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Time and Frequency Synchronization for One-bit MU-MIMO
Feasibility and performance study
CARL LINDQUIST
Department of Electrical Engineering
Chalmers University of Technology

Abstract
In this thesis, an uplink multiuser multiple-input multiple-output (MU-MIMO) system is consid-
ered. In the system, a number of user equipments (UEs) are communicating with a single base
station (BS). The BS is fitted with several antennas and in each receiver chain, one-bit analog-to-
digital converters (ADC) are used to convert the incoming signal from the analog to the digital
domain. At each BS antenna, there will be an uncertainty regarding the timing as well as the
carrier frequency of the received signal, typically referred to as symbol timing offset and carrier fre-
quency offset. This thesis investigates the effect of these offsets on the communication system and
provides an analytic expression for the signal-to-interference-noise-and-distortion ratio (SINDR).
Moreover, an overview into the topic of synchronization itself is provided and some standard syn-
chronization methods are described and evaluated in the context of one-bit MU-MIMO. The thesis
demonstrates that despite the nonlinear distortion introduced by the one-bit ADCs, the system
can still be synchronized. Lastly, the overall system performance in the presence of synchronization
errors is discussed, as well as some ideas for future research.

Keywords: quantization, one-bit analog-to-digital converter (ADC), multiuser multiple-input multiple-
output (MU-MIMO), symbol timing offset (STO), carrier frequency offset (CFO), synchronization
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1
Introduction

Before the advent of digital communication, the way in which information was communicated
was strongly influenced by the information type. Written words were typically transmitted as
letters and the spoken word could for example be transmitted via telephone wires. These two
systems both transported information, either via mailboxes, sorting systems and mail carriers or
rotary dials, switchboards and copper wires but clearly, the requirements of the two are vastly
different. This alludes to perhaps the main disadvantage inherent analog information transfer,
namely the lack of flexibility. The information type, such as a voltage level or letter, dictates the
requirements of the transmission channel. A phone call can not be transmitted via the postal
system and vice versa. Since the second generation of mobile networks in the 1990’s [1], the
underpinnings of communication systems have been digital technologies. These systems need not
concern themselves with the type of data to transmit — information in binary form is transmitted
in the same fashion regardless of what the bits represent. This allows us to focus on developing
strategies and techniques for data transmission in general, instead of having parallel development
tracks for different applications, With that said, however, certain performance requirements, such
as bit error rate (BER), data rate, spectral efficiency and latency of the system, will vary with the
type of information the systems transmits. These are some of the standard performance metrics
with which we benchmark systems and in terms of mobile communications, these are commonly
used to set the specification of new generations.

Mobile communication networks has transitioned to a new generation roughly every tenth year
since the first 1G network appeared in Japan [2] in the late 1970s. Largely adhering to this rule,
the commercial release date for the fifth generation (5G) mobile network is imminent [3]. In
5G, a thousandfold increase in data rates, reduced end-to-end latency and supporting a ten- to a
hundredfold increase in connected devices, are some of its targets [4, 5]. The first 5G networks
have not yet been rolled out commercially, but numerous demonstrations have taken place. For
example, KT Corp. showcased a number of applications of 5G during the 2018 Winter Olympic
Games in South Korea, including live-streaming 360° video of competing athletes [6]. In May
2017, Ericsson together with Verizon also demonstrated live-streaming of 360° video. In the trial,
a car was driving around a race track while the driver’s only visuals where streamed to a set of
virtual reality goggles from a camera mounted on the hood of the car [7].

To achieve the targets set for 5G networks, a number of technologies, both improvements of
existing technologies as well as more radical ones, will need be deployed [8]. Two of the new
technologies that will be incorporated in 5G are massive multiple-input multiple-output (MIMO)
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1. Introduction

and millimeter-wave (mmWave). These technologies are considered key [5] and the work in this
thesis is primarily related to these two. The next section provides a brief introduction to these
topics.

1.1 Spectral congestion and mmWave

In the pursuit of higher data rates, we are intrinsically bound by the inverse relationship of symbol
time and the bandwidth. This can be intuitively understood from the fact that if the symbol time
is shortened, the signal will change more frequently, yielding a larger bandwidth. Whilst for
example higher order modulation formats can be used to increase the rates, increasing the system
bandwidth have been a trend throughout the development of mobile communication standards.

Increasing the bandwidth can lead to several challenges. First and foremost, the radio frequency
spectrum, in which all mobile communication takes place, is a limited resource. As such, increasing
the bandwidth indiscriminately is usually not an option. Below 6 GHz, where most wireless
communication takes place in current mobile communication systems, the spectrum is extremely
crowded, serving as a motivation to develop communication technologies outside of this band. One
example of this is Visible Light Communication (VLC) [9], which, as implied by the name, uses
visible light (that is, in the frequency band from 400–800 THz) as a carrier and overlays the light
with a data-carrying signal. The actual communication is not carried out in the THz-domain; the
visible light is merely used as a carrier wave. This technology is as of yet not particularly fast,
but serves as an example of a means of wireless communication outside of the conventional band.

While auxiliary technologies such as VLC might slightly unload the mobile communication network
for specific tasks, it will most likely never be the main workhorse of human communication. The
majority of research attention is given to the mobile communication network itself and going
forward, the move to higher frequencies is set to play a key part of the next mobile communications
standard. Communications will take place both in bands below 6 GHz and in a number of different
bands above 6 GHz [10], with the high frequency range in the 5G standard set to 24.25–52.6 GHz
and the highest band allocated as of yet set to 37–40 GHz [11]. These higher frequency band are
commonly referred to as mmWave, as the wavelength for frequencies ranging from 30–300 GHz
have wavelengths ranging from 10–1 mm. Shorter wavelength has a number of effects, perhaps
the most prominent being the increased susceptibility to blockages, due to shorter penetration
depth. Further, as stated in the well-known Friis transmission equation [12], the received power of
a signal transmitted in free space is inversely proportional to the square of its frequency, meaning
that even without blockages, higher frequencies lead to less received power for a given antenna
aperture.

One way to mitigate these issues is to use a technique known as beamforming. By using more than
one antenna, we can adjust the shape of the beam according to some design criterion. Commonly,
the beam is designed to interfere either constructively or destructively at one or more locations.
Next, we will take a look at Massive MIMO, the technology underpinning beamforming strategies.
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1. Introduction

1.2 Massive MIMO

It is well-known that using more than one antenna can yield considerable performance improve-
ments. Intuitively, this can be understood by considering a simple system where a message is
transmitted to a single antenna through a noisy environment. The noise might have a very strong
influence on some parts of the message, making it impossible for the receiver to completely re-
cover what was transmitted. If, however, the receiver uses more than one antenna to pick up the
message, the receiver would then have multiple versions of the same message. Now, if parts of
the message strongly affected by noise in one version are unaffected in others, the receiver could
then combine all versions of the message to hopefully recover the full message. A system where
the receiver uses more than one antenna to pick up a signal from a single source, is known as
single-input multiple-output (SIMO). MIMO refers to the case where both the transmitter as well
as the receiver are equipped with more than one antenna. If designed properly, a MIMO system
enable increased throughput, as it can establish parallel communication streams by adding the
spatial dimension as a scheduling resource. A scenario where a single user is equipped with several
antennas is sometimes referred to as single user (SU) MIMO and further, we can also consider
many single-antenna users, known as multi user (MU) MIMO. Both SU-MIMO and MU-MIMO
have been a part of both the Long Term Evolution (LTE) and Worldwide Interoperability for
Microwave Access (WiMAX) standard for roughly ten years and has played a significant part in
reaching target data rates [13].

Massive MIMO, as implied by the name, means that the number of antennas is high. Typically, the
number of antennas at the base station (BS) is significantly higher than the number of antennas
at the user equipments (UE). A key technique in Massive MIMO is beamforming, where the many
antennas facilitates accurate direction of beams to discrete points in space. Massive MIMO has
been an active research topic for several years and is expected to become an integral part of
the next generation of mobile systems. Some theoretical benefits of Massive MIMO are capacity
gains, increased robustness, and highly improved energy efficiency [14, 15]. Whether or not all of
these theoretical promises can be realized at a reasonable cost remains to be seen, but regardless,
Massive MIMO is a highly promising technology. The major interest in bringing this to market
has spawned a number of new research areas related to the challenges associated with having large
antenna arrays. In the following section, we will outline some of these challenges and provide the
necessary motivation for this work.

1.3 Challenges

Having a large antenna array intrinsically entails an increased number of hardware components.
Each antenna will require a hardware chain and for the elements to cooperate in some fashion,
additional controlling units are needed. To keep the power consumption from skyrocketing, con-
siderable research interest has been devoted to simplifying some hardware components. Examples
of such, include the analog-to-digital converters (ADC) and digital-to-analog converters (DAC).
As implied by their name, these devices are responsible for converting the output of a digital
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1. Introduction

signal processor (DSP) to signal that can be fed to an antenna, or vice-versa. In the case of a
ADC, these work by taking a snapshot of the analog signal at discrete timing instants and storing
the amplitude of signal as closely as allowed by the resolution of the ADC. More precisely, an
ADC performs both sampling (time-discretizing) and quantization (amplitude-discretizing). The
discretizing operations are necessary as a digital device has finite memory, meaning the analog
values can not be stored with infinite-precision. This thesis will focus primarily on the quantizing
part of the ADC and the sampled and nonquantized signal will be commonly be referred to as the
infinite-precision case.

Mathematically, we express the sampling part of the ADC as ys[n] = yc(nTs), where ys is the
sampled version of the continuous signal yc at times nTs, n ∈ Z≥0. The sampling time Ts specifies
the time between two successive samples. The inverse of the sampling time Fs = 1/Ts is called
the sampling frequency. Next, the quantization operation can be described as r[n] = Q(ys[n]),
where r[n] is the quantized version of the discrete signal ys[n], according the- rules specified by
the quantizer Q. The number of possible outputs from the quantizer is known as the number of
quantization levels. The number of quantization levels L is linked to the resolution of an ADC
as L = 2b, where b is the resolution in bits. For example, a three-bit quantizer has L = 23 = 8
possible output values, represented digitally as every permutation of a three-bit binary number.

In Figure 1.1, a number of examples of the sampling speed Fs and resolution b are shown. Beginning
in the top left corner, the time-continuous signal yc has been sampled with some speed Fs and
then quantized with a three-bit quantizer. The red dots depicts the digital representation r[n]
of the signal and the quantization error is defined as ys[n] − r[n], i.e. the difference between the
nonquantized and the quantized signal in the sampling instants. As the number of quantization
levels is limited to 23 = 8 levels, the quantization error is clearly discernible. In Figure 1.1, we
have also added a zero-order hold reconstruction of the digital values, represented by the solid
black line. This is a model of how the analog signal can be reconstructed from the digital values
using a DAC that simply holds the digital value until the next sampling instant, producing a
square-like output. Clearly, a using a first-order hold filter that linearly interpolates between
successive sampling points would have produced an output that looks more similar to the original,
but the purpose here is to demonstrate the effect of increasing the sampling speed. This is done
in Figure 1.1b, where the sampling speed is 3Fs. Comparing the quantization error in Figure 1.1a
and 1.1b, we see that the magnitude of error is comparable, but the reconstructed line is much
closer to the original. Though not evident from Figure 1.1b, there are additional benefits to
increasing the sampling rate besides in the reconstruction phase, which will be mentioned later.

In Figure 1.1c, the sampling speed is again set to Fs and the resolution increased to 10 bits. With
b = 10, the number of quantization levels increases to 210 = 1024, yielding a quantization error
that is virtually zero.

In Figure 1.1a, 1.1b and 1.1c, we have used what is known as an automatic gain control (AGC). This
is a device which attenuates the input signal so that it fits within the range of the quantizer levels.
Defining q to be the difference between two adjacent quantization levels, this implementation of
the AGC ensures that the maximum input value is q/2 above the highest quantization level. Then,
the maximum size of the error will be q/2, regardless of the signal level. Without the AGC, the
quantizer would have had to select its highest or lowest value as soon as the input went outside its
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Figure 1.1: Some quantizers with different parameters.

range, yielding significant errors at the extremes. This is an example of saturation (or clipping)
and is a well-known effect in for example amplifiers, arising when the dynamic range of the input
exceeds the dynamic range of the output.

Lastly, in Figure 1.1d, the resolution is set to a single bit. Note that having an AGC or not
does not make a difference, as only the sign of the incoming signal is stored; the magnitude is
of no importance. Consequently, we can remove the AGC from the receiver chain, which is one
of the reasons why one-bit quantizers have generated significant research interest in the last few
years. Fascinatingly, and perhaps rather counter-intuitively, we will see that the very apparent
quantization error in Figure 1.1d is not enough to render a MIMO system unusable. In fact,
research has demonstrated quite the opposite, as studies has demonstrated not only that systems
using low-resolution converters does in fact work — only a few bits are required to get similar
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performance to that of the infinite-precision case [16].

As is clear from Figure 1.1, in order to improve the performance of a ADC, we can either sample the
signal more often or store the value with greater precision. Unfortunately, increasing the sampling
rate and resolution of an ADC also increases the power consumption. For a given sampling rate
Fs Hz and resolution b bits, the power dissipation scales as roughly [17]

P ∝ 2beffFs (1.1)

where beff is the effective number of bits. It is a standard way of measuring the true resolution of
an ADC, taking into account the distortion introduced by the ADC circuit itself.

From (1.1), we see that for each additional bit of resolution, the power consumption scales by
roughly a factor two. Moreover, in order to compare different architectures and identify trends, a
figure of merit (FOM) was proposed by Walden in [18] as

FW = 2beffFs
P

(1.2)

This FOM, now referred to as Walden’s FOM, is in commonly in use and in Figure 1.2, the
inverse of (1.2) with each data point divided with its resolution is shown. The envelope have been
constructed from the average of the five best (with relation to their respective FOM) designs [19].
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Figure 1.2: Walden’s Figure of Merit. Data gathered from the International Solid-State Circuits Con-
ference (ISSCC) and the Very Large Scale Integration Symposium (VLSI). Data fetched from [19].

We see that increasing the speed of an ADC can indeed be costly in terms of power consumption.
High speed converters can bring a number of benefits, such as radio frequency (RF) sampling, where
the received signal is sampled and converted into the digital domain at passband directly, removing
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1. Introduction

a number of analog components required in the mixing stage [20]. This reduces complexity and
cost, as well as decreases power consumption. Further, it has been shown for example in [21] that
oversampling can yield performance benefits if low-resolution converters are used.

With future mobile communication network likely to operate at wider bandwidths than today, it
seems likely that the demand for fast ADCs is not going to diminish. Consequently, reducing the
resolution of the converters could be a solution. For example, a typical ADC deployed in a BS
today has a resolution of 10–14 bits [22]. Replacing those converters with ADCs and DACs with
lower resolution has the potential to yield significant energy savings, at least when examining the
converters in isolation. As shown in Figure 1.1, the quantization error grows as the resolution
is decreased, introducing more distortion to the system. Adding more antennas, as is the core
concept in Massive MIMO, will provide array gain that to some degree mitigates the effect of
increased quantization distortion, while at the same time increasing the total power consumption.
This thesis exclusively compare the infinite-resolution case and the extreme one-bit quantized case
and for a more in-depth discussion into this topic of low-resolution converters and their role in
future Massive MIMO systems, see for example [23].

For one-bit ADCs to be a viable technology in future communication systems, it needs to be
shown that acceptable performance can still be achieved despite the major impairments that they
bring. Research so far has demonstrated the viability of low-resolution quantizers in a number
of aspects, indicating that this indeed a promising path forward. A topic currently receiving
some attention with promising results [24, 25, 26, 27] concerns the synchronization of systems
employing low-resolution converters. Demonstrating that systems employing one-bit ADCs can
still be synchronized is an important step in the research of this technology and the main motivation
for this thesis.

1.4 Outline of thesis

In this thesis, some aspects of one-bit converters will be investigated. Specifically, it will be
examined whether systems employing these types of converters can be synchronized using standard
methods. In Chapter 2, the system model and channel input-output will be discussed. along with
an overview of the effects of imperfect synchronization. In Chapter 3, the necessary mathematical
tools will be mentioned and a more in-depth analysis of the effects mentioned in Chapter 2 will
be performed. Expressions for the power in the received signal and signal-to-interference-noise-
and-distortion-ratio (SINDR) will also be derived. In Chapter 4, some well-known synchronization
strategies will be discussed and their performance in the non-quantized and the one-bit quantized
case will be compared. In Chapter 5, the overall performance of the system with synchronization
errors present will be examined via simulations and lastly, in Chapter 6, the results from this
thesis will be discussed. Some ideas for future research into this field will also be suggested.

