.22 shows how torsional moments are divided along an I-girder. The Vlasov 
contribution is greatest at the fixed end and least at the free end. The opposite is true 
for the St. Venant contribution. 

These phenomena are not only reserved for steel girders. When concrete walls of 
composite form i.e. T-shaped, U-shaped, H-shaped and so on, are utilised in tall 
buildings then St. Venant and Vlasov stresses can occur. How to deal with the 
warping phenomenon is generally not well known to structural engineers and specific 
investigation of its occurrence is advised for all stability calculations.                 
[Smith and Coull (1991)]   
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2.4 Principles for stabilisation of tall buildings 

 

2.4.1 Stabilising components 

This section intends to describe and explain the stabilising components: columns, 
towers and shear walls. Stabilising components are assumed to be fully fixed at the 
base and hinged at the top. Non-stabilising units are assumed to be hinged at both 
ends and therefore, since they must be braced by stabilising elements, have a negative 
contribution to stabilisation.  

 

2.4.1.1 Columns 

A linear structural member which takes vertical loads can generally be called a 
column. They consist of steel, wood or concrete depending on the strength and/or the 
aesthetics required. Columns are found mainly in structures in order to provide 
support for beams or slabs. When calculating stability in a structure with columns it is 
essential to ascertain if the column is stabilising or not. This means that non 
stabilising elements have to be held up by the stabilising elements so they have a 
certain negative effect on the over all stiffness of the system. Section, 4.1.3 explains 
this phenomenon. 

 

 

 

 

 

Figure 2.23:  A shear wall paired with a tower which combined takes care of stability.  

Figure 2.23 shows a stabilising system. The columns are used to take the load from 
the floors but may still have a positive or negative effect on stability depending on 
their rigidity, placement and connections. 

2.4.1.2 Towers 

Towers, reinforced concrete for this thesis, are rigid cores situated inside tall 
buildings. Usually a tower will exist with another tower or combined with shear walls 
and/or with columns. The combined effect will give rise to a greater resistance to 
torsion depending on how the units are situated in relation to each other. Ideally they 
are situated as far apart as possible for creating a torsional resistance. A disadvantage 
with using a single tower, on its own, is that it is susceptible to torsion and must 
therefore be heavily dimensioned in order to resist torque.  
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The use of towers is favourable in that they can be used not only as stabilising units 
but also as elevator shafts or stairwells. Funnelling of ventilation shafts, water pipes 
and electric cables can also be hidden within the tower giving the architect more 
manoeuvrability and the client more effective use of the space provided.  

Towers which have open cross sections, for example U-shaped or H-shaped, have less 
resistance to torsion than closed sections and should in general be combined with 
other stabilising components. 

 

2.4.1.3 Shear walls 

Shear walls, made of reinforced concrete, are used in modern buildings because of 
their effectiveness in maintaining stability and for the freedom they offer the architect 
who is designing. A shear wall’s position in a building is often initially decided by the 
architect. The architect is trained to design for the buildings function and appearance 
and not for its stability so when a structural engineer is not involved in the first phase 
of design, it may lead to the shear walls being situated in non-favourable positions. 
Also, while choosing reinforced concrete walls as partition walls, the architect can be 
unintentionally gaining stabilising elements. Pierced shear walls are described as 
shear walls with holes. These holes can be windows or doors that are necessary for 
access or lighting for the building.  

 

Figure 2.24: A shear wall with horizontal load applied. 

Figure 2.24 shows how a typical shear wall functions. The force from the horizontal 
wind load results in shear forces which act within the wall and tension and 
compression resulting at the ground.  

 

Reaction 
Tension Compression

Shear force floor slabs 
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2.4.2 Situating of stabilising components 

Stabilising walls may also be placed in certain positions in a building to help with 
sound isolation. An apartment tower block may have a stabilising wall system 
resembling Figure 2.25 in order to divide effectively against sound intrusion from the 
neighbouring apartments. The central stairwell or lift shaft, marked S, will be pierced 
because of door openings for accessing the apartments, while the four stabilising walls 
will be solid and will effectively isolate the occupants from each other. 

 

 

Figure 2.25: Stabilising system when walls are required to also act as sound    
isolators. 

In modern buildings it is fashionable to have an open foyer on the ground floor. This 
open, spacious and welcoming area does cause problems for the structural engineer 
because the stabilising walls have to be discontinued for this floor. Here it is advisable 
to have shear walls or pierced shear walls on the side of the building so that stability 
can be assured and the architectural integrity of creating open spaces can be 
maintained. 

This thesis does not consider façades but rather towers, shear walls, columns, and 
combinations of these three stabilising components. Observe that the use of one 
stabilising component, such as a concrete core tower at the centre of a building, on its 
own, is not recommended as it can be susceptible to torsion but it can be usable if the 
component is designed with very high torsional stiffness. The placing of the rotational 
centre at the centre of the building is advised because it exceedingly reduces the 
buildings susceptibility to twisting due to evenly distributed horizontal loads. The 
placing of shear walls as far from the centre of gravity as possible is advisable in 
order to increase the resistance to torque. Figure 2.26 shows some examples. 

S 

Appartment 4 

Appartment 1 Appartment 2 

Appartment 3 
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Figure 2.26: Examples of locations of stabilising units. 

Observe that in Figure 2.26 the buildings have no central core tower that acts 
independently and that the shear walls are situated at the extremities.  

Observe the difference between the four walled and the three walled examples. The 
three walled example, Figure 2.26d, is referring a case where the minimum stability is 
attained. To obtain minimum stability there has to be at least one wall in each 
direction for stabilising through translation. To also attain stability through rotation 
the structure requires at least two walls stabilising in one direction. It can be observed, 
in the last picture, Figure 2.26d, that a distributed horizontal force in the x direction 
will lead to the occurrence of a large twisting in the structure. Figure 2.26c has a 
fourth wall which help to achieve a better stability, especially for distributed load 
cases. 
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2.4.3 Guidelines for choosing stabilising systems 

The choice of frame is important while developing concepts of tall buildings. Fazlur 
Kahn, an engineer who designed many skyscrapers in USA, has stated that “I strive 
for structural simplicity…. The technical man mustn't be lost in his own technology”.  
He means that the supporting structure does not need to be complicated and he 
developed principles in the selection of stability system considering the height of the 
building.     [Lorentsen  et al. (2000)] 

 

15 storeys: A framework of fully fixed columns and beams, consisting of stiff joints 
which are able to take up moments. Both pictures marked a) in Figure 
2.27 and 2.28. 

25 storeys: A framework of pinned columns and beams which are connected to a 
central tower consisting of concrete or vertical trusses. Both pictures 
marked b) in Figure 2.27 and 2.28. 

40 storeys: Fully or partially fixed columns and beams with shear walls or vertical 
trusses situated at the extremities of the building. Picture c) from Figure 
2.27 and a combination of pictures a) and b) from Figure 2.28. 

60 storeys: The same as for 40 storeys but complemented with additional 
strategically placed horizontally trusses, encircling the top and then 
more further down. Picture d) from Figure 2.27. 

80 storeys: Façade columns between themselves connected to façade beams to make 
a framework. The façades have a united action so that they together 
function as a rectangular tube restrained in the foundations. Pictures e) 
and f) from Figure 2.27. 

100 storeys: Façade walls consisting of combined frameworks and trusses. The 
façades have a united action so that they together function as a 
rectangular tube restrained in the foundations. Pictures e) and f) from 
Figure 2.27 and picture f) from Figure 2.28. 

 110 storeys:  Here the building is divided into many rectangular tubes so that each 
inner column has a direct cooperation with the façades. The tubes each 
reach a different height in the building so as that the wind loads 
influence is reduced to the minimum. Picture f) from Figure 2.27. 

120 storeys:  An outer façade, acting as a tube, combined with large trusses attached 
for increased stability. Picture g) from Figure 2.27. 
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Figure 2.27:  Stabilising systems depending on the number of storeys. [Lorentsen     
et al. (2000)] 

 

 

Figure 2.28: Examples of stabilising systems. [Lorentsen et al. (2000)] 

Fazlur Kahn’s recommendations are usable but, because of architectural influences, 
the engineer is often given a very complicated stabilizing system to calculate. 

Storeys 
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Especially here in Sweden it is suspected that engineers tend to enter the design phase 
at a late stage. Perhaps introducing engineers at an earlier stage will give the engineers 
more chance to influence the final design and so keep to Fazlur Kahn’s principle of 
simplicity.  

 

2.5 Reality versus model 

This Section will attempt to describe specifically the difference between the model the 
engineer creates, in order to design for stability, and the actual reality that exists. All 
the various estimations that the engineer has to deal with and some assumptions that 
he/she has to make will be extensively explained and hopefully present an 
understanding of how much the engineer relies upon his/her own understanding of the 
factors applied in order to eventually produce a model that is as near to reality as is 
required. 

An engineer models a structure through attempting to imitate as the reality that exists 
for the structure being designed. Considering stability of a building it is the robustness 
of a structure during its service life and its ability to resist loads which requires 
modelling. The engineer must construct a model of how the loads should be 
transported to the ground and how the stabilising elements interact. The engineer must 
consider the stiffness values of the individual stabilising elements and the combined 
system concerning translation and rotation; how the relative load cases are calculated 
concerning SLS or ULS. The service life of the structure has to be considered and 
how the assumptions on interior/exterior climatic impact, degradation of materials and 
natural disasters or accidental impacts can be quantified. All of these considerations 
have to be intelligently modelled using assumptions and partial factors to resemble as 
the reality that exists for that specific structure. [Zalka (1992)] 

Recently, engineers have recognised the advantages of developing data on reliability 
margins through using probability theory. This is because, outside the modelled world 
of the engineer there are always random variations of many elements comprising the 
structure/environment system. By using the statistical procedures developed into 
probability theory the engineer can deal with the occurring variations in a rational 
manner. Through assembling a large body of data on each respective material 
property and then establishing clear unequivocal rules for the quantification of 
individual factors, can the engineer develop a system of safety factors specific to each 
individual project and so produce calculations which more realistically represent 
reality. [Zalka (1992)] 

 

2.5.1 Theory of linear elasticity 

The theory in this thesis is based on the assumption of linear elasticity. Combined 
with Euler-Bernoulli beam theory, a differential equation which describes the 
relationship between the load, the stiffness of the unit and the displacement is 
acquired. 
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       (2.6) 

w = displacement; q = distributed load 

This equation describes how a beam displaces itself considering an even stiffness 
along the beam. Euler-Bernoulli theory assumes that each cross section retains its size 
and form. The basic equation above is derived through four distinct subsets of beam 
theory; kinematics, constitutive, resultants and equilibrium. 

Kinematics 
dx
dw

=−=⇒ θχ        (2.7) 

Constitutive ),(),( yxEyx xx εσ ⋅=⇒     (2.8) 

Resultants 
∫∫
∫∫
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⋅⋅⋅=⇒
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Equilibrium 
q

dx
dV

V
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dM

−=⇒
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To obtain the relationship between the displacement w and the distributed load q, the 
equations above are combined. The two equations of equilibrium are first combined in 
order to eliminate the shear force V. 

q
dx

Md
−=2

2

 

Then M is replaced through the resultant equations. 

[ ] qdzdyy
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d
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The constitutive relationship is used to replace stress σ with the strain ε. Then the 
kinematics is used to replace the strain ε with the displacement w. 
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Next step involves recognizing that the integral over y2 is defined of the beam's 
moment of inertia, I. 
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∫∫ ⋅⋅= dzdyyI 2        (2.9) 

Finally the Euler-Bernoulli equation is achieved. 
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       (2.6)  

The kinematics relationship builds on the theory that the normals (lines perpendicular 
to the beam's neutral plane embedded in the beam's cross sections) do not bend, do not 
elongate and always make a right angle to the neutral plane. This is a theory designed 
to enable the engineer to make a model of reality and does not actually represent 
exactly how beams react to loads. 

All of the assumptions and estimations described in this section are the engineer’s tool 
for interpreting reality into a workable model. It is essential that an engineer is aware 
of how this model is derived and implemented so that its use will lead to intelligent 
interpretations of how the physical world actually works. Designing stability systems 
for extremely tall structures could require the engineer to develop extreme factors 
which requires the engineer to further quantify effectively the existing assumptions 
and estimations. 

 

2.5.2 Young’s modulus 

Young's modulus, E, is the modulus of elasticity. It is the described as the ratio of 
stress to strain on the loading plane along the loading direction.  

ε
σ

=E          (2.10) 

Stress and strain values are acquired, for different materials, through testing. As the 
tension or compression increases so does the strain. During this testing process the 
relationship will show itself not be linear. Young’s modulus is determined through 
calculating the slope of the relationship between the stress and strain shown in a 
stress/strain diagram. Young’s modulus is also influenced by other factors, such as 
temperature changes, humidity, plastification, i.e. material hardening due to high 
stresses and time. It is therefore important to understand that due to these influences 
Young’s modulus can change during a material’s life time.  

 

2.5.3 Long term effects 

Long term effects on stabilising structures depend on creep and shrinkage. Creep is 
the increase in strain, over time, under a constant stress. Creep increases with 
increasing water-cement ratio and decreases with an increase in relative humidity. 
Creep can be accounted for by simply reducing Young’s modulus, E; by a creep factor 
obtained through codes. 
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Eef is the altered modulus of elasticity affected by the creep factor ϕef. The creep 
factor itself can be determined through Equation (2.11) but there are other models that 
can be used. 

( )00 ttcef −⋅= βϕϕ        (2.12) 

ϕ0 is the notional creep coefficient which takes into account the relative humidity, the 
mean compressive strength of concrete at 28 days and factors related to the effect of 
concrete strength and age at first loading. βc(t-t0) describes the development of creep 
with time after loading where t is the considered time and t0 is the time at first 
loading.  

Shrinkage is a time dependant phenomenon which considers strains which are 
independent of stresses and result in deformations. The shrinkage value εcs(t) is 
dependent on time and is formulated as  

( ) ( )sscsscs tttt −⋅=− βεε 0,       (2.13) 

Where t is the age to be calculated on and ts is the age when shrinkage began. The 
notational shrinkage coefficient, εcs,0, is derived through the mean compressive 
strength of the concrete at 28 days and coefficients depending on concrete type, 
relative humidity and effect of concrete strength on shrinkage. 

 

2.6 Problems concerning tall buildings 

While dimensioning a tall building the engineer has to foresee the problems that may 
arise. The primary concern for the engineer is that the building will provide a safe and 
harmonious place for recreation, for working and for living. The secondary concern is 
that the client will receive the most cost effective design. 

The engineer must design with failure in mind. For example, if one stabilising 
component fails due to impact, fire or accident, the buildings other components have 
to be able to take up the weight, i.e. collapse has to be prohibited. Concerning 
specifically fire, the building has to hold up for the period required for people to 
evacuate the building before collapse. In order to ensure that the client is content, the 
engineer must design a building that is optimal for its purpose. This means that the 
structure will not be over dimensioned for exceptional safety, and the client shall not 
have material costs that are unnecessary. 
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2.6.1 Comfort 

Concerning comfort, some tall buildings may experience vibrating sway, which is the 
back and forth movement of a building due to wind loads. Such sway can lead to 
cracking in the concrete and further weakening of the structure due to fatigue, if the 
sway is considerably strong and frequent. This sway may also cause the users of the 
building to experience motion sickness which causes nausea. A building with 
uncomfortable movements may even be uninhabitable. An engineer can hinder these 
effects through creating an aerodynamic structure which is less affected by the winds, 
through designing the structure with attention to strengthening against sway and 
through avoiding critical resonance frequencies. [Postgraduate medicine online 
(1999)] [Vibration data (2002)] 

There exists a certain frequency range that is uncomfortable for people. Most people 
feel the affects of motion sickness in the frequency range 0.1 – 1.0 Hz. Calculations 
should be made to determine the structures eigenfrequencies, transverse and lateral, 
and damping should be applied when necessary. [University of Sydney (2004)]  

 

2.6.2 Pierced shear walls 

Concerning solid stabilising components, such as shear walls, forces and moments are 
relatively easy to establish. The stiffness is the same throughout the wall and linear 
behaviour can be assumed as long as the unit is uncracked. The estimating of force 
distribution for pierced shear walls is on the other hand less predictable. Depending 
on the hole dimensions in relation to the height and the breadth of the wall, the 
behaviour is different. Walls with small holes have a strong connection between the 
vertical parts deriving an almost full interaction between them. These walls can be 
treated as solid walls as the behaviour is almost the same. Walls with big holes, in this 
thesis mentioned as walls with slender verticals or transversals, have almost no 
interaction between the verticals and can be treated as two separate walls disregarding 
the contribution from the transversal parts. Considering all walls, with varying hole 
dimensions in combination with asymmetry and more than one section of holes, it is 
obvious that the behaviour and the force distribution is hard to predict. A flexible 
method adaptable for all kinds of pierced walls is therefore to be preferred if possible.  

 

2.6.3 Load distribution 

The interaction between stabilising components in a building depends on many 
factors. All parts in a complete structure play a significant role on influencing the 
force paths, i.e. transferring the loads from the subjected surfaces down through the 
building to the foundations. In most calculations it is assumed that the floor slabs are 
fully stiff and do not bend in their plane, and that no slip occurs in the joints. The 
floor slabs are connected to the vertical stabilising members and play a significant role 
for distributing the load between the stabilising components. The floor slabs are 
usually the components that are subjected at the beginning of the load path taking the 
load directly from the facades. If the assumed stiffness of the slabs does not 
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correspond to a real slab, the problem for establishing a correct force distribution 
begins already with this first assumption. This uncertainty in combination with an 
unsymmetrical load, subjecting the building to twisting, leads to there being a force 
distribution which will be even harder to predict, especially for tall buildings.  

 

2.6.4 Twisting and open cross sections 

There are different methods for stabilising a building. Tall buildings often use a 
combination of stabilising systems and a stabilising tower is common to be positioned 
at the centre of a building, i.e. a core. In load cases where only translation occurs, the 
behaviour and the stress distribution of the core is seldom a problem to predict. For 
open cross section, such as U-shape, L-shape etc., subjected to twisting, the shear 
stresses which develop in the opened tower are uneven and an unpredicted warping 
effect may occur. This effect is often neglected or is not always understood by 
engineers. [Smith and Coull (1991)] The effect is considered to be quite small in low 
rise buildings but in tall structures the rotation angle, along the height, will cause a 
greater rotation and the warping effect causes the extremities, the flanges, to displace 
in the axial and lateral directions. These displacements are often partly prevented due 
to the connected floor slabs which are acting as connecting beams between the opened 
flanges, creating a closed or partly closed cross section. This means that the slab is 
now subjected to considerable tensile forces for preventing the opened cross section 
of the tower from displacing. These forces have a different intensity and force 
direction in the slabs than the slabs are normally dimensioned for. [Smith and Coull 
(1991)] 

 

2.6.5 Interaction between the soil and the foundation 

Tall buildings that are connected to solid bedrock are the only form of foundation that 
should be considered as a fully fixed. This assumption is still commonly used in 
design and the calculation processes for establishing buckling loads and dimensional 
forces and moments. Foundations resting on a layer of clay are considered as a 
structure partly fixed at the base. In the calculating process this could be taken into 
account by using the method of elastic restraint.  

This method is transforming the unpredictable soil into an elastic spring and so 
making it possible for an interpretation of this phenomenon into the calculations. The 
knowledge of the soil is first of all a very uncertain subject and in combination with 
the approximation made for making the effect applicable in calculation the model will 
probably not agree very well with the real behaviour.  

The problems related to the soil properties is also an issue for structures resting on 
piles drilled through the layer of clay bonded into the bedrock. The lateral resistance 
in the soil, preventing the piles from lateral displacement, is not to be treated as a 
compact non movable mass. Especially for tall buildings subjected to vibrating sway 
the clay will be frequently compressed and released from the dynamic forces causing 
the piles to move in a lateral direction compressing the soil. The upper part of the soil 
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is the most sensitive and the loss of interaction between soil and the piles has to be 
considered for dimensioning a stable structure.  

 

2.6.6 Methods 

The way tall buildings are designed and treated is different depending on which 
country one is in and which codes are utilised. The codes do not include everything, 
and relying only on the restrictions printed is not enough. It is noticed that the way a 
building is checked or designed differs between engineering companies even though 
the same code is followed. Even the restrictions in the codes are interpreted 
differently. [Johansson (2005)]   

It is observed in different literatures different methods for calculating stability. 
Different tables are often used to achieve fast results but the basic theory is often the 
same i.e. based upon the theory of elasticity. Which methods the engineers are using 
is not an important issue but it is important how deep an understanding the engineer 
has of how the methods used were derived. Without knowledge of the assumptions 
the methods are based upon, it can be difficult to draw conclusions as to whether the 
calculations are good estimations of the structure or not. For complicated structures it 
is preferable to use FE-analyses in addition to hand calculations for achieving 
comparisons and a better prediction of the structure’s behaviour. Even though a 
calculation program such as an FE-program is used, the effects of the interpretation of 
the FE-model, such as boundary conditions, load application, material properties etc., 
has to be observed as the FE-method is also a model of the real structure. In some 
cases a non linear analysis has to be considered.  

The calculation methods used for pierced shear walls are described in Westerberg 
(1991) and Lorentsen et al. (2000). Both methods used for calculating on pierced 
shear walls are based upon an elastic behaviour with unified material properties 
through the whole wall. The method used for establishing the buckling load involves 
many assumptions and it is therefore suspected that the model will not resemble a real 
wall.  

In the hand calculation method, for establishing the top deflection of the wall, the load 
is interpreted as a distributed horizontal load acting along the height of the wall. The 
real wall is actually subjected to shear forces along the breadth of the wall on each 
storey through the connections of the floor slabs. The method used does not therefore 
resemble the real load case. In that case where the loads are applied (distributed along 
the breath of the wall) the wall may have to be strengthened causing non uniform 
material properties through the structure. If these parts are weak, cracking may occur 
and the stiffness of the wall will be reduced causing a lower interaction between the 
verticals. The real wall is then a completely different wall than the one interpreted in 
to the hand calculation. 

The approaches for calculating on complete structures, involve several assumptions 
such as, evenly distributed columns and the vertical load distribution. Regarding the 
vertical load distribution, the method uses a simplified expression assuming that the 
evenly distributed columns are taking all the vertical loads while the stabilising 
components are assumed not to be bearing. A problem with using this method occurs 
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especially for buildings such as residential buildings which seldom utilise columns but 
instead use stabilising walls for taking all the vertical loads combined with stabilising 
the building. The method does not therefore resemble a real structure. 

 

2.6.7 Summation of the effect from approximation 

It is worth mentioning that engineers who are used to calculate on low rise buildings 
often do not need to consider many of the problems mentioned in this section. With an 
increasing height of a building, the effect of all the assumptions and approximation 
made by the engineer will increase and in some cases a bad estimation can cause a 
weak building showing an unpredictable behaviour. It is therefore to be noted that the 
same approach used in low rise buildings should not be used for dimensioning tall 
buildings. The 2nd order effect is here greatly influenced by the approximations made 
in the design process. If the problems which are brought up in this section are 
disregarded the real building may behave unpredictably and the building may 
succumb to unwanted deformations. The 2nd order contribution may greatly increase 
due to the greater deflections. Cracking may occur in parts where it is not predicted 
and in these parts the stiffness is reduced and the capacity for taking forces is also 
reduced. The force distribution will then be different than the building is designed for 
and other stabilising units will be overly subjected causing cracking. Even though the 
building does not collapse the reduced stiffness can cause the building to become 
uncomfortable and the use of the building may eventually be prohibited. 
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3 Calculation methods for stabilising components 
This chapter will describe the methods for calculating the buckling load due to 
bending through using the Vianello method, Euler buckling factors or through 
deriving a k-value. The shear contribution to buckling will also be clearly explained 
and derived. How the contributions of shear and bending are combined to produce the 
critical buckling load is shown and how to us the magnification factor for determining 
2nd order effects is used for obtaining the design moment.  

A calculation method for pierced shear walls is presented and the assumptions used 
for this type of modelling are clearly described. Vianello’s method for determining the 
bending contribution to buckling is described through the building up of an iteration 
process in order to effectively explain the theory behind the method and how it is 
used.  

 

3.1 Solid components – Columns and shear walls 

The buckling criterion of a component, or a whole structure, is vital when considering 
the calculation of stability. When the critical buckling load is established it is used 
frequently in comparison with the actual load on the structure. It is also of importance 
concerning the estimation of second order effects. The contribution of second order 
effects is included in the calculations through using quotients of the actual load and 
the critical buckling load. The critical buckling load depends on deformations from 
both bending and shear. The contributions from each part can differ, and in some 
structures, for example for high slender stabilising components, the shear deformation 
is negligible in comparison with the bending deformations and therefore is generally 
ignored. This chapter will show the derivations of the critical buckling load for a 
cantilever column as this model is closest to the actual application, i.e. fully fixed at 
the base. 

 

3.1.1 Buckling load through bending – General calculations 

The Euler expression for bending is often used in estimating the critical buckling load 
for a single component subjected to a concentrated load at the top. In a complete 
stabilising structure, for example a building, an expression for the structures buckling 
load takes a more simplified expression using a single factor, kV, and the complete 
height of the structure, Lh. The kV-value is based upon the amount of storeys the 
building has, or in other terms, the amount of vertical load applied along the structure. 
This value can be established through Vianello’s method explained in Section 3.3. 

The k-value derived below is for a single column subjected to a vertical load on the 
top and note well that this k-value should not be confused with Vianello’s kV.  

EIkN Bcr ⋅= 2
,    or as the known Euler expression    
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2

2

,
c

Bcr L
EIN π

=             (3.1) 

cL
k π
=  

 

Figure 3.1: Buckling load through bending. 

Combining the two expressions above a differential equation is acquired. 

0)()('' , =⋅+ xy
EI

N
xy Bcr       (3.2) 

Solution: 

kxBkxAxy cossin)( +=       (3.3) 

kxBkkxAkxy sincos)(' −=   

kxBkkxAkxy cossin)('' 22 −−=  

)cossin()('' 2 kxBkxAkxy +−=      (3.4) 

Combining Equation 3.3 and 3.4 a second expression for y’’ is acquired. 

ykxy ⋅−= 2)(''  

This leads to the determining of the critical buckling load due to bending with the help 
of a factor k. 

Ncr,B 

M

x 

y 

Establishing the moment at a 
certain point along the column, 
assuming an imperfection with 
a sinus shape. 

)(, xyNM Bcrx ⋅=  

)('' xyEIM x ⋅−=  
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)()('' , xy
EI

N
xy Bcr ⋅−=       ⇒    

EI
N

k Bcr ,2 =    ⇒    EIkN Bcr ⋅= 2
,  

cL
k π
=  

Lc is the so called buckling length. Lc is different depending on how the behaviour of 
the column is interpreted according to the boundary conditions. In some literature the 
Euler expression uses a kE as a multiplication factor which gives the buckling length 
Lc. 

( )2

2

Lk
EIN

E
cr

⋅
=

π         (3.5) 

LkL Ec ⋅=  (Buckling length)     kE,cantilever=2 

Figure 3.2 below presents different kE values for different boundary conditions. 

 

 

 

Figure 3.2: Euler buckling modes. 

 

Euler cases: 1  2  3  4 
kE-value: 2  1  0.7  0.5 
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3.1.2 Bending contribution of cantilever columns 

 

 

Figure 3.3: Bending of a cantilever column 

To establish the value of k for a cantilever column, the boundary conditions are 
interpreted into the solution of the differential equation mentioned in the previous 
chapter. The displacement, which contributes to the moment, is here (y0-y) where y 
varies along the column, see Figure 3.3. 

0cossin ykxBkxAy +−=       (3.9) 

kxBkkxAky sincos' −=       (3.10) 

As y represents the variable deflection along the column, y’ expresses the slope at a 
certain point along the column, i.e. dy/dx. 

 

Boundary conditions: 

Both the displacement y and the slope y’ are zero at the bottom and at the top the 
variables are given the maximum values. 

x = 0 ⇒ y = 0 y’ = 0 ⇒     A = 0 

x = L     ⇒        y = y0   ⇒   BcoskL+y0 = y0    ⇒   cos kL = 0    ⇒    k = π/2L, 3π/2L,… 

L
k

2
π

=  ⇒   2

2
2

)2( L
k π

=  

y0 

y 

y0-y 
Ncr,B Ncr,B 

Ncr,B 

M
L 

x 

)( 0, yyNM Bcr −=     (3.6) 

''EIyM −=   (3.7) 

Assumed linear response; EI
constant along the length ⇒  

0
,'' yNy

EI
N

y cr
Bcr =+      (3.8) 
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The cantilever column, because of the boundary conditions, has the highest value due 
to the fact that the deflected column has the shape of a half buckling mode, see  
Figure 3.2. 

 

3.1.3 Shear contribution of cantilever columns 

The critical buckling load, only regarding shear, is derived from the shear modulus 
and the cross sectional area of the column. See Figure 3.4. 

AGN Scr ⋅=,         (3.11) 

GA is the shear stiffness of the member and the shear modulus G for a concrete 
member is assumed to be 40% of Young’s modulus. This value is derived from 
Poisson constant ν = 0.25, the estimation for concrete. [Lorentsen et al. (2000)] 

( ) EEEG 4.0
5.2

1
12

==
+

=
ν

      (3.12) 

 

 

Figure 3.4: Shear buckling of a column. 

The stress distribution from shear is not uniformly distributed in large cross sections. 
To obtain a more representative value for the whole cross section the shear capacity is 
reduced with a value ξ = 1.2. 

ξ
GAN Scr =,         (3.14) 

Ncr,S 

M y 

L 

V 

γ 

yNM Scr ⋅= ,       

Ly ⋅= γ    (for small angles)  

Observe that the shear force, V, is a 
fictional force. It represents a force that 
gives the same deflection which occurs 
from the critical buckling load when 
the structure is failing.    

LVM ⋅=    

GA
L

LGA
L

VL
y

VL
y

MN Scr =
⋅

====
γ

γ
γ,  

Observe that  
GA
1

=γ        (3.13)
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3.1.4 Combined bending and shear 

Both bending and shear deformations contribute to the deflection and the critical 
buckling load. The final curvature of the deflection is therefore established through 
the sum of the curvatures from each contribution, see Figure 3.5. 

 

 

Figure 3.5: Buckling due to bending and shear. 

Curvature from Shear:      
GA

yN
GA
Vy totcr

S

'
' ,==    ⇒   

GA
yN

y totcr
S

''
'' ,=       (3.16) 

Curvature from Bending:     
EI

yyN
EI
My totcr

B

)(
'' 0, −

=
−

=         (3.17) 

Combining both of the components the equations below are achieved. 

EI
yyN

GA
yN

yyy totcrtotcr
SB

)(''
'''''' 0,, −

+=+=         ⇒   
EI

yy

GA
N

N
y

totcr

totcr )(

1
'' 0

,

, −
⋅

−
=  

It is important to distinguish between Ncr,B , Ncr,S and Ncr,tot. Ncr,tot is the critical load 
that is to be derived. The last part of Equation (3.17) can be compared with the 
curvature for bending. 

EI
yyN

y Bcr )(
'' 0, −
=             (3.18) 

Ncr,tot 

M 
y 

L 

V 

γ 

 

2

2

,
c

Bcr L
EIN π

=    Bending       (3.15) 

AGN Scr ⋅=,    Shear            (3.11)

γ = yS’           Shear angle 
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A new expression is derived and gives a more simplified expression for the combined 
buckling load, Ncr,tot. 

GA
N

N
N

totcr

totcr
Bcr

,

,
,

1−
=    ⇒          

ScrBcr

totcr

NN

N

,,

, 11
1

+
=              (3.19) 

 

3.1.5 Derivation of magnification factor 

To establish the total moment, occurring both from horizontal load and the second 
order contribution, a so called magnification factor is introduced. The total moment 
can be expressed as the following: 



















−
+⋅=

1
10

N
N

MM
cr

d
β       (3.20) 

factorionmagnificatMM d ⋅= 0  

MMM d ∆+= 0  

As one can see from the expressions above, there is a relationship between the 1st and 
the 2nd order moment. The 2nd order moment occurs from the deflection caused by the 
1st order moment combined with the vertical load. The deflection is related to the 
stiffness of the component and weak components will therefore develop large second 
order deflections.  

