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Stability of Tall Buildings

DAVID GUSTAFSSON & JOSEPH HEHIR
Department of Civil and Environmental Engineering
Division of Structural Engineering

Concrete Structures

Chalmers University of Technology

ABSTRACT

The methods used for stability calculations of columns, solid shear walls, pierced
shear walls, coupled and uncoupled components, cores, single storey structures and
multi storey structures have been examined. The examination performed in order to
ascertain short comings or advantages for different stabilising components and
systems.

Analyses were made of deflection and buckling combining bending and shear for
columns, solid shear walls and pierced shear walls. Calculation methods for single
and multi storey structures concerning deflection and buckling due to translation,
rotation or a combination of the two are analysed and the results are compared with
finite element analyses results. The importance of pure torsion is somewhat neglected
in these methods and therefore a method was devised for including a components
torsional resistance in the calculations.

The calculation methods are computer assisted through the use of Mathlab, Mathcad
and Excel. Comparisons of results are made between the calculation methods and
Finite Element Analysis performed with a programme called SOLVIA.

Vianello’s method for calculating critical buckling loads, of columns and solid shear
walls, due to bending has proven its worthiness. The method for calculating stability
of pierced shear walls, according to studied, has proven itself to be in need of
improvements. The use of the polar moment of inertia has proven to give inaccurate
results. The result comparison of the single storey structures concerning translation,
rotation and combined rotation and translation show that the calculation methods are
satisfactory. Concerning multi storey structures subjected to translation or rotation a
question arose concerning the interaction between the stabilising components and the
floor slabs. The inclusion of a central cores own torsional resistance into the
calculation methods led to improved results.

The results showed that further investigation of the calculation methods concerning
stability of tall buildings is advisable and that specifically methods for determining
the interactive behaviour of stabilising systems joined by floor slabs should be
researched.

Key words: Tall buildings; Stability; 2" order effects; Global buckling; Vianello;
Shear angle; Stiffness; Torsion; Warping;
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Notations

Roman upper case letters

A Cross sectional area, constant depending on load application

B Constant depending on shape of the 2" order vertical load, bimoment
B, Stiffness value due to influence of shear in the x-direction

B, Stiffness value due to influence of shear in the y-direction

C Overall stiffness value

Coi Directional coefficient

Centre of gravity

Seasonal coefficient

Altitude coefficient

Young’s modulus

Young’s modulus due to long term effects

09
=

N
=
~

oy

Shear modulus
Horizontal force
Horizontal force due to unintended inclination

inclination

Moment of inertia
Polar moment of inertia

ST ERQ

~

~

Moment of inertia in transversal part of pierced shear walls
Moment of inertia in vertical part of pierced shear walls

Factor used for determining deflections in pierced shear walls
12.3.4 Factors for determining warping conditions

NN<~

>~

Torsional stiffness cross section factor

<

~

Warping stiffness cross section factor

S

Height of a member
Length of beam

ISES

~

Buckling length

o

~

=

Total height of building or structure

~

Storey/section height

%)
@
o

Moment
Initial bending moment (1* order)

f=}

Total bending moment (2™ order included)

U

Restraint moment

]

Total moment (local moment included)

~
<
=

iist. S St. Venant moment contribution

vist ¥ Vlasov moment contribution

T R XXKXXKKEX

Total torsional moment

twist,x
Axial force
e Critical buckling load, considering bending

2 =2

VIII CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12



cr,col

cr,elrest

Critical buckling load considering a single column

Critical buckling load considering elastic restraint

Critical buckling load considering shear

Critical buckling load for a system in one plane without shear
Critical buckling load, considering both bending and shear

Centre of rotation
Shear force

Roman lower case letters

BN

xRT unit

Xr

Length of floor slab

Breadth of floor slab, distance between the centres of each vertical part in
a pierced shear wall

Total breadth of pierced shear wall

Deformable length of the transversal part of a pierced shear wall
Width of gap in pierced shear walls

Eccentricity

Height of transversal in pierced shear walls

Stiffness number

Factor concerning bending

Euler parameter concerning bending

Vianello parameter concerning bending

Torque per unit height

Number of storeys

Distributed horizontal load

Distributed vertical load

Reference wind velocity pressure

Curvature of deflection
Initial curvature

2" order curvature

Thickness, time

Displacement

Distance from the structure’s rotational centre to the individual unit’s
rotational centre in the x-direction

x-coordinate that describes the position of the rotational centre of the
structure

Coordinate that describes the position of the rotational centre of a

stabilising unit in relation to the defined origin, in the x-direction
Displacement of the structures rotational centre to the centre of gravity in
the x-direction
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Yrr

Y RT yunit

yl{)[
Yr

vref ,0

tot

Deflection, distance from the structure’s rotational centre to the individual
unit’s rotational centre in the y-direction

1* order deflection, total deflection used in Vianello’s method
y-coordinate that describes the position of the rotational centre of the
structure

Coordinate that describes the position of the rotational centre of a

stabilising unit in relation to the defined origin, in the y-direction
Total deflection (2™ order effects included)

Displacement of the structures rotational centre to the centre of gravity in

the y-direction
Angle of deflection (slope)

Curvature of deflection
Reference wind velocity

Initial reference wind velocity

Total deflection (2™ order effects included)

Greek upper case letters

AM
Ay

(ZN),,
(EN),, 5
(EN) ¢y etrest
(EN),,.s

Secondary moment (2™ order)
2" order deflections

Total critical buckling load
Total critical load, considering bending
Total critical load, considering elastic restraint

Total critical load, considering shear

Greek lower case letters

}/t,bend

7/ t,shear

7v,bend

General symbol for angles, variable used in calculating deflections in
pierced shear walls
Inclination factor

Angle of deflection due to shear

Shape factor for magnification factor (A/B)

Factor describing development of creep

Factor describing development of strain

Angle describing elastic restraint

Component of shear angle concerning bending in the transverse part of a

pierced shear wall
Component of shear angle concerning shear in the transverse part of a

pierced shear wall
Component of shear angle concerning bending in the vertical part of a

pierced shear wall
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?/ v,shear

7 tot
&
&

cs

&€

ce,0

Component of shear angle concerning shear in the vertical part of a

pierced shear wall
Total shear angle for pierced shear walls

Strain

Shrinkage strain

Notational shrinkage coefficient

Shear reduction factor

Stress

Warping stress

Shear in partially connecting beam of a stabilising core
Variable used in calculating deflections, shear friction coefficient
Change of angle, angle

Notional creep coefficient

Creep factor

Twisting angle per unit height

Rotation of the beam's cross section

Angle of rotation

Sectorial coordinate

Other indexes, such as left, right and centre, exist in this thesis in order to
identify the situation of a specific parameter. Directions are represented by

the subtexts x, y and z.
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1 Introduction

1.1 Background

The increased demand for taller structures requires that a structural engineer is
familiar with the buckling phenomena that can occur in such a building and so
complete competent calculations. The engineer must have an understanding of
workable calculation methods for designing this type of structure and must also be
confident in using them.

Reinertsen Sverige AB were interested in instigating a Masters Thesis on this subject
and The Division of Structural Engineering at The Department of Civil and
Environmental Engineering at Chalmers University of Technology, Gothenburg,
Sweden obliged. This thesis would provide the company with a deeper understanding
of the phenomena that are involved in stability calculations and hopefully a workable
method for future calculations.

1.2 Aim and scope

The aim of this thesis is to provide a concise and usable method for analysing stability
of tall structures. The respective calculation methods published by Westerberg (1999)
and Lorentsen et al. (2000) are standard works in Sweden which have been chosen for
investigation. A basic understanding of the parameters involved in the calculations
shall be provided. These existing calculation methods will be presented and analysed
in order to identify discrepancies that may exist in the methods. Analytical
calculations of components, individual and in combinations shall be demonstrated and
FE-analysis will be performed to compare the results and in order to ascertain how
much the results concur. This thesis is produced in a pedagogical format in order for it
to be used educationally.

1.3 Scientific approach

A substantial literary study has been completed while obtaining relevant information
on calculation methods for designing for stability in tall buildings. Numerical
examples; of calculating buckling loads for single and multi storey structures; of
deflections and buckling in solid shear walls; of deflections, buckling and stress
distributions of pierced shear walls; of force distributions in single storey structures;
of coupled and uncoupled approach to calculating U-shaped core elements; of force
distribution in a multi storey structure, are presented and compared with FE-results in
order to draw conclusions on the reliability of the calculation methods.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 1



1.4 Methods presented

Westerberg (1999) and Lorentsen (2000) approaches for considering the contribution
from 2™ order effects for calculating stability on single and multi storey structures are
examined.

The Vianello method for calculating critical buckling loads due to bending is
introduced and compared with the approximate method and FE-analyses.

Regarding pierced shear walls, two methods are presented. One method is utilised for
establishing the buckling load for the wall and a second method is used for deriving
the top deflection of the wall subjected to a horizontal distributed load. Both methods
are taken from Lorentsen et al. (2000)

Two methods concerning the calculation of a complete structure are investigated. One
approach regards only the calculation of the critical buckling load for the whole
structure. The second method is used for one storey structures and is more accurate as
the load distribution is taken into account in a more exact manner.

A method for including torsional resistance in the stability calculations is devised by
the authors of this thesis.

1.5 Limitations

Stability analysis of tall buildings is a huge subject which requires years of active
study in order to attain a relatively complete understanding. In order to contain the
thesis to a workable size it has been decided to limit the study to linear analysis. All of
the concrete elements in this thesis are assumed to be uncracked and the effects of
temperature, creep and shrinkage are not taken into account. Non-linear analysis may
be investigated by a follow up group of graduate engineers. Dynamics is an advanced
field of theory which shall not be dealt with here. This work shall concentrate on
static problems. Stabilising systems consisting of frameworks, facades and tubes, are
mentioned and their functionality is ascertained while calculations, on these types of
stabilising elements, are not pursued. Methods concerning treatments of connections
are not included in this thesis but the problems are brought up.

In this thesis the limitations has been drawn to study problems or inaccuracy
concerning stabilising structures consisting of shear walls, towers and columns.
Problems concerning detailing, such as joints and connecting details, for transferring
loads between different parts through a building are not studied in detail. Some of
these problems are discussed as they are important to consider especially in cases
where twisting occurs.
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2 Tall buildings

To define a tall building it is best to decide from whose perspective one is looking. A
bureaucrat may decide that anything over 5 storeys is a tall building and from this
decision he may categorise accordingly and be very satisfied. For a structural engineer
it is not so simple. A tall building is, from a structural engineer’s perspective, to be
considered tall when, due to its height, the lateral forces suffered by the structure play
a significant role in the design. [Smith and Coull (1991)]

2.1 Evolution of tall buildings through the ages

The great metropolises of the world share common dilemmas. Increased population
densities due to the migration of people from the countryside to the cities, combined
with the rising price of developable land and the environmental politics of the day
provide the city councillors with no better solution than to build higher. Human nature
also compels us to achieve that which has previously not been accomplished and all
through history, from The Tower of Babel to The Empire State Building, has man
endeavoured to reach the sky.

From an historical point of view it has been defence, power and religion that have
driven humanity to build high. Defensive fortifications had to be high and robust in
order to be effective. Figure 2.1 shows an Irish Round Tower, built by Christian
Monks around 1000 AD, which stretched 30 meters into the sky and was used as a
refuge for when the Vikings would come plundering. The material used is granite
stones joined by mortar. Great respect is due the monks who built this tower because
they built a stabile structure using little structural engineering knowledge and only
using materials that were ready at hand. The choice of design is worth noting because
these monks opted for a structure which is both aerodynamic and resistant to torsion,
because of its uniform form. [Ireland Mid-West (2004)]

Figure 2.1:  Kilmacduagh Round Tower Ireland, 30 metres high (circa 1000 AD,).
[Interactive Interpretative Centre of the Burren (2004)]

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 3



Building tall to display power can be exemplified by the biblical story of the Tower of
Babel, Figure 2.2, and how the descendents of Noe built a tower in the land of Sennar
(modern day Iraq) in order to reach the skies and so show God how mighty they had
become. Of course God was not happy about this and demolished the Tower and
scattered the descendents of Noe across the globe. This was in prehistoric times, about
5,500 BC, so no real records survive. King Nebachadnezzer II of Babylon
(605 — 562 BC) is reputed to have built a tower on the foundations of the original. His
tower is historically verifiable and he managed to build a tower 90 metres high using
only baked bricks made of mud and straw, joined by a mortar made of bitumen, which
is a mixture of tar like hydrocarbons which are derived from petroleum.
[Global Security (2004)]. Great rulers had to build great monuments to show how
powerful they were. The victories of Nelson and Napoleon inspired the inauguration
of tall monuments to show the world how great these men, and how powerful the
nations they defended, were. Even today there is a certain respect given to the
countries that can build the highest in that their ability to build high represents their
might.

Figure 2.2:  Bruegel’s depiction of The Tower of Babel. [Museum of unnatural
mystery (2004)]

Religion has always inspired people to build tall structures. The pyramids of Egypt
and Mexico are fine examples of this. The building of cathedrals in Europe, pagodas
in Japan, mosques in The Middle East and temples in India have brought forth the
ingenuity of the builders and have shone as beacons to their respective worshipers.
Looking at a wonderfully huge, graceful and artfully carved structure the believers
were filled with awe for the power of the respective God/Gods who inspired the
edifice. In Europe the construction of cathedrals led to the establishment of a quasi-
religious status for the masons who were designing these amazing structures. Cologne
Cathedral was begun in 1248, Figure 2.3, and the masons used their knowledge to
build a structure that must have installed awe in all who looked upon her. They were

4 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12



very secretive of there calculation methods, there chemical compositions of mortar
and there methods of construction. The finances to build high came from the church
but the knowledge came from the masons/engineers.

D S T T
Turmibiie 160 mir
Grundstadilepne 1213
Yollendal 1530,

~ Baukosten
seit 1824 207 Milloeen,

Figure 2.3:  Cologne Cathedral, 156 metres high. [Service t-online (2004)]

Considering the buildings constructed for the common people it is best to start with
the Romans. Before Nero’s fire of 64 AD, Rome had a multitude of four storey
tenements built of wood. After the fire, the four storey wooden tenements were
replaced by tenements built with new brick and concrete materials which were used to
form arches and curved dome structures. Over the centuries there were no great leaps
in material science so timber and masonry were the norm. The timber structures were
not strong enough to build over five storeys and they were very susceptible to fire.
The masonry possessed high compressive strength and it was fire resistant but its
lower supports could not take the weight of very high buildings. Most cities in Europe
have experienced catastrophic fires because their buildings were mostly made of
wood. The great fire of London in 1666 led to a possibility to rebuild the city in brick.
A similar fire occurred in Chicago in 1871 which also made way for construction in
brick. The best that could be done, height wise, with masonry was achieved in 1891,
in Chicago, when the 16 storey Monadok Building was erected by the engineers
Burnham and Root. To build this structure the bottom floor had to have 2 m thick
walls which quite depleted the usefulness of that floor. [Smith and Coull (1991)]

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 5



To build higher than this it was necessary for new materials to be produced and their
properties examined. The industrial revolution provided the materials wrought iron
and steel and also provided the social impetus for building higher as more workers
from the countryside were required to work in the factories, so houses had to be
provided for them. The necessity of having workers near at hand to the factories and
that land was in short supply led to the solution of building higher. The term high-rise
began to be used to describe tall buildings and with the development in steel
production more and more, ever higher, buildings were being built. The first steel
frame structure, Rand-McNally Building in Chicago Figure 2.4, was built in 1889 by
Burnham and Root and was 10 storeys high. (Smith, Coull 1991)

Figure 2.4:  Rand-McNally Building Chicago, 10 storeys, 1889. [American Institute
of steel construction (2004)]

A mile stone was reached in 1891 when diagonal bracings, used to form vertical
trusses, were used in the 22 storey Masonic Temple, Chicago Figure 2.5. This is the
forefather of today’s shear wall and braced frame constructions. The engineers,
Burnham and Root, decided on introducing the above mentioned diagonal bracings
above the 10" floor. They chose steel for the rigid frames and wrought iron as the
material for the bracings. This building remained the tallest in Chicago until the
1920’s because the city council enacted height restrictions after its inauguration.
[Smith and Coull (1991)]

One further important factor in building higher was the invention of the elevator. One
could not expect people to spend time and energy climbing stairs and the rents for the
top floors were actually lower than rents for the lower floors, so the elevator had to be
incorporated into designs. The first elevator was installed in The Equitable Life
Insurance Building in New York in 1870, designed by Gilman, Kendell and Post, led
to the landlords being able to charge equal rents for the lower and upper floors as they
were now equally accessible. The invention of the electric elevator in 1890 made it
possible for landlords to build even higher buildings without having to worry about if
they could effectively rent out the floor space on the higher floors.
[Smith and Coull (1991)]
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Figure 2.5:  Masonic Temple, Chicago, 22 storeys, 1891. [The skyscraper museum
(2004)]

Design methods became more sophisticated and construction techniques were refined
until in 1913 The Woolworth Building in New York, Figure 2.6, designed by Cass
Gilbert (architect) and Gunvald Aus (structural engineer), reached a height of
58 storeys. This building remained the tallest building in the world until 1930. The
structure was built to withstand winds of up to 360 km/h, it contained thirty elevators
and it was the first building to have its own steam turbines installed. When building
such a huge structure it is very important to envisage the foundation required for a soil
consisting of alluvial mud and sand for depth of 30 m. Gunvald Aus chose pneumatic
caissons (French for big box), which use air pressure to expel water, for founding the
66 concrete piers that would connect the structure to the ground. A caisson is a large
hollow box, made of steel, which is driven into the ground, excavated and then filled
with concrete. The basements themselves began at 16.5 m below ground level. In
order to withstand the 360 km/h winds that the building was designed for Gunvald
decided to have different stabilising systems in different parts of the building. The
lower stories employed a portal system of braces, that is a combination of struts and
ties which lie in the plane of the inclined braces, were used to transfer wind pressure
from the upper parts of the trusses to an abutment. The tower construction was more
complicated and girder and knee brace stiffening was chosen. Two design solutions,
for the tower, that could have been better thought out were that the wall columns did
not get direct column support from below and were therefore carried by girders and
that where the columns were counterbalanced, the transfer of wind shear in the outer
faces of the tower must have be made through the floor. [Smith and Coull (1991)]
[The skyscraper museum (2004)]
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Figure 2.6: The Woolworth Building, New York, 1913.] Kent State University (2004)]

The end of the skyscraper era was heralded by the building of The Empire State
Building in New York (1931). A steel riveted frame was used and the building
reached a height of 102 storeys which wasn’t surpassed until the raising of the first
tower of the World Trade Centre in 1973. As The Empire State Building was the
largest project undertaken up to that time, three structural engineering companies
were employed. The structure was so well designed that, in 1945, it withstood the
impact of a B-25 bomber on the 79™ floor. Fourteen people were killed when one of
the engines passed through the entire building but the structure held, only sustaining

damage to the outer wall. [Emporis (2004)]
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Figure 2.7: Time line of structure height in storeys.
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Figure 2.7 shows how building height increased from 1850 to 1930 in the USA. After
1931 and the construction of The Empire State Building, the United States fell into a
depression and the consecutive commencement of World War II meant that further
increase in building height was halted until 1973, when the first tower of The World
Trade Centre was erected. [Smith and Coull (1991)]

The World Trade Centre, 110 storeys, used an innovative structural model designed
by John Skilling and Les Robertson who chose a system that was simplistic but
effective. This building was the first to use no brick or stonework. They used the steel
facade as a wind bracer to provide the stability while the central core took all the self
weight. The wind bracing facade, made of closely spaced steel columns, was attached
to the central core by steel floor trusses. The central core itself contained the elevator
shafts which were specially designed. The engineers were worried about the air
pressure which could lead to buckling of the shafts, so the elevator designers created a
system of elevators that was divided between a local and an express system. A
traditional system would have meant that half the area of the lower stories would have
been taken up by elevator shafts so stop off points for the elevators were installed on
the 44™ and the 78" floor. After the aeroplane collisions of the 11™ of September 2001
it is widely assumed that the steel trusses connecting the fagcade to the central core
over heated and lost their rigidity leading to a progressive collapse of the structure. It
is although notable that the structures did withstand the impact of the passenger
planes. [Department of Civil Engineering, University of Sydney (2004)]

After the cessation of combat in World War I reinforced concrete was used to imitate
steel forms. The full potential of reinforced concrete had not been fully realised
although The Exchange Building in Seattle, 1930, did reach 23 storeys. It was not
until after World War II that radically new structural and architectural solutions were
propagated through the realisation that reinforced concrete can be easily formed in
order to satisfy architectural specifications and structural integrity.
[Smith and Coull (1991)]

In the past, city councils have commissioned land on the outskirts of their cities for
development but the advances in environmental science over the last decades have
recognised the vital importance, for the atmosphere, of maintaining land in its natural
state, plus the importance of arable farming for providing fresh provisions for the
cities. The availability of fresh produce may not be so problematic in the western
world, because of the advanced infrastructure, but the developing nations see this as a
major quandary. The tides of human migration are as unstoppable as population
growth but the cities of developing lands have to decide whether to commandeer more
arable land or to build higher. Here, in the West, are many large urban areas that are
slowly eating up the natural land which exists around them. Large conurbations such
as the Ruhrgebeit in Germany and the Lille area of Northern France are facing health
problems due to their difficulties in holding down pollution levels. One can especially
look to South-East Asia where cities such as Hong Kong, Shanghai and Singapore
have chosen to build higher, in order to accommodate their citizens, instead of
succumbing to urban sprawl. Table 2.1 gives the heights achieved depending on the
usage of the building in order to show that tall structures are not only office buildings.
[Emporis (2004)]

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 9



Table 2.1:  The current highest buildings according to usage, and some Swedish

buildings.
Usage Name City H?r'r?)ht Floors | Year
Offices Taipei 101 Taipei 509 101 2004
Lodging Ryugyoug Hotel* | Pyongyang 330 105 1992
Residential | 2 1stCentury Dubei 269 55 | 2003
Tower
Education Moscow Moscow 240 36 | 1953
University
Hospital Guy's Tower London 143 34 1974
Offices Kista Tower Stockholm 128 32 2001
Residential Turning Torso Malmo 190 54 2004
Lodging Gothia Tower W. | Gothenburg 70 23 2001

* Structurally complete but not yet in use.

It is evident, due to the existence of tall buildings, like Kista Tower, that the skills and
knowledge to build higher do exist in Sweden. Gothenburg is not as crowded as the
cities of South-East Asia but it is hoped that the City Fathers are beginning to see the
advantages of constructing taller buildings. To build further on the outskirts of
Gothenburg means that more farm land and more forest will be lost. Gothenburg is
still experiencing an increase in population due to economic migration of workers and
so shall further accommodation, to work, to play and to live, be required. Obviously
people who work in the city may also want to live near to their place of work in the
city. This involves the economic aspect of supply and demand, where if there are
enough customers who are willing to pay then industry will find a way to provide for
them.

2.2 Loads

This chapter will discuss how loads are applied, the estimations and assumptions that
have to be studied and the implications of 2" order effects. The use of codes will be
explained and the assumptions used for implementing service limit state, SLS, and
ultimate limit state, ULS, will be clarified.
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2.2.1 Load distribution

With tall buildings it is important to understand how and which loads are applied
where on the building. The loads can be divided very simply between vertical and
horizontal burdens. The vertical loads are the weight of the building, imposed load
and snow load. The horizontal loads are wind and the unintended inclinations.

The vertical loads are taken up by the bearing walls, columns or towers and are led to
the foundations. The loads occurring from the wind are first taken by the facades and
are then further distributed to the slabs.

Figure 2.8: Multi-storey structure with applied wind load.

The floor slabs act as diaphragms and are often considered to be stiff in their plane
and deformations in its plane is usually disregarded. The slabs are connected to the
stabilising units, such as shear walls, towers or stabilising columns. Figure 2.8 shows
a multi storey building with the wind loads applied as they are interpreted to be.

Some facades also have columns attached directly to them and in these cases the loads

are first transferred to the columns resulting in concentrated loads on the floor slabs.
See Figure 2.9.
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Figure 2.9: Wind load on facade causing concentrated loads in a floor slab.

If the fagade which takes the wind load is supported by the floor slabs, then the floor
slabs will be subjected to a distributed load, see Figure 2.10. Compared to Figure 2.9
the different load application causes a different stress distribution in the slab. The
stress distributions have to be dealt with through careful planning of how the slabs
and the facade are connected. Floor slabs are often considered to be stiff, and the
horizontal load distribution through the building is due to the stiffness of the different
stabilising components. If the floor slab is not stiff enough, or slip occurs in joints
between slab elements in the same plane, then the displacement of the floor slab will
not be the same along the loaded side of the floor slab, as in Figure 2.9. Stress
distribution in floors depends on both loads and supports.
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Floor slab “

Figure 2.10: Fagade attached directly on the floor slab.

How the floor slab will react to a distributed load is shown in Figures 2.11 and 2.12. If
the slab is assumed to be stiff then the load is distributed according to the stiffnesses
of the stabilising units i.e. stiffer units will attract a greater part of the applied force
than weaker units. Figure 2.11 describes a load case which assumes a uniform lateral
movement seen from the top of the structure. The dotted line represents the original
position of the slabs and the shear walls. This load situation can be compared to a stiff
beam standing on spring supports and if the supports have equal stiffness then the
load will be evenly divided among them, see Figure 2.11.

Figure 2.12 shows a load case where the slab is not assumed to be completely rigid
and bending occurs due to the distributed load. Now a system is presented where the
load distribution along the three supports is not only dependent on the stiffness of the
supports. With normal beam theory it is assumed that the supports are endlessly stiff
and the load is distributed among the supports according to elastic theory. In a case
with 3 supports the middle support will attract 10/8 gL of the load and the outer
supports will attract 3/8 gL. L refers to the span between the supports. Figure 2.12
shows a situation where the load distribution is hard to establish or predict. Here there
is a combination of load distribution depending on both the stiffness of the supporting
walls and the bending in the slab due to elastic theory.
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Figure 2.11: Load case which assumes a uniform lateral movement of the slab.
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Figure 2.12: Load case where the slab is not assumed to be completely rigid and
bending occurs due to the distributed load.
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If the floor slabs are assumed to be stiff and the case shown in Figure 2.11 presents a
model resembling the real structure, it is of vital importance to ascertain that bending
does not occur in the slabs themselves. In Figure 2.12 it is shown that the middle wall
is subjected to greater deflections than the outer walls, subtracting greater forces than
it is dimensioned for.

The floor is supported by the stabilising units through a shear force distributed along
the width of the wall. The walls are subjected to both bending and shear deformations
but in low robust walls the bending contribution is negligible. See Figure 2.13. If
slender units are used for stabilising then bending mainly occurs and shear
deformation is negligible.

/-\

Shear deformation +

Bending deformation

Figure 2.13: Bending and shear deformations.

When the entire structure is considered, even though shear walls are considered as
low and robust in each floor, the shear wall becomes more slender in taller structures.
It is therefore necessary to consider both bending and shear when calculating on tall
buildings. Figure 2.14 presents shear and bending deformation of a tall shear wall
subjected to a distributed load along the height. The deformation from bending is
curved in the opposite direction to the shear deformation. The deformation from shear
is due to the shear forces applied through the floor slabs in each storey. As the loads
accumulate and increase through the building the largest singular deformation occurs
at the first floor for the shear contribution. Figure 2.15 shows a FE-analysis
representation of a pierced shear wall subjected to both bending and shear.
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Figure 2.14: Shear and bending deformation of a tall shear wall subjected to a
distributed load along the height.

Figure 2.15: FE-analysis representation of a pierced shear wall subjected to both
bending and shear.
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2.2.2 Estimates concerning loads, environment and material

Considering how accurately the stability of a tall building can be calculated,
concerning functionality during the entire projected service life of the structure, one
must make certain assumptions concerning the external and the internal environment,
degradation of the material and accidental impacts or loadings, and natural disasters.

External climate conditions will affect the stability of a structure through wind,
humidity, rain and temperature variation. The treatment of wind loads, specifically in
tall buildings, is very well documented in Eurocode (1991). [Zalka (1992)]

First a reference wind velocity is ascertained:
Vir = Coi " Crpnr *Coarr *Vier o (2.1)

The value v, 1s defined as the 10 minute mean wind velocity at 10 metres above the
ground of terrain category Il (urban terrain) having a mean return period of 50 years.
Different terrains have different factors depending on if the structure will be on a
shore line, urban, countryside or suburban. The value itself is derived from the
extensive records that are kept on wind conditions in each country. From this value it
can be plainly seen that stronger winds may occur and especially for tall buildings
where wind loading is vital, this value will have to be altered. Coefficients of
direction, Cpr, season, Crey, and altitude, Cy; 7, will be taken in to account to derive a
reference wind velocity. This value will be used to attain the reference wind velocity
pressure.

Gy = g . erf ; p = air density (2.2)

This value will be further altered through coefficients for exposure, topography,
roughness, gust wind response, aerodynamics, external pressure and also specifically
for tall buildings the structure will be divided into different heights where different
roughness and exposure factors will be applied. While determining the load cases,
consideration must also be given to suction that will occur on walls and roofs due to
the wind. All of these factors are based on intense investigation but are still models of
reality and extreme buildings have to take into account even more extreme conditions
which lead to the design engineers of extremely tall buildings having to sometimes
develop their own extreme factors. [Eurocode (1991)]

The effects of rain, humidity and temperature variation on a structure which has
stability components on the outer shell may be hazardous over a long period of time.
The engineer has to establish a relevant period of time before reparations to the
structural components have to be made. Here again the engineer has to rely on
weather statistics developed over the last century and then further take into account
the extreme conditions that may occur. Again the engineer has to work with a model
of reality.

The internal environment of a building is controlled by the heating and ventilation
systems. The stability components of the structure should be isolated against internal
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influences and there should not really be a problem concerning the internal
environment. What the engineer has to be careful with here is the materials that are
used for protecting the stability components. Whether it is paint, wood or concrete the
engineer has to be aware of their material values concerning for example permeability
which could, under extreme conditions, allow damaging moisture to reach the
material of the stabilising components. Service life analysis of these materials would
be necessary in order to determine maintenance episodes and so protect the stability
system. Assumptions are again made while determining for example humidity or
water spillage.

2.2.3 Loading assumptions

The loads on a building are modelled through investigating the buildings usage,
situation and dimensions. Concerning dimensions there are no assumption made as all
dimensions are real. On the other hand the usage of the building and the situation of
the building require a closer look. The engineer has access to codes which describe
specifically how load combinations are calculated using factors, considering situation
and usage, in order to ascertain loading values for Service Limit State, SLS and
Ultimate Limit State, ULS. Considering usage it is important for the engineer to pay
considerable attention to the imposed loads. For this the engineer has access to codes
which give values per m” of floor space for different activities and also factors to be
used when establishing load cases. All of these factors and values are based on
assumptions which are designed to always keep the engineers calculations on the safe
side. [Eurocode (1991)]

Considering the calculations of load cases concerning SLS and ULS one must first
look at the engineering community and how it works. As mentioned previously, a
structural engineer’s primary concern is safety. The engineering community today
tends to produce specialised engineers who are not experts in all the fields of study
required to build a safe building, but rather produces engineers who are specialised in
for example materials, climate control, structural integrity and geotechnics. This
requires that the engineering team are able to understand the assumptions made by
each other. Ideally the engineers will use the most appropriate design and construction
techniques, the best available materials and the most up to date environmental data.
On top of this, safety factors will be applied in order to insure that the calculations
will be pessimistic and so shall the building be considered safe. [Zalka (1992)]

Consider a building where the designer knew exactly the material properties of the
components, knew exactly how they would behave under the projected life time of the
building, knew exactly how the building would be serviced and also had access to
exact data concerning internal/external environment and the projected loading
histories of the building. This building would require no safety factors. Because of
these discrepancies the structural engineer is required to incorporate partial factors
into his/her design calculations at an early stage. These factors are multiplied to the
basic variables in order to give pessimistic values concerning the variables
performance. [Zalka (1992)]

It is analytical theory based on elastic and non-elastic behaviour that has led to the
development of load conditions i.e. SLS and ULS. In the beginning of the design
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process the structural engineer will directly reduce the material property values of the
components by using partial factors which are applied to either ULS or SLS. It seems
logical to assume that a structure designed for SLS should by definition be safe;
meaning that it will not collapse, because in order for the building to be serviceable it
must be safe, but this is not the case because it is ULS that considers collapse. Should
the engineer then wholly disregard SLS and only calculate in ULS?

ULS considers ultimate loading in different load combinations. It is not possible to
evaluate a specific safety factor which describes the safety margin that exists between
SLS and ULS. The way the theory of SLS and ULS works is that the loading factors
applied in ULS describe initially an assumed structural behaviour of the building, not
if it will actually fail or not. Reality is not the same as the model. [Zalka (1992)]

Loads have to be assigned load-paths. These are determined through establishing how
the loads are applied, how the loads will transfer through the stabilising system and
finally how these loads will be taken up by the foundations. A relationship exists
where the number of potential load-paths and the number of stabilising elements is
related to the number of potential load-carrying mechanisms within the elements and
the joints between them. A particular loading case will only initiate a certain number
of the load paths available. Interdependence must exist between each path in order for
a structure to retain stability while each successive mechanism comes into effect. To
increase the possibility of sustaining a system of load-paths it is advised to insure that
the load-paths are intertwined meaning that the more integrated the stabilising system
is the better the system will absorb loads. [Zalka (1992)]

A further affect on loading is obtained through the unintentional inclination of
supporting elements. Inclinations, of columns, that may exist in the building are
assumed through using the factor a,, in the equation below which determines the
horizontal load due to inclination, Hi,ciinasion-

This value is derived through the equation below where 7 is the number of columns
above the storey being examined.

o =0.0003+ 2912 (2.3)
Jn
Hinclination = ZN ’ am (24)

It is often regular for the engineer to assume that the stabilising components of a
structure are fully fixed. This assumption implies that the stabilising component in
question and the ground it is anchored in react in union. This assumption assumes that
the ground itself is solid and does not have elastic properties. This assumption is fine
for structures anchored in the bedrock but those anchored in soil present more
difficulties. Anchorage in soil leads to it being necessary to calculate with elastic
restraint included. This requires that the soil properties of the ground in question have
to be examined and it is well known that it is difficult to determine soil properties
exactly. It is therefore important for the engineer to remember that the restraint values
determined by the geological investigation are in error to a degree of 30%.
[Lorentsen et al. (2000)]
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2.2.4 1*and 2" order theory

In order to understand stability one has to first understand the theory that is utilised
while calculating. When calculating with columns, shear walls and towers one has to
take into account both 1% and 2" order theory. 1% order theory explains the direct
results of actions, moments and deflections. 2™ order theory takes into account the
additional moments that occur because of the 1% order deflections combined with
axial loads. [Westerberg (1999)]

A transverse load is applied at the centre of the column, Figure 2.16. From this load, a
deflection yj and a moment M, occur. With the application of an axial load is gained a
further deflection Ay and a compliment moment AM. M, and y, are 1*" order effects
and AM and Ay are 2" order effects. See chapter 3.1.5 on the derivation of the
magnification factor. The 2™ order effects are due to axial loads combined with the
1* order deflection

, -

Figure 2.16: Ist and 2nd order deflections and moments. Based on Westerberg
(1999).

2.3 Buckling and torsional phenomena

2.3.1 Bending and shear

Buckling is a phenomenon which occurs when a structure is subjected to axial load
suffers uncontrolled large displacement, transverse to the load. Transversal buckling,
1.e. in plane, has two contributions, bending and shear. The bending deformation
causes a curved shape. The shear deformation results in straight inclined shape.
Combined they result in the critical buckling mode displayed in Figure 2.17.
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Figure 2.17: Combined bending and shear.

2.3.2 Torsion

The occurrence of torsional buckling in tall buildings is a well studied phenomenon
which is generally not adequately applied by structural engineers.
[Smith and Coull (1991)] Torsion involves a twisting action, due to applied vertical or
horizontal loads. When a vertical load is applied buckling through translation may be
replaced by a first buckling mode due to twisting. Observe in Figure 2.18a how the
torque about the rotation centre occurs. Here is shown a stabilising component which
does not have a coinciding centre of gravity and rotational centre. The applied vertical
load results in a torsional action about the centre of rotation, behind the tower where
the rotation centre is situated. Figure 2.18b shows how a cross section of the
stabilising component is influenced by tension and compression occurring because of
the stresses due to the torsion. Displacement due to twisting will occur. The bottom
end of the element is assumed to be fixed to the ground.
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Figure 2.18: Core showing how applied torque on the rotational centre causes
tensions and compressions in the cross section.

Eccentric horizontal loading of a stabilising element leads to torsion and sectional
torsional moments along the length of the element. In order to calculate the torsional
moment at a specific point in the stabilising component it is necessary to consider two
contributing factors. The equation below shows the relationship.