7



1. Introduction
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2
System model

This chapter explains the system model, the assumptions made regarding the communication
system and the effects of imperfect synchronization. Here, the aim is to give a complete charac-
terization of the problem at hand, before delving into the analysis.

2.1 Orthogonal Frequency Division Multiplexing

Before going into the channel input-output model, it is fitting to say something with regards to the
modulation format used in modern communication systems. The medium through which the signal
is transmitted is called the channel and can be characterized by a number of parameters. Noise
introduced by for example hardware, is usually modeled as an additive effect. As this in intended
to capture a wide array of noise sources into a single additive effect, it can by the central limit
theorem be approximated as a Gaussian random variable. In addition to this, wireless channels
also have a multiplicative effect known as fading. A natural distinction between different fading
environments is whether the channel has the same effect on all frequencies in the signal bandwidth
or if its frequency response varies. The former is usually referred to as a frequency-flat channel,
arising in narrow-band scenarios where the communication bandwidth is smaller than the channel
coherence bandwidth. The latter case is referred to as a frequency-selective channel and usually
arises in environments where the reflection and refraction of a transmitted signal must be taken
into account.

With growing signal rates, the system will occupy a larger bandwidth, introducing additional
design concerns. In a single-user scenario, no other user is competing for the same frequency
resource, but if, however, multiple users are present, some sort of scheduling in order to prevent
collisions between messages must be implemented. One solution would be to designate a slot in
time for each user, in which the user is granted access to the channel. This idea is the basis of
time-division multiple access (TDMA) and was the main multiple access technique in early mobile
systems. It is still used today, for example in LTE where it is used in conjunction with other
techniques [28].

While TDMA indeed solves the issue of multiple users simultaneously accessing the channel, but
does nothing to alleviate another issue, namely the frequency-selectiveness of the channel. If the
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2. System model

signal bandwidth is larger than the channel coherence bandwidth, it means that the spectral gain is
not constant over the entire signal bandwidth, making equalizing more complex. A response to this
is to use orthogonal frequency division multiplexing (OFDM), which converts a single wideband
channel into several narrowband channels with lower rates. Dividing the available frequency
spectrum into several channels, known as a multi-carrier modulation, had been around for a while,
but the idea of modulating each symbol with signals from an orthogonal set is normally credited
to [29]. Using an orthogonal set of signals, we are able overlap the frequency bands without
incurring any inter-carrier interference (ICI), thus maximizing the transmission rate. Further,
frequency resources can be dynamically allocated based on the current conditions of the sub-
channels, thereby avoiding energy being wasted on unusable parts of the spectrum. The first
major application of the format was the in asymmetric digital subscriber line (ADSL) in the
1990’s [30]. By then, efficient implementation had been made available via fast DSP units and
fast Fourier transforms (FFT). For a more complete description of the development of OFDM, see
e.g. [31].

In the modulation process, the inverse discrete Fourier transform (IDFT) is used to modulate
each data symbol x̂[k] ∈ C with a complex exponential function drawn from an orthogonal set.
Specifically, for N sub bands

x[n] = 1√
N

N−1∑
k=0

x̂[k] ej2πnk/N , n = 0, 1, . . . , N − 1 (2.1)

where x̂[k] is the data symbols drawn from some constellation and x[n] the time-domain signal to be
transmitted. The scaling factor 1/

√
N in front of the summation is there to ensure that the average

power of the signal is not affected by the IDFT operation. The exponentials e(j2πnk/N), ∀n ∈
{0, 1, . . . , N − 1} in (2.1) are commonly referred to as subcarriers and are what the data to be
transmitted is modulated with. The phase difference of the complex exponential functions being
multiplied with x̂ is 1/N and to verify that the set spanned by these complex is orthogonal, note
that

N−1∑
n=0

ej2πnk/N · e−j2πnp/N

=
N−1∑
n=0

ej2π
k−p
N

n

= 0 , ∀ k 6= p.

Not all N values of x̂[k], k = 0, 1, . . . , N − 1 needs to contain a data symbol. Some zeros are
commonly inserted at specific points in order to increase the robustness of the system. This will
however not be considered in this thesis and all subcarriers will be assumed to carry data symbols,
which will be referred to as symbol-sampling rate.

In the demodulation process, the frequency-domain symbols are retrieved by computing the dis-
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crete Fourier transform (DFT) of the time-domain signal, defined as

x̂[k] = 1√
N

N−1∑
n=0

x[n] e−j2πnk/N , k = 0, 1, . . . , N − 1 (2.2)

where the scaling 1/
√
N again ensures that the average power after the DFT is unchanged.

In a fading channel, some concessions regarding the transmission must be made in order for the
orthogonality between subcarriers to be preserved. Specifically, each OFDM symbol is commonly
cyclically extended via the insertion of a cyclic prefix (CP). The CP consists of the last P ≤ N
samples of the original OFDM symbol, bringing the total length of the OFDM symbol to N + P .
Naturally, as some parts of the symbol are repeated, this redundancy lowers the total rate. Another
issue with OFDM is the peak-to-average ratio (PAPR), which captures how much the amplitude
of the time-domain signal varies. In OFDM, compared to a single-carrier system, this ratio tends
to be fairly high, spelling difficulty for the amplifiers. Typically, an amplifier is only linear in a
limited region, meaning that we are more likely to incur nonlinear distortion for signals with large
amplitude variations. This thesis will assume that this effect, as well as a number of additional
hardware-related concerns, can be disregarded. For more details on these matters, see e.g. [32].

2.2 Channel input-output model

In this work, we consider an uplink baseband model where U single-antenna UEs are communi-
cating with a BS equipped with B antennas. Operations such as filtering, up and down conversion
and mixing will be assumed to be ideal and therefore not explicitly considered.

An overview of the considered MU-MIMO OFDM system is depicted in Figure 2.1. The raw
bits coming into our system are assumed to be uniformly distributed and fed to a modulator
unit, generating U streams of Gray-coded complex symbols drawn from a quadrature phase-shift
keying (QPSK) alphabet, i.e. x̂u[k] ∈ {±1/

√
2± 1/

√
2j} for u ∈ {1, 2, . . . , U}. Next, the symbols

x̂[k] = [x̂1[k], x̂2[k], . . . , x̂U [k]]T ∈ CU are transformed into the time-domain via the IDFT defined
in (2.1), a cyclic prefix is added and the time-domain signal x[n] = [x1[n], x2[n], . . . , xU [n]]T ∈ CU

is transmitted over a channel H ∈ CB×U . In this thesis, the channel will be assumed to be
frequency-flat, i.e. the number of channel taps, modelling the delay spread, is assumed to be one.
Upon arrival at the receiver, there will be some uncertainty regarding the absolute timing as well
as the carrier frequency of the signal. These effects are called the symbol timing offset (STO) and
carrier frequency offset (CFO), respectively, and are a major focus of this thesis.

At the receiver, the received signal y[n] = [y1[n], y2[n], . . . , yB[n]]T ∈ CB is fed to 2B ADCs, one
pair for each receiver chain, where the real and imaginary part of the signal at each antenna
element will be quantized separately. The resolution is limited to one bit, effectively only storing
the sign of the incoming signal. Next, the STO and CFO will be estimated and compensated via
some method, examined in more detail in Chapter 4. If the estimation of the STO and CFO is

11



2. System model

not perfect, then there will be residual STO and CFO after the compensation stage, potentially
affecting the performance of the system. The precise effect of the residual STO and CFO will be
examined in Chapter 3.

After the STO and CFO estimation and compensation stage, the CP is removed and a DFT is
performed. Lastly, to obtain an estimate x̂est[k] ∈ CU of the transmitted symbols x̂[k], the signal
is passed through a equalization stage. After equalization, the estimated symbols are then fed to
the decision and decoding units of the system, finally yielding an estimate of the transmitted bits.

IDFT CP
UE 1

x̂1 x1

IDFT CP
UE 2

x̂2 x2

IDFT CP
UE U

x̂U xU

... ... ...

Freq.-flat.
channel

Base station

STO/CFO
Im ADC
Re ADC

r2 STO/CFO
est.

CP
DFT

y2

STO/CFO
Im ADC
Re ADC

r1 STO/CFO
est.

CP
DFT

y1

STO/CFO
Im ADC
Re ADC

rB STO/CFO
est.

CP
DFT

yB

... ... ... ...

EQ
Comb

...

x̂est
1

x̂est
2

x̂est
U

Figure 2.1: The system model for U single-antenna transmitting UEs and B receive antennas.

Assuming that the users are transmitting a continuous stream of OFDM symbols, the received
signal at the bth antenna yb[n] can be expressed as

yb[n] =
U∑
u=1

ej2πε0,un/N hb,u xu[n+ δ0,u] + wb[n]. (2.3)

In (2.3), ε0,u and δ0,u represents the CFO and STO between the BS and the uth UE, respectively.
The scalar value hb,u represents the channel from user u to antenna b and xu[n] is the transmitted
signal from user u. The term wb[n] stands for the thermal noise at antenna b, wb[n] ∼ CN (0, N0),
where N0 is the noise power spectral density.

The quantized signal rb[n] is defined as rb[n] = Q (yb[n]), where Q(·) describes the nonlinear
quantizer operation. It is defined as

Q(yb[n]) = 1√
2

(
sgn (Re{yb[n]}) + j sgn (Im{yb[n]})

)
(2.4)

where sgn(·) is the signum function. The scaling
√

1/2 is chosen so that E[|rb[n]|2] = 1.

Lastly, an estimate of the transmitted symbols from user u, x̂est
u [k], is obtained as

12
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x̂est
u [k] =

B∑
b=1

au,br̂b[k] (2.5)

where au,b is the (u, b)th entry in the equalization matrix A ∈ CU×B and r̂b[k] is the DFT of rb[n].

In this thesis, a zero-forcing (ZF) equalizer is considered, which attempts to invert the effect of
the channel via the psuedo-inverse of the channel, i.e.

A = (HHH)−1 HH . (2.6)

The analysis of the received signal is performed in Chapter 3.

We will use this model as the basis for our investigation and next, we will give an overview of the
effects of STO, CFO, and one-bit quantization on the signal.

2.3 Impact of imperfect synchronization

This section will provide an overview of the adverse effects STO and CFO will have on the received
signal. In a real-world system, there are additional synchronization-related matters to consider,
such as the sampling clock offset, but we will limit ourselves to the STO and CFO. For a discussion
on the effects of other synchronization offsets, see e.g. [33].

This section intends to provide the intuition for the effects of STO and CFO. For a more complete
mathematical analysis, please refer to Section 3.

2.3.1 Symbol timing offset

Generally speaking, the receiver in a communication system does not know in advance when the
transmitter will send something. This means that the designer of the system will need to devise a
way for the receiver to automatically detect when a signal is present in the channel. This process
is known as frame detection and in Section 4, some strategies for accomplishing frame detection
are mentioned. Determining exactly when a transmitted message has arrived at the receiver is not
trivial and uncertainty in that process can lead to STO, the topic of this section.

We will assume that frame detection and STO estimation has already been performed and that
the timing uncertainty is in the order of ±N , the length of the OFDM symbol. As mentioned in
Section 2.2, this remaining STO will be referred to as residual STO and we define the residual STO
from the uth user to be δu = δ0,u−δest

u . From Figure 2.1, the next step after synchronization offset
estimation is the removal of the CP and a DFT operation. The continuous stream of received
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samples is divided into blocks of size N , which are fed to an N -point DFT. We refer to the ith
block as the ith DFT window. This is illustrated in Figure 2.2. If δu = 0, then the ith DFT
window contains precisely the N samples from the ith symbol. Clearly, if there is no residual
STO, no additional interference will be introduced.

OFDM block:
· · · CP Data

i − 1
CP Data

i

CP Data
i + 1

· · ·
DFT window

Figure 2.2: A depiction of the correct placement of the DFT window.

If, however, δu 6= 0, the residual STO might cause interference in the system. There are several
cases to consider, as the DFT window will either have its starting point inside the CP of the ith
symbol or contain some samples from either the previous symbol i − 1 or from following symbol
i + 1. These cases are denoted Case (i), Case (ii) and Case (iii), respectively, and in the last
two cases, as samples belonging to a different OFDM symbol are included in the DFT window,
inter-symbol interference (ISI) is introduced. Moreover, the misaligned DFT window also causes
self-interference in the form of ICI.

In the following discussions, a single-user scenario transmitting over an additive white Gaussian
noise (AWGN) channel with no quantization (i.e. infinite-resolution) is considered where the
signal-to-noise ratio (SNR) is set very high, such that (2.3) simplifies to

y[n] = ej2πε0n/N x[n+ δ0]. (2.7)

The corresponding frequency-domain symbols is then found via the DFT, i.e. ŷ[k] = DFT{y[n]}.
The purpose of disregarding thermal noise and MU interference is to demonstrate only the effect
of the STO. Since there is only a single user, the subscript u in δu and εu will be temporarily
dropped and lastly, throughout this thesis, δu > 0 will be taken to mean that the DFT window
contains samples from the next symbol.

Case (i): −P < δ < 0

OFDM block:
CP Data

i − 1
CP Data

i

CP Data
i + 1

DFT window

δ

In this case, the starting point of DFT window is taken too early, but still within the part of
the cyclic prefix. We will miss a few samples of the symbol in the end, but as the cyclic prefix
contains the information that we missed, we will able to perfectly reconstruct the transmitted
data. A cyclic shift in the time domain will appear as a linear phase shift for all subcarriers in the
frequency domain, which can be rectified with an equalizer. The effect is depicted in Figure 2.3a.
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We clearly see that there is no added ISI or ICI. In Figure 2.3, the axes are the in-phase (I) and
the quadrature (Q) part of the signal.

Case (ii): −N ≤ δ ≤ −P

OFDM block:
CP Data

i − 1
CP Data

i

CP Data
i + 1

DFT window

δ

In this case, the DFT window will miss δ samples of symbol i and instead get δ samples from the
(i− 1)th symbol. The presence of erroneous samples in the DFT window will cause both ISI and
ICI and since some samples of the desired part are missing, there will be an attenuation of the
desired part of the signal. The misaligned DFT window will also cause a rotation of the received
constellation, depicted in Figure 2.3b.

Case (iii): 0 < δ ≤ N

OFDM block:
CP Data

i − 1
CP Data

i

CP Data
i + 1

DFT window

δ

The effect in this case is in the frequency-flat channel model identical to Case (ii). The situation
is depicted in Figure 2.3c, where δ > 0. The received frequency-domain symbols are rotated and
scaled and from the spreading of the symbols, it is evident that interference has been introduced.

−1 0 1
−1

0

1

I

Q

(a) Case (i), δ = −13

−1 0 1
−1

0

1

I

Q

(b) Case (ii), δ = −18

−1 0 1
−1

0

1

I

Q

(c) Case (iii), δ = 2

Figure 2.3: The effect to a QPSK constellation in some cases of residual STO in a single-user AWGN
channel with high SNR, N = 64, P = 16.

2.3.2 Carrier frequency offset

In order to properly decode a received message, the receiver will need to have accurate knowledge
of the carrier frequency. The data is modulated onto a carrier wave with some frequency fc and
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without knowledge of this parameter, the receiver will not be able to shift the signal down the
baseband. Due in part to imperfect oscillators at the transmitter and receiver, there will be a
difference between the reference clocks in either end. Additionally, if the receiver or transmitter
is moving with respect to the other, the Doppler effect will cause a change to the frequency of
the transmitted signal. The difference in the carrier frequency at the transmitter and receiver is
called CFO. This can have a detrimental effect on our received signal if not mitigated, especially
in systems employing OFDM, where exact knowledge of the center frequency in each sub band
is key to preserve the orthogonality between subcarriers. In the context of OFDM, the CFO is
commonly measured in relation to the subcarrier spacing, ∆f , and we define the CFO associated
with the uth UE as ε0,u = (fc,u − f ′c,u)/∆fu, where f ′c,u denotes the carrier frequency estimate in
the receiver. As in the case of the STO, the CFO will be estimated and compensated before the
DFT operation and we denote the residual CFO after estimation as εu = ε0,u − εest

u .

To explain the effect of different values for the CFO, we begin by defining the set of exponentials
At = {exp(j2πnk/N) : k = 0, 1, . . . , N − 1}. These are each of the complex exponentials
from (2.1) and represent the center frequencies of the sub bands in the transmitted signal.

