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Alice Deimante Neimantaite
Department of Electrical Engineering
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Abstract
Alzheimer’s disease results from pathological changes and degeneration of neurons
in the brain. Pathological hallmarks of the disease include accumulation of amy-
loid beta, Aβ (a small peptide), as well as defects in nerve cell endocytosis and
the trafficking of endosomes. It is known that uptake and/or overproduction of
Aβ peptides in endosomes result in intraneuronal accumulations that could drive
endosome enlargement. The aim of this Thesis is to develop particle tracking soft-
ware applicable for analysis of the relationship between endosome transport and Aβ
trafficking in Alzheimer’s disease cell models. The work involved systematic inves-
tigation and testing of suitable particle tracking methods using simulated as well
as real fluorescence microscopy data; particular focus was on identifying methods
for particle localization and trajectory linking. The best performing method was
applied on live cell imaging data of Aβ and lysosomes (which are the destination for
maturing endosomes in the living cell) to obtain their trajectories; moreover time-
dependent effects on Aβ mean displacement and velocity were also deciphered from
the trajectories. The imaging data was acquired over 24 hours post addition of Aβ
to lysosome-labelled cells. Further, a particle trajectory correlation analysis method
was established to explore co-movement of Aβ and lysosomes. The results show that
the fraction of Aβ trajectories correlating with lysosome trajectories increased with
time, consistent with their biological colocalization. This result was also in good
agreement with object-based colocalization analysis on the same data set. Alto-
gether, the results suggest that particle tracking analysis and trajectory correlation
could be a promising tool to understand the biological basis of Aβ accumulations in
Alzheimer’s disease.

Keywords: Alzheimer’s disease, amyloid beta, endosomal pathway, particle tracking,
dynamical colocalization
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1
Introduction

Alzheimer’s disease is a growing threat to society as the probability to get the dis-
ease increases with age [1], and people are predicted to live longer. At the moment,
there is no cure to the disease as its cause and machinery are not completely under-
stood. [2] People are not only at risk of getting Alzheimer’s at old age but also as
early-onset dementia (before 60-67 years old), which is typically inherited (due to
genetic mutations). [3] The disease is progressive, from relatively mild cognitive im-
pairment, to full dementia, personality changes and loss of ability to perform simple
tasks like having a conversation. [4]

Alzheimer’s disease results from pathological changes and degeneration of the brain.
[5] Pathological hallmarks of the disease include accumulation of amyloid beta, Aβ (a
small peptide), reduced synaptic function, tau protein aggregation and dysfunctional
endocytosis in nerve cells. [6, 7] A comparison between a healthy and Alzheimer’s
diseased nerve cell can be seen in Figure 1.1. Endosomes are membrane-enclosed
organelles that are part of a machinery that all cells use to take up, sort, transport,
deliver and degrade proteins and other macromolecular cargoes. This process can
be described as a pathway which starts with uptake (endocytosis) and subsequent
inward transport of cargo to early endosomes, late endosomes and finally lysosomes.
[8] The early endosome is also known to be a production site of the Aβ peptide. It
is known that uptake and/or overproduction of Aβ peptides in endosomes lead to
intraneuronal accumulation and endosome enlargement. This is one of the earliest
pathological alterations to the Alzheimer’s disease brain. [7] However, very little is
known about how the Aβ peptide is trafficked through different endosomes. It is
therefore of interest to examine the relation between the endosomes and Aβ peptides
in models that can mimic Alzheimer’s disease conditions. This could contribute to
the knowledge of Alzheimer’s machinery. The relation between Aβ and the endoso-
mal pathway is schematically highlighted in Figure 1.2.

Particles like Aβ peptides, structures of cells and their dynamics can be imaged us-
ing fluorescence microscopy. [9] However, their relationships and dynamical changes
are difficult to detect by mere observance of microscopy images and movies. Image
analysis methods are advantageous for this purpose. For the specific application at
hand, the image analysis method particle tracking can be exploited to monitor Aβ
and endosomes in time and space on single particle basis. The information obtained
from particle tracking can be further analysed by correlation analysis methods to
add quantitative information of colocalization and co-movement of the particles.
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1. Introduction

Healthy nerve cells

AD nerve cells

Aß

Tau

   Aß production

   Aß clearence

Affected endocytosis

   Synaptic function

   Tau aggregation

Figure 1.1: An overall comparison of a healthy nerve cell and a nerve cell with Alzheimer’s
disease.

Figure 1.2: Investigation focus of Alzheimer’s disease in the project: the correlation between
endosome transport and Aβ trafficking.

1.1 The project

This project aims to develop particle tracking software applicable for analysis of the
relationship between endosome transport and Aβ trafficking in Alzheimer’s disease.
As many different methods for particle tracking in biology and for other applications
have been developed, the focus of this project is to analyse and test which one will
be best suited this application. Performance tests will be done on both experimen-
tal and simulated data; realistic data sets for the latter will also be developed. In
order to analyse the relation between the particles of interest from obtained particle
trajectories, a method for correlation will be developed building on the tracking
method that is judged to perform best for this project. The aim of the correla-
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1. Introduction

tion method is to determine how much and for how long endosomes and Aβ move
together, meaning a measure of correlation in space and time.

1.1.1 Limitations
• As there is a broad set of particle tracking methods, all cannot be evaluated
• Online available and locally developed methods will therefore be applied
• The methods/code used will be adapted to suit our specific data
• The adaptation will be done as good as possible within the time frame
• Simulated data will only be created to mimic our specific data and the meth-

ods’ performance test will be done on that specific simulation, meaning that
the performance results are specific for the application and are not general for
all types of data

3
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2
Background

2.1 Particle tracking
Particle tracking is applicable in a variety of applications, originally created for mil-
itary and aerospace tracking purposes, and now including live-cell microscopy. [10]
There is a huge amount of particle tracking methods and several analyses have been
made to find the optimal one(s).[11] The main factor showing from both objective
and less objective comparisons is that the optimal method depends on the specific
application, even though there are methods performing overall better than others.

Particle tracking can be divided into two steps, namely the identification of par-
ticles and association of the particles over time. [10] The two steps will be referred
to as localization and linking in this report.

2.1.1 Localization
The end result of localization is in the form of x-and y-coordinates of the center po-
sitions of the found particles. To end up there, several approaches can be used and
in this report they are divided into two classes, namely the algorithmic approach
and the data driven approach, as their methodology is quite deviating. One could
also make a division between single particle and multiple particle localization, how-
ever as in the project considered image data includes multiple particles, methods for
multiple particles localization or general methods that can be used for both single
and multiple particles will be the mainly considered ones.

The difference between algorithmic and data driven approaches is that algorith-
mic methods are more specific as one has to e.g. choose the optimal parameters for
the algorithm to perform well. Data driven approaches (e.g. deep learning) are more
autonomous and don’t require manual parameter input, but an as big as possible
set of training data with known ground truth is required for good performance. [12]

2.1.2 Linking
The method of linking is usually applied on the localization results i.e. the lo-
calised particles centers over an image time series (movie). The end result of the
method is estimated trajectories of the particles over the time interval. This can be
done in several ways. The approaches can be divided into deterministic and prob-
abilistic methods. The deterministic approaches are variants of a nearest neighbor

5



2. Background

association i.e. the particles are assumed to move within their neighborhood, while
probabilistic approaches are based on hypothesis association, meaning that the tra-
jectories are estimated making one or several hypothesis of where a particle could
move and choose the one with the highest probability in the latter case of several
hypothesis.