The second order moment depends on the vertical load and the deflection. The 
deriving of the magnification factor is here based on the deflections. 

Md = M0+∆M = M0+N⋅y ;   y = y0+∆y 

Where y0 is the 1st order deflection. The deflection can also be written as the curvature 
times the length in square. 

Lyy ⋅= '      resp.    Lyy ⋅= '''   ⇒   22 1'' L
r

Lyy ⋅=⋅=  

When a sinus formed curvature is assumed. When different types of load act on a 
column, the shape of the curvature also changes. Both the horizontal load and the 
vertical load affect the buckling shape and the expression for the curvature above has 
to be altered by a distribution factor for each load case. 

y = y0+∆y    ⇒      
B
L

rA
L

r
y

22

0

11
⋅+⋅=

∆

  ⇒   
B
L

EI
M

A
L

EI
M

y
22

0 ⋅
∆

+⋅=  ⇒   
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12

0

−
⋅
⋅

=

NL
EIB
NA

BM

y         (3.21) 

A is the distribution factor related to the load distribution from the 1st order moment, 
while B refers to the shape occurring when the column deflects under the vertical 
load. The second order moment can now be rewritten as the following: 

1)/(
/

20

−
⋅

⋅=⋅=∆

N
LEIB
ABMyNM      (3.22) 

As the factor B refers to the shape due to the second order contribution, the curvature 
along the column is similar to a sinus curve. B is therefore often assumed to be equal 
to π2.  The expression (B⋅EI/L2) is then identified as the critical buckling load for 
bending. On the other hand, the factor A differs depending on whether there is a point 
load or a distributed load etc. applied on the column or a 1st order eccentricity of the 
vertical load, see Figure 3.6. The quotient B/A is called a shape factor and is replaced 
by the symbol β.  



















−
+⋅=

1
10

N
N

MM
cr

d
β           (3.20) 

It is also notable that 12

2

===
π
πβ

A
B , for an axially loaded column with factor A = π 

representing the imperfection and factor B = π representing the 2nd order effect, see 
Figure 3.6. 

When β is equal to 1, the expression becomes simplified to  



















−
⋅=

cr

d

N
N

MM
1

1
0        (3.23) 

To calculate the total moment shown above, the critical buckling load has to be 
established first. Figure 3.6 presents some A and B values which are used for 
establishing the shape factor β. 
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Figure 3.6: A and B values for deriving the β value. [Westerberg (1999)] 

 

3.2 Pierced shear walls 

Through Section 3.1.1 to 3.1.4 buckling of columns or shear walls is explained for 
solid units. In this section a hand calculation method taken from Lorentsen et al. 
(2000), is used to derive the critical buckling load for pierced shear walls. As 
described earlier shear deformation is often neglected in tall stabilising units because 
bending is dominant. When stabilising elements are pierced, shear deformation can 
not be neglected. Calculation is more complicated compared with the solid units. The 
calculations are based on the establishment of the shear angle γ. The shear angle 
consists of contributions from deformations occurring from both bending and shear 
deformations in the vertical and horizontal components of a representative section at 
the base of the wall. See Figure 3.7 where Lsec is the height of one storey. The 
calculated value of the shear angle γ expresses the angle when the shear force, V, is 
equal to 1. 

γ
ξ

ξ
==

GAN Scr ,         (3.24) 

shearvsheartbendvbendt ,,,, γγγγγ +++=      (3.25) 

 v stands for the vertical parts and t represents the transversal parts of the wall. 

t
bendt EIb

cL
2

3
sec

, 12
=γ         (3.26) 

v
bendv EI

L
24

2
sec

, =γ                (3.27) 

 

A = 12 A = 9.6 A = 8 A = π2 
B = π2 
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t
sheart GAb

cL
2

sec
, ξγ =             (3.28) 

v
shearv GA2,

ξγ =        (3.29) 

 

3.2.1 Derivation of buckling load 

The reason the formula is split up into different parts is to reveal how much each part 
contributes to the total shear angle. The derivations are all based upon the equation of 
the elastic line and uniformity is assumed throughout the wall. 

In order to calculate, the wall is modelled as a framework positioned in the centre of 
the components of the shear wall, See Figure 3.7. The connection between the vertical 
parts and the transversal part is assumed to be rigid, see Figure 3.8.  

 

 

Figure 3.7: Pierced shear wall. 

Lsec 

ht 

c0 

b 
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Figure 3.8: Representative section of a pierced sear wall.  

 

3.2.1.1 Bending in the transversal part 

Bending in the transversal part is expressed in Equation (3.26). 

t
bendt EIb

cL
2

3
sec

, 12
=γ        (3.26) 

The contribution from bending of the transversal part is caused by a shear force 
bending the length c/2 in Figure 3.8. The presumptions are that the inflexion point is 
in the middle and that the inner part has EI = ∞. The length of the deformable 
transversal part is assumed to have the length c = ht+c0, i.e. the length is influenced 
by the thickness and the length of the transversal part. See Figure 3.8. 

 

3.2.1.2 Bending in the vertical part 

The bending in the vertical part is expressed in Equation (3.27). 

v
bendv EI

L
24

2
sec

, =γ        (3.27) 

Bending of the vertical part with the length Lsec/2 has the same derivation as the 
previous component. Only the length and the shear force differ. y = deflection. 

vEI
Ly

3
1

22
1 3

sec ⋅





=        bendv

L
y ,

sec

2
γ⋅=  ⇒  

v
bendv EI

L
L

y
24

2

sec

sec
, ==γ  

b 

c 

γt,bend 
γv,bend 

Lsec 

V=1 

V=1 

γt,bend

Vt 

EIv 

b/2 

c/2 

V/2

EI=∞ 

EIt 

V/2
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3.2.1.3 Shear in the transversal part 

As Figure 3.9 illustrates, the angle γt is caused by a shear force in the vertical 
direction. 

 

Figure 3.9: Shear deformation. 

22
secL

VbVt =      ⇒      V
b

L
Vt ⋅= sec ; and V=1      ⇒       

t

t
t GA

Vξ
γ =  

To transform γt to the contribution γt,shear , the angles are compared from Figure 3.9. 

22
cb

tt γα =   ⇒    
b
c

tt γα =       

tt
ttsheart GAb

cL
b
c

GA
V 2

sec
, ξξαγ ===       (3.28) 

 

3.2.1.4 Shear in the vertical part 

The shear contribution from the vertical part is expressed through Equation (3.29). 

v
shearv GA

V ξγ
2, =       V=1     ⇒        

v
shearv GA2,

ξγ =   (3.29) 

The derived theory will be used in Section 5.3 where different cross sections will be 
calculated and compared with results from FE analyses. It will then be clearer how the 
contributions from the different parts will vary and affect the total shear angle, and 
finally the critical buckling load.  

γt 

γt
αt 

γt,shear 

Vt=L/b 
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3.2.2 Calculation method for deflection 

When calculating deflection of pierced shear walls the approach is different from the 
establishing of the buckling load. The shear part of the buckling load is based upon a 
shear angle that represents the state when the shear capacity or the critical buckling 
load is reached. This angle does not represent the angle for the whole structure. The 
vertical loads are decreasing with the height of the building which leads to different 
angles on each floor.  

Deflections of pierced shear walls are complicated to establish and involve advanced 
derivations to obtain a usable expression. This derivation is not taken up here in detail 
but the basics are presented. The method is explained in Smith and Coull (1991). 

The method of calculating deflection of pierced walls is based upon a modification of 
the shear angle. 

VV
GA

y ⋅== γξ'         Represent the angle that occurs for a shear force V.         (3.30) 

GA
ξγ =      Represent the shear angle, i.e. the angle when V=1.       (3.31) 

The modification of the angle in Equation 3.30 takes into account that a part of the 
shear force is carried by vertical parts. The angle y’ is therefore reduced.  

vEI
My −=''     ⇒      '''yEIV v=  

( ) )''''''(2)'''(2' SBvvS yyEIVyEIVy ++⋅=−−= γγγ  

EI
Vy B −='''    ⇒    SvvS yEI

EI
VyEIVy '''22' γγγ +⋅+⋅=  

⇒  





 −−=−

EI
EI

EI
V

EI
yy v

vv
SS

2
1

22
1''''

γ
 

To obtain a simpler expression two new variables are established.                 
[Lorentsen et al. (2000)] 

vEI2
12

γ
α =         (3.32) 

EI
EI v2

1

1

−
=µ         (3.33) 
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µ
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γγ

1'''' 22 V
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The variables α and µ are used to simplify the final expression for the top deflection 
of a pierced shear wall subjected to a distributed horizontal load. 

v

h

IE
qLKy

28

4

max =          (3.34)   












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






−

+−
−−=

24 )(2
1

)cosh()(
1)cosh()sinh(811

hhh

hhh

LLL
LLL

K
ααα

ααα
µµ

 (3.35) 

The derivation of the factor K is not presented here and further information can be 
found in Lorentsen et al. (2000). 

The expression for the deflection is derived from the theory of linear elasticity and 
stands for the top deflection of two combined solid members subjected to a distributed 
horizontal load. The stiffness EIv represents the stiffness of one member. The factor K 
is then established to take into account the effect of the holes.  

The variables α and µ can be rewritten to simplify the calculation. 
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2 12

2
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bLc
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α 
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


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2,1,

1
2

1

1
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I

AA
A

EI
EI

v

vv

v

v

ΣΣ
+=

−
=µ      (3.37) 

Lsec is the storey height. b, c and It are presented in Section 3.2.1. 

This method is also applicable for shear walls with more than one section of holes. 

For a wall with two vertical sections with holes, the same approach explained above 
can be used. Only the sum of the cross section area and the sum of the moment of 
inertia is added with a third contribution from the extra vertical part. 

For a shear wall with one vertical row of holes: 

∑Iv=Iv,1+Iv,2         ∑Av=Av,1+Av,2 

The factor K can be taken from the graph in Figure 3.10 which shows functions based 
on Equation 3.35. 
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Factor for deflection of pierced shear walls
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Figure 3.10: Graph for determining the K factor. 
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3.3  Vianello’s method 

In the last years of the 19th century, an Italian mathematician named Vianello devised 
an iterative procedure which could effectively be used to calculate critical buckling 
loads concerning the bending contribution. The Vianello iteration is especially 
effective for establishing critical buckling load, concerning bending, in members with 
non uniform stiffness throughout their height. Learning how to use Vianello’s Method 
is a lengthy and methodical process which requires plenty of time in order to gain a 
usable understanding. Literature is sparse so the only three sources studied are 
Westerberg (1999) , Lorentsen et al.(2000) and Petersson and Sundquist (2002).  

The point of using a Vianello iteration is to calculate a k-value to be used in Equation 
(3.38), for calculating the critical buckling load regarding bending. 

2,
h

VBcr L
EIkN ⋅=        (3.38) 

This is the critical load due to bending, where Lh is the total height of the structure. 
The iteration uses the differential equation of equilibrium of the system and can be 
seen in Equation (3.8). See Section 3.1.1. 
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EI
M

y Bcr      (3.39) 

0y = maximum bending deflection:    

The method is capable of calculating both discrete elements, meaning individual, and 
continuous systems, meaning a system of combined components. The best way to 
explain how the method is used is to perform an actual iteration. For this individual 
member the load is applied at the top and the stiffness is constant through the column.  

 

 

Figure 3.11: A column with a vertical force N. 
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The problem is shown in Figure 3.11. In order to calculate the critical buckling load a 
Vianello table is assembled. The x/L shows the level in the column where the 
calculations are valid. The ya is the initial estimation of deflection. Observe the 
differential Equation (3.39) where (x/L)2 is found. It is from this equation that the first 
estimation of ya is set to be equal to (x/L)2. 

Table 3.1: First step 

L
x   ay   ''y   'y   by   

b

a

y
y  

1 1         

0.9 0.81         

0.8 0.64         

0.7 0.49         

0.6 0.36         

0.5 0.25         

0.4 0.16         

0.3 0.09         

0.2 0.04         

0.1 0.01         

0 0         

 0y  
EI

yN Bcr 0, ⋅
  x

EI
yN Bcr ∆⋅
⋅ 0,   20, x

EI
yN Bcr ∆⋅
⋅

  

 

The first step involves setting up a table, Table 3.1, and inserting the x/L-values and 
assuming the ya-values through squaring x/L, where the numbers in the column  ya are 
factors of y0. 
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leads to the establishment of the assumed deflection ya. 
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Observe that the table represents the element member in that the top row is the top of 
the member. Note also that the values displayed under ya are factors of y0. 

Ex: where x/L = 0.5:  

025.0 yya ⋅= ;       that is 25% of the maximum deflection  y0. 

Table 3.2: Second step 

L
x  ay  ''y  'y  by  

b

a

y
y  

1 1 0    

0.9 0.81 0.19    

0.8 0.64 0.36    

0.7 0.49 0.51    

0.6 0.36 0.64    

0.5 0.25 0.75    

0.4 0.16 0.84    

0.3 0.09 0.91    

0.2 0.04 0.96    

0.1 0.01 0.99    

 0 1    

 0y  
EI

yN Bcr 0, ⋅
x

EI
yN Bcr ∆⋅
⋅ 0,  20, x

EI
yN Bcr ∆⋅
⋅

  

 

 

The second step is the calculation of y’’ which is the curvature. Here again the 
differential equation is used. 


















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⋅
=

⋅
⋅−=⋅−=

−
=
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,
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EI
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EI
yN

y
y

EI
N

yy
EI
M

y BcrcrBaBcr
a       (3.39) 
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The numbers that appear in the column y’’ are factors of 
EI

yN Bcr 0, ⋅
which leads to the 

values being ( )a
BcrBcr y
EI

yN
y

L
x

EI
yN

EI
M

y −⋅
⋅

=⇒

















−

⋅
=

−
= 1''1'' 0,

2
0,  

ayy −=⇒ 1'' ;  for the iteration table. 

Table 3.3: Third step 

L
x  ay  ''y  'y  by  

b

a

y
y  

1 1 0 6.65     

0.9 0.81 0.19 6.46     

0.8 0.64 0.36 6.10     

0.7 0.49 0.51 5.59     

0.6 0.36 0.64 4.95     

0.5 0.25 0.75 4.20     

0.4 0.16 0.84 3.36     

0.3 0.09 0.91 2.45     

0.2 0.04 0.96 1.49     

0.1 0.01 0.99 0.50     

 0 1 0     

 0y  
EI

yN Bcr 0, ⋅
x

EI
yN Bcr ∆⋅
⋅ 0,  20, x

EI
yN Bcr ∆⋅
⋅

  

 

 

The third stage involves the calculation of the angle y’. The calculation starts here at 
the bottom of the column where the angle is zero. This represents the assumption that 
the column is fully fixed to the ground. At the next levels the value for y’ is derived 
through xyyy nnn ∆⋅+= −− 11 '''' . At the first level near the base, the curvature is referring 
to half the length of ∆x. See Figure 3.12.  

Example: for x/L=0.1 is obtained xxy lx ∆⋅=
∆
⋅+== 5.0

2
10' 1.0/  
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Figure 3.12: Curvatures relating to ∆x. 

Table 3.4: Forth step 

L
x  ay  ''y  'y  by  

b

a

y
y  

1 1 0 6.65 41.75  

0.9 0.81 0.19 6.46 35.10  

0.8 0.64 0.36 6.10 28.64  

0.7 0.49 0.51 5.59 22.54  

0.6 0.36 0.64 4.95 16.95  

0.5 0.25 0.75 4.20 12.00  

0.4 0.16 0.84 3.36 7.80  

0.3 0.09 0.91 2.45 4.44  

0.2 0.04 0.96 1.49 1.99  

0.1 0.01 0.99 0.50 0.50  

0 0 1 0 0  

 0y  
EI

yN Bcr 0, ⋅
x

EI
yN Bcr ∆⋅
⋅ 0, 20, x

EI
yN Bcr ∆⋅
⋅

  

 

The value yb, the first calculation of a new updated deflection, is derived in the forth 
stage, Table 3.4. Again the deflection on ground level is zero, due to the element 
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being fully fixed. The following values are derived from the 
equation xyyy nnbnb ∆⋅+= − '1,, .  

For example: where 5.0=
L
x  the deflection 122.48.7 =+=by  is obtained. 

This shows how each successive change in angle is added to the previous deflection in 
order to obtain the subsequent deflection.  

Table 3.5: Fifth step 

L
x  ay  ''y  'y  by  

b

a

y
y  

1 1 0 6.65 41.75 0.024 

0.9 0.81 0.19 6.46 35.10 0.023 

0.8 0.64 0.36 6.10 28.64 0.022 

0.7 0.49 0.51 5.59 22.54 0.022 

0.6 0.36 0.64 4.95 16.95 0.021 

0.5 0.25 0.75 4.20 12.00 0.021 

0.4 0.16 0.84 3.36 7.80 0.021 

0.3 0.09 0.91 2.45 4.44 0.020 

0.2 0.04 0.96 1.49 1.99 0.020 

0.1 0.01 0.99 0.50 0.50 0.020 

0 0 1 0 0 0.000 

 0y  
EI

yN Bcr 0, ⋅
x

EI
yN Bcr ∆⋅
⋅ 0, 20, x

EI
yN Bcr ∆⋅
⋅

  

 

 

The fifth step, Table 3.5, involves the division of ya/yb. This value should converge on 
a common value in order for the results to be correct; that is that the relationship 
between the assumed and the derived values of deflection is constant through the 
structure. If the values do not converge, a new iteration is required. 
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Table 3.6: Sixth step 

L
x  ay  ''y  'y  by  

b

a

y
y  

1 1 0 6.39 40.75 0.025 

0.9 0.84 0.16 6.23 34.36 0.024 

0.8 0.69 0.31 5.91 28.14 0.024 

0.7 0.54 0.46 5.45 22.22 0.024 

0.6 0.41 0.59 4.86 16.77 0.024 

0.5 0.29 0.71 4.15 11.91 0.024 

0.4 0.19 0.81 3.33 7.76 0.024 

0.3 0.11 0.89 2.44 4.43 0.024 

0.2 0.05 0.95 1.49 1.99 0.024 

0.1 0.01 0.99 0.50 0.50 0.024 

0 0 1 0 0 0.000 

 0y  
EI

yN Bcr 0, ⋅
x

EI
yN Bcr ∆⋅
⋅ 0, 20, x

EI
yN Bcr ∆⋅
⋅

  

 

 

The sixth step, Table 3.6, involves an iteration of the previous calculations. Now it is 
the estimated ya which is altered through the use of the derived yb.  

For example: to obtain the new ya value where x/L = 0.5, the relationship between the 
derived total deflection, 41.75 in this case, and for the deflection derived at the 
position x/L = 0.5, which is 12. (Note that these values are taken from Table 3.5; the 
fifth step) 

29.0
75.41

12
=  

which becomes the new value for ya used in Table 3.6. 

This procedure is repeated for all levels and it is observed that the relationship 
between ya and yb becomes nearly constant through the structure. One more iteration 
can be carried out to improve the results.    
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Table 3.7: Seventh step 

L
x  ay  ''y  'y  by  

b

a

y
y  

1 1 0 6.36 40.63 0.025 

0.9 0.84 0.16 6.20 34.27 0.025 

0.8 0.69 0.31 5.89 28.07 0.025 

0.7 0.55 0.45 5.44 22.18 0.025 

0.6 0.41 0.59 4.85 16.74 0.025 

0.5 0.29 0.71 4.14 11.90 0.025 

0.4 0.19 0.81 3.33 7.76 0.025 

0.3 0.11 0.89 2.44 4.43 0.025 

0.2 0.05 0.95 1.49 1.99 0.025 

0.1 0.01 0.99 0.50 0.50 0.025 

0 0 1 0 0 0.000 

 0y  
EI

yN Bcr 0, ⋅
x

EI
yN Bcr ∆⋅
⋅ 0, 20, x

EI
yN Bcr ∆⋅
⋅

  

      

Total 4.14   168.46  

      

x∆  0.1     

      

BcrN ,  2.46 
(k) 2L

EI     
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Now the value for ya/yb has converged. It is now possible to establish the critical load 
Ncr,B. The value Ncr,B is derived from: 

22, )( L
EIk

Lx
EI

y
y

N V
b

a
Bcr ⋅=








⋅∆

⋅







Σ
Σ

=     (3.38) 

and can also be compared with the value derived from using Euler buckling: 

2

2

, )( Lk
EIN

E
Bcr ⋅

⋅
=

π            (3.5) 

The final value of 246.2
L
EI
⋅  is very close to 2

2

2
π ; where 2 is the Euler constant kE for 

a cantilever column. Be very aware of the difference between the Vianello kV and the 
Euler buckling kE-value. See case 1 in Section 3.1.2.  

 

0
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Pinned column
Cantilever, shear wall

 

Figure 3.13:  Diagram of kV, depending on boundary conditions, graphed against the 
number of storeys in a building with evenly distributed load and 
constant EI.  

The kV taken from Figure 3.13 can be used for rough estimates if it is assumed that the 
structure is evenly loaded and has a constant EI value. The kV value for such a 
structure is obtained from the figure above, as will be seen later in the thesis, by using 
this kV the calculations will be, to a great extent, on the safe side. Observe that the 
maximum kV, with the above assumptions, will gradually reach but not exceed 7.8. 

Later in the thesis it will be seen how effective a tool the Vianello Method is. It is 
very important to get a more accurate value for kV when dealing with structures with 
different stiffnesses and different loads per floor where an erroneous critical buckling 
load concerning bending will be reached if Table 3.13 is used. 
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3.4 Elastic restraint 

The purpose of this section is to establish the equations which describe the 
relationship between the structure and the soil upon which the structure is situated. A 
final Ncr value shall be obtained and an explanation of how it is further used in 
calculating stability shall be explained.  

Structures that are not founded directly in the bedrock have an interaction between 
their foundations and the ground. The assumption that the foundations are fully fixed 
i.e. that the soil is infinitely firm, can not always be satisfactorily applied. In reality 
the buildings foundations will undergo a certain amount of movement depending on 
the deformations from the soil properties. 

A structure, situated on soil with assumed elastic properties, alters from being a fully 
fixed connection to becoming a pinned joint. This assumption about elasticity can 
only be taken as a liberal approximation because in reality the connection is based on 
a united action between the structure and the ground which is actually seldom 
completely elastic. Even though there is not a linear relationship between the 
connection and the deformation of the building it is assumed that there is because to 
try to follow the exact relationship will lead to nonlinear irregularities. It may not be a 
perfect model of reality but this assumption of elasticity does give a calculation that is 
on the safe side. [Lorentsen et al. (2000)] 

In elastic restraint calculations one has to deal with four buckling load parameters of 
N. 

 (ΣN)cr,tot = Total critical buckling load. 

 (ΣN)cr,elrest = Total critical buckling load regarding elastic restraint. 

 (ΣN)cr,B = Total critical buckling load regarding bending. 

 (ΣN)cr,S = Total critical buckling load regarding shear. 

 

The angle γer describes the elastic restraint. The angle is reached as the restrained 
cross section is acted upon by a moment that equals one, or the moment which is 
needed is influenced by an angle γer which equals one. [Lorentsen et al. (2000)] 

The previously described Vianello method for calculating the buckling load while 
considering bending can be implemented. The one alteration is that the previous 
boundary condition of 0'=y  is now, because of elastic restraint, taken as erMy γ=' . 
Through the iteration is acquired the critical load Ncr,B. Figure 3.14 below describes 
the model used for an elastically restrained Vianello iteration with a three storey 
building with three loads applied. 
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Figure 3.14: Model used for an elastically restrained Vianello iteration. 

 

 

Figure 3.15: An elastic connection between the structure and the ground. 

For calculating Ncr,elrest, the model in Figure 3.15 is used. Here it is assumed that the 
structure has infinite bending stiffness and hence the shape of the column will remain 
a straight line. The column is tilting because of the elastic restraint between the 
structure and the ground. The restraint moment, Mer, is calculated through assuming 
first the deflection, by multiplying the angle at the base by the vertical distance to the 
force, and then multiplying that deflection by the appropriate force. The equation can 
be written in a series form to describe the number of floors and forces applied. 
[Lorentsen (2000)] 
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)...321(sec nNNNNLM er ++++⋅⋅= ϕ  

This equation can be summarized as: 

nnNLM er ⋅
+

⋅⋅⋅=
2

1
secϕ       (3.40) 

When the structure barely reaches buckling it is realized that ΣN = ΣNcr,elrest. For this 
to be true, the angle change ϕ must be equal to the previously described γer, describing 
elastic restraint, times the restraint moment Mer. 

ererM γϕ ⋅=         (3.41) 

Combined with elrestcrNN ,=  is obtained: 

nnNLMM elrestcrererer ⋅
+

⋅⋅⋅⋅=
2

1
,secγ    ⇒    

er
elrestcr Lnn

N
γ⋅⋅+⋅

=
sec

, )1(
2  

It is known that elrestcrelrestcr NnN ,,)( ⋅=Σ . So therefore the summation term for all total 
critical buckling loads, with regards to elastic restraint, can be written as:  

er
elrestcr Ln

N
γ⋅⋅+

=Σ
sec

, )1(
2)(      (3.42) 

To then obtain the (ΣN)cr,tot value, the formula below is used: 

elrestcrBcrtotcr NNN ,,, )(
1

)(
1

)(
1

Σ
+

Σ
=

Σ
     (3.43) 

The value (ΣN)cr,B is here the bending defined for instance through the Vianello 
method; where kV is obtained from Figure 3.13, depending on the number of storeys. 

Using this method it should be observed that the value (ΣN)cr,tot derived through a 
Vianello iteration for an elastically restrained structure is the theoretically correct 
result and the value for (ΣN)cr,tot derived through combining the values for (ΣN)cr,etrest 
and (ΣN)cr,B is a value which lands on the safe side. 

If shear is also taken into consideration then the solution becomes: 

elrestcrScrBcrtotcr NNNN ,,,, )(
1

)(
1

)(
1

)(
1

Σ
+

Σ
+

Σ
=

Σ
   (3.44) 

 [Lorentsen et al. (2000)] 
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4 Calculation methods for stabilising systems 
This chapter considers first the one storey systems where the buildings symmetry 
provides the engineer with the option of only calculating in one plane due to the 
columns of each wall being isolated. Rotation is not relevant to this type of 
calculation. The concept of stiffness is introduced to the calculations and the method 
describes how columns which are stabilising or non-stabilising are integrated into the 
calculations. It is explained how the design forces and moments are acquired and a 
numerical example is presented in order to facilitate understanding. 

Secondly, the phenomenon buckling in space is investigated. Here rotation is included 
in the calculations. A method is described of how one first establishes the critical 
buckling load, due to bending and shear, and thereafter a new stiffness value is 
derived. The calculating of the location of the rotational centre is explained and the 
concept of the polar moment of inertia is introduced. It is then explained how this 
method is used for single storey structures and how the Vianello kV is used in the 
calculations on multi-storey buildings. One numerical example is presented for a 
single storey structure and a second for a multi-storey building. 

 

4.1 Single storey system acting in a plane  

Buildings, which consist of many different stabilising components of different 
stiffness, can be quite complicated to solve through hand calculations. As the 
components have different stiffness values they will also behave differently, and the 
force distributions through an entire building can be hard to establish. Stiffer units 
will attract greater moments and forces than weaker ones. The establishment of the 
force distribution is of vital importance, as without the knowledge of how a building 
reacts from the applied forces, wrong approximations could contribute to a faulty 
design of the structure. In Section 2.4.1, different stabilising components are 
described separately and in this section combined components and how they act 
together will be presented. During calculation, the rigidity is often represented by a 
stiffness number, j. It is important to understand how the stiffness number influences 
the stability of a system and it is therefore introduced by a simple single storey system 
acting in one plane. 

 

4.1.1 Assumptions 

Normally it may be assumed that all columns fixed at the base are fully fixed. These 
suppositions are sufficient in most cases but the behaviour of the foundation or the 
ground, under heavy loading, has to be ensured. Another assumption, concerning the 
load distribution, affects the calculation method. If the columns have the same 
stiffness and the loads are evenly distributed on them, they can be treated as isolated 
columns. Otherwise, the calculation method has to represent a system of columns. 
Assumption regarding deflections is normally based on that no slip or extension 
occurs between stabilizing units, i.e. the columns have the same deflection, see  
Figure 4.1. 
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Figure 4.1: One storey system of columns showing equal deflections. 

 

4.1.2  Stiffness number 

Stiffness number, j, for a cantilever column is defined as the horizontal force applied 
at the top of the column which gives the deflection equal to 1, see Figure 4.2 

 

Figure 4.2: Establishment of stiffness number j. 

The column is assumed to have constant stiffness along its length. y0 is the top 
deflection that occurs from H only, Figure 4.2a. To include the 2nd order effects the 
total deflection is derived by multiplying with the magnification factor mentioned in 
Section 3.15.  

y0 H=j H ytot =1 N

a) b)

y y y 

N N N 

qh 
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cr

tot

N
N

yy
−

⋅=
1

1
0    (β=1)      (4.1) 

EI
LHy

3

3

0 ⋅=         (4.2) 

Ncr,B for a cantilever column with Euler kE=2, is    2

2

, 4L
EIN Bcr

π
= .  (3.5) 

With ytot = 1 the following expression gives the stiffness number j. Observe the 
definition of the stiffness number, H = j , see Figure 4.2b.  

crN
NEI

Lj

−
⋅

⋅
=

1

1
3

1
3

     ⇒    







−=

crN
N

L
EIj 13

3
   (4.3) 

This expression is an approximation and is a very accurate one. The stiffness value, 
agrees very well with the exact values which are presented in Petersson and Sundquist 
(2002).  

 

4.1.3 System of columns acting in one plane 

The critical buckling load for a complete system, Ncr,sys is to be derived. To determine 
the buckling load regarding a system of components, of equal or different stiffness, 
the buckling criterion is set so that the sum of all the components’ stiffness values is 
equal to zero, i.e. 0=Σj  

 

Figure 4.3:  Columns acting in one plane. 

Mcentre

EI 2EI 
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Figure 4.3 illustrates a system of three columns where the left and the centre columns 
are fully fixed at the base, while the right one is pinned. This means that the left and 
the centre columns are the stabilising units of this system and they also have to brace 
the right column. In this example the centre column has twice the stiffness of the left 
one. 











−

⋅
=

leftcr

left
left N

N

L
EIj

,
3

13                  









−

⋅
=

centrecr

centre
centre N

N
L

EIj
,

3 123       (4.3) 

⇒= ???rightj    See Section 4.1.4 

2

2

, 4L
EIN leftcr

π
=                         leftcrcentrecr N

L
EIN ,2

2

, 2
4

2
⋅==

π        (3.5) 

 

4.1.4 Stiffness number for a non-stabilising unit 

A non-stabilising unit can be identified with a pin ended column and will take vertical 
loads only. As a sway occurs in the system a horizontal load develops due to the 
vertical load. 

 

Figure 4.4: Establishing j for a non-stabilising column. 

The result for a non stabilising component is always a negative value and reveals that 
it has to be stabilized by other units. 

The sum of the stiffness numbers of the vertical components in this example are; 

M 

Nright 

H 

L 

y 

Stiffness number for a non stabilising member: 

 0=⋅+⋅= yNLHM     ⇒   
L

yNH ⋅
−=  

y
Hj =       ⇒     

L
yNyj ⋅

−=⋅        ⇒      

 
L
Nj −=               (4.4) 
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The final expression is only referring to the above described example and is not a 
general expression. The example shows that the method can be used for all cases 
whether there are plenty of columns with different stiffness, different loads or with 
different boundaries.  

The expression, 0=Σj , can also be described as a condition for critical buckling 

As mentioned earlier the stiffness number is equal to the horizontal force which gives 
a deflection equal to 1. When the stiffness number is larger than zero i.e. N < Ncr,tot, 
the system is stable.  