Next, define another set of exponentials Ar = {exp(−j2πn(k + εu)/N) : k = 0, 1, . . . , N −
1}. These are the center frequencies in transmitted signal, each affected by a phase rotation
proportional to εu. These are what is used to demodulate the received signal and note that while
the demodulated symbols will be rotated if εu 6= 0, we see that if εu ∈ Z, then Ar = Ar. This
means that as long as εu is integer-valued, the received signal will be demodulated with the same
orthogonal set it was modulated with in the transmitter, however in a different order. Since
orthogonality is preserved, no ICI is introduced and given that this integer-value for εu can be
found, it will be possible to perfectly retrieve the transmitted symbols from the received signal.
However, if εu /∈ Z, then At 6= Ar. This introduces ICI and can potentially cause significant
performance degradation.

Along the lines of the previous paragraph, it is common practice to divide the CFO into an integer
part and an fractional part, as their respective impact on the received signal is very different.
In the integer case, the phase difference between two consecutive entries in either At or Ar is
precisely ∆f and we can conclude that the effect of an integer CFO is that the output of the DFT
is cyclically shifted with respect to the transmitted sequence. No ICI has been incurred and given
that we can somehow acquire the integer part of the CFO, we will be able to perfectly reconstruct
the transmitted sequence.

The fractional part of the CFO can, however, be potentially devastating. In the context of OFDM,
it will cause every entry akr ∈ Ar to differ from akt ∈ At, resulting in ICI. In Figure 2.4, we see the
effect of CFO on our received OFDM signal. The SNR is again set very high, so the only visible
effect is that of the CFO. We see that already at εu = 0.1, in Figure 2.4b, a significant amount of
noise has been added. At εu = 0.3, in Figure 2.4c, the effect is so severe that even if εu was known
and the induced rotation compensated for, the CFO will still make it unable to correctly decode
every point. These figures clearly illustrate the importance of accurate CFO estimates and the
effect will be more closely examined in Section 3.
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Figure 2.4: The effect of the CFO on an OFDM symbol with 256 subcarriers, single-user scenario with
AWGN and high SNR.

2.3.3 One-bit quantizers

A one-bit quantizer is a device that will only store the sign of the incoming signal. We will
quantize the real and imaginary part of the received baseband signal separately, as indicated
in Figure 2.1. Obviously, a lot of information is lost in that process. Assuming a single user
transmitting over an AWGN channel to a receiver consisting of only a one-bit quantizer, then, in
every sampling instant, the output of the quantizers would, regardless of the input, be a member
of the set X = γ{±1 ± j}, where γ is some scaling factor. In a single-antenna system, we could
not support any modulation format of higher order than QPSK, as there simply would not be any
additional information to utilize. However, if each transmitted symbol were received on more than
one antenna with independent noise realizations, then each received symbol could potentially be
combined to gain additional insights about the transmitted symbol. The intuition for this can be
obtained by examining Figure 2.5.

In Figure 2.5a and 2.5b, the clouds of blue dots represents a number of realizations of â+ n̂, where
â is the top-left constellation point in a 16-point quadrature amplitude modulation (16-QAM)
constellation (marked with a black square) and n̂ ∼ CN (0, 1/SNR). The plots are zoomed in
so that only the second quadrant is visible. The real and imaginary part of each point is then
quantized separately with a one-bit quantizer described by (2.4). The quantization point is marked
with the yellow diamond and lastly, all quantized points are averaged to form the orange dots.

In Figure 2.5a, we see that almost all of received symbols are in the second quadrant, and as hardly
any received points have crossed into to any quadrant other than the second, almost all points are
quantized to the same quantization point. Consequently, the average of the quantization points is
very close the quantization point itself.

In Figure 2.5b, however, a significant number of the received points show up in the other three
quadrants. The average of the quantized data is therefore shifted towards the origin, making it
possible to distinguish between the transmitted points in Figure 2.5a and 2.5b.
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Figure 2.5: Around 500 realizations of â+ n̂, with SNR = 5 dB.

Many realizations of a received symbol with independent noise realizations approximately describes
a multi-antenna system. Note that while the thermal noise on each antenna could plausibly be
modelled as independent, interference sources are usually not uncorrelated over all antennas, so
this description is not completely accurate. However, at least part of the noise associated with
the signal on each receive antenna can be assumed to be independent, so even if correlated noise
sources can not be completely averaged out, multi-antenna systems are able to support high order
constellations, as shown in e.g. [34]. Note that the number of data points in Figure 2.5 is highly
excessive when viewed as individual antenna elements - the illustration is only meant to clearly
demonstrate why one-bit quantization supports higher-order modulation formats.

An observation from Figure 2.5, is that it would have been impossible to resolve the 16-QAM
points if the SNR� 1, as the received symbols in Figure 2.5a and 2.5b would have been quantized
to the same point. This is a perhaps surprising result that implies that for a given set-up, there
will be an optimal level of thermal noise in terms of symbol error rate. This would also means
that the system performance could benefit from the introduction of additional noise. Framed in
the context of dithering, the intuition for this effect may become clear. Improving performance
using dithering is a well-known technique in a number of fields, such as image or audio processing.
It is not uncommon for dithering to be used as a mean to artificially increase the variability of a
data set, which, as demonstrated in Figure 2.5, is critical for the average of the quantizer output
to fall in set with higher cardinality than four.

Lastly, we note that the ability of one-bit quantizers to support higher order modulation for-
mats in a multi-antenna setup, hints that OFDM can be used as a transmission scheme. In the
time-domain, OFDM can be viewed as a higher-order modulation. As demonstrated, these can
be supported by one-bit quantizers if the number of antennas is sufficiently high. This general
conclusion is also valid for a frequency-selective channel, demonstrated in for example [16]. The
topic of low-resolution quantizers and for reading on the topic, see for example [35, 21, 36, 37].
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(d) 128 antennas.

Figure 2.6: 32 OFDM symbols with 256 subcarriers transmitted over AWGN and quantized and aver-
aged at the receiver, SNR = 0 dB.

In Figure 2.6, we see the effect of adding antennas to the system. The constellation is gradually
becoming more and more defined and it is interesting to note that even with a modest number of
antennas, such as in Figure 2.6c, the constellation is clearly discernible. Given that the number
of antennas in Massive MIMO is likely to be on the order in 64 or larger [15], we can conclude
that one-bit quantizers could be a viable solution to reduce power consumption whilst retaining
support for higher order constellations.
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3
Analysis

Next, we will examine the effects of CFO and STO on a signal that is one-bit quantized. In order
to successfully perform an analysis of the quantized signal, we will need a tool to handle this kind
of nonlinear amplitude distortion. One such tool is Bussgang’s theorem, which will be introduced
and explained in Section 3.1. We will derive the closed-form expression for the received frequency-
domain signal in the presence of STO and CFO and then use Bussgang’s theorem to extend the
analysis to the one-bit case.

3.1 Bussgang’s theorem

A useful tools in the analysis of these kinds of system is Bussgang’s theorem, named after Julian J.
Bussgang who published it in 1952 [38]. In its original formulation, it states that for two Gaussian
signals, their cross-correlation will be the same up to a scaling before and after one of the signals has
undergone a nonlinear amplitude distortion. This situation is depicted in Figure 3.1a, where x(t)
and y(t) are two (generally) complex Gaussian signals. We let z(t) = D [y(t)] be some nonlinear
amplitude distortion and write

E [z(t)x∗(t)] = g E [y(t)x∗(t)] (3.1)

where g ∈ C is some scaling factor.

D

x(t)

y(t) z(t)

(a) The general statement.

Q
... ...

Q

y1[n] r1[n]

yB[n] rB[n]

(b) Our quantizer context.

Figure 3.1: A visualization of Bussgang’s theorem

In order to facilitate the analysis of the effect of one-bit quantization in a communication system,
we can frame Bussgang’s theorem as in Figure 3.1b. In each timing instant n, the B receive
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antennas are sampled and the values collected in the vector y[n] ∈ CB. Each entry yb[n] of the
vector y[n] is then put through the quantizer Q, characterized by (2.4). Collecting all outputs
rb[n] = Q(yb[n]) in the vector r[n] ∈ CB, we can write (3.1) in a vectorized form as

E
[
r[n]yH [n]

]
= G E

[
y[n]yH [n]

]
(3.2)

where the gain G is a B × B diagonal matrix. From (3.2), it follows that r[n] = Gy[n] + d[n],
where d[n] ∈ CB, if d[n] is uncorrelated with y[n], i.e. E

[
y[n]dH [n]

]
= 0. To verify, we can

examine a single entry rb[n] in r[n] and substitute on the left-hand side in (3.2). Then,

E [([G]b,b yb[n] + db[n])y∗b [n]] = [G]b,b E [yb[n]y∗b [n]]
E [[G]b,b yb[n]y∗b [n] + y∗b [n]db[n]] = [G]b,b E [yb[n]y∗b [n]]

[G]b,b E [yb[n]y∗b [n]] + E [y∗b [n]db[n]] = [G]b,b E [yb[n]y∗b [n]]

where the last step follows as the expectation E[·] is a linear operator. We see that for the above
to hold, the second term on the left-hand side must be equal to zero. Consequently, db[n] must be
uncorrelated with yb[n]. Consequently, we can indeed write

r[n] = Q(y[n]) = Gy[n] + d[n]. (3.3)

This formulation will become useful when we investigate the effects on the quantized signal in
the presence of STO and CFO. The term d[n] can be viewed as a distortion and captures the
adverse effects of the quantizer. Interstingly, while the power of the distortion caused by the
one-bit quantizers can be significant in relation to the signal power, illustrated in Figure 1.1d,
studies such as [39, 40, 16] has shown that 1) the performance loss is not necessarily as severe as
one might intuitively think and 2) only a few bits are required to make the gap within fractions
of a dB for low SNRs.

Next, we examine the gain G. A general expression where no particular constraints are placed
on the nonlinear amplitude distortion D(·) can be found in [41], but let us derive the gain in the
special case of a one-bit ADC. As mentioned previously G is a diagonal matrix and we will find
the expression for each diagonal entry [G]b,b. For notational clarity, we will here drop the index n
and consider a single point in time.

From Equation (3.2), we have

[G]b,b = E [rby∗b ]
E [yby∗b ]

. (3.4)

We can write the numerator of Equation (3.4) as
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E [rby∗b ] = E
[(

Re(rb) + jIm(rb)
)
·
(
Re(yb)− jIm(yb)

)]
= E [Re(rb) Re(yb)]− jE [Re(rb) Im(yb)] + jE [Im(rb) Re(yb)] + E [Im(rb) Im(yb)] .

Given that yb is circularly symmetric complex Gaussian variable, the real and imaginary part
are uncorrelated, i.e. E[Re(yb) Im(yb)] = 0. From (2.4), note that the real part of rb has no
relation to the imaginary part of yb, and equivalently for the relation between Im(rb) and Re(rb).
Consequently, as both the real and imaginary parts are zero-mean, we have

E [rby∗b ] = E [Re(zb) Re(yb)] + E [Im(zb) Im(yb)] .

Since the real and imaginary part of yb and zb are identically distributed, we have

E [rby∗b ] = 2 E [Re(rb) Re(yb)]

= 2
∫
yb,R

1√
2πσ2

yb,R

1√
2

sgn[yb,R] yb,R e−y
2
b,R/(2σ

2
yb,R

) dyb,R (3.5)

where we have written Re(y) as yb,R for readability. Denoting E [yby∗b ] as σ2
yb
, we can express the

distribution of the new variable yb,R as CN (0, σ2
yb
/2). Performing the substitution σ2

yb,R
= σ2

yb
/2

and then inserting (3.5) into (3.4) , we find the gain as

[G]b,b =
√

2
π

1
σ2
yb

√
σ2
yb

2
∫ ∞

0
yb,R e

−
y2
b,R

σ2
yb dyb,R

=
√

2
π

1
σ2
yb

√
σ2
yb

2
σ2
yb

2

=
√

2
π

1
σyb

. (3.6)

From (3.6), we see that the gain depends on the second-order statistics of the received signal y[n].
Consequently, the final expression for the gain G will vary with the assumed channel model and
for a frequency-flat channel model and symbol-rate sampling, we have, writing (2.3) in vector
notation,
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G =
√

2
π

(
diag

(
E
[
y[n]yH [n]

]))−1/2
(3.7)

=
√

2
π

diag

HE
[
x[n]xH [n]

]
︸ ︷︷ ︸

=IU

HH + E
[
w[n]wH [n]

]
︸ ︷︷ ︸

=IB ·N0



−1/2

=
√

2
π

(
diag

(
HHH + IB ·N0

))−1/2
(3.8)

where w[n] ∈ CB, IU and IB represents the identity matrix of size U and B, respectively and
diag(·) forms a new diagonal matrix from the main diagonal of a input matrix. The cross-terms
in (3.7) are zero as x[n] are w[n] are independent and the noise w[n] is zero-mean.

Lastly, note that the validity of Bussgang’s theorem hinges on the fact that the quantizer input,
y[n] ∈ CB, is a Gaussian signal. Using the OFDM signalling scheme, this condition can generally
be regarded as fulfilled.

3.2 Received signal due to STO and CFO

As mentioned in Section 2.3, the STO will impact the system differently depending on if the DFT
window is placed too late or too early. Additionally, the CFO can potentially place significant
limitations on the system performance. Our main goal is to find analytic expressions for how the
SINDR is affected due to these impairments, as well as the effect of one-bit quantization.

To be able to express the received signal at the bth antenna in a MU-MIMO uplink system
with B receive antennas and U UEs with STO and CFO, we begin by defining the set N =
{0, 1, . . . , N − 1}, i.e. all time-domain samples of an OFDM symbol. Next, we define the set S to
be some subset of N , i.e. S ∪ Sc = N . Given that the UEs are continuously transmitting OFDM
symbols, we use (2.3) and express the ith received symbol at the bth BS antenna as

y
(i)
b [n] =

U∑
u=1

hb,uej2πεun/N
(
x(i)
u [(n+ δu)N ] 1{Su}[n]

+ x(i−1)
u [n+N + P + δu] 1{Scu∧δu<−P}[n] + x(i+1)

u [n] 1{Scu∧δu>0}[n]
)

+ wb[n] , n = 0, 1, . . . , N − 1 (3.9)

where the (·)N defines the modulo operator, i.e. (n)N = n mod N . Further,
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Su =
{
{0, 1, . . . , N − δu − 1}, 0 < δu < N
{du, du + 1, . . . , N − 1}, −N < δu ≤ 0 (3.10)

is the set of samples corresponding to the ith transmitted symbol from the uth UE that are received
during the ith DFT window, and

du = max(−P − δu, 0). (3.11)

The parameter du captures the number of samples missed if δu < −P . As mentioned in Section 2.3,
as long as the starting point is taken within the cyclic prefix, no ISI or ICI will be incurred. To
keep track of this distinction, we use the parameter du. Lastly, as mentioned in 2.3, we will assume
that the frame detection preceding the DFT block has limited the STO for the ith symbol to ±N .
In fact, as any larger STO than ±N would mean that no samples of the ith symbol is present in
the ith DFT window, it not make much sense pursing an SINDR expression in that case.

As discussed in Section 2.3, the main causes of CFO are a mismatch between the oscillators in
the transmitter and receiver, as well as the Doppler effect. We can assume that a single clock is
driving all analog components in the receiver, but, naturally, this assumption would not be valid
for the transmitting side in a multi-user scenario. Further, we have no reason to assume that all
users move at roughly the same speed, meaning that all users have a unique Doppler shift relative
to the receiver. Consequently, we must separate the CFO for each user. Similarly, as we have no
reason to assume that the users are transmitting in a synchronized fashion equidistantly from the
receiver, we also must separate the STO for each user.

As noted in the previous section, the gain [G]b,b from (3.3) will depend on the second-order
statistics of the input, so in order to compute the analytic expression for the received signal, we
need to determine y(i)

b [n].

3.2.1 Infinite-precision case

In (3.9), we have used indicator functions to deal with STO larger than or less than zero. We will
treat these two cases separately, as they will cause either samples from the next symbol or from
the previous one to leak into the current block. In Figure 3.2, the two cases are shown. We will
begin with Figure 3.2b.

Case 0 < δu < N :

If the STO is positive, the DFT window will no longer include the complete symbol. We will
sample into the cyclic prefix of the next symbol and given a timing offset δu, we will miss the
δu − 1 first samples of the ith symbol and instead get first δu symbols of the following OFDM
symbol, i+ 1. Then, the DFT, defined by (2.2), of (3.9) reduces to
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D
ata CP . . .

δu

du

DFT window

(a) δu < 0.

CP
D

ata. . .

δu

DFT window

(b) δu > 0.

Figure 3.2: Illustration of δu > 0 and δu < 0.