2.2 Correlation analysis
Correlation analysis in the context of this application (fluorescence image data) is
a form of a colocalization analysis. Colocalization analysis is typically performed
for investigation of how well the localised particles in e.g. two images correlate, it
is thereby a spatial analysis. In order to analyse co-movement, the temporal aspect
needs to be included, and this type of analysis is often called dynamical colocaliza-
tion analysis.

In dynamical colocalization, one investigates the positioning overlap of particles
of interest (endosomes and Aβ in our case) over time. This has been done in several
ways and a division of three classes of methods can be made: (1) pixel-based dynam-
ical colocalization, (2) object-based dynamical colocalization, (3) particle tracking
and trajectory based correlation.[13]

In the first class one correlates the locations of the identified pixels as particle
pixels between each pair of images (in the present case this corresponds to pairs of
endosome and Aβ image pixels). The second class is similar to the first one, however
not all pixels are compared between each other but all of the found objects, which in
this context are the identified particle centers. Class 3 first utilises particle tracking
on the time serie images of the particles and then analyse the correlation between
particles on the resulting trajectories.

The resulting correlation in all three classes can be quantitatively calculated in
different ways; a common measure is Pearson’s correlation coefficient. It gives the
amount of correlation between two time evolved variables [14] (trajectories in this
context).

2.3 Previous work
The relationship between endosomes and Aβ has been previously investigated bio-
logically and have shown that Aβ are internalised in the cell using endocytosis.[15]
The correlation between the rest of the endosomal pathway and Aβ has however not
been investigated thoroughly, as mentioned previously. Above mentioned methods
will be utilized to make the investigation in this project.

Particle tracking and trajectory based colocalization analysis have previously been
used in similar applications where one is interested in the relationship between bi-
ological particles. This method has shown best performance among the mentioned

6



2. Background

dynamical colocalization methods. [13] The colocalization analysis applied on the
trajectories has been done in different ways. In [16] the obtained trajectory of a
particle of interest has been locally colocalised with the localization of the other
particle of interest. This method however does not prove that the particles are actu-
ally moving together and not just crossing each other by a coincidence at that time
point. [17] A different method instead seeks to correlate trajectories spatially [13],
where a relation between particles is established if the correlation coefficient of their
trajectories is above a certain value. This is however a global measure, which does
not take into account the possibility of shorter interaction of the trajectories. The
method described in [17] includes both spatial and local correlation of trajectories,
by calculating the correlation on smaller windows of the spatially paired trajecto-
ries. A similar approach to this will be applied on the particles of interest (Aβ and
endosomes) in this thesis work.

7



2. Background

8



3
Methods

3.1 Overview
An overview over the whole project can be seen below in Figure 3.1. It shows in
which order the different parts of the project were done and what was needed to be
done for each part. The upcoming subsections consist of more detailed descriptions
of how the different parts were accomplished.

Investigation of data

Simulation of test data

Localization methods suiting the 

data

Performance testing on simulated 

data
Performance testing on real data

Best performing localization 

method

Simulation of test data

Linking methods suiting the data

Performance testing on simulated 

data
Best performing linking method

Trajectories of the particles of 

interest

Creation of a correlation analysis 

method

Correlation analysis of the 

particles of interest
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Figure 3.1: Overview of the project.

3.2 Data acquisition
Two types of data have been obtained: simulated data was created as part of the
project and experimental data from live cell imaging was collected at the department
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3. Methods

where the project was done. Data in the context of this project means images and
movies of Aβ and endosomal dynamics.

3.2.1 Experimental data
The experimental data was collected through a collaboration with a PhD student.
The data was acquired in parallel with the particle tracking method to obtain the
best suited data to draw conclusions about the particles of interest (Aβ and endo-
somes). The upcoming description (Section 3.2.1.1) of how the data was collected
is written by the PhD student who performed the method.

3.2.1.1 Sample preparation and fluorescence imaging

The lyophilized Aβ peptide powders were dissolved in hexafluoro-2-propanol to dis-
rupt any aggregates and monomerize the peptide. The solutions were vortexed
briefly and aliquoted at 4°C. The solvent in each aliquot was evaporated at 37°C
for 60min using a RVC 2–18 CD Rotational Vacuum concentrator (Martin Christ,
Germany). The remaining peptide films were snap frozen in liquid nitrogen and kept
at 80°C until further use. For concentration determinations the peptide film was
dissolved in 1% ammonium hydroxide (v/v) and the absorption of the dye label was
measured on a Cary 4000 UV-Vis Spectrophotometer (Agilent Technologies, Santa
Clara, CA, US). An extinction coefficient of 70,000 M−1cm−1 at 504nm was used for
the HF488 dye label, according to the information provided by the manufacturer.
Prior to each experiment one peptide film was dissolved in a small volume 1% am-
monium hydroxide (v/v) and diluted with cell culture medium supplemented with
2% B-27 and 30 mM HEPES.

SH-SY5Y cells were grown in a 1:1 mixture of minimal essential medium (MEM) and
nutrient mixture F-12 Ham supplemented with 10% heat-inactivated fetal bovine
serum, 1% MEM non-essential amino acids and 2 mM L-glutamine. The cells were
detached (trypsin-EDTA 0.05%, 5 minutes) and passaged twice a week.

Endolysosomal vesicles were labelled either by pre-incubation with fluorescently la-
belled dextran or by transfection with plasmids coding for fluorescently labelled
vesicle specific proteins. For pre-labelling with dextran, cells were seeded in glass-
bottomed culture dishes (MatTek; 25,000 cells/14 mm dish). 24h post seeding,
the cells were washed 1x with serum-free medium followed by 4h incubation with
0.5mg/ml AlexaFluor647-labelled dextran 10kDa in complex medium, whereupon
the cells were washed 2x in serum-free medium and incubated in complex medium
for 20h to allow for the dextran to be transported to (and thus also label) lysosomes.
Prior to Aβ(1-42) exposure the cells were washed 1x with serum-free medium. The
cells were then incubated with 5µM HiLyteFluor488-labelled Aβ(1-42) in serum-
free medium supplemented with 2% B-27 and 30mM HEPES for 30min followed
by 2x wash in serum-free medium. Serum-free medium supplemented with 2% B-
27 was added and the cells were imaged immediately. For plasmid transfection,
SH-SY5Y cells were passaged two days prior to transfection, grown to 70% conflu-
ency and transfected with plasmids encoding for mRFP-Rab5 (Addgene #14437),

10



3. Methods

dsRed-Rab11 (Addgene #12679), mRFP-Rab7 (Addgene #1443600 or Lamp1-RFP)
(Addgene #1817) by electroporation using a Neon Transfection System (Invitrogen,
Carlsbad, CA, US), following the protocol provided by the manufacturer and apply-
ing a single pulse of 1,100 V with a pulse width of 50 ms. The cells were transfected
using 1µg plasmid DNA/100,000 cells in a 10µl Neon Tip and plated immediately
after in glass-bottomed culture dishes (MatTek; 50,000 cells/14 mm dish). After
48h the cells were exposed to Aβ(1-42) as outlined above, with an exposure time of
30min unless otherwise stated. Confocal images were acquired on an inverted Nikon
C2+ confocal microscope equipped with two detector units (a C2-DUVB GaAsP
Detector Unit with variable emission bandpass and a second GaAsP PMT), using
an oil-immersion 60×1.4 Nikon APO objective and the 488nm, 561nm and 640nm
laser lines (Nikon Instruments, Amsterdam, Netherlands). The sample was excited
and detected with appropriate excitation laser lines and emission filters, and both
fluorophores were excited and detected simultaneously.