 

4.1.5 Horizontal load distribution among columns in a plane 

In a stabilising system which consists of vertical elements of unequal stiffness, the 
horizontal load will not be equally divided among them. The stiffer members will 
attract more load than the weaker. Using the previous example, the centre column 
which has twice the stiffness of the left column, will in this case attract a larger part of 
the total horizontal load.  

The system is now to be subjected with a horizontal force H, see Figure 4.5. 

 

Figure 4.5: One Storey column system with applied force H. 
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The horizontal force which subjects each column can be derived by quotients of the 
total stiffness and the stiffness of the actual column.  

H
j

j
H

j
j

H left

system

left
left Σ

==       (4.5) 

In Section 4.1.7, a numerical example shall be calculated to clarify this method. 

 

4.1.6 Calculation method of moments on a single storey one plane 
system 

In Section 4.1.5 above, horizontal forces on each column have been established from 
the stiffness distribution among the columns. These forces give a contribution to the 
maximum moment on the columns which is obviously highest at the base. The 
horizontal force is often coming from wind load on the façade and from unintended 
inclination. The arrangement of the facade, mentioned in Section 2.2.1, often means 
that the wind load on the facade is transferred to the slabs which further subject the 
columns with a concentrated load. In this example however, the columns are attached 
directly to the façade and are therefore subjected to a distributed load, see Figure 4.6. 
The moment, contributed from the distributed load, is here named local moment as it 
only affects the outer columns attached to the facades. To take into account both 
contributions the calculation method is divided into two parts. The total moment for a 
column is the sum of the moments. 

 

Figure 4.6: One storey column system. 
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Figure 4.7: The two calculation parts. 

 
1. This part concerns the establishment of the local moment.  

To calculate the moment from the applied load the system is first imagined to 
be braced. The braced system will contribute with a horizontal reaction force 
which is a part of all the applied horizontal loads acting on the building. This 
includes the load contribution from unintended initial inclination. All vertical 
loads are here disregarded. 

 

 

Figure 4.8: First part. 

The bracing force, H, is in this case equal to a part of the distributed load and the 
horizontal force occurring from the unintended inclination. 
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mh NLqH α⋅Σ+=
8
3            (4.6) 

αm: a factor regarding initial inclination. [Boverket (2002)] 

Observe that the bracing force does not inflict the moment in this part, part 1. The 
bracing force is taken into account in part 2 but is established here.  

Local moment: 

In this case only the left column is affected by the distributed load. 

Left column:   
8

2

,
LqM hleftlocal =        (at the base)    (4.7) 

Centre column:  Mlocal,centre = 0 

 

2. The second part concerns the moment occurring from the braced horizontal 
force established in part 1. The bracing force is a reaction force, and the 
moment is therefore now calculated with the same force but in the opposite 
direction. 

 

 

Figure 4.9: Second part. 

The moment in this part consists of both the 1st and the 2nd order moments. The 2nd 
order moment is established from the vertical forces and the deflection. Observe that 
the horizontal force occurring from the initial unintended inclination is not a 2nd order 
effect. It is taken into account as a part of the 1st order contribution. 

EI 2EI 

Nleft Ncentre Nright 

Mleft Mcentre

jleft jcentre jright 

H 

L 
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In this case the left and centre columns have unequal stiffness numbers and will not 
have the same contribution for stabilisation. The stiffness numbers are first 
established and are then used to calculate the total deflection of the system.  

L
N

N
N

L
EI

N
N

L
EIj

colcrleftcr

−









−

⋅
+










−=Σ

,
3

,
3 12313        ⇒    

j
Hy
Σ

=         (4.8) 

The deflection, y, is used to establish the second order moment. 

yNLHMMMM centreleft ⋅+⋅=∆+==
2
1

0   

The total moment is established by summing both the contributions. 

Left column:   Mtot,leftt=Mlocal,left+Mleft  

Centre column:   Mtot,centre=Mlocal,centre+Mcentre  

 

4.1.7 Numerical example - Columns in one plane    

The same example used in Section 4.1.6 is utilised here. In this example the actual 
force and the moment in the left and centre columns are to be established. Thereafter 
the critical buckling load for the system shall be calculated. This example is an 
exercise and the parameter values do not represent a real structure. 

 

Figure 4.10: Numerical example. 

EI 2EI 

Nleft = 150 kN Ncentre = 200 kN Nright = 100 kN 

Mleft Mcentre

jleft jcentre jright 

qh L 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 

 
76 

 

Values: qh = 10 kN/m       Nleft, = 150 kN,  

EI = 9 MNm2       Ncentre = 200 kN  

L = 5 m  Nright = 100 kN 

 

Establishment of stiffness numbers: 

From Equation (3.15) the critical buckling load due to bending is derived. 

888
54

109
4 2

62

2

2

, =
⋅
⋅⋅

=
⋅

=
ππ

L
EIN leftcr kN       17762 ,, =⋅= leftcrcentrecr NN  kN 




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
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


−

⋅
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L
EIj
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13   179
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5
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
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 −

⋅⋅
=leftj  kN/m 











−

⋅
=

centrecr

centre
centre N

N
L

EIj
,

3 123   371
1776
2501

5
10923

3

6

=





 −

⋅⋅⋅
=centrej  kN/m 

L
N

j right
right −=               20

5
10100 3

−=
⋅

−=rightj  kN/m 

53020371179 =−+=Σj  kN/m 

Horizontal force distribution on each column: 

The bracing force, Equation (2.4), is to be established from the distributed load, qh. 

mh NLqH α⋅Σ+=
8
3  

nm
012,0003.0 +=α      n: The number of columns above the floor.  

01.00099.0
3

012.0003.0 ≈=+=mα       

  

Bracing force:         ( ) 75.2301.0100250150510
8
3

=⋅+++⋅=H   kN 

The horizontal force for the left and the centre columns can be directly established by 
quotients. The moments are thereafter established. 
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0.875.23
530
179

=⋅=
Σ

= H
j

j
H left

left  kN    

6.1675.23
530
371

=⋅=
Σ

= H
j

j
H centre

centre  kN   

Observe that only 3/8 of the total horizontal load is applied on the top part. 

Moments: yNLHM centrecentrecentre ⋅+⋅=  

y is the deflection derived from the applied horizontal force and the stiffness number. 

j
Hy
Σ

=        045.0
10530
1075.23

3

3

=
⋅
⋅

=y  m  (deflection at the top of the columns) 

92045.020056.16 =⋅+⋅=centreM  kNm 

The moment affecting the left column has an additional contribution, Mlocal, explained 
in part 1 Section 4.1.6.  

 

  

Figure 4.11: Part 1. 

The establishment of the critical buckling load for the system: 

To determine the buckling load for the whole system the same equations concerning 
the stiffness number are used. Observe in the equation below that N is here 
represented by a relative value obtained by quotients considering the vertical load 
distributions among the columns. 

It is now decided that Ncentre is set to N and the other two columns are quotients based 
upon the vertical load differences between the actual column and the centre column. 

EI 

jleft 

Mlocal,left 

qh 

 

2.31
8
510

8

22

, =
⋅

==
Lq

M h
leftlocal  kNm 

1.782.31045.015050.8, =+⋅+⋅=lefttotM  kNm 

H 
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NNcentre =  
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To establish the critical buckling load for the system a summation of the loads is 
made.  

( ) 77.25.075.0123.15.075.0, =++=++= NNNN syscr  MN 

The critical buckling load is compared with the sum of all vertical loads. 

500100250150 =++=ΣN  kN     ⇒        ∑N < Ncr,sys. 

In this example the method for establishing the moment at the base of the columns is 
to directly use the stiffness numbers. The second order effect is then included in the 
expression for the stabilising columns. In Section 3.1.5 the derivation of the 
magnification factor is shown which is used for more complex systems. This factor is 
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calculated by using the total vertical load in relation to the critical buckling load for 
the whole structure. This approach can also be used in the example above to establish 
the total moment by multiplying the first order moment with the magnification factor. 
The local moment at the left column is then not included. When using the above 
method it is not necessary to calculate Ncr,sys, but it can be done in order to compare 
with the total vertical load. 

 

4.2 Stabilisation systems – Buckling in space 

In Section 4.1.6, the buckling load has been derived for simple structures in one plane 
(buckling in x-direction for example). In this section buckling in space will be 
introduced for both single and multi storey structures. This section involves buckling 
in both x and y, i.e. translation, but also buckling through rotation. The method used 
for single storey structures differs from the one used in multi-storey structures but the 
basic theory is the same. [Lorentsen et al. (2000)] The expressions used for multi 
storey structures are a simplified method based upon the more accurate equations used 
for single storey structures. The theory is first derived and then explained through two 
examples concerning both single and multi-storey structures. Thereafter a summation 
of the equations for a single storey structure, i.e. the more accurate method, is 
presented and is followed by the expressions for a multi-storey structure. Two 
numerical examples will thereafter be presented, one concerning single storey 
structure and one for a multi storey building. 

 

4.2.1 General expression of translation and rotation 

Vianello’s method is first used to establish the kV-value which is used to calculate the 
buckling load, concerning bending, for the structure. The value can also be taken 
directly from Figure 3.13 in Section 3.3 if the storeys have equal stiffness and if the 
loads are evenly distributed through the building. 

2,
h

VBcr L
EIkN ⋅=        (3.38) 

Before the critical buckling load can be calculated the stiffness of the whole structure 
has to be established first. The stiffness is divided into x-, y-translation and rotation. 
The buckling criterion for each direction is: 

Translation: 

0,
1

=Σ xi

n

j  buckling in x-direction          (4.9)        

0,
1

=Σ yi

n

j        buckling in y-direction    (4.10) 

Rotation: 
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( ) 02
,

2
,

1
=+Σ iyiixi

n

xjyj    buckling through rotation.       (4.11) 

The last expression describes the summation of all components, both stabilising and 
non-stabilising. Each stabilising component has a stiffness value which contributes, 
through rotation, to stabilisation. The stiffness of the unit, and its distance to the 
rotation centre of the building, reveals the rotation capacity of the stabilising unit.      
xi and yi

 are the distances from the units rotation centre to the rotation centre of the 
whole structure. Observe that the units stabilising in the x-direction are multiplied 
with the distance in y-direction and vice verse, see the derivation of Equation 4.11 in 
Section 4.2.2. 

A complete structure consists not only of stabilising units but also of non-stabilising 
units. As described in Section 4.1.4, non-stabilising components, which are only 
loaded through vertical forces, have a negative contribution in the summation of the 
stiffness numbers.  

 







−=

cr

x
xi N

N
L
EI

j 1
3

3,      Stabilising components (fixed and cantilever)        (4.3) 

L
Nj −=       Non-stabilising component, eg. a hinged column.    (4.4) 

 

4.2.2 Derivation of critical buckling load through rotation 

In this section the critical buckling load through rotation will be derived for stabilising 
units. Non stabilising units, such as pin ended columns, are described in Section 
4.2.3.4 using the polar moment of inertia as a simplified expression. This example is 
using stabilising columns, i.e. fixed at the base but hinged at the top. The column is 
stabilising in both main directions and therefore derives an expression regarding both 
x- and y-directions. It is then easy to understand how the expression is used for shear 
walls which are assumed to stabilise in one direction only. 

Figure 4.12 below describes a stabilising column at a certain distance from the 
rotation centre, RC. 
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Figure 4.12: Stabilising column with a certain distance from a rotation centre. 

A twisting moment is applied on the structure causing a rotation around the rotation 
centre. The stabilising components in a complete building are subjected to forces 
which are depending on the stiffness and the distance of the components from the RC. 
The stiffness number, j, earlier described in Section 4.1.2, is the force subjected to a 
unit which gives a deflection (at the top) equal to one. The rotation occurring from the 
moment applied gives a deflection of the column in tangential direction. The 
deflection is divided into x- and y-direction and the force subjected at the column 
follows analogous, see Figure 4.12. The force in x direction which gives a deflection 
equal to 1, is the stiffness number in x direction, jx. The same follows for the              
y-direction. ψ  is the rotation angle. 

ixixi yjH ⋅= ψ,,        (4.12) 

iyiyi xjH ⋅= ψ,,        (4.13) 

The sum of moments from all stabilising units is equal to the twisting moment 
applied. 

( )∑ ⋅+⋅=++++=
n

iyiixinynnxnyxtwist xjyjxHyHxHyHM
1

2
,

2
,,,1,11,1 ....... ψψ  

As the stabilising components are subjected to an increasing vertical load, the 
deflection increases until the load has reached the critical buckling load of rotation. In 
this stage the complete building has a rotation which gives rise to a deflection of all 
units without an external moment having been applied. The expression above is then 
equal to zero as the applied moment is zero. 

0=twistM  ⇒     ( ) 0
1

2
,

2
, =⋅+⋅∑

n

iyiixi xjyj ψψ    (4.14) 

RC x 

ψ 

H Hy=j1y⋅(ψ⋅x1) 

r1 

Hx=j1x⋅(ψ⋅y1) 

ψ⋅r1 
1’ 

y 
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The angle, ψ, is then reduced and the final expression for the critical buckling load 
through rotation takes the form; 

( ) 0
1

2
,

2
, =+∑

n

iyiixi xjyj
      (4.11) 

  
 

The expression is now general for all stabilising units that stabilise in both x- and      
y-directions. When, for example, shear walls are used the walls are assumed to 
stabilise in one direction only and one part is then equal to zero. 

 

4.2.3 Calculation methods for establishing critical buckling load 

This example derives the expressions for stabilising through translation and rotation. 
The complete structure consists of stabilising walls and vertical columns. The 
columns are assumed to take all vertical loads and do not contribute to the 
stabilisation, i.e. they are assumed to be hinged at both ends. The stabilising walls are 
subjected to horizontal loads only. The walls are fully fixed at the base and are 
assumed to be hinged at the top end. The columns are evenly distributed and are 
applied with equal vertical loads. See Figure 4.13. These assumptions are made to 
simplify the calculation for establishing a method applicable for common structures.  

 

Figure 4.13: Floor plan; 3 shear wall. 

 

4.2.3.1 Stiffness due to influence from shear 

In most structures both bending and shear have to be taken into account. The stiffness 
is changed to Bx and By, for x- and y-directions respectively. The stiffness B is based 
on interaction from both bending and shear.  

CGslab 

y 

By 

Bx 

By a 

b 
x 
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Ncr,tot from bending and shear:       

ScrBcr

totcr

NN

N

,,

, 11
1

+
=     (3.19) 

Establishment of the new stiffness value:   EI
N
N

B
Bcr

totcr ⋅=
,

,               (4.15) 

The same derivation is used for y-direction. Observe that the stiffness B has to be 
established first before the location of the rotation centre is calculated. 

 

4.2.3.2 Location of the rotation centre 

If the building is supported by units placed with symmetrical distances from the centre 
of gravity of the slab, CGslab, and with equal stiffness, the RC is then located at the 
CGslab. This can be expressed as the stiffness times the distance; (By⋅xRC) is equal to 
(By⋅xRC) on the other side of CGslab. The capacity of taking forces is the same on both 
sides of the CGslab. If the building is supported by several stabilising units, it is not 
always obvious where the RC occurs. It is therefore necessary to establish the RC by 
calculation. 

The location of the rotation centre is determined in x- and y-directions respectively. 

( )
∑

∑ ⋅
=

y

unitRTy
RT B

xB
x   

( )
∑

∑ ⋅
=

x

unitRTx
RT B

yB
y               (4.16) 

Notice that the index on the stiffness B is related to the direction the unit stabilises. 
This index is not to be confused with the index on moment of inertia Ix,y which is, in 
some literature, related to the rotating axis concerned. For this thesis the index on EIx 
is therefore concerning the direction. 

 

4.2.3.3 Simplification of stiffness numbers 

In the simplified method, used for multi storey structures, no vertical loads are 
assumed to act on the stabilising walls and the expression concerning the stabilising 
components is therefore simplified. The expression for the stabilising components will 
then take the following form: 

   







−=∑

cr

x
x N

N
L
EI

j 1
3

3          (4.3) 

  ⇒     
3

3
L
EI

j x
x ≈∑      xx EIB ≡     ⇒  

3

3
L
B

j x
x =∑      (4.17) 

The same derivation is applied for stiffness in y-direction, two walls. 
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







−⋅=∑

cr

y
y N

N
L
EI

j 1
3

2 3          ⇒       
3

3
2

L

B
j y

y ⋅=∑  

Observe that it is assumed that the walls only stabilise in one direction. The thickness 
of the walls is minimal and the low contribution of stability in transverse direction is 
disregarded.  

 

4.2.3.4 Non stabilising units 

Translation: 

The derivation for non-stabilising units is shown in Section 4.1.4. 

L
Aq

L
N

jj ivcol
colycolx

∆⋅
−=−== ,,          (Translation)  (4.4) 

Rotation: 

The columns are evenly distributed within the floor slabs and are acting together. The 
calculation is therefore referring to a whole system of columns and not a single one. 
The derivation below introduces the concept of the polar moment of inertia, Ip, which 
is related to the size of the slab supported by the distributed columns. The polar 
moment of inertia is an expression used in the simplified method used for multi storey 
structures and concerns the non stabilising components only. To use the polar moment 
of inertia it is assumed that the structure has an endless amount of columns placed 
with minimal spacing. 

( ) ( ) ( )∫Σ −=+−=∆+−=+
A

p
vv

ii
v

iyiixi

n

I
L
q

dAxy
L
q

Axy
L
q

xjyj 22222
,

2
,

1
 (4.18) 

ypxpp III ,, +=         (4.19) 

(For rectangular sections, like slabs.)  

( )
121212

2233 baababbaI p
+

=+=          (4.20) 

The Equation 4.20 is simplified from the general calculation of moment of inertia. 
When the rotation centre is not located at the centre of gravity of the slab, the general 
expression has to be used.  

For y-direction, when RC is dislocated in y-direction from CGslab. 

2
3

, 12 Tslabyp yA
ab

I ⋅+
⋅

=           (4.21) 

For x-direction, when RC is dislocated in x-direction from CGslab. 
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2
3

, 12 Tslabxp xA
ba

I ⋅+
⋅

=            (4.22) 

 

4.2.3.5 Buckling load for single storey building – summation 

Translation in x-direction: 0,
1

=Σ xi

n

j      ⇒     0
3

3 =−
L
Aq

L
B vx  

Translation in y-direction:     0,
1

=Σ yi

n

j      ⇒     0
3

2 3 =−⋅
L
Aq

L
B vy  

Rotation: 

( ) 02
,

2
,

1
=+Σ iyiixi

n

xjyj        ⇒    0
12

)(3
2

3 22
2

3
2

3 =
+

⋅−⋅⋅+⋅
baab

L
qx

L
B

y
L
B yx  

Observe that the equations above are referring to the more accurate method used in 
single storey structures. The multiplication factor, 3, is derived from the equation of 
linear elasticity and refers to a single column subjected to a single point load at the top 
of the member, see Figure 3.13. This factor is the same as the value kV established 
from Vianello’s method which can be used for multi storey structures. The expression 
below shows the relationship concerning one stabilising column. 

Vianello formulation:  2,
h

VBcr L
EIkN ⋅=      (3.38)        

For one storey the kV is valued to 2.5, see Figure 3.13. 

Euler formulation: 22

2

, 4 L
EIk

L
EIN VBcr ⋅=⋅=

π      kV  is here valued to ≈ 2.5 

The expression below shows the relation concerning one stabilising member 
combined with a pin ended column. This model is frequently used as it resembles a 
real structure, which uses columns supporting vertical load and bracing walls for the 
stabilisation. 

Single storey expression:    0
3

3 =−
L
Aq

L
B vx    ⇒    0

3
3 =−

L
N

L
B crx   ⇒   

2, 3
L
EIN Bcr ⋅=  

kV is here valued to 3 and can be compared with value from Figure 3.13 referring to a 
pin ended column.  

Notice that the expressions for the stabilising units are assumed not to be subjected to 
vertical loads, only the columns. This assumption is probably close to the real case but 
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not fully because the walls may be subjected to some vertical load as they may be 
connected to the slabs, depending on the floor system. The assumption simplifies the 
calculation and is utilised, as it is shown, in both single and multi storey calculations.  

 

4.2.3.6 Buckling load - Multi-storey expressions 

Equations used to calculate stability on multi-storey structures are based on the same 
expression as for single-storey structures, i.e the more accurate method. To use the 
accurate method it is assumed that the rotations centre is positioned at the centre of 
gravity of the structure. In the expressions used for multi storey structures the 
dislocation of the rotation centre from the centre of gravity is taken into account. The 
same expression is used to calculate the final buckling load. 

2,
h

VBcr L
CkN ⋅=    (4.23) 

The overall stiffness, C, has to first be established for each direction. The stiffness, for 
example Bx in x-direction, is not always the governing one because it is not only 
translation that occurs. When the rotations centre is not located at the centre of gravity 
the overall stiffness, C, in each direction is influenced. In these cases the overall 
stiffness, C, is also influenced by the polar moment of inertia, see Equations (4.24), 
(4.29) and (4.30). The complete expression for establishing the overall stiffness is a 
third degree equation. [Lorentsen et al. (2000)] 

( )[ ] ( )[ ] ( ) ( )[ ] ( )[ ]CByCCBxC
A
I

CxByBCBCB yTxT
p

yxyx −Σ⋅+−Σ⋅=







−+Σ⋅−Σ⋅−Σ 222222

                 (4.24) 

 

 

Figure 4.14: Illustration of x, y, xT and yT. 

Notice that there are two symbols for distances in x and y direction.  
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xT 
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The symbol x and y are the distances from the RC of the actual unit to the RC of the 
whole structure. 

The symbols xT and yT are the distances describing the dislocation of the RC to the 
CG.  

The left side of Equation (4.24) is a multiplication of the expressions for translation in 
x and y-direction and buckling in space. The approach here is to calculate the value of 
C, which is the same as the overall stiffness which will be used in the final expression 
for the buckling load.   

The right side of Equation (4.24) is a contribution from asymmetrical structures, i.e. 
when the rotation centre is dislocated from the centre of gravity. With the special 
case, when both xT and yT are zero, the right side becomes equal to zero and the 
expression is simplified to  

( )[ ] ( )[ ] ( ) 022 =







−+Σ⋅−Σ⋅−Σ

A
I

CxByBCBCB p
yxyx       (4.25) 

To establish the overall stiffness C the three parts are set to zero separately and are 
compared. 

( )[ ] 0=−Σ CBx  Translation x-direction       (4.26) 

( )[ ] 0=−Σ CBy  Translation y-direction       (4.27) 

( ) 022 =







−+Σ

A
I

CxByB p
yx         Rotation        (4.28) 

 

Asymmetrical structures: 

The general expression will be different depending on if only xT = 0 and yT ≠ 0 or vice 
verse. 

When xT  = 0 and yT  ≠  0, the Equation (4.25) can be written as  

( )[ ] ( )[ ] ( ) ( )[ ]CByC
A
I

CxByBCBCB yT
p

yxyx −Σ⋅=







−+Σ⋅−Σ⋅−Σ 2222     ⇒ 

( )[ ] ( )[ ] ( ) 02222 =









−








−+Σ⋅−Σ⋅−Σ T

p
yxxy yC

A
I

CxByBCBCB
               (4.29) 

When xT  ≠  0 and yT = 0,  
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( )[ ] ( )[ ] ( ) ( )[ ]CBxC
A
I

CxByBCBCB xT
p

yxyx −Σ⋅=







−+Σ⋅−Σ⋅−Σ 2222     ⇒ 

( )[ ] ( )[ ] ( ) 02222 =









−








−+Σ⋅−Σ⋅−Σ T

p
yxyx xC

A
I

CxByBCBCB
     (4.30) 

If both xT ≠ 0 and yT ≠ 0 the approach described above is not workable. Instead the 
general third degree Equation (4.24) is solved by a computer program. This general 
equation can off course be utilised for all cases. The equation provides three roots of 
which two roots refer to translation and one to rotation.  

 

4.2.4 Numerical example - Single storey structure 

 

Figure 4.15:  Plan of structure for calculation of buckling load for a one storey 
building. 

Local buckling is assumed not to occur, i.e. buckling concerning Euler 2 cases. 

Lh = 5 m  qv = 5 kPa E = 30 GPa 
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4.2.4.1 Buckling load through translation 

Stabilising columns: Columns 1,3,7,9 

Stiffness number of each stabilising column:     









−==

colcrh
yx N

N
L
EIjj

,
3 13      (4.3)

 

Dimensions: 0.2 m x 0.2 m 

69
3

1041030
12

2.02.0
⋅=⋅⋅

⋅
== yx EIEI  Nm2 

395
54

104
4 2

62

2

2

,,,, =
⋅
⋅⋅

===
ππ

h
ycolcrxcolcr L

EINN  kN 

Non stabilising columns: Columns 2,4,5,6,8 

h
yx L

Njj −==               (4.4) 

 

Figure 4.16: Load distribution 

Load distribution: 

Observe that the chosen load distribution is a rough estimate. 

Total vertical load:  

3006105 =⋅⋅=totN  kN 
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Stabilising columns in the corners: 

Applied load  75.1855.15.29,7,3,1 =⋅⋅=⋅= vqAN  kN 

For A is the area of load affecting that particular column. 

Non stabilising columns: 

Applied load 5.3755.158,2 =⋅⋅=⋅= vqAN  kN 

5.37535.26,4 =⋅⋅=⋅= vqAN  kN 

755355 =⋅⋅=⋅= vqAN  kN 

To establish the buckling load for the whole system the loads are normalised and are 
interpreted as loads with the amount of load related to each, depending on how much 
the actual column is taking.  

The amount of the load which is applied on the stabilising columns is set to be equal 
to N. In this case all four corner columns are subjected to the same amount of the load. 
All other columns are then related to the load applied on the stabilising columns. In 
this case the structure is assumed to be subjected to an evenly distributed load, qv, and 
quotations of the load areas between the different parts of the slab can therefore be 
used as well. For simple structures the load quotients can be made straight forward 
and the load areas, or the load part, for each column must not necessarily be establish 
first. This calculation example is referring to an easy structure and the load quotations 
are performed just to clarify the method for general cases. 

Quotations from the load distribution: 

NNN 2
75.18
5.37

8,2 =⋅=  

NNN 2
75.18
5.37

6,4 =⋅=  

NNN 4
75.18

75
5 =⋅=  

The stiffness numbers for all units are then summarised in the expressions for 
establishing buckling load through translation and rotation. 

( ) 0
1

, =∑
n

xij          ( ) 0
1

, =∑
n

yij          ( ) 0
1

2
,

2
, =+∑

n

iyiixi xjyj  

In this case the stabilising columns have the same stiffness in both x- and y-direction. 
The buckling load is therefore the same in both directions. 
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Buckling load through translation: 

( ) ( ) 0
1

,
1

, ∑∑ ==
n

yi
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The loads from all units are then summarised and multiplied with the calculated load 
value. 

182411416164122224,, =⋅==⋅+⋅+⋅+⋅== NNNNNNN ycrxcr  kN 

 

4.2.4.2 Buckling load through rotation 

( ) 0
1

2
,

2
, =+∑

n

iyiixi xjyj  

The four stabilising columns at the corners of the building have the same contribution 
due to symmetry. 

( ) ( ) 









−=+






















−=+






















−⋅

colcrhcolcrhcolcrh N
N

L
EI

N
N

L
EIxy

N
N

L
EI

,
3

22

,
3

22

,
3 140853112134  

Non stabilising columns: 

Columns 2 and 8:      ( ) ( )
hhh L
N

L
Nxy

L
N 36032222 2222 −=








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
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Columns 4 and 6:      ( ) ( )
hhh L
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L
Nxy

L
N 100502222 222 −=
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
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
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Column 5 (at the RC) ( ) ( ) 0004141 22 =







+⋅−⋅=




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+⋅−⋅

hh L
Nxy

L
N  

 

The contributions above are summarised and the buckling load is calculated. 
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346721716164122224, =⋅=⋅=⋅+⋅+⋅+⋅= NNNNNN rotcr  kN 

The structure is stable through rotation compared with translation.  

Ncr,x = Ncr,y =  1824 kN 

Ncr,rot = 3467 kN 

The stabilising columns are placed far from the rotation centre and present an example 
of how the columns should be placed for obtaining a stable building. It should also be 
noticed that non stabilising columns, positioned far from the rotation centre, give a 
large negative contribution concerning stability through rotation of the structure, 
especially if they are subjected to high loads. 

Comparison between the critical buckling loads and the total load applied on the 
structure:  

Total vertical load :  Ntot = 300 kN 

Compared to buckling load through translation: 16.0
1824
300

=   (x- and y-direction) 

Compared to buckling load through rotation: 09.0
3467
300

=   
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The comparisons between the total vertical load and the critical buckling loads for the 
structure give an indication of how stabile the structure is. The factors calculated 
above are different depending on which buckling load the total load a compared with. 
These quotients are also included in the expressions for the magnification factor, 
Equation (3.23), to calculate the contribution from the 2nd order effects. 

  

 

4.2.5 Numerical example - Multi storey structure 

This numerical example is based on the same assumption mentioned in the previous 
section i.e. no local buckling and the load is evenly distributed.  

The case examined shows a building braced by one stabilising wall in x-direction, two 
stabilising walls in y-direction. The vertical loads are assumed to be borne down by 
evenly distributed columns and the stabilising walls are assumed to be subjected to 
horizontal loads only.  

 

Figure 4.17: Plan of multi storey building. 

Values:      a = 30 m b = 60 m Ewall = 25 GPa  wallwall EG ⋅= 4.0  

Storeys: 10  Lh = 30 m    (total height of the building) 

Wall dimensions:  t = 0.3 m   bwall = 10 m        

All three walls have the same dimensions and materiel properties.  

Lsec = 3 m    (height of one storey) 

Calculations: 

Concerning stiffness for the walls:     625
12

103.01025
3

9 =
⋅

⋅⋅=xEI  GNm2 
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Wall 1:      

72.4
30

106258.6 2

9

2, =
⋅

⋅=⋅=
h

x
VBcr L

EI
kN  GN 

Where kV  = 6.8 is taken from the Vianello method, see Figure 3.13. 

30103.010254.0 9
, =⋅⋅⋅⋅== GAN Scr  GN 

08.4

30
1

72.4
1

1
11

1

,,

, =
+

=
+

=

ScrBcr

totcr

NN

N  GN 

Stiffness with regard to shear and bending: 

54010625
72.4
08.4 9

,

, =⋅⋅=⋅= x
Bcr

totcr
x EI

N
N

B  GNm2        Bx,1 = By,2 = By,3 

As the walls have the same dimensions and material properties, the value of Bx is 
equal to By. In this case the bending is dominant as the shear buckling load is much 
greater than the bending buckling load. Still the stiffness of the wall is lowered with 
85 GNm2.  

Position of the rotation centre RC is calculated with Equation (4.16):     

( )
30

540540
4054020540

=
+

⋅+⋅
=

⋅
=

∑
∑

y

unitRTy
RT B

xB
x  m 

( )
30

540
30540

=
⋅

=
⋅

=
∑

∑
x

unitRTx
RT B

yB
y  m 

Observe that the origin of the coordinate system can be placed wherever one wishes 
during the calculation of the rotation centre. When the distances xT and yT are set, the 
origin of the coordinate system should be placed in the rotation centre and the 
distances describe the distances from RC to CGslab. 

The new origin is seen in Figure 4.18. 
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Figure 4.18: Situation of the new origin. 

Polar moment of inertia: 

080.1156030
12

3060
12

6030 2
33

,, =⋅⋅+
⋅

+
⋅

=+= ypxpp III  Mm4; see Section 4.2.3.4. 

Establishment of the overall stiffness C 

From the general equation, Equation (4.24), the expression is rewritten due to the 
asymmetry in y-direction, see Section 4.2.3.6. 
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The values are interpreted into the equation and the roots are solved by a calculator or 
a computer program. 

The following roots were calculated: 

C1 = 275 GNm2 

C2 = 1080 GNm2 

C3 = 1200 GNm2 

The critical buckling load is then calculated for each direction. As the second order 
contribution is derived through quotients between the critical buckling load and the 
applied vertical load the appropriate buckling load has to be used for each direction. 
Depending on how the walls are positioned in the building, whether they contribute to 

CGslab 
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y 

By 
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RC 

yT  = 15 m 
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stabilisation both in the translation and in the rotation or only translation, the choice of 
which critical buckling load that will be used is different. 