ŷ
(i)
b [k] =

U∑
u=1

(
hb,u

1√
N

N−δu−1∑
n=0

ej2πεun/Nx(i)
u [(n+ δu)N ] e−j2πnk/N

+ hb,u
1√
N

N−1∑
n=N−δu

ej2πεun/N x(i+1)
u [n] e−j2πnk/N

)
︸ ︷︷ ︸

=îISI, right
b,u

[k]

+ 1√
N

N−1∑
n=0

wb[n] e−j2πnk/N . (3.12)

We note that the last term of (3.12) is the DFT of the thermal noise, ŵb[k] = DFT{wb[n]}. The
term îISI, right

b,u [k] is the ISI caused by the (i+ 1)th symbol during the ith DFT window.

With these definitions, we now have

ŷ
(i)
b [k] =

U∑
u=1

hb,u 1√
N

N−δu−1∑
n=0

ej2πεun/Nx(i)
u [(n+ δu)N ] e−j2πnk/N + îISI, right

b,u [k]
+ ŵb[k]. (3.13)

To continue, we write x(i)
u [n] in (3.13) in the frequency domain using (2.2). Simplifying the

exponents and rearranging the sums, we get

ŷ
(i)
b [k] =

U∑
u=1

hb,u
N−1∑
k′=0

x̂(i)
u [k′]ej2πδuk′/N 1

N

N−δu−1∑
n=0

ej2π(k′−k+εu)n/N

︸ ︷︷ ︸
=ψ[k,k′]

+îISI
b,u[k]

+ ŵb[k]. (3.14)

Now, we focus on ψ[k, k′]. Using the well-known formula for the geometric progression
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N−1∑
n=0

an = 1− aN
1− a (3.15)

we note that ψ[k, k′] bears a strong resemblance to the Euler formula for sine, i.e. sin(x) =
(exp(jx) − exp(−jx))/(2j). Multiplying the numerator and denominator with the appropriate
values, we get

ψ[k, k′] = ej πN (k′−k+εu)(N−δu−1) sin
(
π
N

(k′ − k + εu)(N − δu)
)

N · sin
(
π
N

(k′ − k + εu)
) . (3.16)

Now, consider the case when k′ = k, i.e. the subcarrier index of interest. Defining

g(α, β) =
sin

(
π
N

(N − α)β
)

N · sin(πβ
N

)
ej πN (N−α−1)β, (3.17)

note that when k′ = k, then, from (3.16), ψ[k, k] = g(δu, εu). This term captures the attenuation
caused by STO, as well as the attenuation and phase shift to due to CFO. Using (3.17), we can
now write (3.14) as

ŷ
(i)
b [k] =

U∑
u=1

(
hb,u g(δu, εu) ej2πδuk/N x̂(i)

u [k]

+ hb,u
N−1∑
k′=0
k′ 6=k

sin
(
π
N

(N − δu)(k′ − k + εu)
)

N · sin( π
N

(k′ − k + εu))
ej πN (N−δu−1)(k′−k+εu) ej2πδuk′/N x̂(i)

u [k′]

︸ ︷︷ ︸
=φ[k]

+ îISI, right
b,u [k]

)
+ ŵb[k]. (3.18)

Now, we perform the variable change k′′ = k − k′ and write φ[k] as

φ[k] =
N−1∑
k′′=1

sin
(
π
N

(N − δu)(εu − k′′)
)

N · sin
(
π
N

(εu − k′′)
) ej πN (N−δu−1)(εu−k′′) ej2 πN (k−k′′)δux̂(i)

u [(k − k′′)N ] . (3.19)

The first two factors of (3.19) is precisely g(δu, εu − k′′), so finally, (3.18) becomes
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ŷ
(i)
b [k] =

U∑
u=1

(
hb,u g(δu, εu) ej2πδuk/N x̂(i)

u [k]

+
N−1∑
k′′=1

hb,u g(δu, εu − k′′) ej2πδu(k−k′′)/N x̂(i)
u [(k − k′′)N ]︸ ︷︷ ︸

=îICI, right
b,u

[k]

+îISI, right
b,u [k]

)
+ ŵb[k]. (3.20)

Looking at the terms of (3.20), we see the expected ICI terms due to loss of subcarrier orthogonality
as well as ISI due to the next symbol.

Case −P < δu < 0:

Looking at Figure 3.2a, we see that in a flat-fading channel model, there will be no delay spread
caused by the preceding symbol that will distort the cyclic prefix of the current symbol. This
means that as long as −P ≤ δu ≤ 0, there will be no interference from the previous symbol. As
mentioned in Section 2.3, the only effect will be a rotation of the received constellation, as the
orthogonality between the subcarriers is not affected. If δu is in this interval, then du in (3.11) will
be zero and from (3.9), we have

y
(i)
b [n] =

U∑
u=1

hb,u ej2πεun/N x(i)
u [(n+ δu)N ] + wb[n]. (3.21)

Applying a DFT to (3.21) and proceeding in a similar manner as in the previous case, we arrive
at

ŷ
(i)
b [k] =

U∑
u=1

hb,u g(0, εu) ej2πδuk/N x̂(i)
u [k] + ŵb[k]. (3.22)

We see that the only effect from the STO is a rotation of the received symbol.

Case −N < δu < −P :

Here, we will miss the first du samples of symbol i and instead get the last du samples of symbol
i− 1. This means that we will get ISI. Applying the DFT to (3.9), we get
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ŷ
(i)
b [k] =

U∑
u=1

(
hb,u

1√
N

N−1∑
n=du

ej2πεun/Nx(i)
u [(n+ δu)N ] e−j2πnk/N

+ hb,u
1√
N

du−1∑
n=0

ej2πεun/N x(i−1)
u [n+N − du] e−j2πnk/N︸ ︷︷ ︸

=îISI, left
b,u

[k]

)

+ 1√
N

N−1∑
n=0

wb[n] e−j2πnk/N . (3.23)

Using the same steps in the case of 0 < δu < N , we arrive at

ŷ
(i)
b [k] =

U∑
u=1

hb,u
N−1∑
k′=0

x̂(i)
u [k′]ej2πδuk′/N 1

N

N−1∑
n=du

ej2π(k′−k+εu)n/N

︸ ︷︷ ︸
=ξ[k,k′]

+îISI, left
b,u [k]

+ ŵb[k]. (3.24)

Again, we focus at the innermost sum over n and write

ξ[k, k′] = 1
N

N−1∑
n=du

ej2π(k′−k+εu)n/N

= 1
N

N−1∑
n=0

ej2π(k′−k+εu)n/N −
du−1∑
n=0

ej2π(k′−k+εu)n/N


= 1
N

(
1− ej2π(k′−k+εu)

1− ej2π(k′−k+εu)/N −
1− ej2π(k′−k+εu)du/N

1− ej2π(k′−k+εu)/N

)

= 1
N
· ej2π(k′−k+εu)du/N − ej2π(k′−k+εu)

1− e2π(k′−k+εu)/N . (3.25)

Multiplying (3.25) with the appropriate factors, we can again use Euler’s formula for sine to find

ξ[k, k′] =
sin

(
π
N

(k′ − k + εu)(N − du)
)

N · sin
(
π
N

(k′ − k + εu)
) ejπ(k′−k+εu)(N−du−1)/N e−j2π(k′−k+εu)du/N . (3.26)

For the case k′ = k, (3.26) simplifies to

ξ[k, k] = g(du, εu)e−j2πεudu/N . (3.27)
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Using the same change of variable k′′ = k − k′ as before, we can finally write (3.23) as

ŷ
(i)
b [k] =

U∑
u=1

(
hb,u g(du, εu) ej2πδuk/N e−j2πεuδu/N x̂(i)

u [k]

+
N−1∑
k′′=1

hb,u g(du, εu − k′′) ej2πδu(k−k′′)/N e−j2π(k′′+εu)du/N x̂(i)
u [(k − k′′)N ]︸ ︷︷ ︸

=îICI, left
b,u

[k]

+îISI, left
b,u [k]

)
+ ŵb[k]. (3.28)

Comparing Equation (3.20) and (3.28), we note that they are highly similar. Again, we get ISI
due to the misaligned window, as well as ICI since the subcarrier orthogonality is not preserved.
This is to be expected, as the effect in either direction largely amounts to the same thing.

To verify our calculations, we examine the expression when either δu or εu is set to zero. Beginning
with no CFO, we get

g(δu, 0) = N − δu
N

using l’Hospital’s rule. For g(δu,−k′′), we get

g(δu,−k′′) = 1
N
· 1− e−j2πk′′ej2πδuk′′/N

ejπk′′/N − e−jπk′′/N ejπk′′/N

= 1
N
· 1− ej2πδuk′′/N

1− ej2πk′′/N

where we used that ej2πk′′ = 1, since k′′ ∈ Z.

With these results, (3.20) reduces to

ŷ
(i)
b [k] =

U∑
u=1

(
N − δu
N

hb,uej2πδuk/N hb,u x̂
(i)
u [k]

+ 1
N

N−1∑
k′′=1

hb,u
1− ej2πk′′δu/N
1− ej2πk′′/N ej2πδu(k−k′′)/N x̂(i)

u [(k − k′′)N ]

+ îISI, right
b,u [k]

)
+ ŵb[k]. (3.29)

This is the same result stated in for example [42, cf. (1)]. Similarly, (3.28) reduces to [42, cf. (3)]
if εu = 0.
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Setting δu (or du) to zero, we get,

g(0, εu) = sin(πεu)
N · sin(πεu

N
) ejπεu(N−1)/N

Using this, we can reduce (3.20) and (3.28) to

ŷ
(i)
b [k] =

U∑
u=1

( sin(πεu)
N · sin(πεu

N
) ejπεu(N−1)/N x̂(i)

u [k]

+
N−1∑
k′′=1

hb,u
sin(π(εu − k′′))

N · sin( π
N

(εu − k′′))
ejπ(εu−k′′)(N−1)/N x̂(i)

u [(k − k′′)N ]
)

+ ŵb[k]. (3.30)

The expression (3.30) can be compared to for example [32], where a similar expression was found
for the case hb,u = 1.

3.2.2 One-bit quantization

Now that we have found the expressions for yb[n] and ŷb[k], we are ready to continue with the
one-bit quantizer.

From (3.6), we see that we need to determine the power of the received signal on each antenna,
σ2
yb
. Equivalently, we can examine the power of ŷb[k] = DFT{yb[n]}, given the DFT definition

in (2.2). Moreover, in this particular setting, it is trivial to see that

r̂
(i)
b [k] = DFT{r(i)

b [n]}
= [G]b,bŷ(i)

b [k] + d̂b[k] (3.31)

where d̂b[k] = DFT{db[n]} and [G]b,b is given by (3.6). From (3.20) and (3.28), we see that the
signal ŷ(i)

b [k] on antenna b after the DFT has the following form

ŷ
(i)
b [k] = ŝb,u[k] + îISI

b,u[k] + îICI
b,u [k] +

U∑
u′=1
u′ 6=u

ŝb,u′ [k] + îISI
b,u′ [k] + îICI

b,u′ [k]

︸ ︷︷ ︸
îMUI
b,u

[k]

+ŵb[k] (3.32)
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where

îISI
b,u[k] =

î
ISI, right
b,u [k], 0 < δu < N

îISI, left
b,u [k], −N < δu < −P

(3.33)

and

îICI
b,u [k] =

î
ICI, right
b,u [k], 0 < δu < N

îICI, left
b,u [k], −N < δu < −P.

(3.34)

Furthermore, ŝb,u[k] defines the part of the received signal from the uth UE, i.e.

ŝb,u[k] = hb,u γ(δu, εu) x̂(i)
u [k] Ψ[δu] (3.35)

where

γ(δu, εu) =
g(δu, εu), 0 < δu < N

g(du, εu), −N ≤ δu ≤ 0
(3.36)

and

Ψ[δu] =
ej2πδuk/N , −P ≤ δu < N

ej2πδuk/N e−j2πεuδu/N , −N < δu < −P.
(3.37)

In (3.32), îISI
b,u[k] and îICI

b,u [k] represents the interference, stemming from the uth UE on the bth
antenna, caused by STO and CFO. In addition to these interferences, there is also MU interference,
denoted with îMUI

b,u [k], as well as thermal noise, ŵb[k].

3.2.3 ZF equalization

Inserting (3.32) into (3.31), and inserting (3.31) into (2.5), we get that the estimated frequency-
domain symbol on from the uth UE during the ith DFT window, which can be written as

x̂est,(i)
u [k] = aTuGhuγ(δu, εu) x̂(i)

u [k]Ψ[δu]
+ aTuGîISI

u [k] + aTuGîICI
u [k] + aTuGîMUI

u [k]
+ aTu d̂[k] + aTuGŵ[k] (3.38)
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where au = [au,1, au,2, . . . , au,B]T is the uth row of the ZF equalization matrix A defined in (2.6)
and hu = [h1,u, h2,u, . . . , hB,u]T is the uth column of the channel matrix H. We have fur-
ther defined îISI

u [k] =
[̂
iISI
1,u[k], îISI

2,u[k], . . . , îISI
B,u[k]

]T
, îICI

u [k] =
[̂
iICI
1,u [k], îICI

2,u [k], . . . , îICI
B,u[k]

]T
, îMUI

u [k] =[̂
iMUI
1,u [k], îMUI

2,u [k], . . . , îMUI
B,u [k]

]T
, d̂[k] =

[
d̂1[k], d̂2[k], . . . , d̂B[k]

]T
, and ŵ[k] = [ŵ1[k], ŵ2[k], . . . , ŵB[k]]T .

From (3.38), we find that the SINDR at the uth UE can be written as

SINDRu = |γ(δu, εu)|2|aTuGhu|2
I ISI
u + I ICI

u + IMUI
u + aTuE

[
d̂[k]d̂H [k]

]
a∗u +N0aTuGGHa∗u

(3.39)

since the interference sources, namely the ISI, ICI, and MU interference, quantization distortion,
and thermal noise are uncorrelated. The numerator in (3.39) is the power of the received signal
from the uth UE, i.e. the first term in (3.38). For the terms in the denominator, we will now
examine them individually.

Power of IISI
u :

To compute the power in the ISI term, we need to distinguish between two cases. If 0 < δ < N ,
the DFT window includes δu samples of the next symbol. If −N < δu < −P , du, the DFT
window includes du samples of the previous symbol. In either case, the power of this term will
be a fraction of the power of a full symbol, directly tied to the STO. The power of a full symbol
simply |aTuGhu|2, so we find

I ISI
u = E

[
|̂iISI
u [k]|2

]
=
{

δu
N
|aTuGhu|2, δu > 0

du
N
|aTuGhu|2, δu ≤ 0. (3.40)

Power of IICI
u :

Starting from (3.20),

E
[
|aTuGîICI, right

u [k]|2
]

= |aTuGhu|2
N−1∑
k′=1

N−1∑
k′′=1

g(δu, εu − k′) g∗(δu, εu − k′′)

· E
[
x̂(i)
u [(k − k′)N ]x̂∗,(i)u [(k − k′′)N ]

]
︸ ︷︷ ︸
=

1, k′ = k′′

0, k′ 6= k′′
, since symbol-sampling

= |aTuGhu|2
N−1∑
k′=1

[
sin( π

N
(N − δu)(εu − k′))

N · sin( π
N

(εu − k′))

]2

= |aTuGhu|2
N−1∑
k′=0

[
sin( π

N
(N − δu)(εu − k′))

N · sin( π
N

(εu − k′))

]2

−
[

sin( π
N

(N − δu)εu)
N · sin(πεu

N
)

]2
 .

(3.41)
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In (3.41), note that the second term is precisely g|(δu, εu)|2. For the first term, we find

N−1∑
k′=0

[
sin( π

N
(N − δu)(εu − k′))

N · sin( π
N

(εu − k′))

]2

= N − δu
N

. (3.42)

Hence,

E
[
|aTuGîICI, right

u [k]|2
]

= |aTuGhu|2
[
N − δu
N

− |g(δu, εu)|2
]
. (3.43)

Starting from (3.28) instead, we obtain

E
[
|aTuGîICI, left

u [k]|2
]

= |aTuGhu|2
[
N − du
N

− |g(du, εu)|2
]
. (3.44)

Examining (3.43) and (3.44), we note that we can use γ(δu, εu) defined in (3.36) to write

I ICI
u = E

[
|aTuGîICI

u [k]|2
]

= |aTuGhu|2
[
γ(δu, 0)− |γ(δu, εu)|2

]
. (3.45)

Power of IMUI
u :

As the transmitted signal is normalized, the multi-user interference will only depend on the power
in the channel, i.e.