Mtwist = Mtwist,S + Mtwist,V = GKV 9 - EKW H” (25)
M .. = Torsional moment around the x axis
M,,.. s= St. Venant component of torsional moment

M., = Vlasov component of torsional moment
G = Shear modulus

K = Twisting stiffness cross-sectional factor

K =Warping stiffness cross-sectional factor

6 = Twist per unit height

Figure 2.19 below shows how the patterns of shear flow due to torsion occur in
different stabilising element forms. Observe how the closed cross-section b) has an
overall closed shear flow while example ¢) shows a dramatic change in the shear flow
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due to the cross section being open. Example a) shows how the shear flow in an
I-girder is mapped.
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¢) Open box cross section

Figure 2.19: Shear flow due to torsion in three cross sections.

St. Venant torsion is observed when the torsional cross-sectional moments are entirely
taken up by the shear stresses. If axial stresses occur then they participate in taking up
the torsional moment through warping resistance. This effect is called Vlasov
torsional resistance. Observe Equation (2.5) and how the St. Venant and the Vlasov
components combined make up the total torsional moment. How this equation is
developed is explained in Samuelsson and Wiberg (1993).
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Figure 2.20: Torsional moment distortions [Gambhir ( 2004)]

Figure 2.20 shows three girders subjected to different torsional moments. The first
girder, marked a) is simply supported and torque is applied from both ends. Observe
that rotation about the x-axis is allowed which means that the girder is not restrained
and therefore has no warping displacement which leads to the conclusion that no
warping stresses exist. Uniform torsion is observed, which induces only St. Venant
stresses. This means that the flanges will remain straight. [Gambhir (2004)]

The second girder, marked b), is restrained with pronged supports at the ends and a
torque is applied at the centre. Now the girder can not rotate about the x-axis which
leads to the development of warping stresses; hence shall the flanges not remain
straight. Observe that, due to symmetry, the St. Venant contribution is highest at the
ends and abate towards the centre while the Vlasov contribution is at its maximum in
the centre and diminish towards the ends. This symmetry causes the elimination of
warping displacements at the centre. [Gambhir (2004)]

The third girder, marked c) is a cantilever which actually represents half the girder
represented in case b). Here the girder is fixed at one end and the torque is applied at
the end. Here we see the occurrence of warping. The Vlasov stresses are highest at the
top and the St. Venant stresses are highest at the fixed end. [Gambhir (2004)]

If this girder is placed in the vertical, then a core in a tall building is represented, see
Figure 2.21. The displacement of the flanges due to warping causes points a) and c)
descend while the points b) and d) ascend. This axial displacement is due to Vlasov
stresses. Observe that in this example the rotational centre is positioned at the centre
of the web. This is due to the double symmetry that exists in an I-girder with flanges
of equal length.

24 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12



Applied torque

&

Figure 2.21: Torque in an I-shaped core due to Viasov unrestrained stresses.
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Figure 2.22: St. Venant and Vlasov contributions to the twisting moment.

Figure 2.22 shows how torsional moments are divided along an I-girder. The Vlasov
contribution is greatest at the fixed end and least at the free end. The opposite is true
for the St. Venant contribution.

These phenomena are not only reserved for steel girders. When concrete walls of
composite form i.e. T-shaped, U-shaped, H-shaped and so on, are utilised in tall
buildings then St. Venant and Vlasov stresses can occur. How to deal with the
warping phenomenon is generally not well known to structural engineers and specific
investigation of its occurrence is advised for all stability calculations.
[Smith and Coull (1991)]
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2.4 Principles for stabilisation of tall buildings

2.4.1 Stabilising components

This section intends to describe and explain the stabilising components: columns,
towers and shear walls. Stabilising components are assumed to be fully fixed at the
base and hinged at the top. Non-stabilising units are assumed to be hinged at both
ends and therefore, since they must be braced by stabilising elements, have a negative
contribution to stabilisation.

2.4.1.1 Columns

A linear structural member which takes vertical loads can generally be called a
column. They consist of steel, wood or concrete depending on the strength and/or the
aesthetics required. Columns are found mainly in structures in order to provide
support for beams or slabs. When calculating stability in a structure with columns it is
essential to ascertain if the column is stabilising or not. This means that non
stabilising elements have to be held up by the stabilising elements so they have a
certain negative effect on the over all stiffness of the system. Section, 4.1.3 explains
this phenomenon.

Figure 2.23: A shear wall paired with a tower which combined takes care of stability.

Figure 2.23 shows a stabilising system. The columns are used to take the load from
the floors but may still have a positive or negative effect on stability depending on
their rigidity, placement and connections.

2.4.1.2 Towers

Towers, reinforced concrete for this thesis, are rigid cores situated inside tall
buildings. Usually a tower will exist with another tower or combined with shear walls
and/or with columns. The combined effect will give rise to a greater resistance to
torsion depending on how the units are situated in relation to each other. Ideally they
are situated as far apart as possible for creating a torsional resistance. A disadvantage
with using a single tower, on its own, is that it is susceptible to torsion and must
therefore be heavily dimensioned in order to resist torque.
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The use of towers is favourable in that they can be used not only as stabilising units
but also as elevator shafts or stairwells. Funnelling of ventilation shafts, water pipes
and electric cables can also be hidden within the tower giving the architect more
manoeuvrability and the client more effective use of the space provided.

Towers which have open cross sections, for example U-shaped or H-shaped, have less
resistance to torsion than closed sections and should in general be combined with
other stabilising components.

2.4.1.3 Shear walls

Shear walls, made of reinforced concrete, are used in modern buildings because of
their effectiveness in maintaining stability and for the freedom they offer the architect
who is designing. A shear wall’s position in a building is often initially decided by the
architect. The architect is trained to design for the buildings function and appearance
and not for its stability so when a structural engineer is not involved in the first phase
of design, it may lead to the shear walls being situated in non-favourable positions.
Also, while choosing reinforced concrete walls as partition walls, the architect can be
unintentionally gaining stabilising elements. Pierced shear walls are described as
shear walls with holes. These holes can be windows or doors that are necessary for
access or lighting for the building.

Shear force floor slabs

> > > > >

< < < < <

Reaction T

Tension Compression

Figure 2.24: A shear wall with horizontal load applied.

Figure 2.24 shows how a typical shear wall functions. The force from the horizontal
wind load results in shear forces which act within the wall and tension and
compression resulting at the ground.
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2.4.2 Situating of stabilising components

Stabilising walls may also be placed in certain positions in a building to help with
sound isolation. An apartment tower block may have a stabilising wall system
resembling Figure 2.25 in order to divide effectively against sound intrusion from the
neighbouring apartments. The central stairwell or lift shaft, marked S, will be pierced
because of door openings for accessing the apartments, while the four stabilising walls
will be solid and will effectively isolate the occupants from each other.

Appartment 1 Appartment 2

Appartment 3 Appartment 4

Figure 2.25: Stabilising system when walls are required to also act as sound
isolators.

In modern buildings it is fashionable to have an open foyer on the ground floor. This
open, spacious and welcoming area does cause problems for the structural engineer
because the stabilising walls have to be discontinued for this floor. Here it is advisable
to have shear walls or pierced shear walls on the side of the building so that stability
can be assured and the architectural integrity of creating open spaces can be
maintained.

This thesis does not consider facades but rather towers, shear walls, columns, and
combinations of these three stabilising components. Observe that the use of one
stabilising component, such as a concrete core tower at the centre of a building, on its
own, is not recommended as it can be susceptible to torsion but it can be usable if the
component is designed with very high torsional stiffness. The placing of the rotational
centre at the centre of the building is advised because it exceedingly reduces the
buildings susceptibility to twisting due to evenly distributed horizontal loads. The
placing of shear walls as far from the centre of gravity as possible is advisable in
order to increase the resistance to torque. Figure 2.26 shows some examples.
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Figure 2.26: Examples of locations of stabilising units.

Observe that in Figure 2.26 the buildings have no central core tower that acts
independently and that the shear walls are situated at the extremities.

Observe the difference between the four walled and the three walled examples. The
three walled example, Figure 2.26d, is referring a case where the minimum stability is
attained. To obtain minimum stability there has to be at least one wall in each
direction for stabilising through translation. To also attain stability through rotation
the structure requires at least two walls stabilising in one direction. It can be observed,
in the last picture, Figure 2.26d, that a distributed horizontal force in the x direction
will lead to the occurrence of a large twisting in the structure. Figure 2.26¢ has a
fourth wall which help to achieve a better stability, especially for distributed load
cases.
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2.4.3 Guidelines for choosing stabilising systems

The choice of frame is important while developing concepts of tall buildings. Fazlur
Kahn, an engineer who designed many skyscrapers in USA, has stated that “I strive
for structural simplicity.... The technical man mustn't be lost in his own technology”.
He means that the supporting structure does not need to be complicated and he
developed principles in the selection of stability system considering the height of the
building. [Lorentsen et al. (2000)]

15 storeys:

25 storeys:

40 storeys:

60 storeys:

80 storeys:

100 storeys:

110 storeys:

120 storeys:

30

A framework of fully fixed columns and beams, consisting of stiff joints
which are able to take up moments. Both pictures marked a) in Figure
2.27 and 2.28.

A framework of pinned columns and beams which are connected to a
central tower consisting of concrete or vertical trusses. Both pictures
marked b) in Figure 2.27 and 2.26.

Fully or partially fixed columns and beams with shear walls or vertical
trusses situated at the extremities of the building. Picture ¢) from Figure
2.27 and a combination of pictures a) and b) from Figure 2.28.

The same as for 40 storeys but complemented with additional
strategically placed horizontally trusses, encircling the top and then
more further down. Picture d) from Figure 2.27.

Fagade columns between themselves connected to facade beams to make
a framework. The fagades have a united action so that they together
function as a rectangular tube restrained in the foundations. Pictures e)
and f) from Figure 2.27.

Fagade walls consisting of combined frameworks and trusses. The
facades have a united action so that they together function as a
rectangular tube restrained in the foundations. Pictures e) and f) from
Figure 2.27 and picture f) from Figure 2.28.

Here the building is divided into many rectangular tubes so that each
inner column has a direct cooperation with the facades. The tubes each
reach a different height in the building so as that the wind loads
influence is reduced to the minimum. Picture f) from Figure 2.27.

An outer facade, acting as a tube, combined with large trusses attached
for increased stability. Picture g) from Figure 2.27.
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Figure 2.27: Stabilising systems depending on the number of storeys. [Lorentsen
etal (2000)]

a) b) )

) viriANNN

Figure 2.28: Examples of stabilising systems. [Lorentsen et al. (2000)]

Fazlur Kahn’s recommendations are usable but, because of architectural influences,
the engineer is often given a very complicated stabilizing system to calculate.
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Especially here in Sweden it is suspected that engineers tend to enter the design phase
at a late stage. Perhaps introducing engineers at an earlier stage will give the engineers
more chance to influence the final design and so keep to Fazlur Kahn’s principle of
simplicity.

2.5 Reality versus model

This Section will attempt to describe specifically the difference between the model the
engineer creates, in order to design for stability, and the actual reality that exists. All
the various estimations that the engineer has to deal with and some assumptions that
he/she has to make will be extensively explained and hopefully present an
understanding of how much the engineer relies upon his/her own understanding of the
factors applied in order to eventually produce a model that is as near to reality as is
required.

An engineer models a structure through attempting to imitate as the reality that exists
for the structure being designed. Considering stability of a building it is the robustness
of a structure during its service life and its ability to resist loads which requires
modelling. The engineer must construct a model of how the loads should be
transported to the ground and how the stabilising elements interact. The engineer must
consider the stiffness values of the individual stabilising elements and the combined
system concerning translation and rotation; how the relative load cases are calculated
concerning SLS or ULS. The service life of the structure has to be considered and
how the assumptions on interior/exterior climatic impact, degradation of materials and
natural disasters or accidental impacts can be quantified. All of these considerations
have to be intelligently modelled using assumptions and partial factors to resemble as
the reality that exists for that specific structure. [Zalka (1992)]

Recently, engineers have recognised the advantages of developing data on reliability
margins through using probability theory. This is because, outside the modelled world
of the engineer there are always random variations of many elements comprising the
structure/environment system. By using the statistical procedures developed into
probability theory the engineer can deal with the occurring variations in a rational
manner. Through assembling a large body of data on each respective material
property and then establishing clear unequivocal rules for the quantification of
individual factors, can the engineer develop a system of safety factors specific to each
individual project and so produce calculations which more realistically represent
reality. [Zalka (1992)]

2.5.1 Theory of linear elasticity

The theory in this thesis is based on the assumption of linear elasticity. Combined
with Euler-Bernoulli beam theory, a differential equation which describes the
relationship between the load, the stiffness of the unit and the displacement is
acquired.
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d? d*w
— | EI = 2.6
dx[ dx? } 1 26)

w = displacement; g = distributed load

This equation describes how a beam displaces itself considering an even stiffness
along the beam. Euler-Bernoulli theory assumes that each cross section retains its size
and form. The basic equation above is derived through four distinct subsets of beam
theory; kinematics, constitutive, resultants and equilibrium.

Kinematics = y =-0 = aw 2.7)
dx
Constitutive = o (x,y)=E-¢_(x,») (2.8)

:>M(x)=”y-0(x,y)~dy~dz

Resultants
=V(x)=[[o, (xy) dy-dz

Equilibrium *
= —=-
dx 7

To obtain the relationship between the displacement w and the distributed load ¢, the
equations above are combined. The two equations of equilibrium are first combined in
order to eliminate the shear force V.

d’M
dx’

—q
Then M is replaced through the resultant equations.

d2
dx’

.my.g.dy.dz]:_q

The constitutive relationship is used to replace stress ¢ with the strain €. Then the
kinematics is used to replace the strain € with the displacement w.

;:2 :E”y-g~dy-dz=—q] och ;:2 {E'i—i”y2~dy-dz}=—q
d*[ . d*wepr
> E'dxz J.Iy 'dy-d2:|=q

Next step involves recognizing that the integral over )’ is defined of the beam's
moment of inertia, /.
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1=({[y* dy-dz (2.9)

Finally the Euler-Bernoulli equation is achieved.

d? d*w
— | EI = 2.6
dx[ dx? } 1 26)

The kinematics relationship builds on the theory that the normals (lines perpendicular
to the beam's neutral plane embedded in the beam's cross sections) do not bend, do not
elongate and always make a right angle to the neutral plane. This is a theory designed
to enable the engineer to make a model of reality and does not actually represent
exactly how beams react to loads.

All of the assumptions and estimations described in this section are the engineer’s tool
for interpreting reality into a workable model. It is essential that an engineer is aware
of how this model is derived and implemented so that its use will lead to intelligent
interpretations of how the physical world actually works. Designing stability systems
for extremely tall structures could require the engineer to develop extreme factors
which requires the engineer to further quantify effectively the existing assumptions
and estimations.

2.5.2 Young’s modulus

Young's modulus, E, is the modulus of elasticity. It is the described as the ratio of
stress to strain on the loading plane along the loading direction.

E=Z (2.10)
£

Stress and strain values are acquired, for different materials, through testing. As the
tension or compression increases so does the strain. During this testing process the
relationship will show itself not be linear. Young’s modulus is determined through
calculating the slope of the relationship between the stress and strain shown in a
stress/strain diagram. Young’s modulus is also influenced by other factors, such as
temperature changes, humidity, plastification, i.e. material hardening due to high
stresses and time. It is therefore important to understand that due to these influences
Young’s modulus can change during a material’s life time.

2.5.3 Long term effects

Long term effects on stabilising structures depend on creep and shrinkage. Creep is
the increase in strain, over time, under a constant stress. Creep increases with
increasing water-cement ratio and decreases with an increase in relative humidity.
Creep can be accounted for by simply reducing Young’s modulus, £; by a creep factor
obtained through codes.
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Ey 1s the altered modulus of elasticity affected by the creep factor ¢, The creep
factor itself can be determined through Equation (2.11) but there are other models that
can be used.

0, =0, B.At—t,) (2.12)

oy 1s the notional creep coefficient which takes into account the relative humidity, the
mean compressive strength of concrete at 28 days and factors related to the effect of
concrete strength and age at first loading. f.(t-t;) describes the development of creep
with time after loading where ¢ is the considered time and 7, is the time at first
loading.

Shrinkage is a time dependant phenomenon which considers strains which are
independent of stresses and result in deformations. The shrinkage value &.(?) is
dependent on time and is formulated as

g,(t=1,)=¢5,,-B,(t-1,) (2.13)

Where ¢ is the age to be calculated on and ¢ is the age when shrinkage began. The
notational shrinkage coefficient, &9, is derived through the mean compressive
strength of the concrete at 28 days and coefficients depending on concrete type,
relative humidity and effect of concrete strength on shrinkage.

2.6 Problems concerning tall buildings

While dimensioning a tall building the engineer has to foresee the problems that may
arise. The primary concern for the engineer is that the building will provide a safe and
harmonious place for recreation, for working and for living. The secondary concern is
that the client will receive the most cost effective design.

The engineer must design with failure in mind. For example, if one stabilising
component fails due to impact, fire or accident, the buildings other components have
to be able to take up the weight, i.e. collapse has to be prohibited. Concerning
specifically fire, the building has to hold up for the period required for people to
evacuate the building before collapse. In order to ensure that the client is content, the
engineer must design a building that is optimal for its purpose. This means that the
structure will not be over dimensioned for exceptional safety, and the client shall not
have material costs that are unnecessary.
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2.6.1 Comfort

Concerning comfort, some tall buildings may experience vibrating sway, which is the
back and forth movement of a building due to wind loads. Such sway can lead to
cracking in the concrete and further weakening of the structure due to fatigue, if the
sway is considerably strong and frequent. This sway may also cause the users of the
building to experience motion sickness which causes nausea. A building with
uncomfortable movements may even be uninhabitable. An engineer can hinder these
effects through creating an aerodynamic structure which is less affected by the winds,
through designing the structure with attention to strengthening against sway and
through avoiding critical resonance frequencies. [Postgraduate medicine online
(1999)] [Vibration data (2002)]

There exists a certain frequency range that is uncomfortable for people. Most people
feel the affects of motion sickness in the frequency range 0.1 — 1.0 Hz. Calculations
should be made to determine the structures eigenfrequencies, transverse and lateral,
and damping should be applied when necessary. [University of Sydney (2004)]

2.6.2 Pierced shear walls

Concerning solid stabilising components, such as shear walls, forces and moments are
relatively easy to establish. The stiffness is the same throughout the wall and linear
behaviour can be assumed as long as the unit is uncracked. The estimating of force
distribution for pierced shear walls is on the other hand less predictable. Depending
on the hole dimensions in relation to the height and the breadth of the wall, the
behaviour is different. Walls with small holes have a strong connection between the
vertical parts deriving an almost full interaction between them. These walls can be
treated as solid walls as the behaviour is almost the same. Walls with big holes, in this
thesis mentioned as walls with slender verticals or transversals, have almost no
interaction between the verticals and can be treated as two separate walls disregarding
the contribution from the transversal parts. Considering all walls, with varying hole
dimensions in combination with asymmetry and more than one section of holes, it is
obvious that the behaviour and the force distribution is hard to predict. A flexible
method adaptable for all kinds of pierced walls is therefore to be preferred if possible.

2.6.3 Load distribution

The interaction between stabilising components in a building depends on many
factors. All parts in a complete structure play a significant role on influencing the
force paths, i.e. transferring the loads from the subjected surfaces down through the
building to the foundations. In most calculations it is assumed that the floor slabs are
fully stiff and do not bend in their plane, and that no slip occurs in the joints. The
floor slabs are connected to the vertical stabilising members and play a significant role
for distributing the load between the stabilising components. The floor slabs are
usually the components that are subjected at the beginning of the load path taking the
load directly from the facades. If the assumed stiffness of the slabs does not
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correspond to a real slab, the problem for establishing a correct force distribution
begins already with this first assumption. This uncertainty in combination with an
unsymmetrical load, subjecting the building to twisting, leads to there being a force
distribution which will be even harder to predict, especially for tall buildings.

2.6.4 Twisting and open cross sections

There are different methods for stabilising a building. Tall buildings often use a
combination of stabilising systems and a stabilising tower is common to be positioned
at the centre of a building, i.e. a core. In load cases where only translation occurs, the
behaviour and the stress distribution of the core is seldom a problem to predict. For
open cross section, such as U-shape, L-shape etc., subjected to twisting, the shear
stresses which develop in the opened tower are uneven and an unpredicted warping
effect may occur. This effect is often neglected or is not always understood by
engineers. [Smith and Coull (1991)] The effect is considered to be quite small in low
rise buildings but in tall structures the rotation angle, along the height, will cause a
greater rotation and the warping effect causes the extremities, the flanges, to displace
in the axial and lateral directions. These displacements are often partly prevented due
to the connected floor slabs which are acting as connecting beams between the opened
flanges, creating a closed or partly closed cross section. This means that the slab is
now subjected to considerable tensile forces for preventing the opened cross section
of the tower from displacing. These forces have a different intensity and force
direction in the slabs than the slabs are normally dimensioned for. [Smith and Coull
(1991)]

2.6.5 Interaction between the soil and the foundation

Tall buildings that are connected to solid bedrock are the only form of foundation that
should be considered as a fully fixed. This assumption is still commonly used in
design and the calculation processes for establishing buckling loads and dimensional
forces and moments. Foundations resting on a layer of clay are considered as a
structure partly fixed at the base. In the calculating process this could be taken into
account by using the method of elastic restraint.

This method is transforming the unpredictable soil into an elastic spring and so
making it possible for an interpretation of this phenomenon into the calculations. The
knowledge of the soil is first of all a very uncertain subject and in combination with
the approximation made for making the effect applicable in calculation the model will
probably not agree very well with the real behaviour.

The problems related to the soil properties is also an issue for structures resting on
piles drilled through the layer of clay bonded into the bedrock. The lateral resistance
in the soil, preventing the piles from lateral displacement, is not to be treated as a
compact non movable mass. Especially for tall buildings subjected to vibrating sway
the clay will be frequently compressed and released from the dynamic forces causing
the piles to move in a lateral direction compressing the soil. The upper part of the soil
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is the most sensitive and the loss of interaction between soil and the piles has to be
considered for dimensioning a stable structure.

2.6.6 Methods

The way tall buildings are designed and treated is different depending on which
country one is in and which codes are utilised. The codes do not include everything,
and relying only on the restrictions printed is not enough. It is noticed that the way a
building is checked or designed differs between engineering companies even though
the same code is followed. Even the restrictions in the codes are interpreted
differently. [Johansson (2005)]

It is observed in different literatures different methods for calculating stability.
Different tables are often used to achieve fast results but the basic theory is often the
same i.e. based upon the theory of elasticity. Which methods the engineers are using
1S not an important issue but it is important how deep an understanding the engineer
has of how the methods used were derived. Without knowledge of the assumptions
the methods are based upon, it can be difficult to draw conclusions as to whether the
calculations are good estimations of the structure or not. For complicated structures it
is preferable to use FE-analyses in addition to hand calculations for achieving
comparisons and a better prediction of the structure’s behaviour. Even though a
calculation program such as an FE-program is used, the effects of the interpretation of
the FE-model, such as boundary conditions, load application, material properties etc.,
has to be observed as the FE-method is also a model of the real structure. In some
cases a non linear analysis has to be considered.

The calculation methods used for pierced shear walls are described in Westerberg
(1991) and Lorentsen et al. (2000). Both methods used for calculating on pierced
shear walls are based upon an elastic behaviour with unified material properties
through the whole wall. The method used for establishing the buckling load involves
many assumptions and it is therefore suspected that the model will not resemble a real
wall.

In the hand calculation method, for establishing the top deflection of the wall, the load
is interpreted as a distributed horizontal load acting along the height of the wall. The
real wall is actually subjected to shear forces along the breadth of the wall on each
storey through the connections of the floor slabs. The method used does not therefore
resemble the real load case. In that case where the loads are applied (distributed along
the breath of the wall) the wall may have to be strengthened causing non uniform
material properties through the structure. If these parts are weak, cracking may occur
and the stiffness of the wall will be reduced causing a lower interaction between the
verticals. The real wall is then a completely different wall than the one interpreted in
to the hand calculation.

The approaches for calculating on complete structures, involve several assumptions
such as, evenly distributed columns and the vertical load distribution. Regarding the
vertical load distribution, the method uses a simplified expression assuming that the
evenly distributed columns are taking all the vertical loads while the stabilising
components are assumed not to be bearing. A problem with using this method occurs
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especially for buildings such as residential buildings which seldom utilise columns but
instead use stabilising walls for taking all the vertical loads combined with stabilising
the building. The method does not therefore resemble a real structure.

2.6.7 Summation of the effect from approximation

It is worth mentioning that engineers who are used to calculate on low rise buildings
often do not need to consider many of the problems mentioned in this section. With an
increasing height of a building, the effect of all the assumptions and approximation
made by the engineer will increase and in some cases a bad estimation can cause a
weak building showing an unpredictable behaviour. It is therefore to be noted that the
same approach used in low rise buildings should not be used for dimensioning tall
buildings. The 2" order effect is here greatly influenced by the approximations made
in the design process. If the problems which are brought up in this section are
disregarded the real building may behave unpredictably and the building may
succumb to unwanted deformations. The 2" order contribution may greatly increase
due to the greater deflections. Cracking may occur in parts where it is not predicted
and in these parts the stiffness is reduced and the capacity for taking forces is also
reduced. The force distribution will then be different than the building is designed for
and other stabilising units will be overly subjected causing cracking. Even though the
building does not collapse the reduced stiffness can cause the building to become
uncomfortable and the use of the building may eventually be prohibited.
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3 Calculation methods for stabilising components

This chapter will describe the methods for calculating the buckling load due to
bending through using the Vianello method, Euler buckling factors or through
deriving a k-value. The shear contribution to buckling will also be clearly explained
and derived. How the contributions of shear and bending are combined to produce the
critical buckling load is shown and how to us the magnification factor for determining
2" order effects is used for obtaining the design moment.

A calculation method for pierced shear walls is presented and the assumptions used
for this type of modelling are clearly described. Vianello’s method for determining the
bending contribution to buckling is described through the building up of an iteration
process in order to effectively explain the theory behind the method and how it is
used.

3.1 Solid components — Columns and shear walls

The buckling criterion of a component, or a whole structure, is vital when considering
the calculation of stability. When the critical buckling load is established it is used
frequently in comparison with the actual load on the structure. It is also of importance
concerning the estimation of second order effects. The contribution of second order
effects is included in the calculations through using quotients of the actual load and
the critical buckling load. The critical buckling load depends on deformations from
both bending and shear. The contributions from each part can differ, and in some
structures, for example for high slender stabilising components, the shear deformation
is negligible in comparison with the bending deformations and therefore is generally
ignored. This chapter will show the derivations of the critical buckling load for a
cantilever column as this model is closest to the actual application, i.e. fully fixed at
the base.

3.1.1 Buckling load through bending — General calculations

The Euler expression for bending is often used in estimating the critical buckling load
for a single component subjected to a concentrated load at the top. In a complete
stabilising structure, for example a building, an expression for the structures buckling
load takes a more simplified expression using a single factor, ky, and the complete
height of the structure, L,. The kjy-value is based upon the amount of storeys the
building has, or in other terms, the amount of vertical load applied along the structure.
This value can be established through Vianello’s method explained in Section 3.3.

The k-value derived below is for a single column subjected to a vertical load on the
top and note well that this k-value should not be confused with Vianello’s &y.

N, , =k*-EI orasthe known Euler expression

Ci

40 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12



3.1)

Ncr,B
Establishing the moment at a
certain point along the column,

assuming an imperfection with
a sinus shape.
Mx = Ncr,B y(x)
M N M, =—EI-y"(x)
X
N
y

Figure 3.1: Buckling load through bending.

Combining the two expressions above a differential equation is acquired.

"( )+N”’B (x)=0 (3.2)
X)+—— y(x) = .
y El y
Solution:

y(x) = Asin kx + Bcos kx (3.3)

V'(x) = Ak cos kx — Bk sin kx

" (x) = —Ak’ sinkx — Bk” cos kx

" (x) = —k’ (Asin kx + B cos kx) (3.4)
Combining Equation 3.3 and 3.4 a second expression for y '’ is acquired.

Y'()=—k"y

This leads to the determining of the critical buckling load due to bending with the help
of a factor k.
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L. is the so called buckling length. L. is different depending on how the behaviour of
the column is interpreted according to the boundary conditions. In some literature the

Euler expression uses a kz as a multiplication factor which gives the buckling length
L.

7*El
N =--—-=_ 3.5
¢ (kE -L)2 G3:5)

L, =k, -L (Buckling length) kg cantitever=2

Figure 3.2 below presents different kz values for different boundary conditions.

Euler cases: | 1 2 3 4
kg-value: 2 1 0.7 0.5

Figure 3.2: Euler buckling modes.
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3.1.2 Bending contribution of cantilever columns

A lNcr,B lNcr,B
_| Yoy
L
— M=N,,(v,-») (3.6
Y
1, M =-ED" (3.7)
M
L — Assumed linear response; EI
T N constant along the length =
cr,B
wNow (3.8)
+——y=N, .
o y E] y cryO
» X

Figure 3.3: Bending of a cantilever column

To establish the value of k for a cantilever column, the boundary conditions are
interpreted into the solution of the differential equation mentioned in the previous
chapter. The displacement, which contributes to the moment, is here (yy-y) where y
varies along the column, see Figure 3.3.

y = Asinkx — Bcoskx + y, (3.9
V'= Ak cos kx — Bk sin kx (3.10)

As y represents the variable deflection along the column, y’ expresses the slope at a
certain point along the column, i.e. dy/dx.

Boundary conditions:

Both the displacement y and the slope y’ are zero at the bottom and at the top the
variables are given the maximum values.

x=0 = y=0 y'=0=> 4=0
x=L = v=y9 = BcoskL+tyoy=y) = coskL=0 = k=m2L, 37/2L,...

2
V4 2 V4

s =
2L (2L)
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The cantilever column, because of the boundary conditions, has the highest value due
to the fact that the deflected column has the shape of a half buckling mode, see

Figure 3.2.

3.1.3 Shear contribution of cantilever columns

The critical buckling load, only regarding shear, is derived from the shear modulus
and the cross sectional area of the column. See Figure 3.4.

N,s=G-4 (3.11)

GA 1is the shear stiffness of the member and the shear modulus G for a concrete
member is assumed to be 40% of Young’s modulus. This value is derived from
Poisson constant v = (.25, the estimation for concrete. [Lorentsen et al. (2000)]

G= E =LE=0.4E (3.12)
2(1+v) 25
Ay lNcr‘S
q R M = Ncr,S : y
y=y-L (for small angles)
Observe that the shear force, V, is a
fictional force. It represents a force that
gives the same deflection which occurs
L from the critical buckling load when
the structure is failing.
Y
M=V-L
N, _M _VL_VL_yGA-L =GA
y oy
—F > 1
M Y Observe that y =— (3.13)
~— ¥ GA

Figure 3.4: Shear buckling of a column.

The stress distribution from shear is not uniformly distributed in large cross sections.
To obtain a more representative value for the whole cross section the shear capacity is

reduced with a value £=1.2.

_o4
¢
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3.1.4 Combined bending and shear

Both bending and shear deformations contribute to the deflection and the critical
buckling load. The final curvature of the deflection is therefore established through
the sum of the curvatures from each contribution, see Figure 3.5.

7’ El .
N,z = I Bending  (3.15)
L N,3=G-A4 Shear (3.11)

y=ys Shear angle

Figure 3.5: Buckling due to bending and shear.
V Ncr taty' Ncr toty”
Curvature from Shear: = = Mo ——— 3.16
urvatu Vs GA GA Vs GA ( )

"_ _M — Ncr,tot(yO _y)
EI EI

Curvature from Bending:  y, (3.17)

Combining both of the components the equations below are achieved.

N " N, — N . —
y”: yB”+yS”: erory 4 et (yo y) - yn: critot (yo y)
GA EI N EI
GA

It is important to distinguish between N, 5 , N.s and Ny 101 Nerior 1 the critical load
that is to be derived. The last part of Equation (3.17) can be compared with the
curvature for bending.

Nch(yO _y)
H: > 3.18
4 EI ( )
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A new expression is derived and gives a more simplified expression for the combined
buckling load, N ;o

cr,tot l
Ney=—7"— = New=—7—7" (3.19)
_|_

GA N cr,B Ncr ,S

3.1.5 Derivation of magnification factor

To establish the total moment, occurring both from horizontal load and the second
order contribution, a so called magnification factor is introduced. The total moment
can be expressed as the following:

B
M, =M\ 1+ (3.20)

Cr_l
N

M, = M, - magnification factor
M,=M,+AM

As one can see from the expressions above, there is a relationship between the 1* and
the 2™ order moment. The 2™ order moment occurs from the deflection caused by the
1** order moment combined with the vertical load. The deflection is related to the
stiffness of the component and weak components will therefore develop large second
order deflections.

The second order moment depends on the vertical load and the deflection. The
deriving of the magnification factor is here based on the deflections.

My= My+AM = My+Ny ; y=yotAy

Where yy is the 1*" order deflection. The deflection can also be written as the curvature
times the length in square.

1
y=y"L resp. y'=y"L = y=y"[P=—.[
r

When a sinus formed curvature is assumed. When different types of load act on a
column, the shape of the curvature also changes. Both the horizontal load and the
vertical load affect the buckling shape and the expression for the curvature above has
to be altered by a distribution factor for each load case.

=yp+A = —LL_2_|_LL_2 = —%E.}.ﬂﬁ
yome Y AT B YZBr 4T E B
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M,B

NA
___NA 21
y B'E]—l (3.21)

I’ N

A is the distribution factor related to the load distribution from the 1% order moment,
while B refers to the shape occurring when the column deflects under the vertical
load. The second order moment can now be rewritten as the following:

 Bl4
* (B-EI/L*)
N

AM=N-y=M (3.22)

-1

As the factor B refers to the shape due to the second order contribution, the curvature
along the column is similar to a sinus curve. B is therefore often assumed to be equal
to 7. The expression (B EI/L?) is then identified as the critical buckling load for
bending. On the other hand, the factor 4 differs depending on whether there is a point
load or a distributed load etc. applied on the column or a 1% order eccentricity of the
vertical load, see Figure 3.6. The quotient B/A is called a shape factor and is replaced
by the symbol £.

M, =M, | 1+-P (3.20)

2

V4 : .

— =1, for an axially loaded column with factor 4 = 7
V4

representing the imperfection and factor B = 7 representing the 2™ order effect, see

Figure 3.6.

It is also notable that f# =

| Sy

When s equal to 1, the expression becomes simplified to

1

- N
N

cr

M, =M, (3.23)

To calculate the total moment shown above, the critical buckling load has to be
established first. Figure 3.6 presents some A4 and B values which are used for
establishing the shape factor £.
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1:

Figure 3.6: A and B values for deriving the [ value. [Westerberg (1999)]

3.2 Pierced shear walls

Through Section 3.1.1 to 3.1.4 buckling of columns or shear walls is explained for
solid units. In this section a hand calculation method taken from Lorentsen et al.
(2000), is used to derive the critical buckling load for pierced shear walls. As
described earlier shear deformation is often neglected in tall stabilising units because
bending is dominant. When stabilising elements are pierced, shear deformation can
not be neglected. Calculation is more complicated compared with the solid units. The
calculations are based on the establishment of the shear angle y. The shear angle
consists of contributions from deformations occurring from both bending and shear
deformations in the vertical and horizontal components of a representative section at
the base of the wall. See Figure 3.7 where L. is the height of one storey. The
calculated value of the shear angle y expresses the angle when the shear force, V, is
equal to 1.

N, =A_¢ (3.24)
s 7
7 = yt,bend + yv,bend + 7[,shear + yv,shear (325)

v stands for the vertical parts and ¢ represents the transversal parts of the wall.

L ¢
=5 3.26
Fibend = b2 EL (326)
LZ
=S5 3.27
yv,bend 24EIV ( )
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L c
= see 3.28
yt,shear é: bzGAt ( )
9
s 3.29
yv,shear 2GA ( )

v

3.2.1 Derivation of buckling load

The reason the formula is split up into different parts is to reveal how much each part
contributes to the total shear angle. The derivations are all based upon the equation of
the elastic line and uniformity is assumed throughout the wall.

In order to calculate, the wall is modelled as a framework positioned in the centre of
the components of the shear wall, See Figure 3.7. The connection between the vertical
parts and the transversal part is assumed to be rigid, see Figure 3.8.

Lsec

hy

Co

Figure 3.7: Pierced shear wall.
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V/2
Vibend
Ly I:> Vi
El,
—~~ El
b
/ \ b/2
V=1
- v/2
Figure 3.8: Representative section of a pierced sear wall.
3.2.1.1 Bending in the transversal part
Bending in the transversal part is expressed in Equation (3.26).
L.c’
== 3.26
Tubend = 1202 g s

The contribution from bending of the transversal part is caused by a shear force
bending the length ¢/2 in Figure 3.8. The presumptions are that the inflexion point is
in the middle and that the inner part has E/ = oo. The length of the deformable
transversal part is assumed to have the length ¢ = h,+c¢y, i.e. the length is influenced
by the thickness and the length of the transversal part. See Figure 3.8.