It is recommended to first calculate all three buckling loads and thereafter apply the 
values for second order contribution. The reason is to reveal how the different values 
in each direction differ from each other and it is then clearer how the building is 
reacting.  

08.2
30

102758.6 2

9

2, =
⋅

⋅=⋅=
h

Vbuildingcr L
CkN  GN   (3.38) 

In this example, only one wall is stabilising in the x-direction. The rotation centre will 
therefore only depend on this single wall whose RC is positioned in its centre. This 
single wall only contributes to stabilising the building through translation, not 
rotation. Therefore, the second order effects, added to horizontal loads applied in the 
x-direction, will only be based upon the critical buckling load in x-direction and the 
rotation capacity is not considered. 

0)( =⋅Σ yBx      ⇒   Ncr,x 

In y-direction, two walls are contributing to stabilise the building in the same 
direction. These walls are also stabilising through rotation. Therefore, the critical 
buckling load from both y-direction and rotation has to be considered and the lowest 
value is to be chosen. 

0)( ≠⋅Σ yBx      ⇒     Ncr,y or Ncr,rot  

 

4.3 Dimensioning forces and moments 

When designing the stabilising components of a structure it is of vital importance to 
consider the force distribution through the building. The critical buckling load is first 
established in both horizontal directions, x and y, and also for rotation. These three 
values will be utilised in each mode to calculate the magnification factors which are 
later interpreted to establish the design moments for the stabilising units, i.e. adding 
the 2nd order affect to the first moment calculated. This approach is used for 
calculating on each component in each direction. 

It is the force distribution through a structure which determines how the stabilising 
units are affected. The units are often spread out in a building and do not always have 
the same dimensions, which leads to varying stiffness throughout the building. In 
Section 4.1 it is explained, concerning the units in the same plane, how the force is 
applied on each component. In a real structure there is varying stiffness in both 
directions combined with horizontal forces in each direction. See Figure 4.19. 
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Figure 4.19: Building plan. 

Figure 4.19 describes a system where the RC is dislocated in both x and y direction. 
The two force resultants, occurring from wind loads on each façade for example, pass 
to the side of the rotation centre. This leads to an eccentricity which, in this case, leads 
to a twisting moment of the structure caused by the resulting forces in each direction. 
The index, i, stands for the actual level (storey) calculated on, in the building.   

Force contribution – Translation: 

If the force resultants were passing through the RC only translation would occur.  

)( ,,
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xiunit

xiunit
xixitrunit B

B
HH

Σ
⋅= ; 

)( ,,

,,
,,,,

yiunit

yiunit
yiyitrunit B

B
HH

Σ
⋅=     (4.31) 

Force distribution – Twisting: 

Figure 4.19 describes how the force resultants in each direction are passing the RC 
with an eccentricity e. The twisting moment from each force becomes 

yxixitwist eHM ⋅= ,,,            xyiyitwist eHM ⋅= ,,,    (4.32) 

Total twisting moment:    

xyiyxiitwist eHeHM ⋅+⋅= ,,,       (4.33) 

The force contribution on each stabilising unit is derived by a normalisation of the 
capacity of the actual unit and the rotation capacity of the whole system. In other 
words stiff units with large distances from the rotation centre will absorb greater 
forces than weak units closer to the rotation centre. It is important to observe that 
stabilising units in the transverse direction of the load will also be affected by 
twisting. The force contribution due to twisting becomes: 
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Contribution from horizontal forces in x-direction: 
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⋅Σ+⋅Σ
⋅

=   (4.34)  

The units, stabilising in the direction aligned with the actual force, will be a sum of 
the forces from both translation and twisting.  
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If loads are applied only in one direction with an eccentricity causing the building to 
both translate and twist, the stabilising units in the transverse direction compared to 
the load will contribute to resist the twisting moment. The units in the transversal 
direction will therefore be subjected to forces occurring from the twisting moment 
only. The expression below describes a unit stabilising in y-direction when the load is 
applied in the x-direction only. 

)()(
0 2

,,
2

,,

,,
,,,,

unityiunitunitxiunit

unityiunit
xitwistyiunit xByB

xB
MH

⋅Σ+⋅Σ

⋅
⋅+=         (4.36) 

Usually it is the bending moment at the base of the building that is of interest because 
it is there that the highest moment value is usually attained. If the stiffness is also 
varying through the height of the building, the force distribution has to be calculated 
for each floor. Thereafter the bending moment is established for each unit, for 
example at the base of the building. Observe not to confuse the overall twisting 
moment, Mtwist, with the bending moment in the actual unit.  

In some cases the building has a symmetry which places the RC at the centre of 
gravity. In cases where the CG is located at the same position as the RC, evenly 
distributed loads will have their force resultants passing through the RC. In these 
cases no twisting will occur, only translation acts on the stabilising units. But 
according to design codes, it is not only evenly distributed loads which have to be 
checked.  

In addition to the load cases with uniform wind load on the facades, the case 
concerning uneven load has to be examined too. It is here important to understand 
where on the building the two unevenly distributed loads should be situated to 
develop the worst load case. An extreme load case, which gives a great twisting 
moment, will occur if the unevenly distributed load is positioned at that side of the 
building which places the force resultant at the greatest distance from the RC, see 
Figure 4.20. 
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Figure 4.20: Uneven load case. 

The specific case shown in Figure 4.20 shows a building with eccentricities in both   
x- and y-directions. This factor coupled with the unevenness of the wind load leads to 
an extreme situation which will lead to significant twisting. Figure 4.21 shows a most 
extreme situation where a wind load is assumed from the diagonal direction and its 
resultants unevenly inflict both x- and y-directions. 

 

Figure 4.21: Extreme case where the effect of a diagonal wind load is investigated. 

In Figure 4.21 the diagonal wind load is divided between the facades. Each inflicted 
façade has a further division of the resultant wind load in order to establish an extreme 
case. Observe that the larger components of the resultant wind loads are positioned so 
that the worst scenario occurs with regard to twisting. This is to consider the 
eccentricities that the building possesses in order to obtain the worst case of twisting. 
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The Swedish codes are not specific with how these extreme load cases are to be 
applied and dealt with and it seems to be differently interpreted in different 
engineering companies. It is also difficult to decide which critical loads should be 
used in which direction in order to estimate the 2nd order effects. It seems logical to 
assume the lowest critical load as the walls are affected in both directions due to the 
twisting effect. This approach would lead to each wall being investigated in its 
stabilising direction and that specific critical load being used to determine the          
2nd order effects. The problem here is that using this approach there will be no 
utilisation of the critical twisting load for determining 2nd order effects which was 
what was of interest from the beginning. This is a conundrum which will hopefully be 
taken up by further studies. 

Another problem with 2nd order effects is that the magnification factor gives a value in 
percent for increasing the sectional forces without paying attention to the distance 
from the RC. Observe in Figure 4.21, where twisting occurs, how the 2nd order effect 
should be different for each stabilising component depending on their distance from 
the RC. From Figure 4.21 is seen that more effect is experienced by wall B than by 
wall A. Wall B has more deformation than wall one and should therefore have a 
higher 2nd order effect. Should then the magnification factor be increased or decreased 
according to its effectiveness due to the distance from the RC?  

 

Figure 4.22: 2nd order effects due to distance from RC. 
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5 Investigations 
Here is found the culmination of this project where the hand calculation methods are 
compared with the computer assisted FE-calculations in order to ascertain if the 
results from the hand calculations are relevant. A general description of finite element 
analysis is given and comparisons are given for solid shear wall calculations 
concerning buckling and deflection in order to ascertain the best usable mesh and 
node configurations for obtaining the best FE-analyses.  

The Vianello method, described in Section 3.3, is to be studied for solid walls with 
non uniform stiffness and load application. The Vianello method is to be compared 
with the approximate Vianello method, i.e. kV is taken from Figure 3.13, and the     
FE-method.  

Thereafter follows comparisons between the FE-method and hand calculations on 
pierced shear walls. The hand calculation methods used for calculating critical 
buckling loads, see Section 3.2.1, and deflection, see Section 3.2.2, are to be 
investigated.  

A study of the use of the polar moment of inertia, see Section 4.2.3.4, is undertaken. 
Whether or not its use is recommended will be decided after comparisons are made on 
calculated examples. 

Force distributions in both single and multi storey structures are to be investigated. 
Three load cases, translation, rotation and combined translation and rotation, will be 
examined with or without vertical loads being included. The effectiveness of the 
calculation methods will be ascertained through making comparisons of the results 
with FE-results. 

A study is made of the Equation (4.24), from Lorentsen et al. (2000), concerning the 
overall stiffness C, which refers to the stiffness values in translation and rotation. The 
coupled and uncoupled approaches concerning U-shaped core elements will be 
analysed and conclusions drawn. 

Multi storey structures will be investigated concerning translation and rotation. The 
effect of introducing a core elements torsional resistance into the calculation method 
is examined. Calculation methods are also presented for taking into account warping 
effects. 

 

5.1 FE-analyses of solid shear walls 

The modern approach for solving complex problems, involving stresses, deflections 
and buckling loads, is to us computer programmes such as FE-program. Generally the 
finite element analysis, FE-analysis, produces quite good results and gives a good 
picture of how a real structure will react, depending on the assumptions, when 
subjected to different load cases. The FE-method is especially competent for checking 
complex structures which are extremely difficult or almost impossible to calculate by 
hand. In this thesis several hand calculations have been introduced and applied for 
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calculating buckling loads, design moments and deflection. As these methods are 
based upon different assumptions and approximations, it is not clear whether the 
results are accurate estimations or not. When considering pierced shear walls, these 
methods suppose several assumptions and it is suspected that these methods only 
produce rough estimates. It is also of great importance that the FE-model is properly 
set up and that, before examining complicated models, simple ones are first 
investigated. These preliminary investigations of less complicated models are done to 
evaluate how the program works and how, for example, different mesh intensities 
may affect the results. The FE-program used in this project is SOLVIA, SOLVIA 
(1999), and it does not have a graphic interface. Instead the coordinates are interpreted 
into a text file together with information that the program needs such as, element 
types, material data etc. The benefit of using SOLVIA is that the user has a good 
control of all the data that the program uses. 

This chapter involves several models from straight solid shear walls to complete 
systems. The investigation starts with simple models to evaluate how SOLVIA works. 
Different mesh intensities combined with both 4-node and 9-node elements are 
interpreted to determine proper use of them for later use in the more advanced models.  

  

5.1.1 Check of FE-model 

This thesis contains evaluations of models of buildings and stabilising units. A fully 
fixed cantilever column or wall is frequently used for bracing and it is therefore 
important to start with models such as a straight solid wall with only one simple load 
case. Hand calculations of deflections and buckling loads for these structures are easy 
to solve and they use the same approximations used in the FE-model. The results from 
the two methods are expected to agree. All models are using a Young’s modulus for 
concrete of 30 GPa and a shear modulus, G, set to 0.4 times the Young’s modulus. In 
SOLVIA the shear modulus is set by using Poisson’s constant, ν =0.25. A factor 

2.1=ξ is applied to decrease the shear stiffness, i.e. increasing the shear angle. 

 

5.1.1.1 Modelling - Deflection of solid shear walls 

This investigation begins with the study of three solid shear walls; a wide and low 
wall, a tall and slender wall followed by a wall lying in between these cases. The 
results will reveal if the SOLVIA deals with deflection caused by shear in a proper 
way. Figure 5.1 and 5.2 below describes the three walls investigated. 
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Figure 5.1: Distributed load case  Figure 5.2: Concentrated load case 

 

Wall 1- Low and wide;  b = 10 m L = 8 m    

Wall 2- High and slender;  b = 4 m L = 20 m 

Wall 3- Medium height and width; b = 5 m L = 10 m 

The walls have a thickness of 0.5 m.  

The first three tests use a concentrated load at the top of the wall. In the FE-model this 
load has to be interpreted as a distributed load along the top edge. The reason for this 
is that in the FE-analyses other effects occur, such as local deformation where the load 
is applied, while in the hand calculation this effect is not taken into account. It has 
also been shown that in low and wide models the capacity of the wall is so high and 
the structure deflects like a sinus shape at the top producing results hard to compare 
with the hand calculation. Therefore the three walls have also been examined 
subjected to an evenly distributed load along the height of the wall. During these 
investigations the effect of mesh intensity combined with 4-node and 9-node elements 
has been examined for the slender wall and the broad wall. Figures 5.3 illustrate two 
different mesh intensities for the two walls subjected to a concentrated horizontal 
load. The results can be seen in Section 5.1.2. 
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Figure 5.3:  Mesh intensities of a slender wall and a wide wall                         
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Hand calculation of deflection: 

To establish the total deflection at the top of the wall the calculation is divided into 
two parts. Both bending and shear contribute to the deflection. 

Equations for bending deformation; 

Concentrated load at the top:     
EI
Lqy vcB 3

3

, ⋅=      (5.1)      

Distributed load along the height:    
EI
Lqy hdB 8

4

, ⋅=      (5.2) 

 

Equations for shear deformation: 

Shear angle:  
GA
ξγ =      ≡      

GA
Vy ξ
⋅='      ( V=q )    

Concentrated load at the top:        hcS Lyy ⋅= ',         (5.3) 

The shear angle is defined for a shear force that is equal to 1, i.e. y’=T⋅γ.  

The distributed load, qh, is set to 1 N/m. As can be seen in Figure 2.14 the shear angle 
alters along the height when a structure is subjected to a distributed load. A formula 
has been established during this thesis. This expression is suited for calculating shear 
deflections of a cantilever column/wall subjected to an evenly distributed horizontal 
load.  

Distributed load along the height:   
GA

Lq
y hh

dS

2

, 5.0 ⋅⋅= ξ          (5.4) 

 

5.1.1.2 Modelling - Buckling of solid shear walls 

The three shear walls in this investigation are subjected to vertical loads. These 
models represent stabilising walls in a 10 storey building. The walls are subjected to 
an evenly distributed vertical load on each floor, i.e. 10 loads applied on ten storeys. 
All three walls have the same height of 30 metres, see Figure 5.4. As the walls only 
stabilise in their stiff direction and are prohibited to move in the weak direction, 
because of the floor slabs in the building, the buckling mode in the weak direction 
must be prevented. In SOLVIA this is done by locking the degree of freedom in the 
weak direction. The first buckling mode will therefore only occur in the stabilising 
direction of the wall, see Figure 5.6. 

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 

 
106 

 

Figure 5.4: Load application for study of critical buckling loads 

Wall 1- Wide wall;  b = 16 m  Lh  = 30 m 

Wall 2- Slender wall;  b = 4 m Lh  = 30 m 

Wall 3- Medium wall;  b = 8 m Lh  = 30 m 

The walls have a thickness of 0.5 m and each storey height is 3 meters.  

The medium wide wall, 8 meters wide, has also been tested with two different mesh 
intensities combined with 4-node and 9-node elements. The sparse mesh uses an 
element size of 1.0 m x 0.75 m (width x height), while the dense mesh uses an 
element size of 0.5 m x 0.375 m. Figure 5.5 below illustrates the load case on the 8 m 
wide wall presented in the sparse mesh. Figure 5.6 presents the first buckling mode 
shown in the dense mesh. 

 

b 

Lh 
Lsec 
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Figure 5.5: FEM - Load case.              Figure 5.6: FEM - First buckling mode. 

Hand calculation of buckling load for solid shear walls: 

The critical buckling load is easy to calculate as the walls have the same load and the 
same stiffness on each floor. Using Figure 3.13 the kV -value is taken as 6.8. The 
following equations are used to establish the buckling loads of the walls; 

Buckling load - bending part   2,
h

VBcr L
EIkN =     (3.38) 

Buckling load - shear part   GAN Scr =,     (3.11) 

Buckling load – combined   

ScrBcr

totcr

NN

N

,,

, 11
1

+
=   (3.19) 
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5.1.2 Results  

 

5.1.2.1 Deflection 

During these investigations the mesh intensities have been altered to achieve a proper 
balance between accurate results and the time it takes for SOLVIA to calculate. It can 
take a very long time to do a complex analysis. It is known that a 9-node element uses 
equations of higher order than a 4-node element which leads to the 9-node element 
giving a more accurate result. It is observed when using 4-node elements that the 
mesh has to be very dense compared to the 9-node elements which gives a good result 
without heavily meshing, see Table 5.1. The tests also reveal that a sparse mesh, 
combined with 4-node elements, produces results on the unsafe side, i.e. lesser values 
of deflection and higher values of buckling load. Table 5.2 presents some results from 
the tests of deflections from FE-analyses. Results of buckling are presented in Section 
5.1.2.2. All values from the hand calculations are marked as HC in the tables. All 
results are nanometres (10-9m). 

Table 5.1:  Mesh study in FE-program SOLVIA  

Wall and load type  4N sparse
[nm] 

9N sparse
[nm] 

4N-dense 
[nm] 

9N-dense 
[nm] 

Wall 1 – Conc. load - - 2.24-2.45 2.25-2.53 

Wall 2 – Conc. load 663.8 684.9 679 685 

 

Table 5.2:  Comparisons of deflections calculated by hand and FE-analyses. 

Wall and load type 

HC 
Deflection 
Bending  

[nm] 

HC 
Deflection 

Shear  
[nm] 

HC 
Deflection 

Total  
[nm] 

FEA 
Deflection 

Total 
[nm] 

Wall 1 – Conc. load 1.09 1.28 2.37 2.25-2.53 

Wall 2 – Conc. load 667 200 687 685 

Wall 3 – Conc. load 21.3 4 2.53 2.5-2.54 

Wall 1 – Distr. load 0.41 0.64 1.05 0.97-1.32 

Wall 2 – Distr. load 250 10 260 258 

Wall 3 – Distr. load 8 2 10 10 
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In Table 5.2 the value from SOLVIA is taken from analyses with a dense mesh of     
9-node elements. Results from walls 1 and 3 are given with an interval, from a low to 
a high value. It is presented this way to reveal that other effects occur in FE analyses 
which the hand calculations are not concerned with. The intervals show different 
deflections along the top edge of the wall i.e. some parts are more compressed than 
others. This effect is very small in slender structures, such as wall 2, but in general the 
hand calculations seem to agree well with the FE-analyses. 

 

5.1.2.2 Buckling 

Table 5.3 reveals that models, using 4-node elements, always produce results on the 
unsafe side. If 4-node elements are used it is important to have a very dense mesh. 
Comparing this with models using 9-node elements, it is evident that the results are 
very close for both a dense and a sparse mesh. Further investigation will therefore use 
9-node elements and a mesh slightly denser than the one presented as the sparse mesh 
in Figure 5.3. If a dense mesh is used, the calculation time in SOLVIA will be much 
longer, especially in the advanced models which are later investigated.  

Table 5.3:  Buckling load study of different node and mesh systems from FEA 
compared with hand calculations. 

Wall  width 
FEA  

4N-sparse 
[MN] 

FEA 
9N-sparse 

[MN] 

FEA 
4N-dense 

[MN] 

FEA  
9N-dense 

[MN] 

HC 
Total  
[MN] 

Wall – 4 m - 587 - - 587 

Wall – 8 m 4357 4332 4338 4331 4314 

Wall – 16 m 26234 26167 - - 26073 

 

Table 5.4:  Buckling loads from FEA and hand calculations, with bending and 
shear contributions given. 

Wall – width 
FEA  

9N-Sparse 
[MN] 

HC 
Bending  

[MN] 

HC 
Shear 
[MN] 

HC 
 Total  
[MN] 

Wall – 4 m 587 604 20000 587 

Wall – 8 m 4332 4835 40000 4314 

Wall – 16 m 26167 38700 80000 26073 
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Table 5.4 presents the buckling load calculated through FE-analysis and the hand 
calculated buckling load divided into its components due to bending and shear. It is 
obvious that the shear contribution in slender structures, barely affects the total 
buckling load, i.e. bending deformation is dominant. As the slenderness of a structure 
decreases, the contribution from shear deformation increases. According to the test the 
results, the hand calculations are always on the safe side. As it has been mentioned 
earlier other effects occur in the FE-analyses. These effects are suspected to relate to 
shear effects as the more slender models agree better with the FE-results than the 
sturdy models. 

 

5.2 Investigation of the Vianello method 

An explanation of how the Vianello method works has now been presented in Section 
3.3 and now the method shall be compared to results from FE-analyses. Four 
examples have been chosen where the walls are representing a stabilising wall in a ten 
storey building. The first is a solid shear wall with uneven stiffness distributions but 
with even load distribution. The second involves a solid shear wall with uneven loads 
and uneven stiffness distribution. The third involves a very slender solid shear wall 
with an unevenly distributed load and an uneven stiffness value. The fourth example 
is a very robust shear wall with an unevenly distributed load and an uneven stiffness 
value.  

The critical buckling load from FE-analyses is calculated through the eigenvalue λ 
obtained through SOLVIA (1999). 

bnNN FEMcr ⋅⋅⋅= λ,        (5.5) 

The result will be compared with the result obtained through using Equation (3.19): 

ScrBcr

totcr

NN

N

,,

, 11
1

+
=       (3.19)  

ScrapproxBcr

approxtotcr

NN

N

,,,

,, 11
1

+
=  

The Ncr,B value is obtained through using the Vianello iterations shown in Appendix 
A. The Ncr,B,approx value is obtained through using the approximate kV-value found in 
Figure 3.13. The Ncr,S value through Equations (3.11) and (3.12): 

AEN Scr ⋅⋅= 4.0,            (3.11) (3.12)  

In those examples where the walls have two different stiffnesses the stiffness, which 
represents the part of the wall where shear failure will occur, is chosen. The section 
where the failure due to shear will occur depends on how the different stiffnesses are 
distributed in combination with the load distribution. In the four cases examined this 
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critical section is assumed to occur where the lowest Young’s modulus is found. The 
influence from the buckling load due to shear is in the following cases very low due to 
a much higher shear buckling load. 

 

5.2.1 Case 1: Even load, uneven stiffness 

 

           Values:     n =10 

                                                                      Lsec = 3 m 

                                                                      t = 0.5 m 

                                                                      b = 4 m 

                                                                      E = 30 GPa for bottom 5 floors 

                                                                      E =15 GPa for top 5 floors 

                                                                      N1-10 = N    (index stands for storeys) 

                                                                       

 

Figure 5.7: Case 1. 

The shear contribution uses the lowest value of Young’s modulus:  

12)45.0(10154.0 9
, =⋅⋅⋅⋅=ScrN  GN 

From the Vianello iteration shown in Appendix A is obtained:  565, =BcrN MN 

Which gives: 540

1012
1

10565
1

1

96

, =

⋅
+

⋅

=totcrN  MN 

Using the general Vianello kV = 6.8, Figure 3.13, for a 10 storey building and lowest E 
value: 

302
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12
45.01015

8.6
)( 2
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⋅
⋅⋅
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⋅

⋅=
Ln
EIkN VapproxBcr  MN 

The shear contribution uses the lowest value of Young’s modulus:  

12)45.0(10154.0 9
, =⋅⋅⋅⋅=ScrN  GN 

b 

n⋅Lsec 
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295

1012
1

10302
1

1

96

,, =

⋅
+

⋅

=approxtotcrN  MN 

 

 

Figure 5.8: FEM first buckling mode case 1; with λ-value presented. 

5454101000628.13, =⋅⋅⋅=FEMcrN  MN 

Results: Ncr,FEM = 545 MN 

  Ncr,tot = 540 MN 

  Ncr,tot,appro  = 295 MN 

λ = 13.628 
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5.2.2 Case 2: Uneven load, uneven stiffness 

 

     Values:     n = 10 

                                                                      Lsec = 3 m 

                                                                      t  = 0.5 m 

                                                                      b = 4 m 

                                                                      E = 30 GPa for bottom 5 floors 

                                                                      E = 15 GPa for top 5 floors 

                                                                      N1-5 = N 

                                                                      N6-10 = 0.5 N 

                                                                       

Figure 5.9: Case 2. 

From the Vianello iteration shown in Appendix A is obtained:  769, =BcrN  MN 

The shear contribution uses the lowest E value: 12)45.0(10154.0 9
, =⋅⋅⋅⋅=ScrN  GN 

Which gives: 723
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, =
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⋅
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Using the general Vianello kV = 6.8, Figure 3.13, for a 10 storey building and lowest E 
value: 
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The shear contribution uses the lowest E value:  
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Figure 5.10: FEM first buckling mode case 2; with λ-value presented. 

7394))5001000(5(624.24, =⋅+⋅⋅=FEMcrN  MN 

Results: Ncr,FEM = 739 MN 

   Ncr,tot = 723 MN 

  Ncr,tot,approx = 295 MN 

  

λ = 24.624 
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5.2.3 Case 3:  Slender wall - Uneven load, uneven stiffness 

 

     Values:     n = 10 

                                                                      Lsec = 3 m 

                                                                      t = 0.5 m 

                                                                      b = 3 m 

                                                                      E = 30 GPa for bottom 5 floors 

                                                                      E = 15 GPa for top 5 floors 

                                                                      N1-5 = N 

                                                                      N6-10 = 0.5 N 

 

                                                                       

Figure 5.11: Case 3. 

From the Vianello iteration shown in Appendix A is obtained:  324, =BcrN  MN 

The shear contribution uses the lowest E value: 

9)35.0(10154.0 9
, =⋅⋅⋅⋅=ScrN  GN 

Which gives: 312

109
1

10324
1

1

96

, =

⋅
+

⋅

=totcrN  GN 

Using the general Vianello kV = 6.8, Figure 3.13, for a 10 storey building and the 
lowest E value: 
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The shear contribution uses the lowest E value:  

9)35.0(10154.0 9
, =⋅⋅⋅⋅=ScrN  GN 

b 

n⋅Lsec 
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126
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Figure 5.12: FEM first buckling mode; with λ-value presented. 

 

3163))5001000(5(062.14, =⋅+⋅⋅=FEMcrN  MN 

Results: Ncr,FEM = 316 MN 

  Ncr,tot = 312 MN 

  Ncr,tot,approx =126 MN 

 

λ = 14.062 
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5.2.4 Case 4: Robust wall - Uneven load, uneven stiffness 

 

     Values:     n = 10 

                                                                      Lsec = 3 m 

                                                                      t = 0.5 m 

                                                                      b = 8 m 

     E = 30 GPa for bottom 5 floors 

                                                                      E = 15 GPa for top 5 floors 

                                                                      N1-5 = N 

                                                                      N6-10 = 0.5 N 

 

                                                                       

Figure 5.13: Case 4. 

From the Vianello iteration shown in Appendix A is obtained:  6150, =BcrN  MN 

The shear contribution uses the lowest E value: 

241024)85.0(10154.0 99
, =⋅=⋅⋅⋅⋅=ScrN  GN 

Which gives: 4895

1024
1
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1

1

96

, =

⋅
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Using the general Vianello kV = 6.8, Figure 3.13, for a 10 storey building and the 
lowest E value: 
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The shear contribution uses the lowest E value:  
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2197
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1

102418
1

1

96
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⋅
+

⋅

=approxtotcrN  MN 

 

 

Figure 5.14: FEM first buckling mode for case 4; with λ-value presented. 

53498))5001000(5(148.89, =⋅+⋅⋅=FEMcrN  MN 

Results: Ncr,FEM = 5349 MN 

  Ncr,tot = 4895 MN 

  Ncr,tot,approx =2197 MN 

 

5.2.5 Results 

The results in Table 5.5 show that using Vianello’s method gives a critical load value 
close to the value obtained through FE-analyses. The value is not only close but also 
lands on the safe side of the FE-result in all the examples examined. The approximate 
Vianello results using kV-values from Figure 3.13, Section 3.3, are not nearly as 
accurate. Appendix A contains the Vianello iterations.  

 

λ = 89.148 
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Table 5.5:  Results of Vianello investigation. 

Cases  Ncr,FEM 
[MN] 

Ncr,tot
[MN] 

Ncr,tot,approx
[MN] 

Ncr,tot / 
Ncr,FEM 

Ncr,tot,approx /  
Ncr,FEM 

1 545 540 295 0.99 0.54 

2 739 723 295 0.98 0.40 

3 316 312 126 0.99 0.40 

4 5349 4895 2197 0.92 0.41 

 

The advantage of using Vianello iterations for establishing critical buckling loads, 
instead of using kV-values from Figure 3.13, has here been clarified. Observe that 
specifically for robust walls, case 4, there is a considerably stronger influence from 
Ncr,S. The accuracy is therefore reduced but is still very reasonable when compared 
with the results from using the kV-values from Figure 3.13. 

 

5.3 Investigation of pierced shear walls 

In this section, pierced shear walls with different hole dimensions will be investigated. 
It is to be investigated if the rough estimates through hand calculation of pierced shear 
walls, described in Section 3.2, are realistic. The shear walls are modelled in SOLVIA 
through 9-node elements combined with a dense mesh, approximately 0.6 m x 0.6 m. 
It has been discovered that the FE-analyses include other effects which the hand 
calculations disregard, such as local deformations. It is expected that the results from 
the hand calculations and the FE–analyses will not concur as it is assumed in the hand 
calculations that plane cross-sections remain plane. The hand calculations include 
several assumptions, such as the deformable length of the transversal part, c = c0+ht, 
and that the two vertical components have a united action, i.e. full cooperation. 

The investigation entails comparisons of the deflections at the top of the wall when 
the wall is subjected to evenly distributed horizontal loads, and of the buckling loads 
when the wall is subjected to an evenly distributed vertical load. The critical buckling 
load is calculated assuming equal floor loads. The comparisons are made in three 
steps with the opening width, c0, is set to 1 m, 2 m and 3 m. In each step the 
transversal thickness, ht, varies between 0.6 m to 2.2 m. The total breath of the wall, 
b0 and the height of each storey, Lsec are set equal to 8 m and 3 m respectively, see 
Figure 5.15.  
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 Figure 5.15: Picture of a pierced shear wall with values shown. 

 

Lsec 

ht 

c0 

b 

b0 

E =30 GPa 

ξ =1.2 

Lsec =3 m 
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5.3.1 Results of deflection and buckling load 

The tables below present the results from both the hand calculations and FE-analyses 
for deflection and buckling. HC stands for hand calculations. 

Table 5.6: Results of deflection and buckling, c0 = 3 m, and the ht varies. 

ht 
 [m] 

Deflection 
FEA  
[nm] 

Deflection  
HC 

[nm] 

Ncr 
FEA  
[MN] 

Ncr 
HC 

[MN] 

0.6 165.8 174.0 1511 548 

0.9 105.7 108.5 2330 1109 

1.2 84.7 85.8 2914 1586 

1.7 70.6 71.7 3461 2118 

2.2 64.6 65.8 3736 2429 

 

Table 5.7:  Results of deflection and buckling, c0 = 2 m, and the ht varies. 

ht 
 [m] 

Deflection 
FEA  
[nm] 

Deflection  
HC 

[nm] 

Ncr 
FEA  
[MN] 

Ncr 
HC 

[MN] 

0.6 103.4 105.6 2392 991 

0.9 78.4 78.2 3143 1668 

1.2 69.4 68.4 3546 2127 

1.7 62.9 62.1 3880 2569 

2.2 60.0 59.5 4043 2809 
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Table 5.8:  Results of deflection and buckling, c0 = 1 m, and the ht varies. 

ht 
 [m] 

Deflection 
FEA  
[nm] 

Deflection  
HC 

[nm] 

Ncr 
FEA  
[MN] 

Ncr 
HC 

[MN] 

0.6 69.8 67.7 3379 1964 

0.9 63.4 60.8 3876 2511 

1.2 60.8 58.3 4033 2794 

1.7 58.7 56.5 4165 3036 

2.0 57.9 55.9 4212 3120 

 

Deflections: 

The method for calculating deflections, see Section 3.2.2, gives a good approximation 
compared to the FE-analyses. The equations are complex and it is preferable to use 
programs like Excel, which has been used here, to establish the deflections. 