IMUI
u = E

[
|aTuGîMUI

u |2
]

=
U∑

u′=1
u′ 6=u

|aTuGhu|2. (3.46)

Power of quantization distortion:

To find the power of the quantization distortion, we look at (3.3). This describes the quantizer
input-output relationship. Rearranging, we find

E
[
d[k]dH [k]

]
= E

[
r[k]rH [k]

]
︸ ︷︷ ︸

=Crr

−GE
[
y[k]yH [k]

]
︸ ︷︷ ︸

=Cyy

G (3.47)

where Crr and Cyy are used to denote the covariance matrix of the output and inputs to the
quantizer, respectively. The covariance of the input in time-domain was given in (3.8). Computing
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the covariance matrix Crr is in the special case of one-bit quantizers fairly straightforward, as we
can resort to the arcsine law [43]. Using this law, we find

Crr = 2
π

(
arcsin

(
Dy
−1/2Re(Cyy)Dy

−1/2
)

+ j arcsin
(
Dy
−1/2Im(Cyy)Dy

−1/2
))

(3.48)

where Dy refers to the diagonal elements of Cyy, i.e. Dy = diag (Cyy). Consequently, we can
write the power of the distortion term as

E
[
d[k]dH [k]

]
= Crr −GCyyG. (3.49)

In (3.39), we have the quantization distortion in the frequency-domain. However, due to Parseval’s
theorem, we can examine the power in either the time- or frequency-domain if the DFT operation
is defined as in (2.2). Hence, we can use (3.49) to express the power of the quantization distortion.

Lastly, the power of the noise is found as

E
[
(aTuGŵ[k])(aTuGŵ[k])H

]
= aTuGE

[
ŵ[k]ŵ[k]H

]
Ga∗u

= N0aTuGGHa∗u (3.50)

where the second equality follows as the noise is white and zero mean.

Inserting the computed power terms (3.40), (3.45) and (3.46) into (3.39), we find a closed-form
expression for the SINDR for a given STO and CFO.
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4
Synchronization in OFDM systems

From the analysis in Section 3, it is clear that the effects of both STO and CFO can potentially
be quite severe in the context of OFDM. The inherent sensitivity to these errors is something that
has been known for a long time. For example in [44], it was demonstrated that OFDM is several
orders of magnitude more sensitive to frequency offsets than single-carrier modulation. This is
not particularly surprising, as orthogonality between the subchannels is instantly destroyed if the
received signal is demodulated with the wrong frequencies. Consequently, it is critical to devise
strategies to estimate these offsets as accurately as possible.

Early papers resembling the methods of today in this field, such as [45, 46, 47], demonstrated
different approaches to both temporally locate the signal, as well as estimating its carrier frequency.
A ground-breaking paper in the area of synchronization for OFDM was presented by in 1997
Schmidl and Cox in [48], even if the fundamental ideas are presented already in 1996 [49]. They
expanded on the method in [46] and their work found its way into several standards, such as
the wireless local area network (WLAN) standard 802.11a [50]. This method will be examined
in detail and an extension developed in [51], as well as a method relying on the cyclic prefix
presented in [52, 53] and, lastly, a more modern method reminiscent of how synchronization is
achieved in the current generation of mobile systems. Before delving into the different methods of
synchronization, we will take a brief look at the history of synchronization itself.

4.1 Background

At the most fundamental level, timing synchronization requires the localization of a specific se-
quence within a window of samples. For example, in a system transmitting raw bits, you could
devise a system where every payload is preceded by a known sequence. If we could accurately
locate the position of the synchronization sequence, we would also have located the payload. Even
though a system transmitting raw bits might seem far from the OFDM system considered in this
thesis, it is a good starting point in order to say something general about synchronization.

The natural questions to ask in this setting would be how to go about finding a known sequence
within a window and, next, whether the design of the synchronization sequence has any influence
on our ability to locate it. Going further, it could also be questioned whether the synchronization
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4. Synchronization in OFDM systems

sequence needs to be explicitly known at the receiver.

Regarding how to determine the frequency offset of a signal, it hinges on accurate estimates of the
temporal position of a sequence. Say for example that a number of known symbols are transmitted
and then correctly located on the receiving side. By comparing the phase differences of the symbols
in the known sequence on the transmitting and receiving sides, we are able to extract information
about the frequency offset. As the timing estimation is key to extract information of a possible
frequency offset, the following discussion will focus on the timing aspect.

Optimally locating a sequence

To the first question, the standard method was (and is) to find the peak in the correlation spectrum
produced when correlating the window of samples with the known sequence. Whether or not this
is optimal and how the nature of the samples in which the sequence is embedded might have an
influence, was not definitely settled until [54]. The set-up considered is depicted in Figure 4.1a,
where the top part shows the signal x ∈ XN ,X = {−1, 1} to be transmitted over an AWGN
channel.
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(a) The context in [54], SNR = 0 dB.
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(b) The output of the correlation and the
optimum rule.

Figure 4.1: The optimum rule for detecting a known sequence under the influence of AWGN.

In x, a known sequence p of length L < N is embedded, beginning at an unknown location δ.
The sequence x is then subjected to noise, forming y = x + w, where w ∼ N (0, N0/2). This is
depicted in the bottom part of 4.1a and the task is to precisely locate known sequence. Starting
from these assumption, Massey derived the optimal rule for the estimation of the position δest as
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δest = arg max
d


L−1∑
m=0

p[m]y[m+ d]︸ ︷︷ ︸
S1[d]

−
L−1∑
m=0

f(y[m+ d])︸ ︷︷ ︸
S2[d]

 (4.1)

We see that the first term S1 of (4.1) is indeed a correlation term, in line with the expectations
at the time. In addition to the correlation term, there is also a second term S2 present. This a
correction term that accounts for the power in the received signal y. With the assumption that a
sequence of ±1s given by x is transmitted, S2 is depicted in the top part of Figure 4.1b, together
with S1. We see that if we only maximize S1, which will be referred to as the correlation rule,
it will produce an erroneous decision regarding the true position of the synchronization sequence,
as the peak at δest = 35 is greater than the true position δ = 63. However, when adding the
correction term, as in the bottom part of Figure 4.1b, the correct location is indeed found.

In Figure 4.2a, the probability of δest 6= δ is depicted. We see that in the SNR region near 0 dB,
Massey’s optimum rule defined by (4.1) provides an approximate 3 dB gain over the correlation
rule and around twice that a few dBs higher. Figure 4.2a also depicts a high SNR approximation
for the correction term, which has a very similar performance as the optimum rule. In this setting,
the optimal Sopt

2 has the form

Sopt
2 [d] = N0

2
√

2

L−1∑
m=0

ln
(
cosh

(√
2/N0 y[m+ d]

))
(4.2)

The computational complexity of (4.2) in apparent, involving both the ln(·) and cosh(·) functions.
The high SNR approximation, on the other hand, takes the form

Sapprox.
2 [d] =

L−1∑
m=0

|y[m+ d]| (4.3)

Consequently, it requires only L(N − L) additions.

It is quite fascinating that the high SNR approximation of the correction term seems to yield
comparable performance to when using the optimum Sopt

2 . This was noted already in Massey’s
original paper, and conclusively confirmed after extensive simulations in [55]. Going further on
the topic of simplifications of the optimal rule, it has been argued in for example [56], that as
the received signal in a real system is always constrained to some fixed interval, owing to the
AGC/ADC, the correction term will vary very little. Hence, it can in most practical cases be
disregarded. As we will see in for example Section 4.3, a variant of the correlation rule without
calculating any correction term is used to find the STO.

Another interesting fact regarding the optimum rule is that it becomes the correlation rule in the
case of one-bit quantization, depicted in Figure 4.2b. Here, we form r = Q(y) = ±1/

√
(2). In
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Figure 4.2: The probabilities of an erroneous decision regarding the true position δ of the synchronization
sequence. Results obtained via simulation the detection of a length 13 Barker sequence over the AWGN
channel 105 times.

this particular setting, it can be understood from the fact that as cosh(·) from (4.2) is an even
function and as r = ±1, Sopt

2 will be the same for all values of d. An explanation on a more
intuitive level is to consider the purpose of the correction term. It is intended to take the data
surrounding the synchronization sequence into account weaken peaks in the correlation spectrum
due to particularly powerful input. In the case of a one-bit quantizer, the power of the input to
the correlator is constant, so there is no need to consider this effect.

While the first example given by Massey is the one depicted above, it was also shown that if the
surrounding data is instead distributed as zero-mean Gaussian random variables, the optimum
rule has precisely the same form as (4.1). Further, Massey demonstrated the optimum rule in
an AWGN channel with essentially BPSK signaling and interestingly, subsequent studies in more
complex settings have arrived at similar conclusions. In [57], it was shown that the optimum rule
for location a synchronization sequence with an M -ary signalling scheme over the AWGN channel
consisted of essentially the same components as (4.1) from [54]. They were also able to again
demonstrate that the high SNR approximation performs very close to the optimum rule. Going
further, AWGN channels with ISI was considered in [58], flat fading channels in [59] and frequency-
selective channels in [60], to name some of the papers in this field. Similar conclusions was also
reached by [53] and [46] under different sets of assumptions, where the maximum likelihood (ML)
rules again and again was showed to involve a correlation in one way or another. All of these
results have decisively demonstrated that the core principle of that finding the maximum in a
correlation spectrum is central to timing synchronization.

40



4. Synchronization in OFDM systems

Design of synchronization sequences

Regarding the design of synchronization sequence, it is intuitively clear that there are at least some
designs which are outright unusable. Given that the task is to locate a known sequence somewhere
within a received signal, we can generally say that the sequence must be unique. This means that
if our synchronization sequence where to appear by chance somewhere else in the window, we will
not be able to uniquely determine its position. However, if the sequence does appear twice in the
received signal and the distance between the repetitions is known, we can use that information to
temporally locate the data. We will soon return to this idea and for now focus on finding a single,
known sequence within a window of received samples.

To avoid an instance where our synchronization sequence appears more than once by chance rather
than by design, the sequence must be of sufficient length so that the probability of it showing up as
a result of a stochastic process is sufficiently small. Further, as we established that the correlator
is the optimum metric to maximize, we would like the sequence to have a peak at zero lag and,
preferably, zero at all other timing instants. Due to the implementation specifics, we can place
additional constraints of the sequence, such as the PAPR. Fundamentally, however, its correlation
properties are paramount. Other important aspects of a synchronization sequence could be, as
listed in [61], minimal overhead as well as rapid and low-complexity detection.

Early work in this field came from R.H. Barker, who developed the well-known Barker sequences [61].
These were originally formulated with a specific condition on the autocorrelation properties and
the original solution was later slightly relaxed into what is now referred to a Barker sequences [62].
A sequence sB[n] ∈ {−1, 1} of length L is a Barker sequence if its circular autocorrelation Rc is

|Rc
sB [m]| = {0, 1} , ∀ m 6= 0 (4.4)

where Rc
s is defined as [63]

Rc
s(si, sj) =

N−j−1∑
i=0

si s
∗
i+j +

N−1∑
i=N−j

si s
∗
i+j−N , j = 0, 1, . . . N (4.5)

If i = j, then (4.5) reduces to ∑N−1
i=0 sis

∗
i .

Only eight of these sequences have been found, the longest of length L = 13. It has not been
formally proven that no longer sequences can be found, but it exists an overwhelming number of
indicators supporting that claim and via computer simulations, no sequence of length 13 ≤ L <
1022 have been found [64]. From a practical point of view, it means that no usable sequence longer
than 13 exists, as 1022 bits reserved for synchronization is would certainly be infeasible. Barker
sequences have had a number of uses over the years, for example to increasing the length of a
radar signal via pulse compression [65].

Another type of sequence with specific autocorrelation properties is the Maximal Length Sequence,
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or m-sequence for short. It was originally developed by Solomon Golomb and has been extensively
used since its inception in the 1950s [66]. They can be defined with the aid of linear feedback shift
registers, where certain configurations will yield periodic sequences with the maximum possible
period. In Figure 4.3, one such configuration is shown. The state vector r of this particular
setting will, given that the initial state is not the zero vector, cycle through every possible five-bit
combination except for the all-zero state exactly once before repeating itself. This means that the
output vector s will be periodic with 25 − 1 = 31 and in general, an linear shift register of degree
N will produce a m-sequence of period 2N − 1 [67]. Note further that different initial values of
the shift registers, apart from the zero vector, all produce cyclically shifted versions of the same
sequence.

r4[n] r3[n] r2[n] r1[n] r0[n]
s[n]

Figure 4.3: The generator for the m-sequence used in LTE [68], where the initial state is set to r =
[0 0 0 0 1].

M-sequences have a number of interesting properties and the key characteristic yielding them
especially useful for synchronization, relates to their autocorrelation properties. Feeding the binary
vector s to a binary phase shift keying (BPSK) modulator, we produce the vector s̃, i.e. s̃[n] =
1− 2s[n], n ∈ {0, 1, . . . , N}. Then, the autocorrelation Cs̃ is given as [69]

Cs̃[m] =
N−1∑
n=0

s̃[n] s̃[(n+m)N ] = −1 , ∀ m 6= 0 (4.6)

Note that (4.6) is the same circular autocorrelation defined in (4.5), however expressed more
compactly with the circular shift notation (·)N .

A key difference between the m-sequence and the Barker sequence, is that there is not any upper
bound on the length of the m-sequence. This means that the difference between the main peak
of the correlation spectrum and the side peaks can be made arbitrarily large. In Figure 4.4, this
difference is shown. The peak of both spectra is equal to the length their respective sequence, so
as the m-sequence can be designed to have any length, we can make the difference between the
peaks significantly larger than for the longest possible Barker sequence.

A key aspect of the m-sequence is that within one period, it appears almost completely as white
noise. The definition of white noise states that its autocorrelation at any locations other than
the zero lag should be identically zero, and from Figure 4.4b, it is clear that the m-sequence
approximates this to a stunning degree. The fact that an m-sequences is a completely deterministic
sequence that appears fully random, is perhaps the major reason that they have found such
widespread use. This is also why they are sometimes called pseudonoise (PN) sequences. They
are for example used as a modulating sequence in code-division multiple access (CDMA) systems,
as well as for synchronization purposes in LTE [70, 68].
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Figure 4.4: A length 13 Barker sequence (top) and a length 31 m-sequence (bottom) and their respective
correlation spectra.

Lastly, we mention the topic of the cross-correlation of two different m-sequences. This is an
important aspect in CDMA, where each user requires a unique sequence to modulate its data with
and we would, preferably, like the cross-correlation of two different m-sequences to be close to
zero, meaning that a m-sequence from one user appears as white noise when correlated with any
other m-sequence used in the system. This leads us to the topic of Gold sequences, which we will
not look into further, but note that it is possible to construct a set of sequences such that their
respective cross-correlation is bounded. The construction of this set is based on the m-sequences
and Gold sequences have found significant use in various contexts [66, 69].

We have now covered some the relevant background with regards to binary sequences. The concepts
developed so far can be extended to cover sequences consisting of a larger alphabet, such as
those made from a string of complex numbers. We will return to this topic when we discuss the
synchronization procedure in LTE, as it is not applicable for any of the other methods that we
will investigate.

Data-aided and non-data aided synchronization

The discussion so far has fundamentally been about our ability to detect a known sequence and
the design of such a sequence. Going further, we could also question whether the synchronization
sequence actually needs to be explicitly known at the receiver. This was hinted to earlier and for
example, say that each payload was preceded by a repetition of some unknown sequence but of
known length. In this setting, we could simply look for a place in the window where a given number
samples of are repeated once or more times to accurately determine the start of the payload. With
this approach, the received signal only needs to contain some predetermined structure, rather
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than a specific sequence. Broadly speaking, we can categorize synchronization methods into two
major groups called data-aided (DA), where the sequence is explicitly known or non-data aided
(NDA) methods, where some structural property is used. We will discuss methods of both types
in following sections.

4.2 Cyclic prefix-based synchronization

As implied by title of this section, these methods relies on the cyclic prefix to find symbol timing
and frequency offsets. Clearly, this is only relevant to systems using a CP, which OFDM happens
to do. As mentioned in Section 2.1, we normally prepend each OFDM symbol with a prefix of
length P made up of the last P samples the symbol. Consequently, an OFDM symbol itself already
has repetitive structure, which can be used for synchronization. As the exact content of the cyclic
prefix is unknown to the receiver, we would call this a NDA method.