3.2.1.2 Bending in the vertical part

The bending in the vertical part is expressed in Equation (3.27).

2

L
= 3.27
yv,bend 24EIV ( )

Bending of the vertical part with the length L../2 has the same derivation as the
previous component. Only the length and the shear force differ. y = deflection.

<
L

(LY L _ v L.
y 2 3EIV y 2 7v,bend 7v,bend Lsec 24E[v

2
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3.2.1.3 Shear in the transversal part

As Figure 3.9 illustrates, the angle y is caused by a shear force in the vertical
direction.

V4
Vi=L/b
L L
V,é:Vﬂ = V=—"%JV;and V=] = yt:—‘fV’
2 2 b GA

t

To transform ¥ to the contribution ¥ geqr , the angles are compared from Figure 3.9.

b c c
atazyta = atzytg
¢ c L_c
P 7 By 3.28
7t,shear t GA b é:bzGA ( )

3.2.1.4 Shear in the vertical part

The shear contribution from the vertical part is expressed through Equation (3.29).

Vo oE S
=2 V=1 = = 3.29
yv,shear 2 GAV yv,shear ZGAV ( )

The derived theory will be used in Section 5.3 where different cross sections will be
calculated and compared with results from FE analyses. It will then be clearer how the
contributions from the different parts will vary and affect the total shear angle, and
finally the critical buckling load.
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3.2.2

Calculation method for deflection

When calculating deflection of pierced shear walls the approach is different from the
establishing of the buckling load. The shear part of the buckling load is based upon a
shear angle that represents the state when the shear capacity or the critical buckling
load is reached. This angle does not represent the angle for the whole structure. The
vertical loads are decreasing with the height of the building which leads to different
angles on each floor.

Deflections of pierced shear walls are complicated to establish and involve advanced
derivations to obtain a usable expression. This derivation is not taken up here in detail
but the basics are presented. The method is explained in Smith and Coull (1991).

The method of calculating deflection of pierced walls is based upon a modification of
the shear angle.

S

y'= aV =y-V Represent the angle that occurs for a shear force V. (3.30)
y= é Represent the shear angle, i.e. the angle when V'=1. (3.31)

The modification of the angle in Equation 3.30 takes into account that a part of the
shear force is carried by vertical parts. The angle y’ is therefore reduced.

M
"=— T = V=EILy"
Y= Wy

V=V =2(=ELy"))=y -V +20EL (3", +3""s)

14 14
“e=—— = Y=y V+2y-yEI, —+2yEl y"
y B E[ yS 7/ 7/ y v E] 7 vy S
:> " 1 1 — V 1 2EIV

YosTYs y2EI,  2EI, EI

To obtain a simpler expression two new variables are established.
[Lorentsen et al. (2000)]

52

2 1

= 3.32
V2EI (3.32)
I (3.33)
”_1 2El '
EI
N s _&az =—a2Vl
v v H
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The variables « and u are used to simplify the final expression for the top deflection
of a pierced shear wall subjected to a distributed horizontal load.

b k9
= RE,

% :{l_l_i[aLh sinh(alL,)—cosh(al,)+1 1 ﬂ (3.35)

(3.34)

uou (aL,)* cosh(aL,) 2al,)’

The derivation of the factor K is not presented here and further information can be
found in Lorentsen et al. (2000).

The expression for the deflection is derived from the theory of linear elasticity and
stands for the top deflection of two combined solid members subjected to a distributed
horizontal load. The stiffness EI, represents the stiffness of one member. The factor K
is then established to take into account the effect of the holes.

The variables « and g can be rewritten to simplify the calculation.

3
oL 12 (ﬁj H (3.36)
y2EL 31, \c¢) bL_
Ly, 2L (337)
IL[ = -————m0= .
1 _ 2EIV Av,l AV,2 b2
El

Ly, 1s the storey height. b, ¢ and [, are presented in Section 3.2.1.
This method is also applicable for shear walls with more than one section of holes.

For a wall with two vertical sections with holes, the same approach explained above
can be used. Only the sum of the cross section area and the sum of the moment of
inertia is added with a third contribution from the extra vertical part.

For a shear wall with one vertical row of holes:
ﬂv:Iv,I+Iv,2 E‘lv:Av,l—’_AvJ

The factor K can be taken from the graph in Figure 3.10 which shows functions based
on Equation 3.35.
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Factor for deflection of pierced shear walls

00 r—rrrr 11T 1 1T 1T 1 1T 7" 1T T 7T 1T T T T T T T T T T T

01 2 3 4 5 6 7 8 9 10 11 12 13 14
alh

Figure 3.10: Graph for determining the K factor.
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3.3 Vianello’s method

In the last years of the 19" century, an Italian mathematician named Vianello devised
an iterative procedure which could effectively be used to calculate critical buckling
loads concerning the bending contribution. The Vianello iteration is especially
effective for establishing critical buckling load, concerning bending, in members with
non uniform stiffness throughout their height. Learning how to use Vianello’s Method
is a lengthy and methodical process which requires plenty of time in order to gain a
usable understanding. Literature is sparse so the only three sources studied are
Westerberg (1999) , Lorentsen et al.(2000) and Petersson and Sundquist (2002).

The point of using a Vianello iteration is to calculate a k-value to be used in Equation
(3.38), for calculating the critical buckling load regarding bending.

EI
Ncr,B = kV T

2
h

(3.38)

This is the critical load due to bending, where L, is the total height of the structure.
The iteration uses the differential equation of equilibrium of the system and can be
seen in Equation (3.8). See Section 3.1.1.

-M Nch .yO X ’
"n_ — L 1-1 — 3.39
VTR EI { (L] (3-39)

¥, = maximum bending deflection:

The method is capable of calculating both discrete elements, meaning individual, and
continuous systems, meaning a system of combined components. The best way to
explain how the method is used is to perform an actual iteration. For this individual
member the load is applied at the top and the stiffness is constant through the column.

N cr,B

v

Yo

Figure 3.11: A column with a vertical force N.
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The problem is shown in Figure 3.11. In order to calculate the critical buckling load a
Vianello table is assembled. The x/L shows the level in the column where the
calculations are valid. The y, is the initial estimation of deflection. Observe the
differential Equation (3.39) where (x/L)° is found. It is from this equation that the first
estimation of y, is set to be equal to (x/L)".

Table 3.1: First step

X " \ Vo
7 Va Y Y Yo Y
1 1

0.9 0.81

0.8 0.64

0.7 0.49

0.6 0.36

0.5 0.25

0.4 0.16

0.3 0.09

0.2 0.04

0.1 0.01

0 0

Ve Nc,gl' Yo N; Yo ar N; Yo py?

The first step involves setting up a table, Table 3.1, and inserting the x/L-values and
assuming the y,-values through squaring x/L, where the numbers in the column y, are
factors of yy.

-M N, Nys Vo Nyy ’
Pim = (g my) e = (= ey S e L S [ 33)
ET ET Yo EI EI L

leads to the establishment of the assumed deflection y,.

y X ? X ?
a =| — - = | — .
Yo (Lj & [Lj Yo
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Observe that the table represents the element member in that the top row is the top of
the member. Note also that the values displayed under y, are factors of yy.

Ex: where x/L = 0.5:

v,=0.25-y,;  thatis 25% of the maximum deflection y.

Table 3.2: Second step

X " , Ya
T Ya Y Y s y_b
1 1 0
09 | 0.8l 0.19
0.8 | 0.64 0.36
0.7 | 049 0.51
0.6 | 0.36 0.64
0.5 | 0.25 0.75
04 | 0.16 0.84
03 | 0.09 0.91
02 | 0.04 0.96
0.1 0.01 0.9
0 1
”, Nc,,gl- Yo Ncrél- Yo N; Yo py?

The second step is the calculation of y’’ which is the curvature. Here again the
differential equation is used.

M N, y. N, vy Nuy-y xY
"_ _ _ . B _ 1__a . crB 0= cr,B 0 1_ - 339
V= (Vo =¥a) I ( yo) o, I 7 (3.39)
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Ncr,B 'yO

The numbers that appear in the column y’” are factors of which leads to the

-M N .. 2 N .-
values being y''= = Do Yo {1_[%j }:y":M.(I_ya)

El EI EI

= y''=1-y,; for the iteration table.

Table 3.3: Third step

x " . Vs
T Ya y y Vs .
1 1 0 6.65
0.9 | 081 0.19 6.46
08 | 064 | 036 6.10
0.7 | 049 | 051 5.59
0.6 | 036 | 0.4 4.95
0.5 | 025 | 075 4.20
04 | 016 | 0.84 3.36
03 | 009 | 091 2.45
02 | 004 | 096 1.49
0.1 | 001 0.99 0.50
0 1 0
b, NC,Z Yo Ngl Yo o Nc,zl- Yo a2

The third stage involves the calculation of the angle y’. The calculation starts here at
the bottom of the column where the angle is zero. This represents the assumption that
the column is fully fixed to the ground. At the next levels the value for y’ is derived
through »' ="', _,+»",_-Ax . At the first level near the base, the curvature is referring

to half the length of Ax. See Figure 3.12.

Example: for x/L=0.1 is obtained ' ,,_,,=0+1 % =0.5-Ax
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Figure 3.12: Curvatures relating to Ax.

Table 3.4: Forth step

X " . Va
i Va y Y Vb y_b
1 1 0 6.65 41.75

0.9 0.81 0.19 6.46 35.10

0.8 0.64 0.36 6.10 28.64

0.7 0.49 0.51 5.59 22.54

0.6 0.36 0.64 4.95 16.95

0.5 0.25 0.75 4.20 12.00

0.4 0.16 0.84 3.36 7.80

0.3 0.09 0.91 2.45 4.44

0.2 0.04 0.96 1.49 1.99

0.1 0.01 0.99 0.50 0.50

0 0 1 0 0

’, N”;' v | N EBY Yo N 21 Yo a2

The value yj, the first calculation of a new updated deflection, is derived in the forth
stage, Table 3.4. Again the deflection on ground level is zero, due to the element
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being

For example: where % = 0.5 the deflection y, =7.8+4.2 =12 is obtained.

fully

fixed.

The following
equation yb,n = yb,n—l + y'n.Ax :

values

are  derived

from

the

This shows how each successive change in angle is added to the previous deflection in
order to obtain the subsequent deflection.

Table 3.5: Fifth step

X " . Va

i Va y y Vb y_b

1 1 0 6.65 41.75 0.024
0.9 0.81 0.19 6.46 35.10 0.023
0.8 0.64 0.36 6.10 28.64 0.022
0.7 0.49 0.51 5.59 22.54 0.022
0.6 0.36 0.64 4.95 16.95 0.021
0.5 0.25 0.75 4.20 12.00 0.021
0.4 0.16 0.84 3.36 7.80 0.021
0.3 0.09 0.91 2.45 4.44 0.020
0.2 0.04 0.96 1.49 1.99 0.020
0.1 0.01 0.99 0.50 0.50 0.020
0 0 1 0 0 0.000

B Ncr,;- Yo Ngl Yo ar | N ; Yo a2

The fifth step, Table 3.5, involves the division of y,/y,. This value should converge on
a common value in order for the results to be correct; that is that the relationship
between the assumed and the derived values of deflection is constant through the
structure. If the values do not converge, a new iteration is required.
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Table 3.6: Sixth step

= Ve » V' Vi Lo

L Vi

1 1 0 6.39 40.75 0.025
0.9 0.84 0.16 6.23 34.36 0.024
0.8 0.69 0.31 5.91 28.14 0.024
0.7 0.54 0.46 5.45 22.22 0.024
0.6 0.41 0.59 4.86 16.77 0.024
0.5 0.29 0.71 4.15 11.91 0.024
0.4 0.19 0.81 3.33 7.76 0.024
0.3 0.11 0.89 2.44 4.43 0.024
0.2 0.05 0.95 1.49 1.99 0.024
0.1 0.01 0.99 0.50 0.50 0.024
0 0 1 0 0 0.000

B Ncr,;- v | N 21 Yo N ; Yo a2

The sixth step, Table 3.6, involves an iteration of the previous calculations. Now it is
the estimated y, which is altered through the use of the derived y;.

For example: to obtain the new y, value where x/L = 0.5, the relationship between the
derived total deflection, 41.75 in this case, and for the deflection derived at the
position x/L = 0.5, which is 12. (Note that these values are taken from Table 3.5; the
fifth step)

120 429
4175

which becomes the new value for y, used in Table 3.6.

This procedure is repeated for all levels and it is observed that the relationship
between y, and y, becomes nearly constant through the structure. One more iteration
can be carried out to improve the results.
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Table 3.7: Seventh step

= Ve » V' Vi Lo
L Vi
1 1 0 6.36 40.63 0.025
0.9 0.84 0.16 6.20 34.27 0.025
0.8 0.69 0.31 5.89 28.07 0.025
0.7 0.55 0.45 5.44 22.18 0.025
0.6 0.41 0.59 4.85 16.74 0.025
0.5 0.29 0.71 4.14 11.90 0.025
0.4 0.19 0.81 3.33 7.76 0.025
0.3 0.11 0.89 2.44 4.43 0.025
0.2 0.05 0.95 1.49 1.99 0.025
0.1 0.01 0.99 0.50 0.50 0.025
0 0 1 0 0 0.000
”, Ncr,;- v | N 21 Yo N ; Yo py?
Total 4.14 168.46
Ax 0.1
N 2.46 El
’ (k) I’
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Now the value for y,/y» has converged. It is now possible to establish the critical load
N,,5. The value N, 3 is derived from:

)y
NC‘,.,B{ y]( = 2J=kV-E—f (3:38)
2y, (Ax-L) L

and can also be compared with the value derived from using Euler buckling:

7% El
cr,B = (k —L)z (35)
E

2

The final value of 2.46-52[ is very close to %; where 2 is the Euler constant kg for

a cantilever column. Be very aware of the difference between the Vianello &y and the
Euler buckling kz-value. See case 1 in Section 3.1.2.

—#— Pinned column
—&— Cantilever, shear wall

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Storeys

Figure 3.13: Diagram of ky, depending on boundary conditions, graphed against the
number of storeys in a building with evenly distributed load and
constant EI.

The ky taken from Figure 3.13 can be used for rough estimates if it is assumed that the
structure is evenly loaded and has a constant E/ value. The &y value for such a
structure is obtained from the figure above, as will be seen later in the thesis, by using
this &y the calculations will be, to a great extent, on the safe side. Observe that the
maximum ky, with the above assumptions, will gradually reach but not exceed 7.8.

Later in the thesis it will be seen how effective a tool the Vianello Method is. It is
very important to get a more accurate value for &y when dealing with structures with
different stiffnesses and different loads per floor where an erroneous critical buckling
load concerning bending will be reached if Table 3.13 is used.
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3.4 Elastic restraint

The purpose of this section is to establish the equations which describe the
relationship between the structure and the soil upon which the structure is situated. A
final N, value shall be obtained and an explanation of how it is further used in
calculating stability shall be explained.

Structures that are not founded directly in the bedrock have an interaction between
their foundations and the ground. The assumption that the foundations are fully fixed
i.e. that the soil is infinitely firm, can not always be satisfactorily applied. In reality
the buildings foundations will undergo a certain amount of movement depending on
the deformations from the soil properties.

A structure, situated on soil with assumed elastic properties, alters from being a fully
fixed connection to becoming a pinned joint. This assumption about elasticity can
only be taken as a liberal approximation because in reality the connection is based on
a united action between the structure and the ground which is actually seldom
completely elastic. Even though there is not a linear relationship between the
connection and the deformation of the building it is assumed that there is because to
try to follow the exact relationship will lead to nonlinear irregularities. It may not be a
perfect model of reality but this assumption of elasticity does give a calculation that is
on the safe side. [Lorentsen et al. (2000)]

In elastic restraint calculations one has to deal with four buckling load parameters of
N.

(2N)cr.10r = Total critical buckling load.
(2N)creirest = Total critical buckling load regarding elastic restraint.
(2N)..5 = Total critical buckling load regarding bending.

(2N).rs = Total critical buckling load regarding shear.

The angle y.r describes the elastic restraint. The angle is reached as the restrained
cross section is acted upon by a moment that equals one, or the moment which is
needed is influenced by an angle Y., which equals one. [Lorentsen ef al. (2000)]

The previously described Vianello method for calculating the buckling load while
considering bending can be implemented. The one alteration is that the previous
boundary condition of y'=0 is now, because of elastic restraint, taken as y'= My, .
Through the iteration is acquired the critical load N, p. Figure 3.14 below describes
the model used for an elastically restrained Vianello iteration with a three storey
building with three loads applied.
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Figure 3.14: Model used for an elastically restrained Vianello iteration.

n 'LSEC

Lsec

AT
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L

Figure 3.15: An elastic connection between the structure and the ground.

For calculating N, ejresr, the model in Figure 3.15 is used. Here it is assumed that the
structure has infinite bending stiffness and hence the shape of the column will remain
a straight line. The column is tilting because of the elastic restraint between the
structure and the ground. The restraint moment, M,,, is calculated through assuming
first the deflection, by multiplying the angle at the base by the vertical distance to the
force, and then multiplying that deflection by the appropriate force. The equation can
be written in a series form to describe the number of floors and forces applied.
[Lorentsen (2000)]
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M, =¢-L, -(IN+2N+3N+...+nN)

sec
This equation can be summarized as:

Mer :¢.LSSC .N.n+1‘

(3.40)

When the structure barely reaches buckling it is realized that AN = 2N, ejes. For this
to be true, the angle change @ must be equal to the previously described v, describing
elastic restraint, times the restraint moment M,,.

o=M, -y, (3.41)

Combined with N = N is obtained:

cr,elrest

n+1 2

Mer:Mer.j/er.Lsec'N _‘n :> N

cr,elrest cr,elrest

T+ Ly,

It is known that (2N) =n-N So therefore the summation term for all total

critical buckling loads, with regards to elastic restraint, can be written as:

cr,elrest cr,elrest *

(ZN)cr elrest = 2 (342)
T ) L7
To then obtain the (2N)., ., value, the formula below is used:
! ! ! (3.43)

CN).., N,  (EN)

cr,tot cr,elrest

The value (2N)..p is here the bending defined for instance through the Vianello
method; where &y is obtained from Figure 3.13, depending on the number of storeys.

Using this method it should be observed that the value (XN).. ., derived through a
Vianello iteration for an elastically restrained structure is the theoretically correct
result and the value for (2N).,.. derived through combining the values for (2N).,etrest
and (2N).. 5 1s a value which lands on the safe side.

If shear is also taken into consideration then the solution becomes:

1 1 1 1

= + + (3.44)
(ZN) EN).p @EN),s (ZEN)

cr,tot cr,elrest

[Lorentsen et al. (2000)]
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4 Calculation methods for stabilising systems

This chapter considers first the one storey systems where the buildings symmetry
provides the engineer with the option of only calculating in one plane due to the
columns of each wall being isolated. Rotation is not relevant to this type of
calculation. The concept of stiffness is introduced to the calculations and the method
describes how columns which are stabilising or non-stabilising are integrated into the
calculations. It is explained how the design forces and moments are acquired and a
numerical example is presented in order to facilitate understanding.

Secondly, the phenomenon buckling in space is investigated. Here rotation is included
in the calculations. A method is described of how one first establishes the critical
buckling load, due to bending and shear, and thereafter a new stiffness value is
derived. The calculating of the location of the rotational centre is explained and the
concept of the polar moment of inertia is introduced. It is then explained how this
method is used for single storey structures and how the Vianello &y is used in the
calculations on multi-storey buildings. One numerical example is presented for a
single storey structure and a second for a multi-storey building.

4.1 Single storey system acting in a plane

Buildings, which consist of many different stabilising components of different
stiffness, can be quite complicated to solve through hand calculations. As the
components have different stiffness values they will also behave differently, and the
force distributions through an entire building can be hard to establish. Stiffer units
will attract greater moments and forces than weaker ones. The establishment of the
force distribution is of vital importance, as without the knowledge of how a building
reacts from the applied forces, wrong approximations could contribute to a faulty
design of the structure. In Section 2.4.1, different stabilising components are
described separately and in this section combined components and how they act
together will be presented. During calculation, the rigidity is often represented by a
stiffness number, j. It is important to understand how the stiffness number influences
the stability of a system and it is therefore introduced by a simple single storey system
acting in one plane.

4.1.1 Assumptions

Normally it may be assumed that all columns fixed at the base are fully fixed. These
suppositions are sufficient in most cases but the behaviour of the foundation or the
ground, under heavy loading, has to be ensured. Another assumption, concerning the
load distribution, affects the calculation method. If the columns have the same
stiffness and the loads are evenly distributed on them, they can be treated as isolated
columns. Otherwise, the calculation method has to represent a system of columns.
Assumption regarding deflections is normally based on that no slip or extension
occurs between stabilizing units, i.e. the columns have the same deflection, see
Figure 4.1.
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Figure 4.1: One storey system of columns showing equal deflections.

4.1.2 Stiffness number

Stiffness number, j, for a cantilever column is defined as the horizontal force applied
at the top of the column which gives the deflection equal to 1, see Figure 4.2

. N
H Yo H=j Vit =1 S l

a) b)

Figure 4.2: Establishment of stiffness number j.

The column is assumed to have constant stiffness along its length. y, is the top
deflection that occurs from H only, Figure 4.2a. To include the 2™ order effects the
total deflection is derived by multiplying with the magnification factor mentioned in
Section 3.15.
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NCV
L3
=H. 4.2
Yo 3E] 4.2)
. . ) 7’El
Ny, for a cantilever column with Euler kz=2,1s N, ;= Vi (3.5

With y,,, = 1 the following expression gives the stiffness number j. Observe the
definition of the stiffness number, H = j , see Figure 4.2b.

..L3
1=~ ! - j=3LEf(1—Ni] (4.3)

cr

This expression is an approximation and is a very accurate one. The stiffness value,
agrees very well with the exact values which are presented in Petersson and Sundquist
(2002).

4.1.3 System of columns acting in one plane

The critical buckling load for a complete system, N,y 1s to be derived. To determine
the buckling load regarding a system of components, of equal or different stiffness,
the buckling criterion is set so that the sum of all the components’ stiffness values is
equal to zero, i.e. £j =0

]vle f N, centre N, right
O O O
EI 2EI
j left ] centre ] right
)
N4
-y -V
Mleft M, centre

Figure 4.3: Columns acting in one plane.
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Figure 4.3 illustrates a system of three columns where the left and the centre columns
are fully fixed at the base, while the right one is pinned. This means that the left and
the centre columns are the stabilising units of this system and they also have to brace
the right column. In this example the centre column has twice the stiffness of the left
one.

. 3-El Nleft . 3-2FE1 ( Ncentre ]
Jlef = 1_ : ]cen re — 1_ (43)
t L3 ( Ncr,leﬁ J t L3

cr,centre

Jrigw =777 = See Section 4.1.4

2 2
7 El T 2EI_2_N

4L2 Ncr,centre - 4L2 - cr,left (3 5)

cr,left =

4.1.4 Stiffness number for a non-stabilising unit

A non-stabilising unit can be identified with a pin ended column and will take vertical
loads only. As a sway occurs in the system a horizontal load develops due to the
vertical load.

]vright
Stiffness number for a non stabilising member:
M=H-L+N-y=0 = H=—¥
. H ) N-y
J=— = Jy=E-—— =
L Y L
N
= —— 4.4
J==7 (4.4)
y

o L

-V

M

Figure 4.4: Establishing j for a non-stabilising column.

The result for a non stabilising component is always a negative value and reveals that
it has to be stabilized by other units.

The sum of the stiffness numbers of the vertical components in this example are;
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The final expression is only referring to the above described example and is not a
general expression. The example shows that the method can be used for all cases
whether there are plenty of columns with different stiffness, different loads or with
different boundaries.

The expression, Xj = 0, can also be described as a condition for critical buckling

As mentioned earlier the stiffness number is equal to the horizontal force which gives
a deflection equal to 1. When the stiffness number is larger than zero i.e. N < N o1,
the system is stable.

4.1.5 Horizontal load distribution among columns in a plane

In a stabilising system which consists of vertical elements of unequal stiffness, the
horizontal load will not be equally divided among them. The stiffer members will
attract more load than the weaker. Using the previous example, the centre column
which has twice the stiffness of the left column, will in this case attract a larger part of
the total horizontal load.

The system is now to be subjected with a horizontal force H, see Figure 4.5.

ng fi N, centre N, right
oY | |
— O (E O
El 2EI
j left ] centre ] right
)
A\
—v -y
Md t M centre

Figure 4.5: One Storey column system with applied force H.
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The horizontal force which subjects each column can be derived by quotients of the
total stiffness and the stiffness of the actual column.

H,, = St gy =%H (4.5)
‘ y

system

In Section 4.1.7, a numerical example shall be calculated to clarify this method.

4.1.6 Calculation method of moments on a single storey one plane
system

In Section 4.1.5 above, horizontal forces on each column have been established from
the stiffness distribution among the columns. These forces give a contribution to the
maximum moment on the columns which is obviously highest at the base. The
horizontal force is often coming from wind load on the fagade and from unintended
inclination. The arrangement of the facade, mentioned in Section 2.2.1, often means
that the wind load on the facade is transferred to the slabs which further subject the
columns with a concentrated load. In this example however, the columns are attached
directly to the facade and are therefore subjected to a distributed load, see Figure 4.6.
The moment, contributed from the distributed load, is here named local moment as it
only affects the outer columns attached to the facades. To take into account both
contributions the calculation method is divided into two parts. The total moment for a
column is the sum of the moments.

i ]Vleft lN centre N, right i
> e
h
m, EI 2EI L
> ] left ] centre J right
~y -
Mleﬁ,tot Mcentre

Figure 4.6: One storey column system.
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Figure 4.7: The two calculation parts.

1. This part concerns the establishment of the local moment.

To calculate the moment from the applied load the system is first imagined to
be braced. The braced system will contribute with a horizontal reaction force
which is a part of all the applied horizontal loads acting on the building. This
includes the load contribution from unintended initial inclination. All vertical
loads are here disregarded.

H
. o O+—
|| EI
qn >
Jieft
-~y
M, local left

Figure 4.8: First part.

The bracing force, H, is in this case equal to a part of the distributed load and the
horizontal force occurring from the unintended inclination.
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H=§th+2N~am (4.6)

oy, a factor regarding initial inclination. [Boverket (2002)]

Observe that the bracing force does not inflict the moment in this part, part 1. The
bracing force is taken into account in part 2 but is established here.

Local moment:

In this case only the left column is affected by the distributed load.

2

Left column: M, ;.0 =4, % (at the base) 4.7)

Centre column: Mj,cas centre = 0

2. The second part concerns the moment occurring from the braced horizontal
force established in part 1. The bracing force is a reaction force, and the
moment is therefore now calculated with the same force but in the opposite

direction.
l ]vleﬁ lN centre N, right l
H __ A
EI 2EI L
j left ] centre J right
—» —
Mlef t M enpre

Figure 4.9: Second part.

The moment in this part consists of both the 1* and the 2™ order moments. The 2™
order moment is established from the vertical forces and the deflection. Observe that
the horizontal force occurring from the initial unintended inclination is not a 2" order
effect. It is taken into account as a part of the 1% order contribution.
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In this case the left and centre columns have unequal stiffness numbers and will not
have the same contribution for stabilisation. The stiffness numbers are first
established and are then used to calculate the total deflection of the system.

. 3El N | 3-2EI N | N
Si=2 - + 2221 -2 =
L N L N L

cr,left cr,col

H
= 4.8
y 5/ (4.8)
The deflection, y, is used to establish the second order moment.

M M

centre

:M0+AM=%H~L+N~y

lefi =

The total moment is established by summing both the contributions.
Left column: My ien=MiocaricfitMiefi

Centre column: M tot,centre :Mocal, centre +M centre

4.1.7 Numerical example - Columns in one plane

The same example used in Section 4.1.6 is utilised here. In this example the actual
force and the moment in the left and centre columns are to be established. Thereafter
the critical buckling load for the system shall be calculated. This example is an
exercise and the parameter values do not represent a real structure.

Nl@ﬁ: 150 kN Ncentre = 200 kN Nright: 100 kN
» O O O
Dy | EI 2E1 I
> jleft jcentre jright
O
Yy -V
Mleﬁ Mcentre

Figure 4.10: Numerical example.
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Values: gn =10 kN/m Niesi, = 150 kN,
EI = 9 MNm? Neonre = 200 kKN

L=5m Nyigne = 100 kN

Establishment of stiffhess numbers:

From Equation (3.15) the critical buckling load due to bending is derived.

7’El_ 7*-9-10°

cr,left = 4. L2 - 4. 52 =888 kN Ncr,centre =2- Ncr,le_/i =1776 kN
: N., .9.10°
e _3-EIf N Jua _3 9310 (1—15()]:179 N/
L N i 5 888
. N .2.9.10°
Jeontre = 2By e Jeonre = 32 93 107112500 _ 371 kN/m
L 5 1776
. N g . 100-10°
Jrw == Jugy === =20 KN/m

2j =179+371-20 =530 kN/m

Horizontal force distribution on each column:

The bracing force, Equation (2.4), is to be established from the distributed load, g;.

H=§th+ZN-am

o, =0.003+ 0012 n: The number of columns above the floor.
n
a, =0.003 + 0012 _ 0.0099 ~ 0.01
V3
3

Bracing force: H=210-5+ (150+250+100)-0.01 =23.75 kN

The horizontal force for the left and the centre columns can be directly established by
quotients. The moments are thereafter established.

76 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12



e 179

Hy, =2 H =—.2375=80 kN
‘ 2j 530
o ewe g _3TL 5395166 kN
5/ 530

Observe that only 3/8 of the total horizontal load is applied on the top part.

Moments: M =H

centre

'L+Ncentre.y

centre
y is the deflection derived from the applied horizontal force and the stiffness number.

3
y= H y= w =0.045 m (deflection at the top of the columns)
> 530-10

M =16.6-5+200-0.045 =92 kNm

centre

The moment affecting the left column has an additional contribution, Mj,.,;, explained
in part 1 Section 4.1.6.

a <
- H
I’ .52
> Mlocal,lefﬁ = th = 10-3 =31.2 kNm
" | El
qn —» M, ., =80-5+150-0.045+31.2=78.1 kNm
Jieft
-y
Mlocal,left

Figure 4.11: Part 1.
The establishment of the critical buckling load for the system:

To determine the buckling load for the whole system the same equations concerning
the stiffness number are used. Observe in the equation below that N is here
represented by a relative value obtained by quotients considering the vertical load
distributions among the columns.

It is now decided that N e 1s set to N and the other two columns are quotients based
upon the vertical load differences between the actual column and the centre column.
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centre

=N
N

. 1
Ny =—2—= 10_3 N, =0.75N
Ncentre 200 4
Ny 100
Nright = N = = ﬁ =05= Nright =0.5N
Z] = O = ZJ = jleﬁ + jcentre + jright = O -
3EI 0.75N | 3-2EI N 0.5N
3 1- + 3 1- — =0
L Ncr,leﬁ L Ncr,centre L
3EI_O0JSN3EI 3-2El N _3-2EI 05N _,
L3 N cr,left L3 L3 N cr,centre L3 L
3EI  6El 0.75 3EI 1 6EI 0.5
—t— - —+ —+—|N=0
L L Ncr,leﬁ L 2 ’ Ncr,leﬁ‘ L
9FEI 0.75 3EI 1 3EI 0.5
- —+ —+—[N=0
L Nsr,leﬁ L Ncr,leﬁ L
9[:;] 3 5.25EI3 +£ N =0
L Nsr,leﬁ ’ L
9EI 9.9.10°
2 2
N= L = 95106 =123 MN
5.25E1 405 zd- 3 105
Ncrleff 'Lz 888-107-5

To establish the critical buckling load for the system a summation of the loads is
made.

N, .. =N+075N+0.5N =1.23(1+0.75+0.5)=2.77 MN

cr,sys
The critical buckling load is compared with the sum of all vertical loads.
IN =150+250+100=500 kN = 2N < Nepgys.

In this example the method for establishing the moment at the base of the columns is
to directly use the stiffness numbers. The second order effect is then included in the
expression for the stabilising columns. In Section 3.1.5 the derivation of the
magnification factor is shown which is used for more complex systems. This factor is
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calculated by using the total vertical load in relation to the critical buckling load for
the whole structure. This approach can also be used in the example above to establish
the total moment by multiplying the first order moment with the magnification factor.
The local moment at the left column is then not included. When using the above
method it is not necessary to calculate N, but it can be done in order to compare
with the total vertical load.

4.2 Stabilisation systems — Buckling in space

In Section 4.1.6, the buckling load has been derived for simple structures in one plane
(buckling in x-direction for example). In this section buckling in space will be
introduced for both single and multi storey structures. This section involves buckling
in both x and y, i.e. translation, but also buckling through rotation. The method used
for single storey structures differs from the one used in multi-storey structures but the
basic theory is the same. [Lorentsen et al. (2000)] The expressions used for multi
storey structures are a simplified method based upon the more accurate equations used
for single storey structures. The theory is first derived and then explained through two
examples concerning both single and multi-storey structures. Thereafter a summation
of the equations for a single storey structure, i.e. the more accurate method, is
presented and is followed by the expressions for a multi-storey structure. Two
numerical examples will thereafter be presented, one concerning single storey
structure and one for a multi storey building.

4.2.1 General expression of translation and rotation

Vianello’s method is first used to establish the kj-value which is used to calculate the
buckling load, concerning bending, for the structure. The value can also be taken
directly from Figure 3.13 in Section 3.3 if the storeys have equal stiffness and if the
loads are evenly distributed through the building.

EI
Ncr,B :kV T

2
h

(3.38)

Before the critical buckling load can be calculated the stiffness of the whole structure
has to be established first. The stiffness is divided into x-, y-translation and rotation.
The buckling criterion for each direction is:

Translation:
> Jjix =0 buckling in x-direction (4.9)
1
Y Jj., =0  buckling in y-direction (4.10)
1

Rotation:
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2

21: (jl.,xy,.2 + i X ): 0 buckling through rotation. (4.11)

The last expression describes the summation of all components, both stabilising and
non-stabilising. Each stabilising component has a stiffness value which contributes,
through rotation, to stabilisation. The stiffness of the unit, and its distance to the
rotation centre of the building, reveals the rotation capacity of the stabilising unit.
x; and y; are the distances from the units rotation centre to the rotation centre of the
whole structure. Observe that the units stabilising in the x-direction are multiplied
with the distance in y-direction and vice verse, see the derivation of Equation 4.11 in
Section 4.2.2.

A complete structure consists not only of stabilising units but also of non-stabilising
units. As described in Section 4.1.4, non-stabilising components, which are only
loaded through vertical forces, have a negative contribution in the summation of the
stiffness numbers.

. 3EI, N e .
Jix = e 1- N Stabilising components (fixed and cantilever) (4.3)

cr

Non-stabilising component, eg. a hinged column. (4.4)

4.2.2 Derivation of critical buckling load through rotation

In this section the critical buckling load through rotation will be derived for stabilising
units. Non stabilising units, such as pin ended columns, are described in Section
4.2.3.4 using the polar moment of inertia as a simplified expression. This example is
using stabilising columns, i.e. fixed at the base but hinged at the top. The column is
stabilising in both main directions and therefore derives an expression regarding both
x- and y-directions. It is then easy to understand how the expression is used for shear
walls which are assumed to stabilise in one direction only.

Figure 4.12 below describes a stabilising column at a certain distance from the
rotation centre, RC.
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Figure 4.12: Stabilising column with a certain distance from a rotation centre.

A twisting moment is applied on the structure causing a rotation around the rotation
centre. The stabilising components in a complete building are subjected to forces
which are depending on the stiffness and the distance of the components from the RC.
The stiffness number, j, earlier described in Section 4.1.2, is the force subjected to a
unit which gives a deflection (at the top) equal to one. The rotation occurring from the
moment applied gives a deflection of the column in tangential direction. The
deflection is divided into x- and y-direction and the force subjected at the column
follows analogous, see Figure 4.12. The force in x direction which gives a deflection
equal to 1, is the stiffness number in x direction, j,. The same follows for the
y-direction. i is the rotation angle.

Hi,x = ji,xw ' yi (412’)
Hi,y :ji,y'//'xi (4.13)

The sum of moments from all stabilising units is equal to the twisting moment
applied.

n

wise = H Y1+ Hlyy)c1 Fonn, +H,.y, +wan = Z(ji,xwyf + ji’yl//-xf)

1

M

As the stabilising components are subjected to an increasing vertical load, the
deflection increases until the load has reached the critical buckling load of rotation. In
this stage the complete building has a rotation which gives rise to a deflection of all
units without an external moment having been applied. The expression above is then
equal to zero as the applied moment is zero.

My =0 = Y(wy +jwax)=0 (4.14)
1
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The angle, y, is then reduced and the final expression for the critical buckling load
through rotation takes the form;

n

S (oy? + x50 )=0
1 (4.11)

The expression is now general for all stabilising units that stabilise in both x- and
y-directions. When, for example, shear walls are used the walls are assumed to
stabilise in one direction only and one part is then equal to zero.

