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Ground vehicle platooning using a dynamic and modular GNSS system
MICHAEL VU
MARTIN JOHNSSON
Department of Electrical Engineering
Chalmers University of Technology

Abstract
In the area of vehicle coordination and autonomous driving it is of interest to know
the position relative to other vehicles and objects surrounding the car. Most
autonomous vehicles use a combination of camera and lidar to perceive their own
surrounding to better make decisions. In this thesis, carried out at DevPort AB,
different concepts using GNSS are investigated which would allow a vehicle to get a
highly accurate relative position of all nearby vehicles. The specific vehicle
coordination scenario that is approached is platooning, when one vehicle leads
multiple others. The goal of this thesis is to answer if it is possible to have a func-
tioning platoon using only relative position measurements and Inertial Navigation
Systems (INS).

A base platform is designed in which to apply the hypothesis on, as it is a new
project for DevPort nothing had been done within the area beforehand. The
platoon is made out of two differential steered vehicles each equipped with GPS,
IMU, and wheel speed sensors. The vehicles are modeled and a path planning
algorithm is developed to emulate a platoon. The platoons performance based on
relative positioning is tested assuming both rovers only have an INS as well as with
the use of GPS Real-Time Kinematics (RTK) for high accuracy relative position
measurements. The results are further improved with the use of the sensor fusion
algorithm, Extended Kalman Filter (EKF) for better state estimation. In addition
to testing the platoon assuming a working relative position estimation, separate
GPS RTK solutions are developed based on the least squares estimation of triple
difference and double difference carrier-phase systems.

Simulations of the platoon show that it is possible for a platoon to function with
small deviation with the usage of only relative position measurements given that
the measurements are accurate enough. Using GPS RTK in simulation to
measure relative distance show the possibility of obtaining highly accurate relative
position measurements, but with a non-complex least squares estimation the
accuracy of the estimations lowers with time. To get a continuous highly accurate
relative position measurement more advanced estimations are needed.

Keywords: Platooning, Autonomous Cars, Sensor Fusion, Extended Kalman Filter,
Path Planning, Real-Time Kinematics, Global Navigation Satellite System, Global
Positioning System, Linear-Quadratic Regulator.
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Nomenclature
DARE - Discrete-time Algebraic Riccati Equation

DD - Double Difference

DOP - Dilution Of Precision

ECEF - Earth Centered and Earth Fixed

EKF - Extended Kalman Filter

GA - Ground Antennas

GNSS - Global Navigation Satellite Systems

GPS - Global Positioning System

INS - Inertial Navigation System

ICR - Instantaneous Center of Rotation

IMU - Inertial Measurement Unit

LAMBDA - Least Squares AMbiguity Decorrelation Adjustment

LMMSE - Linear Minimum Mean Square Error

LQR - Linear-Quadratic Regulator

MCS - Master Control Station

MS - Monitor Stations

RTK - Real-Time Kinematics

SD - Single Difference

TD - Triple Difference
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1
Introduction

The interests of autonomous ground vehicles have increased substantially in the last
few years [1]. Automotive companies are therefore moving to integrate a more and
more complex autonomous system to aid the driver. This trend is also seen in other
areas, for example in the creating of the autonomous refuse collection vehicle by
Volvo [2]. For DevPort, a technical consulting company that mainly works within
the automotive industry, it is of interest to gain more knowledge within the area.
Therefore this thesis is performed to create a platform that could be used in educa-
tional purposes for DevPort’s consultants, as well as allow further research within
the area.

In this project, the concept of platooning is used in creating an autonomous plat-
form. Vehicle platooning is the idea of having multiple vehicles moving together in
a platoon at high speeds to lower fuel consumption of the vehicles [3]. Moving in
a platoon increases the aerodynamic efficiency as the vehicles move close enough
together to reduce drag, which is of great interest in larger vehicles such as trucks
[4]. Platooning is therefore mostly focused on trucks, also called truck platooning
[5, 6, 7], as that is an area where fuel consumption can be reduced the most. In
the current industry, the cooperation between the vehicles requires both complex
driving support systems and the communication between vehicles [8]. In the future,
platooning could lead to safer and more efficient highway travel for all vehicles con-
nected to the platooning system.

As mentioned above, in order to enable a vehicle platoon, complex driving support
systems need to be implemented. To create the driving support system, all vehicles
within the platoon need to both be able to communicate, as well as have a good
estimation of their vehicle state. Specifically, speed, position, and heading are cru-
cial as the vehicles need to stay close to each other while keeping the same speed to
increase aerodynamic efficiency [3, 4, 5, 6, 7]. This project therefore focuses on two
different areas. Firstly, the implementation of sensor fusion algorithms to correctly
estimate both the speed and position of the vehicle. Secondly, the implementation of
a controller and coordinator that allow the vehicles to drive in a platoon. Another
important area that needs to be implemented is the measurement of the relative
distance between vehicles in the platoon. Autonomous cars are usually equipped
with lidar and camera sensors to perceive the surroundings. In this thesis the idea is
to find out if it is possible to have a working platoon using relative position instead
of perceiving the surrounding and too which degree it is possible to measure the
relative distance.
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1. Introduction

Estimating the vehicle state is of utmost importance in the implementation of pla-
tooning, and autonomous systems in general, and is usually done by a combination
of different methods. An example of vehicle state estimation is the combination of
Inertial Measurement Unit sensors (IMUs), a Global Navigation Satellite System
(GNSS), and cameras or lidar or both. In this project, the idea is to have ’blind’
vehicles that only relies on a set of few sensors to estimate position, velocity, and
heading. ’Blind’ vehicles, in this project, means no camera or other light-based
sensors, nor any ultrasonic sensors. The plan is to have no direct distance measure-
ment between the vehicles to allow platooning, instead use other sensors to calculate
the relative distance between the vehicles. The solution that will be investigated is
the usage of specific methods based on the GNSS Global Positioning System (GPS),
Real-Time Kinematics (RTK), which is a method to combine different GPS receivers
data to improve the relative measurement between the used receivers.

The control of a platoon can be done in different ways depending on the coordinator
and the controller. The controller’s task is to steer the platoon so that the platoon
is following a trajectory created by the coordinator. The trajectory is created by
using, for instance, one or multiple path planning algorithms such as straight lines
between two points or Bezier’s curve [9]. The goal is to create a trajectory based on
the current and previous location of the lead vehicle such that the following vehicles
are mimicking the trajectory of the lead vehicle.

1.1 Purpose
The main purposes of this thesis are to investigate whether it is possible to have a
working platoon comprised of ’blind’ autonomous vehicles and whether it is possi-
ble to use GPS RTK for relative position measurement between the vehicles in the
platoon. In addition to investigating this hypothesis, it is also needed to create a
hardware platform which can be used to implement the found solutions. DevPort
plans on using this project as a base for further development within the area of au-
tonomous vehicles as well as for educational purposes internally, hence a hardware
platform needs to be developed.

The hardware platform is planned to be made out of two vehicles (rovers) that
are capable of performing all needed measurements, control, and computations to
physically test the proposed solutions. It is important to note that the hardware
platform is merely a deliverable for DevPort and not evaluated in this thesis. It
mainly restricts the theoretical parts of the report as explained in Section 1.2.

1.2 Project delimitation
As the main interest of the thesis is in the overall platoon and the developed GPS
solution, the result will be theoretical. Therefore the thesis will be limited to present
the theoretical result of the developed solutions and the hardware platform will only
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1. Introduction

be made to allow for future work within the area. The hardware platform mainly
restricts the theoretical solutions as the solutions have to be compatible with the
developed hardware. Therefore, the theory produced in this thesis will use the de-
veloped hardware platform as its foundation.

Besides being restricted to the limitations of the hardware platform, the theory will
not use complex models for the basis (e.g. vehicle model and motion model) of the
implementation. This project delimitation is made to allow the thesis to focus on
the relevant theoretical parts instead of making a more realistic base.

1.3 Thesis outline
The content of this thesis is presented as follows:

• Chapter 2 presents the dynamic vehicle model of the rovers and the resulting
discrete state space representation of the system.

• Chapter 3 provides the theory about the GNSS and how it can be used to
accurately determine the position of a receiver.

• Chapter 4 describes the theory behind sensor fusion and how it is used to
obtain state estimations of the system.

• Chapter 5 describes how the trajectories are created and how the reference
points are fed into the controller.

• Chapter 6 describes the controller and how it is used to control the states to
follow a trajectory.

• Chapter 7 describes the simulation tests of the platooning and presents the
obtained results.

• Chapter 8 presents a discussion of the results and methods as well as summa-
rize and conclude the thesis.

3
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2
Vehicle modeling

In this chapter the vehicle model of the system is defined in Section 2.1 and 2.2. The
model’s frames are defined in Section 2.3 where a local and global frame is derived.
Lastly in Section 2.4 the discrete state space representation of the local frame is
derived which will be used for the controller in Chapter 6.

2.1 Overview of the model

The vehicle model presented in this chapter is based on the rover of the hardware
platform described in Appendix A.1 (schematic shown in Figure 2.1). The rover
is a differentially steered vehicle which means that the turn rate of the vehicle is
dependant on the wheels speeds on each side of the vehicle [10], unlike regular mod-
ern cars which use conventional steering actuators to turn the wheels towards the
desired driving direction.

Figure 2.1: Schematic of the used vehicle. The schematic and model is only defined
in 2D (no vertical axis).

There are multiple ways to model the differential steering [10, 11, 12] but a very
simplified model is chosen where the input to the vehicle model is velocity rather
than acceleration. This is because the motors of the used rover are very powerful
for the rover’s weight and could almost instantly reach the desired velocity. Other
factors such as rolling resistance, air resistance, and slip are neglected to simplify the
modeling. The simplifications made to the vehicle modeling reduces its depiction of
reality but simplifies its use for future implementations requiring a model, such as
the sensor fusion filter and the controller.
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2. Vehicle modeling

Figure 2.2: Schematic of the kinematics model for a differentially steered vehicle.

2.2 Differentially steered model
A differentially steered vehicle relies on the different speed on each side of the vehicle
in order to turn [10]. The wheels on each side maintain the same speed due to the
functionality of the motor controller which is further explained in the hardware
section in Appendix A.1. The input to the model, u, is given by

u =
[
u1
u2

]
=
[
ωl
ωr

]
, (2.1)

where ωl and ωr are the angular velocities of the left and right wheels respectively.
This gives the following relations

vl = ωlr, (2.2)

vr = ωrr, (2.3)

where vl is the velocity of the left side of the vehicle, vr is the velocity of the right side
of the vehicle and r is the wheel radius. The steering of a differentially steered vehicle
is illustrated in Figure 2.2, where ICR is the instantaneous center of rotation, v is
the velocity of the vehicle, R is the turning radius of the vehicle, L is the horizontal
distance between the wheel and the vehicle’s center, and ψ̇ is the angular velocity
around ICR [10]. The velocity v of the vehicle and the velocity of each side, vl and
vr, can be expressed as

vl = ψ̇(R− L), (2.4)

vr = ψ̇(R + L), (2.5)

v = ψ̇R. (2.6)

It can be derived from (2.4), (2.5) and (2.6) that the velocity v and angular velocity
ψ̇ are given by
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2. Vehicle modeling

v = vr + vl
2 . (2.7)

ψ̇ = vr − vl
2L . (2.8)

The expressions for the velocity (2.7) and angular velocity (2.8) derived in this
section are used to formulate the vehicle state space model in Section 2.4.

2.3 Transformation between local and global co-
ordinates

There are two defined frames in this model to describe the vehicle’s movement.
These are illustrated in Figure 2.3 where the local xy frame’s origin is centered at
the vehicle where the x-axis is paralell to the vehicle’s longitudinal axis and where
the y-axis is paralell to the lateral axis. The vehicle is placed in a fixed global XY
world frame where the origin may be placed arbitrarily.

Figure 2.3: Schematic of the vehicle and its local and global coordinate frames.

The velocity vx and vy in the vehicle’s local frame is defined according to

vx(t) = vl(t) + vr(t)
2 , (2.9)

vy(t) = 0. (2.10)
The expressions for the vehicle’s velocities Vx and Vy in the global frame can be
obtained by using the trigonometric functions sinψ and cosψ where ψ is the angle
between the global X axis to the local x axis. to project the vehicle’s local velocities
to global velocities according to

Vx(t) = vx(t) cosψ(t), (2.11)

7



2. Vehicle modeling

Vy(t) = vx(t) sinψ(t). (2.12)
The expressions (2.11) and (2.12) are nonlinear due to the trigonometric functions
sinψ and cosψ. However, the local velocities, vx and vy, are linear and can therefore
be used in linear state space models and controllers which require a linear model. If
the states vx(t), vy(t) and ψ(t) are measured at all times, the mapping of global coor-
dinates can be done if the initial global coordinates X0 and Y0 are known according
to

X(t) = X0 +
∫ t

0
Vxdt = X0 +

∫ t

0
vx(t) cosψ(t)dt, (2.13)

Y (t) = Y0 +
∫ t

0
Vydt = Y0 +

∫ t

0
vx(t) sinψ(t)dt. (2.14)

The expressions for the global positions (2.13) and (2.14) are used in the sensor
fusion model in Section 4.2.1 to estimate the global positions for the vehicles.

2.4 Vehicle state space model
The vehicle state space will consist of states that are of interest to control, which
are chosen as

χ =
[
x
ψ

]
, (2.15)

where x is the x-axis position in its local frame and ψ is the yaw orientation of the
vehicle. The reason why the global coordinates X and Y are not chosen as states is
that they are nonlinear and can therefore not be represented in a linear state space
model.