3.2.1.2 The collected images

The fluorescence process gives colored (multi-colored if several dyes used on several
particles/molecules) image (series) of the wanted particles/molecules. An example
of an obtained image can be seen in Figure 3.2, showing the cell and the particles of
interest. The images were processed for the upcoming particle tracking by separation
of Aβ and endosome channels from the cell background channel and conversion
to gray-scale. The processed versions of the image in Figure 3.2 can be seen in
Figure 3.3. Image processing was done using ImageJ.

Figure 3.2: Example of experimentally obtained image with the particles of interest. The green
color visualises the Aβ and the red color the early endosomes (Rab5 labeled).
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(a) (b)

Figure 3.3: Processed version of the Figure 3.2 image. a) shows the Aβ channel (green) and b)
the endosome channel (red).

In order to determine the optimal experimental setup for this study, fluorescence
imaging with the confocal microscope was e.g. done with pinhole 1.2AU (confocally)
and fully open. Two examples of processed images obtained with the two settings
can be seen in Figure 3.4. Imaging with the open pinhole was tested to increase the
amount of signal, however this method also resulted in out of focus-light, i.e. the
imaging is no longer confocal.

(a) (b)

Figure 3.4: Example of obtained processed images (of lysosomes labeled with Lamp1) with two
different experimental set-ups: a) is obtained with pinhole 1.2AU (confocally) and b) is obtained
with a fully open pinhole.

12



3. Methods

3.2.2 Simulated data
The simulated data was created to imitate the experimental data. This was done
for the purpose of measuring the performance of the different tracking methods and
choose the best option for this project. This is recommended to do in such compar-
isons because of the unknown ground truth in biological images. [11]

To obtain the simulated data set, a couple of experimental data sets were first
acquired and investigated in order to obtain their specific parameters (particle size,
distribution, noise and contrast). This was then accounted for in the simulated data.
It should however be noted that the experimental data was of differing appearance
depending on the specific fluorescence method used and varied between samples.
Because of this fact, only the main features of the experimental data were included
in the simulated data, meaning that the simulated data does not mimic all samples
completely, but instead their average appearance including varying particle size and
distribution, amount, different levels of noise and presumed motion. Method testing
on this type of simulated data will show which methods that perform best on the
overall appearance of the data, but may not give optimal parameter settings for all
data because of its varied appearance.

The first type of simulated data was created as single images of particles, aimed
to test the performance of the localization methods. The second type was movies,
meaning a series of images where the motion of the particles was included.

Simulation of the single particle images first included creation of the fluorescent
particles (spots). For this purpose the method and function created by Raghuveer
Parthasarathy and used in performance testing of radial symmetry centers method
[18] was utilized. The particles were chosen to be of three different sizes to have a
variety of sizes (3, 5 and 7 pixels in radius) as the particle sizes (spots) in experi-
mental data vary, as one can see in the different example images above in Figure 3.3
and Figure 3.4. The size of the imaged endosome particles differ because endosomes
naturally have a variety of dimensions, and each seen Aβ particle contains many
Aβ peptides that have been taken up by an endosome, meaning that those particles
will also be shaped as endosomes and have a variety in size.

The positioning of the particles was done both in a random manner and random
clusters, i.e. particles were both placed randomly in the image and in random size
clusters placed at random positions. See Figure 3.5 for examples of the random
positions and the random clusters. The cluster generating function written by Nuno
Fachada [19] was utilized. After the particles were placed in the images, noise was
added to the image for testing of the localization methods’ performance on different
signal to noise ratios (SNR). The chosen SNR values were 4, 10, 15 and 20. The
value of 4 because it is known to be the critical lowest level of what localization
methods can handle [11], and the higher values because the collected data showed
a varying SNR between approximately 10 and 15.

In order to simulate data for linking of the particles, the knowledge of statistics
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of particle motion is required. From observation of the experimental data, directed
random (Brownian) motion (i.e. a motion unfolding in one direction in the long run,
but randomly in the short run, an example is shown in Figure 3.6) is hypothesized,
because of the particles seeming to move randomly in short time intervals but di-
rected in long intervals in the obtained experimental data.
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Figure 3.5: Examples of a) randomly generated positions and b) randomly generated cluster
positions for particles.
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Figure 3.6: Example of how simulated directed random motion of particles look like.

For this simulation, 3 particle sizes were used as previously. The particles begin at
random positions, both randomly and in random clusters. The particle positions
were then changed over frames/images following a directed Brownian motion. Noise
was not added to this data as it only affects the localization of particles and not
how well the localised particles are linked to trajectories in the linking performance
testing.

An additional added feature to this data type is birth and death of the particles
during the image series, meaning that the particles have a certain probability to
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be born and to die during the time interval. This was indeed observed in the ex-
periments, since we imaged in 2 dimensions while the cells, even if very thin, are
3 dimensional, meaning that the particles could move in/out of the imaged frame.
The fluorescent signal also decreases over time due to photobleaching increasing the
possibility that some particles could disappear if they get too bleached. The added
feature does not however allow for the particles to reappear being gone one or more
time steps and continue on their trajectory as they can do in reality, only that new
particles can appear and existing ones can die. The chosen values for the birth and
death parameters were such that during the image series of 30 images, the average
life length of a particle is 20 images. The average life length was chosen in this way
to see how well the methods perform on longer trajectories of several particles which
induces crossing of trajectories, which should be the most difficult case to do the
linking in.

3.3 Localization and linking methods
The choice of different localization and linking methods to be tested in this project
was made by looking at the factors affecting the choice. These factors were: the
appearance of the experimental data and the availability of the methods. The avail-
ability of localization methods was better than for linking. There are a lot of avail-
able methods and combinations of methods to locate particles and some of the main
ones were chosen to be tested on our application. The methods were either available
online or were obtained from groups at the university at which this project was
done. Availability of linking methods was not as good as for localization methods,
especially in our application where the experimental data contains many particles
with unknown ground truth number and also disappearance of particles. This led
to the tested methods being only the ones obtained from groups at the university.

3.4 Performance measures
The performance of the chosen localization and linking methods were tested on
simulated data. The best performing localization method was also tested on ex-
perimental data for reassurance of the methods performance. This test was done
including different types of experimental data and was done by observation by eye
by 4 people. It should be noted that we do not know how many particles we should
see and can only make an approximation when examining experimental data. The
investigation by eye was not possible to do in the same way when evaluating linking
as one can not know which particles that move where exactly. In some cases one can
see where the more distinct particles move, but not the particles in particles dense
areas with similar appearance of the particles. One can also place the obtained par-
ticle trajectories on the experimental movies and roughly compare the trajectories,
but it is not possible to get a measure as it is in localization.

The upcoming methods used to investigate the performance of localization and
linking methods on simulated image data were inspired by methods used for similar
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type of investigation of tracking methods [11] and common statistical performance
measures.

3.4.1 Localization performance measures

In order to measure the performance of different localization methods, the following
factors were considered. First, the precision of the estimated particle centers can
be evaluated, as it has been done in [12, 18]. In our application however, images
contain many particles, and even though the precision of particle center is important
especially for the separation of overlapping particles, identification of the location
and number of all real particles is of bigger importance, to be able to (as closely as
possible) track the overall endosome movement within each cell.

To measure the amount of correctly classified particles, a limit was set for how
far away the estimated particle center could be from the real particle center for
all particles. This means that instead of measuring particle center precision one
measures if the particle center is located within an allowable radius around the real
particle center, as it also has been done in [11]. The limit was set to less than 2
pixels as the width of the smallest simulated particle is 3 pixels, meaning that if the
center would be classified 2 pixels from the real center point it would actually be
outside the particle, where another particle could be placed, making the classifica-
tion incorrect.

However, only counting the number of correctly classified particles is not enough
as one should also consider how many particles were classified incorrectly. Sensitiv-
ity and specificity analysis was applied with the purpose of taking both factors into
consideration, as described below.