4.2.3 Calculation methods for establishing critical buckling load

This example derives the expressions for stabilising through translation and rotation.
The complete structure consists of stabilising walls and vertical columns. The
columns are assumed to take all vertical loads and do not contribute to the
stabilisation, i.e. they are assumed to be hinged at both ends. The stabilising walls are
subjected to horizontal loads only. The walls are fully fixed at the base and are
assumed to be hinged at the top end. The columns are evenly distributed and are
applied with equal vertical loads. See Figure 4.13. These assumptions are made to
simplify the calculation for establishing a method applicable for common structures.

]
By
BV ® CGyiap BV a
y A
X
b

Figure 4.13: Floor plan; 3 shear wall.

4.2.3.1 Stiffness due to influence from shear

In most structures both bending and shear have to be taken into account. The stiffness
is changed to By and B,, for x- and y-directions respectively. The stiffness B is based
on interaction from both bending and shear.
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Ner.10r from bending and shear: N = 4 1 (3.19)
Ncr,B Ncr,S
M b NCV tot
Establishment of the new stiffness value: B =——"--EI[ (4.15)
cr,B

The same derivation is used for y-direction. Observe that the stiffness B has to be
established first before the location of the rotation centre is calculated.

4.2.3.2 Location of the rotation centre

If the building is supported by units placed with symmetrical distances from the centre
of gravity of the slab, CGgp, and with equal stiffness, the RC is then located at the
CGgiab. This can be expressed as the stiffness times the distance; (B, xzc) 1s equal to
(Byxrc) on the other side of CGgiap. The capacity of taking forces is the same on both
sides of the CGgpp. If the building is supported by several stabilising units, it is not
always obvious where the RC occurs. It is therefore necessary to establish the RC by
calculation.

The location of the rotation centre is determined in x- and y-directions respectively.

_ Z(By ‘xRT)unit Z(Bx " Vrr )unit

Xpr = T Yerr = ZBx

Notice that the index on the stiffness B is related to the direction the unit stabilises.
This index is not to be confused with the index on moment of inertia /, which is, in
some literature, related to the rotating axis concerned. For this thesis the index on EI,
is therefore concerning the direction.

(4.16)

4.2.3.3 Simplification of stiffness numbers

In the simplified method, used for multi storey structures, no vertical loads are
assumed to act on the stabilising walls and the expression concerning the stabilising
components is therefore simplified. The expression for the stabilising components will
then take the following form:

3EI N
= 43
2= ( N] (4.3)

3EI,
LS

= D j =

The same derivation is applied for stiffness in y-direction, two walls.

3B
B, =EI, = Y j = L; (4.17)
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3B,
L3

ij =2

3EI N ‘
22 o pe

cr

Observe that it is assumed that the walls only stabilise in one direction. The thickness
of the walls is minimal and the low contribution of stability in transverse direction is
disregarded.

4.2.3.4 Non stabilising units
Translation:
The derivation for non-stabilising units is shown in Section 4.1.4.

N,, .
=g = = Translation 4.4
.]x,wl .]y,wl L L ( ) ( )

Rotation:

The columns are evenly distributed within the floor slabs and are acting together. The
calculation is therefore referring to a whole system of columns and not a single one.
The derivation below introduces the concept of the polar moment of inertia, I,, which
is related to the size of the slab supported by the distributed columns. The polar
moment of inertia is an expression used in the simplified method used for multi storey
structures and concerns the non stabilising components only. To use the polar moment
of inertia it is assumed that the structure has an endless amount of columns placed
with minimal spacing.

i(j,»,xyf )50 )= —q—LV(yf Ve —C]L—Vj(y2 +x* A = —q—LVIp (4.18)

1 A

]p:Ip,x+Ip,y (4-19)
(For rectangular sections, like slabs.)

;- ba’ +ab3 _ ab(a2 +b2)
P12 12 12

(4.20)

The Equation 4.20 is simplified from the general calculation of moment of inertia.
When the rotation centre is not located at the centre of gravity of the slab, the general
expression has to be used.

For y-direction, when RC is dislocated in y-direction from CGgap.

_b-a3

Ip,y T-i_ Aslab ylz" (42’1)

For x-direction, when RC is dislocated in x-direction from CGygjap.
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a b’ s
= +A,, -x (4.22)

X slab ~ T
r 12

4.2.3.5 Buckling load for single storey building — summation

L N ! 3B Y|
Translation in x-direction: ' j, =0 = L;‘ - —qu =0
1
. . . . " 3B 5 q A
Translation in y-direction: ' j, =0 = 2- o VT =0
1

Rotation:

3B, , 3B, 2_i'ab(az+bz)=

; i yi4g o x2)=0 = oty —Yx 0
;(Jl,xyz Jz,y l) L3 y L3 L 12

Observe that the equations above are referring to the more accurate method used in
single storey structures. The multiplication factor, 3, is derived from the equation of
linear elasticity and refers to a single column subjected to a single point load at the top
of the member, see Figure 3.13. This factor is the same as the value .y established
from Vianello’s method which can be used for multi storey structures. The expression
below shows the relationship concerning one stabilising column.

EI

Vianello formulation: N, , =k, -—-

h

(3.38)

For one storey the &y is valued to 2.5, see Figure 3.13.

7° EI EI

Euler formulation: N, , = R =k, - I

ky 1s here valued to = 2.5

The expression below shows the relation concerning one stabilising member
combined with a pin ended column. This model is frequently used as it resembles a
real structure, which uses columns supporting vertical load and bracing walls for the
stabilisation.

) . q,A4 3B, N,
Single storey expression: L =0 = Y |
8 Y exp r L L L
El
Ncr,B = 3 . ?

ky 1s here valued to 3 and can be compared with value from Figure 3.13 referring to a
pin ended column.

Notice that the expressions for the stabilising units are assumed not to be subjected to
vertical loads, only the columns. This assumption is probably close to the real case but
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not fully because the walls may be subjected to some vertical load as they may be
connected to the slabs, depending on the floor system. The assumption simplifies the
calculation and is utilised, as it is shown, in both single and multi storey calculations.

4.2.3.6 Buckling load - Multi-storey expressions

Equations used to calculate stability on multi-storey structures are based on the same
expression as for single-storey structures, i.e the more accurate method. To use the
accurate method it is assumed that the rotations centre is positioned at the centre of
gravity of the structure. In the expressions used for multi storey structures the
dislocation of the rotation centre from the centre of gravity is taken into account. The
same expression is used to calculate the final buckling load.

N, =k — (4.23)

The overall stiffness, C, has to first be established for each direction. The stiffness, for
example B, in x-direction, is not always the governing one because it is not only
translation that occurs. When the rotations centre is not located at the centre of gravity
the overall stiffness, C, in each direction is influenced. In these cases the overall
stiffness, C, is also influenced by the polar moment of inertia, see Equations (4.24),
(4.29) and (4.30). The complete expression for establishing the overall stiffness is a
third degree equation. [Lorentsen et al. (2000)]

[=(8,)-c]-[=(8,)-c]-| =(B,y* + B,x*)- c%} =22 -[5(B,)-C]+ 2y -[2(B,)-C]

(4.24)

T
B2,x 2
| X1 | Y.2
|
RC -

By ] C(.}slab yr

XT a
—
e
o b

Figure 4.14: Illustration of x, y, xr and yr.
Notice that there are two symbols for distances in x and y direction.
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The symbol x and y are the distances from the RC of the actual unit to the RC of the
whole structure.

The symbols xr and yr are the distances describing the dislocation of the RC to the
CG.

The left side of Equation (4.24) is a multiplication of the expressions for translation in
x and y-direction and buckling in space. The approach here is to calculate the value of
C, which is the same as the overall stiffness which will be used in the final expression
for the buckling load.

The right side of Equation (4.24) is a contribution from asymmetrical structures, i.e.
when the rotation centre is dislocated from the centre of gravity. With the special
case, when both x7 and yr are zero, the right side becomes equal to zero and the
expression is simplified to

2(8,)-C]-[=(8,)- ]| =(B.y* + B,x*)- C%’} =0 (4.25)

To establish the overall stiffness C the three parts are set to zero separately and are
compared.

[2(B,)-C]=0 Translation x-direction (4.26)

[Z(By )— CJ =0 Translation y-direction (4.27)
1

5(B.y* + B,x*)- C~|=0  Rotation (4.28)

Asymmetrical structures:

The general expression will be different depending on if only x7 = 0 and yr # 0 or vice
verse.

When xr = 0 and yr # 0, the Equation (4.25) can be written as
=(8,)-c]-[=(8,)-c]- {z(zaxy2 +B,x*)- C%’} -’y -[5(8,)-c] =

1

[=(8,)-c]- ([Z(Bx)— C]{Z(Bxyz +B,x*)- 07”} - czygl =0

(4.29)

When xr # 0 and yr = 0,
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5(5.)- ) ble )l oy o .0)- 2 |- ct (e -] =

[=(8,)- C]-UZ(B}V )-c] [Z(Bxyz +B,x’)- Cljﬂ - sziJ =0 (4.30)

If both x7 = 0 and y7 # 0 the approach described above is not workable. Instead the
general third degree Equation (4.24) is solved by a computer program. This general
equation can off course be utilised for all cases. The equation provides three roots of
which two roots refer to translation and one to rotation.

4.2.4 Numerical example - Single storey structure

7777 7777
H [ |
1 2 3
RC
1 O3 od
6 m
4 9
7 8
L X [©) [ |
10 m

Figure 4.15: Plan of structure for calculation of buckling load for a one storey
building.

Local buckling is assumed not to occur, i.e. buckling concerning Euler 2 cases.

L,=5m q,=5 kPa E =30 GPa
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4.2.4.1 Buckling load through translation

Stabilising columns: Columns 1,3,7,9

e N
Stiffness number of each stabilising column:  j = = SEI (1 N J (4.3)

Dimensions: 0.2 m x 0.2 m

3
El, =EI, :%-30-109 =4.10° Nm?
2 2 6
Ncrcolx:Ncrcoly:ﬂ-E;I:ﬂ- 4210 :395 kN
T o 4L, 4.5
Non stabilising columns: Columns 2,4,5,6,8
N
=Jy =7 4.4
Je =1y L (4.4)
I 25m | S5m | 2.5m |
| | [ |
. : O : . I
1 ] 2 i 3
l : 1.5m
6ml 4 6
O ! RCO 5 : d 3m
Y i i
! : 1.5m
7 . 8 ! .
= Q . ‘m |
10 m

Figure 4.16: Load distribution

Load distribution:

Observe that the chosen load distribution is a rough estimate.
Total vertical load:

N,, =5-10-6=300 kN

tot
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Stabilising columns in the corners:

Appliedload N ;,,=4-q,=2.5-1.5-5=18.75 kN

For A is the area of load affecting that particular column.
Non stabilising columns:

Appliedload N, =4-q,=5-1.5-5=37.5 kN
N,g=4-q,=25-3-5=37.5 kN
Ny=A4-q,=5-3-5=75 kN

To establish the buckling load for the whole system the loads are normalised and are
interpreted as loads with the amount of load related to each, depending on how much
the actual column is taking.

The amount of the load which is applied on the stabilising columns is set to be equal
to N. In this case all four corner columns are subjected to the same amount of the load.
All other columns are then related to the load applied on the stabilising columns. In
this case the structure is assumed to be subjected to an evenly distributed load, ¢,, and
quotations of the load areas between the different parts of the slab can therefore be
used as well. For simple structures the load quotients can be made straight forward
and the load areas, or the load part, for each column must not necessarily be establish
first. This calculation example is referring to an easy structure and the load quotations
are performed just to clarify the method for general cases.

Quotations from the load distribution:

375
18.75

2,8

Ny =12 NN
$ 71875

Moo T Nty
18.75

The stiffness numbers for all units are then summarised in the expressions for
establishing buckling load through translation and rotation.

n n n

SG)=0  Y0.)=0 Sy +jat)=0

1 1 1

In this case the stabilising columns have the same stiffness in both x- and y-direction.
The buckling load is therefore the same in both directions.
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Buckling load through translation:

$6.)-30.)=0 = 4.315;1 N ) ,2N 2N 4N
1 1 Lh Ncr,col Lh Lh Lh
3E] N 12N 12EI 12EI N 12N
4220 Ny -0
Lh Ncr,col Lh Lh Lh Ncr,col Lh
12E1
L 0

125’1_ 12?’1. 1 +£N:O o N=
L, L, N

cr,col h

B _1
L N

cr,col

12-4-10°
52
N = - =114 kN
12 -4-10 12
5°-395-10
The loads from all units are then summarised and multiplied with the calculated load
value.

N,.,=N,,=4-N+2-2N+2-2N+1-4N =16N =16-114 =1824 kN

4.2.4.2 Buckling load through rotation

Zn:(j,-,xyf +j,x2)=0

1

The four stabilising columns at the corners of the building have the same contribution
due to symmetry.

4. 31:;] - N (y2+x2): 1213?[ - N (32+52)=4083EI - N
Lh Ncr,col Lh Ncr,col Lh Ncr,col

Non stabilising columns:

Columns 2 and 8: 2. ——N-(y2+x2) =2. _2L_N.(32+02)}:_36N

Columns 4 and 6: 2. ——N-(y2+x2) =2- —Z—N-(0+52)}:—100N
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Column 5 (at the RC) 1-{—4L—N-(y2 +x2)}:1-{—4—N-(0+0)}:0

h h

The contributions above are summarised and the buckling load is calculated.

L, L, L, L, L, N

=

cr,col cr,col Lh

408E1_(408E1_ 1 +136}\/:0

Liz Li: Ncr,col Lh
408E1 408-4-10°
L 52
M= h " (408.5-4-10° ST
5.4.
408E]-#+136 2R 136
L ool 5%:395-10

N =4-N+2-2N+2-2N+1-4N=16-N =16-217 =3467 kN

cr,rot
The structure is stable through rotation compared with translation.
Nerx = Nepy = 1824 kKN

Nyt = 3467 kKN

408E1(1_ N ]_361\/_1001\/_0 _, 40BEI 408EI N 136N _
N

0

The stabilising columns are placed far from the rotation centre and present an example
of how the columns should be placed for obtaining a stable building. It should also be
noticed that non stabilising columns, positioned far from the rotation centre, give a
large negative contribution concerning stability through rotation of the structure,

especially if they are subjected to high loads.

Comparison between the critical buckling loads and the total load applied on the

structure:

Total vertical load : N, = 300 kN

Compared to buckling load through translation: 302(2 =0.16 (x- and y-direction)

Compared to buckling load through rotation: 3340607 =0.09
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The comparisons between the total vertical load and the critical buckling loads for the
structure give an indication of how stabile the structure is. The factors calculated
above are different depending on which buckling load the total load a compared with.
These quotients are also included in the expressions for the magnification factor,
Equation (3.23), to calculate the contribution from the 2™ order effects.

4.2.5 Numerical example - Multi storey structure

This numerical example is based on the same assumption mentioned in the previous
section i.e. no local buckling and the load is evenly distributed.

The case examined shows a building braced by one stabilising wall in x-direction, two
stabilising walls in y-direction. The vertical loads are assumed to be borne down by
evenly distributed columns and the stabilising walls are assumed to be subjected to
horizontal loads only.

|
B, 1
B
B, ’
|2 - CGslab I 3 a
‘ 15m ‘ 15Sm .
) ' | '
&
b
Figure 4.17: Plan of multi storey building.
Values: a=30m b=60m E\va=25 GPa G,.,=04-FE ,
Storeys: 10 L,=30m (total height of the building)
Wall dimensions: t=03m b,u=10m
All three walls have the same dimensions and materiel properties.
Lec=3 m (height of one storey)
Calculations:
. s 0.3-10° )
Concerning stiffness for the walls:  EI =25-10" - =625 GNm
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Wall 1:

EI 625-10°
N .=k, -—~=6.8-
cr,B V Li 302

=4.72 GN

Where ky = 6.8 is taken from the Vianello method, see Figure 3.13.
N,s=GA=0.4-25-10"-0.3-10=30 GN

1 1
Ncr,tot - 1 1 - 1 1 = 408 GN

+ +—
N,, N,s 472 30

Stiffness with regard to shear and bending:

N
B =—"" . EI _ 208 625.10° = 540 GNm? B.i=B,,=B,;
N, , 4.72

As the walls have the same dimensions and material properties, the value of B, is
equal to B,. In this case the bending is dominant as the shear buckling load is much
greater than the bending buckling load. Still the stiffness of the wall is lowered with
85 GNm”.

Position of the rotation centre RC is calculated with Equation (4.16):

(B, xi),, _540-20+540-40 _

Xpp = 30 m
” >'B, 540 + 540

2 (B yar),, _540-30 _

= 30 m
Y TSR 540

Observe that the origin of the coordinate system can be placed wherever one wishes
during the calculation of the rotation centre. When the distances xr and yr are set, the
origin of the coordinate system should be placed in the rotation centre and the
distances describe the distances from RC to CGgjyp.

The new origin is seen in Figure 4.18.
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B
yr= 15m
B M 5y a
’ CGslub
Y
A
X
b

Figure 4.18: Situation of the new origin.

Polar moment of inertia;

3 3
I o] 41 :30 60 +60 30

, =1, . +1,, +30-60-15* =1.080 Mm®; see Section 4.2.3.4.
i ’ 12 12

Establishment of the overall stiffhess C

From the general equation, Equation (4.24), the expression is rewritten due to the
asymmetry in y-direction, see Section 4.2.3.6.

[Z(By)—C]-[[Z(Bx)—C]-[Z(BXyZ +Byx2)—c17ﬂ —czygjzo

[(2-540)—c]-[[540—C]{(z-540-152)—C1'(1261006}c2 -152j =0

The values are interpreted into the equation and the roots are solved by a calculator or
a computer program.

The following roots were calculated:
C;=275 GNm’
C>=1080 GNm’
C5= 1200 GNm’

The critical buckling load is then calculated for each direction. As the second order
contribution is derived through quotients between the critical buckling load and the
applied vertical load the appropriate buckling load has to be used for each direction.
Depending on how the walls are positioned in the building, whether they contribute to
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stabilisation both in the translation and in the rotation or only translation, the choice of
which critical buckling load that will be used is different.

It is recommended to first calculate all three buckling loads and thereafter apply the
values for second order contribution. The reason is to reveal how the different values
in each direction differ from each other and it is then clearer how the building is
reacting.

9
N _68- 2210 58 6N (3.38)

0>

:kV I

C
cr,building 2
h
In this example, only one wall is stabilising in the x-direction. The rotation centre will
therefore only depend on this single wall whose RC is positioned in its centre. This
single wall only contributes to stabilising the building through translation, not
rotation. Therefore, the second order effects, added to horizontal loads applied in the
x-direction, will only be based upon the critical buckling load in x-direction and the
rotation capacity is not considered.

S(B,-3)=0 = Ne.

In y-direction, two walls are contributing to stabilise the building in the same
direction. These walls are also stabilising through rotation. Therefore, the critical
buckling load from both y-direction and rotation has to be considered and the lowest
value is to be chosen.

2(B.-y)#0 = Nuyor Nepror

4.3 Dimensioning forces and moments

When designing the stabilising components of a structure it is of vital importance to
consider the force distribution through the building. The critical buckling load is first
established in both horizontal directions, x and y, and also for rotation. These three
values will be utilised in each mode to calculate the magnification factors which are
later interpreted to establish the design moments for the stabilising units, i.e. adding
the 2" order affect to the first moment calculated. This approach is used for
calculating on each component in each direction.

It is the force distribution through a structure which determines how the stabilising
units are affected. The units are often spread out in a building and do not always have
the same dimensions, which leads to varying stiffness throughout the building. In
Section 4.1 it is explained, concerning the units in the same plane, how the force is
applied on each component. In a real structure there is varying stiffness in both
directions combined with horizontal forces in each direction. See Figure 4.19.
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v

Figure 4.19: Building plan.

Figure 4.19 describes a system where the RC is dislocated in both x and y direction.
The two force resultants, occurring from wind loads on each fagade for example, pass
to the side of the rotation centre. This leads to an eccentricity which, in this case, leads
to a twisting moment of the structure caused by the resulting forces in each direction.
The index, 7, stands for the actual level (storey) calculated on, in the building.

Force contribution — Translation:
If the force resultants were passing through the RC only translation would occur.

Bunitix Bunitiv
=H . g =H .o (4.31)

unit tr,i,x i,x unit tr,i,y i,y
>(B ’ " (B

unit,i,x ) unit,i,y )

Force distribution — Twisting:

Figure 4.19 describes how the force resultants in each direction are passing the RC
with an eccentricity e. The twisting moment from each force becomes

Mtwist,i,x = Hi,x : ey Mtwist,i,y = Hi,y ' ex (432)
Total twisting moment:
Mtwist,i = Hi,x ’ ey + Hi,y ’ ex (433)

The force contribution on each stabilising unit is derived by a normalisation of the
capacity of the actual unit and the rotation capacity of the whole system. In other
words stiff units with large distances from the rotation centre will absorb greater
forces than weak units closer to the rotation centre. It is important to observe that
stabilising units in the transverse direction of the load will also be affected by
twisting. The force contribution due to twisting becomes:
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Contribution from horizontal forces in x-direction:

B .y
Hunit twist 1,x = Mtwist i N, y"””t (434)
e " 2(B )+2(B

2 x2 )
unit i, x yum’t unit i,y unit

The units, stabilising in the direction aligned with the actual force, will be a sum of
the forces from both translation and twisting.

Hunit,i,x = Hunit,tr,i,x + Hunit,twist,i,x
B . B .-y
_ . unit i, x unit i ,x unit
Hunit,i,x - Hi,x 2 B +Mtwist,i 2 B 2 2 B 2 (435)
( unit,i,x) ( unit i, x ’ yunit) + ( unit i,y ’ xunit )

If loads are applied only in one direction with an eccentricity causing the building to
both translate and twist, the stabilising units in the transverse direction compared to
the load will contribute to resist the twisting moment. The units in the transversal
direction will therefore be subjected to forces occurring from the twisting moment
only. The expression below describes a unit stabilising in y-direction when the load is
applied in the x-direction only.

B .. -
_ . unit i,y
unit i,y ~ 0+Mtwist,i,x Z(B

X

H (4.36)

unit i x 'yjm't) +Z(Bunit,i,y .‘xjnit)

Usually it is the bending moment at the base of the building that is of interest because
it is there that the highest moment value is usually attained. If the stiffness is also
varying through the height of the building, the force distribution has to be calculated
for each floor. Thereafter the bending moment is established for each unit, for
example at the base of the building. Observe not to confuse the overall twisting
moment, M, With the bending moment in the actual unit.

In some cases the building has a symmetry which places the RC at the centre of
gravity. In cases where the CG is located at the same position as the RC, evenly
distributed loads will have their force resultants passing through the RC. In these
cases no twisting will occur, only translation acts on the stabilising units. But
according to design codes, it is not only evenly distributed loads which have to be
checked.

In addition to the load cases with uniform wind load on the facades, the case
concerning uneven load has to be examined too. It is here important to understand
where on the building the two unevenly distributed loads should be situated to
develop the worst load case. An extreme load case, which gives a great twisting
moment, will occur if the unevenly distributed load is positioned at that side of the
building which places the force resultant at the greatest distance from the RC, see
Figure 4.20.
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) CGSlab By

Figure 4.20: Uneven load case.

The specific case shown in Figure 4.20 shows a building with eccentricities in both
x- and y-directions. This factor coupled with the unevenness of the wind load leads to
an extreme situation which will lead to significant twisting. Figure 4.21 shows a most
extreme situation where a wind load is assumed from the diagonal direction and its
resultants unevenly inflict both x- and y-directions.

A A A

) CC}slab

B,

A A A A

A A A

yh Bx

Figure 4.21: Extreme case where the effect of a diagonal wind load is investigated.

In Figure 4.21 the diagonal wind load is divided between the facades. Each inflicted
facade has a further division of the resultant wind load in order to establish an extreme
case. Observe that the larger components of the resultant wind loads are positioned so
that the worst scenario occurs with regard to twisting. This is to consider the
eccentricities that the building possesses in order to obtain the worst case of twisting.
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The Swedish codes are not specific with how these extreme load cases are to be
applied and dealt with and it seems to be differently interpreted in different
engineering companies. It is also difficult to decide which critical loads should be
used in which direction in order to estimate the 2™ order effects. It seems logical to
assume the lowest critical load as the walls are affected in both directions due to the
twisting effect. This approach would lead to each wall being investigated in its
stabilising direction and that specific critical load being used to determine the
2™ order effects. The problem here is that using this approach there will be no
utilisation of the critical twisting load for determining 2" order effects which was
what was of interest from the beginning. This is a conundrum which will hopefully be
taken up by further studies.

Another problem with 2™ order effects is that the magnification factor gives a value in
percent for increasing the sectional forces without paying attention to the distance
from the RC. Observe in Figure 4.21, where twisting occurs, how the 2™ order effect
should be different for each stabilising component depending on their distance from
the RC. From Figure 4.21 is seen that more effect is experienced by wall B than by
wall A. Wall B has more deformation than wall one and should therefore have a
higher 2™ order effect. Should then the magnification factor be increased or decreased
according to its effectiveness due to the distance from the RC?

T
B,
B
A .
BV CGslab --l‘llllll----- "
By '.‘.'.5'.'.'. A
PavE
B, Y
4 B
] sx ;

Figure 4.22: 2" order effects due to distance from RC.
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5 Investigations

Here is found the culmination of this project where the hand calculation methods are
compared with the computer assisted FE-calculations in order to ascertain if the
results from the hand calculations are relevant. A general description of finite element
analysis is given and comparisons are given for solid shear wall calculations
concerning buckling and deflection in order to ascertain the best usable mesh and
node configurations for obtaining the best FE-analyses.

The Vianello method, described in Section 3.3, is to be studied for solid walls with
non uniform stiffness and load application. The Vianello method is to be compared

with the approximate Vianello method, i.e. ky is taken from Figure 3.13, and the
FE-method.

Thereafter follows comparisons between the FE-method and hand calculations on
pierced shear walls. The hand calculation methods used for calculating critical
buckling loads, see Section 3.2.1, and deflection, see Section 3.2.2, are to be
investigated.

A study of the use of the polar moment of inertia, see Section 4.2.3.4, is undertaken.
Whether or not its use is recommended will be decided after comparisons are made on
calculated examples.

Force distributions in both single and multi storey structures are to be investigated.
Three load cases, translation, rotation and combined translation and rotation, will be
examined with or without vertical loads being included. The effectiveness of the
calculation methods will be ascertained through making comparisons of the results
with FE-results.

A study is made of the Equation (4.24), from Lorentsen et al. (2000), concerning the
overall stiffness C, which refers to the stiffness values in translation and rotation. The
coupled and uncoupled approaches concerning U-shaped core elements will be
analysed and conclusions drawn.

Multi storey structures will be investigated concerning translation and rotation. The
effect of introducing a core elements torsional resistance into the calculation method
is examined. Calculation methods are also presented for taking into account warping
effects.

5.1 FE-analyses of solid shear walls

The modern approach for solving complex problems, involving stresses, deflections
and buckling loads, is to us computer programmes such as FE-program. Generally the
finite element analysis, FE-analysis, produces quite good results and gives a good
picture of how a real structure will react, depending on the assumptions, when
subjected to different load cases. The FE-method is especially competent for checking
complex structures which are extremely difficult or almost impossible to calculate by
hand. In this thesis several hand calculations have been introduced and applied for
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calculating buckling loads, design moments and deflection. As these methods are
based upon different assumptions and approximations, it is not clear whether the
results are accurate estimations or not. When considering pierced shear walls, these
methods suppose several assumptions and it is suspected that these methods only
produce rough estimates. It is also of great importance that the FE-model is properly
set up and that, before examining complicated models, simple ones are first
investigated. These preliminary investigations of less complicated models are done to
evaluate how the program works and how, for example, different mesh intensities
may affect the results. The FE-program used in this project is SOLVIA, SOLVIA
(1999), and it does not have a graphic interface. Instead the coordinates are interpreted
into a text file together with information that the program needs such as, element
types, material data etc. The benefit of using SOLVIA is that the user has a good
control of all the data that the program uses.

This chapter involves several models from straight solid shear walls to complete
systems. The investigation starts with simple models to evaluate how SOLVIA works.
Different mesh intensities combined with both 4-node and 9-node elements are
interpreted to determine proper use of them for later use in the more advanced models.

5.1.1 Check of FE-model

This thesis contains evaluations of models of buildings and stabilising units. A fully
fixed cantilever column or wall is frequently used for bracing and it is therefore
important to start with models such as a straight solid wall with only one simple load
case. Hand calculations of deflections and buckling loads for these structures are easy
to solve and they use the same approximations used in the FE-model. The results from
the two methods are expected to agree. All models are using a Young’s modulus for
concrete of 30 GPa and a shear modulus, G, set to 0.4 times the Young’s modulus. In
SOLVIA the shear modulus is set by using Poisson’s constant, v =0.25. A factor
& =1.21s applied to decrease the shear stiffness, i.e. increasing the shear angle.

5.1.1.1 Modelling - Deflection of solid shear walls

This investigation begins with the study of three solid shear walls; a wide and low
wall, a tall and slender wall followed by a wall lying in between these cases. The
results will reveal if the SOLVIA deals with deflection caused by shear in a proper
way. Figure 5.1 and 5.2 below describes the three walls investigated.
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Figure 5.1: Distributed load case Figure 5.2: Concentrated load case
Wall 1- Low and wide; b=10m L=8m
Wall 2- High and slender; b=4m L=20m
Wall 3- Medium height and width; 5=5m L=10m

The walls have a thickness of 0.5 m.

The first three tests use a concentrated load at the top of the wall. In the FE-model this
load has to be interpreted as a distributed load along the top edge. The reason for this
is that in the FE-analyses other effects occur, such as local deformation where the load
is applied, while in the hand calculation this effect is not taken into account. It has
also been shown that in low and wide models the capacity of the wall is so high and
the structure deflects like a sinus shape at the top producing results hard to compare
with the hand calculation. Therefore the three walls have also been examined
subjected to an evenly distributed load along the height of the wall. During these
investigations the effect of mesh intensity combined with 4-node and 9-node elements
has been examined for the slender wall and the broad wall. Figures 5.3 illustrate two
different mesh intensities for the two walls subjected to a concentrated horizontal
load. The results can be seen in Section 5.1.2.
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Figure 5.3:  Mesh intensities of a slender wall and a wide wall
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Hand calculation of deflection:

To establish the total deflection at the top of the wall the calculation is divided into
two parts. Both bending and shear contribute to the deflection.

Equations for bending deformation;

3

Concentrated load at the top: Vee =49, " L (5.1

’ 3EI

L4
Distributed load along the height: Vsa =4 > (5.2)
Equations for shear deformation:
Shear angle: y = o = )= V-i (V=q)
GA GA

Concentrated load at the top: Vs =YL, (5.3)

The shear angle is defined for a shear force that is equal to 1, i.e. y'=T-y.

The distributed load, gy, is set to 1 N/m. As can be seen in Figure 2.14 the shear angle
alters along the height when a structure is subjected to a distributed load. A formula
has been established during this thesis. This expression is suited for calculating shear
deflections of a cantilever column/wall subjected to an evenly distributed horizontal
load.

. : L
Distributed load along the height: Vsa=6-0.5 qé;—; (5.4)

5.1.1.2 Modelling - Buckling of solid shear walls

The three shear walls in this investigation are subjected to vertical loads. These
models represent stabilising walls in a 10 storey building. The walls are subjected to
an evenly distributed vertical load on each floor, i.e. 10 loads applied on ten storeys.
All three walls have the same height of 30 metres, see Figure 5.4. As the walls only
stabilise in their stiff direction and are prohibited to move in the weak direction,
because of the floor slabs in the building, the buckling mode in the weak direction
must be prevented. In SOLVIA this is done by locking the degree of freedom in the
weak direction. The first buckling mode will therefore only occur in the stabilising
direction of the wall, see Figure 5.6.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 105



222222 S—
YYVYYVYY
VYvveey
22222%
VYveviy
SN 122227
VYveeyy
EYvvbiy
YYVYVYvey
YYvveey

Ly

-

Figure 5.4: Load application for study of critical buckling loads

Wall 1- Wide wall; b=16m L,=30m
Wall 2- Slender wall; b=4m L,=30m
Wall 3- Medium wall; b=8m L,=30m

The walls have a thickness of 0.5 m and each storey height is 3 meters.

The medium wide wall, 8 meters wide, has also been tested with two different mesh
intensities combined with 4-node and 9-node elements. The sparse mesh uses an
element size of 1.0 m x 0.75 m (width x height), while the dense mesh uses an
element size of 0.5 m x 0.375 m. Figure 5.5 below illustrates the load case on the 8 m
wide wall presented in the sparse mesh. Figure 5.6 presents the first buckling mode
shown in the dense mesh.
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Figure 5.5: FEM - Load case. Figure 5.6: FEM - First buckling mode.

Hand calculation of buckling load for solid shear walls:

The critical buckling load is easy to calculate as the walls have the same load and the
same stiffness on each floor. Using Figure 3.13 the ky -value is taken as 6.8. The

following equations are used to establish the buckling loads of the walls;

Buckling load - bending part N,z=k, E—zl
h
Buckling load - shear part N, s =GA
. . 1
Buckling load — combined Ny = I 1
+
Ncr,B Ncr,S

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12

(3.38)

(3.11)

(3.19)

107



5.1.2 Results

5.1.2.1 Deflection

During these investigations the mesh intensities have been altered to achieve a proper
balance between accurate results and the time it takes for SOLVIA to calculate. It can
take a very long time to do a complex analysis. It is known that a 9-node element uses
equations of higher order than a 4-node element which leads to the 9-node element
giving a more accurate result. It is observed when using 4-node elements that the
mesh has to be very dense compared to the 9-node elements which gives a good result
without heavily meshing, see Table 5.1. The tests also reveal that a sparse mesh,
combined with 4-node elements, produces results on the unsafe side, i.e. lesser values
of deflection and higher values of buckling load. Table 5.2 presents some results from
the tests of deflections from FE-analyses. Results of buckling are presented in Section
5.1.2.2. All values from the hand calculations are marked as HC in the tables. All
results are nanometres (10 m).

Table 5.1:  Mesh study in FE-program SOLVIA
4N sparse | 9N sparse 4N-dense 9N-dense
Wall and load type [hm] [hm] [hm] (hm]
Wall 1 — Conc. load - - 2.24-2.45 2.25-2.53
Wall 2 — Conc. load 663.8 684.9 679 685

Table 5.2:  Comparisons of deflections calculated by hand and FE-analyses.
HC HC HC FEA
Wall and load tvpe Deflection Deflection Deflection Deflection
yp Bending Shear Total Total
[nm] [nm] [nm] [nm]
Wall 1 — Conc. load 1.09 1.28 2.37 2.25-2.53
Wall 2 — Conc. load 667 200 687 685
Wall 3 — Conc. load 21.3 4 2.53 2.5-2.54
Wall 1 — Distr. load 0.41 0.64 1.05 0.97-1.32
Wall 2 — Distr. load 250 10 260 258
Wall 3 — Distr. load 8 2 10 10
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In Table 5.2 the value from SOLVIA is taken from analyses with a dense mesh of
9-node elements. Results from walls 1 and 3 are given with an interval, from a low to
a high value. It is presented this way to reveal that other effects occur in FE analyses
which the hand calculations are not concerned with. The intervals show different
deflections along the top edge of the wall i.e. some parts are more compressed than
others. This effect is very small in slender structures, such as wall 2, but in general the
hand calculations seem to agree well with the FE-analyses.

5.1.2.2 Buckling

Table 5.3 reveals that models, using 4-node elements, always produce results on the
unsafe side. If 4-node elements are used it is important to have a very dense mesh.
Comparing this with models using 9-node elements, it is evident that the results are
very close for both a dense and a sparse mesh. Further investigation will therefore use
9-node elements and a mesh slightly denser than the one presented as the sparse mesh
in Figure 5.3. If a dense mesh is used, the calculation time in SOLVIA will be much
longer, especially in the advanced models which are later investigated.

Table 5.3:  Buckling load study of different node and mesh systems from FEA
compared with hand calculations.

FEA FEA FEA FEA HC
Wall width | 4N-sparse | 9N-sparse 4N-dense 9N-dense Total

[MN] [MN] [MN] [MN] [MN]
Wall -4 m - 587 - - 587
Wall — 8§ m 4357 4332 4338 4331 4314
Wall — 16 m 26234 26167 - - 26073

Table 5.4:  Buckling loads from FEA and hand calculations, with bending and
shear contributions given.

FEA HC HC HC
Wall —width | 9N-Sparse Bending Shear Total
[MN] [MN] [MN] [MN]

Wall -4 m 587 604 20000 587
Wall -8 m 4332 4835 40000 4314
Wall - 16 m 26167 38700 80000 26073
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Table 5.4 presents the buckling load calculated through FE-analysis and the hand
calculated buckling load divided into its components due to bending and shear. It is
obvious that the shear contribution in slender structures, barely affects the total
buckling load, i.e. bending deformation is dominant. As the slenderness of a structure
decreases, the contribution from shear deformation increases. According to the test the
results, the hand calculations are always on the safe side. As it has been mentioned
earlier other effects occur in the FE-analyses. These effects are suspected to relate to
shear effects as the more slender models agree better with the FE-results than the
sturdy models.