The local velocity ẋ is equal to (2.9) and the angular velocity ψ̇ is equal to (2.8). Fur-
thermore the position x and orientation ψ are dependant on the velocities according
to

x(t) = x0 +
∫ t

0
ẋdt, (2.16)

ψ(t) = ψ0 +
∫ t

0
ψ̇dt, (2.17)

in the continuous domain. However, the discrete state space representation is of
interest because the hardware of the rover operates in the discrete domain. Using
Euler first order approximation, (2.16) and (2.17) can be approximated as

xk = xk−1 + ẋ · ts, (2.18)

ψk = ψk−1 + ψ̇ · ts (2.19)
in the discrete domain where ts is the sampling time of the system. The expressions
(2.18) and (2.19) assume ẋ and ψ̇ are constant during the sampling time ts which

8



2. Vehicle modeling

is not always the case and will result in an inaccurate estimation. This inaccuracy
can be reduced by lowering the sampling time ts to the lowest possible value the
hardware can handle.

The discrete state space representation can be expressed as

χk = Adχk−1 + Bduk−1, (2.20)

Ad =
[
1 0
0 1

]
, Bd = ts

[
r
2

r
2

−r
2L

r
2L

]
. (2.21)

where the matrices Ad and Bd are obtained by (2.7), (2.8), (2.18) and (2.19).
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3
Global Positioning System

In this chapter, an introduction of GNSS trilateration concept is made (Section
3.1 and 3.2). This is followed by the model describing the trilateration of receiver
coordinates as well as the introduction of the estimation method, see Section 3.3
and 3.3.1 respectively. Lastly, the GPS Real-Time Kinematics (RTK) method is
presented, Section 3.4, followed by the application of the least squares estimation
on the GPS RTK system (Section 3.4.1).

These theoretical parts will be used as the basis for the proposed relative position
measurement solution which is combined with the complete system in Section 4.2.5.

3.1 GNSS basic concept
The basics of a GNSS is to use satellites as reference points to calculate the absolute
position of a receiver in 3D-space. In 2D-space, assume there exists a reference
point p1 that sends out a signal that is easily identifiable from a wide distance.
Also, assume that the reference point sends out this signal at the time T0 and that
the receiver has a perfectly synchronized clock with the reference. If the receiver
receives the signal at T0+td, then the signal has traveled for td time before arriving at
the receiver, as their clocks are synchronized. This means that the distance between
the reference and the receiver is equal to

l1 = td · vs, (3.1)

where vs is the signal velocity. The issue with only having one reference point would
mean that the receiver could be anywhere on a radius l1 from the reference (see
Figure 3.1).

By adding an additional reference point p2, the uncertainty lowers drastically to the
intersections of the circles (see o1 and o2 in Figure 3.1). This is the principle called
trilateration, to use multiple reference points to to obtain a receiver position. The
true solution could be found by either adding an additional reference, which would
leave only one solution, or by knowing other information about the receivers. An
example of additional information that could be used would be for a car which is
driving on a road. If only one of the possible solutions (o1 and o2) is on the driven
road and the other is above water it is clear that one can disregard the solution above
water. Four satellites are required to be able to trilaterate the receiver coordinates
in 3D.

11



3. Global Positioning System

Figure 3.1: For one reference point p1, the receiver can be anywhere on the blue
circle. For two reference points p1 and p2, the receiver can be either at o1 or o2.

3.2 GNSS in practice

A GNSS is split into three different segments which define how the systems are set
up and maintained [13]. The first segment is the space segment which is made up
of the satellites in space. These satellites need to keep their orbits to both allow
global coverage (four satellites visible from any point on Earth’s surface) as well
as maintain the accuracy of the system. The second segment, the control segment,
is responsible for the maintenance of the satellites. This maintenance is crucial to
be able to use the system, which includes e.g. regulating the satellites in case of
deviation from an orbit. Lastly, the user segment, includes all the GNSS receivers
that are used to calculate position.

The GPS space segments consist of 31 active satellites in orbit to allow for global
coverage, which is the GNSS with most active satellites in the world [14]. The GPS
control segment is made up of a Master Control Station (MCS) located in Colorado
Springs, USA, as well as multiple Monitoring Stations (MS) and Ground Antennas

12



3. Global Positioning System

(GA) which are spread throughout Earth to enable the fine adjustment to be made
to the space segment [13]. These fine adjustments are required to keep track of the
satellite navigation data that are used in the trilateration of the receiver coordinates.

The calculation of the GNSS receiver’s position is usually based on a measurement
called pseudorange which is an inaccurate measurement of the true distance (see
equation (3.1)) from the satellites to the GNSS receiver. The most significant fac-
tors that affect the measurement accuracy are:

• Ionospheric error: The ionosphere is the part of the upper atmosphere
that affects the satellite signal when it passes through. The ionosphere’s
lower bound starts around 60 km above Earth’s surface and the upper bound
stretches to around 1000 km [15]. It consists off multiple free electrons that
have sufficient density that when the satellite signal travels through it, it dis-
perses some of the signal [15]. One problem with the ionospheric error is that
the ionosphere changes during the day depending on its interaction with the
sun, hence it is hard to fully estimate its effect on the signal [15]. The iono-
sphere affects the transmitted signals based on the frequency of the signals
which means that a significant portion of the error can be removed with the
usage of multiple frequency bands [15]. The ionospheric effect will not be cov-
ered further in this thesis, instead see [13, 15].

• Tropospheric error: The troposphere is the first part of the Earth’s atmo-
sphere and covers up to around 50-60 km above ground [13, 16]. It does not
affect the signal based on the signal’s frequency but rather delays the signal
based on the temperature, pressure and humidity [13].

• Receiver clock bias: Receiver clock bias refers to the error in the receiver’s
internal clock. The range measurement performed by the GNSS receiver is
based on the time between the signal being sent and the signal being received
(as explained in the example). Hence, an error in the GNSS receiver’s internal
clock adds to a range measurement error as the signal has been perceived to
have traveled either further or less than in reality.

• Satellite clock error and orbital error: The first error, satellite clock er-
ror, refers to the same type of error as for the receiver clock bias, but for the
satellite instead of the receiver. Although the satellite clock is one of the best
and most expensive in the world, they are still not perfect [13]. The orbital
error refers to the deviation of the satellite from its orbit. The parameters
needed to account for the satellite clock error are sent through the navigation
message of the satellites, similarly for the orbital error [13].

• Multipath error: The multipath error refers to the multipath taken by the
signal to arrive at the receiver as the signals get reflected from other objects
and surfaces before arriving at the destination [13].

13



3. Global Positioning System

After the pseudoranges have been measured, the GNSS receiver’s position can be
calculated. This calculation uses multiple measurements, each with its own error,
which introduces another problem that affects the positioning error. This problem is
called Dilution Of Precision (DOP) [17] and is based on the position of the satellites
in relation to the receiver. A 2D illustration of this error can be seen in Figure 3.2
where, instead of a definite range like in the previous trilateration example (Figure
3.1), the range of each satellite has an error. The overlapping of the circles used to
decide the correct position will then mean an overlapping area in which the receiver
could be. This propagates to a combined error which gives worse accuracy if the
satellites are close to each other (see Figure 3.2).

Figure 3.2: Different scenarios to determine the potential location of the receiver,
detonated in green. (Image taken from [18]).

3.3 Trilateration
The beforementioned example, as seen in Figure 3.1, gives a basic understanding
of how the GPS receiver position is found in 2D-space. To trilaterate the GPS
receiver’s 3D position xr[k], the true range psr[k] to each of the available satellites is
required,

psr[k] =
√

(xs[k]− xr[k])2 + (ys[k]− yr[k])2 + (zs[k]− zr[k])2 = ||xs[k]− xr[k]||
(3.2)

where x[k]s, y[k]s, and z[k]s denote the position for the satellite s and xr[k], yr[k],
and zr[k] denote the unknown positions for the GPS receiver r. All coordinates
are in Earth-centered and Earth-fixed (ECEF) frame [13], which has its origin at
Earth’s center and fixed X−, Y− and Z-axis (see Figure 3.3). In this thesis, the
satellite coordinates are assumed to be known instead of calculated. It is possible
to calculate the satellite position by using the ephemeris data [19] of the satellite
which includes six parameters called the Keplerian elements [19]. [13, 20] explains
the complete method to calculate the satellite coordinates based on the Keplerian
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3. Global Positioning System

Figure 3.3: An image illustrating the ECEF coordinate system. The axes are fixed
and rotates together with Earth. (Image taken from [21]).

parameters.

The pseudorange measurement, ρsr[k], can be modeled based on the true range psr[k]
and some known errors included in the measurement

ρsr[k] = psr[k] + c∆δsr [k] + Isr [k] + T sr [k]. (3.3)

This model contains the ionospheric error, Isr [k], the tropospheric error, T sr [k], and

∆δsr [k] = δs[k]− δr[k], (3.4)

which is the combined error from the satellite orbit and clock error δs[k] as well
as the receiver clock error δr[k], multiplied by the signal speed c (speed of light)
to get the distance. The ionospheric, tropospheric, and satellite orbit and clock
error is assumed to be known and already modeled for. This assumption is made
because these errors only require the satellite navigation messages to be modelled
[13], which are given [25]. Knowing that the system contains ns satellites and nt
epochs, rearranging (3.3) as

ρsr[k]− cδs[k]− Isr [k]− T sr [k] = psr[k]− cδr[k], (3.5)

with known variables on the left-hand side and the unknowns on the right-hand side,
it is possible to discern that the system has ns · nt equations and 3 + nt unknowns.
To find the receiver position the number of satellites and epochs need to fulfill the
following inequality nsnt ≥ 3 + nt. Having only a single time epoch means that the
receiver needs four satellite pseudorange measurements.
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3.3.1 Solving trilateration using least squares
Generally the GPS receiver is connected to more than four satellites which results in
an overdetermined system. To account for measurement errors and multiple pseudo-
range measurements that would lead to an overdetermined system, least squares can
be used to estimate the position and errors. The following problem is formulated

δρsr = ρsr − ρsr,0, δρsr → 0,∀s,
δρsr = (||xs − xr||+ cδs − cδr + Isr + T sr + εs)
− (||xs − xr,0||+ cδs − cδr,0 + Isr + T sr ),

(3.6)

where δρsr is the resulting error between the measured ρsr and the estimated ρsr,0, and
εs is the combination of the unmodeled errors. Based on the initial estimations xr,0
and δr,0, we want to iteratively find δxr and δδr so that

xr = δxr + xr,0, (3.7)
and

δr = δδr + δr,0, (3.8)
solves the expression (3.6). The solution to the least square problem is obtained by
substituting (3.7) and (3.8) in (3.6). The resulting expression is obtained by

δρsr = (||xs − (δxr + xr,0)||+ cδs − c(δδr + δr,0) + Isr + T sr + εs)
− (||xs − xr,0||+ cδs − cδr,0 + Isr + T sr ),

(3.9)

which can be simplified to

δρsr = ||xs − (δxr + xr,0)|| − cδδr − ||xs − xr,0||+ εs. (3.10)
By using Taylor series expansion of vector modulus [22], (3.10) can be approximated
as

δρsr ≈ x̂usδxr − cδδr + εs (3.11)
where x̂us = xs−xr,0

||xs−xr,0|| is a unit vector. Hence, the problem formulation (3.6) can be
approximated as

δρsr =
[
−x̂us −c

] [δxr
δδr

]
+ εs. (3.12)

For ns satellites, the least squared problem can be approximated as

δρsr =


δρs1r
...

δρns
r

 = G
[
δxr
δδr

]
+ ε, G =


−x̂us1 −c

... ...
−x̂usns

−c

 . (3.13)

This gives the least squares solution,[
δx̂r
δδ̂r

]
= (GTG)−1GT δρsr. (3.14)
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Least squares estimation is the method that is used to estimate the relative position
measurement. The proposed solution will not be using the pseudorange measure-
ments but instead be based on GPS RTK.

3.4 GPS Real-Time Kinematics
GPS Real-Time Kinematics (RTK) is based on the principle of combining a more
accurate GPS measurement, called carrier phase measurement (φsr), from a refer-
ence receiver to calculate the receiver coordinates [23]. This relationship is usually
defined as a ’base tower’ and ’rover’ relation. With the ’base tower’ being the ref-
erence receiver (commonly with known position) and the ’rover’ being the receiver
with unknown coordinates. The carrier phase is a measurement based on the change
in distance between the receiver and satellite from when the satellite was first ob-
served. This, combined with a reference receiver, can produce a highly accurate
relative position measurement. If the reference receiver has known absolute coor-
dinates, the estimation will result in an accurate absolute position [24]. One flaw
in this method is the inaccuracy of the first observed distance as that is sometimes
initialized based on the first pseudorange measurement, which is a more inaccurate
measurement [25]. This inaccuracy is called phase integer ambiguity and is some-
thing that needs to be found to gain accurate measurements. This is also a problem
in the form of so-called cycle slips [26, 27], which means that the connection between
receiver and satellite has been lost and therefore a re-initialization of the localiza-
tion algorithm needs to occur. This means that a new first observation occurs and
therefore also a new phase integer ambiguity.

The carrier phase φsr, similarly to the pseudorange ρsr, is modeled based on the known
errors in the GPS measurement (ionospheric, etc.)

φsr = 1
λs
psr + ℵsr + f s(δs − δr) + Isr + T sr . (3.15)

With the same variables as for the pseudorange, in addition to λs, which is the
known wavelength of the satellite signal, ℵsr, which is the phase integer ambiguity
between the receiver and the satellite, and f s, which is the known frequency of the
satellite signal.