Table 5.6 concerns the most slender models with a gap width of 3 m. The hand 
calculations show deflections slightly greater than the FE-analyses, i.e. on the safe 
side. The results with regard to increasing transversal thickness agree better with the 
FE-results. 

Table 5.7 presents results of models with gap widths of 2 m and Table 5.8 with 1.0 m 
wide gaps. Both tables present results that reveal values slightly on the unsafe side 
from the hand calculations. The hand calculation underestimates the deflection for 
more solid structures but still the values are very close to the FE-results. 

Buckling load: 

The three tables above reveal that the hand calculation method, derived in Section 
3.2.1, presents buckling loads that are not reasonable and are very much on the safe 
side, especially slender structures, walls with wide gap widths and thin transversal 
parts, which confer values that are almost one third of the results from FE-analyses. 
The comparison which agrees best is the least slender wall where c0 = 1.0 m and               
ht = 2.0 m.  

 

5.3.2 Improvements for buckling load results  

The results concerning the buckling loads in Section 5.3.1 demand further 
investigation in order to discover how the hand calculation method can be improved. 
The first step is to examine the hand calculation when the gap width decreases and the 
thickness of the transversal part increases to converge to being a solid shear wall. The 
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approximation of the deformable length of the transversal part is especially of interest. 
As it is described in the derivation, see Section 3.2.1, this length is estimated as the 
sum of the gap width and the transversal thickness, c = c0+ht. It is suspected that this 
length becomes too long and therefore produces greater deflection of the transversal 
part which leads to a greater shear angle and finally a lower buckling load. The 
calculation method from Lorentsen (2000) is also used in Westerberg (1999). In 
Westerberg’s publication the transversal length is set to c = c0. It is not discussed why 
the deformable length in Lorentsen (2000) includes the transversal thickness. It is 
therefore this approximation which is investigated first.  

 

5.3.2.1 Altering the deformable length of the transversal  

The investigation starts with comparing results if the deformable length of the 
transversal part is set to the gap width, c = c0. Tables 5.9 and 5.10 present results 
concerning shear walls which have such small gaps and therefore resemble solid 
walls. The walls have the same overall measurements as the ones previously 
examined. 

Table 5.9:  Comparison between two assumptions of the c-value and FEA results. 

Wall- hole size 

Ncr 
FEA 

  
[MN] 

Ncr 
HC   

c=c0+ht 
[MN] 

Ncr 
HC 

 c=c0 
[MN] 

0.4 x 0.4 m 4317 3387 4100 

Solid wall 4332 3491 4229 

 

Table 5.10:  Comparison between two assumptions of the c-value and FEA results. 

Wall- hole 
size 

Ncr 
FEA 

  
 

[MN] 

Ncr 
HC   

c=c0+ht 
 

[MN] 

Ncr 
HC 

 c=c0 

 
[MN] 

Deformable
length of 

transversal
c=c0+ht. 

[m] 

Deformable 
length of 

transversal 
c=c0 
[m] 

1.0 x 1.0 
m 4212 3120 3864 3 1 

0.4 x 0.4 
m 4317 3387 4100 3 0.4 

Solid wall 4332 3491 4229 3 0 
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It is obvious from Table 5.10 that the assumed deformable length, c = c0+ht, of the 
transversal part is too long. In the three cases shown above the deformable length 
always becomes 3 m, when it is assumed that c = c0+ht even though the sizes of the 
holes differ. When the deformable length is set to be equal to the gap width, c = c0, all 
three examples present much better results compared to the FE-results. The best 
agreement is found for the case with the hole dimensions 0.4 x 0.4 m.  

How the buckling loads varies depending on the thickness of the transversal, width of 
opening and assumed interaction is shown in Figures 5.16, 5.17 and 5.18.  
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Figure 5.16: Comparison of critical buckling loads, 10 storeys, gap width c0 = 3 m 

Figure 5.16 shows seven different functions. Three functions show constant values, 
i.e. there values are not influenced by the thickness of the transversal. The straight line 
at the value of about 4600 MN, named bending in the graph, is the critical buckling 
load due to bending only. It is assumed that there is complete interaction between the 
two vertical parts and therefore the varying thickness of the transversal part has no 
effect. This approximation is on the unsafe side especially in slender walls where the 
connections between the vertical parts are weak. Still, when through combining the 
influence of shear with the contribution from bending the total critical buckling load is 
decidedly on the safe side. It is then obvious that the shear deformation is the over 
estimated part which must be improved.  

The second straight horizontal line, solid wall, slightly below the results due to 
bending deformation, presents the buckling load for a solid wall with the same 
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breadth and height as the pierced ones. Both shear and bending deformations are 
considered.  

The straight horizontal line at the lower area of the graph, separate towers, presents 
values of another hand calculation method. This method disregards the transversal 
parts completely and the wall is treated as two single walls without interaction. The 
stiffness of this structure is much smaller and the buckling load becomes considerably 
more on the safe side than the previous approaches. 

The results from the hand calculation method that considers openings are plotted with 
two assumptions, c0 = c+ht and c0 = c. The results based on the assumption c0 = c 
reveal that the buckling load is on the safe side for all cases compared to the           
FE-results. Slender models, ht = 0.6–1 m, have a great influence from the shear 
deformation. It is important here to observe that the so called shear part is not only 
shear effect when referring to calculation of pierced shear walls, see Section 3.2. If a 
quotation is made between the results from the hand calculations, c0 = c+ht and c0 = c, 
and the results from FE-analyses, then one can observe that for slender models the 
value decreases, see Table 5.13.  

Two additional graphs are made for the models with gap widths of 1 m and 2 m, see 
Figures 5.17 and 5.18. 
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Figure 5.17: Comparison of critical buckling loads, 10 storeys, gap width c0 = 1 m. 
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Figure 5.18: Comparison of critical buckling loads, 10 storeys, gap width c0 = 2 m. 

 

Table 5.11: Buckling analyses c0 = 1 m; comparing hand calculations with              
c = c0+ht and c = c0 and FE-results, and then presenting their accuracy 
compared to FE-results. 

ht 
 

[m] 

Ncr 
FEA  

 
[MN] 

Ncr 
HC 

c = c0+ht 
[MN] 

Ncr 
HC 

c = c0 
[MN] 

HC/FEA 
c = c0+ht 

HC/FEA 
c = c0 

0.6 3379 1964 2960 0.58 0.87 

0.9 3876 2511 3457 0.65 0.89 

1.2 4033 2794 3661 0.69 0.91 

1.7 4165 3036 3814 0.73 0.92 

2.0 4212 3120 3864 0.74 0.92 
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Table 5.12:  Buckling analyses c0 = 2 m; comparing hand calculations with              
c = c0+ht and c = c0 and FE-results, and then presenting their accuracy 
compared to FE-results. 

ht 
 

[m] 

Ncr 
FEA  

 
[MN] 

Ncr 
HC 

c = c0+ht 
[MN] 

Ncr 
HC 

c = c0 
[MN] 

HC/FEA 
c = c0+ht 

HC/FEA 
c = c0 

0.6 2392 991 1585 0.41 0.66 

0.9 3143 1668 2527 0.53 0.80 

1.2 3546 2127 3016 0.60 0.85 

1.7 3880 2569 3381 0.66 0.87 

2.2 4043 2809 3542 0.69 0.88 

 

 

Table 5.13:  Buckling analyses c0 = 3 m; comparing hand calculations with              
c = c0+ht and c=c0 and FE-results, and then presenting their accuracy 
compared to FE-results. 

ht 
 

[m] 

Ncr 
FEA  

 
[MN] 

Ncr 
HC 

c = c0+ht 
[MN] 

Ncr 
HC 

c = c0 
[MN] 

HC/FEA 
c = c0+ht 

HC/FEA 
c = c0 

0.6 1511 548 831 0.36 0.55 

0.9 2330 1109 1699 0.48 0.73 

1.2 2914 1586 2323 0.54 0.80 

1.7 3461 2118 2867 0.61 0.83 

2.2 3736 2429 3112 0.65 0.83 

 

In Table 5.13 the walls with the widest openings are presented, i.e. 3 m gap width. 
The case with ht = 0.6 m shows a percentile of 36 % which means that the hand 
calculation based on c = c0+ht would lead to over dimensioning with 1/0.36, i.e. the 
FE-results are 2.8 times greater than the hand calculation results. From analysing the 
quotients it can be observed that the shear contribution in the hand calculation method 
is misrepresentative. The quotations exemplify that the shear part of the hand 
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calculation method is faulty because pierced shear walls with greater openings have a 
greater influence from shear and therefore produce the less satisfying results obtained.  

 

5.3.2.2 Shear factors 

After shortening the length of the deformable part of the transversals to c = c0, the 
hand calculated results are still not close to the FE-result especially not for structures 
with greater openings. A further investigation of how the shear contribution can be 
improved has been done through recalculating the same shear walls presented 
previously. In this investigation the results are first taken from the FE-analyses and 
are reduced by the bending part to obtain the shear part. The obtained value for the 
shear part is treated as the value that should have been obtained in the hand 
calculations for obtaining an exact buckling load, i.e. equal to the FE-results.  

BcrFEAcr

FEAScr

NN

N

,,

,, 11
1

−
=       (5.6) 

A quotient is made once again between the new value obtained, Ncr,S,FEA, and the hand 
calculated shear value, Ncr,S. The quotients are made using the hand calculated Ncr,S 
for c = c0+ht and for c = c0. Tables 5.14, 5.15 and 5.16 present the results. 

 

Table 5.14: Establishment of a shear factor for gaps where c = 1 m. 

ht 
 

[m] 

Ncr,S,FEA 
  

[MN] 

Ncr,S  
c = c0+ht  

[MN] 

Ncr,S  
c = c0  
[MN] 

Shear Factor 
c = c0+ht 

Ncr,S,FEA / Ncr,S 

Shear Factor 
c = c0 

Ncr,S,FEA / Ncr,S 

0.6 11270 3313 7655 3.40 1.47 

0.9 19690 5234 12187 3.76 1.62 

1.2 24544 6634 15166 3.70 1.62 

1.7 30409 8184 18188 3.72 1.67 

2.0 33106 8823 19384 3.75 1.71 
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Table 5.15: Establishment of a shear factor for gaps where c = 2 m. 

ht 
 

[m] 

Ncr,S,FEA 
  

[MN] 

Ncr,S  
c = c0+ht  

[MN] 

Ncr,S  
c = c0  
[MN] 

Shear Factor 
c = c0+ht 

Ncr,S,FEA / Ncr,S 

Shear Factor 
c = c0 

Ncr,S,FEA / Ncr,S 

0.6 4808 1251 2376 3.84 2.02 

0.9 9252 2568 5387 3.60 1.72 

1.2 13904 3844 8232 3.62 1.69 

1.7 20987 5582 11670 3.76 1.80 

2.2 26841 6853 13842 3.92 1.94 

 

Table 5.16: Establishment of a shear factor for gaps where c = 3 m. 

ht 
 

[m] 

Ncr,S,FEA 
  

[MN] 

Ncr,S  
c = c0+ht  

[MN] 

Ncr,S  
c = c0  
[MN] 

Shear Factor 
c = c0+ht 

Ncr,S,FEA / Ncr,S 

Shear Factor 
c = c0 

Ncr,S,FEA / Ncr,S 

0.6 2255 623 1015 3.62 2.22 

0.9 4742 1464 2701 3.24 1.76 

1.2 8008 2427 4713 3.30 1.70 

1.7 14156 3941 7663 3.59 1.85 

2.2 20254 5171 9705 3.92 2.09 

 

The factors calculated in the tables above describe how much the original shear 
buckling load from the hand calculation should be magnified by in order to establish 
values that agree with FE-results. In the examples presented above, all shear factors 
when Ncr,S is calculated for c = c0+ht are at least 3.2 which means that if all values, 
concerning the buckling load due to the shear, are multiplied with 3.2, the total 
buckling load will be closer to the FE-results and always on the safe side for the 
investigated walls. A shear factor is also produced for when Ncr,S is calculated for       
c = c0 and these results show a marked improvement. Three new graphs, Figures 5.19, 
5.20 and 5.21, are established and present a new function of the total critical buckling 
load when the shear part has been multiplied with 3.2.  
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Figure 5.19: 10 storey, variable transversal thickness, c0 = 1 m 
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Figure 5.20: 10 storeys, variable transversal thickness, c0 = 2 m 
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Figure 5.21: 10 storeys, variable transversal thickness, c0 = 3 m 

The new proposed function has the same shape as the FE-analysis and the function 
assuming c = c0. In the models presented in this section it is possible to use a shear 
factor of 3.2 in order to get values close to the FE-results. The approach of using a 
shear factor is also applicable independent of the height of the building or the number 
of stories. The reason why this is possible depends on the derivation of the buckling 
load due to shear which does not depend on the height of the structure, see Section 
3.2.1. The approach of manipulating the shear part is therefore possible for all     
multi-storey shear walls.  

The models treated in this section are based upon buildings where Lsec = 3 m and the 
same total breadth of the wall, b0 = 8 m, see Figure 5.14. As the shear angle is 
affected by these relations the models which have been examined in this section, are 
not representatives of all types of pierced shear walls. Further investigations of 
structures with different relations between the storey height and the total breadth, have 
to be examined to find out whether it is possible to use a general shear factor for 
improving the critical buckling load or not. 

The investigation of how the shear factor is affected if the height of the storey and the 
breath of the wall are changed. The length of the transversal part is first set to be equal 
to the gap width, i.e c = c0.  

One series of models which has been examined are walls that are slender, i.e. higher 
and reduced breadth. The investigated walls have all a breadth of only 4.0 m and have 
a storey height of 4.0 m giving a total height of 40 m. What is different with these 
walls from the previously described is that the bending part dominates, i.e. the 
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buckling load due to the shear deformations is much higher than the buckling load 
obtained through global bending. Table 5.17 presents the results for 4 slender walls. 

Table 5.17: Buckling loads and shear factors, c0 = 2 m.  

ht  
[m] 

Ncr,FEA 
[MN] 

Ncr,tot,HC 
[MN] 

Ncr,B,HC 
[MN] 

Ncr,S,HC 
[MN] 

Ncr,tot,HC 
/Ncr,FEA  

 

Shear 
factor 
c = c0 

0.6 219 186 298 493 0.85 1.68 

1.2 268 234 298 1089 0.87 2.44 

1.7 281 241 298 1272 0.86 3.87 

2.2 289 244 298 1358 0.84 7.05 

 

In models that concern slender walls, the critical buckling load in the hand 
calculations is closer to the buckling load through bending. The shear factor is based 
upon the difference between the buckling load from the FE-analysis and the buckling 
load due to bending. In walls where the buckling load due to bending is very close to 
the value from the FE-analysis, i.e. in slender walls, the shear deformation has to be 
increased dramatically in order to obtain a buckling load which agrees with the       
FE-analysis. Observe the great increase of the shear factor from the model at the top 
to the model at the end of Table 5.17. In the first model, ht = 0.6 m, the shear buckling 
load still has a great influence on the total buckling load. The last two walls,              
ht = 1.7 m and ht = 2.2 m present a great difference despite the values from            
FE-analysis and the bending buckling load of the hand calculation being almost the 
same. 

BcrFEAcr

FEAScr

NN

N

,,

,, 11
1

−
=       (5.6) 

In extremely slender walls the shear deformations can be neglected. This is observed 
also in the FE investigation of the solid walls in Section 5.1.1. In Equation (5.6) the 
buckling loads obtained from the FE-analyses will almost converge to the value 
obtained from the bending part in the hand calculation. This will lead to a very high 
shear factor to compensate for the difference. This investigation reveals that for very 
slender walls a correct shear factor for proper usage is probably impossible to 
establish. The walls examined above are slender in a global perspective and reveal 
that the buckling load from global bending is dominant with an increasing thickness 
of the transversal. It is here important to notice the difference between global 
slenderness and the internal slenderness regarding the vertical and transversal parts 
themselves. 

The results from the hand calculations agree well with the FE-results. Since the shear 
factor is hard to establish and loses its purpose as a useful method, a closer look is 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 

 
133

drawn to the four different contributions from the shear angle which are derived in 
Section 3.2.1. 

 

5.3.2.3 Shear angles  

From the derivation of the shear angle for pierced shear walls, the bending part of the 
transversal is much affected by the thickness of the transversal as the moment of 
inertia is increasing with the thickness, ht, see Section 5.3.2.1. This part of the shear 
angle decreases rapidly with an increase in the transversal thickness when the gap 
width is constant. The shear part of the shear angle also decreases with an increase in 
the transversal thickness as the cross section area is influenced. The two remaining 
parts of the total shear angle are due to bending and shear deformation in the vertical 
parts. These are not affected by an increasing thickness of the transversal and are 
therefore constant for each gap width. With this knowledge, it is therefore suspected 
that the shear factors should be almost constant or at least follow a pattern for each 
table which, apparently, does not occur, see Tables 5.14, 5.15 and 5.16. Table 5.18 
shows an example of how the four contributions to the shear angle vary with 
increasing thickness of the transversal for a gap width of  c0 =  2 m.  

 

Table 5.18:  All contributions to the total shear angle, c0 = 2 m, c = c0. 

ht 
  

[m] 

Vert. Part 
Bending 

Eq. (3.27) 
[10-11 rad] 

Vert. Part 
Shear 

Eq. (3.29) 
[10-11 rad] 

Transv. Part
Bending 

Eq. (3.26) 
[10-11 rad] 

Transv. Part 
Shear 

Eq. (3.28) 
[10-11 rad] 

Total shear 
angle 

Eq. (3.25) 
[10-11 rad] 

0.6 1.11 3.33 29.60 8.00 42.10 

0.9 1.11 3.33 8.78 5.33 18.56 

1.2 1.11 3.33 3.70 4.00 12.10 

1.7 1.11 3.33 1.30 2.82 8.57 

2.2 1.11 3.33 0.60 2.18 7.23 

 

Table 5.18 shows how the four parts of the angle vary with an increasing thickness of 
the transversal. The two columns concerning the deformation of the vertical parts 
have constant values. The equations are presented in Section 3.2.1.  

In the hand calculation method it has been observed that if measurements for a solid 
wall are interpreted in the hand calculation, the parts concerning the shear angle from 
bending and shear in the vertical parts, still have a contribution. For a solid wall only 
the part concerning shear in the verticals should produce values. If the bending part is 
set equal to zero, only shear deformation of the verticals is left for determining the 
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total shear angle. When the deformable length of the transversal is set equal to the gap 
width, i.e. c0 = c, combined with the vertical bending part being set to zero, the total 
shear angle becomes equal to the shear angle used for solid walls, see Equation (3.13)  

c0 = 0   (gap width)    ⇒     c = c0 = 0 

Transversal part               0
12 2

3
sec

, ==
t

bendt EIb
cL

γ       (3.26) 

02
sec

, ==
t

sheart GAb
cL

ξγ     (3.28) 

Vertical parts    0
24

2
sec

, ==
v

bendv EI
L

γ      (3.27) 

Tot
v

shearv GA
γξγ ==

2,         (3.29) 

Observe that γv,shear is the same expression used for critical buckling load due to shear 
for solid walls.  
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====      (3.14) 

A final study is made to investigate how the influence of bending deformations of the 
vertical parts affects the buckling load. All the walls in Table 5.19 have a thickness of 
0.5 m. The contribution from bending deformations of the vertical parts, γv,bend, is set 
equal to zero. 
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Table 5.19:  Comparisons of buckling loads when c0 = c and γv,bend  = 0. 

c0 
[m] 

b0 
[m] 

ht 
[m] 

Lsec 
[m] 

Ncr,FEA 
[MN] 

Ncr,HC 
[MN] 

Ncr,HC,/ Ncr,FEA SF 
γv,bend = 0 

0.4 8.0 2.6 3.0 4317 4194 0.97 1.27 

2.0 8.0 0.6 4.0 219 206 0.94 1.23 

2.0 8.0 1.2 4.0 268 267 1.00 1.03 

2.0 8.0 1.7 4.0 281 277 0.99 1.25 

2.0 8.0 2.2 4.0 289 281 0.97 1.94 

2.0 4.0 1.2 3.0 469 454 0.97 1.30 

3.0 4.0 1.2 4.0 149 173 1.16 0.43 

 

The study shows that the contribution from the bending deformations of the vertical 
parts is over estimated in the hand calculations for pierced walls that have substantial 
verticals. For frames and for walls that have slender vertical parts, the approach of 
setting γv,bend  equal to zero is not recommended as it can produce results on the unsafe 
side. 

In Equation (3.27) the deformable length of the verticals is taken as the complete 
storey height, Lsec. This deformable length is suspected to be over estimated as with an 
increasing transversal thickness this length should decrease. It is assumed that 
bending will not occur at the centre of the verticals, i.e. the intersection between the 
verticals and the transversal, due to the section being robust. The length of the 
deformable part of the vertical is therefore reduced to obtain a new length influenced 
by the transversal thickness. 

tred hLL −= secsec,        (5.7) 

v
bendv EI

L
24

2
sec

, =γ         ⇒         
v

t
bendv EI

hL
24

)( 2
sec

,
−

=γ    (5.8) 

Table 5.20 presents the results when the vertical bending length has been altered to 
Lsec,red = Lsec - ht.  
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Table 5.20: Comparisons of buckling loads when c0 = c and Lsec,red is used. 

c0 
[m] 

b0 
[m] 

ht 
[m] 

Lsec 
[m] 

Ncr,FEA 
[MN] 

Ncr,HC 
[MN], 

Ncr,HC,/ 
Ncr,FEA SF 

0.4 8.0 2.6 3.0 4317 4193 0.97 1.28 

2.0 4.0 0.6 4.0 219 191 0.87 1.55 

2.0 4.0 1.2 4.0 268 250 0.93 1.72 

2.0 4.0 1.7 4.0 281 264 0.94 2.11 

2.0 4.0 2.2 4.0 289 272 0.94 2.98 

2.0 4.0 1.2 3.0 469 432 0.92 1.74 

3.0 4.0 1.2 4.0 149 127 0.85 1.71 

 

With the reduced deformable length of the vertical the hand calculation method gives 
reasonable values slightly on the safe side for all walls examined. Pierced walls with 
slender verticals are sensitive to an adjustment of the deformable length of the 
vertical. In contrast, models with robust verticals, for example the wall presented at 
the top in Tables 5.19 and Table 5.20, are hardly affected but still this modified 
approach seems to work for all walls investigated. The complete list of all walls 
examined during this study is presented in Appendix B. 

 

5.3.3 Stress distribution 

This investigation relating to pierced shear walls concerns the stress distribution at the 
base of the walls. The deformation figures from the FE-analyses show the behaviour 
of the walls and the interaction between the vertical parts.  Here it shall be attempted 
to derive a fast and effective method for calculating stress distribution by hand. The 
stress distribution, through hand calculation, can be calculated in two different ways 
and each method shall assume a linear relationship for the stresses. 

 

5.3.3.1 Hand calculation methods 

First an analysis will be done on a shear wall that is solid, Figure 5.22, and the same 
wall but split in the middle, Figure 5.22b. This analysis is produced in order to acquire 
a picture of how the stresses will look depending on if the wall has complete 
cooperation between the two halves, Figure 5.22a, or if there is no cooperation,  
Figure 5.22b.  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 

 
137

 

Figure 5.22: 

Figure 5.22a:  t = 0.5 m, b = 8 m,  Lh = 30 m, qh = 5 kNm, E =30 GPa.  

Figure 5.22b: t = 0.5 m, b = 4 m,  Lh = 30 m, qh = 5 kNm, E = 30 GPa.  

 

Calculation of stresses, Figure 5.22a:  

2250
2

30305000 =⋅⋅=M  kNm  

33.21
12

85.0 3

=
⋅

=I  m4 

  z
I

M
⋅=maxσ        

2
bz =        z=4 m     ⇒       4224

33.21
102250 3

2,1 ±=⋅
⋅

±=σ  kPa 

Calculations of stresses, Figure 5.22b:            

2250=M  kNm       

67.2
12

45.0 3

=
⋅

=VI  m4     

σ1

σ2 
σ4 

σ3 
σ5 

σ6

qh 

b b

Lh Lh 

a) 
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qh
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  z
I

M
⋅=maxσ        

2
bz =        z=2 m     ⇒  8432

67.2
2

102250 3

6,5,4,3 ±=⋅

⋅

±=σ  kPa 

Observe the difference in stress values when different assumptions are made. The 
stress values for Figure 5.22b are twice the values calculated for Figure 5.22a. 
Concerning pierced shear walls the stress distribution through the cross section is 
somewhere between the two examples shown in Figure 5.22a and 5.22b. Depending 
on the size of the holes in the walls the interaction between the two verticals will be 
influenced.  

Three walls have been chosen for comparing hand calculations with FEA results. 
Example 1 has the smallest opening and example 3 has the largest, see Table 5.21. 

Table 5.21: Pierced shear wall statistics. c = c0 + ht. 

Ex. t 
 [m] 

b0 
 [m]  

co  
[m] 

ht  
[m] 

W  
[kN/m] 

E 
 [GPa] 

Lsec 
 [m] 

Lh  
[m] 

1 0.5 8.0 1.0 2.0 5 30 3.0 30 

2 0.5 8.0 1.0 0.6 5 30 3.0 30 

3 0.5 8.0 2.0 1.2 5 30 3.0 30 

 

Two hand calculation methods of calculating the highest stress values, occurring at 
the outer edges of the walls, are presented. 

Method 1 directly uses the global moment of inertia, Iglobal. This approximation 
assumes the two vertical parts to fully interact. The calculation is therefore referring a 
wall which is stronger than the real wall and the results concerning the stresses are 
suspected to be on the unsafe side. . Equation (5.9) shows how Iglobal is calculated.  

1212

3
0

3 ctbtI global
⋅

−
⋅

=                (5.9)   

 

Method 2 extracts a usable moment of inertia from Equation (5.10) through 
determining the ymax value from Equation (3.34). This new acquired moment of inertia 
should better represent the shear wall than the Iglobal used in Method 1. Through using 
Equation (3.34), the wall is treated in a more accurate way compared to Method 1. 
The properties from the transversal part are also taken into account and the moment of 
inertia for the transversal, It, is considered through the factor α.  
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The c-value in the equation for α2 is c=c0+ht.  

 

5.3.3.2 Results 

Figures 5.23, 5.24 and 5.25 show the FE-results. The results from the FE-analyses 
present the force distribution through the cross section. The stresses are established by 
dividing the force values with the thickness of the wall, i.e. 0.5 meters. The hand 
calculations of the three examples which are to be compared are not shown. Method 2 
is calculated through using an excel program. 
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Figure 5.23: Stress and force distribution, Example 1: c0 = 1 m, ht = 2 m. 
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Figure 5.24: Stress and force distribution, Example 2: c0 = 1 m, ht = 0.6 m. 
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Figure 5.25: Stress and force distribution, Example 3: c0 = 2 m, ht = 1.2 m. 
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Table 5.22: Results of stress analyses. 

 FEA 
 [kPa] 

Method 1  
[kPa] 

Method 2  
[kPa] 

Ex. 1 500 423 492 

Ex. 2 560 423 596 

Ex. 3 600 428 602 

 

Table 5.22 displays the results of the stress analyses. Example 1 has the smallest holes 
and Example 3 the largest. Observe that method 1 results are inaccurate and land on 
the unsafe side of the FE-results. Determining a new moment of inertia, method 2, 
improves the value greatly. Observe that method 2 gives a result for example 1, which 
is not on the safe side but very close. Example 2 and 3, which have the larger holes, 
give a result very near to the FE-result and also on the safe side. 

 

5.3.4 Conclusions and recommendations 

Through this study, concerning the buckling loads, it has been learnt that the 
behaviour of pierced shear walls of different dimensions is not predictable. The hand 
calculation method that has been investigated and compared with FE-analyses, has 
shown a wide field of varying inaccuracy. It has been mentioned at the beginning of 
this section that other effects occur in the FE-analyses which are not taken into 
account in the hand calculations. It has, from an early stage of this investigation, been 
predicted that a general solution will not be found for obtaining exact values of the 
critical buckling load covering all different types of pierced walls. Still, this study 
consists of 30 pierced shear walls holding measurements in a wide field. These 
analyses are to be used as references when confronting evaluations of other shear 
walls. One is able to identify the authentic shear wall with some of those investigated, 
and draw conclusions on how a more accurate calculation of buckling loads can be 
achieved, see Appendix B.  

The first approach for improving the accuracy in this study was through applying a 
modification factor to the shear buckling load, i.e. shear factors. These factors have 
served an important role for the after coming investigations, as an indication of how 
the next step for an improvement shall be approached. These factors, combined with 
the comparison values achieved through quotients between the FE-results and the 
hand calculation results, are important indicators for how the hand calculation is to be 
utilised for evaluating a pierced shear wall.  

Through this study it has been decided that the deformable length of the transversal 
should be equal to the gap width, i.e. c = c0. This improvement has shown buckling 
load results on the safe side for all walls investigated.  
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The next improvement concerns the adjustment of the deformable length of the 
vertical. All models can use a length reduced by the thickness of the transversal, i.e. 
Lsec.red=Lsec-ht. This length is only to be interpreted into the equation of the shear 
angle due to bending deformations of the vertical only, Equation (3.27).   

v

t
bendv EI

hL
24

)( 2
sec

,
−

=γ        (5.11) 

When using the results of this study as a base, the equation above can, for obtaining a 
better result, be set equal to zero for walls with robust vertical parts. 

Concerning the stress distribution in pierced shear walls, it may be concluded that 
Method 2 is effective when calculating on pierced shear walls. Observe that the 
method does not represent the real stress distribution in the wall but the method can be 
used to derive the maximum stresses at the edges of the wall. Method 1 is not 
recommended because it does not represent the behaviour of a real wall and produces 
results on the unsafe side. 

 

5.4 Investigation of the polar moment of inertia 

In this section an assumption is to be investigated concerning the usage of the polar 
moment of inertia, Ip. The derivation of how Ip replaces the non stabilising units 
negative contribution is explained in Section 4.2.3.4. The usage of Ip is based upon the 
assumption of a structure consisting of an infinite amount of evenly distributed non 
stabilising columns which are subjected to an evenly distributed vertical load from the 
floor slab. The stabilising units are then assumed to be subjected to horizontal loads 
only. The method of replacing the effect of hinged columns with Ip is therefore 
suspected do give accurate results for a surrealistic structure using an endless amount 
of columns placed with minimal distance between them. In a real building, columns 
are placed as sparse as possible so that a structure can benefit from its open spaces. It 
is therefore important for this investigation to ascertain if the method using Ip is 
suitable for common buildings or not. 

The numerical example, from Section 4.2.4, is to be modified with an increasing 
amount of columns. The example is first modified by replacing the stabilising 
columns at the four corners with hinged columns, i.e. non stabilising columns. The 
stabilising columns are then imagined to be placed at the same position as the corner 
columns, connected to the non stabilising columns for stabilising the structure, but do 
not connect to the vertical loads from the slab. This is done to simplify the calculation 
by using the same load distribution among the columns but leaving the stabilising 
columns free from vertical loads. It will then be clearer how the buckling load will be 
affected for an almost identical structure. Figure 5.26 can be compared to Figure 5.27, 
which has 8 shear walls, 4 stabilising in each direction. The non stabilising columns 
are represented by a circle symbol and the stabilising columns are squared. 
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Figure 5.26 

 

 

Figure 5.27 

The expression for the stabilising columns takes now the same form as shown in 
Section 4.1.2, for applying the method suited for polar moment of inertia. 
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From the example in Section 4.2.2 the load distribution is producing the stiffness 
summations shown below. The four added hinged columns at the corners are now 
taking the same vertical loads which where previously carried on the stabilising 
columns. 

Buckling load through translation: 
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The buckling load is compared with the value calculated in Section 4.2.4. 

Buckling load – translation: 

Buckling load from Section 4.2.4:      1824,, =yxcrN  kN 

Buckling load, modified example:          1920,, =yxcrN  kN 

It is suspected that the results should nearly agree because the two structures are 
almost the same. Still, the results show a slightly higher buckling load concerning 
translation when the stabilising columns are not subjected to the vertical load. 

The buckling load through rotation is now to be compared between the example in 
Section 4.2.4 and the above modified example. 