5.2 Investigation of the Vianello method

An explanation of how the Vianello method works has now been presented in Section
3.3 and now the method shall be compared to results from FE-analyses. Four
examples have been chosen where the walls are representing a stabilising wall in a ten
storey building. The first is a solid shear wall with uneven stiffness distributions but
with even load distribution. The second involves a solid shear wall with uneven loads
and uneven stiffness distribution. The third involves a very slender solid shear wall
with an unevenly distributed load and an uneven stiffness value. The fourth example
is a very robust shear wall with an unevenly distributed load and an uneven stiffness
value.

The critical buckling load from FE-analyses is calculated through the eigenvalue A
obtained through SOLVIA (1999).

Ny oy =A-N-n-b (5.5)

The result will be compared with the result obtained through using Equation (3.19):

1

Now=—"17T—""7" (3.19)
Ncr,B Ncr,S
1
cr fot,approx 1 1
+
cr,B,approx cr,S

The N, value is obtained through using the Vianello iterations shown in Appendix
A. The N, approx value is obtained through using the approximate kj-value found in
Figure 3.13. The N, s value through Equations (3.11) and (3.12):

N, =04-E-4 (3.11) (3.12)

In those examples where the walls have two different stiffnesses the stiffness, which
represents the part of the wall where shear failure will occur, is chosen. The section
where the failure due to shear will occur depends on how the different stiffnesses are
distributed in combination with the load distribution. In the four cases examined this
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critical section is assumed to occur where the lowest Young’s modulus is found. The
influence from the buckling load due to shear is in the following cases very low due to
a much higher shear buckling load.

5.2.1 Case 1: Even load, uneven stiffness

Values: n=10
Lsec=3m
t=05m
n-Lyec b=4m
E =30 GPa for bottom 5 floors
E =15 GPa for top 5 floors

Nij9o=N (index stands for storeys)

b

Figure 5.7: Case 1.

The shear contribution uses the lowest value of Young’s modulus:
N, =04-15-10"-(0.5-4)=12 GN
From the Vianello iteration shown in Appendix A is obtained: N, , =565 MN

Which gives: N, = I ! = 540 MN

+
565-10° 12-10°

Using the general Vianello k= 6.8, Figure 3.13, for a 10 storey building and lowest E
value:

, 0.5-4°
) . 15107 =%

cr,B,approx _kV ) (I’l L )2 =6.8- 302

sec

=302 MN

The shear contribution uses the lowest value of Young’s modulus:

N, =04-15-10"-(0.5-4)=12 GN
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N = ! =295 MN

crtot ,approx 1 1

+
302-10°  12-10°

A =13.628 Y

SOLVIA-POST 99.0 REINERTSEN ENGINEERING
Figure 5.8: FEM first buckling mode case 1; with A-value presented.

N, ppy =13.628-1000-10-4 = 545 MN

Results: N rey = 545 MN
Ncr,tot =540 MN

N, cr tot,appro = 295 MN
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5.2.2 Case 2: Uneven load, uneven stiffness

Values: n=10

Lsec: 3m
t =0.5m
n-Lyoe b=4m

E =30 GPa for bottom 5 floors
E =15 GPa for top 5 floors

N1_5:N

Ng.]o =05N

b
Figure 5.9: Case 2.

From the Vianello iteration shown in Appendix A is obtained: N, , =769 MN
The shear contribution uses the lowest E value: N, =0.4-15-10”-(0.5-4) =12 GN

Which gives: N = ! = 723 MN

cr tot 1

_l_
769-10°  12-10°

Using the general Vianello k= 6.8, Figure 3.13, for a 10 storey building and lowest £
value:

15.109'0.5'43

=302 MN

EI
Ncr,B,llPProx =kV ) (l’l L )2 =68' 302

sec

The shear contribution uses the lowest £ value:
N, =04-15-10"-(0.5-4)=12 GN

= ! =295 MN

cr,tot ,approx 1 1

+
302-10°  12-10°
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Figure 5.10: FEM first buckling mode case 2; with A-value presented.

N, oy = 24.624-(5-(1000 +500)) -4 = 739 MN

Ci

Results: Nerrey= 739 MN
Ncr’m[: 723 MN

N cr,tot,approx = 295 MN
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5.2.3 Case 3: Slender wall - Uneven load, uneven stiffness

Values: n=10

Lsec: 3m
t=0.5m
n'Lsec b=3m

E =30 GPa for bottom 5 floors
E =15 GPa for top 5 floors

N1_5:N

Ng.]o =05N

Figure 5.11: Case 3.

From the Vianello iteration shown in Appendix A is obtained: N, , =324 MN
The shear contribution uses the lowest £ value:
N,s=04-15- 10° -(0.5-3)=9 GN

Which gives: N = ! = 312 GN

cr,tot 1

_l_
324-10°  9-10°

Using the general Vianello £y = 6.8, Figure 3.13, for a 10 storey building and the
lowest E value:

0.5-3°
9
) £ 15-10° - 5

cr,B.approx kV ’ (n L )2 =6.8- 302

sec

=127.5 MN

The shear contribution uses the lowest £ value:

N,;=04-15-10"-(0.5-3)=9 GN
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N = ! =126 MN

cr,tot ,approx 1 1

+
127.5-10°  9-10°

A =14.062 Y
L x
11
1T
SOLVIA-POST 99.0 REINERTSEN ENGINEERING

Figure 5.12: FEM first buckling mode; with A-value presented.

Ny ey = 14.062-(5- (1000 +500))-3 =316 MN

Results: Nerrey =316 MN
Ncr’m[ =312 MN

N cr,tot,approx :1 26 MN
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5.2.4 Case 4: Robust wall - Uneven load, uneven stiffness

Values: n=10

Lsec: 3m
t=0.5m
n'Lsec b=8m

E =30 GPa for bottom 5 floors
E =15 GPa for top 5 floors

N1_5:N

Ng.]o =05N

Figure 5.13: Case 4.

From the Vianello iteration shown in Appendix A is obtained: N , =6150 MN

The shear contribution uses the lowest E value:
N, ,=04-15-10"-(0.5-8)=24-10" =24 GN

Which gives: N, = T ! = 4895 MN

+
6150-10°  24-10°

Using the general Vianello £y = 6.8, Figure 3.13, for a 10 storey building and the
lowest E value:

0.5-8°
9
) £ 15-10° - 5

cr,B,approx _kV ’ (n L )2 =6.8- 302

sec

=2418 MN

The shear contribution uses the lowest £ value:

N, =04-15-10"-(0.5-8) =24 GN

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 117



N _ ! =2197 MN

cr,tot ,approx 1 1

+
2418-10°  24-10°

A =289.148

r
Tt

SOLVIA-POST 99.0 REINERTSEN ENGINEERING

Figure 5.14: FEM first buckling mode for case 4, with A-value presented.

N, peny = 89.148-(5- (1000 +500)) -8 = 5349 MN

Results: Ner.rem = 5349 MN
Ncr’m[ =4895 MN

N, cr,tot,approx =2197 MN

5.2.5 Results

The results in Table 5.5 show that using Vianello’s method gives a critical load value
close to the value obtained through FE-analyses. The value is not only close but also
lands on the safe side of the FE-result in all the examples examined. The approximate
Vianello results using kjy-values from Figure 3.13, Section 3.3, are not nearly as
accurate. Appendix A contains the Vianello iterations.
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Table 5.5: Results of Vianello investigation.

Cases | Nerrem | Norsor | Nevsorapprox | Nersor/ | Nerovapprox/
[MN] | [MN] | [MN] | Newrem | Nenrem
1 545 540 295 0.99 0.54
2 739 723 295 0.98 0.40
3 316 312 126 0.99 0.40
4 5349 | 4895 2197 0.92 0.41

The advantage of using Vianello iterations for establishing critical buckling loads,
instead of using kjy-values from Figure 3.13, has here been clarified. Observe that
specifically for robust walls, case 4, there is a considerably stronger influence from
N..s. The accuracy is therefore reduced but is still very reasonable when compared
with the results from using the kj-values from Figure 3.13.

5.3 Investigation of pierced shear walls

In this section, pierced shear walls with different hole dimensions will be investigated.
It is to be investigated if the rough estimates through hand calculation of pierced shear
walls, described in Section 3.2, are realistic. The shear walls are modelled in SOLVIA
through 9-node elements combined with a dense mesh, approximately 0.6 m x 0.6 m.
It has been discovered that the FE-analyses include other effects which the hand
calculations disregard, such as local deformations. It is expected that the results from
the hand calculations and the FE—analyses will not concur as it is assumed in the hand
calculations that plane cross-sections remain plane. The hand calculations include
several assumptions, such as the deformable length of the transversal part, ¢ = cy+h;,
and that the two vertical components have a united action, i.e. full cooperation.

The investigation entails comparisons of the deflections at the top of the wall when
the wall is subjected to evenly distributed horizontal loads, and of the buckling loads
when the wall is subjected to an evenly distributed vertical load. The critical buckling
load is calculated assuming equal floor loads. The comparisons are made in three
steps with the opening width, ¢y, is set to 1 m, 2 m and 3 m. In each step the
transversal thickness, 4, varies between 0.6 m to 2.2 m. The total breath of the wall,
by and the height of each storey, L. are set equal to 8 m and 3 m respectively, see
Figure 5.15.
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E =30 GPa

LSEC

£ =12

LSCC :3 m

Co

b
by

Figure 5.15: Picture of a pierced shear wall with values shown.
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5.3.1 Results of deflection and buckling load

The tables below present the results from both the hand calculations and FE-analyses
for deflection and buckling. HC stands for hand calculations.

Table 5.6:  Results of deflection and buckling, co = 3 m, and the h, varies.
I, Deflection Deflection Ny Ny
[m] FEA HC FEA HC
[nm] [nm] [MN] [MN]
0.6 165.8 174.0 1511 548
0.9 105.7 108.5 2330 1109
1.2 84.7 85.8 2914 1586
1.7 70.6 71.7 3461 2118
22 64.6 65.8 3736 2429
Table 5.7:  Results of deflection and buckling, co = 2 m, and the h, varies.
I, Deflection Deflection Ner Ner
[m] FEA HC FEA HC
[nm] [nm] [MN] [MN]
0.6 103.4 105.6 2392 991
0.9 78.4 78.2 3143 1668
1.2 69.4 68.4 3546 2127
1.7 62.9 62.1 3880 2569
2.2 60.0 59.5 4043 2809
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Table 5.8:  Results of deflection and buckling, co = 1 m, and the h, varies.

h, Deflection Deflection Ny Ner
[m] FEA HC FEA HC

[nm] [nm] [MN] [MN]
0.6 69.8 67.7 3379 1964
0.9 63.4 60.8 3876 2511
1.2 60.8 58.3 4033 2794
1.7 58.7 56.5 4165 3036
2.0 57.9 55.9 4212 3120

Deflections:

The method for calculating deflections, see Section 3.2.2, gives a good approximation
compared to the FE-analyses. The equations are complex and it is preferable to use
programs like Excel, which has been used here, to establish the deflections.

Table 5.6 concerns the most slender models with a gap width of 3 m. The hand
calculations show deflections slightly greater than the FE-analyses, i.e. on the safe
side. The results with regard to increasing transversal thickness agree better with the
FE-results.

Table 5.7 presents results of models with gap widths of 2 m and Table 5.8 with 1.0 m
wide gaps. Both tables present results that reveal values slightly on the unsafe side
from the hand calculations. The hand calculation underestimates the deflection for
more solid structures but still the values are very close to the FE-results.

Buckling load:

The three tables above reveal that the hand calculation method, derived in Section
3.2.1, presents buckling loads that are not reasonable and are very much on the safe
side, especially slender structures, walls with wide gap widths and thin transversal
parts, which confer values that are almost one third of the results from FE-analyses.
The comparison which agrees best is the least slender wall where ¢y = 1.0 m and
hy=2.0 m.

5.3.2 Improvements for buckling load results

The results concerning the buckling loads in Section 5.3.1 demand further
investigation in order to discover how the hand calculation method can be improved.
The first step is to examine the hand calculation when the gap width decreases and the
thickness of the transversal part increases to converge to being a solid shear wall. The
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approximation of the deformable length of the transversal part is especially of interest.
As it is described in the derivation, see Section 3.2.1, this length is estimated as the
sum of the gap width and the transversal thickness, ¢ = cy+4;. It is suspected that this
length becomes too long and therefore produces greater deflection of the transversal
part which leads to a greater shear angle and finally a lower buckling load. The
calculation method from Lorentsen (2000) is also used in Westerberg (1999). In
Westerberg’s publication the transversal length is set to ¢ = ¢y. It is not discussed why
the deformable length in Lorentsen (2000) includes the transversal thickness. It is
therefore this approximation which is investigated first.

5.3.2.1 Altering the deformable length of the transversal

The investigation starts with comparing results if the deformable length of the
transversal part is set to the gap width, ¢ = ¢y. Tables 5.9 and 5.10 present results
concerning shear walls which have such small gaps and therefore resemble solid
walls. The walls have the same overall measurements as the ones previously
examined.
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Table 5.9:  Comparison between two assumptions of the c-value and FEA results.
Ncr Ncr Ncr
Wall- hole size FEA HC HC
c=coth; c=cy
[MN] [MN] [MN]
0.4x04m 4317 3387 4100
Solid wall 4332 3491 4229
Table 5.10: Comparison between two assumptions of the c-value and FEA results.
N,y N,y N, Deformable | Deformable
Wall- hole FEA _HC H_C length of length of
. c=cot+h; c=cy transversal | transversal
size
c=coth,. c=cy
[MN] [MN] [MN] [m] [m]
POXLO 12 | 3120 | 3864 3 1
CAXO4 4317 | a3s7 | 4100 3 0.4
Solid wall 4332 3491 4229 3 0
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It is obvious from Table 5.10 that the assumed deformable length, ¢ = cy+h,, of the
transversal part is too long. In the three cases shown above the deformable length
always becomes 3 m, when it is assumed that ¢ = c¢y+h, even though the sizes of the
holes differ. When the deformable length is set to be equal to the gap width, ¢ = ¢, all
three examples present much better results compared to the FE-results. The best
agreement is found for the case with the hole dimensions 0.4 x 0.4 m.

How the buckling loads varies depending on the thickness of the transversal, width of
opening and assumed interaction is shown in Figures 5.16, 5.17 and 5.18.

—&—shear, c=c0+ht —#— c=c0+ht —a— bending —>¢— Solid wall

—¥— seperate towers —e&—FEA —+—c=c0

Ncr [MN]
6000

5000
4000 :
[ ]
[ ]
3000 . 1t
. W
2000 -

1000 -

06 07 08 09 1 11 12 13 14 15 16 17 18 19 2 21 22 23

Thickness of transversal [m]

Figure 5.16: Comparison of critical buckling loads, 10 storeys, gap width c) = 3 m

Figure 5.16 shows seven different functions. Three functions show constant values,
i.e. there values are not influenced by the thickness of the transversal. The straight line
at the value of about 4600 MN, named bending in the graph, is the critical buckling
load due to bending only. It is assumed that there is complete interaction between the
two vertical parts and therefore the varying thickness of the transversal part has no
effect. This approximation is on the unsafe side especially in slender walls where the
connections between the vertical parts are weak. Still, when through combining the
influence of shear with the contribution from bending the total critical buckling load is
decidedly on the safe side. It is then obvious that the shear deformation is the over
estimated part which must be improved.

The second straight horizontal line, solid wall, slightly below the results due to
bending deformation, presents the buckling load for a solid wall with the same
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breadth and height as the pierced ones. Both shear and bending deformations are
considered.

The straight horizontal line at the lower area of the graph, separate towers, presents
values of another hand calculation method. This method disregards the transversal
parts completely and the wall is treated as two single walls without interaction. The
stiffness of this structure is much smaller and the buckling load becomes considerably
more on the safe side than the previous approaches.

The results from the hand calculation method that considers openings are plotted with
two assumptions, ¢p = c+h, and ¢y = ¢. The results based on the assumption ¢y = ¢
reveal that the buckling load is on the safe side for all cases compared to the
FE-results. Slender models, #, = 0.6-1 m, have a great influence from the shear
deformation. It is important here to observe that the so called shear part is not only
shear effect when referring to calculation of pierced shear walls, see Section 3.2. If a
quotation is made between the results from the hand calculations, ¢y = c¢+h, and ¢y = ¢,
and the results from FE-analyses, then one can observe that for slender models the
value decreases, see Table 5.13.

Two additional graphs are made for the models with gap widths of 1 m and 2 m, see
Figures 5.17 and 5.18.

——shear, c=cO+ht —®&—c=c0+ht —a&— bending —>¢—solid wall
—¥— seperate towers —@—FEA —+—c=c0

Ncr [MN]
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Figure 5.17: Comparison of critical buckling loads, 10 storeys, gap width c) = 1 m.
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Figure 5.18: Comparison of critical buckling loads, 10 storeys, gap width cyp = 2 m.

Table 5.11: Buckling analyses cy = 1 m; comparing hand calculations with
¢ = coth; and ¢ = cp and FE-results, and then presenting their accuracy
compared to FE-results.

h Ncr Ncr Ncr

! FEA HC HC HC/FEA HC/FEA
[m] ¢ =coth; c=cy ¢ =coth; c=cy
[MN] [MN] [MN]

0.6 3379 1964 2960 0.58 0.87
0.9 3876 2511 3457 0.65 0.89
1.2 4033 2794 3661 0.69 0.91
1.7 4165 3036 3814 0.73 0.92
2.0 4212 3120 3864 0.74 0.92
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Table 5.12: Buckling analyses cy = 2 m; comparing hand calculations with
¢ = cothsand ¢ = cyp and FE-results, and then presenting their accuracy
compared to FE-results.

h Ncr Ncr Ncr

! FEA HC HC HC/FEA HC/FEA
[m] ¢ =coth; c=cy ¢ =coth; c=cy
[MN] [MN] [MN]

0.6 2392 991 1585 0.41 0.66
0.9 3143 1668 2527 0.53 0.80
1.2 3546 2127 3016 0.60 0.85
1.7 3880 2569 3381 0.66 0.87
22 4043 2809 3542 0.69 0.88

Table 5.13: Buckling analyses ¢y = 3 m; comparing hand calculations with
¢ = coth; and c=cy and FE-results, and then presenting their accuracy
compared to FE-results.

h Ncr Ncr Ncr

! FEA HC HC HC/FEA HC/FEA
[m] ¢ =coth; c=cy ¢ =coth; c=cy
[MN] [MN] [MN]

0.6 1511 548 831 0.36 0.55
0.9 2330 1109 1699 0.48 0.73
1.2 2914 1586 2323 0.54 0.80
1.7 3461 2118 2867 0.61 0.83
22 3736 2429 3112 0.65 0.83

In Table 5.13 the walls with the widest openings are presented, i.e. 3 m gap width.
The case with 4, = 0.6 m shows a percentile of 36 % which means that the hand
calculation based on ¢ = cy+h, would lead to over dimensioning with 1/0.36, i.e. the
FE-results are 2.8 times greater than the hand calculation results. From analysing the
quotients it can be observed that the shear contribution in the hand calculation method
1s misrepresentative. The quotations exemplify that the shear part of the hand
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calculation method is faulty because pierced shear walls with greater openings have a
greater influence from shear and therefore produce the less satisfying results obtained.

5.3.2.2 Shear factors

After shortening the length of the deformable part of the transversals to ¢ = ¢y, the
hand calculated results are still not close to the FE-result especially not for structures
with greater openings. A further investigation of how the shear contribution can be
improved has been done through recalculating the same shear walls presented
previously. In this investigation the results are first taken from the FE-analyses and
are reduced by the bending part to obtain the shear part. The obtained value for the
shear part is treated as the value that should have been obtained in the hand
calculations for obtaining an exact buckling load, i.e. equal to the FE-results.

1
Ncr,s,FEA = 1 1 (5.6)

Ncr,FEA Ncr,B

A quotient is made once again between the new value obtained, N, s 4 and the hand
calculated shear value, N,.s. The quotients are made using the hand calculated N, s
for ¢ = cp+h, and for ¢ = ¢y. Tables 5.14, 5.15 and 5.16 present the results.

Table 5.14: Establishment of a shear factor for gaps where ¢ = I m.

hy Ners.FEA Nes Nes Shear Factor Shear Factor
c = coth; c=cy c = coth; c=cy

[m] [MN] [MN] [MN] N cr,S,FEA / N cr,S N cr,S,FEA / N cr,S
0.6 11270 3313 7655 3.40 1.47

0.9 19690 5234 12187 3.76 1.62

1.2 24544 6634 15166 3.70 1.62

1.7 30409 8184 18188 3.72 1.67

2.0 33106 8823 19384 3.75 1.71
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Table 5.15: Establishment of a shear factor for gaps where ¢ = 2 m.

hy Ners.FEA Ners Nevs Shear Factor Shear Factor
c=coth c=cy c = coth c=cy

[m] [MN] [MN] [MN] Nersreal! Nevs | Nerspeal Ners

0.6 4808 1251 2376 3.84 2.02

0.9 9252 2568 5387 3.60 1.72

1.2 13904 3844 8232 3.62 1.69

1.7 20987 5582 11670 3.76 1.80

2.2 26841 6853 13842 3.92 1.94

Table 5.16: Establishment of a shear factor for gaps where ¢ = 3 m.

hy Ners.FEA Ners Nevs Shear Factor Shear Factor
c=coth c=cy c = coth c=cy
[m] [MN] [MN] [MN] Nersreal Ners | Nersrea! Ners
0.6 2255 623 1015 3.62 2.22
0.9 4742 1464 2701 3.24 1.76
1.2 8008 2427 4713 3.30 1.70
1.7 14156 3941 7663 3.59 1.85
2.2 20254 5171 9705 3.92 2.09

The factors calculated in the tables above describe how much the original shear
buckling load from the hand calculation should be magnified by in order to establish
values that agree with FE-results. In the examples presented above, all shear factors
when N, s is calculated for ¢ = ¢y+h, are at least 3.2 which means that if all values,
concerning the buckling load due to the shear, are multiplied with 3.2, the total
buckling load will be closer to the FE-results and always on the safe side for the
investigated walls. A shear factor is also produced for when N, s is calculated for
¢ = cp and these results show a marked improvement. Three new graphs, Figures 5.19,
5.20 and 5.21, are established and present a new function of the total critical buckling
load when the shear part has been multiplied with 3.2.
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Figure 5.19: 10 storey, variable transversal thickness, co= 1 m
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Figure 5.20: 10 storeys, variable transversal thickness, co=2 m
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Figure 5.21: 10 storeys, variable transversal thickness, co= 3 m

The new proposed function has the same shape as the FE-analysis and the function
assuming ¢ = ¢y. In the models presented in this section it is possible to use a shear
factor of 3.2 in order to get values close to the FE-results. The approach of using a
shear factor is also applicable independent of the height of the building or the number
of stories. The reason why this is possible depends on the derivation of the buckling
load due to shear which does not depend on the height of the structure, see Section
3.2.1. The approach of manipulating the shear part is therefore possible for all
multi-storey shear walls.

The models treated in this section are based upon buildings where Ly, = 3 m and the
same total breadth of the wall, by = 8 m, see Figure 5.14. As the shear angle is
affected by these relations the models which have been examined in this section, are
not representatives of all types of pierced shear walls. Further investigations of
structures with different relations between the storey height and the total breadth, have
to be examined to find out whether it is possible to use a general shear factor for
improving the critical buckling load or not.

The investigation of how the shear factor is affected if the height of the storey and the
breath of the wall are changed. The length of the transversal part is first set to be equal
to the gap width, i.e ¢ = ¢y.

One series of models which has been examined are walls that are slender, i.e. higher
and reduced breadth. The investigated walls have all a breadth of only 4.0 m and have
a storey height of 4.0 m giving a total height of 40 m. What is different with these
walls from the previously described is that the bending part dominates, i.e. the
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buckling load due to the shear deformations is much higher than the buckling load
obtained through global bending. Table 5.17 presents the results for 4 slender walls.

Table 5.17:  Buckling loads and shear factors, co= 2 m.

hy NerFa Nertonric | Nergc Ners.me ]/\7;; to;’;C ?ahcigi
[m] [MN] [MN] [MN] [MN] “ c=cy
0.6 219 186 298 493 0.85 1.68
1.2 268 234 298 1089 0.87 2.44
1.7 281 241 298 1272 0.86 3.87
2.2 289 244 298 1358 0.84 7.05

In models that concern slender walls, the critical buckling load in the hand
calculations is closer to the buckling load through bending. The shear factor is based
upon the difference between the buckling load from the FE-analysis and the buckling
load due to bending. In walls where the buckling load due to bending is very close to
the value from the FE-analysis, i.e. in slender walls, the shear deformation has to be
increased dramatically in order to obtain a buckling load which agrees with the
FE-analysis. Observe the great increase of the shear factor from the model at the top
to the model at the end of Table 5.17. In the first model, /#, = 0.6 m, the shear buckling
load still has a great influence on the total buckling load. The last two walls,
hy = 1.7 m and h, = 2.2 m present a great difference despite the values from
FE-analysis and the bending buckling load of the hand calculation being almost the
same.

1
N = 5.6
cr,S,FEA 1 1 ( )

Ncr,FEA Ncr,B

In extremely slender walls the shear deformations can be neglected. This is observed
also in the FE investigation of the solid walls in Section 5.1.1. In Equation (5.6) the
buckling loads obtained from the FE-analyses will almost converge to the value
obtained from the bending part in the hand calculation. This will lead to a very high
shear factor to compensate for the difference. This investigation reveals that for very
slender walls a correct shear factor for proper usage is probably impossible to
establish. The walls examined above are slender in a global perspective and reveal
that the buckling load from global bending is dominant with an increasing thickness
of the transversal. It is here important to notice the difference between global
slenderness and the internal slenderness regarding the vertical and transversal parts
themselves.

The results from the hand calculations agree well with the FE-results. Since the shear
factor is hard to establish and loses its purpose as a useful method, a closer look is
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drawn to the four different contributions from the shear angle which are derived in
Section 3.2.1.

5.3.2.3 Shear angles

From the derivation of the shear angle for pierced shear walls, the bending part of the
transversal is much affected by the thickness of the transversal as the moment of
inertia is increasing with the thickness, /4;, see Section 5.3.2.1. This part of the shear
angle decreases rapidly with an increase in the transversal thickness when the gap
width is constant. The shear part of the shear angle also decreases with an increase in
the transversal thickness as the cross section area is influenced. The two remaining
parts of the total shear angle are due to bending and shear deformation in the vertical
parts. These are not affected by an increasing thickness of the transversal and are
therefore constant for each gap width. With this knowledge, it is therefore suspected
that the shear factors should be almost constant or at least follow a pattern for each
table which, apparently, does not occur, see Tables 5.14, 5.15 and 5.16. Table 5.18
shows an example of how the four contributions to the shear angle vary with
increasing thickness of the transversal for a gap width of ¢y = 2 m.

Table 5.18:  All contributions to the total shear angle, co = 2 m, ¢ = cy.

5 Vert. Part Vert. Part Transv. Part | Transv. Part | Total shear
! Bending Shear Bending Shear angle
[m] Eq. (3.27) Eq. (3.29) Eq. (3.26) Eq. (3.28) Eq. (3.25)

[10" rad] | [10"'rad] | [10" rad] | [10"rad] | [10" rad]
0.6 1.11 3.33 29.60 &.00 42.10
09 1.11 3.33 8.78 5.33 18.56
1.2 1.11 3.33 3.70 4.00 12.10
1.7 1.11 3.33 1.30 2.82 8.57
2.2 1.11 3.33 0.60 2.18 7.23

Table 5.18 shows how the four parts of the angle vary with an increasing thickness of
the transversal. The two columns concerning the deformation of the vertical parts
have constant values. The equations are presented in Section 3.2.1.

In the hand calculation method it has been observed that if measurements for a solid
wall are interpreted in the hand calculation, the parts concerning the shear angle from
bending and shear in the vertical parts, still have a contribution. For a solid wall only
the part concerning shear in the verticals should produce values. If the bending part is
set equal to zero, only shear deformation of the verticals is left for determining the
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total shear angle. When the deformable length of the transversal is set equal to the gap
width, i.e. ¢y = ¢, combined with the vertical bending part being set to zero, the total
shear angle becomes equal to the shear angle used for solid walls, see Equation (3.13)

co=0 (gapwidth) = c=¢y=0

L.c
Transversal part == =0 3.26
P Tt = b EL (326)
L._c
= =) 3.28
7t,shem é: bzGAt ( )
L2
Vertical parts =—3_ - 3.27
p 7v,bend 24E]V ( )
¢
yv,shear = 2GA = yTot (329)

v

Observe that %, geqr 1S the same expression used for critical buckling load due to shear
for solid walls.

G4 _G24, & ¢
o3 é 5 ?/tot 7v,shear

(3.14)

A final study is made to investigate how the influence of bending deformations of the
vertical parts affects the buckling load. All the walls in Table 5.19 have a thickness of
0.5 m. The contribution from bending deformations of the vertical parts, j,sens, 1S set
equal to zero.
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Table 5.19: Comparisons of buckling loads when cy = ¢ and ¥, pena = 0.

o bo hy Lec Nerpea | Nernc Nov e/ Now rid SF
[m] | [m] | [m] [m] [MN] | [MN] e Yobend = 0
0.4 8.0 2.6 3.0 4317 4194 0.97 1.27
2.0 8.0 0.6 4.0 219 206 0.94 1.23
2.0 8.0 1.2 4.0 268 267 1.00 1.03
2.0 8.0 1.7 4.0 281 277 0.99 1.25
2.0 8.0 2.2 4.0 289 281 0.97 1.94
2.0 4.0 1.2 3.0 469 454 0.97 1.30
3.0 | 40 1.2 4.0 149 173 1.16 0.43

The study shows that the contribution from the bending deformations of the vertical
parts is over estimated in the hand calculations for pierced walls that have substantial
verticals. For frames and for walls that have slender vertical parts, the approach of
setting %, rens €qual to zero is not recommended as it can produce results on the unsafe
side.

In Equation (3.27) the deformable length of the verticals is taken as the complete
storey height, L. This deformable length is suspected to be over estimated as with an
increasing transversal thickness this length should decrease. It is assumed that
bending will not occur at the centre of the verticals, i.e. the intersection between the
verticals and the transversal, due to the section being robust. The length of the
deformable part of the vertical is therefore reduced to obtain a new length influenced
by the transversal thickness.

L —h

sec,red ~ "sec t

(5.7)
L2 _ (Lsec B hz)z

7v,bend - 24EIV

e 5.8
24EI, 5:8)

7 v,bend =

Table 5.20 presents the results when the vertical bending length has been altered to
Lsec,red = Lsec - hl-
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Table 5.20: Comparisons of buckling loads when cy = ¢ and Lgec,req i used.

co bo hy Lyec NerrEa Nerne Neruc/ SF
[m] | [m] [m] [m] [MN] [MN], Ner,FEA4

0.4 8.0 2.6 3.0 4317 4193 0.97 1.28
2.0 4.0 0.6 4.0 219 191 0.87 1.55
2.0 4.0 1.2 4.0 268 250 0.93 1.72
2.0 4.0 1.7 4.0 281 264 0.94 2.11
2.0 4.0 2.2 4.0 289 272 0.94 2.98
2.0 4.0 1.2 3.0 469 432 0.92 1.74
3.0 4.0 1.2 4.0 149 127 0.85 1.71

With the reduced deformable length of the vertical the hand calculation method gives
reasonable values slightly on the safe side for all walls examined. Pierced walls with
slender verticals are sensitive to an adjustment of the deformable length of the
vertical. In contrast, models with robust verticals, for example the wall presented at
the top in Tables 5.19 and Table 5.20, are hardly affected but still this modified
approach seems to work for all walls investigated. The complete list of all walls
examined during this study is presented in Appendix B.

5.3.3 Stress distribution

This investigation relating to pierced shear walls concerns the stress distribution at the
base of the walls. The deformation figures from the FE-analyses show the behaviour
of the walls and the interaction between the vertical parts. Here it shall be attempted
to derive a fast and effective method for calculating stress distribution by hand. The
stress distribution, through hand calculation, can be calculated in two different ways
and each method shall assume a linear relationship for the stresses.

5.3.3.1 Hand calculation methods

First an analysis will be done on a shear wall that is solid, Figure 5.22, and the same
wall but split in the middle, Figure 5.22b. This analysis is produced in order to acquire
a picture of how the stresses will look depending on if the wall has complete
cooperation between the two halves, Figure 5.22a, or if there is no cooperation,
Figure 5.22b.
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Figure 5.22:
Figure 5.22a: t=0.5m,b =8 m, L,=30m, g, =5 kNm, £ =30 GPa.

Figure 5.22b:t=0.5m, b =4m, L;=30m, g, =5 kNm, £ = 30 GPa.

Calculation of stresses, Figure 5.22a:

M:5000-30-?=2250 kNm

058
12

I =2133 m*

O =

max

z z= z=4dm = O, =+—— .4 =4422 kPa

M b 2250-10°
I 21.33

Calculations of stresses, Figure 5.22b:

M =2250 kNm
3
I, = 054 567 m*
12
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2250-10°

2=0m = 0y, =t——2 2 =+843 kPa
s 2.67

b
o — —

max z z=

M
1
Observe the difference in stress values when different assumptions are made. The
stress values for Figure 5.22b are twice the values calculated for Figure 5.22a.
Concerning pierced shear walls the stress distribution through the cross section is
somewhere between the two examples shown in Figure 5.22a and 5.22b. Depending
on the size of the holes in the walls the interaction between the two verticals will be
influenced.

Three walls have been chosen for comparing hand calculations with FEA results.
Example 1 has the smallest opening and example 3 has the largest, see Table 5.21.

Table 5.21: Pierced shear wall statistics. ¢ = co+ h;.

Ex.| ! bo Co hy w E Liec Ly
[m] | [m] [m] [m] [kN/m] [GPa] [m] [m]

1 0.5 8.0 1.0 2.0 5 30 3.0 30
2 0.5 8.0 1.0 0.6 5 30 3.0 30
3 0.5 8.0 2.0 1.2 5 30 3.0 30

Two hand calculation methods of calculating the highest stress values, occurring at
the outer edges of the walls, are presented.

Method 1 directly uses the global moment of inertia, /gop.. This approximation
assumes the two vertical parts to fully interact. The calculation is therefore referring a
wall which is stronger than the real wall and the results concerning the stresses are
suspected to be on the unsafe side. . Equation (5.9) shows how g4 1s calculated.
t-b® tc

fowa =577

(5.9)

Method 2 extracts a usable moment of inertia from Equation (5.10) through
determining the y,,,, value from Equation (3.34). This new acquired moment of inertia
should better represent the shear wall than the /g4 used in Method 1. Through using
Equation (3.34), the wall is treated in a more accurate way compared to Method 1.
The properties from the transversal part are also taken into account and the moment of
inertia for the transversal, /,, is considered through the factor a.
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Moo (aL,)* cosh(aL,)
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a? = 1 _ 121, é H
y2EI, XI \c) bL
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1 — 2EIV AV,l AV,2 b2
EI

IL[:

The c-value in the equation for & is c=coth;.

5.3.3.2 Results

Figures 5.23, 5.24 and 5.25 show the FE-results. The results from the FE-analyses
present the force distribution through the cross section. The stresses are established by
dividing the force values with the thickness of the wall, i.e. 0.5 meters. The hand
calculations of the three examples which are to be compared are not shown. Method 2

is calculated through using an excel program.
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Figure 5.23: Stress and force distribution, Example 1: co= 1 m, h,= 2 m.
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Figure 5.24: Stress and force distribution, Example 2: ¢
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Figure 5.25: Stress and force distribution, Example 3: co =2 m, h, = 1.2 m.
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Table 5.22: Results of stress analyses.

FEA Method 1 Method 2

[kPa] [kPa] [kPa]
Ex. 1 500 423 492
Ex. 2 560 423 596
Ex. 3 600 428 602

Table 5.22 displays the results of the stress analyses. Example 1 has the smallest holes
and Example 3 the largest. Observe that method 1 results are inaccurate and land on
the unsafe side of the FE-results. Determining a new moment of inertia, method 2,
improves the value greatly. Observe that method 2 gives a result for example 1, which
is not on the safe side but very close. Example 2 and 3, which have the larger holes,
give a result very near to the FE-result and also on the safe side.

5.3.4 Conclusions and recommendations

Through this study, concerning the buckling loads, it has been learnt that the
behaviour of pierced shear walls of different dimensions is not predictable. The hand
calculation method that has been investigated and compared with FE-analyses, has
shown a wide field of varying inaccuracy. It has been mentioned at the beginning of
this section that other effects occur in the FE-analyses which are not taken into
account in the hand calculations. It has, from an early stage of this investigation, been
predicted that a general solution will not be found for obtaining exact values of the
critical buckling load covering all different types of pierced walls. Still, this study
consists of 30 pierced shear walls holding measurements in a wide field. These
analyses are to be used as references when confronting evaluations of other shear
walls. One is able to identify the authentic shear wall with some of those investigated,
and draw conclusions on how a more accurate calculation of buckling loads can be
achieved, see Appendix B.