Rearranging the carrier phase equation so all known variables are on the left-hand
side and all unknown variables are on the right-hand side, gives

φsr − f sδs − Isr − T sr = 1
λs
psr + ℵsr − f sδr. (3.16)

From (3.15) it is possible to discern that the inequality nsnt ≥ 3 + ns + nt needs to
be satisfied to be able to calculate the receiver position where nsnt is the amount of
equations and 3 + ns + nt is the amount of unknown variables.
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Figure 3.4: Single Difference setup which contains two receivers (r1 and r2) and
one satellite (s1). The system uses the difference of the carrier phase measurements
between r1 and r2 based on their true range to the satellite (ps1

r1 and ps1
r2).

To simplify the estimation it is possible to combine measurements from a reference
receiver, which decreases the number of unknowns. These common combinations are
either a Single Difference (SD) system, Double Difference (DD) system, or Triple
Difference (TD) system. A SD system is modeled based on having one satellite
and two receivers, which reduces the satellite and atmospheric errors on the system.
This can be observed in Figure 3.4 and gives the equation system

φs1
r1 − f

s1δs1 − Is1
r1 − T

s1
r1 = 1

λs1
ps1
r1 + ℵs1

r1 − f
s1δr1 , (3.17)

φs1
r2 − f

s1δs1 − Is1
r2 − T

s1
r2 = 1

λs1
ps1
r2 + ℵs1

r2 − f
s1δr2 . (3.18)

Since the receivers r1 and r2 are relatively close to each other, the ionospheric
and tropospheric errors are approximated to be equal, Is1

r1 = Is1
r2 and T s1

r1 = T s1
r2 .

Subtracting φs1
r1 with φs1

r2 gives the following expression

φs1
r1 − φ

s1
r2 = 1

λs1
(ps1
r1 − p

s1
r2) + ℵs1

r1 − ℵ
s1
r2 − f

s1(δr1 − δr2), (3.19)

where the known errors have been eliminated. The expression (3.19) is rewritten as

φs1
r1r2 = 1

λs1
ps1
r1r2 + ℵs1

r1r2 − f
s1δr1r2 , (3.20)

where

φs1
r1r2 = φs1

r1 − φ
s1
r2 , (3.21)

ps1
r1r2 = ps1

r1 − p
s1
r2 , (3.22)

ℵs1
r1r2 = ℵs1

r1 − ℵ
s1
r2 , (3.23)
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Figure 3.5: Double Difference setup which uses an additional satellite in the sys-
tem. The DD system looks at the difference of the SD systems.

δs1
r1r2 = δs1

r1 − δ
s1
r2 . (3.24)

This notation is used in future calculations to shorten the expressions. Using SD
system only eliminates the errors that are assumed to be known in this thesis, which
do not simplify the objective of obtaining the receiver position. To eliminate the
unknown errors the system is further extended into DD and TD.

A DD system is modeled based on having two satellites and two receivers, which, in
addition to removing the satellite and atmospheric errors, also removes the receiver
clock error. Using measurements from the same frequency bands means that the
satellites signal frequency and wavelength are equal. The DD system can be observed
in Figure 3.5 and gives the equation system

φs1
r1r2 = 1

λ
ps1
r1r2 + ℵs1

r1r2 − fδr1r2 , (3.25)

φs2
r1r2 = 1

λ
ps2
r1r2 + ℵs2

r1r2 − fδr1r2 , (3.26)

where (3.25) and (3.26) have been obtained by using SD system (3.20) for both the
satellites s1 and s2. The DD system is obtained by subtracting (3.25) with (3.26)
which results in

φs1
r1r2 − φ

s2
r1r2 = 1

λ
(ps1
r1r2 − p

s2
r1r2) + ℵs1

r1r2 − ℵ
s2
r1r2 , (3.27)

where the receiver clock bias δr1r2 has been eliminated. The DD system (3.27) can
be shortened to

φs1s2
r1r2 = 1

λ
ps1s2
r1r2 + ℵs1s2

r1r2 , (3.28)

where
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φs1s2
r1r2 = φs1

r1r2 − φ
s2
r1r2 , (3.29)

ps1s2
r1r2 = ps1

r1r2 − p
s2
r1r2 , (3.30)

ℵs1s2
r1r2 = ℵs1

r1r2 − ℵ
s2
r1r2 . (3.31)

A TD system is modeled based on having two satellites, two receivers and two time
epochs, which, in addition to removing satellite, atmospheric, and receiver clock
error, eliminates phase integer ambiguity. The TD system assumes constant phase
integer ambiguities through both of its time epochs, which means that the TD
system assumes no cycle slip has occurred between the epochs. As it is not possible
to avoid cycle slips in practice, the TD equations can only be used to identify the
occurrence of cycle slips. In this thesis, the occurrence of cycle slips are not added
to the simulations, which means that the TD estimation can be fully implemented.
The TD system can be derived as

φs1s2
r1r2 [k] = 1

λ
ps1s2
r1r2 [k] + ℵs1s2

r1r2 , (3.32)

φs1s2
r1r2 [k − 1] = 1

λ
ps1s2
r1r2 [k − 1] + ℵs1s2

r1r2 . (3.33)

where (3.32) and (3.33) has been obtained by the DD system (3.28). Subtracting
(3.32) with (3.33) gives the expression for the TD system

φs1s2
r1r2 [k]− φs1s2

r1r2 [k − 1] = 1
λ

(ps1s2
r1r2 [k]− ps1s2

r1r2 [k − 1]) (3.34)

where the phase integer ambiguity (ℵs1s2
r1r2) has been eliminated. The TD can be

written as

φs1s2
r1r2 [k, k − 1] = 1

λ
ps1s2
r1r2 [k, k − 1]. (3.35)

where

φs1s2
r1r2 [k, k − 1] = φs1s2

r1r2 [k]− φs1s2
r1r2 [k − 1], (3.36)

ps1s2
r1r2 [k, k − 1] = ps1s2

r1r2 [k]− ps1s2
r1r2 [k − 1]. (3.37)

The TD and DD equation systems that are derived in this section is the equation
systems that the previous mentioned least squares estimation is applied to, to esti-
mate the relative position between the rovers. The implementation of least squares
estimation onto the DD and TD estimations is presented below.
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3.4.1 Solving TD and DD systems with least squares
With both the DD and TD systems defined, it is now possible to apply least squares
estimation to estimate the unknown receiver coordinates xr2 [k]. As mentioned pre-
viously, the reference receiver coordinates xr1 [k] are known in both the DD and TD
system. The previous receiver coordinate (xr2 [k − 1]) occurring in the TD system
are assumed to be the previous epochs estimation and therefore known. Starting
with the TD estimation and expanding (3.35) gives

φs1s2
r1r2 [k, k − 1] = 1

λ
(ps1
r1 [k]− ps1

r2 [k]− ps2
r1 [k] + ps2

r2 [k]−

ps1
r1 [k − 1] + ps1

r2 [k − 1] + ps2
r1 [k − 1]− ps2

r2 [k − 1]),
(3.38)

where

psr[k] = ||xs[k]− xr[k]||. (3.39)
As mentioned previously, all variables are known in the system with the exception
of xr2 [k], which are the coordinates of the unknown receiver. The known quantities
can, therefore, be contained in a constant

C = ps1
r1 [k]− ps2

r1 [k]− ps1
r1 [k − 1] + ps1

r2 [k − 1] + ps2
r1 [k − 1]− ps2

r2 [k − 1], (3.40)
thus expression (3.38) can be rewritten as

φs1s2
r1r2 [k, k − 1] = 1

λ
(C − ||xs1 [k]− xr2 [k]||+ ||xs2 [k]− xr2 [k]||). (3.41)

Combining the TD system (3.35) together with the least squares estimation method
means that we want to find δxr2 [k] so that the true value xr2 [k] = δxr2 [k] + xr2 [k]0
will solve

δφs1s2
r1r2 [k, k − 1] = φs1s2

r1r2 [k, k − 1]− φs1s2
r1r2 [k, k − 1]0, δφs1s2

r1r2 [k, k − 1]→ 0,∀s, (3.42)

using the initial estimation xr2 [k]0. This gives the equation

δφs1s2
r1r2 [k, k − 1] = 1

λ
(C − ||xs1 [k]− xr2 [k]||+ ||xs2 [k]− xr2 [k]||)−

1
λ

(C − ||xs1 [k]− xr2 [k]0||+ ||xs2 [k]− xr2 [k]0||) + εs1s2 ,
(3.43)

where εs1s2 , same as in (3.6), is the combination of unmodeled errors. Rearranging
and simplifying (3.43) gives

λδφs1s2
r1r2 [k, k − 1] = −(||xs1 [k]− xr2 [k]|| − ||xs1 [k]− xr2 [k]0||)

+(||xs2 [k]− xr2 [k]|| − ||xs2 [k]− xr2 [k]0||) + λεs1s2 .
(3.44)

Replacing xr2 [k] with δxr2 [k] + xr2 [k]0 gives
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λδφs1s2
r1r2 [k, k − 1] = −(||xs1 [k]− (δxr2 [k] + xr2 [k]0)|| − ||xs1 [k]− xr2 [k]0||)

+||xs2 [k]− (δxr2 [k] + xr2 [k]0)|| − ||xs2 [k]− xr2 [k]0||) + λεs1s2 .
(3.45)

This can be further simplified by using Taylor series expansion of vector modulus
[22] resulting in the expression

λδφs1s2
r1r2 [k, k − 1] = −(− xs1 − xr2 [k]0

||xs1 − xr2 [k]0||
δxr2 [k]) + (− xs2 − xr2 [k]0

||xs2 − xr2 [k]0||
δxr2 [k]) + λεs1s2 .

(3.46)

The end result will then become

δφs1s2
r1r2 [k, k − 1] =

[
1
λ
(x̂s1

ur2 [k]− x̂s2
ur2 [k])

] [
δxr2 [k]

]
+ εs1s2 , (3.47)

where

x̂s1
ur2 [k] = xs1 − xr2 [k]0

||xs1 − xr2 [k]0||
, (3.48)

and

x̂s2
ur2 [k] = xs2 − xr2 [k]0

||xs2 − xr2 [k]0||
. (3.49)

Repeating this for ns satellites results in

δφr1r2 [k, k − 1] =


δφs1s2

r1r2 [k, k − 1]
...

δφs1sn
r1r2 [k, k − 1]

 = G
[
δxr2 [k]

]
+ ε, (3.50)

where

G =


1
λ
(x̂s1

ur2 [k]− x̂s2
ur2 [k])

...
1
λ
(x̂s1

ur2 [k]− x̂sns
ur2 [k])

 , ε =


εs1s2

...
εs1sn

 . (3.51)

This gives the least squares solution

δx̂r2 = (GTG)−1GT δφr1r2 [k, k − 1]. (3.52)
For the DD system the least squares estimation also has to estimate the unknown
phase integer ambiguities ℵs1s2

r1r2 . The interesting difference with the ambiguities are
that they are constant given that no cycle slip occurs. This means that once the
ambiguities are found the estimations only needs to estimate the receiver coordi-
nates. The DD estimation is a highly researched field within the area of GPS as it
is of interest to both find ways to increase the accuracy of the estimations, and to
quickly find the ambiguities to improve the estimations.

The DD estimations requires solving the expression
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δφs1s2
r1r2 = φs1s2

r1r2 − φ
s1s2
r1r2 0, δφs1s2

r1r2 → 0,∀s. (3.53)

Same as for the TD estimation but with the addition of the ambiguities, the un-
knowns becomes

xr2 [k] = δxr2 [k] + xr2 [k]0, (3.54)

and

ℵs1s2
r1r2 = δℵs1s2

r1r2 + ℵs1s2
r1r2 0. (3.55)

Following the same idea as in the TD estimation (3.38)-(3.52) the DD estimation
(3.53) results in

δφr1r2 [k] = G


δxr2 [k]
δℵs1s2

r1r2...
δℵs1sns

r1r2

+ ε, (3.56)

where

G =


1
λ
(x̂s1

ur2 [k]− x̂s2
ur2 [k])

... Ins×ns

1
λ
(x̂s1

ur2 [k]− x̂sns
ur2 [k])

 , ε =


εs1s2

...
εs1sn

 . (3.57)

The variable Ins×ns in (3.57) represents the identity matrix of size ns. The least
squares solution of DD system is given by

δxr2 [k]
δℵs1s2

r1r2...
δℵs1sn

r1r2

 = (GTG)−1GT δφr1r2 [k]. (3.58)

The TD and DD estimations ((3.52) and (3.58)) are used to estimate the unknown
receiver coordinates and used as the relative position measurement in the system. In
Section 4.2.5 it is further explained how the TD and DD estimations are combined
with the rest of the system.
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4
Sensor fusion

The idea of sensor fusion is to combine different sensor data to get an overall im-
provement in the estimation of a systems states [28]. It also includes combining
known information about the system together with the measurements to improve
the information further [29]. An example of using known information about what
is measured could be seen in the GPS example in Section 3, where the two different
solutions of the GPS trilateration would either end up on a road or in water. With
awareness of the movement of the vehicle on a road, the system can disregard the
position over water as it is known that the vehicle is traveling on a road. In general,
by being aware of the motion of the observable object, the estimated state could be
significantly increased as certain erroneous values can be disregarded.