An early paper in this field came in 1995 [71, 52], treating mainly the timing offset estimation.
The same authors developed the concept further to cover both the frequency and timing offset
estimates in a well-known paper from 1997 [53]. Additional developments can also be found in [72],
where the idea is extend to synchronization in multiuser OFDM and in [73], where pilots used in
channel estimation are exploited in tandem with the cyclic prefix to increase the accuracy of the
offset estimation.

We will now present an outline of the method and its performance. Assume we transmit OFDM
symbols with N subcarriers, each prepended with a cyclic prefix of length P over an AWGN
channel. At the receiver, a window of length 2N + P is observed, as depicted in Figure 4.5. The
received signal is affected by some unknown normalized frequency offset ε0 and the correct location
of the window is defined to be in the start of the cyclic prefix and parameter measuring the shift
from this location is called µ. This means that the STO δ0 as defined in Chapter 3 relates to µ as
δ0 = µ− P .

OFDM block:
CP Data CP Data CP Data

1 µ 2N + P

Figure 4.5: The window of received samples considered in [53].

We collect the received samples y[n] in the vector y = {y[1], y[2], . . . , y[2N + P ]}. The log-
likelihood function L(µ, ε) of p(y|µ, ε) can then be shown to be [52, 53]

L(µ, ε) = |γ(µ)| cos (2πε0 + ∠γ(µ))− ρΦ(µ) (4.7)
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where

γ(m) =
m+P−1∑
n=m

y[n]y∗[n+N ] (4.8)

Φ(m) = 1
2

m+P−1∑
n=m

|y[n]|2 + |y[n+N ]|2 (4.9)

ρ =

∣∣∣∣∣∣∣∣
E
{
y[n]y∗[n+N ]

}
√
E
{
|y[n]|2

}
E
{
|y[n+N ]|2

}
∣∣∣∣∣∣∣∣ = SNR

SNR + 1 (4.10)

Maximizing (4.7) w.r.t. to ε0 yields the following maximum likelihood (ML) estimate for ε

εest
ML = − 1

2π∠γ(µ) (4.11)

assuming that |ε0| < 1/2. This is valid as long it can be assumed that a coarse synchronization
in the acquisition step has already confined the CFO within this interval. With other methods of
synchronization, this restriction can be lifted. In fact, as we will see, the range of the frequency
estimator can be arbitrarily long with a suitable synchronization symbol.

We also write down the ML estimate for µ as

µest
ML = arg max

m
|γ(m)| − ρΦ(m) (4.12)

In order to estimate both parameters, the estimate µest is then used as the argument to γ(·)
in (4.11). Note that maximum likelihood estimator for the timing offset in (4.12) has the same
components as (4.1), where the first term (4.8) is a correlation term and (4.9) a power correction
term. In Figure 4.6, the log-likelihood function with respect to µ is shown. We look for the m that
maximizes this function to find µest. In this figure, we have transmitted several OFDM symbols
and we can clearly discern the peaks from each symbol.

The height of each peak compared to the other points of the correlation spectrum is tied to
the length of the cyclic prefix. As we correlate with a longer known sequence, the likelihood of
any random sequence of samples appearing similar decreases. This leads us to the question if
performance gains can be achieved by simply extending the cyclic prefix beyond the length it is
normally designed to be. This question was answered in [71], where they empirically demonstrated
that there are no performance gains for STO estimation beyond a certain length, but there are
for the CFO estimation. The exact length where the mean square error (MSE) behavior of the
STO estimation ceases to improve is dependent on the SNR, which can be understood as locating
a single peak in a noisy environment can never be more accurate that approximately the variance
of the noise itself. For the CFO estimation, however, a longer cyclic prefix can be viewed as more
points to average over, as the sum in (4.8) is made longer. Hence, the MSE behavior is improved
for the frequency estimator as the length of the cyclic prefix is increased.
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Figure 4.6: The log-likelihood function with respect to µ. Transmitted over an AWGN channel with
512 subcarriers, cyclic prefix of length 36 and SNR at 10 dB.

In [71], one-bit quantization was actually considered. The motivation was to design a synchroniza-
tion method with very limited complexity, hence yielding affordable implementation. The paper
only considers timing offset estimation and they showed that the maximum likelihood estimator
µest

q of the true offset µ in the one-bit case can be written as

µest
q = arg max

m

m+P−1∑
n=m

<{r[n]r∗[n+N ]} (4.13)

where r[n] = Q(y[n]). Interestingly, this is highly reminiscent of S1 in (4.1). This agrees well
with our previous conclusion from Figure 4.2b, where we noted that with one-bit quantization,
the correction term can be disregarded as the power of the quantized signal is constant.

The performance of this estimator is shown in Figure 4.7. Both Figure 4.7a and Figure 4.7b show
the MSE of estimators. This is a common metric to measure the performance of an estimator
and one that we will continue to use. In Figure 4.7a, we note that the MSE does not seem to
decrease to below 10 before the SNR nears 4 dB in the infinite-precision case and around 10 dB
in the one-bit case. This can be considered a lower limit on the usefulness of the method – if the
MSE is larger than the cyclic prefix itself, it is clear that the estimates are highly uncertain. In
Figure 4.7a, we also note that the saturation at low SNR a simulated artefact due to the finite
length of the received OFDM blocks.

In Figure 4.7b, we have in addition to the MSE for the frequency estimator also plotted the
Cramer-Rao bound [51]. It is given as

CRB = 1
2π2

3 SNR−1

N(1− 1/N2) (4.14)

With any estimation process, the accuracy at a given SNR is bounded by a fundamental limit.

46



4. Synchronization in OFDM systems

−10 0 10 20
10−3

10−1

101

103

105

SNR [dB]

M
SE

µ̂

Infinite resolution

One-bit quantization

(a) The MSE of the timing estimator.
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Figure 4.7: The MSE of the timing and frequency estimators in both the infinite-precision and one-bit
quantization case. Results obtained from simulation over an AWGN channel, 512 subcarriers, cyclic prefix
of length 36 and 5 · 104 trials at each SNR.

These bounds are a consequence of a concept central in statistical inference known as the Fisher
information. On an intuitive level, this quantity captures the shape of the likelihood function
and tell us how much we can infer about a parameter from an observation depending on that
parameter. It is a useful tool when evaluating different estimators, as it provides a reference to
the optimal behavior of an estimator.

As we see in Figure 4.7b, the MSE in the one-bit case seems to have a floor. This is due to the
quantization distortion, which does not decrease with reduced thermal noise power. We can finally
note that in the SNR regime below 0 dB, the performance in the one-bit case seems to be limited
by thermal noise and above that, the quantization distortion starts to dominate.

An important aspect of synchronization algorithms is to consider their robustness, meaning their
ability to distinguish the synchronization sequence from noise. The two interesting quantities is
the missed synchronization probability, meaning how likely the method is to miss that a synchro-
nization sequence is present and the false detecting probability, meaning how likely the method is
to mistake noise for an actual signal. By recording the values of the likelihood functions

Linf(m) = |γ(m)| − ρΦ(m) (4.15)

in the infinite-precision case and

Lq(m) =
m+P−1∑
n=m

<{r[n]r∗[n+N ]} (4.16)
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in the quantized case at m = µ, both when there is a synchronization sequence present and when
there is not, we can produce Figure 4.8.
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(a) Normalized histograms.
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(b) Normalized cumulative histograms.

Figure 4.8: Histogram and cumulative histogram of infinite-precision estimator (top) and one-bit esti-
mator (bottom). Results obtained via recording 5 · 104 values of each estimator when there was a signal
and when there was not. SNR set to 0 dB.

In Figure 4.8a, we see the histograms of the value of the estimator both when there was a signal
present and when there is not. We see that clearly, the average value of (4.15) and (4.16) is larger
when the signal is present than when it is not, but the overlap indicates that the probability
of mistaking the two cases is not negligible. As expected, the overlap is more significant in the
one-bit case, which agrees with all previous results. We can also sum the histogram in a different
way to produce Figure 4.8b, where the cumulative histograms are shown. We can view these as
an approximation of the true cumulative distribution of (4.15) and (4.16). If we denote these
approximations with P̃ c. and P̃ inc. for the correct and incorrect timing in the infinite-precision
case respectively, we find the missed synchronization probability (MSP) and the false detection
probability (FDP) at some threshold τ as
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MSPinf [τ ] = P̃ c. [Linf < τ ] (4.17)
FDPinf [τ ] = 1− P̃ inc. [Linf < τ ] (4.18)

Constructing the MSP and the FDP for the quantized case in the same manner, we can then
match the thresholds and produce Figure 4.9.
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Figure 4.9: The relationship between the missed synchronization probability and the false detection
probability when using the cyclic prefix-based synchronization method.

We see in Figure 4.9 that as one parameter is increasing, the other is decreasing. This is understood
as we set the threshold higher and higher, the probability of mistaking noise for the actual signal
tends towards zero, but at the same time, we increase the risk of missing the signal when it is
present. From the figure, we note that it is possible to set threshold so that both the MSP and
FDP is below 3% (infinite-precision) and 10% (one-bit).

As a last note before moving on, we note that it is mentioned in the original paper that the accuracy
can be greatly improved by averaging over multiple cyclic prefixes. By using synchronized receive
antennas and assuming that the signal arrives at the same time at each antenna, we can combine
the likelihood functions from each antenna to produce a better estimate. The results are depicted
in Figure 4.10.

We see that that in the average of 10 antennas, a clear peak is visible in both Figure 4.10a and
Figure 4.10b. When examining the peaks of all the colored lines, we note that it would not have
been possible to use this method of synchronization at this SNR level in a single-antenna system.
As a last note on this topic, the multi-antenna gains in a more realistic channel model would
probably be less pronounced. The reason that the simple averaging method works so well, is that
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Figure 4.10: The likelihood functions for the symbol timing estimators. The colored lines are the results
on each antenna and the black line is their average. Results obtained with 512 subcarriers, cyclic prefix
of length 36 and an all-ones channel with an SNR per antenna set to −4 dB.

the noise on each antenna is assumed to be fully independent. In a fading MU environment, this
assumption is not valid and consequently, the correlated distortion would not be averaged out.
Moreover, expanding the model to include for example hardware imperfections in the receiver
chain also introduces distortion that is correlated across all receive antennas, which would further
limit the performance of simple averaging.

As we have just seen in the previous section, using the periodicity of a cyclic prefix is a viable way
to extract information of the STO and CFO. However, there are some shortcomings. For example,
the results in Figure 4.7 are for the AWGN channel – if the channel model would instead have been
a more realistic multipath fading model, the cyclic prefix would clearly have been affected by the
channel delay spread. The consequence of that would be that the correlation decreases further,
providing additional difficulties in locating the peak. Further, the gap between the frequency
estimator and its Cramer-Rao bound is roughly 4 dB in the infinite-precision case, perhaps hinting
towards possibilities for improvement. A viable path forward would be to consider a dedicated
training symbol, instead of relying solely on the repetition present in the OFDM symbol itself.
This leads us to our next method, originally presented by Schimdl and Cox in the mid-1990s.

4.3 Schmidl and Cox synchronization

Around the same time that the method described in the previous section was developed, other
ideas were investigated by other groups. For example, it was suggested in [46] that a repeated
OFDM symbol could be used. The same idea was present in works of other groups as well and
building upon that earlier work, Schmidl and Cox [48] produced a paper that have since received
widespread attention. They were able to expand and reduce the complexity of the earlier work,
resulting in a simple method with surprisingly good performance.

The full version of the method in [48] uses two dedicated OFDM symbols. The first is mirrored
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across the middle, meaning that the first half of the symbol is identical to the second half. We
can construct a symbol like this by putting data on every other subcarrier and leaving the rest as
null. In general, we can construct a symbol with q repetitions by modulating every qth subcarrier
and leaving the rest as zeros. In the Schmidl and Cox method, a PN sequence is used to generate
QPSK symbols which are placed on the even subcarriers, while zeros are placed on the odd. This
is depicted in Figure 4.11a. As symbols are only transmitted on half of the available subcarriers,
these symbols are scaled with

√
2 to make the energy constant over the full OFDM frame. We

collect all these symbols in the vector c1.
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Figure 4.11: The first synchronization symbol in the method by Schmidl and Cox.

In Figure 4.11b, we show the first OFDM symbol used in this method. We see that the symbol
is indeed constructed from two equal parts, which we will use to get an estimate for the timing
information as well as for the fractional CFO. As we saw in Chapter 3, the rotation of sample
is a function of its index n. This means that if we have two identical symbols arriving at time
indices n1, n2, n2 > n1, we know that their phase difference will be proportional to ∆n = n2−n1.
If we are only comparing the phase of two points on the unit circle, we can only determine
their difference ∆ϕ within the interval ϕ < |π|. Expressing their phase difference relative to the
subcarrier spacing, repeating a sequence once within an OFDM symbol will limit the acquisition
range to |1/2| subcarrier spacing, i.e. the estimated CFO εest < |1/2|.

To find larger frequency offset, the second OFDM symbol is used. This symbol consists of a new
random sequence of QPSK symbols on its even subcarriers and another on its odd. We collect
all of the symbols on the even subcarriers in the vector c2. Next, we record the phase difference
between the symbols in c1 and c2 in ν[k] =

√
2c2[k]/c1[k], ν[k] ∈ {±1,±j}. This vector is assumed

to be known at the receiver. As mentioned in in Chapter 3, integer frequency offset will appear
as a shift of the DFT output in the receiver. By determining the number of positions the output
of the DFT is shifted from its expected position, we can determine the integer frequency offset.
The sequence on the odd subcarriers are not used specifically in the original paper, but it can for
example be used as pilot symbols to estimate the channel on the odd subcarriers.

To find an estimate of the STO, Schmidl and Cox suggests the following metric
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M [m] = |P (m)|2

(R[m])2 (4.19)

where

P [m] =
N/2−1∑
n=0

y[m+ n]y∗[m+N/2 + n] (4.20)

R[m] =
N/2−1∑
n=0

|y[m+N/2 + n]|2 (4.21)

We see that this is simply a normalized correlation and the timing offset in found by detecting the
peak in M , δest = arg maxmM [m]. Note that we now use the letter δ0 to again denote the timing
offset, as this method will find on the start of that data in the symbol instead of the start of the
symbol itself.

The timing metric M is shown in Figure 4.12a.
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Figure 4.12: The timing metric proposed by Schmidl and Cox as well as the metric proposed by
Minn [74]. Obtained with 512 subcarriers, cyclic prefix of length 36 in a frequency-flat channel model
with SNR set to 10 dB.

Due to the presence of the cyclic prefix, the timing metric exhibits a plateau. The width of this
part will be as wide as the cyclic prefix P in the AWGN and in the flat-fading channel, and roughly
P −L wide in a frequency-fading channel of length L. As long as the starting point is taken at any
point within the plateau, no ISI or ICI is incurred, as we showed in Chapter 3. The rotation caused
by showing the start of the symbol to be somewhere in the cyclic prefix can be compensated in the
channel equalizer using a single pilot. However, to reduce the uncertainty slightly, the following
metric was proposed in [74]
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Mf [m] = |P [m]|2

[Rf [m]]2
(4.22)

where Rf is given by

Rf [m] = 1
2

N−1∑
n=0
|y[m+ n]|2 (4.23)

We see that Rf is normalized with the half the power of the entire symbol instead of all of the
power of half the symbol, as in (4.21). The metric Mf is then averaged over a window of size
P + 1, i.e.

Mavg[m] = 1
P + 1

P∑
n=0

Mf [m+ n] (4.24)

The estimate for the timing offset δest is then found as the maximizing argument to Mavg[m].

The metric Mf is shown in Figure 4.12b. We see that Mf is essentially a low-pass filtered version
of M , meaning that any high-frequency peaks present in M that may cause an error is smoothed
out.

In Figure 4.13, the mean value and variance of M and Mf is shown. In Figure 4.13a, we see that
M indeed follows the theoretical values predicted by the analysis in [48]. Further, we see that the
mean of Mf is similar to that of M . This agrees with what we expected, as Mf is normalized in
the same way asM . In the one-bit case, the results are similar, but due to quantization distortion,
the two parts of the synchronization symbol are less correlated and, consequently, the mean values
of the timing metric is lower. The effect is identical regardless of whether we use M or Mf which,
for the same reasons as in the infinite-precision case, is to be expected.

In Figure 4.13b, the variance of the timing metric is shown. We again see that the analysis
from [48] matches well with the simulations of M and that the one-bit case again displays reduced
performance. Here, the purpose of Mf should become clear, as this metric has significantly lower
variance than M . Via the averaging in (4.22), the metric is less sensitive to fluctuations, which
explains why the variance is lower. Lastly, we note that the variance of the timing metric below
2 · 10−3 for the entire range of SNR in both cases. A visual comparison to Figure 4.8a, where the
variance at 0 dB is above 10−1 and 101 in the infinite-precision and the one-bit case, respectively.
This is indicative of the robustness of this method, which we will soon look at more in-depth.