Sensitivity measures the fraction of correctly classified particles (true positives, TP)
out of all particles that should be classified as particles, meaning particles classified
as particles and also particles that were not classified as particles (false negatives,
FN). In our case a correctly classified particle is a particle center estimated to be
located within the chosen radius of the simulated particle center. The formula is
shown below.

Sensitivity = TP

TP + FN
(3.1)

Specificity gives the fraction of correct classification of non-particles (background
and non-center particle pixels) not as particles (true negatives, TN) out of all that
should be classified as non-particles, which is all that was classified as non-particles
correctly plus the particles that were classified as particles but are not (false posi-
tives, FP), see formula below.

Specificity = TN

TN + FP
(3.2)
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False discovery rate was also calculated as an aid for the choice of best performing
method for the application. It is calculated by the formula below.

False discovery rate = FP

FP + TP
(3.3)

It gives the relation of falsely classified non-particles as particles to all that were
classified as particles.

3.4.2 Linking performance measures
Measuring performance of the linking methods is more demanding comparing to the
methods of localization as linking involves both space and time aspects. Output
from a linking method results in a set of particle trajectories over time. And these
are to be compared with the simulated trajectories. In order to do this, one first
needs to find matching pairs of trajectories. This is done by calculating a cost for
each of the possible trajectory pairs, and the obtained cost matrix is then minimized
resulting in best matching trajectory pairs.

Cost calculation and minimization are determined similarly as in [11]. For each
pair of simulated and estimated trajectories and for each time point for the pair,
the first check is whether both trajectories contain a trajectory point at the current
time point. If both do not, the cost is set to zero. If only one of them contains a tra-
jectory point a penalty value is added to the cost. And if both contain a trajectory
point, the Euclidean distance for the pair is calculated and then the cost is set to
the smallest value of either the penalty or the calculated distance. This is done for
the reason that for points that are too far away from each other it does not matter
how far away they actually are and a penalty is set instead. The chosen penalty
value is set to the same value as used in localization, i.e. 2 pixels, as points farther
away cannot be considered as matching. The cost for each pair over the whole time
interval is then summed up to obtain the final cost for each pair of trajectories. The
obtained cost matrix is then minimized using Munkres algorithm.

The obtained matching pairs are then evaluated using a similar approach as for
localization. For each optimal pair of trajectories, each pair of positions over the
time interval are set to be true positive if the distance between them is less than 2
pixels, else it is set to a false positive. And if only the real or estimated location
exists for some time point, the pair is set to a false positive.

If the number of estimated trajectories is smaller/bigger than the simulated tra-
jectory number, Munkres algorithm will give no match for some of the trajectories.
Each existing trajectory location during the time interval of the not match simulated
trajectories is set to a false negative, as these particle locations should be matched
in the ideal case if the evaluated method would have found all of the wanted trajec-
tories.

Lastly, sensitivity and precision are calculated from the above obtained measures.
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Sensitivity in this context is a measure of the fraction of correctly estimated tra-
jectory positions out of the sum of correctly estimated trajectory positions and all
trajectory positions of the simulated trajectories that should have been matched
with an estimated trajectory, but were not. Precision is calculated as

Precision = TP

TP + FP
. (3.4)

It shows the fraction of correctly estimated trajectory positions out of all trajectory
positions of the matched pairs of trajectories.

3.5 Correlation methods
Two correlation methods were developed and applied for this thesis work. A trajectory-
based method and an object-based method (to draw conclusion of the trajectory-
based method’s performance).

3.5.1 Trajectory-based method
As mentioned in Section 2.3, a modified version of the method including spatial and
local correlation of trajectories was applied to our application. The modification
was that instead of calculating the correlation coefficient over an iterating window
over the paired trajectories and then comparing the obtained coefficient values to a
threshold in order to decide on interaction between positions of particles over time,
we chose a spatial threshold for two positions of trajectories to be interacting and
calculated the number of interacting positions of particles over time for all paired
trajectories. This means if two positions of a pair of matching trajectories of Aβ and
endosome are within the chosen radius (spatial threshold) then we count them as
matching (see Figure 3.7). This analysis results in a fraction of matching particles
(positions) of Aβ and endosomes over time. The fraction was calculated by

TP

TP + FP + FN
, (3.5)

where TP are all the matching positions, FP are all non-matching positions of Aβ
trajectories and FN are all positions of Aβ of the Aβ trajectories that were not
matched with an endosome trajectory. TP + FP + FN corresponds to the total
number of Aβ positions on the Aβ trajectories (meaning that only the moving Aβ
particles are included). In this way the fraction is calculated with respect to Aβ
particle trajectories.

3.5.2 Object-based method
The object-based correlation in our case measures the correlation between particle
centers of endosome and Aβ images. The correlation was measured in the form of
fraction of matching endosome and Aβ particles, as for the trajectory-based method
to make a fair comparison. The fraction was calculated by taking all the matching
Aβ and endosome particles (centers) divided by the total number of Aβ particles
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(centers). This was done for all endosome and Aβ image pairs in the image time
series.

= Matching position of endosome and Aβ 

= Non-matching endosome position

= Non-matching Aβ position

1 pair of matched trajectories of endosome and Aβ 

Figure 3.7: An illustration of two possible paired trajectories of endosome and Aβ and their
matching positions.

3.5.3 Experimental data
The experimental data was, as mentioned, collected in different ways resulting in
e.g. 30 time frames every 10 minutes or every hour. To get a development of corre-
lating particles over time in sense of every 10 minutes or every hour, the obtained
development curves of correlating particles over the 30 frames from both correla-
tion methods were averaged to obtain one value for each 10 min/1 hour slot. The
data was also collected by placing the imaging frames on different cells (positions),
meaning that each 10 min/1 hour data set (the 30 time frames) was collected on
several positions. To again obtain a development of correlating particles over time,
the averaged correlating particle values were averaged over the different positions as
well.
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Results

4.1 Image simulation
Two types of image sets were simulated for performance testing of tracking methods.
One type for testing localization methods and one for testing linking methods. The
results from the image simulations are presented in the following subsections.

4.1.1 Localization
Simulated images with different SNR were created to test the performance of dif-
ferent localization methods. An example image from each SNR image set can be
seen in Figure 4.1. In the images with a lower SNR value it becomes more difficult
to separate the particles from the background and determine their size, especially
in the image where SNR=4. Comparing the experimental data with the simulated
localization data one can see that the overall signal to noise ratio in experimental
data is not as bad as in the simulated data with the lowest signal to noise ratio
(SNR=4). However, in some areas of the experimental images, as the particle dense
areas, the SNR could be compared with the level of 4, while other more clear areas
could be compared with a SNR level of 15-20.

4.1.2 Linking
Sets of particle images were created for linking, mimicking the hypothesized directed
Brownian motion of the particles over time. An example of the obtained particle
trajectories can be seen in Figure 4.2. One can see that the trajectories are overlap-
ping, in order to create challenging linking situations as will be the case for endosome
trajectories in live cells. The simulated trajectories are longer than in reality, but it
is good for the method to be able to handle cases where some particles could have
longer overlapping trajectories as well.
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(a) SNR=4 (b) SNR=10

(c) SNR=15 (d) SNR=20

Figure 4.1: Examples of the simulated localization images with the different signal to noise
ratios.

Figure 4.2: An example of the simulated particle trajectories.
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4.2 Particle localization
Particle localization can be considered to consist of 3 steps: (1) filtering, (2) thresh-
olding and (3) finding centers of particles. Different methods for all steps need
to be tested to evaluate and identify the most suited combination of methods for
this project. The first tests were done on simulated data (see Section 3.2.2 and
Section 4.1.1) and combinations of methods for the three steps of localization were
tested as it is described below.