4.1 Kalman filter
The Kalman filter is a commonly used sensor fusion algorithm that takes measure-
ment data from multiple sensors to better estimate the future state of the model [29].
The basic Kalman filter enables a higher accuracy by considering the joint probabil-
ity of multiple sensors over time instead of looking at individual measurements [29].
It works on linear systems and the calculated estimation of the Kalman filter is the
linear minimum mean square error (LMMSE) [29]. For a nonlinear system, there
exists a different version of the Kalman filter, the Extended Kalman Filter (EKF),
which includes the linearization of the system around an operating point [29], see
Section 4.1.1 for more details. The Kalman filter uses the system’s motion model
(also called process model) to improve the estimation based on the known dynamics
of the system. It also uses the system’s measurement model which describes the
relation between the states and the measurements, which is used to improve the
estimation based on the combined measured values of the system. All equations
presented in this chapter and their derivation can be found in [30].

The motion model describes the update of the states, xk ∈ Rn, from time step
k − 1 to k. A linear discrete-time motion model is described by

xk = Ak−1xk−1 + Bk−1uk−1 + Γqk−1. (4.1)

• Transition matrix Ak−1 ∈ Rn×n which describes the transition of the states x
from time step k − 1 to k.

• Input matrix Bk−1 ∈ Rn×l which describes the effect of the control input,
uk−1 ∈ Rl, upon the states.
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• Motion noise qk−1 ∈ Rq which is a random variable that describes the unknown
motion noise of the model. It is assumed to be zero mean normally distributed
noise with covariance matrix Qk−1, qk−1 ∼ N (0,Qk−1).

• Noise matrix Γ ∈ Rn×q which describes which states that are affected by the
motion noise.

The measurement model describes the relation between the states xk and the mea-
surement yk ∈ Rm. The measurement model,

yk = Hkxk + Φrk, (4.2)

includes the measurement matrix, Hk ∈ Rm×n, the measurement noise, rk ∈ Rr,
and the noise matrix Φ ∈ Rm×r. The measurement matrix Hk describes the ex-
act relation between the states and measurements while the measurement noise rk
is a zero mean normally distributed random variable with covariance matrix Rk,
rk ∼ N (0,Rk), and the noise matrix Φ describes which measurements are affected
by the noise.

The Kalman filter firstly calculates a predicted estimate, x̂k|k−1, and predicted co-
variance, Pk|k−1, using knowledge based on the previous time step k − 1. This step
is called the prediction step. Thereafter, using the calculated x̂k|k−1 and Pk|k−1,
the Kalman filter calculates the estimated value of xk based on the new measure-
ment yk. This step calculates the posteriori estimate (x̂k|k) and is called the mea-
surement update step. The posteriori is the mean value of the joint probability
p(xk|y1:k) = N (x̂k|k,Pk|k), and has the covariance Pk|k. Similiarly for the predicted
estimate x̂k|k−1, which is the mean of the normally distributed joint probability
p(xk|y1:k−1,uk−1) = N (x̂k|k−1,Pk|k−1), with a covariance of Pk|k−1.

In the prediction step, the predicted estimate x̂k|k−1 is calculated using the mo-
tion model based on the previous posteriori x̂k−1|k−1 and input signal uk−1,

x̂k|k−1 = Ak−1x̂k−1|k−1 + Bk−1uk−1, (4.3)

Pk|k−1 = Ak−1Pk−1|k−1AT
k−1 + ΓQk−1ΓT . (4.4)

In the measurement update step, the posteriori x̂k|k is calculated using the predicted
estimate (x̂k|k−1), the measurement yk and the measurement model,

x̂k|k = x̂k|k−1 + Kkvk, (4.5)

Pk|k = Pk|k−1 −KkSkKT
k . (4.6)

Where Kk is the Kalman gain

Kk = Pk|k−1HT
kS−1

k , (4.7)

vk is the innovation

vk = yk −Hkx̂k|k−1, (4.8)
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Figure 4.1: Overview of the Kalman filter. Step 1 refers to the prediction step,
and step 2 refers to the measurement update step.

and Sk is the innovation covariance

Sk = HkPk|k−1HT
k + ΦRkΦT . (4.9)

The complete Kalman filter model can be observed in Figure 4.1. The important
thing to note is that the only input to the Kalman filter is the control input signal
uk−1 and the measurement yk, assuming the state matrices are constant with respect
to time. The filter requires the definition of the initial condition x̂0 and P0.

4.1.1 Extended Kalman Filter
As mentioned previously, the normal Kalman filter only works for linear systems.
To deal with nonlinear systems, one possible algorithm would be the EKF. The idea
of the EKF is to use the Kalman filter on the linearized motion and measurement
model. The linearized model of the non-linear motion model (4.1),

xk = f(xk−1) + Bk−1uk−1 + Γqk−1, (4.10)
can be found by the first order Taylor expansion of the non-linear model. The first
order Taylor series expansion of a nonlinear function, y = g(x), around a point x̂
can be approximated as

y ≈ g(x̂) + g′(x̂)(x− x̂), (4.11)
where g′(x̂) is the jacobian of g(x̂), and x ∼ N (x̂,P). An interesting observation
from this is that the distribution of the linearized system has changed to E(x) ≈ g(x̂)
and cov(y) ≈ g′(x̂)Pg′(x̂)T , which affects the prediction and update step.

The first order Taylor expansion of the motion model results in

xk ≈ f(x̂k−1|k−1) + f ′(x̂k−1|k−1)(xk−1 − x̂k−1|k−1) + Bk−1uk−1 + Γqk−1 (4.12)

as the motion model is linearized around the estimated values, E(xk−1) = x̂k−1|k−1.
The linearization of the measurement model

yk = h(xk) + Φrk, (4.13)
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similarly results in

yk ≈ h(x̂k|k−1) + h′(x̂k|k−1)(xk − x̂k|k−1) + Φrk. (4.14)

After the linearization of the motion and measurement model the prediction step
becomes

x̂k|k−1 = f(x̂k−1|k−1) + Bk−1uk−1, (4.15)
Pk|k−1 = f ′(x̂k−1|k−1)Pk−1|k−1f

′(x̂k−1|k−1)T + ΓQk−1ΓT . (4.16)
And the measurement update step becomes

x̂k|k = x̂k|k−1 + Kkvk, (4.17)

Pk|k = Pk|k−1 −KkSkKT
k , (4.18)

vk = yk − h(x̂k|k−1), (4.19)
Sk = h′(x̂k|k−1)Pk|k−1h

′(x̂k|k−1)T + ΦRkΦT , (4.20)
Kk = Pk|k−1h

′(x̂k|k−1)TS−1
k . (4.21)

The EKF is the sensor fusion algorithm that is used to estimate the leader’s and
follower’s states. The exact EKF implemented in this thesis is presented in Section
4.2, which ends with the combination of the EKF and the remaining parts of the
system (Section 4.2.4 and 4.2.5).

4.2 Complete Sensor Model
The complete sensor model includes both rovers, where one acts as a base tower and
the other as a rover in accordance to the RTK setup (see Section 3.4). Both rovers
have individual EKFs to estimate the states. The states that are used differ slightly
in comparison to the vehicle state space model defined in Section 2.4, specifically that
it calculates the global position instead of the local coordinates. The reason why the
sensor model uses the global coordinates is because the position measurement is in
global coordinates and that the global coordinates are needed in the path planning
algorithm (see Chapter 5). The local coordinates is only used in the implementation
of the Linear-Quadratic Regulator (LQR) (see Section 6.3). The states

xk =


Xk

Yk
vk
ψk
ψ̇k

 , (4.22)

contain the global position (Xk, Yk), the velocity vk, the heading ψk, and the yaw
rate ψ̇k. The most important note is that the global position of the rovers does not
refer to the ECEF frame, but to a self-defined global coordinate system. This is
because the system does not include a third reference point, an actual base tower,
which means that the RTK solution only gives a high accuracy result for the relative
distance between the two rovers. The self-defined global coordinate systems are
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based around the leader’s initial position being an arbitrary value. Thereafter, the
leader’s position and states will update according to the Kalman filter. Important to
note is that the GPS will never be used in reference to calculate the global coordinate
of the leading rover. The GPS will only be used with the RTK solution to accurately
estimate the relative distance between both rovers.

4.2.1 Motion Model
The motion model of the rovers is based on the coordinated turn model found in [31]
and the vehicle state space model defined in Section 2.4. It is a nonlinear motion
model that updates the global coordinates based on the heading and speed of the
vehicle,


Xk

Yk
vk
ψk
ψ̇k

 =


Xk−1 + Tvk−1 cosψk−1
Yk−1 + Tvk−1 sinψk−1

0
ψk−1 + T ψ̇k−1

0

+


0 0
0 0
r
2

r
2

0 0
− r

2L
r

2L


[
ωl
ωr

]
+


0 0
0 0
1 0
0 0
0 1


[
qv
qψ̇

]
. (4.23)

This model’s velocity and yaw rate is purely based upon the control input of the
model and uses the same variables as defined in Section 2.2. In (4.23), T is the time
between time steps k − 1 and k, qv is the motion noise of the vehicles velocity and
qψ̇ is the motion noise of the vehicles yaw rate.

The motion model can be described in the same way as the nonlinear motion model
(4.10) described in Section 4.1.1 with

f(xk−1) =


Xk−1 + Tvk−1 cosψk−1
Yk−1 + Tvk−1 sinψk−1

0
ψk−1 + T ψ̇k−1

0

 . (4.24)

The jacobian of f(xk−1) becomes

f ′(xk−1) =


1 0 T cos(ψk−1) −Tvk−1 sin(ψk−1) 0
0 1 T sin(ψk−1) Tvk−1 cos(ψk−1) 0
0 0 0 0 0
0 0 0 1 T
0 0 0 0 0

 . (4.25)

The defined motion model is implemented in both the leading and the following
rover’s EKF.

4.2.2 Measurement Model
The measurement model differs between the different rovers as the leading rover
does not have the GPS value as reference for the estimation of position. Instead,
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the position is only estimated based on the measurement of the IMU and wheel
speed sensors (see Appendix A.2 and A.3). The measurements that are of interest
for the leader are

yLk =


ω̃Ll,k
ω̃Lr,k
ψ̃Lk
˜̇ψLk

 . (4.26)

• Measurement ω̃Ll,k, the left wheels rotational speed, is the output of the wheel
speed sensor on the rover’s left wheels measured in angular velocity.

• Measurement ω̃Lr,k, the right wheels rotational speed, is the output of the wheel
speed sensor on the rover’s right wheels measured in angular velocity.

• Measurement ψ̃Lk , the absolute orientation, is the output of the inbuilt sensor
fusion algorithm between the gyroscope and the magnetometer from the IMU.

• Measurement ˜̇ψLk , the yaw rate, is the output of the gyroscope from the IMU.

The conversion from state xLk to measurement yLk for the different states are all
linear

ω̃Ll,k = vLk
r
− Lψ̇Lk

r
+ rωl

k , (4.27)

ω̃Lr,k = vLk
r

+ Lψ̇Lk
r

+ rωr
k , (4.28)

ψ̃Lk = ψLk + rψk , (4.29)
˜̇ψLk = ψ̇Lk + rψ̇k , (4.30)

with added noise rωl
k , rωr

k , rψk and rψ̇k . This results in a completely linear measurement
model which we can directly use the standard Kalman filter on


ω̃Ll,k
ω̃Lr,k
ψ̃Lk
˜̇ψLk

 =


0 0 1 0 −L

r

0 0 1 0 L
r

0 0 0 1 0
0 0 0 0 1



XL
k

Y L
k

vLk
ψLk
ψ̇Lk

+ I4x4


rωl
k

rωr
k

rψk
rψ̇k

 . (4.31)

For the following rover, the measurement gets extended with the GPS output
(X̃F

k , Ỹ
F
k ),

yFk =



X̃F
k

Ỹ F
k

ω̃Fl,k
ω̃Fr,k
ψ̃Fk
˜̇ψFk


, (4.32)

which are direct measurements of a state similar to (4.29) and (4.30) and results in
the following measurement model for the following rover
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

X̃F
k

Ỹ F
k

ω̃Fl,k
ω̃Fr,k
ψ̃Fk
˜̇ψFk


=



1 0 0 0 0
0 1 0 0 0
0 0 1 0 −L

r

0 0 1 0 L
r

0 0 0 1 0
0 0 0 0 1




XF
k

Y F
k

vFk
ψFk
ψ̇Fk

+ I6x6



rXk
rYk
rωl
k

rωr
k

rψk
rψ̇k


. (4.33)

The derived measurements models for the leader (4.31) and the follower (4.33) are
the models used in the EKF of each rover.

4.2.3 Filter parameters and initial condition

To enable the usage of the EKF, the two filter parameters Qk and Rk, the initial
condition of the state estimate, x̂0, and its covariance, P0, need to be defined. The
only difference between the two rovers will be the measurement noise covariance
matrix Rk as the following rover includes the GPS measurements, as well as their
initial condition.

For the initial state, x̂L0 , of the leading rover, the states will be defined as follows:
• The global coordinate, XL

0 and Y L
0 , will be initialized to an arbitrary value as

mentioned in Section 4.2.
• The velocity vL0 and yaw rate ψ̇L0 will also be initiated to zero as the rovers

start at stand-still.
• The yaw angle ψL0 will be initialized with the first measurement it receives.

The initial state of the following rover, x̂F0 , are defined the same as the leading rover
but with the global coordinates initialized to the first measurement it receives from
the GPS RTK estimation.

The initial state covariance matrix will be initialized to zero for all states that
are initialized to zero and, otherwise, set to corresponding measurement noise co-
variances. This means that for the leading rover, PL

0 will be initialized to zero for all
states except for the heading ψL0 , which will be initialized to the measurement noise
covariance σ2

ψ. The same will be true for the following rover with an addition on the
global coordinates which will also be initialized to the corresponding measurement
noise covariance.