From the example in Section 4.2.4, the expression is now to be edited to suite the 
modified example. 
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The hinged columns at the corner are now added. 
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The modified system is now summarised and the buckling load through rotation is 
calculated. 
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The result from the modified example is compared with result from the example in 
Section 4.2.4. 

 

Buckling load – rotation: 

Buckling load from Section 4.2.4:      3467, =rotcrN  kN 

Buckling load, modified example:     3840, =rotcrN  kN 

The results show an increased buckling load for the modified system. 

The result from this study reveal that an authentic building, where the stabilising 
components are subjected to vertical loads but are treated as components which are 
not subjected to vertical loads, delivers results on the unsafe side. It is then suspected 
further in this investigation that the method of using the polar moment of inertia will 
provide buckling loads, concerning rotation, with values higher than for a real 
structure. Residential buildings do not use columns as the dividing walls between 
apartments will bear all the vertical loads in combination with their stabilising 
function. 

The Example from Section 4.2.4 is now to be approached with the calculation method 
using the polar moment of inertia. The stabilising components are taking the same 
expression used in the modified example, i.e. they are not subjected to vertical loads. 
The polar moment of inertia is only applied when establishing the buckling load 
through rotation. The calculation concerning translation is therefore not of interest. 

Stabilising columns at the corners: 
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The non stabilising columns are now replaced by the expression of Ip. See Section 
4.2.3.4 for the derivation. 
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The symbols a and b are the length and the breath of the slab which the vertical load, 
N, is evenly distributed upon. 
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The result shows a value of the buckling load through rotation which is much higher 
than the buckling load calculated with the exact load distribution in the example in 
Section 4.2.4. If the method of using polar moment of inertia is used for this structure 
it will produces much smaller second order effects compared to the method used in 
Section 4.2.4. It follows that the design moment will be lower compared to the real 
structure and the columns will be under dimensioned, i.e. results on the unsafe side. 
Table 5.23 below presents a comparison between the critical buckling loads. Ip in the 
table refers to the method using the polar moment of inertia.  

 

Table 5.23: Comparisons of the critical buckling loads between the methods. 

Ncr 
Exact method 
Section 4.2.4 

[kN] 

Modified 
example 

[kN] 

Mod. / Exact
 

[kN] 

Ip 
 

[kN] 

Ip / Exact 
 

[kN] 

Ncr,y 1824 1920 1.05 - - 

Ncr,rot 3467 3840 1.11 5760 1.66 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 

 
149

5.5 Force distribution in single storey structures. 

To evaluate if the buckling loads from the hand calculations represent an actual 
structure, the force and the moment distribution among the stabilising columns are to 
be compared with FE-analysis. The example shown in Section 4.2.4 is used in three 
different horizontal load cases. The first load case considers an evenly distributed 
horizontal load applied at the long facades, with and without vertical loads. This case 
will cause the building to move only in translation, i.e. in this load case in y direction. 
The second load case will make the building twist without translation. The horizontal 
loads are here applied on both sides of the building but at half the length of the long 
facades, in opposite directions and one case with vertical load and one case without. 
The first two cases will ascertain if the hand calculation method gives values that 
agree with the FE-analysis concerning translation and rotation separately. The final 
load case, case 3, is to investigate how the results turn out when a combination of an 
uneven translation and rotation of the building occurs. The horizontal load is here 
applied on half the long façade, with and without vertical loading. The three load 
cases will also be studied with a combination of an evenly distributed vertical load 
applied on the slab. The vertical load will contribute to a second order moment on the 
columns due to the deflection caused by the horizontal loads. 

 

5.5.1 FE-model 

The analysis considers three load cases. Three different horizontal load cases 
combined with and without vertical loads. The three cases without vertical load will 
establish the first order force and the moment distribution among the four stabilising 
columns. The horizontal loads are applied as line loads at the long side of the slab 
which is positioned at the top of the columns. The vertical load is modelled as en 
evenly distributed pressure load on the slab. When the vertical load is combined with 
the horizontal load, the force and the moment distribution will have the second order 
contribution included. This is modelled through FE-analysis by interpreting large 
deformation in the command program in SOLVIA. All load cases can be examined in 
Appendix C. In the FE-model the four stabilising columns are interpreted as fully 
fixed at the base with all degrees of freedom locked, and the top ends are interpreted 
as hinged, i.e. free to rotate but locked in translation. The five non stabilising columns 
are prevented from moving in all translation directions and around there own axial 
axis, i.e. only the rotation around x and y direction (plane coordinates) are free to 
move. 
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5.5.2 Case 1 – Study of translation 

 

Figure 5.28: Case 1. Translation study 

Calculation of the moment at the base of each stabilising column, 1, 3, 7 and 9. 

1st order moment. 

Horizontal force: 

25105.2, =⋅=ytotH  kN 

All columns have equal stiffness and the force is therefore equal divided among them. 

25.6
4
25

,, ==ytrcolH  kN     ⇒    25.31525.60 =⋅=M  kNm 

The index col stands for column, tr for translation and 0 indicates 1st order. 

In this example there is no local moment on the external columns. This study is only 
for comparing hand calculation with FE-analysis and the horizontal load is therefore 
applied in the same way as it is in the FE-analysis, i.e. a line load at the top. Observe 
that indexes, x and y, stand for the direction. 

2nd order moment. 

Vertical force: 

3005610 =⋅⋅=N  kN 

10 m 

6 m 

1 3 

7 9 

4 

2 

8 

5 6RC 

x

y 

qh 

qv = 5 kN/m2 

qh = 2.5 N/m 

E = 30 GPa 

Istab,col = 1.067 m4 

Ncr,x,y = 1824 kN 

Ncr,rot = 3467 kN 

Lh = 5 m 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 

 
151

β=1   ⇒    41.37197.125.31

1824
3001

125.31
1

1
0, =⋅=



















−
⋅=



















−
⋅=

cr

yd

N
N

MM  kNm 

In Table 5.24 the results are compared with the FE analysis performed in SOLVIA. 

Table 5.24: Results of case 1 investigation 

Case 1 HC FEA 

1st order moment 31.25 31.31 

2nd  order moment included 37.41 37.04 

 

 

5.5.3 Case 2 – Study of rotation 

 

Figure 5.29: Case 2. Rotation study 

Moment calculation at the base of each stabilising column; columns 1, 3, 7 and 9: 

The system is first transformed by repositioning the force resultants so that they pass 
through the RC and from the eccentricity thereof, a twisting moment is acquired. 
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Figure 5.30: Case 2, transformed system. 

1st order moment: 

Horizontal force: 

055.255.2, =⋅−⋅=ytotH  kN      (No translation occurs.) 

Twisting moment: 

5.62
2
555.2

2
555.2,2,12,1, =⋅⋅+⋅⋅=⋅+⋅=+= xyxytwisttwisttwist eHeHMMM  kNm 

Force distribution on the stabilising columns due to twisting moment: 

The columns are stabilising in both x- and y-directions. The twisting moment will 
create forces on each stabilising column in both directions. Bending moments will 
therefore occur in the x-and the y-direction. The columns are situated in symmetrically 
with regards to the rotation centre and they are equally affected. 
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Vertical force: 

3005610 =⋅⋅=totN  kN 

When establishing the total moment there are three critical buckling loads which can 
be applied. 

1824,, == ycrxcr NN  kN  3467, =rotcrN  kN 

Depending on which buckling mode is used, different values will be obtained for the 
second order contribution and different design moments will follow. It is preferable to 
use the lowest critical buckling value to achieve values on the safe side but to get 
values as close as possible to the real structure; the choice may not be so simple. In 
this case the building is only subjected to twisting, and translation does not occur. It is 
then preferable to choose the buckling load which refers to rotation as it reflects the 
same, or the closest, deflection mode as the horizontal load case generates. 

2nd order moment using buckling load from translation: 

75.13197.149.11

1824
3001

149.11,, =⋅=


















−
⋅=ycoldM  kNm 

25.8197.189.6

1824
3001

189.6,, =⋅=


















−
⋅=xcoldM  kNm 

2nd order moment using buckling load from rotation: 

58.12095.149.11

3467
3001

149.11,, =⋅=


















−
⋅=ycoldM  kNm 

55.7095.189.6

3467
3001

189.6,, =⋅=


















−
⋅=xcoldM  kNm 

In this structure the choice of which buckling mode to use does not present great 
differences. In other cases the buckling loads may differ very much and the 
knowledge of the behaviour of the building from different load cases is important for 
calculating accurate values. Tables 5.25 and 5.26 below present Case 2 results in 
comparison with FE-analyses. 
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Table 5.25:  Results of Case 2 concerning y-direction. 

Case 2- y-direction HC-Ncr,y 
[kNm] 

HC-Ncr,rot 
[kNm] 

FEA 
[kNm] 

1st order moment 11.49 11.49 11.47 

2nd  order moment included 13.75 12.58 12.25 

 

Table 5.26:  Results of Case 2 concerning x-direction. 

Case 2- x-direction HC-Ncr,x 
[kNm] 

HC-Ncr,rot 
[kNm] 

FEA 
[kNm] 

1st order moment 6.89 6.89 6.86 

2nd  order moment included 8.25 7.55 7.37 

 

The results from the hand calculation using the buckling load through rotation agree 
well compared to the FE-analyses. A case where both translation and rotation are 
involved is considered in the next study, Case 3. It is here to reveal which buckling 
load that presents results closest to FE-results. 

 

5.5.4 Case 3 – Study of combined translation and rotation 

 

Figure 5.31. Case 3. Study of the combination of translation and rotation 
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1st order moment. 

Horizontal force: 

5.1255.2, =⋅=ytotH  kN 

Twisting moment: 

25.31
2
555.2, =⋅⋅=⋅= xytottwist eHM  kNm 

Force distribution on the stabilising columns due to translation: 

125.3
4

5.12
,, ==ytrcolH  kN     (Only in y-direction) 

Force distribution on the stabilising columns due to twisting moment: 

( ) ( ) ⇒⋅⋅+⋅⋅
⋅⋅

⋅=
⋅+⋅Σ

⋅
⋅= 2626

6

2
,

2
,

,
,, 310451044

510425.31
yEIxEI

xEI
MH

xiyi

ycol
twistytwistcol

 

( ) 15.1
354

525.31 22,, =
+

⋅=ytwistcolH  kN  

( ) 69.0
354

325.31 22,, =
+

⋅=xtwistcolH  kN 

Total moment on each column: 

Observe that columns 3 and 9 have forces from translation and rotation in the same 
direction. Columns 1 and 7 have a force occurring from rotation in the opposite 
direction than the translation. 

Column 3 and 9: ( ) 38.21515.1125.3,0 =⋅+=yM  kNm;   45.3569.0,0 =⋅=xM  kNm 

Column 1 and 7: ( ) 88.9515.1125.3,0 =⋅−=yM  kNm;     45.3569.0,0 =⋅=xM  kNm 

2nd order moment: 

The total moment will be calculated using critical buckling loads from translation and 
rotation, in order to make a comparison.  

Total moment using buckling load from translation: 

Columns 3 and 9.    Columns 1 and 7. 

59.25197.138.21,, =⋅=ycoldM  kNm  83.11197.188.9,, =⋅=ycoldM  kNm 
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13.4197.145.3,, =⋅=xcoldM  kNm  13.4197.145.3,, =⋅=xcoldM  kNm 

 

Total moment using buckling load from rotation: 

Columns 3 and 9.    Columns 1 and 7. 

41.23095.138.21,, =⋅=ycoldM  kNm  82.10095.188.9,, =⋅=ycoldM  kNm 

78.3095.145.3,, =⋅=xcoldM  kNm  78.3095.145.3,, =⋅=xcoldM  kNm 

A third alternative is introduced as this load case subjects the structure to both 
translation and twisting. This third approach is performed by dividing the two load 
contributions from translation and twisting and taking the 2nd order contribution into 
account by multiplying each contribution with the magnification factor related to the 
respectively deflection mode.  

Total moment using buckling load from both translation and rotation: 

Column 3 and 9: ( ) 255095.115.1197.1125.3,, =⋅⋅+⋅=ycoldM  kNm 

78.35095.169.0,, =⋅⋅=xcoldM  kNm   

Column 1 and 7: ( ) 4.125095.115.1197.1125.3,, =⋅⋅−⋅=ycoldM  kNm;      

78.35095.169.0,, =⋅⋅=xcoldM  kNm 

Observe that the moment at the base of the columns in x-direction is only due to 
twisting. The magnification factor used is therefore taken from the buckling load 
through rotation. 

The hand calculations are compared with the FE-analysis and Table 5.27, 5.28 and 
5.29 below presents the results. 

Table 5.27: Results case 3, y-direction, columns 3 and 9. 

Case 3  
y-direction 

Column 3 and 9 

HC-Ncr,y 
[kNm] 

HC-Ncr,rot 
[kNm] 

HC-Ncr,rot,y 
[kNm] 

FEA 
[kNm] 

1st order moment 21.38 21.38 21.38 21.40 

2nd  order moment 
included 25.59 23.41 25 24.67 
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Table 5.28: Results of case 3, y-direction, columns 1 and 7. 

Case 3 
y-direction 

Column 1 and 7 

HC-Ncr,y 
[kNm] 

HC-Ncr,rot 
[kNm] 

HC-Ncr,rot,y 
[kNm] 

FEA 
[kNm] 

1st order moment 9.88 9.88 9.88 10 

2nd  order moment 
included 11.83 10.82 12.4 12.55 

 

Table 5.29: Results of case 3, x-direction, columns 1, 3, 7 and 9. 

Case 3 
x-direction 

Column 1,3,7,9 

HC-Ncr,y 
[kNm] 

HC-Ncr,rot 
[kNm] 

FEA 
[kNm] 

1:st order moment 3.45 3.45 3.45 

Total moment 4.13 3.78 3.69 

 

In Appendix C the deformation pictures from the FE-analyses are presented. The last 
case, case 3, is of special interest as the results in the hand calculation present values 
on the unsafe side considering the usage of the buckling loads from translation and 
rotation. The third approach reveals that separating the loads due to translation and 
twisting and multiplying each contribution with their respective magnification factor, 
presents results which agree better compared to the FE-results.  

Observe that if the assumption that the stabilising columns are not subjected to the 
vertical load and that the polar moment of inertia is used, then the design moments 
will be even more on the unsafe side as shown in section 5.4.  

The results show small differences between the values, between the hand calculations 
and the FE-analyses. The study only reveals the problem concerning the different 
methods and the variations in the values may seem insignificant. It is here to be 
noticed that the values can differ greatly depending on the structure. In very tall 
buildings huge differences can arise, and the effects thereof can result in an under 
dimensioned building.  
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5.6 Study of the overall stiffness equation  

It is not obvious which approach should be used for establishing the buckling load and 
the force distribution between stabilising components of a building.  In Section 4.2.5, 
an example is presented to show a calculation method for a building stabilised with a 
combination of shear walls. The method is applicable for separated walls assumed to 
stabilise in their stiff direction only. Equation (4.24) is used for establishing the 
overall stiffness for the entire structure, C, which is used to determine the critical 
buckling load.  

( )[ ] ( )[ ] ( ) ( )[ ] ( )[ ]CByCCBxC
A
I

CxByBCBCB yTxT
p

yxyx −Σ⋅+−Σ⋅=







−+Σ⋅−Σ⋅−Σ 222222  

                  (4.24) 

Regarding the translation part of the calculation, the method is straight forward but 
the rotation part is questionable as it contains assumptions in polar moment of inertia. 
It is described in Section 4.2.3.6 how the variables y and x in Equation (4.24) 
represent the distance from the actual units rotation centre to the complete structures 
rotation centre in each direction. The equation is therefore suited for systems with 
several separate stabilising units.  

The following example shows a system of only two stabilising walls. The two walls 
are each stabilising in different directions. This system is hard to imagine for a real 
building as it is a bad solution. The example is for educational purposes only, see 
Figure 5.32. 

 

Figure 5.32: Building structure with two stabilising walls. 

The rotation capacity is here investigated for explaining why Equation (4.24) is not 
recommended in all cases. When only one unit is stabilising in each direction, the 
rotation centre is located at the intersection of the two walls stiff directions, see  
Figure 5.32. 
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∑ ⋅
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If the part concerning rotation in Equation (4.24) is studied for this specific case one 
can observe that the expression becomes zero and therefore the root concerning 
buckling through rotation also becomes zero. 

( ) 







−+Σ

A
I

CxByB p
yx

22       ⇒     ( ) 







−⋅+⋅

A
I

CBB p
yx

22 00     ⇒    0=C  

For similar cases, when using the general formula, Equation (4.25), one of the three 
roots equals zero. In general terms, the answer tells us that no buckling will occur 
through rotation. The expression delivers values for buckling through translation only. 
It is obvious that this system has a very low rotation capacity and through the 
assumption that the walls only stabilise in their stiff direction, the rotation capacity 
becomes zero. Still, the walls do actually provide a rotation capacity. The problem 
becomes clearer if we let the two walls be connected as one coupled unit working 
together, i.e. an L-shaped unit. In this case the location of the rotation centre of the L-
shaped unit also represents the RC of the whole structure and the coordinates for the 
RC are the same as in Figure 5.32, see Figure 5.33.  

 

 

Figure 5.33: L-shaped stabilising component. 

Due to interaction between the two stabilising parts, this coupled structure has a 
significantly higher stiffness for stabilising in x- and y-direction and the rotational 
stiffness is also greater. Still, the problem with the applied method remains.  

( ) 
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I
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22 00     ⇒    0=C  

This last case studied reveals that the usage of the method applied can deliver results 
that do not represent the real structure. It has been observed that the method does not 
take into account the components internal rotational stiffness. This approximation can 
in some cases lead to misjudgement of the structural behaviour and the predicted 
response of the structure may greatly disagree with the response of the real building. 
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5.6.1 Coupled and uncoupled approach 

In the pretence of establishing buckling loads, and finally design moments, it is of 
vital importance to approach the structure in a suitable way. To clarify the effects of 
the choice made for approaching a structure at an early stage in the calculation 
process, a numerical example is presented. 

The two cases described below are to be compared regarding the buckling load. Both 
models have the exact same measurements. In Case 1 the stabilising elements are 
considered as a coupled component, i.e. the three walls are unified and act together for 
stabilising the building. The U-shaped element is positioned so that its CG coincides 
with the floor slab’s CG. Case 2 approaches the problem through assuming that the 
three walls are separate. 

 

Figure 5.34: Case 1, coupled walls. 

 

Figure 5.35: Case 2, uncoupled walls. 
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Both models assume that vertical forces are taken by non stabilising columns evenly 
distributed between the slabs (not visible in the figures). The stabilising component(s) 
take horizontal forces only. The models represent a 10 storey building which has the 
same stiffness at each storey and has an evenly distributed horizontal load applied 
through the building. All the walls are solid and have a thickness of 0.2 m and the 
total height of the building is 30 m. 

This example will clarify the effect of the two different approaches. Case 1 is first 
calculated and the second case thereafter. 

 

5.6.2 Case 1 - Coupled approach  

Concerning the U-shaped cross section, the equations for calculating the moment of 
inertia, CG and RC for a U-shape are found in Appendix E. [Samuelsson and Wiberg 
(1993)]. 

Centre of gravity of u-section, c: 
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⋅
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I b
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Stiffness: 

109 1094.598.11030 ⋅=⋅⋅=yEI  m2          109 106.1787.51030 ⋅=⋅⋅=xEI  m2 
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Figure 5.36: Case 1- Coupled walls. 

Calculation of stiffness due to influence of shear: 

Buckling load (primary): Equations (3.11) and (3.38) 

 Shear:   

 y-direction : 144002.03210304.0 9
,, =⋅⋅⋅⋅⋅== yyScr GAN  MN 

x-direction : 96002.0410304.0 9
,, =⋅⋅⋅⋅== xxScr GAN  MN 

 

Bending :  10 storeys   ⇒   kV = 6.8; from Figure 3.13. 

y-direction : 8.448
30

1094.58.6 2

10

2,, =
⋅

==
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y
VyBcr L

EI
kN  MN 

x-direction : 8.1329
30

1076.18.6 2

11

2,, =
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==
h

x
VxBcr L

EI
kN  MN 

Observe that shear deformation has a greater influence in the x-direction due to a high 
buckling load in bending and a low buckling load in shear. 

Total buckling load (primary): Equation (3.19) 
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 y-direction:  2.435

14400
1

8.448
1

1
,, =

+
=ytotcrN  MN 

x-direction:  1168

9600
1

8.1329
1

1
,, =

+
=xtotcrN  MN 

Establishing of Bx and By: Equation (4.15) 

 y-direction: 1010

,,

,, 1076.51094.5
8.448
2.435

⋅=⋅⋅== y
yBcr

ytotcr
y EI

N
N

B  m2 

x-direction: 1111

,,

,, 1055.11076.1
8.1329

1168
⋅=⋅⋅== x

xBcr

xtotcr
x EI

N
N

B  m2 

Polar moment of inertia, Ip: Equations (4.20), (4.22) and (4.23) 

yxp III +=  

40742.2240
12

1220
12

2
3

2
3

=⋅+
⋅

=⋅+
⋅

= Tslab
yx

y yA
LL

I  m4 

80000240
12

2012
12

3
2

3

=⋅+
⋅

=⋅+
⋅

= Tslab
xy

x xA
LL

I  m4 

1207480004074 =+=pI  m4 

Area of floor slab:  2402012 =⋅=slabA  m2 

In this case the RC only dislocates in one direction from CG, yT ≠ 0, xT  = 0. Equation 
(4.30) can therefore be used, see Section 4.2.3.6. 

( )[ ] ( )[ ] ( ) 02222 =
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yxxy yC

A
I

CxByBCBCB
 

The stiffness values are inserted into the equation above and the overall stiffness, C, is 
solved by a calculator or a computer program. The expression will deliver three roots, 
i.e. three different overall stiffness values, two values for translation and one for 
rotation. In this case this method fails, as it will only present two roots representing 
translation capacities. The rotation stiffness is presented as a trivial root C = 0. 

10
1 1076.5 ⋅=C  m2 10

2 102.17 ⋅=C  m2 03 =C  m2 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 

 
164 

It is possible to identify in which direction the three roots belong. The first root C1 
represents the y-direction, while C2 represents the x-direction. Observe that the value 
C2 for the x-direction is greater than the stiffness ∑ (Bx) is. This is an effect of the 
dislocation of the RC from the centre of gravity in the y-direction.  

The result delivers only two critical buckling loads using Equation (4.24)  

1300
30

102.178.6 2

10

, =
⋅

=xcrN  MN 435
30

1076.58.6 2

10

, =
⋅

=ycrN  MN 

 

5.6.3 Case 2 – Uncoupled approach  

When the three walls are treated as uncoupled there is no interaction between the 
three walls. Instead the walls will now only stabilise in their stiff directions. 

Walls in y-direction:   45.0
12

32.0 3

=
⋅

=yI  m4       ⇒      ∑(EI)y=2.7⋅1010  m2 

Wall in x-direction:   067.1
12

42.0 3

=
⋅

=xI  m4     ⇒      ∑(EI)x=3.2⋅1010  m2 

 

Figure 5.37: Case 2. 

Due to symmetry, the RC only dislocates in y-direction affected only by the location 
of the wall stabilising in x-direction. 

xT = 0 m     yT = 1 m 

The following calculations of the stiffnesses with influence of shear, are not shown 
here as the method is an analogy of Case 1. 
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y-direction :  

204,, =yBcrN  MN 14400,, =yScrN  MN    ⇒     201,, =ytotcrN  MN 

x-direction :   

242,, =xBcrN  MN     9600,, =yScrN  MN  ⇒   236,, =xtotcrN  MN 

9106.26 ⋅=Σ yB  m2      9102.31 ⋅=Σ xB  m2 

Equation (4.24) is used with the newly acquired stiffness values. In this case three 
roots are calculated. 

9
1 1011.2 ⋅=C  m2 9

2 106.26 ⋅=C  m2 9
3 109.31 ⋅=C  m2 

The three roots in this case have easily identifiable directions for each root. The 
experience gained through the previously calculated examples described in Section 
5.5.1 reveals that the stiffness in y-direction is not influenced due to asymmetry in y-
direction only. C2 is therefore referring to the overall stiffness in y-direction. It is also 
obvious that C3 is referring to the x-direction and the obtained value is in this case 
slightly higher than ∑(Bx). The dislocation of the rotation centre in y-direction is 
actually a benefit for the capacity in x-direction. In this case the floor slab is not big 
enough for creating a great value of the polar moment of inertia and therefore the 
stiffness in the x-direction receives a slightly higher value. Due to the short distance to 
the RC, the two walls stabilising in y-direction derive a low resistance for rotation. 
Only one wall is stabilising in the x-direction and is not contributing to resist rotation. 
In Case 2, all three roots exist and the critical buckling loads can be established for 
both translation and rotation by using Equation (4.24).  

201
30

106.268.6 2

9

, =
⋅

=ycrN  MN 
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30
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9
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⋅
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16
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9
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⋅

=rotcrN  MN 
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5.6.4 Conclusions  

Comparing the two cases it is obvious that the two different approaches provide 
different critical buckling loads. If this example was an authentic building the cross 
section would probably be calculated as a coupled unit as in Case 1. This example 
reveals a great difference between the two different approaches. In a real building, 
consisting of several stabilising walls bonded together, it is not obvious which method 
should be chosen. Also, it has to be considered if it is possible to build the stabilising 
units according to the chosen approach. It is not always possible to achieve a full 
interaction between the components. Parts of the stabilising structure may have to be 
treated as uncoupled walls not acting together, while with other components it may be 
possible to design them assuming full interaction.  
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5.7 Force distribution in a multi storey structure 

In Section 5.5 a study of the force distribution in a single storey structure is 
undertaken and the results from the FE-analyses and the hand calculation are 
compared. In this investigation the force distribution in a multi storey building is to be 
analysed. The differences between a single storey and a multi storey structure, 
concerning the hand calculations, are that the effects from all the assumptions made 
are greater due to there being more structural parts. The effects of the assumptions 
regarding the stiffness of the floor slabs are in this study influenced by ten floor slabs 
instead of one slab compared to the single store structure. It is suspected in this study 
that the stiffnesses of the slabs, in combination with the distances between the 
stabilising units, have a significant effect on the force distribution in the stabilising 
walls. The twisting effect from walls positioned close to the rotation centre is also 
suspected to influence the force distribution and the behaviour of the structure.   

 

5.7.1 Modelling  

This investigation consider two simple structures (indexed a and b) consisting of four 
stabilising walls. Each structure is to be investigated for two load cases (indexed 1 and 
2), see Table 5.30 and Figure 5.38.  

Table 5.30:  Investigated cases. 

Case Wall situation Load case 

1a Walls at the extremities Translation 

1b Walls close to RC Translation 

2a Walls at the extremities Twisting 

2b Walls close to RC Twisting 

 

 

Figure 5.38: Structure a and b illustrated. 

RC RC 

Structure a Structure b 
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The four walls are all 3 m wide and have a thickness of 0.2 m. The Young’s modulus 
is set to 15 GPa for the walls. The building is 40 meters high consisting of 10 storeys 
with a storey height of 4 m. Each storey is subjected to a distributed horizontal load, 
applied as a line load at the long side of the slabs, of 3 kN/m 

Each case is to be studied by using two different stiffnesses of the floor slabs in the 
FE-analyses. The FE-model using stiff floor slabs refers to slabs with a Young’s 
modulus of 30 GPa and they are 0.3 m thick. The second FE-model has a reduced 
thickness of  0.1 m and a lowered Young’s modulus of 1 GPa. It is to be investigated 
here how the force distribution is affected by a reduced stiffness of the floor slabs. 
The interaction between the walls is suspected to be weaker in the case where the 
slabs are modelled with a lower stiffness. The study is done to reveal how the reduced 
stiffness of the slabs will affect the load distribution between the four walls. A hand 
calculation is also made to compare the stress results. Observe that in the hand 
calculation it is assumed that the slabs are not stiff out of their plane but stiff in their 
plane.  

The complete results from the FE-analyses are presented in Appendix D.  

The forces distributions in the four stabilising walls are presented by graphs 
describing the force distribution over the cross section. To calculate the stresses in 
each wall, the force values are divided with the thickness of the wall.  
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5.7.2 Study of translation  

In the FE-analyses, concerning a translation load case, where stabilising walls are 
placed close to each other and the floor slabs are modelled as being rigid, the position 
of the walls, in the applied load direction, play a significant role for the load 
distribution. In the hand calculations the floor slabs are always considered to be stiff 
in their plane but not stiff out of their plane. With these assumptions it is possible to 
use the hand calculation method concerning force distribution explained in Section 
4.3. The method seems to be a good approximation and the forces subjecting each 
stabilising wall are divided according to the walls specific stiffness. In the FE-models, 
used in this study, the slabs and the stabilising walls are assumed to be fully 
connected. If the floor slabs are interpreted to be rigid, a strong interaction between 
the stabilising walls will create a completely different structure compared to the 
envisaged hand calculation structure.  

If the floor slabs are assumed to be rigid, the two cases shown in Figure 5.38 will have 
stress distributions that differ greatly. Concerning the case to the left in Figure 5.38, 
the stabilising units will have stress distributions that will agree well with the hand 
calculations as the centres of gravity of the walls are aligned. The case to the right, 
having the outer walls repositioned, is not comparable with the hand calculations. 
With a rigid floor slab, i.e. stiff out of plane, the three stabilising units will behave as 
one united cross section interacting together. The outer walls are in this case placed 
completely in the compression zone and the U-shaped cross section in the tensioned 
side (almost completely), see Figure 5.39. The interaction between the stabilising 
units, which occurs when the floor slabs are assumed to be rigid, is not taken into 
account in the hand calculation method and the results from the methods will not 
agree. 

 

Figure 5.39:  Illustration of different stress distributions in the stabilising units due to 
their positioning in a translation load case. 

 

Compression Compression 

Tension Tension 
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5.7.2.1 Case 1a - Walls at the extremities 

 

Figure 5.40: Translation load case, Case 1a. 

Hand calculation: 

Influence from shear deformation in the walls is here neglected as it hardly affects the 
stiffness due to the walls being slender.  

The four walls have the same stiffness: 
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⋅

== xy II  m4   

109 10675.045.01015 ⋅=⋅⋅== yx BB  Nm2 

Forces subjecting walls 1 and 2: 

The distributed load, qh = 3 kN/m, is applied at the long side of the ten floor slabs. 

60010203, =⋅⋅=ytotH  kN 

It is here assumed that the forces are only taken by the walls stabilising in y direction. 

300,2,1 == yy HH  kN  

Bending moment at the base: 

The distributed horizontal load applied at each storey has a load resultant at 22 m 
above the ground. 
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660022300,1,0 =⋅=yM  kNm 

Maximum stresses at the edges of the wall: 

Linear material response is assumed. 

225.1
45.0

106600 3

,1,0 =⋅
⋅

=yσ  MPa 

The stresses are compared with the results from the two models from the FE-analyses. 
Walls 3 and 4 do not have a linear stress distribution because the walls are acting like 
flanges. Wall 3 has tensile stresses while wall 4 has compressive stresses. The values 
presented for walls 1 and 2 are the highest stresses at the edges of the walls while the 
values for walls 3 and 4 represent the mean stresses in each wall. The deflection 
modes and the force distributions are presented in Appendix D. 

Table 5.31:  Case 1a – Translation load case. Maximum stresses compared between 
the models. The values from walls 3 and 4 in the FE-analyses refer to a 
mean value. 

Wall 
HC 

 
[MPa] 

FEA 
E = 30 GPa  t = 0.3 m 

[MPa] 

FEA 
E =  1 GPa  t = 0.1 m 

[MPa] 

1 ±22 ±9.25 ±21 

2 ±22 ±9.25 ±21 

3 0 1.03 0.013 

4 0 -1.01 -0.014 

 

As the walls are positioned far from each other the interaction between the four walls 
is greatly influenced by the stiffness of the floor slabs (stiffness out of plane). Walls 3 
and 4 can be seen as cross sections acting as flanges and their contribution for 
stabilisation is in this case depending on the stiffness of the slabs. Walls 1 and 2 in the 
FE-model, using weak slabs, obtain values that agree well with the hand calculations.  