Three filtering methods were chosen to be tested: (1) no filter, (2) a band-pass filter
including Boxcar and Gaussian filters and (3) a band-pass filter including Gaussian
filters. A band-pass filter is both a low-pass and high-pass filter. By applying a
low-pass filter you suppress the highest frequencies in the image (noise), and with
application of a high-pass filter you suppress the lowest frequencies leading to sharp-
ening of edges in the image. [20, 21] The low-pass filtered image can be obtained by
convolution with an appropriate function e.g. Gaussian or Boxcar function, cutting
away the higher frequencies in the image. By subtraction of the low-pass filtered
image from the original image, you obtain a high-pass filtered image (as you remove
the lower frequencies from the image). Lastly, a band-pass filtered image is gained
by convolution of the high-pass filtered image with some appropriate function (as
mentioned above) to add a low-pass filter also. An example of an image with applied
low-, high, and band-pass filters is shown in Figure 4.3, the images are obtained us-
ing Gaussian filters as in method (3).

Thereafter, two types of threshold methods were compared: a local threshold which
sets a specific threshold for each pixel of the image and an iterative global threshold,
meaning that one threshold is set for the entire image. The iterative threshold is
however also dynamical by adaptation to each image, even though it does not vary
throughout the image. The local threshold is calculated by setting a threshold over
windows of selectable size around each pixel. A window of size 9x9 pixels was cho-
sen as if the window would include a particle of the biggest simulated size (7 pixels
in radius) it would also include some background around the particle. Deciding a
particle threshold over a smaller window could include only the particle and would
not give a correct threshold for finding particles within the background, and bigger
windows would reduce the local-feature of the method. The iterative global thresh-
old method was chosen among other global methods as it showed best performance
in a smaller test on experimental and simulated data by observation by eye. The
method was found online in a question thread [22]. The local threshold method is
called Sauvola and was written by Jan Motl [23]; this method was the only tested
local threshold method in the project. Both threshold methods were performance
tested by application on either the filtered image from the above step or on the
original image, in order to obtain an optimal approach.
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(a) Original image (b) Low-passed image

(c) High-passed image (d) Band-passed image

Figure 4.3: A visualisation of low-, high- and band-pass filters applied on an image (obtained
using Gaussian filters).

Lastly, two methods were tested to find the center points of particles out of all pixels
identified as (parts of) particles. One needs to find particle centers to enable count
of particles, as each identified particle-pixel is not a particle on its own (a particle
consist of several pixels), and to separate between particles in particle dense areas.
The chosen methods were: a centroid method and a radial center method. The
centroid algorithm works by firstly finding local maximas over the entire image as
a first estimation, then calculating the centroids of the maximum points. Radial
center method calculates the center point of particles by calculating the maximal
radial symmetry point over windows of desired size iterating over the whole image.

The aim in the beginning of the project was also to apply and investigate the per-
formance of a promising machine learning method (deep learning) for localization.
This method has shown to outperform the other tested methods in single particle
localization with respect to center point of the particle. [12] This was however not
managed because of lack of time.

Performance of the combinations of methods for the three steps of localization is
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summarized in Table 4.1; the results are also shown as bar diagrams in Figure 4.4.
The performance measures given in the table were calculated as described in Sec-
tion 3.4.1. The combinations of methods that are not shown in the table resulted in
no found particles for all SNR levels. The combinations were build by testing each
filter method (no filter, Boxcar and Gaussian) with each threshold method (local
and iterative methods applied on either the original image or the filtered image)
with each particle center localization method (centroid and radial center).

Table 4.1: Particle localization on simulated images test results. Boxes with no sensitivity and
specificity indicate that the following combination of methods yielded no found particles. The
threshold methods were applied to either the original image (noted as "threshold" in the table) or
on the filtered image (noted as "threshold*" in the table).

Nr. Method SNR=4 SNR=10 SNR=15 SNR=20

1. No filter, iterative threshold, centroid Sensitivity: 0.9748
Specificity: 0.8851

0.9277
0.9994

0.9227
1.000

0.9212
1.000

2. No filter, local threshold, centroid Sensitivity: 0.9748
Specificity: 0.8781

0.9278
0.8811

0.9227
0.8817

0.9212
0.8821

3. Boxcar, local threshold*, centroid Sensitivity: 0.0184
Specificity: 1.000

-
-

-
-

-
-

4. Boxcar, iterative threshold, centroid Sensitivity: 0.8100
Specificity: 0.9719

0.6996
0.9993

0.4779
1.000

0.3876
1.000

5. Boxcar, iterative threshold*, centroid Sensitivity: 0.0121
Specificity: 1.000

0.0240
1

0.0228
1

0.0221
1

6. Gaussian, iterative threshold*, centroid Sensitivity: 0.8804
Specificity: 0.9536

0.8936
0.9997

0.8931
1

0.8934
1

7. No filter, iterative threshold, radial center Sensitivity: 0.9275
Specificity: 0.9116

0.8721
0.9996

0.8696
1

0.8688
1

8. Gaussian, iterative threshold, radial center Sensitivity: 0.8140
Specificity: 0.9717

0.8445
0.9999

0.8448
1

0.8448
1

9. Gaussian, iterative threshold*, radial center Sensitivity: 0.8392
Specificity: 0.9589

0.8476
0.9599

0.8494
0.9619

0.8475
0.9829

10. Boxcar, iterative threshold, radial center Sensitivity: 0
Specificity: 1

0.0196
1

0.0894
1

0.2248
1

11. Boxcar, iterative threshold*, radial center Sensitivity: 0.7987
Specificity: 0.9804

0.8048
1

0.8064
1

0.8070
1
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Figure 4.4: Another visualisation of the sensitivity and specificity values shown in Table 4.1. The
bar diagrams exclude however method 3 performance as it only gave results for one SNR level.
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Examining the results in the table/bar-diagrams, four combinations (1, 6, 8 and 11)
of methods can be identified as performing better than the others with respect to
both sensitivity and specificity. In our application we consider specificity value as
more important than sensitivity. This is because in our images there are much more
non-particle center pixels than particle center pixels, and specificity measures the
fraction of correctly classified non-particle center pixels and sensitivity the fraction
of correctly classified particle center pixels. This means that a lower value of speci-
ficity implies a much bigger error (more incorrectly classified pixels) than a lower
value in sensitivity. This lead to the choice of the best methods to be more affected
by a higher specificity value than sensitivity value for all SNR levels. The methods
with values close to 1 in specificity for all SNR levels and sensitivity around 0.8 or
higher are 1, 6, 7, 8 and 11. Methods 6, 8 and 11 have the highest specificity values.
When deciding between methods 1 and 7, specificity does not differ by much but
method 1 has higher sensitivity for all SNR levels which led to the choice of method 1.

As one can observe, the sensitivity values decrease in some cases on images with
higher SNR, which is the opposite of what one might expect as the localization
should get better on images with higher SNR as they are clearer as seen in Fig-
ure 4.1. The combinations of methods of decreasing SNR have in common that
the threshold of the method is calculated on the original image. The explanation
for these methods’ decrease in sensitivity is found investigating what actually hap-
pens when the methods are applied to the images with different SNR. With lower
SNR, i.e. more noise in the image, the distribution of the pixel-intensities of the
image do not have a clear separation between particles and background in the im-
age. This leads to that the threshold value is set higher than in the case of less
noise, as the threshold methods take into account the mean and the spread of the
intensities in different ways. With a higher set threshold, less particles are classified
as particle pixels than in the higher-SNR case. Less particle pixels could lead to
less errors when calculating the particle centers, as the method has less pixels to
choose between; with more particle pixels (in the higher-SNR case) there are more
possibilities for particle centers and more room for errors for the particle center
methods. This could explain the decrease in sensitivity. One should note that this
behaviour happens for all cases when the centroid method is used (both on images
with and without filtering) with the threshold calculated on the original image. The
behaviour is not seen for the radial center method (applied on the filtered image)
with the threshold calculated on the original image. This could imply that the radial
center is more robust than the centroid method to a lower set threshold (leading
to more particle pixels to choose between when calculating center points), however
only if radial center is applied on the filtered version of the image.