The first approach for improving the accuracy in this study was through applying a
modification factor to the shear buckling load, i.e. shear factors. These factors have
served an important role for the after coming investigations, as an indication of how
the next step for an improvement shall be approached. These factors, combined with
the comparison values achieved through quotients between the FE-results and the
hand calculation results, are important indicators for how the hand calculation is to be
utilised for evaluating a pierced shear wall.

Through this study it has been decided that the deformable length of the transversal
should be equal to the gap width, i.e. ¢ = ¢y. This improvement has shown buckling
load results on the safe side for all walls investigated.
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The next improvement concerns the adjustment of the deformable length of the
vertical. All models can use a length reduced by the thickness of the transversal, i.e.
Lsec.rea=Lsec-h;. This length is only to be interpreted into the equation of the shear
angle due to bending deformations of the vertical only, Equation (3.27).

(Lo —h,)’
=% 7 5.11
7v,bend 24E[V ( )
When using the results of this study as a base, the equation above can, for obtaining a
better result, be set equal to zero for walls with robust vertical parts.

Concerning the stress distribution in pierced shear walls, it may be concluded that
Method 2 is effective when calculating on pierced shear walls. Observe that the
method does not represent the real stress distribution in the wall but the method can be
used to derive the maximum stresses at the edges of the wall. Method 1 is not
recommended because it does not represent the behaviour of a real wall and produces
results on the unsafe side.

5.4 Investigation of the polar moment of inertia

In this section an assumption is to be investigated concerning the usage of the polar
moment of inertia, I,. The derivation of how I, replaces the non stabilising units
negative contribution is explained in Section 4.2.3.4. The usage of 1, is based upon the
assumption of a structure consisting of an infinite amount of evenly distributed non
stabilising columns which are subjected to an evenly distributed vertical load from the
floor slab. The stabilising units are then assumed to be subjected to horizontal loads
only. The method of replacing the effect of hinged columns with 7, is therefore
suspected do give accurate results for a surrealistic structure using an endless amount
of columns placed with minimal distance between them. In a real building, columns
are placed as sparse as possible so that a structure can benefit from its open spaces. It
is therefore important for this investigation to ascertain if the method using I, is
suitable for common buildings or not.

The numerical example, from Section 4.2.4, is to be modified with an increasing
amount of columns. The example is first modified by replacing the stabilising
columns at the four corners with hinged columns, i.e. non stabilising columns. The
stabilising columns are then imagined to be placed at the same position as the corner
columns, connected to the non stabilising columns for stabilising the structure, but do
not connect to the vertical loads from the slab. This is done to simplify the calculation
by using the same load distribution among the columns but leaving the stabilising
columns free from vertical loads. It will then be clearer how the buckling load will be
affected for an almost identical structure. Figure 5.26 can be compared to Figure 5.27,
which has 8 shear walls, 4 stabilising in each direction. The non stabilising columns
are represented by a circle symbol and the stabilising columns are squared.
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The expression for the stabilising columns takes now the same form as shown in
Section 4.1.2, for applying the method suited for polar moment of inertia.

C_sE(, N ) . 3E
Jx .]y L:Z N Jx ‘]y L::l

cr,col

From the example in Section 4.2.2 the load distribution is producing the stiffness
summations shown below. The four added hinged columns at the corners are now
taking the same vertical loads which where previously carried on the stabilising
columns.

Buckling load through translation:
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4_31:;1[1_ N ]_2.2N_2_2N_1.4N:0 _
Lh Ncr,col Lh Lh Lh
3B, 2N LN 4N N
Lh Lh Lh Lh Lh

12E1 16N

3 =0

Lh Lh

_12EI 3EI 3-4-10°

- == = =120 kN
16 4L,  4.5°

N,,=N,, =2-2N+2-2N+1-4N +4N =16N =16-120 = 1920 kN

The buckling load is compared with the value calculated in Section 4.2.4.
Buckling load — translation:

Buckling load from Section 4.2.4: N =1824 kN

cr,x,y

Buckling load, modified example: N =1920 kN

cr,x,y

It 1s suspected that the results should nearly agree because the two structures are
almost the same. Still, the results show a slightly higher buckling load concerning
translation when the stabilising columns are not subjected to the vertical load.

The buckling load through rotation is now to be compared between the example in
Section 4.2.4 and the above modified example.

From the example in Section 4.2.4, the expression is now to be edited to suite the
modified example.

4.[3EI[1_NN H(yzﬂz) L 3 (g ) 408E

3 3
Lh cr,col Lh Lh

Non stabilising columns:

Columns 2 and 8: 2. —ZL—N-(y2 +x2)} :2-{—ﬂ.(32 +O)} __3ON

Columns 4 and 6: 2. ——N-(y2+x2)}:2-[——-(0+52)}:

146 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12



h h

Column 5 (at the RC) 1-{—‘2—N-(y2 +x2)} =1-{—4—N-(0+0)} )
The hinged columns at the corner are now added.

4.[_Lﬁ.(yz+xz)}:4.{_g.(3z+52)}_136N

h h Lh

The modified system is now summarised and the buckling load through rotation is
calculated.

40851 36N 100N 136N _, _  408El 272N _

L L L L )5 L 0
h h h h h h

6
v _ 408EI _408-4-10

- = =240 kN
272-12 2725

N, =2-2N+2-2N+1-4N +4N =16N =16-240 = 3840 kN

The result from the modified example is compared with result from the example in
Section 4.2.4.

Buckling load — rotation:

Buckling load from Section 4.2.4: N, ., =3467 kN

cr,rot

Buckling load, modified example: N, .., =3840 kN

cr,rot

The results show an increased buckling load for the modified system.

The result from this study reveal that an authentic building, where the stabilising
components are subjected to vertical loads but are treated as components which are
not subjected to vertical loads, delivers results on the unsafe side. It is then suspected
further in this investigation that the method of using the polar moment of inertia will
provide buckling loads, concerning rotation, with values higher than for a real
structure. Residential buildings do not use columns as the dividing walls between
apartments will bear all the vertical loads in combination with their stabilising
function.

The Example from Section 4.2.4 is now to be approached with the calculation method
using the polar moment of inertia. The stabilising components are taking the same
expression used in the modified example, i.e. they are not subjected to vertical loads.
The polar moment of inertia is only applied when establishing the buckling load
through rotation. The calculation concerning translation is therefore not of interest.

Stabilising columns at the corners:
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4. 313] (y2 +x2)=4- 3£§[ (32 +52): 4083EI
h h Lh

The non stabilising columns are now replaced by the expression of ,. See Section
4.2.3.4 for the derivation.

Z(ji,xy2+ji,yx2) = —i] =

Lh ?
_gqabl@®+b’) N (a2+b?)
L 12 L 12

h h

The symbols a and b are the length and the breath of the slab which the vertical load,
N, is evenly distributed upon.

Sy +i,x)=0 =

408EL_ N (0 +8?)

L L 12

408E[-12  408-4-10°-12

L (@t +b%) 57107 +6%)

The result shows a value of the buckling load through rotation which is much higher
than the buckling load calculated with the exact load distribution in the example in
Section 4.2.4. If the method of using polar moment of inertia is used for this structure
it will produces much smaller second order effects compared to the method used in
Section 4.2.4. It follows that the design moment will be lower compared to the real
structure and the columns will be under dimensioned, i.e. results on the unsafe side.
Table 5.23 below presents a comparison between the critical buckling loads. 7, in the
table refers to the method using the polar moment of inertia.

Table 5.23: Comparisons of the critical buckling loads between the methods.

Exact method | Modified | Mod. / Exact 1, 1,/ Exact
N, Section 4.2.4 example
[kN] [kN] [kN] [kN] [kN]
Ny 1824 1920 1.05 - -
Ner ot 3467 3840 1.11 5760 1.66
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5.5 Force distribution in single storey structures.

To evaluate if the buckling loads from the hand calculations represent an actual
structure, the force and the moment distribution among the stabilising columns are to
be compared with FE-analysis. The example shown in Section 4.2.4 is used in three
different horizontal load cases. The first load case considers an evenly distributed
horizontal load applied at the long facades, with and without vertical loads. This case
will cause the building to move only in translation, i.e. in this load case in y direction.
The second load case will make the building twist without translation. The horizontal
loads are here applied on both sides of the building but at half the length of the long
facades, in opposite directions and one case with vertical load and one case without.
The first two cases will ascertain if the hand calculation method gives values that
agree with the FE-analysis concerning translation and rotation separately. The final
load case, case 3, is to investigate how the results turn out when a combination of an
uneven translation and rotation of the building occurs. The horizontal load is here
applied on half the long facade, with and without vertical loading. The three load
cases will also be studied with a combination of an evenly distributed vertical load
applied on the slab. The vertical load will contribute to a second order moment on the
columns due to the deflection caused by the horizontal loads.

5.5.1 FE-model

The analysis considers three load cases. Three different horizontal load cases
combined with and without vertical loads. The three cases without vertical load will
establish the first order force and the moment distribution among the four stabilising
columns. The horizontal loads are applied as line loads at the long side of the slab
which is positioned at the top of the columns. The vertical load is modelled as en
evenly distributed pressure load on the slab. When the vertical load is combined with
the horizontal load, the force and the moment distribution will have the second order
contribution included. This is modelled through FE-analysis by interpreting large
deformation in the command program in SOLVIA. All load cases can be examined in
Appendix C. In the FE-model the four stabilising columns are interpreted as fully
fixed at the base with all degrees of freedom locked, and the top ends are interpreted
as hinged, 1.e. free to rotate but locked in translation. The five non stabilising columns
are prevented from moving in all translation directions and around there own axial
axis, i.e. only the rotation around x and y direction (plane coordinates) are free to
move.
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5.5.2 Case 1 — Study of translation

. ; 5 3 = g,=5 kN/m*
qh:2.5 N/m
4 E =30 GPa
RCH..5 6
G/ A

6m  ILygpeor=1.067 m*
Nepry= 1824 kN

27 Nerror= 3467 kN

>{r\l

Lh=5m

dn

Figure 5.28: Case 1. Translation study

Calculation of the moment at the base of each stabilising column, 1, 3, 7 and 9.
1* order moment.

Horizontal force:

H,, =25-10=25kN

tot,y
All columns have equal stiffness and the force is therefore equal divided among them.

:2745:6.25 KN = M, =625-5=31.25 kNm

col tr,y

. . . . t
The index ., stands for column, , for translation and , indicates 1> order.

In this example there is no local moment on the external columns. This study is only
for comparing hand calculation with FE-analysis and the horizontal load is therefore
applied in the same way as it is in the FE-analysis, i.e. a line load at the top. Observe
that indexes, x and y, stand for the direction.

2™ order moment.
Vertical force:

N=10-6-5=300 kN
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=1 = =M, - =31.25-| —————|=31.25-1.197=37. m
1 M, M, ! 31.25 ! 31.25-1.197=37.41 kN
’ - N - 300
N 1824

cr

In Table 5.24 the results are compared with the FE analysis performed in SOLVIA.

Table 5.24: Results of case 1 investigation

Case 1 HC FEA

1*" order moment 31.25 31.31

2" order moment included | 37.41 37.04

5.5.3 Case 2 — Study of rotation

qn
\ A A\ 4 A\ 4 A 4 A 4 A 4 A Y
| | _ 2
/ 5 3 q»=5 kN/m
0»=2.5N/m
E =30 GPa
RCo-3 6.¢ 4
~ 6m Lyap,cor=1.067 m
Nepxy= 1824 kN
A y Nerror= 3467 KN
m - 68  10m ‘'

Lh=5m

qn

Figure 5.29: Case 2. Rotation study
Moment calculation at the base of each stabilising column; columns 1, 3, 7 and 9:

The system is first transformed by repositioning the force resultants so that they pass
through the RC and from the eccentricity thereof, a twisting moment is acquired.
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RCAH..5 6 o
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6m
AR 4
Mivisi,2
ﬁ—k
7 8 9
X 0 |

10 m < ..................................
H,, :

Figure 5.30: Case 2, transformed system.
1* order moment:
Horizontal force:

H,, =25-5-25-5=0kN (No translation occurs.)

tot,y
Twisting moment:

5 5

Moy = My + Moo =y e+ Hyy e =2.5:52 42,5052 =625 KNm

twist twist,2

Force distribution on the stabilising columns due to twisting moment:

The columns are stabilising in both x- and y-directions. The twisting moment will
create forces on each stabilising column in both directions. Bending moments will
therefore occur in the x-and the y-direction. The columns are situated in symmetrically
with regards to the rotation centre and they are equally affected.

EI, -x 4.10°-5
=M - oLy =62.5- —
cobisty =S (EL X+ L - y?) 4(4-10°-5% +4.10° -3?)
H =62.5- > =2.30 kN H =62.5- 3 =1.38 kN
col ,twist y . 4(52 + 32 ) . col twist ,x ‘ 4(52 + 32 ) :
Mo,y =2.30-5=11.49 kNm Mo,x:1.38-5:6.89 kNm

2™ order moment:
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Vertical force:

N,

o =10-6-5=300 kN
When establishing the total moment there are three critical buckling loads which can
be applied.

N,.=N,, =1824 kN N, . =3467 kN

cr,rot
Depending on which buckling mode is used, different values will be obtained for the
second order contribution and different design moments will follow. It is preferable to
use the lowest critical buckling value to achieve values on the safe side but to get
values as close as possible to the real structure; the choice may not be so simple. In
this case the building is only subjected to twisting, and translation does not occur. It is
then preferable to choose the buckling load which refers to rotation as it reflects the
same, or the closest, deflection mode as the horizontal load case generates.

2" order moment using buckling load from translation:

1
M =1149-| —— |=11.49-1.197=13.75 kN
d,col,y 1_ 300 m
1824
1
M =6.89. | ———— [=6.89-1.197 =8.25 kN
d,col,x ~ 300 m
1824

2" order moment using buckling load from rotation:

1
M =11.49-| ————— |=11.49-1.095=12.58 kN
d,col,y 1_ 300 m
3467
1
M, . =689 ———|=689-1.095=7.55 k
dcorx =6.89 300 6.89-1.095="7.55 kNm
3467

In this structure the choice of which buckling mode to use does not present great
differences. In other cases the buckling loads may differ very much and the
knowledge of the behaviour of the building from different load cases is important for
calculating accurate values. Tables 5.25 and 5.26 below present Case 2 results in
comparison with FE-analyses.
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Table 5.25:  Results of Case 2 concerning y-direction.

L HC-Ney | HC-Nepyor FEA
Case 2- y-direction [KNm] [KNm] [KNm]
1*" order moment 11.49 11.49 11.47
2™ order moment included 13.75 12.58 12.25

Table 5.26:  Results of Case 2 concerning x-direction.

Case 2- x-direction HC-Ner.« HC-Ner,ror FEA
[kNm] [kNm] [kNm]

1*" order moment 6.89 6.89 6.86

2™ order moment included &.25 7.55 7.37

The results from the hand calculation using the buckling load through rotation agree
well compared to the FE-analyses. A case where both translation and rotation are
involved is considered in the next study, Case 3. It is here to reveal which buckling
load that presents results closest to FE-results.

5.5.4 Case 3 — Study of combined translation and rotation

o || gv=">5 kN/m*
1 2 3

qn= 2.5 N/m

E=30GPa

Lyabeor= 1.067 m*

)
Q

Neroy= 1824 kKN
1 Nerror= 3467 kKN

| I X 10 m [ | L,=5m

qh
Figure 5.31. Case 3. Study of the combination of translation and rotation

154 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12



1*" order moment.
Horizontal force:

H, =25-5=125kN

tot,y
Twisting moment:

5

M, =H e =2.5-5-E=31.25 kNm

twist tot,y “Cx

Force distribution on the stabilising columns due to translation:

H = 1275 =3.125 kKN  (Only in y-direction)

col,tr,y

Force distribution on the stabilising columns due to twisting moment:

H M Elyy X 3. 4-10°-5 _
col twist,y twist Z(Eli’y -x2 +E1i’x yz) . 4(4106 .52 +4_106 32)
23125 > =115k
Hcol,twist,y =31.25 m =1.15 kN

3

Hcol,twist,x = 3125 m = 069 kN

Total moment on each column:

Observe that columns 3 and 9 have forces from translation and rotation in the same
direction. Columns 1 and 7 have a force occurring from rotation in the opposite
direction than the translation.

Column 3 and 9: M, =(3.125+1.15)-5=21.38 kNm; M, =0.69-5=3.45 kNm
Column I and 7: M, =(3.125-1.15)-5=9.88 kNm; M, =0.69-5=3.45 kNm

d
2"¢ order moment:

The total moment will be calculated using critical buckling loads from translation and
rotation, in order to make a comparison.

Total moment using buckling load from translation:
Columns 3 and 9. Columns 1 and 7.

M =21.38-1.197 =25.59 kNm M =9.88-1.197=11.83 kNm

d,col,y d,col,y
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M,,, . =345-1.197=4.13 kNm M, =345-1197=4.13 kNm

Total moment using buckling load from rotation:

Columns 3 and 9. Columns 1 and 7.
M.y = 21.38-1.095=23.41 kNm Mdﬂml’y =9.88-1.095=10.82 kNm
M, =345-1.095=3.78 kNm M, =345-1.095=3.78 kNm

A third alternative is introduced as this load case subjects the structure to both
translation and twisting. This third approach is performed by dividing the two load
contributions from translation and twisting and taking the 2™ order contribution into
account by multiplying each contribution with the magnification factor related to the
respectively deflection mode.

Total moment using buckling load from both translation and rotation:

Column 3 and 9: M, =(3.125-1.197 +1.15-1.095)- 5= 25 kNm

M =0.69-1.095-5=3.78 kNm

d,col,x

Column  and 7: M, , =(3.125-1.197 - 1.15-1.095)- 5=12.4 kNm;

M =0.69-1.095-5=3.78 kNm

d,col,x

Observe that the moment at the base of the columns in x-direction is only due to
twisting. The magnification factor used is therefore taken from the buckling load
through rotation.

The hand calculations are compared with the FE-analysis and Table 5.27, 5.28 and
5.29 below presents the results.

Table 5.27: Results case 3, y-direction, columns 3 and 9.

Y 'Ci?:it:i;On HC_NC” 24 HC- cr,rot HC-N, cr,roty FEA
Column 3 and 9 [kNm] [kNm] [kNm] [kNm]
1** order moment 21.38 21.38 21.38 21.40
nd

2 qrder moment 75.59 2341 ’s oy
included
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Table 5.28: Results of case 3, y-direction, columns I and 7.

y_ci?:f:t:;on HC'Ncr,y HC'Ncr, rot HC'NCV, roty FEA
Column 1 and 7 [KNm] [kNm] [kKNm] [kNm]
1* order moment 9.88 9.88 9.88 10
nd
2" order moment 11.83 10.82 12.4 12.55
included
Table 5.29: Results of case 3, x-direction, columns 1, 3, 7 and 9.
Column 1,3,7.9 [kKNm] [KNm] [KNm]
1:st order moment 3.45 3.45 3.45
Total moment 4.13 3.78 3.69

In Appendix C the deformation pictures from the FE-analyses are presented. The last
case, case 3, is of special interest as the results in the hand calculation present values
on the unsafe side considering the usage of the buckling loads from translation and
rotation. The third approach reveals that separating the loads due to translation and
twisting and multiplying each contribution with their respective magnification factor,
presents results which agree better compared to the FE-results.

Observe that if the assumption that the stabilising columns are not subjected to the
vertical load and that the polar moment of inertia is used, then the design moments
will be even more on the unsafe side as shown in section 5.4.

The results show small differences between the values, between the hand calculations
and the FE-analyses. The study only reveals the problem concerning the different
methods and the variations in the values may seem insignificant. It is here to be
noticed that the values can differ greatly depending on the structure. In very tall
buildings huge differences can arise, and the effects thereof can result in an under
dimensioned building.
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5.6 Study of the overall stiffness equation

It is not obvious which approach should be used for establishing the buckling load and
the force distribution between stabilising components of a building. In Section 4.2.5,
an example is presented to show a calculation method for a building stabilised with a
combination of shear walls. The method is applicable for separated walls assumed to
stabilise in their stiff direction only. Equation (4.24) is used for establishing the
overall stiffness for the entire structure, C, which is used to determine the critical
buckling load.

[(8.)-c]-[2(8,)-c]-| =(B.» +B},x2)—C% -2 [2(B,)-C]+ Cy? - [5(8,)-C]

(4.24)

Regarding the translation part of the calculation, the method is straight forward but
the rotation part is questionable as it contains assumptions in polar moment of inertia.
It is described in Section 4.2.3.6 how the variables y and x in Equation (4.24)
represent the distance from the actual units rotation centre to the complete structures
rotation centre in each direction. The equation is therefore suited for systems with
several separate stabilising units.

The following example shows a system of only two stabilising walls. The two walls
are each stabilising in different directions. This system is hard to imagine for a real
building as it is a bad solution. The example is for educational purposes only, see
Figure 5.32.

X
RC
XRT B:
YRrT
B
Y =;CGslab

X
»
|

Figure 5.32: Building structure with two stabilising walls.

The rotation capacity is here investigated for explaining why Equation (4.24) is not
recommended in all cases. When only one unit is stabilising in each direction, the
rotation centre is located at the intersection of the two walls stiff directions, see
Figure 5.32.

X Z(By 'xRT,unit) y _ Z(Bx 'yRT,um't)
RT — RT —
ZB}’ ZBx
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If the part concerning rotation in Equation (4.24) is studied for this specific case one
can observe that the expression becomes zero and therefore the root concerning
buckling through rotation also becomes zero.

Z(Bxy2+Byx2)—C%"} = {(Bx-02+By-02)—C%’ = C=0

For similar cases, when using the general formula, Equation (4.25), one of the three
roots equals zero. In general terms, the answer tells us that no buckling will occur
through rotation. The expression delivers values for buckling through translation only.
It is obvious that this system has a very low rotation capacity and through the
assumption that the walls only stabilise in their stiff direction, the rotation capacity
becomes zero. Still, the walls do actually provide a rotation capacity. The problem
becomes clearer if we let the two walls be connected as one coupled unit working
together, i.e. an L-shaped unit. In this case the location of the rotation centre of the L-
shaped unit also represents the RC of the whole structure and the coordinates for the
RC are the same as in Figure 5.32, see Figure 5.33.

RC | B. B,

XRT YRrT

=CGslab

Ay

X
»

Figure 5.33: L-shaped stabilising component.

Due to interaction between the two stabilising parts, this coupled structure has a
significantly higher stiffness for stabilising in x- and y-direction and the rotational
stiffness is also greater. Still, the problem with the applied method remains.

Z(Bxy2+3yx2)—clj’} = {(Bx-02+3y-02)—c% = C=0

This last case studied reveals that the usage of the method applied can deliver results
that do not represent the real structure. It has been observed that the method does not
take into account the components internal rotational stiffness. This approximation can
in some cases lead to misjudgement of the structural behaviour and the predicted
response of the structure may greatly disagree with the response of the real building.
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5.6.1 Coupled and uncoupled approach

In the pretence of establishing buckling loads, and finally design moments, it is of
vital importance to approach the structure in a suitable way. To clarify the effects of
the choice made for approaching a structure at an early stage in the calculation
process, a numerical example is presented.

The two cases described below are to be compared regarding the buckling load. Both
models have the exact same measurements. In Case 1 the stabilising elements are
considered as a coupled component, i.e. the three walls are unified and act together for
stabilising the building. The U-shaped element is positioned so that its CG coincides
with the floor slab’s CG. Case 2 approaches the problem through assuming that the
three walls are separate.

4m
€

| B.B,
3m CG
| |

12m

X —1 9

\ 4

20 m

Figure 5.34: Case 1, coupled walls.

I w+ —‘»ey 12m

\

20m

Figure 5.35: Case 2, uncoupled walls.
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Both models assume that vertical forces are taken by non stabilising columns evenly
distributed between the slabs (not visible in the figures). The stabilising component(s)
take horizontal forces only. The models represent a 10 storey building which has the
same stiffness at each storey and has an evenly distributed horizontal load applied
through the building. All the walls are solid and have a thickness of 0.2 m and the
total height of the building is 30 m.

This example will clarify the effect of the two different approaches. Case 1 is first
calculated and the second case thereafter.

5.6.2 Case 1 - Coupled approach

Concerning the U-shaped cross section, the equations for calculating the moment of
inertia, CG and RC for a U-shape are found in Appendix E. [Samuelsson and Wiberg
(1993)].

Centre of gravity of u-section, c:

Lyl rbt, o 4:0243:02

ht, +2bt, ~ 4-02+2-3-02

Rotation centre:

3.1,  3:37.02

- _ “123m = yr~22m (=0
6bt, + ht, 6-3-02+4-02 - (r=0)

Moment of inertia:

t, b’ b\ 2

I, ==~ 2tb-b[c—5j +t,-h(b—c)
02-3° 3)’ ) 4 o

I, = +2:0.2:321-2 +0.2-4(3-2.1) =1.98 m* (weak direction)
t,-h 2-4° L

I =" +ltb b2 =92 L 00347 2587 m? (strong direction)

12 2 2 2
Stiffness:
EI, =30-10°-1.98=5.94-10" m’ EI, =30-10"-5.87=17.6-10" m’
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12m

12m 1 X P =2

\ 4

20m

Figure 5.36: Case 1- Coupled walls.

Calculation of stiffness due to influence of shear:

Buckling load (primary): Equations (3.11) and (3.38)
Shear:

y-direction : N, =G4, = 0.4-30-10°-2-3-0.2 =14400 MN

cr,S,y

x-direction : N, =GA, =0.4-30-10"-4-0.2=9600 MN

cr,S,x

Bending : 10 storeys = ky=6.8; from Figure 3.13.

EIl, 94.10"
y-direction: N, , =k, —~= 6.8% =448.8 MN
h
o El 76-10"
x-direction: N, , =k, —*= 6.8@ =1329.8 MN
” L, 30

Observe that shear deformation has a greater influence in the x-direction due to a high
buckling load in bending and a low buckling load in shear.

Total buckling load (primary): Equation (3.19)

1
Ncr,tot - ﬁ

+
Ncr,B Ncr,S
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y-direction:. N = ! =435.2 MN

crtot,y 1 1

74_7
448.8 14400

x-direction: N = ! =1168 MN

cr,tot ,x 1 1

- + -
1329.8 9600

Establishing of B, and B,: Equation (4.15)

N

y-direction: B =—"""“FE] =ﬂ-5.94-1010 =5.76-10" m?
Nos, 4488
N

x-direction: B =—""""F] = 1168 -1.76-10" =1.55-10" m’
N, ,. 1329.8

Polar moment of inertia, /,: Equations (4.20), (4.22) and (4.23)

[,=1+1,
L L 12°
| I 2 _20-12 +240-2.2% =4074 m*

y 12 slab " V1T =

L L .70°
y 2:12150 +240-0 = 8000 m*

Ix = 12 +Aslab.xT

1, =4074+8000 =12074 m*

Area of floor slab: A, =12-20 =240 m’

In this case the RC only dislocates in one direction from CG, yr# 0, x; = 0. Equation
(4.30) can therefore be used, see Section 4.2.3.6.

[=(8,)-c]- ([Z(Bx)— c]{z(zaxy2 +B,x*)- c%”} - czygl =0

The stiffness values are inserted into the equation above and the overall stiffness, C, is
solved by a calculator or a computer program. The expression will deliver three roots,
i.e. three different overall stiffness values, two values for translation and one for
rotation. In this case this method fails, as it will only present two roots representing
translation capacities. The rotation stiffness is presented as a trivial root C = 0.

C, =576-10"m* C,=172-10"m*> C,=0m’
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It 1s possible to identify in which direction the three roots belong. The first root C;
represents the y-direction, while C, represents the x-direction. Observe that the value
C, for the x-direction is greater than the stiffness J'(B,) is. This is an effect of the
dislocation of the RC from the centre of gravity in the y-direction.

The result delivers only two critical buckling loads using Equation (4.24)

10 10
N, =682 107 1300 MmN N,, =6.85'7§i=435 MN

cr,x 2 02

5.6.3 Case 2 — Uncoupled approach

When the three walls are treated as uncoupled there is no interaction between the
three walls. Instead the walls will now only stabilise in their stiff directions.

3
Walls in y-direction: [ = 0.2:3 =045m’ = A‘T(El)y=2.7-1010 m’

! 12

_02-4°

Wall in x-direction: [ =1.067 m* = XED,=3.2:10" m’

X

4yT:1m 12m

A 4

20m

Figure 5.37: Case 2.

Due to symmetry, the RC only dislocates in y-direction affected only by the location
of the wall stabilising in x-direction.

X7 = 0Om yr= I m
The following calculations of the stiffnesses with influence of shear, are not shown

here as the method is an analogy of Case 1.
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y-direction :

N,,, =204 MN N,  =14400 MN = N, =201 MN
x-direction :
N,s,=242MN N, =9600 MN = N, =236 MN
%B, =26.6-10° m’ B, =31.2-10° m’

Equation (4.24) is used with the newly acquired stiffness values. In this case three
roots are calculated.

C,=211-10°m*> C,=266-10°m*> C,=319-10°m’

The three roots in this case have easily identifiable directions for each root. The
experience gained through the previously calculated examples described in Section
5.5.1 reveals that the stiffness in y-direction is not influenced due to asymmetry in y-
direction only. C is therefore referring to the overall stiffness in y-direction. It is also
obvious that C; is referring to the x-direction and the obtained value is in this case
slightly higher than 3(B,). The dislocation of the rotation centre in y-direction is
actually a benefit for the capacity in x-direction. In this case the floor slab is not big
enough for creating a great value of the polar moment of inertia and therefore the
stiffness in the x-direction receives a slightly higher value. Due to the short distance to
the RC, the two walls stabilising in y-direction derive a low resistance for rotation.
Only one wall is stabilising in the x-direction and is not contributing to resist rotation.
In Case 2, all three roots exist and the critical buckling loads can be established for
both translation and rotation by using Equation (4.24).

9
N,, = 6.8% =201 MN
9
N, = 6.8% =241 MN
9
Ny = 6.8% =16 MN
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5.6.4 Conclusions

Comparing the two cases it is obvious that the two different approaches provide
different critical buckling loads. If this example was an authentic building the cross
section would probably be calculated as a coupled unit as in Case 1. This example
reveals a great difference between the two different approaches. In a real building,
consisting of several stabilising walls bonded together, it is not obvious which method
should be chosen. Also, it has to be considered if it is possible to build the stabilising
units according to the chosen approach. It is not always possible to achieve a full
interaction between the components. Parts of the stabilising structure may have to be
treated as uncoupled walls not acting together, while with other components it may be
possible to design them assuming full interaction.
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5.7 Force distribution in a multi storey structure

In Section 5.5 a study of the force distribution in a single storey structure is
undertaken and the results from the FE-analyses and the hand calculation are
compared. In this investigation the force distribution in a multi storey building is to be
analysed. The differences between a single storey and a multi storey structure,
concerning the hand calculations, are that the effects from all the assumptions made
are greater due to there being more structural parts. The effects of the assumptions
regarding the stiffness of the floor slabs are in this study influenced by ten floor slabs
instead of one slab compared to the single store structure. It is suspected in this study
that the stiffnesses of the slabs, in combination with the distances between the
stabilising units, have a significant effect on the force distribution in the stabilising
walls. The twisting effect from walls positioned close to the rotation centre is also
suspected to influence the force distribution and the behaviour of the structure.

5.7.1 Modelling

This investigation consider two simple structures (indexed a and b) consisting of four
stabilising walls. Each structure is to be investigated for two load cases (indexed 1 and
2), see Table 5.30 and Figure 5.38.

Table 5.30:  Investigated cases.

Case Wall situation Load case
la Walls at the extremities Translation
1b Walls close to RC Translation
2a Walls at the extremities Twisting
2b Walls close to RC Twisting
Structure a Structure b

L]
XRC I I XRC I
|
A A
D I »

Figure 5.38: Structure a and b illustrated.
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The four walls are all 3 m wide and have a thickness of 0.2 m. The Young’s modulus
is set to 15 GPa for the walls. The building is 40 meters high consisting of 10 storeys
with a storey height of 4 m. Each storey is subjected to a distributed horizontal load,
applied as a line load at the long side of the slabs, of 3 kN/m

Each case is to be studied by using two different stiffnesses of the floor slabs in the
FE-analyses. The FE-model using stiff floor slabs refers to slabs with a Young’s
modulus of 30 GPa and they are 0.3 m thick. The second FE-model has a reduced
thickness of 0.1 m and a lowered Young’s modulus of 1 GPa. It is to be investigated
here how the force distribution is affected by a reduced stiffness of the floor slabs.
The interaction between the walls is suspected to be weaker in the case where the
slabs are modelled with a lower stiffness. The study is done to reveal how the reduced
stiffness of the slabs will affect the load distribution between the four walls. A hand
calculation is also made to compare the stress results. Observe that in the hand
calculation it is assumed that the slabs are not stiff out of their plane but stiff in their
plane.

The complete results from the FE-analyses are presented in Appendix D.
The forces distributions in the four stabilising walls are presented by graphs

describing the force distribution over the cross section. To calculate the stresses in
each wall, the force values are divided with the thickness of the wall.
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5.7.2 Study of translation

In the FE-analyses, concerning a translation load case, where stabilising walls are
placed close to each other and the floor slabs are modelled as being rigid, the position
of the walls, in the applied load direction, play a significant role for the load
distribution. In the hand calculations the floor slabs are always considered to be stiff
in their plane but not stiff out of their plane. With these assumptions it is possible to
use the hand calculation method concerning force distribution explained in Section
4.3. The method seems to be a good approximation and the forces subjecting each
stabilising wall are divided according to the walls specific stiffness. In the FE-models,
used in this study, the slabs and the stabilising walls are assumed to be fully
connected. If the floor slabs are interpreted to be rigid, a strong interaction between
the stabilising walls will create a completely different structure compared to the
envisaged hand calculation structure.

If the floor slabs are assumed to be rigid, the two cases shown in Figure 5.38 will have
stress distributions that differ greatly. Concerning the case to the left in Figure 5.38,
the stabilising units will have stress distributions that will agree well with the hand
calculations as the centres of gravity of the walls are aligned. The case to the right,
having the outer walls repositioned, is not comparable with the hand calculations.
With a rigid floor slab, i.e. stiff out of plane, the three stabilising units will behave as
one united cross section interacting together. The outer walls are in this case placed
completely in the compression zone and the U-shaped cross section in the tensioned
side (almost completely), see Figure 5.39. The interaction between the stabilising
units, which occurs when the floor slabs are assumed to be rigid, is not taken into
account in the hand calculation method and the results from the methods will not
agree.

V.V V V V V V VvV VY 4 y y y y y y y 4

Tension Tension

o H —— & i S—
L o |

Compression ssion

Figure 5.39: Illustration of different stress distributions in the stabilising units due to
their positioning in a translation load case.
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5.7.2.1 Case 1a - Walls at the extremities

qh

I xl?f' 2

12m

\

20m

Figure 5.40: Translation load case, Case la.
Hand calculation:

Influence from shear deformation in the walls is here neglected as it hardly affects the
stiffness due to the walls being slender.

The four walls have the same stiffhess:

3
[, 20.2 3

. =0.45 m*
’ 12

B, =B, =15-10"-0.45=0.675-10" Nm’

Forces subjecting walls 1 and 2:
The distributed load, g, = 3 kN/m, is applied at the long side of the ten floor slabs.

H,,  =3-20-10=600 kN

tot,y
It is here assumed that the forces are only taken by the walls stabilising in y direction.

H,, =H,, =300 kN

Bending moment at the base:

The distributed horizontal load applied at each storey has a load resultant at 22 m
above the ground.
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M,,, =300-22=6600 kNm

Maximum stresses at the edges of the wall:

Linear material response is assumed.

~ 6600-10°

o = -1.5=22 MPa
0Ly 0.45

The stresses are compared with the results from the two models from the FE-analyses.
Walls 3 and 4 do not have a linear stress distribution because the walls are acting like
flanges. Wall 3 has tensile stresses while wall 4 has compressive stresses. The values
presented for walls 1 and 2 are the highest stresses at the edges of the walls while the
values for walls 3 and 4 represent the mean stresses in each wall. The deflection
modes and the force distributions are presented in Appendix D.

Table 5.31: Case la — Translation load case. Maximum stresses compared between
the models. The values from walls 3 and 4 in the FE-analyses refer to a

mean value.
HC FEA FEA
Wall E=30GPa t=03m E= 1GPa t=0.1m

[MPa] [MPa] [MPa]

1 122 +9.25 +21

2 +22 +9.25 121

3 0 1.03 0.013
4 0 -1.01 -0.014

As the walls are positioned far from each other the interaction between the four walls
is greatly influenced by the stiffness of the floor slabs (stiffness out of plane). Walls 3
and 4 can be seen as cross sections acting as flanges and their contribution for
stabilisation is in this case depending on the stiffness of the slabs. Walls 1 and 2 in the
FE-model, using weak slabs, obtain values that agree well with the hand calculations.