The same load case is now investigated with the walls positioned closer to each other. 
It is suspected that the interaction between the four walls is much stronger in this case 
due to the closeness of the walls. The force distribution established from the hand 
calculation is the same as presented in Case 1a. 
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5.7.2.2 Case 1b - Walls close to RC 

 

Figure 5.41: Translation load case with walls close to RC, Case 1b. 

Table 5.31 presents the results concerning Case 1b. 

Table 5.32:  Case 1b – Translation load case. Maximum stresses compared between 
the models. The values from walls 3 and 4 in the FE-analyses refer to a 
mean value. 

Wall 
HC 

 
[MPa] 

FEA 
E = 30 GPa  t = 0.3 m 

[MPa] 

FEA 
E = 1 GPa  t = 0.1 m 

[MPa] 

1 ±22 ±7 ±20 

2 ±22 ±7 ±20 

3 0 2.56 0.05 

4 0 -2.36 -0.05 

 

The results from FE-analyses show that a strong interaction occurs between the four 
stabilising walls. The FE model using the weaker slab presents a weaker cooperation 
between the walls. The stresses that occur in walls 3 and 4, concerning the FE-model 
using the stiffer floor slabs, seem to be small compared to walls 1 and 2, but the 
stabilising contribution is actually greater in walls 3 and 4 compared to walls 1 and 2. 
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To estimate the influence from walls 3 and 4, a mean value is taken from the two 
graphs presenting the force distribution of walls 3 and 4 in Appendix D.1.  

The mean value is estimated at 500 kN/m acting along the breadth of the wall, i.e.      
3 m. The walls 3 and 4 are placed 3 m from the CG of the four walls. The CG of the 
four walls is coinciding with the CG of the slab due to symmetry.  

The total force in walls 3 and 4:  15003500 =⋅  kN. 

Moment taken by walls 3 and 4:  9000315002 =⋅⋅  kNm 

Total moment from the applied load: ( ) 132002210203,0 =⋅⋅⋅=totM  kNm 

With this rough estimation it is obvious that walls 3 and 4, which are acting like 
flanges, contribute with over 2/3 of the total moment and significantly influence the 
force distribution. This effect is not assumed to occur for the hand calculation and the 
values are therefore hard to compare between the methods.  

If the contribution from walls 3 and 4 is reduced from the total applied moment the 
remaining moment is taken by walls 1 and 2. 

2100
2

900013200
2,01,0 =

−
== MM  kNm 

Walls 1 and 2 are now subjected with the remaining moment and a new maximum 
stress value is calculated assuming linear stress distribution through the wall. 

75.1
45.0

102100 3

2,01,0 ±=⋅
⋅

==σσ  MPa 

If this value is compared with the stresses from the FE-analysis in Table 5.31, it is 
seen that the results agree. Tables 5.33 and 5.34 below presents a comparison of the 
moments of each wall showing the contribution each wall gives to the total moment. 
The total applied moment is the same for the two cases, Case 1a and 1b, i.e. M0 = 
13200 kNm. 

Table 5.33: Comparison of the moment contribution of the four walls, Case 1a. 

Wall 

HC 
 
 

[kNm] 

HC 
 
 

Mwall / M0 

FEA 
E = 30 GPa

t = 0.3 m 
[kNm] 

FEA  
E = 30 GPa

t = 0.3 m 
Mwall / M0 

FEA 
E =  1 GPa 
t = 0.1 m 
[kNm] 

FEA  
E =  1 GPa 
t = 0.1 m 
Mwall / M0 

1 6600 0.5 2928 0.22 6551 0.496 

2 6600 0.5 2928 0.22 6551 0.496 

3 0 0 3708 0.28 47 0.0035 

4 0 0 3636 0.28 50 0.004 
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Table 5.34: Comparison of the moment contribution of the four walls, Case 1b. 

Wall 

HC 
 
 

[kNm] 

HC 
 
 

Mwall / M0 

FEA 
E = 30 GPa

t = 0.3 m 
[kNm] 

FEA  
E = 30 GPa

t = 0.3 m 
Mwall / M0 

FEA 
E =  1 GPa 
t = 0.1 m 
[kNm] 

FEA  
E =  1 GPa 
t = 0.1 m 
Mwall / M0 

1 6600 0.5 2172 0.165 6510 0.493 

2 6600 0.5 2172 0.165 6510 0.493 

3 0 0 4608 0.35 90 0.007 

4 0 0 4248 0.32 90 0.007 

 

 

5.7.3 Study of twisting 

The cases studied in the previous section show great differences in the stress 
distributions in the building. The torsional stiffness is especially of interest as the 
components own torsional stiffness is not taken into account in the hand calculation 
methods presented in Section 4.5. It is here important to understand the basics of 
twisting phenomena, pure torsion and warping, which are explained in Section 2.3.2.  

The method used in the hand calculation takes the structures resistance to torsion into 
account by combining the different stiffness of the stabilising walls, Bx and By, and 
their distance to the rotation centre. This approach is suitable for walls far from the 
rotation centre as they will almost only move in a lateral direction. Walls positioned 
close to the rotation centre will not only move in a lateral direction but also resist 
torsion by being subjected to twisting themselves. The total stabilising contribution of 
a unit, stabilising a building subjected to twisting, is actually depending on four 
contributions. The component will stabilise by bending stiffness in the stabilising 
direction and by shear stiffness in the stabilising direction. These two contributions in 
combination with the torsional and warping stiffness of the component give the total 
stabilising stiffness. In most cases of hand calculating, three of these four 
contributions are neglected and only stabilising through bending stiffness is taken into 
account. This approximation is on the safe side and is in most cases a good 
approximation. This investigation, Cases 2a and 2b, will present cases where these 
approximations do not interpret the actual behaviour of the structure. 

The effect of twisting will first be explained through the example shown below in 
Figure 5.42. This example is presented to enlighten the fact that stabilising 
components close to the rotation centre have a different behaviour compared to 
stabilising components far from the rotation centre in a case where twisting occurs.  
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Figure 5.42:  Illustration of wall positioning in a twisting load case. 

Four walls are numbered in the figure above and their total torsional resistance is to be 
discussed. Wall 4 is positioned far from the rotation centre and when the building is 
subjected to rotation wall 4 will deflect almost only in y direction, see Figure 5.43. 
The stabilising contributions from this wall are due to bending and shear stiffness in 
the stabilising direction, i.e. y direction. If the wall is slender, shear stiffness can be 
neglected, but if the floor slabs are fully connected to the walls on each storey and are 
very stiff, bending may be resisted by the interaction between the floor slabs and the 
stabilising units. The shear stiffness is then of great importance and can not be 
neglected. 

 

 

 

Figure 5.43:  Illustration of the deflection of the walls when the structure is subjected 
to twisting. 
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Wall 1 is positioned with its rotation centre at the buildings rotation centre and is 
therefore subjected to pure twisting. This wall has no bending or shear contribution in 
its stabilising direction and warping is neglected due to it being a uniform solid 
section. The wall is therefore contributing with its own torsional stiffness which is a 
shear stiffness around its rotation axis, i.e. St Venant stiffness, see Section 2.3.2 

θVwalltwist GKM =1_,        (5.12) 

KV is the torsional stiffness factor of a unit and for walls, which are thin in relation to 

their breadths, KV is estimated to 
3

3

,
btK wallV =  where b is the breadth of the wall and t 

refers to the thickness.  

Wall 3 is more difficult to treat. This wall is subjected to bending and shear in the stiff 
direction but also twisting in this wall, like the effect in wall 1, contributes for 
stabilising the building. Wall 3 is therefore referring a case of lateral torsion. It is 
difficult to establish the total contribution from this wall because the wall is not 
twisting around its own rotation centre and the expression used for wall 1 can not be 
used.  

Wall 2 is a similar case to wall 3 but the bending and shear stiffness are not in its stiff 
direction and this contribution is therefore small. The twisting behaviour is therefore 
somewhere between wall 1 and wall 3. 

The investigation of the force distribution is continued for twisting cases by using the 
same models used in Case 1a and Case 1b. In the translation study the stiffness of the 
slabs at each storey has shown a significant role for the force distribution. The 
following study reveals how the stiffness of the floor slabs, in combination with the 
positioning of the four stabilising walls, will influence the structure’s behaviour when 
it’s subjected to twisting.  
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5.7.3.1 Case 2a – Walls at the extremities  

 

Figure 5.44: Twisting load case, Case 2a. 

Hand calculation: 

Twisting moment: 

The distributed load, qh = 3 kN/m, is applied at half the long side of the ten floor slabs. 
The load resultants from each side have both an eccentricity of 5 m. 
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242722110,1,0 =⋅=yM  kNm 

Linear stress distribution is assumed. 

1.85.1
45.0

102427 3

,1,0 =⋅
⋅

=yσ  MPa 

Walls 3 and 4: x-direction: 

66
62102

63000 22,43 =
⋅+⋅

⋅
⋅== twisttwist HH  kN  

14562266,3,0 =⋅=xM  kNm 

Linear stress distribution is assumed. 

9.45.1
45.0

101456 3

,1,0 =⋅
⋅

=xσ  MPa 

The values from the hand calculation are compared with results from the two FE-
models. 

Table 5.35:  Case 2a – Twisting load case. Maximum stresses compared between the 
models. 

Wall 
HC 

 
[MPa] 

FEA 
E  = 30 GPa  t = 0.3 m 

[MPa] 

FEA 
E  = 1 GPa  t = 0.1 m 

[MPa] 

1 ±8.1 ±3.25 ±7.5 

2 ±8.1 ±3.25 ±7.5 

3 ±4.9 ±1.9 ±4.5 

4 ±4.9 ±1.9 ±4.5 

 

The results show that the stiffness of the floor slabs has a significant effect on the 
force distribution in cases where twisting occurs. The FE-model using the weaker 
floor slabs almost agrees with the hand calculation. The great distances between the 
walls, in combination with weak floor slabs, leads to the interaction between the four 
walls being significantly lower.  

The next case, Case 2b, has the walls positioned in the same way as in Case 1b and 
compared to Case 2a the closer distances between the walls leads to the belief that a 
stronger interaction between the four walls will occur. 
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5.7.3.2 Case 2b – Walls close to the RC 

 

Figure 5.45: Twisting load case with walls close to RC, Case 2b. 

Twisting moment: 

qh = 3 kN/m 
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Force distribution between the four stabilising walls: 

Walls 1 and 2: y-direction: 
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Linear stress distribution is assumed. 
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132
3252

33000 22,43 =
⋅+⋅

⋅== twisttwist HH  kN  

291222132,3,0 =⋅=xM  kNm 

Linear stress distribution is assumed. 
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102912 3

,1,0 =⋅
⋅

=xσ  MPa 

The values from the hand calculation are compared with the results from the two    
FE-models. 

Table 5.36:  Case 2b – Twisting load case. Maximum stresses compared between the 
models. 

Wall HC 
[MPa] 

FEA 
E = 30 GPa  t=0.3m 

[MPa] 

FEA 
E* = 2 GPa  t=0.1m 

[MPa] 

1 ±16.2 ±3.75 ±12.8 

2 ±16.2 ±3.75 ±12.8 

3 ±9.7 ±2.1 ±7.8 

4 ±9.7 ±2.1 ±7.8 

*  This load case, Case 2b, was not able to be run in the FE-program with such a low value of  
      Young’s modulus as 1 GPa. The value had to be increased to 2 GPa. 

This last case, Case 2b, is a special case concerning the twisting of the structure. As it 
has been observed in the previous cases, the stiffness of the floor slabs plays a major 
role for force distributions. What differs between this case and the previous case, Case 
2a, is the location of the four stabilising walls. From the table above, Table 2.35, it is 
observed that even with the weaker floor slabs the FE-model still does not agree with 
the hand calculation. The interaction between the walls is greater in the twisting case 
compared to the translation case. In the translation case the hand calculation agrees 
well with the FE-model using the weak slabs, but in the twisting case the values do 
not agree.  

Earlier in this section, the four stabilising contributions of a wall were presented. In 
the hand calculations only the bending contribution is taken into account and by 
neglecting the other stabilising contributions, the stresses due to bending become very 
high. When the walls are placed far from the rotation centre the deflection of the walls 
in their stiff direction is much greater than all other deflections which are then 
neglected. In this case, the four walls are placed close to the rotation centre. The 
deflection due to twisting of the walls is then significant compared to the deflection of 
the walls in their stiff directions.  The forces are therefore not taken only by bending 
but also through shear. Due to a strong interaction between the slabs and the walls, the 
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walls in each storey are resisted to bend and are forced by the slabs to be straight. The 
force distribution can therefore subjectively be compared with a St. Venant shear 
distribution in a closed cross section subjected to twisting. If only St. Venant stress 
distribution occurs, then no bending stresses would occur at all and only shear stresses 
in the walls would be observed. The last case studied, Case 2b, is a combination of, 
bending, shear in each walls stiff direction and shear occurring through twisting in 
each wall.  

 

 

 

                                  

Figure 5.46: Deflection Case 2a,    Figure 5.47: Deflection Case 2a, 
30 GPa t=0.3 m     1 GPa t=0.1 m
          

Figure 5.46 and Figure 5.47 illustrate the deflection modes of the twisting case for the 
model with the walls positioned at the edges of the building. In Figure 2.14 the 
deflection modes from bending and shear of a tall solid wall are presented. In Figure 
5.47 the slab is weak and the deformations of the walls are considered as bending. The 
hand calculations agree well with this model as bending is only taken into account in 
the hand calculations. Figure 5.46 shows the effect when the stiff floor slabs are 
resisting the walls in each storey to bend and the deformation mode reveals a strong 
influence from shear.  
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Figure 5.48: Deflection. Case 2b,   Figure 5.49: Deflection Case 2b, 
30 GPa,  t=0.3 m              2 GPa,  t=0.1 m
             

The same comparison regarding Case 2a is made for Case 2b where the walls are 
closer to the rotation centre. The effect of twisting in each wall in combination with 
the St. Venant effect, contributes to stabilisation. The bending part is low which 
explains the great differences between the hand calculation and the FE-analyses. The 
deformation figure, Figure 5.48, reveals a low bending deformation in the walls and a 
great shear deformation. The stiff floor slabs are forcing the walls at each storey to be 
straight. Figure 5.49 is showing the case with the weaker slabs and the bending 
stiffness has in this case a greater influence for stabilisation. The walls are, due to the 
weaker floor slabs, able to bend and the shear deformations in the walls are smaller.  

Figure 5.46 and 5.47, Case 2a, can be compared to Figure 5.48 and 5.49, Case 2b. The 
differences in the deflection modes reveal that bending deformation has a greater 
influence when the walls are far from each other and the shear stiffness is lower.  

This thesis has been limited so that deeper investigations are not to be considered in to 
how to calculate the correct stress distribution in cases like Case 2b. It is obvious that 
it is very hard to establish a reasonable stress distribution by hand calculation but a 
deeper investigation with more detailed FE-models is suggested for further studies. 

5.7.3.3 Discussion 

For the cases investigated in sections 5.7.2 and 5.7.3 no interaction between the four 
walls is assumed in the hand calculations. The stresses are therefore much higher 
compared to the FE-analyses. This is because, in the FE-models the connections 
between the stabilising walls and the slabs are fully fixed. In the hand calculation 
method the connections between the stabilising walls and the slabs are assumed to be 
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hinged, i.e. not attracting moments. In the FE-models it is observed that the 
interaction between the walls decreases with a decreasing stiffness (in their plane) of 
the floor slabs and the stresses due to bending in the walls are increasing when the 
stiffness of the slabs is reduced. If the stiffness in the FE-model is further reduced and 
finally equals zero, the values in the FE-analyses will converge to the ones obtained in 
the hand calculation. Observe that here it is the stiffness out of the plane that is an 
issue. The problem occurs in the FE-model when Young’s modulus is reduced to low 
values. The stiffness in the plane is also affected, and bending in the slabs plane will 
then occur and the force distribution is once again influenced. It is therefore hard to 
compare the hand calculation with values obtained from the FE-analyses. The real 
structure probably has friction joints between the slab parts and between the slabs and 
the walls. It is therefore suspected that the complete floor slab will not be able to 
transfer the stresses for obtaining a strong interaction between the stabilising 
components. Concerning concrete slabs cast in situ, the slabs are one unified element 
without joints and therefore it is possible that a stronger interaction occurs between 
the stabilising components. If the slabs, or the connections between the slabs and the 
stabilising units, are not designed for transferring the forces for obtaining a strong 
interaction, then there is a risk for cracking in the most critical parts. The stiffness of 
the slabs or the connections is then partly reduced and the interaction between the 
stabilising components is weakened. 

If a hand calculation is not performed and only the FE-analysis is utilised in design, 
the interaction effect occurring in the FE-model may lead to lower design values, in 
some stabilising components, than are actually occurring in the components. If it is 
not secured that the slabs and the connection between the components are strong 
enough for keeping the interaction, the stabilising components become under 
dimensioned. 

When using FE-analysis it has been observed from this study that the model built up 
in the FE-program has to be very detailed if the model is to resemble the real 
structure. Connections between the elements, for example the stabilising components 
and the slabs, are preferable to be interpreted as joints. If the joints are not considered 
in the FE-model, the slabs should be interpreted as not stiff out of the plane, in order 
to resemble the real structure and to make hand calculations comparable. 

 

5.7.4 Torsional resistance in cores 

In Section 2.3.2 torsional effects on opened and closed cross sections are presented. In 
this section the expressions for torsional stiffness of single cross sections is first taken 
up and is followed by a derivation of an expression for combining torsional stiffness 
of cores together with the contribution from the stabilising walls. The hand calculation 
method used in this thesis to establish the force distribution through a building 
subjected to twisting, does not take into account the torsional resistance of for 
example cores. It is a common solution in tall buildings to use a centrally positioned 
core, also utilised as an elevator shaft, in combination with stabilising walls or 
facades. To include the rotational stiffness of the cores into the expression used for 
establishing the force distribution through twisting, a new expression has to be 
derived. 
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The torsional resistance of a single component has the expression below describing 
the moment contribution from St. Venant and Vlasov. 

'',, θθ WVVtwistStwisttwist EKGKMMM −=+=  (2.5) 

In this study the warping stiffness, i.e. the Vlasov part, is neglected. Instead only the 
stiffness related to pure torsion, i.e. St. Venant, is considered. The final expression 
derived has not been taken from any literature and has been established by the authors 
of this thesis. The expression was established in the final phase of this thesis and it has 
not been fully checked or investigated. The results from the hand calculations using 
this method are compared with the FE-analyses. 

The derivation is based on finding the total deflection at the top of a chosen stabilising 
component. When the deflection is established for a chosen wall it can be utilised for 
deriving the deflection at the top of each stabilising component. When the top 
deflection of a stabilising unit is established the moment and the stress distribution 
along the unit can be derived. 

This investigation starts with a derivation of the new expression by using a structure 
consisting of a U-shaped centred core and two outer stabilising walls, i.e. Case 1. The 
structure is first subjected to a distributed horizontal load, applied at the top of the 
structure on each side, for obtaining a case of twisting. To ensure that the FE-model 
and the hand calculations are compatible, the models are given a very stiff slab, 
between the three stabilising units, which acts like a stiff arm rotating about the 
structure, see Figures 5.50. 

The derived expression is then used for two additional cases, Case 2 and 3, and the 
top deflections established through the new expression are compared with the results 
from the FE-analyses. Case 2 is similar to Case 1 except that the U-shaped core is 
replaced by a closed rectangular cross section. Case 3 uses the same structure as Case 
2 but refers to a ten storey structure where the loads are applied at each storey, see 
Figure 5.51. 

 

Figure 5.50: Case 1, U-shape model, distributed load at the top only. 

RC 

qh 

xwall,RC 

qh 
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Figure 5.51: Case 2, Rectangular-shaped model, distributed load at the top only. 
Case 3,  Distributed load at all 10 storeys.  

 

5.7.4.1 Expression for including torsional stiffness of cores 

Through this derivation Case 1 is used and the load is applied on the top floor only. 
See Figure 5.50. 

The slab is only 1.0 m wide and is acting as a stiff arm between the stabilising 
components. The slab is positioned to the sides of the components, not directly on 
them. This is done in order to keep the U-shaped cross section free without infringing 
on the behaviour of the flanges. The FE-model is then comparable with the model in 
the hand calculation.  

Top deflection of a cantilever wall subjected to a point load at the top: 

EI
LHy walltoptop 3

3
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twist
walltop x
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,,

, =     ⇒     

EIx
LMy
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twist
top 3,

3

⋅
⋅

=        (5.13) 

xwall,RC  is the distance from the wall to the rotation centre of the whole structure. 

Top deflection angle of a twisted centre positioned core: 

θVtwist GKM =       
dx
dm

=θ      ⇒    
V

twist

GK
M

dx
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=     ⇒     

h
V

twist
top L

GK
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RC 

qh 

xwall,RC 

qh 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 

 
186 

(The equation can also be integrated and from the boundary condition at the base, 
mx=0 = 0, the same expression is derived.) 

mtop is here the total angle that will occur from the base to the top of the twisted unit.  

To combine Equation 5.13 with Equation 5.14, the deflection at the wall has to be 
established. 
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⋅
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The two expressions are now treated as a sum of each capacity for resisting a twisting 
moment. 
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    (5.15) 

In this study two stabilising walls are positioned with the same distances from the 
rotation centre and have the same stiffness values. The two walls will therefore 
contribute equally to provide torsional stiffness. The part concerning the stabilising 
wall can therefore be multiplied with 2. 
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In general cases where several walls are stabilising, the stiffness and the distance from 
the rotation centre from each wall, has to be interpreted through Equation (5.16). 
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  (5.16) 

The twisting angle can also be established by dividing with the distance of the chosen 
wall, i.e. xwall,RC   
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It is recommended to use Equation (5.14) and first establish the top deflection of a 
chosen wall. The top deflection can easily be established for the other walls by 
quotients between the distance of the chosen wall, xwall,RC, and the actual wall, as the 
deflection is varying linearly with the distance from the rotation centre. 

 Walls stabilising in y-direction:  walltop
RCwall

RCi
itop y

x
x

y ,
,

,
, ⋅=  

Walls stabilising in x-direction:  walltop
RCwall

RCi
itop y

x
y

y ,
,

,
, ⋅=  

In this example the chosen wall is stabilising in y-direction. 

The calculations of the stiffnesses of the three stabilising units are not presented in the 
following three examples. For coupled cross sections, such as the U-shaped section 
and the rectangular-shaped, the data for calculating the stiffnesses can be found in 
Appendix E. 

Horizontal distributed loads applied on each storey: 

The derivation above is referring to a structure subjected to a horizontal distributed 
load at the top floor. An expression for the deflection at the top of the wall for a load 
case referring to a horizontal distributed load applied at each storey is now to be 
established. This derivation is based on the relationship between the top deflection on 
a cantilever component subjected to a concentrated load at the top and the top 
deflection when the cantilever component is subjected to a distributed horizontal load 
along the height.  

Concerning the distributed load case, the load is summed up and applied at the top of 
the column subjecting the column with a concentrated load instead of a distributed 
load along the height.  

Distributed load :  
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Concentrated load at the top: 
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The two expressions are compared: 
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The expressions are identical except for the 3 and the 8. If the distributed load is 
summed up and placed at the top of the column the deflection will be 8/3 times the 
real deflection when the load is distributed along the column.  

int,, 8
3

potopdisttop yy ⋅=        (5.18) 

The same equation, Equation 5.14, is therefore used for establishing the deflection of 
a chosen wall subjected to a distributed load and is multiplied with 3/8. 
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Observe that Equation (5.18) is an approximation of the real load case. 
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5.7.4.2 Case 1 – U-shaped core 

 

Figure 5.52: Case 1, U-shaped core. 
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Both walls are placed with the same distance from the rotation centre. 
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The calculated values, below the division line in the last expression, reveal the 
contributions from each stabilising component for resisting torsion. The second value, 
124987 N, reveals that the U-shape contributes very little for stabilising compared to 
the walls positioned far from the rotation centre. 
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Figure 5.53: Deflection from FE-analysis, Case 1 

 

The same calculation is now made for a similar building where the U-shaped core is 
replaced by a closed core. 

5.7.4.3 Case 2 – Closed rectangular core, load on top floor 

 

Figure 5.54: Case 2, closed rectangular core, load on top floor. 

1.0== closedwall tt  m 

qh = 3 kN/m    30== −shapeUwall EE  GPa      124.0 == EG  GPa 
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101067.0 ⋅=wallEI  Nm2 114.4, =−shapeUVK m4 

Observe the great differences of the KV-value compared to the U-shaped cross section. 
Closed cross sections are much stronger for resisting torsion. 

300)51103()51103( =⋅⋅⋅+⋅⋅⋅=twistM  kNm 

Both single walls are placed with equal distances from the rotation centre. 
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Figure 5.55: Deflection from FE-analysis, Case 2 

For structures using closed cores, the torsional resistance of the core is important to 
include in the calculations. The last expression reveals that the closed core plays a 
significant role for resisting torsion in the structure. 

The same structure used in Case 2  is now to be calculated for a distributed load case. 
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5.7.4.4 Case 3 – Closed rectangular core, load on all ten floors 

 

Figure 5.56: Case 3, closed rectangular core, load on all ten floors. 

The loads are now applied on each storey. 
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The total twisting moment is now imagined to be reapplied at the top storey only. 
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Figure 5.57: Deflection from FE-analysis, Case 3, loads on all floors. 

5.7.4.5 Results  

The three examples above have been calculated with two different load values and the 
results are compared with FE-analyses. O-shape means the closed rectangular core 
element. 

 

Table 5.37: Results of deflection for torsional resistance investigations. 

Structure/Load case 
Load 

 
[kN/m] 

HC 
Top deflection 

[mm] 

FEA 
Top deflection  

[mm] 

 
FEA/HC

 
 

U-shape – Top floor 3 58.2 52.5 0.90 

U-shape – Top floor 1 19 17.3 0.91 

O-shape – Top floor 3 1.89 1.83 0.97 

O-shape – Top floor 1 0.63 0.61 0.97 

O-shape – All floors 3 7.10 7.00 0.99 

O-shape – All floors 1 2.35 2.33 0.99 
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The hand calculations agree well with the deflections obtained from the FE-analyses. 
The two cases concerning the U-shaped cross section present a slightly higher 
deflection than the FE-analyses produces. In the hand calculation the torsional 
resistance is slightly under estimated. The difference between a closed cross section 
and an open cross section subjected to torsion due to warping. Closed cross sections 
have almost no warping while open ones have. The torsional stiffness due to warping 
is not taken into account in the expressions derived in this section and is probably the 
reason why the U-shaped cross section presents slightly greater deflections. 

 

5.7.5  Warping effects 

Warping effects are considered when designing core elements. An introduction into 
torsional effects was given in chapter 2.3.2 and the application of these effects will be 
dealt with now. This is a theoretical section which does not provide analysis but does 
provide the tools for a possible future study of how to calculate with warping stresses 
included. 

Vasilii Zakharovich Vlasov (1906-1958) was one of the leading developers of theory 
for warping torsion. The equations devised by him are used here and their derivations 
can be seen in Smith and Coull (1991). These equations are designed to be used for 
cores which are subjected to warping. 

For determining rotation: 
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Where: θ = rotation 

 m = torque per unit height 

 KW = warping stiffness cross sectional factor 
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 L = height of building 

 z = signifies where, along the height, the rotation shall be determined 

In order to determine deformations the answer, in radians, must be multiplied with the 
distance from the façade, which is not horizontally loaded, to the rotation centre. In 
order to calculate the total deflection, this value must be then added to the deflection 
from bending and the deflection from shear.  
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For determining twist: 
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          (5.21) 

For determining axial deformations the following equation is used: 

)()(),( z
dz
dszsy θω−=       (5.22) 

Here s signifies the distance from the origin, z the height and ω  is a principal sectorial 
coordinate which is another concept introduced by Vlasov into torsional theory. “A 
sectorial coordinate at a point on the profile of a warping core is the parameter that 
expresses the axial response (i.e., displacement, strain, and stress) at that point, 
relative to the response at other points around the section.” [Smith and Coull (1991)] 

Consider now a core, see Figure 5.57, where the opening of the core is partially closed 
by beams i.e. transversals. The Vlasov effects will cause shears and moments in these 
transversals for which they will have to be designed for.  

For shears in partially connecting beams: 
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Where  Ib = moment of inertia for beam 

 Lb = length of transversal 

 Ω = twice the area enclosed by the middle line of the core profile 

The maximum bending moment in the beam is then:      

2
)()( b

bb
L

zzM ⋅= τ        (5.24) 
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Figure 5.58: Core element partially closed with beams (transversals). 

Vlasov introduced the concept of bimoment B; which is a moment at a specific height 
times that height. Bimoments are then used for calculating the warping stresses.  
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And warping stress is: 

W
W K

B ωσ ⋅
=         (5.26) 

This warping stress must be combined with the bending stress, obtained through 
considering the tower to be a cantilever, in order to get the total axial stresses due to 
horizontal loading. 

For determining rotation, twisting shear in the connecting beams and bending 
moments in the partially connecting beams it is possible to use K-values. This 
considerable hastens the calculation process.  
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This K1-value is taken from a diagram of curves depending on αL and α/L. See Figure 
5.59 for clarification. 
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K2 is used for twisting; see Figure 5.60 
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For determining the bimoment B; K3 is used. See Figure 5.61. 
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For determining shear in the partially connecting beams; is used K4. See Figure 5.62. 
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Figure 5.59: K1 values. [Smith and Coull (1991)] 
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Figure 5.60: K2 values. [Smith and Coull (1991)] 

 

 

Figure 5.61: K3  values. [Smith and Coull (1991)] 
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Figure 5.62: K4  values. [Smith and Coull (1991)] 

This method of reading K-values from diagrams is very fast and effective. Although 
the results from the design curves will not be exactly the same as those calculated 
through the complete equations they are accurate enough to use for preliminary 
designs. [Smith and Coull (1991)] 
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6 Conclusions and recommendations 
 

6.1 Conclusions 

This project has studied calculation methods for investigating stabilising components. 
Buckling due to bending, shear and torsion, deflections, 1st and 2nd order, and 
equations for determining the design forces and moments have been studied. 
Combinations of hand calculation methods and FE-analyses have been used. 

The Vianello iterations, for determining critical buckling load due to bending, have 
proven themselves, against FE-analysis, to be very effective for calculating on 
columns and solid shear walls which have non-uniform stiffness and uneven load 
distributions.  

An investigation has been done of pierced shear walls where the calculation method 
described in Lorentsen et al. (2000) has been compared with FE-analyses. The 
comparisons have shown a wide field of varying inaccuracy and some improvements 
to the equations used have been made. Comparing the pierced shear walls’ critical 
buckling loads and deformations with FE-results shows that the equations used for 
calculating deformations give fairly accurate results and that the equations used for 
determining critical buckling load are very conservative and need improvements. Two 
improvements have been investigated. The first involves the bending transversal 
length c which should be set equal to the width of the gap in the wall and not the 
transversal height plus the width of the gap. This alteration led to much better results. 
Better results are achieved through also subtracting the transversal thickness ht from 
the height Lsec while calculating the shear angle for the bending in the vertical. Both of 
these improvements combined, lead to better results that still land on the safe side of 
the FE-results. Considering pierced shear walls with robust verticals, the shear angle 
for the bending in the vertical can also be set equal to zero in order to achieve better 
results.  

The method of using the polar moment of inertia will provide buckling loads with 
values higher than for a real structure. It follows that the design moment will be lower 
compared to the real structure and the columns will be under dimensioned, i.e. results 
will be obtained that are on the unsafe side. 