The motion noise covariance matrix Qk is set to constant (Q) and includes the
covariance of the noise affecting the velocity and yaw rate of the rovers

Q =
[
σ2
v 0

0 σ2
ψ̇

]
. (4.34)

Similarly the measurement noise covariances, RL
k and RF

k , are also set to constant,
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RL and RF ,

RL =


σ2
ωl

0 0 0
0 σ2

ωr
0 0

0 0 σ2
ψ 0

0 0 0 σ2
ψ̇

 , (4.35)

RF =



σ2
X 0 0 0 0 0
0 σ2

Y 0 0 0 0
0 0 σ2

ωl
0 0 0

0 0 0 σ2
ωr

0 0
0 0 0 0 σ2

ψ 0
0 0 0 0 0 σ2

ψ̇


. (4.36)

The motion noise covariance matrix Q was found through tuning the EKF (Ap-
pendix B.1) and the measurement noise covariance matrices (RL and RF ) was
found through measuring the different sensors and finding their characteristics, see
Appendix B.2.

4.2.4 Combination with the control system
The estimated state vector of the leading and following rover will be sent as an input
to the LQR controller on the following rover. Figure 4.2 shows the complete control
system with integrated sensor fusion for both the leading and following rover and
the connection between them. The leader only performs the EKF as the control
input is given, while the follower takes both rovers’ state vectors as input for the
LQR control. The LQR controller then calculates the control input as defined in
Chapter 6 which gets sent to the follower’s EKF algorithm to update the estimate.

Figure 4.2: Illustration of the complete control system with both LQR controller
and EKF algorithm.

4.2.5 Combination with GPS RTK estimation
The initial condition of the following rover’s coordinates will be based on the relative
distance between the rovers,

xF0 = (X̂F
0 , Ŷ

F
0 ) = (rX , rY ) + (X̂L

0 , Ŷ
L

0 ). (4.37)

This distance is found through the use of the GPS RTK estimation. The GPS RTK
estimation (Section 3.4) uses the base tower (reference receiver) coordinates to cal-
culate the rover’s coordinates. In our system, we have a moving base tower, the
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leading rover, and therefore unknown leader coordinates. Therefore, the GPS RTK
estimation will be using the leader’s estimated position to calculate the follower’s
position.

The carrier phase measurements from the two GPS receivers include the information
needed to calculate the true distances (rX , rY ) between the rovers (see Figure 4.3).
Instead of this distance being added to the true leader position, as in (4.37), it will
be added to the estimated leader position xLk|k. This means that the DD and TD
estimation will never estimate the true follower’s position but rather the follower’s
position translated the true distance between the rovers. Therefore the GPS RTK
estimation will produce xFls = xLk|k + (rX , rY ) and not xF , as the translation is done
on the estimated leader position (xLk|k) and not the true leader position (X̂L, Ŷ L).
This means that the GPS RTK measurement of the follower’s position will include
the same drift as the leader’s position. So, although the leader’s estimated position
is not close to the true leader position, the relation between the true leader position
and the true follower position will exist in the relation between both rovers estimated
positions. In the example presented in Figure 4.3, the rovers move forward with a
velocity v, which move the estimated position with a similar velocity v, which cause
the following rover to move forward to keep the distance d.

Figure 4.3: Illustration of the relation between the true distances and the estimated
distances.

In the implementation of the EKF and GPS RTK estimation (DD and TD), the least
squares estimation will be used as the GPS measurement in the EKF, ((X̃F

k , Ỹ
F
k ) =

xFls) (see Figure 4.4). In addition the follower’s prediction x̂Fk|k−1 will be used as the
least squares initial estimation xr2 [k]0, and the previous estimation x̂Fk−1|k−1 will be
used as the previous estimation in the least squares estimation xr2 [k − 1].

As the least squares estimation is based on the ECEF frame which uses X, Y and
Z, while the simulation implementation is based on just X and Y , a conversion
has been implemented. This conversion just translates the X, Y coordinates by an
offset xoffset. This offset is based on the longitude and latitude coordinates close to
our office at DevPort, which were thereafter converted to the ECEF frame through
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[32]. In practice, the movement in one direction would cause a movement in all axes
in the ECEF instead of just X and Y . This difference is minimal as we are at most
moving a few meters, which in comparison to the overall coordinates that have a
magnitude of 105 − 106 is insignificant.

Similarly for the implementation of the carrier phase measurements, eight differ-
ent satellite coordinates where found based on real-life GPS satellites visible from
Gothenburg [33].

Figure 4.4: Illustration of the complete control system with both LQR controller
and EKF algorithm, including the measurement origins. With the used GPS mea-
surement in the following rover is based on the least squares estimation.
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5
Path Planning

This chapter introduces the path planning algorithm which is used to create the
trajectory for the following rover. The algorithm is mainly based on the concept
of using breadcrumbs, explained in Section 5.1. Thereafter the tracking of the
lead rover and the breadcrumb path is defined. This is firstly defined based on
shortest path (Section 5.2) and later extended with Bézier curves to better track
large distance differences (Section 5.3).

5.1 Breadcrumbs

During the operation of platooning, the lead vehicle is manually controlled while
the follower is attempting to mimic the exact route of the lead vehicle. This is
accomplished by using a concept called breadcrumb path [34]. The lead vehicle’s
estimated position is stored in an array with a set frequency and the follower has
to drive towards these position in chronological order. Each breadcrumb also has
an orientation attached towards it in order to determine a method to drive towards
the breadcrumb. When a follower is within a distance D from a breadcrumb, it will
swap focus towards the next breadcrumb and drive towards it. The distance D is a
tuning parameter for the path planner. This concept is illustrated in Figure 5.1.

A path planning algorithm is used which makes use of straight lines and curves in
order to reach each individual breadcrumb. The straight lines are created by using
the shortest distance (Pythagoras’ theorem [35]) between two points and the curves
generated are Bézier curves [9]. Both of them are used in conjunction in order to
achieve a smooth path planner which imitates the movements of the lead vehicle.
The shortest distance is used in situations where the vehicle does not have to change
its orientation drastically in order to match its breadcrumb’s orientation. A solution
using Bézier curves is used in situations where the vehicle has to change its orien-
tation in order to match the orientation of the breadcrumb. The idea is that once
the follower has caught up to the lead rover it transitions into using the shortest
distance algorithm. Hence, the Bézier curves are only used in the beginning of the
simulations if the coordinates and orientations differs.
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Figure 5.1: A breadcrumb path dropped from the lead vehicle where the follower
has to pick them up in chronological order.

5.2 Shortest Distance
The shortest distance is based on Pythagoras’ theorem in order to generate a linear
path between two points. Assume a shortest path is generated between two points
P1 and P2

P1 : (x1, y1), (5.1)

P2 : (x2, y2). (5.2)

The distance d between the points P1 and P2 is obtained by

d =
√

(x2 − x1)2 + (y2 − y1)2. (5.3)

The shortest path between two points can be seen in Figure 5.2. This path plan-
ner does not need to be more complex given that the vehicle maintains the same
orientation in order to reach its destination and match its breadcrumb’s orientation.

5.3 Bézier Curve
A Bézier curve is a curve based on chosen points in a plane. The number of points
may be chosen arbitrarily but a four points curve P0, P1, P2 and P3 will be used
in this thesis’ path planning algorithm. Two points P0 and P3 specify the starting
location and the destination respectively while the other two points P1 and P2 spec-
ify the orientations of the start and end location respectively. The generated Bézier
curve based on the four points can be observed in Figure 5.3.
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Figure 5.2: A shortest path algorithm used to reach a breadcrumb.

Point P0 and P3 are chosen based on starting and end location. Point P1 and P2
are chosen at a distance a from point P0 and P3 heading orientation. The relation
between the points can be described according to the following equations

Pi : (xi, yi), (5.4)

x1 = x0 + a cosψ1 y1 = y0 + a sinψ1, (5.5)
x2 = x3 − a cosψ2 y2 = y3 − a cosψ2, (5.6)

where ψ1 and ψ2 are the orientation of the follower and the lead vehicle respectively.
With all four points P0, P1, P2 and P3 obtained explicitly, a Bézier curve can be
generated by

x(t) =
3∑
i=0

bi,3(t) · xi, t ∈ [0, 1], (5.7)

y(t) =
3∑
i=0

bi,3(t) · yi, t ∈ [0, 1], (5.8)

where bi,3 is given by

bi,n(t) =
n∑
i=0

(
n

i

)
(1− t)n−iti. (5.9)

The variables xi and yi represents the coordinates of the points Pi and t is a contin-
uous parameter which generates the path when t goes from 0 to 1.
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Figure 5.3: A path generated by Bezier curve.
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6
Control system for platooning

There are several different controllers that may be used in order to control the
rovers in this thesis. One being a Linear-Quadratic Regulator (LQR) which is a
model based controller. The tuning process of the LQR is simple and it can be
specified which states are of higher priority to control. An LQR is only viable if the
vehicle model fulfills certain criteria. This section investigates and proves that all
criteria are met by the vehicle model and defines how the LQR is used to control
the rover.

6.1 Stability of the system
It is of interest in control theory to investigate whether a system is stable or not.
The possibility for a state to diverge to infinity might present a case where the sys-
tem is not controllable, thus increasing the difficulty of controlling the system.

The stability condition [36] for a discrete state space representation is fulfilled when
all eigenvalues λi of Ad satisfy

||λi|| ≤ 1, ∀λi, i = 1, 2, ..., n , (6.1)

where n is the dimension of Ad. The matrix Ad, which was derived in (2.21), has
the following eigenvalues obtained by

det(In×nλ−Ad) = 0 =⇒ det

[
λ− 1 0

0 λ− 1

]
= 0 =⇒ (6.2)

=⇒ (λ− 1)2 = 0 =⇒ λ1 = 1, λ2 = 1,

Since all eigenvalues fulfill the condition (6.1), it implies that the system is stable
[36].

6.2 Reachability and Controllability of the sys-
tem

The vehicle model needs to fulfill the reachability and controllability conditions in
order to use an LQR as a controller. Given a system modeled by

χk = Aχk−1 + Buk−1, χ0 =
[
0 0

]T
, (6.3)
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the system (6.3) is reachable if any arbitrary state χN ∈ R2 can be reached from
χ0 =

[
0 0

]T
by a discrete set of inputs {ui : i = 0, 1, ...N−1} where N is an integer

[36].

A system

χk = Aχk−1 + Buk−1, χ0 ∈ R2 (6.4)

is controllable if for any arbitrary initial state χ0 ∈ R2 the system can reach
χc =

[
0 0

]T
by a discrete set of inputs {ui : i = 0, 1, ...c − 1} where c is an

integer [36]. If both of these conditions are fulfilled, then χ is able to reach all
values in R4 given the right inputs.

The reachability condition is fulfilled if

rank R2 = 2, (6.5)

where

R2 =
[
B AB

]
. (6.6)

Inserting the discrete matrices Ad and Bd from (2.21) in (6.6) gives the following
expression

R2 = ts

[
r
2

r
2

r
2

r
2

−r
2L

r
2L

−r
2L

r
2L

]
, (6.7)

The matrix R2 obtained in (6.7) is of rank two, which implies that the system is
reachable [36]. Since reachability implies controllability, all the requirements for
using an LQR are met [36].

6.3 Linear-Quadratic Regulator
A Linear-quadratic controller uses feedback based on the current states to give the
input uk−1 according to

uk−1 = −Kdχk−1, (6.8)

where Kd is a matrix which is dependant on the model matrices Ad and Bd and the
penalty matrices QLQR and RLQR which are tuning parameters. The general idea
to solve for Kd is to minimize the expression

V =
∫ ∞

0
(χTQLQRχ+ uTRLQRu)dt. (6.9)

The matrix Kd can be obtained explicitly by solving the Discrete-time Algebraic
Riccati Equation (DARE) which is explained in more detail in [37] .
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Substituting expression (6.8) for uk−1 in the state space representation gives the
expression

χk = (Ad −BdKd)χk−1. (6.10)

The input uk−1 given by (6.8) will normally result in a decreased value of the states
until it reaches zero. Therefore, what is of interest is to have the errors as states so
that the controller reduces the error to zero given enough time. The error states are
given by the following expression

χe =
[
xe
ψe

]
. (6.11)

The error ψe is defined as the shortest angle between the current heading of the
follower and the desired heading towards the destination, see Figure 6.1. The error
xe is a self defined distance given by

xe = d
(π − |ψe|)

π
(6.12)

where d is the shortest distance between the follower and the desired destination.
It is desired that xe assumes a low value when turned away from the destination.
This is to prioritize the correction of the orientation before the distance. These error
states exist so that the follower will have a similar driving pattern as the lead vehicle
as the follower is approaching the breadcrumb as described in Chapter 5.

d

x
e

e
Breadcrumb

Follower

x
e

d = Shortest Path

Figure 6.1: Schematic illustrating the error states.
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7
Results

In this chapter, the results of the thesis are presented. Firstly, the final tuning of
the LQR is presented in Section 7.1 which will be used in the platooning simulation.
The main result of the LQR is the final tuning matrices QLQR and RLQR defined in
Section 6.3 as well as to give a baseline of the platoon’s performance with a com-
pletely known system. Thereafter in Section 7.2, the platooning result is presented
using measurements based on the GPS sensor in the hardware platform (Appendix
A.4). The result show how well the system can work in theory if the ideal accuracy
of the GPS RTK measurement is achieved.

The Sections 7.3, 7.4 and 7.5 introduces the results of the simulated least squares
TD and DD estimations followed by a full platoon simulation using the developed
TD estimation instead of the ideal measurement. The main result from the TD
and DD estimations (Section 7.3 and 7.4) are the accuracy of the estimated receiver
coordinates as well as the accuracy of the estimated ambiguities. Other things of
importance are to evaluate whether the leader’s estimated position drift would follow
into the GPS RTK estimation, as presented in Section 4.2.5, and how the fixation
of the phase integer ambiguities affect the estimation. Finally the result of the
complete platoon simulation using the developed TD estimation is presented which
shows how well the platoon can function using the proposed solutions of the thesis.