When deciding which of the methods is the optimal one for the application at hand,
we narrowed the investigation to SNR levels 10 and 15 as the experimental data is
in that range. The SNR value in experimental data was calculated as done in [11],
namely by

SNR = Io − Ib√
Io

, (4.1)
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where Io is the highest particle pixel value and Ib is the mean of background pixel
values. The case of lower signal to noise ratio (SNR=10) was considered further, to
be sure that our chosen method can handle noise. To understand what the obtained
sensitivity and specificity values mean better we translated them into particle values
with the knowledge of how many particles were simulated (150 particles meaning
150 particle centers) and how much non-particle center pixels we have (from the
image size, minus the number of particle centers). Method 1 found on average 139
particles (centers) and 95 false particles (centers) (non-particle centers classified as
particle centers). Method 6 found 134 particles and 48 false particles, method 8
gave 127 particles and 16 false particles and the last method 120 particles and zero
false ones.

As the resulting particle (centers) of the chosen localization method are used in
the linking step, it is desirable to have found as many of the correct simulated/real
particles as possible, but it is also not a huge concern to have some false positive
particles, since if they are false they will probably disappear in the next frame and
will not be linked. However, if we count too many false particles it will affect the
linking negatively since some particles will be linked to false particles. This means
that the percentage of the found false particles with respect to all found particles
should not be high. Calculation of this can be found in Table 4.2. Looking for a low
percentage of false positives together with a higher count of true positive particles,
method 8 was chosen for further work.

Table 4.2: Results of false discovery rate calculation of the four best performing methods.

Nr. True positives False positives False discovery rate
1. 139 95 0.4060 (40%)
6. 134 48 0.2637 (26%)
8. 127 16 0.1119 (11%)
11. 120 0 0 (0%)

Next, method 8 was applied to experimental data to investigate its accuracy. Several
additional factors affecting the procedure and its outcome needed to be considered
here. First, as the exact ground truth is not known, one must to some extent make
assumptions of which spots in the images that are particles and which are noise or
auto-fluorescence. Some particles can have a more elliptical shape than circular,
meaning that one does not know if a detected local intensity maximum corresponds
to several spherical particles in close proximity or to one elliptical; the endosomes
could have an elliptical shape also. Due to the uneven spatial distribution of en-
dosomes within cells, some of the images can have larger dense particle regions in
them making it difficult to discern the particles present there. It was also difficult to
set a strict criteria on the brightness of the spots to be counted as particles (thresh-
old), as what one would say to be a particle in a darker image could be set as a
part of the background in an image containing much brighter spots. The manual
by-eye threshold should be adapted to each image as done in the used threshold
methods, however it is not certain whether the threshold is adapted as consistently
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and equally by the examining participants as it is in the threshold methods. These
factors introduce an uncertainty and bias in the outcome.

Four images were chosen from the collected data representing its variance Figure 4.5-
Figure 4.8. These images were then evaluated by 4 people by manually counting
the number of particles in each. The resulting counts of the particles in each image
can be seen in Table 4.3. The table also contains the count results using method
8. However, one should note that when testing, the method’s performance varied
depending on what type of image it was and some parameter values needed to be
adjusted to obtain more satisfying results both regarding the count and localization
of the particles. The changed parameter values were the minimum distance between
found particles and threshold modifications.

(a) (b)

Figure 4.5: Collected data sample 1 (showing Aβ) and localization results.

(a) (b)

Figure 4.6: Collected data sample 2 (showing Aβ) and localization results.
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(a) (b)

Figure 4.7: Collected data sample 3 (showing endosomes labeled with Rab11) and localization
results.

(a) (b)

Figure 4.8: Collected data sample 4 (showing endosomes labeled with Rab7) and localization
results.

Table 4.3: Results of the evaluation of the best localization method’s performance on experimental
data.

Image Manual count Count by method
1. 12, 19, 21, 21 18
2. 10, 13, 15, 17 14
3. 61, 64, 66, 78 73
4. 155, 158, 180, 198 175

Particle localization results by method 8 are, in the tested cases, within the range
of the manual count, as seen in Table 4.3 (the manual count values are ordered by
size in the table). Observing the simpler images as Figure 4.5 and Figure 4.6, one
can see that the localized particles indeed look like possible particles. For the more
difficult cases in Figure 4.7 and Figure 4.8, one can see that the method has localized
some false positives in the wider bright regions where one cannot know if there are
any actual particles (it could also be that the method is actually better than the
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human eye). A couple of spots that could be particles in the images are also missed.
However, small fractions of missed particles and false positives were expected from
the method, and as mentioned previously it should not effect the upcoming linking
performance.

4.3 Particle linking
Two linking methods were applied and tested: one deterministic method and one
probabilistic method. The deterministic method is based on minimal distance and
temproal hiatus. The probabilistic method is a Poisson multi-Bernoulli mixture fil-
ter that is based on setting multiple hypothesis on where each particle could travel
in each time and calculating probabilities of how likely each of the hypotheses is.
[24] Both methods were acquired from research groups at the university at which
the project was done.

Firstly, the deterministic method with varying parameters was tested using the
performance measures described in Section 3.4.2. An example of the estimated tra-
jectory evolution over time by the method applied on simulated data is shown in
Figure 4.9. Further below in Figure 4.10 one can see a comparison between the sim-
ulated and estimated trajectories. When comparing, one can see that the estimated
trajectories seem to match at least a part of the simulated ones. The estimated
trajectories show also a similar shape even if not matching everything correctly.

Figure 4.9: Example of the estimated trajectory development over time.
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Figure 4.10: Simulated and estimated trajectory comparison.

The first parameter to be analysed was the flow direction parameter which adds an
assumption of the particle flow direction when estimating the trajectories. It was
tested to have no assumed flow direction and assumed flow direction of directed
Brownian motion (which is consistent with the inward motion of endosomes into
cells). Figure 4.11 shows the resulting sensitivity and precision over the y-axis.
The x-axis includes a varying displacement threshold parameter in the method. A
displacement threshold is a restriction of how far away a particle can move between
each frame (time step). One can see that the sensitivity and precision values are
almost the same in both cases regarding the flow, precision is slightly better with
assumed flow direction. An assumed flow direction was chosen to be used further.
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The varied displacement threshold did not seem affect the outcome by much, except
at one point for the sensitivity.

25 30 35 40 45 50

Displacement threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision, with flow direction

Precision, without flow direction

Sensitivity, with flow direction

Sensitivity, without flow direction

Figure 4.11: Linking performance varying the displacement threshold and assumption of flow
direction.