Considering force distribution in single storey structures with 1st and 2nd order effects 
it has proved to be very important to be consequent when choosing whether to derive 
the final buckling load through either one of the critical translation buckling loads or 
the critical rotational buckling load. If the actual behaviour of a structure subjected to 
both rotation and translation is required then it is better to accurately apply each 
buckling load for each specific direction so that a more real interpretation can be 
completed  

It has been discovered that the equations for global buckling, Equation (4.24), is 
inadequate for calculating rotational buckling loads. It has been concluded that this 
equation does not take into account a components torsional stiffness. Using this 
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equation may lead to rotation being misjudged and therefore the predicted behaviour 
of a structure may disagree with the structures real response. 

Two approaches exist for calculating on cores. Their investigation concludes that 
different results will be obtained depending on which approach the engineer chooses. 
The uncoupled approach produces lower overall stiffness values than the coupled 
approach. Whether or not one approach is better than the other is debatable because 
either approach will work differently depending on the form of structure being 
investigated. 

Considering multi storey structures it has been concluded that it is difficult to compare 
results because different assumptions are made in FE-analysis and the hand 
calculations. No interaction between the shear walls is assumed in the hand 
calculation which leads to the resulting stress values being considerably higher than 
the FE-results. FE-analyses show an interaction that strongly influences the stresses 
that occur in the stabilising walls. By using weaker plates in the FE-analyses the 
resulting stresses become more comparable with the hand calculations.  Considering 
the results from FE-analyses it is observed that the interaction between the walls 
decreases and that the stresses due to bending in the walls increase, when less stiff 
floor slabs are successively tested. If the stiffness of the floor slabs is further reduced 
to zero, then the results will converge with the hand calculations.  

Considering torsion, it has been concluded that it is vital to consider pure torsional 
resistance (St. Venant) and warping (Vlasov) while designing a structure. Better 
results are obtained through hand calculations that include torsional resistance. 
Warping effects in open cores will lead to axial deformations which in turn will lead 
to large stresses occurring in the connecting floor slabs. If the open core instead has 
beams positioned to partially close the core then these beams will have to be designed 
for shears and moments that will occur because of the warping effects.  

 

6.2 Recommendations 

It is recommended that the structural engineer takes an active roll in the preliminary 
design phase. It may be important for the engineer to discuss stabilising solutions with 
the architect early in the design phase and so hopefully save time and money through 
hindering foreseeable problems. 

Vianello’s iteration method is recommended for determining the critical buckling load 
due to bending. Through this method, can complicated shear walls and columns be 
quickly and effectively investigated and more accurate critical buckling loads 
achieved. 

For calculating buckling loads on pierced shear walls it is recommended that the 
structural engineer develops an understanding, through study, of how the calculation 
method works for different forms of pierced shear wall. It is favourable to be familiar 
with how correct the method used will be, for walls of different degrees of 
slenderness.  
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The polar moment of inertia may produce design values which lead to under 
dimensioned structures. It is therefore recommended that this approach is 
implemented carefully. 

It is highly recommended that an understanding of torsional buckling is properly 
applied. Attention to St. Venant and Vlasov effects is paramount when calculating on 
cores; specifically St. Venant for closed cross sections and Vlasov for open or 
partially closed cross sections. 

 

6.3 Further studies 

It would be very interesting to see if a relationship between variables concerning 
pierced shear walls could be established. This thesis did attempt such a study while 
searching for a shear factor and further studies may reach a significant conclusion that 
may further simplify calculation methods for pierced shear walls. An investigation of 
non linear behaviour of pierced shear walls is also of further interest. 

A study of the interaction between stabilising components and floor slabs concerning 
how the interaction is interpreted in FE-analysis and hand calculations would be 
interesting. Results of a further investigation may lead to better calculation methods or 
at least to a better understanding of how the interaction is interpreted by FE-
programmes. 
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APPENDIX A: Vianello iterations  

Four Vianello iterations made in excel are presented in this appendix. The four 
models represent solid stabilising walls in a 10 storey building. Each storey height is  
3 m and the total height is 30 m. Each storey is divided into 4 increments. The results 
are compared in Section 5.2. 
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APPENDIX A: Vianello iterations 

 

Case 1: Even load; b = 4 m; E = 15 GPa in top half; E = 30 GPa in bottom half. 

 

dx 0.025  N 1        

L 1  EI 1        

el 40           

            

  x/L N 
tower y ya 

M 
tower EI y'' y' yb ya/yb 

New 
y 

0 1.00 1.00 1.00 0.00 0.00 0.50 0.00 2.42 0.00 0.00 0.00 

1 0.98 0.00 0.95 0.05 0.05 0.50 0.10 2.41 0.06 1.22 0.04 

2 0.95 0.00 0.90 0.10 0.10 0.50 0.20 2.41 0.12 1.24 0.08 

3 0.93 0.00 0.86 0.14 0.14 0.50 0.29 2.40 0.18 1.25 0.12 

4 0.90 1.00 0.81 0.19 0.19 0.50 0.38 2.39 0.24 1.27 0.16 

5 0.88 0.00 0.77 0.23 0.28 0.50 0.56 2.38 0.30 1.28 0.20 

6 0.85 0.00 0.72 0.28 0.37 0.50 0.73 2.36 0.36 1.30 0.24 

7 0.83 0.00 0.68 0.32 0.45 0.50 0.90 2.34 0.42 1.31 0.28 

8 0.80 1.00 0.64 0.36 0.53 0.50 1.06 2.31 0.48 1.33 0.31 

9 0.78 0.00 0.60 0.40 0.65 0.50 1.30 2.28 0.54 1.34 0.35 

10 0.75 0.00 0.56 0.44 0.76 0.50 1.53 2.24 0.59 1.35 0.39 

11 0.73 0.00 0.53 0.47 0.87 0.50 1.75 2.20 0.65 1.37 0.43 

12 0.70 1.00 0.49 0.51 0.98 0.50 1.96 2.15 0.70 1.38 0.46 

13 0.68 0.00 0.46 0.54 1.12 0.50 2.24 2.09 0.76 1.39 0.50 

14 0.65 0.00 0.42 0.58 1.25 0.50 2.50 2.03 0.81 1.40 0.53 

15 0.63 0.00 0.39 0.61 1.38 0.50 2.76 1.96 0.86 1.41 0.57 

16 0.60 1.00 0.36 0.64 1.50 0.50 3.00 1.88 0.91 1.42 0.60 

17 0.58 0.00 0.33 0.67 1.65 0.50 3.29 1.80 0.96 1.43 0.63 

18 0.55 0.00 0.30 0.70 1.79 0.50 3.58 1.71 1.00 1.44 0.66 

19 0.53 0.00 0.28 0.72 1.92 0.50 3.84 1.62 1.04 1.44 0.69 
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  x/L N 
tower y ya 

M 
tower EI y'' y' yb ya/yb 

New 
y 

21 0.48 0.00 0.23 0.77 2.20 1.00 2.20 1.51 1.12 1.45 0.74 

22 0.45 0.00 0.20 0.80 2.34 1.00 2.34 1.45 1.16 1.46 0.76 

23 0.43 0.00 0.18 0.82 2.47 1.00 2.47 1.39 1.20 1.46 0.79 

24 0.40 1.00 0.16 0.84 2.59 1.00 2.59 1.33 1.23 1.47 0.81 

25 0.38 0.00 0.14 0.86 2.73 1.00 2.73 1.26 1.27 1.47 0.83 

26 0.35 0.00 0.12 0.88 2.85 1.00 2.85 1.19 1.30 1.48 0.85 

27 0.33 0.00 0.11 0.89 2.97 1.00 2.97 1.11 1.33 1.48 0.87 

28 0.30 1.00 0.09 0.91 3.08 1.00 3.08 1.04 1.35 1.49 0.89 

29 0.28 0.00 0.08 0.92 3.20 1.00 3.20 0.96 1.38 1.49 0.91 

30 0.25 0.00 0.06 0.94 3.30 1.00 3.30 0.87 1.40 1.50 0.92 

31 0.23 0.00 0.05 0.95 3.40 1.00 3.40 0.79 1.43 1.50 0.94 

32 0.20 1.00 0.04 0.96 3.48 1.00 3.48 0.70 1.45 1.51 0.95 

33 0.18 0.00 0.03 0.97 3.56 1.00 3.56 0.61 1.46 1.51 0.96 

34 0.15 0.00 0.02 0.98 3.64 1.00 3.64 0.52 1.48 1.51 0.97 

35 0.13 0.00 0.02 0.98 3.70 1.00 3.70 0.43 1.49 1.52 0.98 

36 0.10 1.00 0.01 0.99 3.75 1.00 3.75 0.33 1.50 1.52 0.99 

37 0.08 0.00 0.01 0.99 3.79 1.00 3.79 0.24 1.51 1.52 0.99 

38 0.05 0.00 0.00 1.00 3.83 1.00 3.83 0.14 1.52 1.52 1.00 

39 0.03 0.00 0.00 1.00 3.84 1.00 3.84 0.05 1.52 1.52 1.00 

40 0.00 1.00 0.00 1.00 3.85 1.00 3.85 0.00 1.52 1.52 1.00 

  10.00        1.42  

            

 k 7.03   E t b L I  E A 

     3.00E+10 0.50 4.00 30.0 2.67 3.00E+10 2.00 

            

 Final k 6.36   Ncr,B 565 MN     
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Case 2: Uneven load; b = 4 m; E = 15 GPa in top half; E = 30 GPa in bottom half. 

 

dx 0.025  N 1        

L 1  EI 1        

el 40           

            

  x/L N 
tower 

y ya M 
tower 

EI y'' y' yb ya/yb New 
y 

0 1.00 0.50 1.00 0.00 0.00 0.50 0.00 1.28 0.00 0.00 0.00 

1 0.98 0.00 0.95 0.05 0.02 0.50 0.05 1.28 0.03 0.65 0.04 

2 0.95 0.00 0.90 0.10 0.05 0.50 0.10 1.28 0.06 0.66 0.08 

3 0.93 0.00 0.86 0.14 0.07 0.50 0.14 1.28 0.10 0.67 0.12 

4 0.90 0.50 0.81 0.19 0.10 0.50 0.19 1.27 0.13 0.67 0.16 

5 0.88 0.00 0.77 0.23 0.14 0.50 0.28 1.26 0.16 0.68 0.19 

6 0.85 0.00 0.72 0.28 0.18 0.50 0.37 1.25 0.19 0.69 0.23 

7 0.83 0.00 0.68 0.32 0.22 0.50 0.45 1.24 0.22 0.70 0.27 

8 0.80 0.50 0.64 0.36 0.27 0.50 0.53 1.23 0.25 0.70 0.31 

9 0.78 0.00 0.60 0.40 0.32 0.50 0.65 1.21 0.28 0.71 0.35 

10 0.75 0.00 0.56 0.44 0.38 0.50 0.76 1.19 0.31 0.72 0.38 

11 0.73 0.00 0.53 0.47 0.44 0.50 0.87 1.17 0.34 0.73 0.42 

12 0.70 0.50 0.49 0.51 0.49 0.50 0.98 1.15 0.37 0.73 0.45 

13 0.68 0.00 0.46 0.54 0.56 0.50 1.12 1.12 0.40 0.74 0.49 

14 0.65 0.00 0.42 0.58 0.63 0.50 1.25 1.09 0.43 0.75 0.52 

15 0.63 0.00 0.39 0.61 0.69 0.50 1.38 1.05 0.46 0.75 0.56 

16 0.60 0.50 0.36 0.64 0.75 0.50 1.50 1.02 0.48 0.76 0.59 

17 0.58 0.00 0.33 0.67 0.82 0.50 1.65 0.98 0.51 0.76 0.62 

18 0.55 0.00 0.30 0.70 0.89 0.50 1.79 0.93 0.53 0.77 0.65 

19 0.53 0.00 0.28 0.72 0.96 0.50 1.92 0.88 0.56 0.77 0.68 

20 0.50 1.00 0.25 0.75 1.03 1.00 1.03 0.86 0.58 0.77 0.70 
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  x/L N 
tower 

y ya M 
tower 

EI y'' y' yb ya/yb New 
y 

21 0.48 0.00 0.23 0.77 1.11 1.00 1.11 0.83 0.60 0.78 0.73 

22 0.45 0.00 0.20 0.80 1.19 1.00 1.19 0.80 0.62 0.78 0.76 

23 0.43 0.00 0.18 0.82 1.27 1.00 1.27 0.77 0.64 0.78 0.78 

24 0.40 1.00 0.16 0.84 1.34 1.00 1.34 0.74 0.66 0.79 0.80 

25 0.38 0.00 0.14 0.86 1.43 1.00 1.43 0.70 0.68 0.79 0.83 

26 0.35 0.00 0.12 0.88 1.51 1.00 1.51 0.66 0.70 0.79 0.85 

27 0.33 0.00 0.11 0.89 1.58 1.00 1.58 0.62 0.71 0.80 0.87 

28 0.30 1.00 0.09 0.91 1.66 1.00 1.66 0.58 0.73 0.80 0.89 

29 0.28 0.00 0.08 0.92 1.73 1.00 1.73 0.54 0.74 0.80 0.90 

30 0.25 0.00 0.06 0.94 1.81 1.00 1.81 0.49 0.76 0.81 0.92 

31 0.23 0.00 0.05 0.95 1.87 1.00 1.87 0.45 0.77 0.81 0.93 

32 0.20 1.00 0.04 0.96 1.93 1.00 1.93 0.40 0.78 0.81 0.95 

33 0.18 0.00 0.03 0.97 1.99 1.00 1.99 0.35 0.79 0.82 0.96 

34 0.15 0.00 0.02 0.98 2.04 1.00 2.04 0.30 0.80 0.82 0.97 

35 0.13 0.00 0.02 0.98 2.09 1.00 2.09 0.24 0.81 0.82 0.98 

36 0.10 1.00 0.01 0.99 2.13 1.00 2.13 0.19 0.81 0.82 0.99 

37 0.08 0.00 0.01 0.99 2.16 1.00 2.16 0.14 0.82 0.82 0.99 

38 0.05 0.00 0.00 1.00 2.18 1.00 2.18 0.08 0.82 0.82 1.00 

39 0.03 0.00 0.00 1.00 2.20 1.00 2.20 0.03 0.82 0.82 1.00 

40 0.00 1.00 0.00 1.00 2.20 1.00 2.20 0.00 0.82 0.82 1.00 

  7.50        0.76  

            

 k 9.84   E t b L I  E A 

     3.00E+10 0.50 4.00 30.00 2.67 3.00E+10 2.00 

            

 final k 8.65   Ncr,B 769 MN     
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Case 3: Uneven load; b = 3 m; E = 15 GPa in top half; E = 30 GPa in bottom half. 

 

dx 0.025  N 1        

L 1  EI 1        

el 40           

            

  x/L 
N 

tower y ya 
M 

tower EI y'' y' yb ya/yb 
New 

y 

0 1.00 0.50 1.00 0.00 0.00 0.50 0.00 1.27 0.00 0.00 0.00 

1 0.98 0.00 0.95 0.05 0.02 0.50 0.05 1.27 0.03 0.64 0.04 

2 0.95 0.00 0.90 0.10 0.05 0.50 0.10 1.26 0.06 0.65 0.08 

3 0.93 0.00 0.86 0.14 0.07 0.50 0.14 1.26 0.09 0.66 0.12 

4 0.90 0.50 0.81 0.19 0.10 0.50 0.19 1.26 0.13 0.67 0.16 

5 0.88 0.00 0.77 0.23 0.14 0.50 0.28 1.25 0.16 0.67 0.20 

6 0.85 0.00 0.72 0.28 0.18 0.50 0.37 1.24 0.19 0.68 0.23 

7 0.83 0.00 0.68 0.32 0.22 0.50 0.45 1.23 0.22 0.69 0.27 

8 0.80 0.50 0.64 0.36 0.27 0.50 0.53 1.21 0.25 0.70 0.31 

9 0.78 0.00 0.60 0.40 0.32 0.50 0.65 1.20 0.28 0.70 0.35 

10 0.75 0.00 0.56 0.44 0.38 0.50 0.76 1.18 0.31 0.71 0.38 

11 0.73 0.00 0.53 0.47 0.44 0.50 0.87 1.16 0.34 0.72 0.42 

12 0.70 0.50 0.49 0.51 0.49 0.50 0.98 1.13 0.37 0.72 0.46 

13 0.68 0.00 0.46 0.54 0.56 0.50 1.12 1.11 0.40 0.73 0.49 

14 0.65 0.00 0.42 0.58 0.63 0.50 1.25 1.07 0.43 0.74 0.53 

15 0.63 0.00 0.39 0.61 0.69 0.50 1.38 1.04 0.45 0.74 0.56 

16 0.60 0.50 0.36 0.64 0.75 0.50 1.50 1.00 0.48 0.75 0.59 

17 0.58 0.00 0.33 0.67 0.82 0.50 1.65 0.96 0.50 0.75 0.62 

18 0.55 0.00 0.30 0.70 0.89 0.50 1.79 0.92 0.53 0.76 0.65 

19 0.53 0.00 0.28 0.72 0.96 0.50 1.92 0.87 0.55 0.76 0.68 
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  x/L 
N 

tower y ya 
M 

tower EI y'' y' yb ya/yb 
New 

y 

20 0.50 1.00 0.25 0.75 1.03 1.00 1.03 0.84 0.57 0.76 0.71 

21 0.48 0.00 0.23 0.77 1.11 1.00 1.11 0.81 0.59 0.77 0.73 

22 0.45 0.00 0.20 0.80 1.19 1.00 1.19 0.79 0.61 0.77 0.76 

23 0.43 0.00 0.18 0.82 1.27 1.00 1.27 0.75 0.63 0.77 0.78 

24 0.40 1.00 0.16 0.84 1.34 1.00 1.34 0.72 0.65 0.78 0.81 

25 0.38 0.00 0.14 0.86 1.43 1.00 1.43 0.68 0.67 0.78 0.83 

26 0.35 0.00 0.12 0.88 1.51 1.00 1.51 0.65 0.69 0.78 0.85 

27 0.33 0.00 0.11 0.89 1.58 1.00 1.58 0.61 0.70 0.79 0.87 

28 0.30 1.00 0.09 0.91 1.66 1.00 1.66 0.57 0.72 0.79 0.89 

29 0.28 0.00 0.08 0.92 1.73 1.00 1.73 0.52 0.73 0.79 0.91 

30 0.25 0.00 0.06 0.94 1.81 1.00 1.81 0.48 0.75 0.80 0.92 

31 0.23 0.00 0.05 0.95 1.87 1.000 1.87 0.43 0.76 0.80 0.94 

32 0.20 1.00 0.04 0.96 1.93 1.000 1.93 0.38 0.77 0.80 0.95 

33 0.18 0.00 0.03 0.97 1.99 1.000 1.99 0.33 0.78 0.80 0.96 

34 0.15 0.00 0.02 0.98 2.04 1.000 2.04 0.28 0.79 0.80 0.97 

35 0.13 0.00 0.02 0.98 2.09 1.000 2.09 0.23 0.79 0.81 0.98 

36 0.10 1.00 0.01 0.99 2.13 1.000 2.13 0.18 0.80 0.81 0.99 

37 0.08 0.00 0.01 0.99 2.16 1.000 2.16 0.12 0.80 0.81 0.99 

38 0.05 0.00 0.00 1.00 2.18 1.000 2.18 0.07 0.81 0.81 1.00 

39 0.03 0.00 0.00 1.00 2.20 1.000 2.20 0.01 0.81 0.81 1.00 

40 0.00 1.00 0.00 1.00 1.00 1.000 1.00 0.00 0.81 0.81 1.00 

  7.50        0.75  

            

 k 9.98   E t b L I  E A 

     3.00E+10 0.50 3.00 30.00 1.13 3.00E+10 1.50 

            

 final k 8.65   Ncr,B 324 MN     
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Case 4: Uneven load; b = 8 m; E = 15 GPa in top half; E = 30 GPa in bottom half. 

 

dx 0.025  N 1        

L 1  EI 1        

el 40           

            

  x/L N 
tower y ya 

M 
tower EI y'' y' yb ya/yb 

New 
y 

0 1.00 0.50 1.00 0.00 0.00 0.50 0.00 1.27 0.00 0.00 0.00 

1 0.98 0.00 0.95 0.05 0.02 0.50 0.05 1.27 0.03 0.64 0.04 

2 0.95 0.00 0.90 0.10 0.05 0.50 0.10 1.26 0.06 0.65 0.08 

3 0.93 0.00 0.86 0.14 0.07 0.50 0.14 1.26 0.09 0.66 0.12 

4 0.90 0.50 0.81 0.19 0.10 0.50 0.19 1.26 0.13 0.67 0.16 

5 0.88 0.00 0.77 0.23 0.14 0.50 0.28 1.25 0.16 0.67 0.20 

6 0.85 0.00 0.72 0.28 0.18 0.50 0.37 1.24 0.19 0.68 0.23 

7 0.83 0.00 0.68 0.32 0.22 0.50 0.45 1.23 0.22 0.69 0.27 

8 0.80 0.50 0.64 0.36 0.27 0.50 0.53 1.21 0.25 0.70 0.31 

9 0.78 0.00 0.60 0.40 0.32 0.50 0.65 1.20 0.28 0.70 0.35 

10 0.75 0.00 0.56 0.44 0.38 0.50 0.76 1.18 0.31 0.71 0.38 

11 0.73 0.00 0.53 0.47 0.44 0.50 0.87 1.16 0.34 0.72 0.42 

12 0.70 0.50 0.49 0.51 0.49 0.50 0.98 1.13 0.37 0.72 0.46 

13 0.68 0.00 0.46 0.54 0.56 0.50 1.12 1.11 0.40 0.73 0.49 

14 0.65 0.00 0.42 0.58 0.63 0.50 1.25 1.07 0.43 0.74 0.53 

15 0.63 0.00 0.39 0.61 0.69 0.50 1.38 1.04 0.45 0.74 0.56 

16 0.60 0.50 0.36 0.64 0.75 0.50 1.50 1.00 0.48 0.75 0.59 

17 0.58 0.00 0.33 0.67 0.82 0.50 1.65 0.96 0.50 0.75 0.62 

18 0.55 0.00 0.30 0.70 0.89 0.50 1.79 0.92 0.53 0.76 0.65 

19 0.53 0.00 0.28 0.72 0.96 0.50 1.92 0.87 0.55 0.76 0.68 
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  x/L N 
tower y ya 

M 
tower EI y'' y' yb ya/yb 

New 
y 

20 0.50 1.00 0.25 0.75 1.03 1.00 1.03 0.84 0.57 0.76 0.71 

21 0.48 0.00 0.23 0.77 1.11 1.00 1.11 0.81 0.59 0.77 0.73 

22 0.45 0.00 0.20 0.80 1.19 1.00 1.19 0.79 0.61 0.77 0.76 

23 0.43 0.00 0.18 0.82 1.27 1.00 1.27 0.75 0.63 0.77 0.78 

24 0.40 1.00 0.16 0.84 1.34 1.00 1.34 0.72 0.65 0.78 0.81 

25 0.38 0.00 0.14 0.86 1.43 1.00 1.43 0.68 0.67 0.78 0.83 

26 0.35 0.00 0.12 0.88 1.51 1.00 1.51 0.65 0.69 0.78 0.85 

27 0.33 0.00 0.11 0.89 1.58 1.00 1.58 0.61 0.70 0.79 0.87 

28 0.30 1.00 0.09 0.91 1.66 1.00 1.66 0.57 0.72 0.79 0.89 

29 0.28 0.00 0.08 0.92 1.73 1.00 1.73 0.52 0.73 0.79 0.91 

30 0.25 0.00 0.06 0.94 1.81 1.00 1.81 0.48 0.75 0.80 0.92 

31 0.23 0.00 0.05 0.95 1.87 1.00 1.87 0.43 0.76 0.80 0.94 

32 0.20 1.00 0.04 0.96 1.93 1.00 1.93 0.38 0.77 0.80 0.95 

33 0.18 0.00 0.03 0.97 1.99 1.00 1.99 0.33 0.78 0.80 0.96 

34 0.15 0.00 0.02 0.98 2.04 1.00 2.04 0.28 0.79 0.80 0.97 

35 0.13 0.00 0.02 0.98 2.09 1.00 2.09 0.23 0.79 0.81 0.98 

36 0.10 1.00 0.01 0.99 2.13 1.00 2.13 0.18 0.80 0.81 0.99 

37 0.08 0.00 0.01 0.99 2.16 1.00 2.16 0.12 0.80 0.81 0.99 

38 0.05 0.00 0.00 1.00 2.18 1.00 2.18 0.07 0.81 0.81 1.00 

39 0.03 0.00 0.00 1.00 2.20 1.00 2.20 0.01 0.81 0.81 1.00 

40 0.00 1.00 0.00 1.00 1.00 1.00 1.00 0.00 0.81 0.81 1.00 

  7.50        0.75  

            

 k 9.98   E t b L I  E A 

     3.00E+10 0.50 8.00 30.00 21.33 3.00E+10 4.00 

            

 final k 8.65   Ncr,B 6150 MN     
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APPENDIX B.  Results from all investigated pierced shear 
walls 

The walls are tabulated on two pages and each wall is given a number for simplicity. 
The numbers are only relative for this appendix and are not referred to in the text.  
The results are discussed in chapter 5.3.  

This appendix is useful for comparing with real walls and to draw conclusions how 
the calculation method concerning the buckling loads is suitable for the real wall. 
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APPENDIX C.  Force distribution in single storey structures 

Appendix C presents the deformation figures and load application from the             
FE-analyses of a single storey structure. The figure below illustrates the identification 
numbers of the columns for comparing with the hand calculations in Section 5.5.2, 
5.5.3 and 5.5.4.  
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APPENDIX C.  Force distribution in single storey structures  

Load application and deformation. Case 1 – Translation  
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APPENDIX C.  Force distribution in single storey structures  

Load application and deformation. Case 1 – Translation with vertical load 
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APPENDIX C.  Force distribution in single storey structures  

Load application and deformation. Case 2 – Twisting  
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APPENDIX C.  Force distribution in single storey structures  

Load application and deformation. Case 2 – Twisting with vertical load. 
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APPENDIX C.  Force distribution in single storey structures  

Load application and deformation. Case 3 – Combined translation and twisting. 
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APPENDIX C.  Force distribution in single storey structures  

Load application and deformation. Case 3 – Combined translation and twisting with 
vertical load. 
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APPENDIX D  Force distribution in a multi storey structure  

The investigation of the force distribution in a multi storey structure considers two 
models. The numbering of the four walls, used in the hand calculation in Section 5.7.2 
and 5.7.3, are explained by the figure below for comparing the FE-results with the 
hand calculation results. The force distribution in the four walls is presented in a 
graph for each wall. The graphs presents values of the force per meter and are plotted 
from the walls edge to the right edge when the wall is viewed from the inside, i.e. 
viewed from the centre of the four walls to the actual wall presented. 

 

 

 

The figures concerning the deformation pictures of the four walls at the lowest storey 
and the floor slabs in this appendix, Appendix D, are viewed from the underneath.  
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APPENDIX D.1  Force distribution in a multi-storey structure  

Load applications and figure illustrations. Case 1b – Translation  

Floor slab: E = 1Gpa    t = 0.1 m 
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APPENDIX D.1  Force distribution in a multi-storey structure  

Deformation figures. Case 1b – Translation  

Floor slab: E = 1Gpa    t = 0.1 m 
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APPENDIX D.1  Force distribution in a multi-storey structure  

Force distribution in wall 1 and 2.  Case 1b – Translation  

Floor slab: E = 1Gpa    t = 0.1 m 
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APPENDIX D.1  Force distribution in a multi-storey structure  

Force distribution in wall 3 and 4.  Case 1b – Translation  

Floor slab: E = 1Gpa    t = 0.1 m 
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APPENDIX D.1  Force distribution in a multi-storey structure  

Load applications and figure illustrations. Case 1b – Translation  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX D.1  Force distribution in a multi-storey structure  

Deformation figures. Case 1b – Translation  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX D.1  Force distribution in a multi-storey structure  

Force distribution in wall 1 and 2.  Case 1b – Translation  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX D.1  Force distribution in a multi-storey structure  

Force distribution in wall 3 and 4.  Case 1b – Translation  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX D.2  Force distribution in a multi-storey structure  

Load applications and figure illustrations. Case 2b – Twisting  

Floor slab: E = 2Gpa    t = 0.1 m 
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APPENDIX D.2  Force distribution in a multi-storey structure  

Deformation figures Case 2b – Twisting  

Floor slab: E = 2Gpa    t = 0.1 m 
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APPENDIX D.2  Force distribution in a multi-storey structure  

Load distribution in wall 1 and 2.  Case 2b – Twisting  

Floor slab: E = 2Gpa    t = 0.1 m 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 

 
236 

APPENDIX D.2  Force distribution in a multi-storey structure  

Load distribution in wall 3 and 4.  Case 2b – Twisting  

Floor slab: E = 2Gpa    t = 0.1 m 
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APPENDIX D.2  Force distribution in a multi-storey structure  

Load applications and figure illustrations. Case 2b – Twisting  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX D.2  Force distribution in a multi-storey structure  

Deformation figures. Case 2b – Twisting  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX D.2  Force distribution in a multi-storey structure  

Load distribution in wall 1 and 2. Case 2b – Twisting  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX D.2  Force distribution in a multi-storey structure  

Load distribution in wall 3 and 4. Case 2b – Twisting  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX D.3  Force distribution in a multi-storey structure  

Load applications and figure illustrations. Case 1a – Translation  

Floor slab: E = 1 Gpa    t = 0.1 m 
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APPENDIX D.3  Force distribution in a multi-storey structure  

Deformation figures. Case 1a – Translation  

Floor slab: E = 1 Gpa    t = 0.1 m 
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APPENDIX D.3  Force distribution in a multi-storey structure  

Force distribution in wall 1 and 2. Case 1a – Translation  

Floor slab: E = 1 Gpa    t = 0.1 m 
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APPENDIX D.3  Force distribution in a multi-storey structure  

Force distribution in wall 3 and 4. Case 1a – Translation  

Floor slab: E = 1 Gpa    t = 0.1 m 
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APPENDIX D.3  Force distribution in a multi-storey structure  

Load applications and figure illustrations. Case 1a – Translation  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX D.3  Force distribution in a multi-storey structure  

Deformation figures. Case 1a – Translation  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX D.3  Force distribution in a multi-storey structure  

Force distribution in wall 1 and 2. Case 1a – Translation  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX D.3  Force distribution in a multi-storey structure  

Force distribution in wall 3 and 4. Case 1a – Translation  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX D.4  Force distribution in a multi-storey structure  

Load applications and figure illustrations. Case 2a – Twisting  

Floor slab: E = 1 Gpa    t = 0.1 m 
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APPENDIX D.4  Force distribution in a multi-storey structure  

Deformation figures. Case 2a – Twisting  

Floor slab: E = 1 Gpa    t = 0.1 m 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 

 
251

APPENDIX D.4  Force distribution in a multi-storey structure  

Force distribution in wall 1 and 2. Case 2a – Twisting  

Floor slab: E = 1 Gpa    t = 0.1 m 
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APPENDIX D.4  Force distribution in a multi-storey structure  

Force distribution in wall 3 and 4. Case 2a – Twisting  

Floor slab: E = 1 Gpa    t = 0.1 m 
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APPENDIX D.4  Force distribution in a multi-storey structure  

Load applications and figure illustrations. Case 2a – Twisting  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX D.4  Force distribution in a multi-storey structure  

Deformation figures. Case 2a – Twisting  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX D.4  Force distribution in a multi-storey structure  

Force distribution in wall 1 and 2. Case 2a – Twisting  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX D.4  Force distribution in a multi-storey structure  

Force distribution in wall 3 and 4. Case 2a – Twisting  

Floor slab: E = 30 Gpa    t = 0.3 m 
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APPENDIX E Equations for coupled cross sections. 

[Samuelsson & Wiberg (1995)] 

 

 

 

 

 

 

 

 

 

 

c =  distance to center of gravity  [m] 
e = distance to rotation centre [m] 
Iy= moment of inertia around the y axis  [m4]
Ix= moment of inertia around the x axis  [m4]
Kv= factor of torsional resistance  [m4] 
Kw=factor of warping resistance  [m6] 
Wx= twisting resistance 

b
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APPENDIX F  Calculation of buckling load in MATHCAD  
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