7.1 Performance of the LQR
The simulation presented in Figure 7.1 illustrates platooning with the tuned LQR
controller. The EKF was not included in this simulation. The ground truth states
were assumed to be known for both of the rovers in order to evaluate the performance
of the controller. The performance of the controller is measured in two ways, the
follower’s ability to stay on the leader’s path and its ability to maintain a distance
of 20 cm from the leader (45 cm center-to-center). The controller was tuned until
a reasonably good performance was achieved which can be observed in Figure 7.2.
The finalized tuning parameters of the controller is given by the matrices

QLQR =
[
5000 0

0 1000

]
, (7.1)

RLQR =
[
1 0
0 1

]
. (7.2)
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Figure 7.1: Platooning illustrating the leader’s and the follower’s path.

Figure 7.2: The left plot illustrates the distance between the lead and the following
rovers during the platooning. The right plot illustrates the follower’s deviation from
the leader’s path.

These finalized tuning parameters are used in the results presented in Section 7.2
and Section 7.5.
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7.2 Platooning with ideal GPS RTK
Using the precision given by the GPS receiver sensor (Appendix A.4) for the GPS
measurements, the platoon is successful, seen in Figure 7.3. The errors of the sim-
ulation can be seen in Figure 7.4 which shows a deviation from the track and a
deviation from the desired distance of around a decimeter. This result shows that
the platoon is capable of maintaining the desired distance, while staying close to the
leaders track, with a high accuracy.

Figure 7.3: Simulated platooning path using ideal GPS RTK measurements. The
left simulation shows the ground truth position while the right shows the estimated
position.

Figure 7.4: The distance from the leader and the deviation from path using ideal
GPS RTK measurements.
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7.3 GPS trilateration using TD estimation
The TD estimation, using four satellites and two time epochs, has seven known
variables (see Section 4.2.5) that are required to perform the estimation: The satel-
lite positions xs1 [k], xs2 [k], xs3 [k], xs4 [k], the leader’s position xr1 [k], the previous
estimation xr2 [k− 1], and the initial estimation xr2 [k]0. The satellites’ positions are
assumed to be known as mentioned in Section 3.3. Similarly the leader’s position
(xL) should be irrelevant to the performance of the estimation as the leader’s posi-
tion is only used to calculate the translation (rX , rY , rZ) that the estimated follower
position (xls) is affected by (see Section 4.2.5). The following baseline assumptions
are made during the investigation of the TD estimation result. The leader’s position
used in the estimation will be the true position as the value should be irrelevant to
the result. The initial estimation (xr2 [k]0) is set to the follower’s true position (xF )
with an added noise rXY Z . Similarly, the previous estimation (xr2 [k − 1]) is set to
the true previous position (x[k− 1]F ) of the follower with an additional noise rXY Z ,
with rXY Z = 0.1.

For the baseline assumptions, the standard deviation of the least squares estimation
after 1000 samples (see Figure 7.5 for the X-axis result) becomesσ

X
0
σY0
σZ0

 =

0.3184
0.3162
0.3139

 , (7.3)

see Appendix C.1 and C.2 for Y and Z.

Increasing the noise rXY Z for the previous estimation to the obtained standard
deviation (rXY Z = 0.316) increases the inaccuracy even further toσ

X
1
σY1
σZ1

 =

0.5639
0.5633
0.5642

 , (7.4)

see Appendix C.3, C.4 and C.5.

If we instead increase the noise rXY Z for the initial estimation the result becomes
similar to the first run with σ

X
0
σY0
σZ0

 =

0.3161
0.3000
0.3158

 , (7.5)

see Appendix C.6, C.7 and C.8.

Increasing the noise rXY Z for both the initial estimations and the previous estimation
gives a similar result to when only increasing the noise for the previous estimation,σ

X
1
σY1
σZ1

 =

0.5536
0.5646
0.5533

 , (7.6)
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see Appendix C.9, C.10 and C.11.

From (7.3)-(7.6) it is possible to discern that the estimation accuracy is dependent
on the accuracy of the previous estimation xr2 [k − 1], and not on the accuracy of
the initial estimation xr2 [k]0.

Increasing the noise for 100 iterations and for each iteration using the found deviation
of the last 1000 samples (rXY Z = σX,Y,Zk ) when initializing the initial and previous
estimation shows (Figure 7.6) that the accuracy of the least squares estimation
converges with time to an average standard deviationσ

X
100
σY100
σZ100

 =

1.0232
1.0076
1.0235

 . (7.7)

Similar result is obtained if the noise rXY Z remains constant for the initial estima-
tion and the increasing inaccuracy is only applied to the previous estimation.

Figure 7.5: TD GPS RTK measurement samples, X axis, assuming known leader
position and adding noise onto the previous and initial estimation.

As mentioned previously and in Section 4.2.5, the simulated LQR controller with
EKF and GPS RTK is based on the fact that the measured GPS signal is translated
the same distance as the lead rover’s drift. Instead of using the true leader position
xL[k], as in the baseline, we use the estimated leader position x̂L[k] = xL[k] + b, as
well as an assumed equally drifted previous receiver location xr2 [k−1] = xF [k−1]+b
(b = 10 in X-axis). This results in a similarly translated least squares estimation
as seen in Figure 7.7 (xls = xF [k − 1] + b).

The TD least squares estimation results in a standard deviation ofσ
X
100
σY100
σZ100

 =

1.0232
1.0076
1.0235

 , (7.8)
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Figure 7.6: The standard deviation of X, Y , and Z axis through 100 iterations
where each iteration used the previous iterations uncertainty.

based on Figure 7.6, which used four satellites and two time epochs. Increasing the
number of satellites results in an slightly better overall estimation of the coordinates
(see Figure 7.8). With eight satellites the result isσ

X
100
σY100
σZ100

 =

0.9977
1.0063
1.0047

 . (7.9)

Figure 7.7: X-axis result of 1000 samples using a leader position and previous
estimation translated 10 meters in X-axis.

7.4 GPS trilateration using DD estimation
The DD estimation uses the inbuilt MATLAB function lsqlin instead of the least
square estimation 3.58. This is because pseudoinverse of the G matrix has rounding
errors which causes the search to diverge. Therefore, a strict bound has been set on
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Figure 7.8: Average standard deviation calculated based on 100 iterations of 1000
samples for different amount of satellites.

the search algorithm to not allow it to diverge. This causes the result to be skewed
as certain values cannot be explored.

The baseline of the DD estimation is the same as for the TD estimation with the
addition of a baseline for the phase integer ambiguities, ℵs1s2r1r2, ℵs1s3r1r2 and ℵs1s4r1r2. The
phase integer ambiguities are estimated and therefore needs an initial estimation
ℵs1s2r1r20, ℵs1s3r1r20, and ℵs1s2r1r20. The baseline for the initial estimation of the ambiguities
is set to the true value with an additional noise rℵ = 1.

The DD estimations baseline assumptions results in a standard deviation of the
coordinates σ

X
0
σY0
σZ0

 =

0.7054
0.3989
0.6465

 , (7.10)

after a run of 1000 samples, see Figure 7.9 for X-axis (Appendix C.12 and C.13
for Y and Z). Similarly the phase integer ambiguities has an updated standard
deviation 

σ
ℵs1s2

r1r2
0

σ
ℵs1s3

r1r2
0

σ
ℵs1s4

r1r2
0

 =

0.6557
0.8869
0.9053

 , (7.11)

see Figure 7.10, Appendix C.14 and Appendix C.15.

In Section 3.4 it is mentioned that with a fixed integer ambiguity the accuracy of
the estimation would increase as the carrier phase measurements are accurate with
the exception of the ambiguities. Setting the ambiguities initial estimation noise rℵ
to zero, emulating a fixed ambiguity, gives an updated deviation for the coordinatesσ

X
0
σY0
σZ0

 =

0.2662
0.3052
0.2742

 , (7.12)

see Appendix C.16, C.17 and C.18.

49



7. Results

Figure 7.9: DD GPS RTK measurement samples, X axis, using baseline assump-
tions.

Figure 7.10: DD GPS RTK measurement samples, ambiguity ℵs1s2r1r2, using baseline
assumptions.

Increasing the noise rℵ = 100 to emulate the initial condition with completely un-
known ambiguities increases the inaccuracy drastically,σ

X
0
σY0
σZ0

 =

8.8916
2.7898
7.0257

 , (7.13)

see Appendix C.22, C.23 and C.24.

For the ambiguities the deviations stays similar for the fixed scenario
σ
ℵs1s2

r1r2
0

σ
ℵs1s3

r1r2
0

σ
ℵs1s4

r1r2
0

 =

0.0891
0.0547

0

 , (7.14)
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see Appendix C.19, C.20 and C.21.

For the unknown initial ambiguity scenario the deviation for the ambiguities im-
proves drastically in comparison to the initial noise rℵ,

σ
ℵs1s2

r1r2
0

σ
ℵs1s3

r1r2
0

σ
ℵs1s4

r1r2
0

 =

7.8275
8.2229
9.1117

 , (7.15)

see Appendix C.25, C.26 and C.27.

Repeating the run with fixed integer ambiguities for 100 iterations, and each iter-
ations having an updated noise (rXY Z = σX,Y,Zk and rℵ = σℵk ), results in a final
deviation of σ

X
100
σY100
σZ100

 =

1.1060
0.9154
1.2076

 , (7.16)

as seen in Figure 7.11. The final deviation for the phase integer ambiguity has had
a slight increase with each iteration with a final value of

σ
ℵs1s2

r1r2
100

σ
ℵs1s3

r1r2
100

σ
ℵs1s4

r1r2
100

 =

 0.8225
1.2454
0.93763

 , (7.17)

see Figure 7.12).

Figure 7.11: The standard deviation of X, Y , and Z axis through 100 iterations
of DD estimation where each iteration used the previous iterations uncertainty.

Repeating the run with unknown initial ambiguities for 100 iterations shows a op-
posite trend for the coordinates and ambiguities (Figure 7.13 and 7.14). In the
first iterations the initial estimation of the ambiguities will improve with each iter-
ation and therefore produce a overall better result. Eventually the deviation of the
coordinates and the ambiguities will converge towardsσ

X
100
σY100
σZ100

 =

1.1065
0.9167
1.2085

 , (7.18)
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Figure 7.12: Standard deviation of ambiguity ℵs1s2r1r2, ℵs1s3r1r2 and ℵs1s4r1r2, through 100
iterations of DD estimation where each iteration used the previous iterations uncer-
tainty.


σ
ℵs1s2

r1r2
100

σ
ℵs1s3

r1r2
100

σ
ℵs1s4

r1r2
100

 =

0.8239
1.2449
0.9390

 , (7.19)

same as the run with fixed ambiguities.

Figure 7.13: The standard deviation of X, Y , and Z axis through 100 iterations
where each iteration used the previous iterations uncertainty.

Figure 7.14: Standard deviation of ambiguity ℵs1s2r1r2, ℵs1s3r1r2 and ℵs1s4r1r2, through 100
iterations where each iteration used the previous iterations uncertainty.
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7.5 Platooning with TD GPS RTK
Same simulation as in Section 7.2 but instead of using the ideal GPS RTK measure-
ments the designed least squares TD GPS RTK estimation with eight satellites is
used. The initial estimation (xr2 [k]0) is based on the predicted value in the EKF
(x̂Fk|k−1) and the previous estimated value (xr2 [k− 1]) is based on the previous EKF
estimation (x̂Fk−1|k−1) as explained in Section 4.2.5. The carrier phase measurements
get generated based on the true position of the follower and leader.

Figure 7.15: Simulated platooning path using TD GPS RTK estimation as mea-
surement. The right simulation shows the ground truth position while the left shows
the estimated position.

As observed in Section 7.3 the GPS RTK estimation is highly dependent on the pre-
vious estimation. Assuming unknown initial estimation of the follower’s coordinates
will give an accuracy of σ ≈ 1 for all axes. As we are interested to coordinate the
platoon to keep a distance of 20 cm between the two rovers, the accuracy is insuffi-
cient. Instead the initial coordinates are assumed to be known to keep the accuracy
closer to the achievable accuracy. In addition to this the standard deviation of the
GPS measurement in the noise matrix R in the EKF will be based on the standard
deviation of the baseline simulation in Section 7.3 (σX = σY = 0.316).

The platoon simulation result can be observed in Figure 7.15, where both the sim-
ulated and estimated path is shown. Comparing Figure 7.16 and Figure 7.4 it is
possible to discern that the platoon simulation with the proposed TD estimation
performs worse than the ideal system. This is unsurprising as the accuracy of the
TD estimation is much worse than the hardware sensor.

In Figure 7.17 the follower’s true position translated the same distance as the leader’s
estimation has drifted is plotted together with the GPS RTK estimation. As men-
tioned in Section 7.3 and seen in the result of the TD estimation (Figure 7.7) the GPS
RTK estimation should estimate the translated follower position. In Figure 7.17 it
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Figure 7.16: The distance from the leader and the deviation from path using the
least squares TD GPS RTK estimation as GPS measurement.

is possible to see that the GPS RTK estimation does not successfully estimate the
correct value as it deviates from the translated follower position, but it is not as
inaccurate as the independent estimation result (7.9).