The same load case is now investigated with the walls positioned closer to each other.
It is suspected that the interaction between the four walls is much stronger in this case
due to the closeness of the walls. The force distribution established from the hand
calculation is the same as presented in Case la.
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5.7.2.2 Case 1b - Walls close to RC

qn
Y. VV V V V X VY VV V VYV VVVYVYVYYVYY
Sm Sm i
3
]
3m 1
xR(” 2
12m
3m 4
|
y
A
X
»
»
20 m

Figure 5.41: Translation load case with walls close to RC, Case 1b.

Table 5.31 presents the results concerning Case 1b.

Table 5.32: Case 1b — Translation load case. Maximum stresses compared between
the models. The values from walls 3 and 4 in the FE-analyses refer to a
mean value.

HC FEA FEA
Wall E=30GPa t=0.3m E=1GPa t=0.1 m
[MPa] [MPa] [MPa]
1 122 +7 +20
2 122 7 +20
3 0 2.56 0.05
4 0 -2.36 -0.05

The results from FE-analyses show that a strong interaction occurs between the four
stabilising walls. The FE model using the weaker slab presents a weaker cooperation
between the walls. The stresses that occur in walls 3 and 4, concerning the FE-model
using the stiffer floor slabs, seem to be small compared to walls 1 and 2, but the
stabilising contribution is actually greater in walls 3 and 4 compared to walls 1 and 2.
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To estimate the influence from walls 3 and 4, a mean value is taken from the two
graphs presenting the force distribution of walls 3 and 4 in Appendix D.1.

The mean value is estimated at 500 kN/m acting along the breadth of the wall, i.e.
3 m. The walls 3 and 4 are placed 3 m from the CG of the four walls. The CG of the
four walls is coinciding with the CG of the slab due to symmetry.

The total force in walls 3 and 4: 500-3=1500 kN.
Moment taken by walls 3 and 4: 2-1500-3=9000 kNm

Total moment from the applied load: M, = (3-20-10)-22 =13200 kNm

With this rough estimation it is obvious that walls 3 and 4, which are acting like
flanges, contribute with over 2/3 of the total moment and significantly influence the
force distribution. This effect is not assumed to occur for the hand calculation and the
values are therefore hard to compare between the methods.

If the contribution from walls 3 and 4 is reduced from the total applied moment the
remaining moment is taken by walls 1 and 2.

M, =M =w=2100kNm
0,1 0,2 2

Walls 1 and 2 are now subjected with the remaining moment and a new maximum
stress value is calculated assuming linear stress distribution through the wall.

~2100-10°

= = 1.5=+

o1 =0, 0.45 1.5=+%7 MPa

If this value is compared with the stresses from the FE-analysis in Table 5.31, it is
seen that the results agree. Tables 5.33 and 5.34 below presents a comparison of the
moments of each wall showing the contribution each wall gives to the total moment.
The total applied moment is the same for the two cases, Case la and 1b, i.e. M) =
13200 kNm.

Table 5.33:  Comparison of the moment contribution of the four walls, Case la.

HC HC FEA FEA FEA FEA

E=30GPa| E=30GPa | E= 1GPa | E= 1GPa
t=03m t=03m t=0.1m t=0.1m

[KNm] | My / My [KNm] Myan ! My [KNm] Myan ! My

Wall

1 6600 0.5 2928 0.22 6551 0.496
2 6600 0.5 2928 0.22 6551 0.496
3 0 0 3708 0.28 47 0.0035
4 0 0 3636 0.28 50 0.004
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Table 5.34:

Comparison of the moment contribution of the four walls, Case 1b.

HC HC FEA FEA FEA FEA
Wall E=30GPa | E=30GPa | E= 1GPa | E= 1GPa
t=03m t=03m t=0.1Im t=0.1m
[kNm] Mwa” / M() [kNm] Mwa” / Mo [kNm] Mwa[[ / M()
1 6600 0.5 2172 0.165 6510 0.493
2 6600 0.5 2172 0.165 6510 0.493
3 0 0 4608 0.35 90 0.007
4 0 0 4248 0.32 90 0.007

5.7.3 Study of twisting

The cases studied in the previous section show great differences in the stress
distributions in the building. The torsional stiffness is especially of interest as the
components own torsional stiffness is not taken into account in the hand calculation
methods presented in Section 4.5. It is here important to understand the basics of
twisting phenomena, pure torsion and warping, which are explained in Section 2.3.2.

The method used in the hand calculation takes the structures resistance to torsion into
account by combining the different stiffness of the stabilising walls, B, and B,, and
their distance to the rotation centre. This approach is suitable for walls far from the
rotation centre as they will almost only move in a lateral direction. Walls positioned
close to the rotation centre will not only move in a lateral direction but also resist
torsion by being subjected to twisting themselves. The total stabilising contribution of
a unit, stabilising a building subjected to twisting, is actually depending on four
contributions. The component will stabilise by bending stiffness in the stabilising
direction and by shear stiffness in the stabilising direction. These two contributions in
combination with the torsional and warping stiftness of the component give the total
stabilising stiffness. In most cases of hand calculating, three of these four
contributions are neglected and only stabilising through bending stiffness is taken into
account. This approximation is on the safe side and is in most cases a good
approximation. This investigation, Cases 2a and 2b, will present cases where these
approximations do not interpret the actual behaviour of the structure.

The effect of twisting will first be explained through the example shown below in
Figure 5.42. This example is presented to enlighten the fact that stabilising
components close to the rotation centre have a different behaviour compared to
stabilising components far from the rotation centre in a case where twisting occurs.
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| |
AY

Figure 5.42:  Illustration of wall positioning in a twisting load case.

\ Ao

Four walls are numbered in the figure above and their total torsional resistance is to be
discussed. Wall 4 is positioned far from the rotation centre and when the building is
subjected to rotation wall 4 will deflect almost only in y direction, see Figure 5.43.
The stabilising contributions from this wall are due to bending and shear stiffness in
the stabilising direction, i.e. y direction. If the wall is slender, shear stiffness can be
neglected, but if the floor slabs are fully connected to the walls on each storey and are
very stiff, bending may be resisted by the interaction between the floor slabs and the
stabilising units. The shear stiffness is then of great importance and can not be
neglected.

Figure 5.43: Illustration of the deflection of the walls when the structure is subjected
to twisting.
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Wall 1 is positioned with its rotation centre at the buildings rotation centre and is
therefore subjected to pure twisting. This wall has no bending or shear contribution in
its stabilising direction and warping is neglected due to it being a uniform solid
section. The wall is therefore contributing with its own torsional stiffness which is a
shear stiffness around its rotation axis, i.e. St Venant stiffness, see Section 2.3.2

M =GK, 0 (5.12)

twist,wall _1

Ky is the torsional stiffness factor of a unit and for walls, which are thin in relation to
3

their breadths, Ky is estimated to K, |, = % where b is the breadth of the wall and ¢

refers to the thickness.

Wall 3 is more difficult to treat. This wall is subjected to bending and shear in the stiff
direction but also twisting in this wall, like the effect in wall 1, contributes for
stabilising the building. Wall 3 is therefore referring a case of lateral torsion. It is
difficult to establish the total contribution from this wall because the wall is not
twisting around its own rotation centre and the expression used for wall 1 can not be
used.

Wall 2 is a similar case to wall 3 but the bending and shear stiffness are not in its stiff
direction and this contribution is therefore small. The twisting behaviour is therefore
somewhere between wall 1 and wall 3.

The investigation of the force distribution is continued for twisting cases by using the
same models used in Case 1a and Case 1b. In the translation study the stiffness of the
slabs at each storey has shown a significant role for the force distribution. The
following study reveals how the stiffness of the floor slabs, in combination with the
positioning of the four stabilising walls, will influence the structure’s behaviour when
it’s subjected to twisting.
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5.7.3.1 Case 2a — Walls at the extremities

qh

.|
3
l RC 2
X 12m
Ay
4
X
» |
»
A 2 2 4 4 2 4 4222232
20 m

qn

Figure 5.44: Twisting load case, Case 2a.
Hand calculation:
Twisting moment:

The distributed load, g,= 3 kN/m, is applied at half the long side of the ten floor slabs.
The load resultants from each side have both an eccentricity of 5 m.

M, =3-10-10-5)+(3:10-10-5) =3000 kNm
Force distribution between the four stabilising walls:

Walls 1 and 2: y-direction:

B, -x

Hl wist — HZ nwist — Mtwivt : 2 )

i i " 5(B, x*+B,-y?)

0.675-10" -10

H,.=H,,. =3000-

bt T 2t 2:0.675-10"-10° +2-0.675-10" - 6°

10

Hl,twist =H2,twist =3000'2_102 £2.62 =110 kN
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Mo,1,y =110-22 =2427 kNm
Linear stress distribution is assumed.

2427-10°

o, = .1.5=8.1 MPa
oLy 0.45

Walls 3 and 4: x-direction:

-6
HStwist = H4,rwist =3000- m =66 kN
M, =66-22=1456 kNm
Linear stress distribution is assumed.
3
o/ :M-I.S =49 MPa
T 0.45

The values from the hand calculation are compared with results from the two FE-
models.

Table 5.35: Case 2a — Twisting load case. Maximum stresses compared between the
models.
HC FEA FEA
Wall E =30GPa t=03m E=1GPa t=0.1m
[MPa] [MPa] [MPa]
1 8.1 +3.25 7.5
2 8.1 +3.25 7.5
3 +4.9 +1.9 4.5
4 4.9 +1.9 4.5

The results show that the stiffness of the floor slabs has a significant effect on the
force distribution in cases where twisting occurs. The FE-model using the weaker
floor slabs almost agrees with the hand calculation. The great distances between the
walls, in combination with weak floor slabs, leads to the interaction between the four
walls being significantly lower.

The next case, Case 2b, has the walls positioned in the same way as in Case 1b and
compared to Case 2a the closer distances between the walls leads to the belief that a
stronger interaction between the four walls will occur.

178 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12



5.7.3.2 Case 2b — Walls close to the RC

qn
Y VVVVVVYVYYVYVYYVYY
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Figure 5.45: Twisting load case with walls close to RC, Case 2b.
Twisting moment:
gn=3 kN/m
M, =3-10-10-5)+(3-10-10-5)=3000 kNm
Force distribution between the four stabilising walls:
Walls 1 and 2: y-direction:

5
i = 3000+ =220 kN

H 2
2-57 423

=H

1,twist

M,,, =220-22 = 4852 kNm
Linear stress distribution is assumed.

| 4852-10°

Cp1, = 0.45 -1.5=16.2 MPa

Walls 3 and 4: x-direction:
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:3000.%:132 kN
+2-3

4, twist 2 . 52

H =H

3twist

M, =132-22=2912 kNm
Linear stress distribution is assumed.

~2912-10°

Cors = -1.5=9.7 MPa
" 0.45

The values from the hand calculation are compared with the results from the two
FE-models.

Table 5.36: Case 2b — Twisting load case. Maximum stresses compared between the

models.
HC FEA FEA
Wall [MPal] E=30GPa t=0.3m E*=2GPa t=0.1m

[MPa] [MPa]

1 +16.2 +3.75 +12.8

2 +16.2 +3.75 +12.8
3 +9.7 +2.1 +7.8
4 +9.7 +2.1 +7.8

*  This load case, Case 2b, was not able to be run in the FE-program with such a low value of
Young’s modulus as 1 GPa. The value had to be increased to 2 GPa.

This last case, Case 2b, is a special case concerning the twisting of the structure. As it
has been observed in the previous cases, the stiffness of the floor slabs plays a major
role for force distributions. What differs between this case and the previous case, Case
2a, is the location of the four stabilising walls. From the table above, Table 2.35, it is
observed that even with the weaker floor slabs the FE-model still does not agree with
the hand calculation. The interaction between the walls is greater in the twisting case
compared to the translation case. In the translation case the hand calculation agrees
well with the FE-model using the weak slabs, but in the twisting case the values do
not agree.

Earlier in this section, the four stabilising contributions of a wall were presented. In
the hand calculations only the bending contribution is taken into account and by
neglecting the other stabilising contributions, the stresses due to bending become very
high. When the walls are placed far from the rotation centre the deflection of the walls
in their stiff direction is much greater than all other deflections which are then
neglected. In this case, the four walls are placed close to the rotation centre. The
deflection due to twisting of the walls is then significant compared to the deflection of
the walls in their stiff directions. The forces are therefore not taken only by bending
but also through shear. Due to a strong interaction between the slabs and the walls, the

180 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12



walls in each storey are resisted to bend and are forced by the slabs to be straight. The
force distribution can therefore subjectively be compared with a St. Venant shear
distribution in a closed cross section subjected to twisting. If only St. Venant stress
distribution occurs, then no bending stresses would occur at all and only shear stresses
in the walls would be observed. The last case studied, Case 2b, is a combination of,
bending, shear in each walls stiff direction and shear occurring through twisting in
each wall.

Figure 5.46: Deflection Case 2a, Figure 5.47: Deflection Case 2a,
30 GPa t=0.3 m 1 GPat=0.1m

Figure 5.46 and Figure 5.47 illustrate the deflection modes of the twisting case for the
model with the walls positioned at the edges of the building. In Figure 2.14 the
deflection modes from bending and shear of a tall solid wall are presented. In Figure
5.47 the slab is weak and the deformations of the walls are considered as bending. The
hand calculations agree well with this model as bending is only taken into account in
the hand calculations. Figure 5.46 shows the effect when the stiff floor slabs are
resisting the walls in each storey to bend and the deformation mode reveals a strong
influence from shear.
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Figure 5.48: Deflection. Case 2b, Figure 5.49: Deflection Case 2b,
30 GPa, t=0.3 m 2GPa, t=0.1 m

The same comparison regarding Case 2a is made for Case 2b where the walls are
closer to the rotation centre. The effect of twisting in each wall in combination with
the St. Venant effect, contributes to stabilisation. The bending part is low which
explains the great differences between the hand calculation and the FE-analyses. The
deformation figure, Figure 5.48, reveals a low bending deformation in the walls and a
great shear deformation. The stiff floor slabs are forcing the walls at each storey to be
straight. Figure 5.49 is showing the case with the weaker slabs and the bending
stiffness has in this case a greater influence for stabilisation. The walls are, due to the
weaker floor slabs, able to bend and the shear deformations in the walls are smaller.

Figure 5.46 and 5.47, Case 2a, can be compared to Figure 5.48 and 5.49, Case 2b. The
differences in the deflection modes reveal that bending deformation has a greater
influence when the walls are far from each other and the shear stiffness is lower.

This thesis has been limited so that deeper investigations are not to be considered in to
how to calculate the correct stress distribution in cases like Case 2b. It is obvious that
it is very hard to establish a reasonable stress distribution by hand calculation but a
deeper investigation with more detailed FE-models is suggested for further studies.

5.7.3.3 Discussion

For the cases investigated in sections 5.7.2 and 5.7.3 no interaction between the four
walls is assumed in the hand calculations. The stresses are therefore much higher
compared to the FE-analyses. This is because, in the FE-models the connections
between the stabilising walls and the slabs are fully fixed. In the hand calculation
method the connections between the stabilising walls and the slabs are assumed to be
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hinged, i.e. not attracting moments. In the FE-models it is observed that the
interaction between the walls decreases with a decreasing stiffness (in their plane) of
the floor slabs and the stresses due to bending in the walls are increasing when the
stiffness of the slabs is reduced. If the stiffness in the FE-model is further reduced and
finally equals zero, the values in the FE-analyses will converge to the ones obtained in
the hand calculation. Observe that here it is the stiffness out of the plane that is an
issue. The problem occurs in the FE-model when Young’s modulus is reduced to low
values. The stiffness in the plane is also affected, and bending in the slabs plane will
then occur and the force distribution is once again influenced. It is therefore hard to
compare the hand calculation with values obtained from the FE-analyses. The real
structure probably has friction joints between the slab parts and between the slabs and
the walls. It is therefore suspected that the complete floor slab will not be able to
transfer the stresses for obtaining a strong interaction between the stabilising
components. Concerning concrete slabs cast in situ, the slabs are one unified element
without joints and therefore it is possible that a stronger interaction occurs between
the stabilising components. If the slabs, or the connections between the slabs and the
stabilising units, are not designed for transferring the forces for obtaining a strong
interaction, then there is a risk for cracking in the most critical parts. The stiffness of
the slabs or the connections is then partly reduced and the interaction between the
stabilising components is weakened.

If a hand calculation is not performed and only the FE-analysis is utilised in design,
the interaction effect occurring in the FE-model may lead to lower design values, in
some stabilising components, than are actually occurring in the components. If it is
not secured that the slabs and the connection between the components are strong
enough for keeping the interaction, the stabilising components become under
dimensioned.

When using FE-analysis it has been observed from this study that the model built up
in the FE-program has to be very detailed if the model is to resemble the real
structure. Connections between the elements, for example the stabilising components
and the slabs, are preferable to be interpreted as joints. If the joints are not considered
in the FE-model, the slabs should be interpreted as not stiff out of the plane, in order
to resemble the real structure and to make hand calculations comparable.

5.7.4 Torsional resistance in cores

In Section 2.3.2 torsional effects on opened and closed cross sections are presented. In
this section the expressions for torsional stiffness of single cross sections is first taken
up and is followed by a derivation of an expression for combining torsional stiffness
of cores together with the contribution from the stabilising walls. The hand calculation
method used in this thesis to establish the force distribution through a building
subjected to twisting, does not take into account the torsional resistance of for
example cores. It is a common solution in tall buildings to use a centrally positioned
core, also utilised as an elevator shaft, in combination with stabilising walls or
facades. To include the rotational stiffness of the cores into the expression used for
establishing the force distribution through twisting, a new expression has to be
derived.
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The torsional resistance of a single component has the expression below describing
the moment contribution from St. Venant and Vlasov.
M

:Mtwist,S +M :GKVQ—EKWH"@S)

twist twist,V
In this study the warping stiffness, i.e. the Vlasov part, is neglected. Instead only the
stiffness related to pure torsion, i.e. St. Venant, is considered. The final expression
derived has not been taken from any literature and has been established by the authors
of this thesis. The expression was established in the final phase of this thesis and it has
not been fully checked or investigated. The results from the hand calculations using

this method are compared with the FE-analyses.

The derivation is based on finding the total deflection at the top of a chosen stabilising
component. When the deflection is established for a chosen wall it can be utilised for
deriving the deflection at the top of each stabilising component. When the top
deflection of a stabilising unit is established the moment and the stress distribution
along the unit can be derived.

This investigation starts with a derivation of the new expression by using a structure
consisting of a U-shaped centred core and two outer stabilising walls, i.e. Case 1. The
structure is first subjected to a distributed horizontal load, applied at the top of the
structure on each side, for obtaining a case of twisting. To ensure that the FE-model
and the hand calculations are compatible, the models are given a very stiff slab,
between the three stabilising units, which acts like a stiff arm rotating about the
structure, see Figures 5.50.

The derived expression is then used for two additional cases, Case 2 and 3, and the
top deflections established through the new expression are compared with the results
from the FE-analyses. Case 2 is similar to Case 1 except that the U-shaped core is
replaced by a closed rectangular cross section. Case 3 uses the same structure as Case
2 but refers to a ten storey structure where the loads are applied at each storey, see
Figure 5.51.

qn

Xwall,RC A A A A A A A A A A A

qh

Figure 5.50: Case 1, U-shape model, distributed load at the top only.
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9h

Xyall, RC A A A A A A A A A A A A

qn

Figure 5.51: Case 2, Rectangular-shaped model, distributed load at the top only.
Case 3, Distributed load at all 10 storeys.

5.7.4.1 Expression for including torsional stiffness of cores

Through this derivation Case 1 is used and the load is applied on the top floor only.
See Figure 5.50.

The slab is only 1.0 m wide and is acting as a stiff arm between the stabilising
components. The slab is positioned to the sides of the components, not directly on
them. This is done in order to keep the U-shaped cross section free without infringing
on the behaviour of the flanges. The FE-model is then comparable with the model in
the hand calculation.

Top deflection of a cantilever wall subjected to a point load at the top:

-H . L _ M twist
ymp — “Ttop,wall 3E] top,wall — =
X wall,RC
M twist L
Vip =———= (5.13)

Xovall RC -3EI

Xwairc 1S the distance from the wall to the rotation centre of the whole structure.

Top deflection angle of a twisted centre positioned core:

M, =GK,0 0= d—m = d_m — 27 wwist
‘ dx dx GKV
M,
"o =Gk, (5.14)
' GK,
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(The equation can also be integrated and from the boundary condition at the base,
my—9 = 0, the same expression is derived.)

myqp 15 here the total angle that will occur from the base to the top of the twisted unit.

To combine Equation 5.13 with Equation 5.14, the deflection at the wall has to be
established.

3
M twist L
= =m - X - y =
y top H y top top wall,RC top

Xovall RC 3EI

twist

GK,

" Xwall, RC

The two expressions are now treated as a sum of each capacity for resisting a twisting
moment.

r Ly X1 e
=M e — =M . _h ~ wall, kG
ytop twist xwall?RC . 3E] ytop twist GKV
1
yt()p = 1 1 =
L’ * L, -x
h " Nwall ,RC
M twist — M twist GK
X an.re SET 4
M .
ytop,wull = — (5 15)
(3EI " Xyvail,RC N GK, J
L; Ly, X, re

In this study two stabilising walls are positioned with the same distances from the
rotation centre and have the same stiffness values. The two walls will therefore
contribute equally to provide torsional stiffness. The part concerning the stabilising
wall can therefore be multiplied with 2.

y — Mtwist
top,wall
' [3E]'xwa11,Rc 24 GK, ]

3
L, Ly - X re

In general cases where several walls are stabilising, the stiffness and the distance from
the rotation centre from each wall, has to be interpreted through Equation (5.16).

Mtwist (5 . 16)

ytop,wall = i
(3E] Tounse |3 [3Eli];3xi’RC J . 0K, ]
h

3
L, 1 L, X, ke

The twisting angle can also be established by dividing with the distance of the chosen
wall, 1.€. Xywall RC

186 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12



_ Y top,wall _ M twist

" Xowall ,RC 3EL Xy pe <o 3EL Xy pe * Xopatr re GK,
L, 1 L, Ly

(24

(5.17)

It is recommended to use Equation (5.14) and first establish the top deflection of a
chosen wall. The top deflection can easily be established for the other walls by
quotients between the distance of the chosen wall, x,..;;rc, and the actual wall, as the
deflection is varying linearly with the distance from the rotation centre.

X.
eqe o . . . R
Walls stabilising in y-direction: y,,,; =— c_. Viopwal
wall ,RC
e o _ JYirc
Walls stabilising in x-direction: y,,, = * Viopwall
wall ,RC

In this example the chosen wall is stabilising in y-direction.

The calculations of the stiffnesses of the three stabilising units are not presented in the
following three examples. For coupled cross sections, such as the U-shaped section
and the rectangular-shaped, the data for calculating the stiffnesses can be found in
Appendix E.

Horizontal distributed loads applied on each storey:

The derivation above is referring to a structure subjected to a horizontal distributed
load at the top floor. An expression for the deflection at the top of the wall for a load
case referring to a horizontal distributed load applied at each storey is now to be
established. This derivation is based on the relationship between the top deflection on
a cantilever component subjected to a concentrated load at the top and the top
deflection when the cantilever component is subjected to a distributed horizontal load
along the height.

Concerning the distributed load case, the load is summed up and applied at the top of
the column subjecting the column with a concentrated load instead of a distributed
load along the height.

.. Lt
Distributed load : Yiopaiss =i Sﬁ
L

Htop,wall ’ Htap,wall = Qh ’ L
3EI

Concentrated load at the top: y,,, ... = N

The two expressions are compared:

L L, L,
ytop,conc = qh .Lh ’ 3E] = Qh ’ 3EI ytop,dist = qh : 8E]
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The expressions are identical except for the 3 and the 8. If the distributed load is
summed up and placed at the top of the column the deflection will be 8/3 times the
real deflection when the load is distributed along the column.

3
ytap,dist = g ) ymp,point (518)

The same equation, Equation 5.14, is therefore used for establishing the deflection of
a chosen wall subjected to a distributed load and is multiplied with 3/8.

M, .
twist . % (5.19)

ymp,wall =
(3E1.xw,,,,w . Gk, J

3
L, Ly, X re

Observe that Equation (5.18) is an approximation of the real load case.
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5.7.4.2 Case 1 — U-shaped core

qh

qh

Figure 5.52: Case 1, U-shaped core.

t .=t =0.1m

wall U—shape

gn=3 kN/m E .=E =30 GPa G=04E=12 GPa

wall U—shape

EI,, =0.67-10"° Nm’ K =0.00333 m*

V., U—shape
M,. =@3-10-1-5)+3-10-1-5)=300 kNm
Both walls are placed with the same distance from the rotation centre.

» _ M, B 300-10°
top,wall — -
{3E1-xwau,Rc . 0K, J (3-0.67-1010 8, 12:10° -0.00333]

40° 40-8

3
L, L,- Xyall, RC

300-10°

_ ~0.0582 m
Yiopwal = 55195002 + 124987

The calculated values, below the division line in the last expression, reveal the
contributions from each stabilising component for resisting torsion. The second value,
124987 N, reveals that the U-shape contributes very little for stabilising compared to
the walls positioned far from the rotation centre.
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Figure 5.53: Deflection from FE-analysis, Case 1

The same calculation is now made for a similar building where the U-shaped core is
replaced by a closed core.

5.7.4.3 Case 2 — Closed rectangular core, load on top floor

qh

VYV VVVVVVYYVYYVYY i/

qn

Figure 5.54: Case 2, closed rectangular core, load on top floor.

t =t =0.1m

wall closed

gh=3kNm  E,, =E, ,.,.=30GPa G=04E=12 GPa
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EI ., =0.67-10" Nm’ Ky oy ppe =4.114m"

wall

Observe the great differences of the Kj-value compared to the U-shaped cross section.
Closed cross sections are much stronger for resisting torsion.

M, =(3-10-1-5+(3-10-1-5) =300 kNm

Both single walls are placed with equal distances from the rotation centre.

y = Mtwist — 300 i 103
Y N GK 3.0.67-10°-8 _ 12-10° -4.114
3wa s X 2 + V 3 . 2 +
L, Ly - X,a1.rc 40 40-8
3
_ 300-10 ~0.00189 m

Y topwail = 2512500 -2 + 154275000

TR 01 S R T )
111

EERESEE
EESEREBEE

G AT S P |

[

1]

IS

Figure 5.55: Deflection from FE-analysis, Case 2

For structures using closed cores, the torsional resistance of the core is important to
include in the calculations. The last expression reveals that the closed core plays a

significant role for resisting torsion in the structure.

The same structure used in Case 2 is now to be calculated for a distributed load case.
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5.7.4.4 Case 3 — Closed rectangular core, load on all ten floors

qh

VYV VVVVVVYYVYYVYY i/

qn

Figure 5.56: Case 3, closed rectangular core, load on all ten floors.

The loads are now applied on each storey.

M,,, =(3-10-10-5)+(3-10-10-5)=3000 kNm

The total twisting moment is now imagined to be reapplied at the top storey only.

. M, 3 3000-10° 3
ol (3E1-xwam ,. GOk, J 8 (3-0.67-1010-8 2+12-109-4.114] 8
22+ .
Li L, * Xall,RC 40° 40-8
3
ytap wall — 3000 10 220007 m
mll = 9512500-2 + 154275000 8
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Figure 5.57: Deflection from FE-analysis, Case 3, loads on all floors.

5.7.4.5 Results

The three examples above have been calculated with two different load values and the
results are compared with FE-analyses. O-shape means the closed rectangular core

element.

Table 5.37:  Results of deflection for torsional resistance investigations.

Structure/Load case boad Top dI:f(l:ection Top (l;;ltction FEA/HC
[kN/m] [mm] [mm]
U-shape — Top floor 3 58.2 52.5 0.90
U-shape — Top floor 1 19 17.3 0.91
O-shape — Top floor 3 1.89 1.83 0.97
O-shape — Top floor 1 0.63 0.61 0.97
O-shape — All floors 3 7.10 7.00 0.99
O-shape — All floors 1 2.35 2.33 0.99
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The hand calculations agree well with the deflections obtained from the FE-analyses.
The two cases concerning the U-shaped cross section present a slightly higher
deflection than the FE-analyses produces. In the hand calculation the torsional
resistance is slightly under estimated. The difference between a closed cross section
and an open cross section subjected to torsion due to warping. Closed cross sections
have almost no warping while open ones have. The torsional stiffness due to warping
is not taken into account in the expressions derived in this section and is probably the
reason why the U-shaped cross section presents slightly greater deflections.

5.7.5 Warping effects

Warping effects are considered when designing core elements. An introduction into
torsional effects was given in chapter 2.3.2 and the application of these effects will be
dealt with now. This is a theoretical section which does not provide analysis but does
provide the tools for a possible future study of how to calculate with warping stresses
included.

Vasilii Zakharovich Vlasov (1906-1958) was one of the leading developers of theory
for warping torsion. The equations devised by him are used here and their derivations
can be seen in Smith and Coull (1991). These equations are designed to be used for
cores which are subjected to warping.

For determining rotation:

4 . 2
o)=L ) 1 . ol -sinhal +1 o haz —1)— alLsinh az + (al)’ i_l(ij
E-K, |(al) coshal L

(5.20)
Where: 8= rotation
m = torque per unit height

Ky = warping stiffness cross sectional factor

G-k,
o =
E-k,

L = height of building

z = signifies where, along the height, the rotation shall be determined

In order to determine deformations the answer, in radians, must be multiplied with the
distance from the facade, which is not horizontally loaded, to the rotation centre. In
order to calculate the total deflection, this value must be then added to the deflection
from bending and the deflection from shear.
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For determining twist:

3 .
ﬁ(z) S L ! 3 oL -sinhal +1 -(sinhaz) —aL coshaz + al -[1 —i}
dz E-K, |(al) coshal L
(5.21)
For determining axial deformations the following equation is used:
do
y(s,z) = —w(S)Z(Z) (5.22)

Here s signifies the distance from the origin, z the height and @ is a principal sectorial
coordinate which is another concept introduced by Vlasov into torsional theory. “A
sectorial coordinate at a point on the profile of a warping core is the parameter that
expresses the axial response (i.e., displacement, strain, and stress) at that point,
relative to the response at other points around the section.” [Smith and Coull (1991)]

Consider now a core, see Figure 5.57, where the opening of the core is partially closed
by beams i.e. transversals. The Vlasov effects will cause shears and moments in these
transversals for which they will have to be designed for.

For shears in partially connecting beams:

7,(2) =

121, mL’ 1 |(aLsinhal +1
cosh al

. 5 -(sinhaz) —alLcoshaz + al - (1 - i)
L, K, |(al) L

(5.23)
Where [/, = moment of inertia for beam
Lj, = length of transversal
2= twice the area enclosed by the middle line of the core profile

The maximum bending moment in the beam is then:

M, (z)=1,(2) % (5.24)
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RC

Torque

Figure 5.58: Core element partially closed with beams (transversals).

Vlasov introduced the concept of bimoment B; which is a moment at a specific height
times that height. Bimoments are then used for calculating the warping stresses.

B(z) = —mL* - {( 2)2 : {“L Sm}lll“i 1 (coshaz) - aL sinh az - 1}} (5.25)
a cosh
And warping stress is:
B-
o, = @ (5.26)
KW

This warping stress must be combined with the bending stress, obtained through
considering the tower to be a cantilever, in order to get the total axial stresses due to
horizontal loading.

For determining rotation, twisting shear in the connecting beams and bending
moments in the partially connecting beams it is possible to use K-values. This
considerable hastens the calculation process.

m-L* z
0(z)=——K,| aL,— 5.27
(2) 8. E-k. 1[“ Lj ( )

This K;-value is taken from a diagram of curves depending on aL and o/L. See Figure
5.59 for clarification.
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K> is used for twisting. see Figure 5.60

do L

For determining the bimoment B; K3 is used. See Figure 5.61.

mL’ z
B(z) = -K,| al,— 5.29
(2) > 3( Lj (5.29)
For determining shear in the partially connecting beams; is used K. See Figure 5.62.

7,(z)=mL- K{aL,%) (5.30)

TiN

DDOODDQD.D

Figure 5.59: K; values. [Smith and Coull (1991)]
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Figure 5.60: K; values. [Smith and Coull (1991)]
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Figure 5.61: K; values. [Smith and Coull (1991)]
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Figure 5.62: K, values. [Smith and Coull (1991)]

This method of reading K-values from diagrams is very fast and effective. Although
the results from the design curves will not be exactly the same as those calculated

through the complete equations they are accurate enough to use for preliminary
designs. [Smith and Coull (1991)]
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6 Conclusions and recommendations

6.1 Conclusions

This project has studied calculation methods for investigating stabilising components.
Buckling due to bending, shear and torsion, deflections, 1* and ond order, and
equations for determining the design forces and moments have been studied.
Combinations of hand calculation methods and FE-analyses have been used.

The Vianello iterations, for determining critical buckling load due to bending, have
proven themselves, against FE-analysis, to be very effective for calculating on
columns and solid shear walls which have non-uniform stiffness and uneven load
distributions.

An investigation has been done of pierced shear walls where the calculation method
described in Lorentsen et al. (2000) has been compared with FE-analyses. The
comparisons have shown a wide field of varying inaccuracy and some improvements
to the equations used have been made. Comparing the pierced shear walls’ critical
buckling loads and deformations with FE-results shows that the equations used for
calculating deformations give fairly accurate results and that the equations used for
determining critical buckling load are very conservative and need improvements. Two
improvements have been investigated. The first involves the bending transversal
length ¢ which should be set equal to the width of the gap in the wall and not the
transversal height plus the width of the gap. This alteration led to much better results.
Better results are achieved through also subtracting the transversal thickness /4, from
the height L., while calculating the shear angle for the bending in the vertical. Both of
these improvements combined, lead to better results that still land on the safe side of
the FE-results. Considering pierced shear walls with robust verticals, the shear angle
for the bending in the vertical can also be set equal to zero in order to achieve better
results.

The method of using the polar moment of inertia will provide buckling loads with
values higher than for a real structure. It follows that the design moment will be lower
compared to the real structure and the columns will be under dimensioned, i.e. results
will be obtained that are on the unsafe side.

Considering force distribution in single storey structures with 1** and 2™ order effects
it has proved to be very important to be consequent when choosing whether to derive
the final buckling load through either one of the critical translation buckling loads or
the critical rotational buckling load. If the actual behaviour of a structure subjected to
both rotation and translation is required then it is better to accurately apply each
buckling load for each specific direction so that a more real interpretation can be
completed

It has been discovered that the equations for global buckling, Equation (4.24), is
inadequate for calculating rotational buckling loads. It has been concluded that this
equation does not take into account a components torsional stiffness. Using this
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equation may lead to rotation being misjudged and therefore the predicted behaviour
of a structure may disagree with the structures real response.

Two approaches exist for calculating on cores. Their investigation concludes that
different results will be obtained depending on which approach the engineer chooses.
The uncoupled approach produces lower overall stiffness values than the coupled
approach. Whether or not one approach is better than the other is debatable because
either approach will work differently depending on the form of structure being
investigated.

Considering multi storey structures it has been concluded that it is difficult to compare
results because different assumptions are made in FE-analysis and the hand
calculations. No interaction between the shear walls is assumed in the hand
calculation which leads to the resulting stress values being considerably higher than
the FE-results. FE-analyses show an interaction that strongly influences the stresses
that occur in the stabilising walls. By using weaker plates in the FE-analyses the
resulting stresses become more comparable with the hand calculations. Considering
the results from FE-analyses it is observed that the interaction between the walls
decreases and that the stresses due to bending in the walls increase, when less stiff
floor slabs are successively tested. If the stiffness of the floor slabs is further reduced
to zero, then the results will converge with the hand calculations.

Considering torsion, it has been concluded that it is vital to consider pure torsional
resistance (St. Venant) and warping (Vlasov) while designing a structure. Better
results are obtained through hand calculations that include torsional resistance.
Warping effects in open cores will lead to axial deformations which in turn will lead
to large stresses occurring in the connecting floor slabs. If the open core instead has
beams positioned to partially close the core then these beams will have to be designed
for shears and moments that will occur because of the warping effects.

6.2 Recommendations

It is recommended that the structural engineer takes an active roll in the preliminary
design phase. It may be important for the engineer to discuss stabilising solutions with
the architect early in the design phase and so hopefully save time and money through
hindering foreseeable problems.

Vianello’s iteration method is recommended for determining the critical buckling load
due to bending. Through this method, can complicated shear walls and columns be
quickly and effectively investigated and more accurate critical buckling loads
achieved.

For calculating buckling loads on pierced shear walls it is recommended that the
structural engineer develops an understanding, through study, of how the calculation
method works for different forms of pierced shear wall. It is favourable to be familiar
with how correct the method used will be, for walls of different degrees of
slenderness.
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The polar moment of inertia may produce design values which lead to under
dimensioned structures. It is therefore recommended that this approach is
implemented carefully.