While continuing varying the displacement threshold, it was also tested how the
method performed when varying the simulated motion parameters, particle size and
speed. 3 levels of particle size and speed were chosen for the simulated data and the
results for them can be seen in Figure 4.12. Looking at the precision, the method
does not show any specific trends for neither size or speed parameters, e.g. precision
is lowest for the lowest speed but not highest for the highest speed. Sensitivity var-
ied more over the displacement thresholds for the different size and speed parameter
values. This could be explained by the fact that sensitivity is calculated by looking
at true positive and false negative values. True positives are positions of the matched
trajectories matching the simulated positions. False negatives are all positions from
the simulated trajectories that did not have a match within the estimated trajecto-
ries. It means that these values depends also on how well the matching algorithm
perform (Munkres algorithm), and not just how well the trajectories are estimated,
which could induce further errors and affect the sensitivity values more than preci-
sion. Precision is easier to interpret as it compares how many true positives there
are with respect to the false negatives on the matched trajectories only. The varied
displacement threshold did not seem affect the outcome by much in the precision
here either.

The last parameter to be tested was the one called epsilon. The value of epsilon de-
cides how far away an estimated particle position is allowed to be from the simulated
position for them to count as matching. As expected both the sensitivity and the
precision increased with a larger epsilon-value, since there we allow a bigger error,
as seen in Figure 4.13. The displacement threshold did not have a distinguishable
effect here either. From this it was decided to choose a specific displacement thresh-
old on experimental data directly.
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Figure 4.12: Linking performance varying the displacement threshold and the simulated data
type.
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Figure 4.13: Linking performance varying the displacement threshold and how far away two
positions can be to be counted as a match.

The method was lastly tested on experimental data. One cannot measure the per-
formance here by more than observing and comparing between the estimated tra-
jectories and how the particles move in the collected films. Figure 4.14 shows both
the Aβ and lysosome trajectories in the same image, where one can observe their
estimated trajectories (to be analysed in the upcoming correlation section). By
comparing these images with the experimental data image series it was decided to
continue with displacement threshold of 10 pixels as it seemed to mimic the experi-
mental data better. Figure 4.15 shows the same results as in Figure 4.14 a), however
with Aβ and lysosome trajectories separately and also showing their evolution over
time.
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Figure 4.14: Example of the estimated trajectories of both Aβ and lysosomes (labeled with
dextran), using a displacement threshold of a) 10 pixels and b) 22 pixels.

(a) (b)

Figure 4.15: Example of the obtained time evolution of the estimated trajectories of Aβ and
lysosomes (labeled with dextran) separately, using a displacement threshold of 10 pixels.

Secondly, the probabilistic method was tested. This was, however, a much more
difficult task than with the deterministic method, as the probabilistic method has
a more complicated nature with more parameters and more steps involved. After
initial parameter testing and runnings on the simulated data it was also discovered
that the algorithm does not have the restriction of the estimated trajectories staying
inside the image frame. In the experimental data we are observing endosomes within
cells, thus the boundaries are absolute. It was not possible to adapt the algorithm
within the time frame of the project. It was therefore decided to continue only with
the deterministic method.

The linking method was also used to obtain the mean displacement and mean ve-
locity of Aβ (from data sets containing the dynamics of Aβ and lysosomes) from
the estimated trajectories. They show how long the particles approximately move
and their approximate velocity over 30 frames and the distribution of this over films
taken hourly for 20 hours. It was done by calculating the length of the obtained
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trajectories and over how many images the trajectories were distributed. The re-
sults shown in Figure 4.16 visualise the mean and standard deviation over data sets
on different imaged positions each containing several cells. The data sets include
30 frames for each hour and the trajectory length/velocity is calculated by taking
the mean of all trajectory lengths/velocities over the 30 frames taken hourly. The
results show a slight decrease of Aβ mean displacement and velocity over time which
is consistent with the Aβ accumulation in more stationary lysosomes over time.
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Figure 4.16: Mean displacement and velocity of Aβ.

4.4 Correlation analysis
The correlation methods described in Section 3.5 were applied on experimental data
of Aβ and lysosomes recorded both with 10 minutes intervals (30 frames of movement
recorded after each 10 minutes) and with 1 hour intervals (30 frames of movement
recorded after each hour). Both types of data sets were recorded on several positions
observing one or several cells. The expected correlation is that of increasing corre-
lation over time, as Aβ is assumed to accumulate in the lysosomes at the end of the
endosomal pathway. The time dependence of this process was however not known.
The chosen parameters for the methods were the following: displacement threshold
of 10 pixels (only relevant and applied in the trajectory-based method), and to count
for a match between the endosome and Aβ particles on their paired trajectories, the
particles centers were at most 5 pixels from each other (epsilon-value).

The trajectory-based method gave the resulting fraction of correlation seen in Fig-
ure 4.17. The figures show mean correlation fraction and their standard deviations
over films of cells taken at different positions. For comparison, an object-based cor-
relation analysis was also performed; results from which can be seen in Figure 4.18.
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Figure 4.17: Correlation of Aβ and dextran-labeled lysosome results, using a trajectory-based
correlation method.
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Figure 4.18: Correlation of Aβ and dextran-labeled lysosome results, using an object-based
correlation method.
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In the following section the results from the localization, linking and correlation
analysis will be discussed and summarised. This will be done both from a software
development perspective and from the biological application perspective.

The localization method found to be performing best on this application was the
combination of a Gaussian filter method, an iterative global threshold method ap-
plied on the original image and the radial symmetry center method. The fact that
the radial symmetry method outperformed the centroid method is expected as it
has been shown in a more general particle localization analysis to give better results
than the centroid method. [18] The Gaussian filter is also a more advanced low-pass
filter while the Boxcar is a simpler version and as our image data is of low contrast
it makes sense that the more advanced filter gives better results.

The best suiting threshold method was more surprising, considering that it is a
global method and that it was applied on the original image (meaning that it sets
the threshold using the original image but the set threshold is then applied on the
filtered version of the image in this specific combination of methods for localization).
It makes more sense that the correctly chosen threshold for the filtered image should
come from the application of the threshold method on the filtered image and not the
original image. Comparing between the two combinations including Gaussian filter,
radial symmetry center and the iterative threshold applied on either the original
image or the filtered image, one can see that the biggest difference is in the speci-
ficity values, meaning the fraction of correctly classified non-particle center pixels
(background and particle pixels that are not particle centers) as non-particle center
pixels. For this we can go back to our previous discussion of how the threshold
value is set on images with different SNR. On more noisy images the threshold is
set higher, meaning that more pixels will be classified as background pixels. When
the threshold method is applied on the unfiltered image (containing more noise),
the threshold will be set higher, more pixels will be classified as background, and
as in our images we have much more background than particle pixels (center and
not center), it increases the probability of a higher fraction of correctly classified
non-particle center pixels as not particle centers. This could be the reason why the
threshold method performs better when applied on the original image.

When comparing the ideas of a global and a local threshold method, a local method
should perform better as it adapts more over the entire image. The fact that the
global method performs better on the simulated data could have to do with how the
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local threshold is set. It could have been set on too small windows not including the
whole "image" of the contrast for example and not including the whole distribution
of intensities which affects how the threshold is set as mentioned previously. The
local threshold is neither calculated in the exactly the same way on the windows as
the global method. Also, only one local threshold method was tested in the project,
other local methods could show different performance. More global methods could
be tested also.

It should also be noted here that the simulated data does not mimic the experi-
mental data completely, but only its overall appearance. It does not include the
variance of contrast and noise within the images (in e.g. very particle dense areas)
as is present in the experimental images. A local threshold could have a different
performance in this situation and could outperform the global threshold. In this
project the threshold methods are only tested on simulated data that does not have
this variance within the images. Further development of simulated data should be
done to include more attributes of the experimental data to draw better conclusions
about the performance of threshold methods. The simulated localization data gave
us however a measure of how the methods perform on images with many particles,
including smaller clusters of particles, varying sizes and with different levels of noise
over the entire images.