Figure 7.17: The left plot shows the distance from the GPS RTK estimation (blue)
and the translated true follower position (red) to the follower’s true position. The
right plot shows the distance between the leader’s estimatin and its true position.
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8
Discussion

In this chapter, an analysis of the obtained results is made as well as a comparison
between the different results. The methods are of importance when analyzing the
results and will thus also be evaluated and compared with other works. Future
improvements to the position estimation are suggested as well as how to improve
the performance of the platooning.

8.1 Evaluation of results
Two simulations of the platooning were implemented, platooning with ideal GPS
RTK, which can be observed in Figure 7.3, and platooning with GPS RTK using
TD estimation, which can be observed in Figure 7.15. For the implementation of
the ideal GPS RTK, the deviation from the leader’s path was fluctuating between
zero to ten centimeters as seen in Figure 7.4. The other metric used to evaluate the
platooning is the follower’s ability to maintain a distance of 45 cm from its center to
the lead vehicle’s center. The result is an oscillating error of 10 cm which can be seen
in Figure 7.4. For the implementation of the GPS RTK using TD estimation, the
deviation from the leader’s path was significantly larger than using ideal GPS-RTK
values which can be seen in Figure 7.16. The error is also larger for the follower’s
ability to maintain a desired distance from the leader.

The results shown in Figure 7.4 and Figure 7.16 can be improved by tuning the
LQR. It can be tuned towards having a more precise tracking of the leader’s path,
but as a trade off, the ability to follow the desired distance might suffer. The result
as of now uses a simplified model and it is not as representative of reality since
only 2-dimensions is taken into consideration. A more realistic model that takes
3-dimensions into consideration could be derived with the help of [39]. Another
improvement could be to use another tracking method, such as [40], which uses the
nonlinear state in the global frame rather than the local frame. It could also be
possible to improve the platooning result, and more easily allowing the addition of
multiple vehicles, by using a decentralized platoon controller [41, 42].

Regarding the GPS trilateration, it is interesting to note that the least squares esti-
mation is heavily dependent on the previous estimation. Increasing the inaccuracy of
the previous estimation gives an even more inaccurate estimation (see Section 7.3).
This problems shows clearly for both estimations which eventually reaches an even
worse distance measurement than just using pseudorange (Figure 7.6 and 7.11). For
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the DD estimation, having a small deviation to the initial estimation of the ambi-
guities do similarly cause a worse deviation in the next iteration (see Figure 7.11).
In Figure 7.13 it is clear that with the initial estimation of the ambiguities being
completely unknown the accuracy improves with time until they converge to a sim-
ilar result as in Figure 7.11. Having fixed phase integer ambiguities shows that the
overall performance of the DD estimation is similar to the TD estimation with the
DD estimation being slightly more inaccurate.

From our analysis of the code and calculations it seems that the inaccuracies of the
estimations are partly because of rounding errors during the least squares estima-
tion (3.58) and (3.52). Another reason for the inaccuracies of the estimations is that
we use a simple linear least squares algorithm which does not perform an effective
search. An alternative to the simple estimation method would be conditional least
squares estimation as seen in [43] which also estimates the DD system. The con-
ditional least squares estimation defines bounds of the search space which creates
a more effective search. Similarly, integer least squares estimation should be used
for the estimation of the phase integer ambiguities as they are integers [43]. These
search issues cause greater problems for the DD estimation as a wrongful initial esti-
mation of the phase integer ambiguities adds additional inaccuracies to the position
estimation.

Based on the independent result of the GPS trilateration the least squares esti-
mation is clearly not enough to give an accurate estimation if the system has an
unknown initial position (as explained in Section 7.5). In theory, without rounding
errors for the least squares estimation, it should be possible to run the estimation
further to achieve a more accurate result with the downside of adding computations.
Combining this with a more effective search algorithm would both improve the re-
sult and make the estimation more effective. Looking at the difference between the
individual result of the TD estimation and the DD estimation (Figure 7.6 and 7.11)
it is clear that the deviation of the DD estimation is slightly worse than the TD
estimation if it has known initial ambiguities. This is because the DD estimation
has additional unknowns that it has to estimate. It is not clear why the deviation
of the DD estimation is worse in X and Z axis in comparison to Y axis when using
unknown ambiguities (see (7.13)). We believe this has to do with the usage of the
MATLAB function lsqlin instead of (3.58), which constraints the search space and
causes the result for some of the axes to deviate.

The previously mentioned solution of removing the rounding errors should improve
the TD estimation result but not comparatively for the DD estimation. This is
because the phase integer ambiguity estimation has an inaccuracy which the im-
plemented least squares simulation cannot solve, which is the inaccuracy in the
ambiguity estimation that is caused by the correlation between the ambiguities, as
all depend on the ambiguity (ℵs1r1r2) of the first SD system (3.20). This inaccuracy
is only removable by decorrelating the estimations. This is done in a method called
Least squares AMBiguity Decorrelation Adjustment (LAMBDA), which enables the
search for the estimations to be much more efficient while also increasing precision
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[44]. The LAMBDA method introduces an ambiguity transformation Z∗ that decor-
relates the phase integer ambiguities and simplifies the estimation search [44]. The
LAMBDA method also makes use of more complex search algorithms which are
used on the transformed ambiguity problem which further improves the result. [44]
shows that decorrelating the ambiguities improves the result and efficiency in the
estimation, but it merely states which qualities the ambiguity transformation needs,
not the exact method to use. There are different methods that can be used to con-
struct the ambiguity transformation, three such methods are the integer Gaussian
decorrelation [45], inverse integer Cholesky decorrelation [46] and Lenstra-Lenstra-
Locacs decorrelation [47]. In [48] it is shown that all three methods are usable for
the ambiguity transformation but that both the inverse integer Cholesky decorrela-
tion and the Lenstra-Lenstra-Lovacs decorrelation performs better than the integer
Gaussian decorrelation.

Moving from the independent trilateration result and looking at the complete pla-
toon simulation using the TD estimation it is clear that the estimation has much
less variance than previously. Firstly it is dependent on the fact that the system
starts with known initial coordinates. Secondly, for following epochs the difference
between the wanted estimation (4.37) and the prediction x̂Fk|k−1 is much smaller
than the difference between the randomized initial estimation (xr[k]0) and the true
position (xF ). Another factor is the improved accuracy of the previous estimation
x̂k−1|k−1 in comparison to randomizing the previous estimation based on the noise
rXY Z . These three factors are the main reason for the TD solution to have a much
better result than in the independent simulations. Another important factor is that
the vehicle model is not representative of the hardware platform. It has not been
possible during this project to measure the performance of just the vehicle controller
on the hardware platform to use as a reference in the simulations. Instead we have
assigned random noise to the different states which might be less than in reality.
Having a less noisy model means that the EKF can trust the model more (lower
values in Q) and will therefore not be as affected by bad sensor data. The reason
why the TD estimation was used instead of the DD estimation is that the TD es-
timation has a better overall result and that the simulations include no cycle slips
which means that the TD estimation is applicable.

The hardware platform developed in this thesis has been tested with the proposed
solutions without GPS receiver. It has been found that the platform is capable of
using the developed methods without issue. These tests are not presented in the
thesis as we did not prepare any way of measuring the rovers ground truth. This
means that we are incapable of evaluating the results beyond observing that the
methods are executable. Our recommendations for the evaluation of the hardware
platform would be to add an identification marker (e.g. QR-code) on each rover,
and film the rovers during a run. If the camera is in a known stationary position
it should be possible to calculate the rovers ground truth position and thereafter
evaluate the performance.
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8.2 Conclusion

Based on the obtained results, it is possible to have a working platoon with ’blind’
vehicles given that the relative position measurement is accurate. The complete
simulation result has been made with a simplified vehicle model and controller, and
shows that the following vehicle will not deviate more than a few decimeters from
the desired distance. This result can be improved, and made more realistic, by im-
plementing a more complex vehicle model and controller.

Our simulations of GPS RTK shows that an accurate position estimation can be
achieved but even this estimation drifts given indefinite simulation time. To im-
prove the GPS RTK estimation, mainly two approaches should be taken. Firstly,
the simple least squares estimation should be disregarded and a more complex esti-
mation method should be used that encapsulates the known constraints and bounds
in the estimation, such as conditional least squares estimation. Secondly, the phase
integer ambiguities should be decorrelated with an ambiguity transformation as with
the usage of the LAMBDA method, to further improve the result.

For the implementation of the method in practice the TD estimation can only be
used to check when a cycle slip is detected as it assumes no slip can occur. This
means that when the slip occurs the fixed phase integer ambiguity estimation is no
longer applicable. The DD estimation can be implemented in practice but needs a
more complex estimation solution than just a simple least squares estimation as the
DD estimation with unknown initial ambiguities are highly inaccurate. Although
not tested in practice, it is theoretically possible to broadcast the needed carrier
phase measurement and satellite navigation messages between two unrelated vehi-
cles to calculate an accurate relative position.

For future work of the GPS RTK estimation, our recommendation is to either focus
on implementing a more complex estimation method together with the ambiguity
transformation to decorrelate the phase integer ambiguities or implement the found
solutions in practice to observe the differences between theory and reality. Besides
evaluating the overall result it would be of interest to evaluate the modularity of
the solution between several vehicles in the platoon, or other vehicle coordination
scenarios.

Another area that we recommend investigating is the usage of a decentralized pla-
toon controller. As some information is already shared with the GPS RTK estima-
tion, it might be possible to use a decentralized platoon controller without much
additional information. This could be used to both more easily model the system
for multiple vehicles and improve the platoon accuracy.

It is also of interest, as the result of the combined system with the TD estimation
and EKF shows a remarkable improvement in comparison to the stand-alone esti-
mation results, to evaluate how a complete integration of the GPS RTK estimation
into the EKF would change the result (similarly done in [23]). For DD estimation
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one could add the ambiguities to the motion model that gets estimated through the
filter instead of through the least squares estimation.

To fully evaluate whether the proposed solutions in this thesis could be implemented
in practice, requires a more in-depth study of the GPS RTK solution, the vehicle
model, and the controller. Specifically focusing on making the system representative
of reality.
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A
Hardware

This section describes the hardware which was used to build the rover in this thesis.
It explains the functionality of each component and how they are used to make the
platoon function. A circuit diagram is presented at the end to illustrate how the
components are connected.

A.1 Rover

Figure A.1: The four wheel driven rover ’Skeleton Bot’ [49]. Image taken from
[49].

The rovers used in this thesis are called "Skeleton Bot - 4WD Hercules mobile robotic
platform" [49]. The dimensions for this model are 242×207×94 mm and it weights 3
kg with a wheel diameter of 8.5 mm. The vehicle is equipped with four motors, one
motor mounted to each wheel. A motor controller ”Hercules Dual 15A 6-20V Motor
Controller” [49] is used to control the motors so that different wheel speeds may
be achieved. This particular motor controller cannot supply four different inputs to
each wheel instead the left and right side are controlled independently.

The Skeleton Bot is differentially steered, where the steering is achieved by having
different velocities on each side of the vehicle. The advantage of differential steering
is the ability to take extremely sharp turns. The disadvantage, however, is the
inaccuracy of the turns since the wheel speeds on each side has to be accurate in
order to take the desired turn.
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A.2 Inertial Measurement Unit
An Inertial Measurement Unit (IMU) is an electronic component which composes of
a combination of accelerometer, gyroscope, and magnetometer. An IMU that con-
sists of all three components measures the mounted body’s specific force, angular
rate and the magnetic field surrounding the body respectively. The IMU used in
this master thesis is of the model BNO055 [50] and has 9 degrees of freedom. This
means that the IMU is capable of measuring the specific force, angular rate, and
magnetic field in all three axes.

An IMU is mainly used in navigation systems for instance in airborne or ground
vehicles. The measurement unit is particularly useful in environments where other
external sensors (like GPS) are not able to locate the vehicle. An IMU is an internal
sensor located in the vehicle which is able to estimate the vehicles position and
orientation by integrating the measurement data. The estimation is given by

x =
∫

(
∫
ẍdt)dt, y =

∫
(
∫
ÿdt)dt, z =

∫
(
∫
z̈dt)dt, (A.1)

ϕ =
∫
ϕ̇dt, θ =

∫
θ̇dt, ψ =

∫
ψ̇dt. (A.2)

where x, y, z positions are obtained by integrating the data from the accelerometer
twice and ϕ (roll), θ (pitch) and ψ (yaw) orientations are obtained by integrating
the data from the gyroscope.

The way how an IMU is typically being used to estimate position and orientation
leads to problems where the measurement errors are getting accumulated with time
because of integration [51]. This leads to drift which is an increasing error between
the measured orientation or position of the vehicle compared to the actual value.
The drift can be negated with the combined use of other sensors such as speed
encoders and GPS [52].

A.3 Speed encoder
A speed encoder (also called rotary encoder) is a sensor used for measuring the
speed of a wheel. In this thesis, the speed encoders are inbuilt in two out of the
four motors, one on each side of the vehicle. It measures the angular velocity of
the motor which can be translated to a linear velocity of the wheel mounted on the
motor according to

vwheel = rwheel · ω (A.3)

where vwheel is the linear velocity of the mounted wheel, rwheel is the wheel radius
and ω is the angular velocity of the motor.

The rover considered in this project is a differentially steered vehicle which means
that two speed encoders are necessary since the vehicle may have different velocities
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on each side. The angular velocity from the speed encoders is used together with
the measurements from the IMU and GPS to estimate the vehicle states.

A.4 Global Navigation Satellite Systems
A Global Navigation Satellite Systems (GNSS) works through the use of satellite
transmitted information that gets received and decoded by a GNSS receiver. The
decoded information from multiple different satellites can then be used to calculate
certain information, e.g. position, velocity, and heading (see Section 3.3 for GPS
trilateration). In this thesis, Global Positioning System (GPS) is used, and it is one
of the most common GNSS in the world [14].