It is highly recommended that an understanding of torsional buckling is properly
applied. Attention to St. Venant and Vlasov effects is paramount when calculating on
cores; specifically St. Venant for closed cross sections and Vlasov for open or
partially closed cross sections.

6.3 Further studies

It would be very interesting to see if a relationship between variables concerning
pierced shear walls could be established. This thesis did attempt such a study while
searching for a shear factor and further studies may reach a significant conclusion that
may further simplify calculation methods for pierced shear walls. An investigation of
non linear behaviour of pierced shear walls is also of further interest.

A study of the interaction between stabilising components and floor slabs concerning
how the interaction is interpreted in FE-analysis and hand calculations would be
interesting. Results of a further investigation may lead to better calculation methods or
at least to a better understanding of how the interaction is interpreted by FE-
programmes.
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APPENDIX A: Vianello iterations

Four Vianello iterations made in excel are presented in this appendix. The four
models represent solid stabilising walls in a 10 storey building. Each storey height is
3 m and the total height is 30 m. Each storey is divided into 4 increments. The results
are compared in Section 5.2.
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APPENDIX A: Vianello iterations

Case 1: Even load; b =4 m; E = 15 GPa in top half; £ =30 GPa in bottom half.

dx | 0.025 N 1
L 1 EI 1
el 40
N m " . New
XL tower y Ya tower El y y Vb Yo/Yo y

0 1.00 1.00 1.00 | 0.00 0.00 0.50 | 0.00 | 2.42 | 0.00 0.00 0.00

1 0.98 0.00 0.95 | 0.05 0.05 0.50 | 0.10 | 2.41 | 0.06 1.22 0.04

2 0.95 0.00 0.90 | 0.10 0.10 0.50 | 0.20 | 2.41 | 0.12 1.24 0.08

3 0.93 0.00 0.86 | 0.14 0.14 0.50 | 0.29 | 2.40 | 0.18 1.25 0.12

4 0.90 1.00 0.81 | 0.19 0.19 0.50 | 0.38 | 2.39 | 0.24 1.27 0.16

5 0.88 0.00 0.77 | 0.23 0.28 0.50 | 0.56 | 2.38 | 0.30 1.28 0.20

6 0.85 0.00 0.72 | 0.28 0.37 0.50 | 0.73 | 2.36 | 0.36 1.30 0.24

7 0.83 0.00 0.68 | 0.32 0.45 0.50 | 0.90 | 2.34 | 0.42 1.31 0.28

8 0.80 1.00 0.64 | 0.36 0.53 0.50 | 1.06 | 2.31 | 0.48 1.33 0.31

9 0.78 0.00 0.60 | 0.40 0.65 0.50 | 1.30 | 2.28 | 0.54 1.34 0.35

10 | 0.75 0.00 0.56 | 0.44 0.76 0.50 | 1.53 | 2.24 | 0.59 1.35 0.39

1] 0.73 0.00 0.53 | 0.47 0.87 0.50 | 1.75 | 2.20 | 0.65 1.37 0.43

12 | 0.70 1.00 049 | 0.51 0.98 0.50 | 1.96 | 2.15 | 0.70 1.38 0.46

13 | 0.68 0.00 0.46 | 0.54 1.12 0.50 | 2.24 | 2.09 | 0.76 1.39 0.50

14 | 0.65 0.00 042 | 0.58 1.25 0.50 | 2.50 | 2.03 | 0.81 1.40 0.53

15 | 0.63 0.00 0.39 | 0.61 1.38 0.50 | 2.76 | 1.96 | 0.86 1.41 0.57

16 | 0.60 1.00 0.36 | 0.64 1.50 0.50 | 3.00 | 1.88 | 0.91 1.42 0.60

17 | 0.58 0.00 0.33 | 0.67 1.65 0.50 | 3.29 | 1.80 | 0.96 1.43 0.63

18 | 0.55 0.00 0.30 | 0.70 1.79 0.50 | 3.58 | 1.71 | 1.00 1.44 0.66

19 | 0.53 0.00 0.28 | 0.72 1.92 0.50 | 3.84 | 1.62 | 1.04 1.44 0.69
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XL toxer y ya tonv:er El vy y Yo yelys NJe/W

21 0.48 0.00 0.23 | 0.77 2.20 1.00 | 220 | 1.51 | 1.12 1.45 0.74
22 0.45 0.00 0.20 | 0.80 2.34 1.00 | 2.34 | 145 | 1.16 1.46 0.76
23 0.43 0.00 0.18 | 0.82 2.47 1.00 | 247 | 1.39 | 1.20 1.46 0.79
24 0.40 1.00 0.16 | 0.84 2.59 1.00 | 259 | 1.33 | 1.23 1.47 0.81
25 0.38 0.00 0.14 | 0.86 2.73 1.00 | 2.73 | 1.26 | 1.27 1.47 0.83
26 0.35 0.00 0.12 | 0.88 2.85 1.00 | 2.85 | 1.19 | 1.30 1.48 0.85
27 0.33 0.00 0.1 0.89 2.97 1.00 | 297 | 1.11 | 1.33 1.48 0.87
28 0.30 1.00 0.09 | 0.91 3.08 1.00 | 3.08 | 1.04 | 1.35 1.49 0.89
29 0.28 0.00 0.08 | 0.92 3.20 1.00 | 3.20 | 0.96 | 1.38 1.49 0.91
30 0.25 0.00 0.06 | 0.94 3.30 1.00 | 3.30 | 0.87 | 1.40 1.50 0.92
31 0.23 0.00 0.05 | 0.95 3.40 1.00 | 3.40 | 0.79 | 1.43 1.50 0.94
32 0.20 1.00 0.04 | 0.96 3.48 1.00 | 3.48 | 0.70 | 1.45 1.51 0.95
33 0.18 0.00 0.03 | 0.97 3.56 1.00 | 3.56 | 0.61 | 1.46 1.51 0.96
34 0.15 0.00 0.02 | 0.98 3.64 1.00 | 3.64 | 0.52 | 1.48 1.51 0.97
35 0.13 0.00 0.02 | 0.98 3.70 1.00 | 3.70 | 0.43 | 1.49 1.52 0.98
36 0.10 1.00 0.01 0.99 3.75 1.00 | 3.75 | 0.33 | 1.50 1.52 0.99
37 0.08 0.00 0.01 0.99 3.79 1.00 | 3.79 | 0.24 | 1.51 1.52 0.99
38 0.05 0.00 0.00 1.00 3.83 1.00 | 3.83 | 0.14 | 1.52 1.52 1.00
39 0.03 0.00 0.00 | 1.00 3.84 1.00 | 3.84 | 0.05 | 1.52 1.52 1.00
40 0.00 1.00 0.00 1.00 3.85 1.00 | 3.85 | 0.00 | 1.52 1.52 1.00

10.00 1.42
k 7.03 E t b L 1 E A
3.00E+10 | 0.50 | 4.00 | 30.0 | 2.67 | 3.00E+10 | 2.00
Final k 6.36 Nes 565 MN
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Case 2: Uneven load; b =4 m; E = 15 GPa in top half; £ =30 GPa in bottom half.

dx | 0.025 N 1
L 1 El 1
el 40
x/L N y Ya m El | y" y b yyo | New
tower tower y

0 1.00 0.50 1.00 | 0.00 0.00 0.50 | 0.00 | 1.28 | 0.00 0.00 0.00

1 0.98 0.00 0.95 | 0.05 0.02 0.50 | 0.05 | 1.28 | 0.03 0.65 0.04

2 0.95 0.00 0.90 | 0.10 0.05 0.50 | 0.10 | 1.28 | 0.06 0.66 0.08

3 0.93 0.00 0.86 | 0.14 0.07 050 | 0.14 | 1.28 | 0.10 0.67 0.12

4 0.90 0.50 0.81 | 0.19 0.10 050 | 0.19 | 1.27 | 0.13 0.67 0.16

5 0.88 0.00 0.77 | 0.23 0.14 050 [ 0.28 | 1.26 | 0.16 0.68 0.19

6 0.85 0.00 0.72 | 0.28 0.18 0.50 | 0.37 | 1.25 | 0.19 0.69 0.23

7 0.83 0.00 0.68 | 0.32 0.22 050 | 045 | 1.24 | 0.22 0.70 0.27

8 0.80 0.50 0.64 | 0.36 0.27 050 | 0.53 | 1.23 | 0.25 0.70 0.31

9 0.78 0.00 0.60 | 0.40 0.32 050 | 0.65 | 1.21 | 0.28 0.71 0.35

10 | 0.75 0.00 0.56 | 0.44 0.38 050 | 0.76 | 1.19 | 0.31 0.72 0.38

11 0.73 0.00 0.53 | 0.47 0.44 0.50 | 0.87 | 1.17 | 0.34 0.73 0.42

12 | 0.70 0.50 049 | 0.51 0.49 050 [ 098 | 1.15 | 0.37 0.73 0.45

13 | 0.68 0.00 0.46 | 0.54 0.56 050 [ 112 | 1.12 | 0.40 0.74 0.49

14 | 0.65 0.00 042 | 0.58 0.63 050 | 1.25 | 1.09 | 0.43 0.75 0.52

15| 0.63 0.00 0.39 | 0.61 0.69 0.50 | 1.38 | 1.05 | 0.46 0.75 0.56

16 | 0.60 0.50 0.36 | 0.64 0.75 0.50 | 1.50 | 1.02 | 0.48 0.76 0.59

17 | 0.58 0.00 0.33 | 0.67 0.82 0.50 | 1.65 | 0.98 | 0.51 0.76 0.62

18 | 0.55 0.00 0.30 | 0.70 0.89 050 [ 1.79 | 0.93 | 0.53 0.77 0.65

19 | 0.53 0.00 0.28 | 0.72 0.96 050 [ 1.92 | 0.88 | 0.56 0.77 0.68

20 | 0.50 1.00 0.25 | 0.75 1.03 1.00 | 1.03 | 0.86 | 0.58 0.77 0.70
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x/L N y Va M El y" y' Yo /Yo New
tower tower y
21 0.48 0.00 0.23 | 0.77 1.11 1.00 | 1.11 | 0.83 | 0.60 0.78 0.73
22 0.45 0.00 0.20 | 0.80 1.19 1.00 | 1.19 | 0.80 | 0.62 0.78 0.76
23 0.43 0.00 0.18 | 0.82 1.27 1.00 | 1.27 | 0.77 | 0.64 0.78 0.78
24 0.40 1.00 0.16 | 0.84 1.34 1.00 | 1.34 | 0.74 | 0.66 0.79 0.80
25 0.38 0.00 0.14 | 0.86 1.43 1.00 | 1.43 | 0.70 | 0.68 0.79 0.83
26 0.35 0.00 0.12 | 0.88 1.51 1.00 | 1.51 | 0.66 | 0.70 0.79 0.85
27 0.33 0.00 0.11 | 0.89 1.58 1.00 | 1.58 | 0.62 | 0.71 0.80 0.87
28 0.30 1.00 0.09 | 0.91 1.66 1.00 | 1.66 | 0.58 | 0.73 0.80 0.89
29 0.28 0.00 0.08 | 0.92 1.73 1.00 | 1.73 | 0.54 | 0.74 0.80 0.90
30 0.25 0.00 0.06 | 0.94 1.81 1.00 | 1.81 | 0.49 | 0.76 0.81 0.92
31 0.23 0.00 0.05 | 0.95 1.87 1.00 | 1.87 | 045 | 0.77 0.81 0.93
32 0.20 1.00 0.04 | 0.96 1.93 1.00 | 1.93 | 0.40 | 0.78 0.81 0.95
33 0.18 0.00 0.03 | 0.97 1.99 1.00 | 199 | 0.35 | 0.79 0.82 0.96
34 0.15 0.00 0.02 | 0.98 2.04 1.00 | 2.04 | 0.30 | 0.80 0.82 0.97
35 0.13 0.00 0.02 | 0.98 2.09 1.00 | 2.09 | 0.24 | 0.81 0.82 0.98
36 0.10 1.00 0.01 | 0.99 213 1.00 | 213 | 0.19 | 0.81 0.82 0.99
37 0.08 0.00 0.01 | 0.99 2.16 1.00 | 2.16 | 0.14 | 0.82 0.82 0.99
38 0.05 0.00 0.00 | 1.00 2.18 1.00 | 2.18 | 0.08 | 0.82 0.82 1.00
39 0.03 0.00 0.00 | 1.00 2.20 1.00 | 220 | 0.03 | 0.82 0.82 1.00
40 0.00 1.00 0.00 | 1.00 2.20 1.00 | 220 | 0.00 | 0.82 0.82 1.00
7.50 0.76
k 9.84 E t b L ) E A
3.00E+10 | 0.50 | 4.00 | 30.00 | 2.67 | 3.00E+10 | 2.00
final k 8.65 Nerg 769 MN
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Case 3: Uneven load; b =3 m; £ = 15 GPa in top half; £ =30 GPa in bottom half.

dx | 0.025 N 1
L 1 El 1
el 40
N M New

x/L | tower y Ya tower El y Yo Y'Y y

0| 1.00 0.50 1.00 |0.00 0.00 0.50 | 0.00 | 1.27 |0.00 0.00 0.00

1 0.98 | 0.00 0.95 |0.05 0.02 0.50 | 0.05| 1.27 | 0.03 0.64 0.04

2| 095 | 000 | 0.90 |0.10 0.05 0.50 {0.10 | 1.26 | 0.06 0.65 0.08

3 | 093 | 0.00 0.86 |0.14 0.07 0.50 | 0.14| 1.26 | 0.09 0.66 0.12

41 090 | 050 | 0.81 |0.19 0.10 0.50 {0.19| 1.26 | 0.13 0.67 0.16

5| 088 | 0.00 0.77 |0.23 0.14 0.50 | 0.28 | 1.25 | 0.16 0.67 0.20

6 | 085 | 0.00 0.72 |0.28 0.18 0.50 | 0.37| 1.24 |0.19 0.68 0.23

7 | 083 | 0.00 0.68 |0.32 0.22 0.50 | 0.45| 1.23 | 0.22 0.69 0.27

8 | 0.80 0.50 0.64 |0.36 0.27 0.50 | 0.53| 1.21 | 0.25 0.70 0.31

9| 078 | 0.00 | 0.60 |0.40 0.32 0.50 {0.65| 1.20 | 0.28 0.70 0.35

10| 0.75 | 0.00 0.56 |0.44 0.38 0.50 |0.76 | 1.18 | 0.31 0.71 0.38

1] 0.73 0.00 0.53 |0.47 0.44 0.50 | 0.87| 1.16 | 0.34 0.72 0.42

12| 0.70 0.50 0.49 |0.51 0.49 0.50 |0.98 | 1.13 | 0.37 0.72 0.46

13| 0.68 | 0.00 0.46 |0.54 0.56 0.50 | 1.12| 1.11 | 0.40 0.73 0.49

14| 0.65 | 0.00 | 0.42 |0.58 0.63 0.50 {1.25| 1.07 | 0.43 0.74 0.53

15| 0.63 | 0.00 0.39 |0.61 0.69 0.50 | 1.38 | 1.04 | 0.45 0.74 0.56

16| 0.60 | 050 | 0.36 |0.64 0.75 0.50 {1.50 | 1.00 | 0.48 0.75 0.59

171 0.58 | 0.00 0.33 |0.67 0.82 0.50 | 1.65| 0.96 | 0.50 0.75 0.62

18| 0.55 | 0.00 0.30 |0.70 0.89 0.50 | 1.79| 0.92 | 0.53 0.76 0.65

19| 0.53 | 0.00 0.28 |0.72 0.96 0.50 | 1.92| 0.87 |0.55 0.76 0.68
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N M New
x/L tower y Va tower El y" y' Vb Y/Vb y
20| 0.50 1.00 | 025 |0.75 1.03 1.00 | 1.03| 0.84 | 0.57 0.76 0.71
21| 048 | 0.00 | 0.23 |0.77 1.1 1.00 | 1.11| 0.81 | 0.59 0.77 0.73
22| 045 | 0.00 | 0.20 |0.80 1.19 1.00 | 1.19| 0.79 | 0.61 0.77 0.76
23| 043 | 0.00 | 0.18 |0.82 1.27 1.00 | 1.27 | 0.75 | 0.63 0.77 0.78
24| 0.40 1.00 | 0.16 |0.84 1.34 1.00 [1.34| 0.72 | 0.65 0.78 0.81
25| 0.38 | 0.00 | 0.14 |0.86 1.43 1.00 | 1.43| 0.68 | 0.67 0.78 0.83
26| 0.35 | 0.00 | 0.12 |0.88 1.51 1.00 {1.51| 0.65 | 0.69 0.78 0.85
27| 0.33 | 0.00 | 0.11 |0.89 1.58 1.00 | 1.58 | 0.61 | 0.70 0.79 0.87
28| 0.30 1.00 | 0.09 |0.91 1.66 1.00 | 1.66 | 0.57 |0.72 0.79 0.89
29| 0.28 | 0.00 | 0.08 |0.92 1.73 1.00 {1.73| 0.52 | 0.73 0.79 0.91
30| 0.25 | 0.00 | 0.06 |[0.94 1.81 1.00 | 1.81| 0.48 | 0.75 0.80 0.92
31| 0.23 | 0.00 | 0.05 [0.95 1.87 1.000 | 1.87 | 0.43 | 0.76 0.80 0.94
32| 0.20 1.00 | 0.04 |0.96 1.93 1.000 [ 1.93 | 0.38 | 0.77 0.80 0.95
33| 0.18 | 0.00 | 0.03 |0.97 1.99 1.000 [ 1.99 | 0.33 | 0.78 0.80 0.96
34| 0.15 | 0.00 | 0.02 [0.98 2.04 1.000 [ 2.04 | 0.28 | 0.79 0.80 0.97
35| 0.13 | 0.00 | 0.02 |[0.98 2.09 1.000 [ 2.09 | 0.23 | 0.79 0.81 0.98
36| 0.10 1.00 | 0.01 |0.99 213 1.000 | 2.13 | 0.18 | 0.80 0.81 0.99
37| 0.08 | 0.00 | 0.01 [0.99 2.16 1.000 [ 2.16 | 0.12 | 0.80 0.81 0.99
38| 0.05 | 0.00 | 0.00 |1.00 2.18 1.000 | 2.18 | 0.07 |0.81 0.81 1.00
39| 0.03 | 0.00 | 0.00 |1.00 2.20 1.000 [ 2.20 | 0.01 [ 0.81 0.81 1.00
40| 0.00 1.00 | 0.00 |1.00 1.00 1.000 | 1.00 | 0.00 |0.81 0.81 1.00
7.50 0.75
k 9.98 E t b L ] E A
3.00E+10 | 0.50 |3.00|30.00 | 1.13 | 3.00E+10 | 1.50
finalk 8.65 Nerg 324 MN
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Case 4: Uneven load; b = 8 m; £ = 15 GPa in top half; £ =30 GPa in bottom half.

dx | 0.025 N 1
L 1 El 1
el 40
N m " . New
XL tower y Ya tower Eil y y Vb 20 v

0 1.00 0.50 1.00 | 0.00 0.00 0.50 | 0.00 | 1.27 0.00 0.00 0.00

1 0.98 0.00 0.95 | 0.05 0.02 050 | 0.05 | 1.27 | 0.03 0.64 0.04

2 0.95 0.00 0.90 | 0.10 0.05 0.50 | 0.10 | 1.26 0.06 0.65 0.08

3 0.93 0.00 0.86 | 0.14 0.07 0.50 | 0.14 | 1.26 0.09 0.66 0.12

4 0.90 0.50 0.81 0.19 0.10 050 (019 | 126 | 0.13 0.67 0.16

5 0.88 0.00 0.77 | 0.23 0.14 0.50 | 0.28 | 1.25 0.16 0.67 0.20

6 0.85 0.00 0.72 | 0.28 0.18 050 | 037 | 124 | 0.19 0.68 0.23

7 0.83 0.00 0.68 | 0.32 0.22 0.50 | 0.45 | 1.23 0.22 0.69 0.27

8 0.80 0.50 0.64 | 0.36 0.27 0.50 | 0.53 | 1.21 0.25 0.70 0.31

9 0.78 0.00 0.60 | 0.40 0.32 0.50 | 0.65 | 1.20 0.28 0.70 0.35

10 | 0.75 0.00 0.56 | 0.44 0.38 0.50 | 0.76 | 1.18 0.31 0.71 0.38

1] 0.73 0.00 0.53 | 0.47 0.44 0.50 | 0.87 | 1.16 | 0.34 0.72 0.42

12| 0.70 0.50 0.49 | 0.51 0.49 0.50 | 0.98 | 1.13 0.37 0.72 0.46

13 | 0.68 0.00 0.46 | 0.54 0.56 050 | 112 | 1.1 0.40 0.73 0.49

14 | 0.65 0.00 042 | 0.58 0.63 0.50 | 1.25 | 1.07 0.43 0.74 0.53

15| 0.63 0.00 0.39 | 0.61 0.69 0.50 | 1.38 | 1.04 0.45 0.74 0.56

16 | 0.60 0.50 0.36 | 0.64 0.75 050 | 1.50 | 1.00 | 0.48 0.75 0.59

17 | 0.58 0.00 0.33 | 0.67 0.82 0.50 | 1.65 | 0.96 0.50 0.75 0.62

18 | 0.55 0.00 0.30 | 0.70 0.89 050 (179 | 092 | 0.53 0.76 0.65

19 | 0.53 0.00 0.28 | 0.72 0.96 0.50 | 1.92 | 0.87 0.55 0.76 0.68
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x/L to“N,e, y Ya to'v',’,'e, E |y |y Ve Vol¥o N;",W

20 0.50 1.00 0.25 0.75 1.03 1.00 1.03 | 0.84 0.57 0.76 0.71
21 0.48 0.00 0.23 0.77 1.1 1.00 1.1 0.81 0.59 0.77 0.73
22 0.45 0.00 0.20 0.80 1.19 1.00 | 1.19 | 0.79 0.61 0.77 0.76
23 0.43 0.00 0.18 0.82 1.27 1.00 1.27 | 0.75 0.63 0.77 0.78
24 0.40 1.00 0.16 0.84 1.34 1.00 1.34 | 0.72 0.65 0.78 0.81
25 0.38 0.00 0.14 0.86 1.43 1.00 143 | 0.68 0.67 0.78 0.83
26 0.35 0.00 0.12 0.88 1.51 1.00 1.51 0.65 0.69 0.78 0.85
27 0.33 0.00 0.11 0.89 1.58 1.00 | 1.58 | 0.61 0.70 0.79 0.87
28 0.30 1.00 0.09 0.91 1.66 1.00 166 | 0.57 0.72 0.79 0.89
29 0.28 0.00 0.08 0.92 1.73 1.00 1.73 | 0.52 0.73 0.79 0.91
30 0.25 0.00 0.06 0.94 1.81 1.00 1.81 0.48 0.75 0.80 0.92
31 0.23 0.00 0.05 0.95 1.87 1.00 1.87 | 043 0.76 0.80 0.94
32 0.20 1.00 0.04 0.96 1.93 1.00 | 1.93 | 0.38 0.77 0.80 0.95
33 0.18 0.00 0.03 0.97 1.99 1.00 1.99 | 0.33 0.78 0.80 0.96
34 0.15 0.00 0.02 0.98 2.04 1.00 | 2.04 | 0.28 0.79 0.80 0.97
35 0.13 0.00 0.02 0.98 2.09 1.00 | 2.09 | 0.23 0.79 0.81 0.98
36 0.10 1.00 0.01 0.99 2.13 1.00 | 213 | 0.18 0.80 0.81 0.99
37 0.08 0.00 0.01 0.99 2.16 1.00 | 2.16 | 0.12 0.80 0.81 0.99
38 0.05 0.00 0.00 1.00 2.18 1.00 | 2.18 | 0.07 0.81 0.81 1.00
39 0.03 0.00 0.00 1.00 2.20 1.00 | 220 | 0.01 0.81 0.81 1.00
40 0.00 1.00 0.00 1.00 1.00 1.00 1.00 | 0.00 0.81 0.81 1.00

7.50 0.75
k 9.98 E t b L 1 E A
3.00E+10 | 0.50 | 8.00 | 30.00 | 21.33 | 3.00E+10 | 4.00
final k 8.65 Ncrs 6150 MN
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APPENDIX B. Results from all investigated pierced shear
walls

The walls are tabulated on two pages and each wall is given a number for simplicity.
The numbers are only relative for this appendix and are not referred to in the text.

The results are discussed in chapter 5.3.

This appendix is useful for comparing with real walls and to draw conclusions how
the calculation method concerning the buckling loads is suitable for the real wall.
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APPENDIX C. Force distribution in single storey structures

Appendix C presents the deformation figures and load application from the
FE-analyses of a single storey structure. The figure below illustrates the identification
numbers of the columns for comparing with the hand calculations in Section 5.5.2,
5.53 and 5.5.4.
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APPENDIX C. Force distribution in single storey structures

Load application and deformation. Case 1 — Translation
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APPENDIX C. Force distribution in single storey structures

Load application and deformation. Case 1 — Translation with vertical load
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APPENDIX C. Force distribution in single storey structures

Load application and deformation. Case 2 — Twisting
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APPENDIX C. Force distribution in single storey structures

Load application and deformation. Case 2 — Twisting with vertical load.
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APPENDIX C. Force distribution in single storey structures

Load application and deformation. Case 3 — Combined translation and twisting.
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APPENDIX C. Force distribution in single storey structures

Load application and deformation. Case 3 — Combined translation and twisting with
vertical load.
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APPENDIX D Force distribution in a multi storey structure

The investigation of the force distribution in a multi storey structure considers two
models. The numbering of the four walls, used in the hand calculation in Section 5.7.2
and 5.7.3, are explained by the figure below for comparing the FE-results with the
hand calculation results. The force distribution in the four walls is presented in a
graph for each wall. The graphs presents values of the force per meter and are plotted
from the walls edge to the right edge when the wall is viewed from the inside, i.e.
viewed from the centre of the four walls to the actual wall presented.

The figures concerning the deformation pictures of the four walls at the lowest storey
and the floor slabs in this appendix, Appendix D, are viewed from the underneath.
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APPENDIX D.1 Force distribution in a multi-storey structure
Load applications and figure illustrations. Case 1b — Translation

Floorslab: E=1Gpa ¢=0.1 m
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APPENDIX D.1 Force distribution in a multi-storey structure
Deformation figures. Case 1b — Translation

Floorslab: E=1Gpa ¢=0.1 m
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APPENDIX D.1 Force distribution in a multi-storey structure

Force distribution in wall 1 and 2. Case 1b — Translation

Floorslab: E=1Gpa ¢=0.1 m
© o TIME ! MAX DISPL. H 0.38781 !
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APPENDIX D.1 Force distribution in a multi-storey structure

Force distribution in wall 3 and 4. Case 1b — Translation

Floorslab: E=1Gpa ¢=0.1 m
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APPENDIX D.1 Force distribution in a multi-storey structure
Load applications and figure illustrations. Case 1b — Translation

Floor slab: E=30Gpa ¢t=0.3m
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APPENDIX D.1 Force distribution in a multi-storey structure

Translation

Case 1b —

Deformation figures.

t=03m

30 Gpa

Floor slab: £
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APPENDIX D.1 Force distribution in a multi-storey structure

Force distribution in wall 1 and 2. Case 1b — Translation

Floor slab: E=30Gpa ¢=0.3

m
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APPENDIX D.1 Force distribution in a multi-storey structure

Force distribution in wall 3 and 4. Case 1b — Translation

Floor slab: E=30Gpa ¢t=0.3m
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APPENDIX D.2 Force distribution in a multi-storey structure

Load applications and figure illustrations. Case 2b — Twisting

Floor slab: £ =2Gpa

t=0.1m
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APPENDIX D.2 Force distribution in a multi-storey structure
Deformation figures Case 2b — Twisting

Floor slab: E=2Gpa ¢=0.1 m
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APPENDIX D.2 Force distribution in a multi-storey structure

Load distribution in wall 1 and 2. Case 2b — Twisting

Floor slab: E=2Gpa ¢=0.1 m

TIME |
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z dir_wall_{

TIME |
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SOLVIA-POST 99.0

MAX DISPL. H 0.51297
TIME |
ZONE Z_DIR_WALL_ 1

MAX DISPL. H 0.51297
TIME |
ZONE Z_DIR_WALL_ 2
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APPENDIX D.2 Force distribution in a multi-storey structure

Load distribution in wall 3 and 4. Case 2b — Twisting

Floor slab: E=2Gpa ¢=0.1 m
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APPENDIX D.2 Force distribution in a multi-storey structure

Load applications and figure illustrations. Case 2b — Twisting

Floor slab: E=30Gpa ¢=0.3m
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APPENDIX D.2 Force distribution in a multi-storey structure

Deformation figures. Case 2b — Twisting

Floor slab: E=30Gpa ¢t=0.3m
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APPENDIX D.2 Force distribution in a multi-storey structure

Load distribution in wall 1 and 2. Case 2b — Twisting

Floor slab: E=30Gpa ¢t=0.3m
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APPENDIX D.2 Force distribution in a multi-storey structure

Load distribution in wall 3 and 4. Case 2b — Twisting

Floor slab: E=30Gpa ¢t=0.3m
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APPENDIX D.3 Force distribution in a multi-storey structure
Load applications and figure illustrations. Case 1a — Translation

Floorslab: E=1Gpa t=0.1m

> o x
J OO
x|o
N o™ >
L N
[
|
(i :
iy TG f T 11
T D D UG o
Uy 1 1
o I | il il 0 [
' oA O A
i e ‘ i O
i il
{
it O O O
i O v O O
P W G
' A ) L0 I )
“‘“1‘ ““h“ h“\ ‘\‘ “‘\‘ “ “M h“\ ‘\‘ lj ‘1‘ “‘“1‘ ““\ “1
. { | ( h | | ( ( | h
o
—
N W
| _
< <<
Zz— =z
— —
O L &)
— > —
o o
O+ o
N Lo x w|o
oo oo
x| o @ |o
> o|lm > o™
L L
[ [
o o
- —
_ _
< <
=z — =z —
— —
O Ll O Ll
— > =3
o o —
O = O+

REINERTSEN ENGINEERING

SOLVIA-PRE 99.0

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 241



APPENDIX D.3 Force distribution in a multi-storey structure

Deformation figures. Case 1a — Translation

0.1 m

t

1 Gpa

Floor slab: £
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APPENDIX D.3 Force distribution in a multi-storey structure

Force distribution in wall 1 and 2. Case 1a — Translation

Floorslab: E=1Gpa t=0.1m

TIME |
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TIME |
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TIME {
ZONE Z_DIR_WALL |

MAX DISPL. H 0.39564
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ZONE Z DIR_WALL 2
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APPENDIX D.3 Force distribution in a multi-storey structure

Force distribution in wall 3 and 4. Case 1a — Translation

Floorslab: E=1Gpa t=0.1m
o TIME | MAX DISPL. H 0.39564 !
3 TIME LX
o z
ZONE X_DIR_WALL_4
o
o
o
<
=z
(@)
—
—
o
=
(/‘7 ™
[92]
n
L
o
o
o
N
o
o
o
0 1 2
x_dir_wall_4
o TIME | MAX DISPL. H 0.39564 !
S TIME 1 LX
N ZONE X_DIR_WALL_ 3 z
o
o
o
o
o
o
=z o
=) ™
= [
=
(&)
L
i
(9] o
wn o
“ 3
o
o
o
0
o
o
o
®
0 1 2
x_dir_wall_3
SOLVIA-POST 99.0 REINERTSEN ENGINEERING

244

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12




APPENDIX D.3 Force distribution in a multi-storey structure
Load applications and figure illustrations. Case 1a — Translation

Floor slab: E=30Gpa ¢=0.3m
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APPENDIX D.3 Force distribution in a multi-storey structure

Deformation figures. Case 1a — Translation

0.3 m

30 Gpa ¢

Floor slab: £
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APPENDIX D.3 Force distribution in a multi-storey structure

Force distribution in wall 1 and 2. Case 1a — Translation

Floor slab: E=30Gpa ¢=0.3
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APPENDIX D.3 Force distribution in a multi-storey structure

Force distribution in wall 3 and 4. Case 1a — Translation

Floor slab: E=30Gpa ¢=0.3m
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APPENDIX D.4 Force distribution in a multi-storey structure

Load applications and figure illustrations. Case 2a — Twisting

Floorslab: E=1Gpa t=0.1m
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APPENDIX D.4 Force distribution in a multi-storey structure

Deformation figures. Case 2a — Twisting

Floorslab: E=1Gpa t=0.1m
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APPENDIX D.4 Force distribution in a multi-storey structure

Force distribution in wall 1 and 2. Case 2a — Twisting

Floorslab: E=1Gpa t=0.1m

TIME |

*10°

FSS-SECTION
0

0 1 2

z_dir_wall_1{

TIME |

%10°

FSS-SECTION
0

0 { 2

z_dir_wall_2

SOLVIA-POST 99.0

MAX DISPL. 0.16039
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ZONE Z DIR_WALL 2

REINERTSEN ENGINEERING

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12

251




APPENDIX D.4 Force distribution in a multi-storey structure

Force distribution in wall 3 and 4. Case 2a — Twisting

Floorslab: E=1Gpa t=0.1m
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APPENDIX D.4 Force distribution in a multi-storey structure

Load applications and figure illustrations. Case 2a — Twisting

Floor slab: £ =30 Gpa

t=03m
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APPENDIX D.4 Force distribution in a multi-storey structure
Deformation figures. Case 2a — Twisting

Floor slab: E=30Gpa ¢t=0.3m
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APPENDIX D.4 Force distribution in a multi-storey structure

Force distribution in wall 1 and 2. Case 2a — Twisting

Floor slab: E=30Gpa ¢t=0.3m
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APPENDIX D.4 Force distribution in a multi-storey structure

Force distribution in wall 3 and 4. Case 2a — Twisting

Floor slab: E=30Gpa ¢t=0.3m
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APPENDIX E Equations for coupled cross sections.

[Samuelsson & Wiberg (1995)]

1

y

¢ = distance to center of gravity [m]
e = distance to rotation centre [m]

= moment of inertia around the y axis [m’]
I.= moment of inertia around the x axis [m’]
K,= factor of torsional resistance [m']
K, =factor of warping resistance [m°]
W.= twisting resistance
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APPENDIX F Calculation of buckling load in MATHCAD

Variables :

t=103 bl =46 ht =12 ch=2 L=3 {(m) E:= 3III'-1I]Ig Pa F=12

Calculations of variables:

(b0 — c0) 10

b= bl - b=4 m c=cl+ht c=32 m G=04E G=12=x10" Pa
At = htt At=05 m” Av =t{bl - b) Av=1 m"
ht3 : bl - b 3 :
It =t— It = 0.072 m4 Iv = t-u Iv = 0.333 m4
12 12
I“JI:I'3 I:I'3 :
Izlobal == t—— — t— Iglobal = 8.667 m"
12 12
sty = (-9 styv=04 m Length of stiffed part

Critical Buckling load due to Shear:

=
a

c
ftbend = L. —— sthend = 237 x 107 20 rad
12-b-E-It
rvhend = L yvbend = 3.75 = 10 1 rad
M-EIv
ytshear = fLw; rtshear = 1 107 1o rad
bT-G-At
£ - —11
rvshear = yvshear = 5= 10 rad
2-G-Aw
vtot = ythend + yvbend + vtshear + yvshear rtot = 4245 = 10 1o rad
- 1 - - 9 -
NerS = — NerS = 2336 = 10 N
ot

Critical buckling load due to bending:

vant = 10 k=68 Lh=vantL Lh=30 m

- Islot
LE LS NetB = 1.964 x 10° N
Lh
Total critical buckling load:
- 1 . o .
NetrTOT = ﬁ NerTOT = 1071 = 10 Ju'
[ + [
MNeeB NerS

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:12 259



Critical buckling load for a solid wall with the same values:

Critical Buckling load due to Bending:

3
Mersolidh = k-E-t- bo

2 Mersolidh = 2.04 ¢ 10
12-Lh

Critical Buckling load due to Shear:

Mersolids = 3 x mll}

| ~

Mersolids = G-bil- )

(B

Total critical buckling load

Nersolidtot = — ) L ) S Mersolidtot = 1.91 = ll}g

! + [ 1
| MNersolidb Nersolids )/

Critical buckling load for two seperate walls/towers:

3
btower
btower = bl — b btower =2 m Itower = t-T Ttower = 0.

Laa
g
(]

Critical Buckling load due to Bending:

Ttower

MNertowerth = k-E- Nertowerb = 7.556 = 10°

I_h:
Critical Buckling load due to Shear:

i
Nertowers = G-btower-— Mertowers = 1= ll}mI

=

Total critical buckling load:

J H = j
Nertowertot | i - Mertowertot = 1.3 = 1[IIS

+
Mertowerb  MNertowers

Comparisons :

Fierced wall : NerTOT = 1.071 mg
Solid : Mersolidtot = 1.91 x 1|IIIg
Seperate walls Nertowertot = 1.3 = 1[I'S

N

N

N
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