Looking at the results of the found best performing localization method, one can
conclude that the results were good (on both simulated and experimental data),
even though the possibly more promising machine learning method was not man-
aged to be applied, meaning that an even better performance could be obtained.
The found optimal localization method resulted in as mentioned some false posi-
tives and not all true positive particles were localised but it should not be a problem
when applying the results in linking. We are interested in the mean movement and
mean correlation meaning that a small missed fraction of particles should not have
a big effect and false positives should disappear when linking as they should not be
linked over frames and therefore should not exist in the resulting particle trajectories.

The performance of particle linking was not as good as the localization performance
on simulated data, which is expected because of a much more complicated task of
linking. The simulated data that the linking method was tested on was also quite
difficult and epsilon value was set quite strictly, not allowing space for smaller errors.
More methods should be applied and tested (like the probabilistic method) to see
if an improved performance could be obtained, with the goal of as high sensitivity
and precision values as possible.

There was a difficulty in choosing the displacement threshold for experimental data,
as no specific value of the displacement threshold showed clear better performance
when testing on simulated data. The simulated data gave however a measure of
performance of the method with varying parameters (even though the performance
did not differ much between different parameters) and gave a visualisation how well
the estimated trajectories follow the simulated ones in the difficult case of many
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crossing trajectories. It would also be interesting to do the same tests and obtain
a measure of performance on a simpler simulated motion with shorter trajectories
and less crossing, which seemed to be the most common case in experimental data.
Also, when investigating the experimental data more thoroughly, it was discovered
that a big part of particles seemed to move smaller random steps while a smaller
fraction took much larger directed steps. This could mean a more switching mo-
tion (between random and directed motion) of particles than the assumed directed
Brownian motion for all particles. This assumption was made both in the simulated
data and in the linking algorithm. Further inspection of the data is necessary to be
able to draw a conclusion whether the assumption was wrong or not. This fact also
made it difficult to choose a displacement threshold suiting both behaviour types of
the particles. The displacement threshold affect how the resulting trajectories look
like, and have an effect on the resulting mean displacement, velocity and correlation
calculations.

Comparing the correlation curves of the trajectory-based and object-based meth-
ods one can see that they are similar in the trend of correlation over time. The
object-based method gave quite higher correlation which is expected since here we
are only looking at how many of the particles are correlating in space at different
time-points, while using the trajectory based method we are looking at correlation
in space and time, i.e. how many of the particles move together over time and not
just are at the same positions. A smaller fraction is expected in a trajectory-based
correlation as you do not include the particles that are at the same positions acci-
dentally and do not actually move together. False positive particles should also be
filtered away by looking at the trajectories and not only the positions, which could
contribute to the smaller fraction.

The fact that the curves have a similar appearance (besides their overall values which
should differ as explained above) is very positive. It shows that the trajectory-based
method shows correct results and is working well for the application. This opens up
for analysis opportunities with the calculated trajectories as particle mean displace-
ment and velocity as was shown to be calculated in the linking results, one could
also determine the direction of the trajectories and do similar measurements that
cannot be done by only an object-based analysis.

Overall results of both correlation methods do not look exactly as expected. In
their development over 20 hours it is expected that the correlation increase (until
maximum correlation) in the beginning and then reach a steady state, as when Aβs
reaches the lysosomes they should stay there. In the resulting curves we however
see some decrease in the last hours. This was investigated further by looking at the
data and results from different parts of the algorithm and it was concluded that
this behaviour could have come from the low contrast of Aβ films in the end hours
(bleaching). If the particles get too bleached it gets too difficult for the algorithm to
set a good threshold value as the intensity of the background and particles approach
each other (also when there is noise present in the image, as it was, too bleached
particles could be removed as noise if they appear similar to the noise). This could
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lead to a threshold value set such that a lot of the background is counted as particles
(false positives); a too big fraction of false positives could disturb the tracking results
and lead to false trajectories which are then not matched with the lysosomes (the
contrast of lysosome particles was much better, with very little amount of false posi-
tives) and the correlation fraction decreases. This amount of bleaching was however
not present in all position data sets of Aβ, which explains the big standard deviation.

One can also observe that a quite large amount of standard deviation of the corre-
lation is present over the whole time interval over different positions, this was also
investigated and it was seen that this could come from the fact that the cells in the
frames move. In some films at a specific hour the cells had moved out from the frame
fully or by half, this lead to a smaller fraction of particles present (almost none in
some cases) and if the contrast of the present particles was also bad, it leads to the
same case as with bleaching, a lot of false positive particles and the correlation frac-
tion decreases a lot. In some cases the cells came back in the film for the next hour,
in some cases they did not, also affecting the variance. These affecting factors could
be minimized with further work on the collected data by imaging on a bigger frame
including more cells so that even if one cell would leave the frame others would still
be seen, however the maximum frame depends on the used microscope. One could
also re-calculate the last more bleached time points on data collected in a different
way that is not bleached at those time steps and compare the correlation values to
see how much effect the bleaching has.

The threshold method was adapted slightly when applied on the experimental data
for the above reasons, but it only improved the appearance a little. The changes
that were done included minimum and maximum (15 and 200 particles respectively)
values of Aβ to be found and a maximum (200 particles) value of lysosomes, if the
found number did not meet the criteria the threshold was either decreased or in-
creased. These restrictions were added to reduce the risk of no found particles if
their intensity was too low as it often was for the Aβ particles (leading to a too high
threshold value) and too many found particles (background classified as particles)
if the threshold was set too low. A further improvement that could be made here is
to have dynamical (if possible) maximum and minimum values, as the ones set now
were only tested on a small amount of images and might not suit all. If for example
more than one cell is present in the frame, leading to more particles that should be
found, and this amount might be bigger than the maximum value now set. This
also affects the outcome of the correlation and could have led to a slight decrease in
the correlation fraction. The "correct" extremum values could also be different for
Aβ and endosomes/lysosomes depending on the data.

The correlation figures containing 10 minute intervals show the expected behaviour
of increase of correlation in the beginning of time, except for the last dip and the
big variance, which probably come from the above explained reasons.

To obtain curves for understanding the reality better, further work on both col-
lection of the data as mentioned above and also investigation of other threshold
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methods or development a new threshold method that can handle the bleaching
better should be done. Other filtering and image enhancement methods could also
be investigated to exclude the possibility of bleached particles being removed as
noise.

The correlation values could also be improved by a correction including of what
is expected as random correlation and what is expected from maximum correlation.
Further testing and comparison of the trajectory-based method could also be done
by inclusion of other developed methods for correlation. One could also look at
the amount of correlating particles instead of the fraction, but that would require
additional work as the overall amount of particles present in the images varies over
time and cell positions. One could also calculate the mean displacement and ve-
locity of correlating Aβ and lysosomes as was done for the Aβ trajectories in the
linking results. This is however more difficult as not all positions on paired Aβ
and lysosome trajectories are actually matching. In some cases the beginning of
the trajectories are matching where one could look at the matching interval, but
in other cases there is only one matching position or two that are not in a row i.e.
not forming a trajectory. Without a trajectory you cannot investigate displacement
or velocity. One could in that case only look at the matching positions on paired
trajectories that are in a row (form a trajectory), but this would not include the
single matching positions on trajectories and the fraction of matching positions in
a row could be small compared to all matching positions. For further work on the
application one could also investigate the correlation of the other endosomes and Aβ.

To conclude, the applied and developed methods can and should be improved in
several ways to be able to draw completely correct conclusions about the biolog-
ical application they are applied to. Nevertheless, the methods have an overall
good performance and particle tracking and trajectory based colocalization analysis
could be a promising tool for investigation of Aβ trafficking in Alzheimer’s disease
conditions.
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