There are currently only four available GNSS in the world: GPS made by the United
States, GLONASS made by Russia, BeiDou made by China, and lastly, Galileo made
by the European Union [14]. Although the systems were developed separately the
principle behind their use are the same, the difference lies in how the data is trans-
mitted and decoded. As the accuracy and coverage of a GNSS are dependent on
the number of satellites in orbit, (see Section 3) an important difference between
the GNSS is the number of available satellites. Currently, GPS has 31 satellites in
orbit, GLONASS 25, BeiDou 28, and Galileo 22 [14].

The GPS receiver used in this project is the GPS-RTK2 Board - ZED-F9P [53]
which not only decodes the information for navigation but is also able to deliver
raw GPS data [24], e.g. pseudorange signals and carrier phase, which is used for our
self-developed trilateration. It also allows the usage of Real-Time Kinematic (RTK)
(see Section 3.4) which uses the cooperation between receivers to allow high relative
accuracy.

A.5 Microcontroller
The microcontroller, Arduino Due [54], is used in this rover due to its ease of im-
plementation and its relatively high operating frequency at 84 MHz in comparison
to other Arduinos.

Microcontrollers are normally used in embedded systems, electronic devices or au-
tomatic processes such as autonomous vehicles. The microcontroller in this project
serves as the central electrical control unit in the vehicle which collects all the sen-
sor data through input peripherals and sends output signals through the output
peripherals.

A.6 Bluetooth
Bluetooth is a wireless communication standard which is used to exchange data over
short distances. It uses short wavelengths (radio waves) from 2.400 to 2.485 GHz [55]
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to exchange data between other Bluetooth devices. The Bluetooth devices used in
the rover is called ’SparkFun Bluetooth Mate Silver’ [56] which has a communication
range of 20 m. The Bluetooth device is used for three purposes in this thesis,
first to manually control the lead vehicle from an application, second to exchange
information between the rovers to determine the optimal control input to the motors
so that platooning can be achieved. Thirdly is the communication from the rovers
to a separate computer to acquire the data for further analysis after a run.

A.7 Circuit diagram

Figure A.2: Simplified schematic of the electrical wiring of the complete rover.
Power is defined in red while other connections are defined in black.

In Figure A.2 the overall electronic wiring can be seen. This schematic includes all
the different electrical components that are included in the rover, as well as how they
are connected. An important observation is the available communications protocol
between the different components. This is important as it defines the limits for the
wiring and programming.
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B
Filter parameter estimation

This chapter describes the method of estimating the filter parameter covariance
matrices Q and R for the sensor fusion filter.

B.1 Filter parameter estimation for the motion
covariance matrix

In order to obtain the standard deviation noise matrices Q and R presented in
Section 4.2.3, the variance of the noise rk and qk−1 have to be assigned for the
simulations. As the true motion noise of the hardware used is unknown, a motion
noise was added directly onto the vehicle model in the simulations. The motion
noise qk−1 added to the velocity vk and yaw rate ψ̇k were set arbitrarily to

qk−1 =
[
0.01
0.01

]
. (B.1)

This means that the tuning of the Q matrix is unnecessary as the noise of the model
is directly known and does not have to be found. However, what is of interest in
this thesis is the effect of the relative position measurement on the platoon. Hence
a different motion noise matrix where initialized,

Q =
[
4 · 10−4 0

0 4 · 10−4

]
, (B.2)

to reduce the performance of the EKF and more clearly observe the effect of the
GPS RTK measurement onto the platoon. The values were initialized arbitrarily
with the only focus being to not know the true performance of the model.

The variance for the measurement noise was assigned based on the sensor charac-
teristics which is investigated in the next Section B.2.

B.2 Sensor characteristic analysis
The standard deviation noise for each sensor is of interest in order to estimate the
noise covariance matrix R. This analysis is carried out by taking a sample size of
data for each sensor and calculate the standard deviation σ for each one.
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For the first test, the rovers are initialized and placed stationary in a horizontal plane.
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-3 Sensor data acquisition for gyroscope during Idle

Figure B.1: Sensor data obtained from the gyroscope (Appendix A.2).

The sensor data presented in Figure B.1 is the acquired gyroscope data. The mean
ȳgyro and the standard deviation σgyro of the gyroscope data is obtained by

ȳgyro = 1
n

n∑
i=1

yi = 1.6647 · 10−4, (B.3)

σgyro =
√√√√ 1
n

n∑
i=1

(yi − ȳ)2 = 1.2 · 10−3, (B.4)

where yi is i-th the sample data illustrated in Figure B.1. The gyroscope is mostly
subjected to noise with a negligible offset.

The sensor data for the inbuilt orientation sensor is presented in Figure B.2. The
orientation sensor is a combination of a magnetometer and a gyroscope. The mean
and the standard deviation for the data acquired in Figure B.2 is given by

ȳorientation = 1
n

n∑
i=1

yi = 6.5 · 10−3, (B.5)

σorientation =
√√√√ 1
n

n∑
i=1

(yi − ȳ)2 = 5.6 · 10−3. (B.6)

The data is only affected by offsets and is not subjected to Gaussian white noise.
This is because the data is filtered by an inbuilt function in the IMU.

The data acquisition for the GPS RTK is omitted from this section because the GPS
sensor (see Appendix A.4) wasn’t successfully integrated in the hardware platform.
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Figure B.2: Sensor data obtained from the orientation sensor (Appendix A.2).

Therefore, the standard deviation is directly taken from the datasheet of the GPS
[57] which is equal to

σGPSrtk = 0.015. (B.7)

Assuming the standard deviation of equation (B.7) being equally distributed in the
X and Y axis, the standard deviation for the X position σX and the Y position σY
is given by

σ2
GPSrtk = σ2

X + σ2
Y , (B.8)

σY = σX = 0.015√
2
. (B.9)

The data acquisition of the wheel speed sensors is introduced in Appendix A.3. It
counts the number of pulses in a time interval which is then translated to an angu-
lar velocity. These sensors are not subjected to Gaussian normal distributed noise
but can count different pulses for the same velocity which acts as disturbance. The
rover has to be in motion in order to obtain pulses which means the sensor data
acquisition cannot be done while idling.

The experiment is performed by giving a constant input u0 to the motors and log the
output data from the wheel speed sensors. The data for this experiment is presented
in Figure B.3 for the left wheel speed sensor and in Figure B.4 for the right wheel
speed sensor. At around sample 180, both the left and right wheel speed sensors
produces a measurement of zero. It is unclear exactly why this occurred, but we
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believe the pulses where not correctly measured by the microcontroller. This loss of
measurement is accounted for in the calculation of the sensor accuracy.
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Sensor data acquisition for left wheel speed sensor

Figure B.3: Sensor data obtained from the left wheel speed sensor (Appendix A.3).

The standard deviation for the wheel speed sensors are given by

ȳωl
= 1
n

n∑
i=1

yi = 3.8524, (B.10)

σωl
=
√√√√ 1
n

n∑
i=1

(yi − ȳ)2 = 0.6082. (B.11)

and

ȳωr = 1
n

n∑
i=1

yi = 3.8826, (B.12)

σωr =
√√√√ 1
n

n∑
i=1

(yi − ȳ)2 = 0.5467. (B.13)

With the standard deviation noise obtained for all of the sensors, the matrices RL

and RF presented in Section 4.2.3 is set equal to the variance of each sensor

RL =


0.60822 0 0 0

0 0.54672 0 0
0 0 0.00562 0
0 0 0 0.00122

 , (B.14)
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Sensor data acquisition for right wheel speed sensor

Figure B.4: Sensor data obtained from the right wheel speed sensor (Appendix
A.3).

RF =



0.0152
√

2 0 0 0 0 0
0 0.0152

√
2 0 0 0 0

0 0 0.60822 0 0 0
0 0 0 0.54672 0 0
0 0 0 0 0.00562 0
0 0 0 0 0 0.00122


. (B.15)

These matrices are used in the simulations when generating the results.
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C
Figures for results

This part of the Appendix includes figures that are referenced in the result. These
figure are mainly added to give a better understanding to the result but are not
necessary to show the result the thesis focuses on.

C.1 Results for TD

Figure C.1: TD GPS RTK measurement samples, Y axis, assuming known leader
position and adding noise onto the previous and initial estimation.

Figure C.2: TD GPS RTK measurement samples, Z axis, assuming known leader
position and adding noise onto the previous and initial estimation.
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Figure C.3: TD GPS RTK measurement samples, X axis, assuming known leader
position. Adding noise onto the previous estimation with a standard deviation based
on the previous found σX0 = 0.3184, σY0 = 0.3162 and σZ0 = 0.3139.

Figure C.4: TD GPS RTK measurement samples, Y axis, assuming known leader
position. Adding noise onto the previous estimation with a standard deviation based
on the previous found σX0 = 0.3184, σY0 = 0.3162 and σZ0 = 0.3139.

Figure C.5: TD GPS RTK measurement samples, Z axis, assuming known leader
position. Adding noise onto the previous estimation with a standard deviation based
on the previous found σX0 = 0.3184, σY0 = 0.3162 and σZ0 = 0.3139.
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Figure C.6: TD GPS RTK measurement samples, X axis, assuming known leader
position. Adding noise onto the initial estimation with a standard deviation based
on the previous found σX0 = 0.3184, σY0 = 0.3162 and σZ0 = 0.3139.

Figure C.7: TD GPS RTK measurement samples, Y axis, assuming known leader
position. Adding noise onto the initial estimation with a standard deviation based
on the previous found σX0 = 0.3184, σY0 = 0.3162 and σZ0 = 0.3139.

Figure C.8: TD GPS RTK measurement samples, Z axis, assuming known leader
position. Adding noise onto the initial estimation with a standard deviation based
on the previous found σX0 = 0.3184, σY0 = 0.3162 and σZ0 = 0.3139.
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Figure C.9: TD GPS RTK measurement samples, X axis, assuming known leader
position. Adding noise onto the initial and previous estimation with a standard
deviation based on the previous found σX0 = 0.3184, σY0 = 0.3162 and σZ0 = 0.3139.

Figure C.10: TD GPS RTK measurement samples, Y axis, assuming known leader
position. Adding noise onto the initial and previous estimation with a standard
deviation based on the previous found σX0 = 0.3184, σY0 = 0.3162 and σZ0 = 0.3139.

Figure C.11: TD GPS RTK measurement samples, Z axis, assuming known leader
position. Adding noise onto the initial and previous estimation with a standard
deviation based on the previous found σX0 = 0.3184, σY0 = 0.3162 and σZ0 = 0.3139.
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Figure C.12: DD GPS RTK measurement samples, Y axis, assuming known leader
position and previous estimated follower position. Adding noise onto the previous
and initial estimation with a standard deviation of 1 cm.

Figure C.13: DD GPS RTK measurement samples, Z axis, assuming known leader
position and previous estimated follower position. Adding noise onto the previous
and initial estimation with a standard deviation of 1 cm.

Figure C.14: DD GPS RTK measurement samples, ambiguity ℵs1s3r1r2, assuming
known leader position and previous estimated follower position. Adding noise onto
the previous and initial estimation with a standard deviation of 0.01.
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Figure C.15: DD GPS RTK measurement samples, ambiguity ℵs1s4r1r2, assuming
known leader position and previous estimated follower position. Adding noise onto
the previous and initial estimation with a standard deviation of 0.01.

C.2 Results for DD

Figure C.16: 1000 DD GPS RTK measurement samples, X axis, assuming known
leader position and previous estimated follower position. Having known initial esti-
mation of the ambiguities.

Figure C.17: 1000 DD GPS RTK measurement samples, Y axis, assuming known
leader position and previous estimated follower position. Having known initial esti-
mation of the ambiguities.
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Figure C.18: 1000 DD GPS RTK measurement samples, Z axis, assuming known
leader position and previous estimated follower position. Having known initial esti-
mation of the ambiguities.

Figure C.19: 1000 DD GPS RTKmeasurement samples, ambiguity ℵs1s2r1r2, assuming
known leader position and previous estimated follower position. Having known
initial estimation of the ambiguities.

Figure C.20: 1000 DD GPS RTKmeasurement samples, ambiguity ℵs1s3r1r2, assuming
known leader position and previous estimated follower position. Having known
initial estimation of the ambiguities.
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Figure C.21: 1000 DD GPS RTKmeasurement samples, ambiguity ℵs1s4r1r2, assuming
known leader position and previous estimated follower position. Having known
initial estimation of the ambiguities.

Figure C.22: 1000 DD GPS RTK measurement samples, X axis, assuming known
leader position and previous estimated follower position. Having completely un-
known initial estimation of the ambiguities.

Figure C.23: 1000 DD GPS RTK measurement samples, Y axis, assuming known
leader position and previous estimated follower position. Having completely un-
known initial estimation of the ambiguities.
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Figure C.24: 1000 DD GPS RTK measurement samples, Z axis, assuming known
leader position and previous estimated follower position. Having completely un-
known initial estimation of the ambiguities.

Figure C.25: 1000 DD GPS RTKmeasurement samples, ambiguity ℵs1s2r1r2, assuming
known leader position and previous estimated follower position. Having completely
unknown initial estimation of the ambiguities.

Figure C.26: 1000 DD GPS RTKmeasurement samples, ambiguity ℵs1s3r1r2, assuming
known leader position and previous estimated follower position. Having completely
unknown initial estimation of the ambiguities.
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Figure C.27: 1000 DD GPS RTKmeasurement samples, ambiguity ℵs1s4r1r2, assuming
known leader position and previous estimated follower position. Having completely
unknown initial estimation of the ambiguities.
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