In Figure 4.14, the MSE of the timing and estimators are shown. In Figure 4.14a, we note that
the performance is similar or perhaps slightly worse than for the cyclic prefix method. Clearly,
the strength of this method does not lie in MSE performance of the timing estimator. A reason
for this is the plateau of the timing metric – even a low noise power may shift the maximum a

53



4. Synchronization in OFDM systems

−10 0 10 20
0

0.2

0.4

0.6

0.8

1

m

E[
M

]

Infinite precision

One-bit quantization

Analysis from Schmidl and Cox

(a) The mean value of the timing metric M .

0 5 10 15 20
10−5

10−4

10−3

SNE [dB]

M
SE

M

Infinite precision, using M

One-bit quantization, using M

Infinite precision, using Mf

One-bit quantization, using Mf

Analysis from Schmidl and Cox

(b) The variance of the timing metric M .

Figure 4.13: The mean and variance of the timing metric M . Obtained via 5 · 103 simulations over an
AWGN channel with 512 subcarriers and a cyclic prefix of length 36.

single step in either direction, which adds to the MSE. In [74], other methods where the training
symbols are redesigned to yield sharper peaks is shown to outperform the results in Figure 4.14a.
However, as any estimate δest that lies within the cyclic prefix does not add ISI, SNR levels around
5 dB in the infinite-precision case and roughly 10 dB in the one-bit quantization case is sufficient
to obtain a decent estimate. However, in a mmWave scenario, the received SNR per antenna is
likely to be well below 10 dB. The results therefore indicates that timing estimation with this
method in a system with one-bit quantization might be difficult without some joint processing,
using the signal from all or some of the receive antennas. Lastly, the saturation at low SNR again
stems from simulation artefacts rather than actual results.
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(a) The MSE of the timing estimator.
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Figure 4.14: The MSE of the timing and frequency offset estimators, using Mf as the timing metric.
Obtained via 5 ·103 simulations over an AWGN channel with 512 subcarriers and a cyclic prefix of length
36.
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In Figure 4.14b, we can see a clear improvement over the results obtained via the cyclic prefix
method in 4.7b, at least in the infinite-precision case – the one-bit case has roughly the same
performance as the cyclic-prefix method. The infinite-precision case has gained roughly 3 dB and
is now only about 1 dB away from the Cramer-Rao bound. In [48], an analytic expression for the
variance of εest is given as

var[εest] = 2
π2 ·N · SNR (4.25)

We see that Figure 4.14b agrees well with the analysis.

At SNR below −4 dB in the infinite-precision case and below 0 dB, we see that the frequency
estimator seems to completely break down. This is perhaps surprising, given that this effect is not
visible in 4.7b and that for higher values of SNR, the Schmidl and Cox estimator outperforms the
former. This is however due to the fact that the range of the cyclic prefix method is limited to
|ε0| < 1/2, whereas the Schmidl and Cox method can estimate an arbitrarily large integer frequency
offset as well. Hence, the potential error magnitude is virtually unlimited in this method compared
to the cyclic prefix-based method, yielding vastly different MSE behavior. This again points to
the fact that these methods can be difficult to use in a low SNR regime without joint processing
in the receiver.

By collecting the values of M at the optimal position when there is a signal present and when
there is not, we can produce Figure 4.15, similar to Figure 4.8.

We see in both Figure 4.15a and 4.15b that the is almost no overlap between the value of the timing
metric when there is signal present and when there is not. This means that it is straightforward
to set a threshold from frame detection without risking an abundance of false positives. Note that
this does not mean that the Schmidl and Cox method produces more accurate timing estimates
than the cyclic prefix method, only that it is better at differentiating between when there is a
signal present and when there is not. Plotting the histograms together, we obtain Figure 4.16.

In 4.16a, we see that probability of observing a value of M larger than 0.1 is vanishingly small.
We also see an approximation of the M when there is no signal present from [48] and that the
simulation agree fairly well. In Figure 4.16b, we can see some overlap around 0.05, but otherwise
it is largely the same trend. Figure 4.16 is highly illustrative of the main strength of the method
develop my Schmidl and Cox – its robustness. The input to the correlator is two consecutive block
of length N/2 and it is clearly highly unlikely that a similar structure to the training symbol would
appear as a result of a random process.

Before moving on from the Schmidl and Cox method, we present some findings unique to the
one-bit case. In Figure 4.17, the frequency dependence of the timing metric and, consequently,
the timing and frequency estimators is illustrated.

We see in Figure 4.17a that the value of M at the optimal location seems to plateau for values
of ε0 6= 0. A similar effect is present in Figure 4.17c, where the case ε0 = 0 is yields significantly
better MSE performance. For the MSE of the timing estimator in Figure 4.17b, it is not very clear
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(a) Normalized histograms.
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(b) Normalized cumulative histograms.

Figure 4.15: Histogram and cumulative histogram of infinite-precision estimator (top) and one-bit
estimator (bottom). Results obtained via recording 5 · 104 values of each estimator when there was a
signal and when there was not. SNR set to 0 dB.

exactly how the CFO affects the performance, but clearly, the performance is not independent of
the carrier frequency offset ε0.

Intuitively, we can understand this as a frequency offset means that the received signal has been
subject some rotation with respect to the transmitted signal. In the one-bit quantization case, this
will cause some samples of the signal to move into another quadrant in the complex plane and,
thus being quantized to another point. This can have significant effect, evident in Figure 4.17, as
it will affect the similarity of the two halves of the symbols and thereby their correlation.

Lastly, we note that just as in the case of the cyclic prefix method, the performance can greatly
benefit from joint processing in a situation with multiple receive antennas. With the similar
assumptions as in the cyclic prefix case, we see the result in Figure 4.18.

The effect here is, as we would expect, an improvement of the MSE performance of the timing
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(a) Infinite-precision case.
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Figure 4.16: The normalized histogram and cumulative histograms in the infinite-precision and one-bit
quantization case. Results obtained via recording 5 · 104 values of each estimator when there was a signal
and when there was not. SNR set to 0 dB.
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Figure 4.17: Illustration of the frequency dependency of the estimator in the one-bit quantization case.

estimator. As mentioned previously, this type of performance gains requires that a number of
assumptions are true, such as that the STO is the same on all antennas. Whether or not those
are reasonable is another topic altogether, so we will here simply state that if it is, it would bring
significant performance gains. From Figure 4.18, we note that 10 antennas on the receiving side
is sufficient for the one-bit system to rival the performance of the infinite-precision system. This
is an interesting finding, as it adds weight to the statement that moving from SISO systems to
SIMO or MIMO will enable the use of low-resolution analog-to-digital converters. Even though
this is a highly idealized case, it serves as motivation for further study into this topic.

The method presented by Schmidl and Cox provided several advantages over previously described
methods. However, as seen in Figure 4.14b, the frequency estimation has a gap to the Cramer-Rao
bound. This indicates that at least from a theoretical standpoint, a more accurate method could be
devised. Moreover, and perhaps the most important drawback of the Schmidl and Cox method, is
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Figure 4.18: The MSE of the STO estimation with B antennas that can combine their correlation
spectrums before coming to a decision. Obtained over the all-ones channel with 256 subcarriers.

that it requires two OFDM symbols in order to estimate and CFO larger than ±1/2∆f . Reducing
this overhead was the major motivator in the development of an extension of this method, which
will now be discussed in detail.

4.3.1 Morelli and Mengali extension

In 1999, a CFO estimation method was presented by Morelli and Mengali in [51]. In this paper,
it was suggested to use a single training symbol consisting of q identical parts. In Figure 4.19, an
example where q = 8 is shown.
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(b) The first synchonization symbol.

Figure 4.19: The real part of the first synchronization symbol in the method by Morelli and Mengali.

As mentioned in the previous section, we can construct these symbols by putting data on every
qth subcarrier and leaving the rest as null, depicted in Figure 4.19a. In Figure 4.19b, we see the
real part of the resulting symbol after the IDFT operation.
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On the receiving side, Morelli and Mengali assumes that an accurate timing estimate has already
been computed and, similarly to the Schmidl and Cox method, consider the angle of the correlation
output. The key difference here is that in [51], they have q angles to consider instead of a single
angle, as in the Schmidl and Cox method. The correlator output is given by

ϕ[m] =
δ̂+N−1−mN/q∑

n=1
y[n−mN/q]y∗[n], m = 1, 2, . . . , q/2 (4.26)

Note that in (4.26), we use the estimate of the STO δest. This can be obtained in a similar manner
as in the Schmidl and Cox method, given that q is a multiple of two.

Having obtained these angles, Morelli and Mengali construct the best linear unbiased estimator
(BLUE) of the parameter ε0 as

εest = 1
2π/q

q/2∑
m=1

χ[m] arg{ϕ[m]ϕ∗[m− 1]} (4.27)

In (4.27), we use χ to denote the vector of optimal weights. It is calculated in the original papers
(cf. (16) in [51]), and given by

χ[m] = 3(q −m)(q −m+ 1)− (q/2)2

q
2(q2 − 1) (4.28)

For a BLUE estimator, its variance is known. With the parameters in this method, it is shown to
be

var[εest] = 3(SNR)−1

2π2 ·N(1− 1/q2) (4.29)

We note two thing with the result in (4.29). Firstly, if we set q = 2, it becomes (4.25). This shows
that the Morelli and Mengali method is indeed an extension of the original method by Schmidl
and Cox, which was also pointed out in the original paper. Secondly, we note that as q → N ,(4.29)
will approach the Cramer-Rao bound, given by (4.14). Consequently, as more repetitions are used,
the variance of the frequency estimator will approach the lower bound. However, we cannot set q
arbitrarily close to N , as with more repetitions, the length of each repetition decreases. With short
repetitions, the likelihood of surrounding samples looking similar to our synchronization symbol
increases, thereby increasing the risk of an erroneous estimate. For a given number of subcarriers
N used in a system, the number of repetitions q should be set according to some specific system
requirements.

In Figure 4.20, we show some simulation results with the Morelli and Mengali method.
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Figure 4.20: The MSE of the frequency estimator, ε0 = 2.2. Results obtained via 5 · 103 simulations
over an AWGN channel with 512 subcarriers and q = 8.

In the infinite-precision case, the method shows improved MSE performance over the Schmidl and
Cox method. As the SNR increases, the MSE seems to be approaching the Cramer-Rao bound,
which, from (4.29) is no surprise.

In the one-bit case, we also see a slight improvement over the results from the Schmidl and Cox
method. As the Morelli and Mengali algorithms essentially obtains several estimates of the CFO
and combines them via (4.27), there is no obvious reason why the one-bit case should not benefit
in a similar way. Still, we note that the MSE seems to level out as the SNR increases, since the
quantized signal is vitiated with additional quantization distortion.

We have now examined the Schmidl and Cox method, as well as the extension provided my Morelli
and Mengali. The latter of this two, while being slightly more computationally complex, is able
to reduce the MSE of the CFO estimation as well as reducing the overhead by 50 %. Further,
we noted that these methods outperform the cyclic prefix-based method in terms of robustness
and accuracy of the CFO estimation. As both the Schmidl and Cox and Morelli and Mengali
methods have used dedicated training symbols, they can be regarded as DA methods. These are
more complex methods and require some aspects of the system to be predetermined. However,
examining the results of our investigation, the performance gains are significant and the additional
complexity might be small price to pay. Lastly, we will look at the performance of a method more
akin to what is used in current 4G networks.

4.4 LTE-like synchronization

In current mobile network, commonly referred to by the name of the technology standard LTE,
synchronization is achieved with two dedicated signals. These are called the primary synchroniza-
tion signal (PSS) and the secondary synchronization signal (SSS). As the synchronization in LTE
needs to accomplish more things than simply estimating the STO and CFO, we will gloss over the
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details and simply focus on the parts we are interested in. The interested reader is referred for
example to [28], where more information can be found. Additionally, we note that the LTE stan-
dard does not specify exactly how to find the STO and CFO, only the signals that are available.
This is the reason why we refer to this section as LTE-like, rather than anything else – the details
of the methods in use differ from vendor to vendor and is generally not known to the public.

The PSS is used to obtain it initial timing estimate in LTE. For that reason, the problem of
locating it is similar to the scenario we have considered in the previous methods and, hence,
meaningful to compare. The PSS is a predetermined sequence that the receiver tries to locate
via a correlator, so the basic steps are familiar. The exact construction of the PSS, however, is
via a Zadoff-Chu sequence. These sequences, sometime referred to as Frank-Zadoff-Chu are an
example of a constant-amplitude, zero autocorrelation (CAZAC) sequence and were developed
in [75, 76, 63]. As mentioned in our initial discussion on the design of synchronization sequences,
the ideas of designing a sequence with good correlation properties can be extended to non-binary
sequences, of which the Zadoff-Chu sequence is an example. The sequence is set to length 63 and
is constructed in the frequency-domain as [68]

sZC[n] =
 e−j

πun(n+1)
63 , 0 ≤ n ≤ 30

e−j
πu(n+1)(n+2)

63 , 31 ≤ n ≤ 61
(4.30)

where u is called a root index. In LTE, u is used to determine part of the cell identity and can be
one of three values. Typically, the receiver does not know which one of the sequences it received,
but it can generate local copies of each three and try to cross-correlate with each one. A property
of Zadoff-Chu sequences in general is that the absolute value of the cross-correlation between to
different sequences can be limited if the roots are chosen according to a specific rule. Consequently,
given that the set of possible root indices are chosen wisely, it is possible for the receiver to
determine which sequence was received. However, the particular choice of u has additional effects,
such as robustness to frequency offsets [77, 78]. Balancing the effects of different set of roots, the
LTE standard eventually settled at u ∈ {25, 29, 34}.

These are mapped symmetrically around the DC null subcarrier, regardless of the number of total
subcarriers. As the total number of subcarriers in use at a given time instant can vary, this allows
the receiver to locate the PSS without known how many subcarriers are in total use. Lastly, note
that the two halves on either side is a reflection of the other. As we have seen before, these types
of structures can be used to find the frequency offset.

From (4.30), it is clear why the has constant amplitude. This is a useful property, as it will bound
the amplitude of the time-domain signal and limit the PAPR, easing requirements on amplifiers.
In Figure (4.21a), the left part depicts the symbols generated by (4.30). In Figure 4.21b, the same
Zadoff-Chu sequence have been transformed into time-domain via the IDFT. In this figure, we see
that the first haft of the symbol is mirrored in the second half.

The zero autocorrelation property is shown in to the right in Figure 4.21a. The figure shows the
result of (4.5) and we see that indeed, the sequence produces a correlation spectrum which is zero
at every other location than the zero lag. In [63], this property is shown analytically and the
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Figure 4.21: The autocorrelation property of a Zadoff-Chu sequence. The sequence sZC is a Zadoff-
Chu sequence of length 63 and root u = 29 and its properties. The sequence is mapped to the central
subcarriers in a system with 256 subcarriers.

interested reader is referred to that paper for details.

In Figure 4.22, we show the cross-correlation between a sequence with root index u = 29 and the
other two sequences in LTE, as well as with itself.

Note that the correlation is no longer exactly zeros at other lags than j = 0, which is due to the
fact that we have transformed the sequence into the time-domain. Further, the cross-correlation is
not circular, so at every position other than zero lag, we only use N −|j| values in the summation,
so the Zadoff-Chu sequence will not completely cancel itself out. Still, we see that the peak at zero
lag generated with cross-correlating the sequence with root 29 with itself is significantly higher
than the other peaks. Consequently, we will be able to both determine which of the three sequences
that is in use, as well as the correct timing.

In Figure 4.23, we show the MSE of the symbol timing estimator. We use the same type of
correlation method as in previous cases and we can clearly see an improvement over previous
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Figure 4.22: The cross-correlation between a Zadoff-Chu sequence with root index u = 29 and the two
other sequences used in LTE.

results. In fact, at SNR larger than 8 dB in the infinite-precision case and larger than 12 dB in the
one-bit case, no errors were recorded at all during the simulations. Comparing this to the previous
results, the improvement is striking. It is also interesting to note that the quantized case also
gains significantly compared to the earlier results. This is highly promising, as it hints towards
the viability of using one-bit quantizers in a real-world system.
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Figure 4.23: The MSE performance of the STO estimator using a Zadoff-Chu sequence. Results obtained
over the AWGN channel with 256 subcarriers.

Next, we examine the robustness of the method. Similar to the previous method, we again gather
the peak value of the correlation spectrum when the signal is present and when it is not. We
construct the histogram and the cumulative histogram, as shown in Figure 4.24.

In Figure 4.24a, we see an approximation of the distribution of the maximum value of the corre-
lation spectrum at both the correct and incorrect timing. Note the scaling of the x-axis however,
as it from a quick visual inspection might appear as if the result is similar in both cases. In
the infinite-precision case, the distribution is more separated than in the one-bit case, echoing a
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Figure 4.24: Histogram and cumulative histogram of infinite-precision estimator (top) and one-bit
estimator (bottom). Results obtained via recording 5 · 104 values of each estimator when there was a
signal and when there was not. SNR set to 0 dB.

familiar result. In Figure 4.24b, the cumulative histograms are depicted and as there is no overlap
in neither this figure or Figure 4.24a, the risk of false detection seems small.

In Figure 4.25, the missed probability and false detection probability is shown. Clearly, a threshold
can be chosen so that the risk of missing a valid sequence while still rejecting anything that is not
the synchronization signal is almost arbitrarily small.

Up until this point, we have only focused on the PSS. This is because this symbol is what it used
to achieve the initial timing estimation. The SSS is then used to for example deduce the full cell
identity, as well as a number of other things. The second symbol is constructed of two known
and interlaced m-sequences, generating a symbol with PN characteristics. Using these kinds of
symbols for synchronization have been investigated in for example [79], where it was shown that
preambles with PN-sequences can outperform training symbols with repeated parts, even in the
one-bit case.
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(a) Infinite-precision case.
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(b) One-bit quantization case.

Figure 4.25: The normalized histogram and cumulative histograms in the infinite-resolution and one-bit
quantization case. Results obtained via recording 5 · 104 values of each estimator when there was a signal
and when there was not. SNR set to 0 dB.

Exactly how to use to PSS and SSS to achieve synchronization is, as mentioned in the beginning of
this section, not given by the standard. It is interesting to look at the correlation properties of the
PSS in the one-bit case, as this most definitely must be used to achieve the initial synchronization.
For the other parts, a number of papers have proposed different schemes, so it can perhaps be
assumed that some variant of these ideas is present in current systems. In [80], a scheme where the
CP is used to obtain an estimate of the STO and the fractional CFO by maximizing (4.7). The
SSS is then used to determine the integer CFO in a manner similar to Schmidl and Cox. In [56],
the CP is used to obtain rough estimates of the STO and CFO which are later refined via the PSS
and SSS. Here, the fact that the PSS consists of the mirrored halves are used to find the frequency
offset. Another method was suggested in [81], where both the PSS and SSS are used together to
achieve carrier frequency synchronization. In [82], a ML approach to estimate several parameters
is demonstrated. This method outperforms a number of other, more heuristic methods, at the
expense of computational complexity.

We have now investigated a number of different methods and given an overview of the topic
itself. For convenience, we here give Figure 4.26, where the MSE for the STO estimation for the
methods considered is shown in Figure 4.26a, and the MSE for the CFO estimators in Figure 4.26b.
Comparing the CP-based method and the Schmidl and Cox method, we see that their MSE
performance is similar, with a slight edge for the CP-based method. The main advantages of the
Schmidl and Cox method, however, is the robustness, which is not shown here.

Further, we note that the LTE-like method with a Zadoff-Chu sequence has vastly better MSE
behavior than the others for the STO estimator. This demonstrates that the choice of synchro-
nization sequence greatly influences the performance. Also, using a single known symbol instead
of a symbol with repetitive structure, we get a single peak in the correlation spectrum rather
than a plateau. This allows the MSE to become arbitrarily low at high SNRs. We did not do
any frequency estimation with the PSS and SSS, but note that the framework available via the
CP, Zadoff-Chu and m-sequence is enough to construct a method matching the performance of
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Morelli and Mengali. Fundamentally, Morelli and Mengali were able to improve the accuracy by
looking at symbol with more than one repetition, so that a better estimate may be produced via
a weighted average. With both the PSS and SSS available, similar ideas can be pursued and in
the reference list, some successful examples are given.
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Figure 4.26: MSE for the different STO and CFO estimators. Results obtained from simulation over an
AWGN channel, 512 subcarriers, cyclic prefix of length 36, Zadoff-Chu sequence of length 63 and 5 · 104

trials at each SNR.
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5
Performance

In this chapter, we will examine the performance of the system under STO and CFO. A MU-
MIMO system will be simulated and the the resulting SINDR for a user will be compared with
the analytic expression for the SINDR found in Chapter 3. Lastly, we will look at the root mean
square error (RMSE) of the STO and CFO estimation.

We begin with the received SINDR when there is STO present. In Figure 5.1, we see the results
for both the infinite-precision case and the one-bit case both when there is CFO and when there is
not. Here, we assume that there is residual STO after the estimation, denoted by δu = δ0,u − δest

u .
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Figure 5.1: The effect on the SNR under STO from analysis and simulations. The solid and dashed
lines are analytic results and the marks are simulations. Results obtained for MU-MIMO system with
a flat-fading channel model, 128 BS antennas, 8 UEs and 32 subcarriers, cyclic prefix of length 16 and
SNR at 0 dB.

As predicted by the analysis, the received SINDR quickly decreases as the STO estimation error
grows. Because of the asymmetrical effect of the STO, it is commonplace to slightly shift the
starting point of the DFT window. If the start of the window is taken to be somewhere in
the middle of the CP, or perhaps slightly tilted toward the end of the CP in a frequency-selective
channel, the received SINDR will be unaffected by small STO estimation errors in either direction.
As there is no reason to assume that the estimation error should be tilted toward the negative
side, this yields a more robust system. This has been done in here, explaining why Figure 5.1 is
symmetrical around δu = 0. Note that there is no reduction in the received SINDR as long as the
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STO causes the start of the DFT window to be within the CP.

Moreover, in Figure 5.1, we see that the one-bit case has an approximate 10 dB loss compared
to infinite-precision case in the case of no CFO. This is due to the quantization distortion, which
as we have seen throughout this thesis limits the performance in a quantized case. It is however
interesting to note that the effect of STO is similar, regardless of the resolution of the quantization.
Additionally, the effect of STO is in this case more severe than quantization distortion, highlight-
ing the importance of accurate synchronization. Lastly, adding CFO to the system, we note a
significant drop in the performance, again underscoring the need for accurate synchronization.

Next, we examine the effect of CFO in the system. In Figure 5.2, results are shown. This effect
is completely symmetrical, as rotations in a particular direction is not worse than the other. As
noted in previous chapters, the fractional CFO is what causes ICI, so the worst case scenario for
the residual CFO εu = |ε0,u − εest

u | is 1/2 subcarrier spacings.
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Figure 5.2: The effect on the SNR under CFO from analysis and simulations. The solid and dashed
lines are analytic results and the marks are simulations. Results obtained for MU-MIMO system with
a flat-fading channel model, 128 BS antennas, 8 UEs and 32 subcarriers, cyclic prefix of length 16 and
SNR at 0 dB.

Here, we see for example that a CFO of 0.15 subcarrier spacing causes a loss of about 10 dB in
the infinite-precision case. This illustrates the inherent sensitivity to CFO in the OFDM scheme
mentioned in Chapter 2 and why significant effort has been put into the design of effective CFO
estimation strategies.

Moreover, we again see an additional penalty due to the quantization distortion of about 10 dB.
In the figure, we note that the effect of the CFO does not seem to be as severe as in the infinite-
precision case, at least in a relative sense. Looking at the case when the residual CFO is 0.2, we
see that the SINDR in the quantized is approximately 4 dB. Comparing this to the around14 dB
loss in the infinite-precision case, it is interesting to note that since the one-bit case suffers from a
significant distortion due to due quantization itself, the effect of the CFO is less noticeable. This
is similar to what we saw in the Figure 5.1. In light of these results, we note that the requirements
on synchronization in a coarsely quantized system could possibly be more lenient than with fine
quantization. As so much distortion is added already, the effect of slight STO or CFO is not very
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significant.

In Figure 5.3, we see that effect of adding more receiving antennas to the system. The main
take-away of Figure 5.3a and Figure 5.3b is that we do get an array gain in both the the infinite-
resolution and the quantized case, meaning that more antennas improve the received SNR when
there is STO in both the infinite-precision and one-bit case.
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Figure 5.3: The effect on the received SNR when adding more antennas. Results obtained for MU-
MIMO system with a flat-fading channel model, CFO set tot zero, 8 UEs and 32 subcarriers, cyclic prefix
of length 16, SNR at 0 dB and a varying number of BS antennas B.

Examining Figure 5.3b in particular, we note that the gain of adding additional antennas seems
to diminish as the number of antennas B grows. This is due to the fact that while more antennas
can average out the effect of thermal noise, it cannot decrease the quantization distortion. This is
an interesting phenomena, explained by the fact that if there is correlation between the input to a
group of quantizers, the gain of combining their output will be limited. The number of antennas
beyond which the received SNR after combing will increase only marginally will depend on the
specifics of the channel.

Lastly, we examine the RMSE performance for this system. In Figure 5.4, the results are shown.
Since the STO and CFO are estimated per antenna, there is no benefit from adding antennas in
the RMSE sense. As noted in Chapter 4, a significant gain in performance can be obtained via
some joint processing, where the received signal from each antenna is combined in some way before
the offsets are estimated. This would require the offsets to be the same on each antenna, which,
at least in certain cases, is probably quite reasonable. That approach was not pursued here and it
is noted that the gap between the performance in the infinite-precision and the one-bit case can
probably be reduced via more complex processing.

Examining the results in Figure 5.4a and 5.4b, we note a floor in the performance for the quantized
case. This is due to the quantization distortion and echos what was found in Chapter 4.
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Figure 5.4: The RMSE for the Schmidl and Cox algorithm in a SIMO system with frequency-selective
fading channel model with 10 taps, 1200 occupied subcarriers out of a total of 2048 subcarriers, cyclic
prefix of length 144 samples, 10 pilot symbols with LS channel estimation and ZF combining.

It is interesting to note that in Figure 5.4a, the RMSE of the STO estimation in the quantized
case is only a few samples worse than the infinite-precision case for the SNR range considered.
However, as seen in Figure 5.1, even a small STO can have a significant impact on performance.
Perhaps, the cost of a few extra bits of quantization resolution is a reasonable expense to increase
the system robustness.
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6
Discussion

In this chapter, some reflection on the results obtained throughout this thesis will be presented.
A fair amount of insights has already been raised a numerous places, so this chapter intends
to summarize, raise some points that have not previously been brought up and mention some
concluding remarks. Lastly, we will provide some ideas for future research.

In this thesis, we started by examining the effects of synchronization errors on an OFDM signal
if we include a one-bit quantizer in the system. The types of errors considered are symbol timing
offset, relating the uncertainty in the exact arrival of a signal, as well as frequency offset, arising
from uncertainty regarding the carrier frequency of the signal. Beginning with an overview of
the effects, it was noted that both the STO and CFO potentially added significant distortion
to our system. In order to be able to properly evaluate the simulations results, the next step
was to derive the analytic expressions for the received signal under these types of errors. In the
literature review stage of this thesis, no example of an expression involving both the STO and
CFO was found – the effects were always treated separately. Consequently, to find a more general
expression was the starting point of the analysis. In Chapter 3, the analysis was carried out and
an expression describing both these effects in i MU-MIMO scenario was found. It was showed that
the findings agree with previous results, by setting one of the parameters to zero and note that the
analysis revealed an interaction between the STO and CFO that, to the author’s knowledge, had
not been previously documented. Moreover, as the analysis was limited to a flat-fading channel
model and symbol-sampling rate, the extension to the one-bit case via Bussgang’s Theorem was
straightforward and a theoretical expression for the SINDR in the presence of STO and CFO was
found.

In the following chapter, the topic of synchronization was examined. It was noted that the optimum
method for detecting a synchronization sequence reduced to a simple correlation in the one-bit
quantization case. Next, several synchronization methods were reviewed and the main conclusion
from this chapter was that none of the methods failed when introducing the one-bit quantization.
In fact, the quantized case behaved similarly in most cases, demonstrating that the effect of
quantization in the context reduces to decreasing the SINDR. However, it was detected that while
most STO estimation methods are insensitive to the CFO in the infinite precision case, this is
not true in the quantized case. The level of CFO strongly influenced the performance of the
estimators in the one-bit case and an intuitive explanation for the effect was presented. This
is interesting, as it is common for STO and CFO estimation method to assume that these can
be done separately. In the one-bit case, taking the fact that the performance of the described
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STO estimation methods are influenced by the level of CFO into account may yield significant
performance gains. One idea might be to have an algorithm which estimates first the STO and
CFO and then after correcting the received signal according to the estimations, estimates the
offset again. This algorithm could repeat until the difference between two successive estimations
is sufficiently small or some maximum number of iterations have been met.

The main takeaway from Chapter 4 was that standard methods, such as using the cyclic prefix,
a repeated symbol or a dedicated known preamble, does seem to work in one-bit quantized cases.
This is a significant finding and, combined with other result from previous research, indicates
that low-resolution quantizers is indeed feasible way to mitigate the power consumption issues of
large antenna arrays. It is already specified that some parts of future 5G systems will run on
frequencies than higher than 6 GHz and consequently, it seems all but certain that large antenna
arrays will be included in future communication system. To facilitate the beamforming necessary
for acceptable SNR levels, a large number of antennas will be required. To keep the energy bill
at a reasonable level, the energy consumption per part in the antenna hardware chain must be
reduced. As the quantizer is responsible for a sizable share of the needed energy, lowering either
its speed or resolution is an attractive option. It seems unlikely that low-speed quantizers will
ever yield acceptable performance, so low-resolution quantizers is probably the most likely path
forward. The results of this thesis, which indicate that that systems employing these types of
quantizers can indeed be synchronized, speaks to the feasibility of this solution.

Lastly, the performance of systems with either infinite resolution or one-bit quantization was
examined. It was noted that the SNR drop in the one-bit case was relatively speaking significantly
lower than in the infinite precision case. This is interesting and means that as the quantization
already adds a large amount of distortion, the added interference from STO or CFO is marginal in
relation the the distortion. This would mean that perhaps, the requirements on synchronization
can be less strict in the one-bit case than in the infinite precision case. This in turn would possibly
mean that the CP can be made slightly shorter, thereby reducing the overhead and increasing the
throughput.

6.1 Ideas for future research

When considering future research, a number of ideas spring to mind. For example, while deriving
the SINDR in the presence of simultaneous STO and CFO, some limiting assumptions were made.
In particular, there are some areas where there are fairly obvious extensions to the current analysis
that were not pursued due to time considerations.

Firstly, in this thesis, the channel was assumed to be flat-fading. The extension to a more general
frequency-fading channel is however quite straightforward and requires basically the same steps as
shown in Chapter 3. Generalizing the analysis to this case and examining the performance under
these conditions is an obvious continuation of this work and an important step to increase the
understanding of this topic.

Another limitation in this thesis is the assumption of symbol-sampling rate. In several papers,
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e.g. [21], the benefits of oversampling in the one-bit quantization case has been demonstrated.
Consequently, it is of great interest to examine if the gains of oversampling are present when
synchronization errors are introduced to the system. Including oversampling would mean that
E [x̂[k]x̂[k′]′]] 6= 0, k 6= k′, complicating the analysis.

Next, in the area of synchronization, there is some analysis missing in the one-bit case. This could
be useful to validate the results of the simulations, as well as the further deepen the understanding
of the effect of one-bit quantization. Specifically, the development of a maximum likelihood method
relying on the cyclic prefix, analogous to [53] would be a highly interesting addition to the current
knowledge base.

The main point to mention in this section, however, is that the time has come for the examination
of the synchronization methods in a real-world system. While the results of this thesis strongly
hints towards the fact that standard methods, such as Schmidl and Cox, will work in one-bit
system, no definitive answer can be given until real-world experiments have been carried out. For
example, this thesis have not examined the effects of sampling clock offsets, which is a well-known
issue in many real system. How much this affects the system is yet unknown and perhaps this
is a prerequisite for real-world experiments. The initial intention of this thesis was to begin the
experimentation phase, but the decision to exclude that from the scope had to be taken with time
constraints in mind.

It is the final conclusion of this thesis that standard methods can be used in systems employing one-
bit quantization. An initial examination of this topic have been carried out and some important
findings have been highlighted, such as that the quantization distortion causes so much distortion
that the additional effect of a small STO or CFO is insignificant. We also note the CFO dependence
of the performance of the timing estimator, as well as an analytic expression for the SINDR under
STO and CFO.
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