
Evaluation of NeuCube Spiking Neural Network
Architecture for MEG/EEG Data Classification

Master’s Thesis in Biomedical Engineering

YANKUN XU

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis 2018

Evaluation of NeuCube Spiking Neural Network
Architecture for MEG/EEG Data Classification

Yankun Xu

Department of Electrical Engineering
Division of Signal and System

Chalmers University of Technology
Gothenburg, Sweden 2018

Evaluation of NeuCube Spiking Neural Network Architecture for MEG/EEG Data
Classification
Yankun Xu

© Yankun Xu, 2018.

Supervisor: Artur Chodorowski, CHALMERS & MedTech West
Examiner: Artur Chodorowski, CHALMERS & MedTech West

Master’s Thesis 2018
Department of Electrical Engineering
Division of Signal and System
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: 6 speed DCT, 6DCT450, GETRAG.

Typeset in LATEX
Chalmers Reproservice/Department of Electrical Engineering
Gothenburg, Sweden 2018

iv

Evaluation of NeuCube Spiking Neural Network Architecture for MEG/EEG
Data Classification
Yankun Xu
Department of Electrical Engineering
Chalmers University of Technology

Abstract
In recent years many new methods within artificial intelligence field have been de-
veloped. Many techniques behind AI are taking a role in many practical fields,
where pattern recognition in biomedical applications is one of them. Much of the
research related to neuroscience use brain electrophysiological signal to investigate
many neurodegenerative diseases. However, it is challenging for traditional machine
learning methods due to spatio-temporal property of signal. Recently, a new frame-
work called NeuCube has been proposed to address this problem.

In this work, the NeuCube architecture was investigated and evaluated on two pat-
tern recognition applications, one was classification of wrist movement from public
electroencephalography(EEG) data, and the other was classification of muscle sym-
pathetic nerve activity(MSNA) from local Magnetoencephalography(MEG) data.
Apart from NeuCube, two traditional machine learning methods, support vector
machine(SVM) and multilayer perception(MLP), were tested on same dataset to
make comparison to NeuCube. As to EEG application, NeuCube achieved 87%
classification accuracy, which is much better than SVM and MLP whose accuracy
were lower than 50% (5-fold cross validation, three classes). In term of MSNA clas-
sification, the performance of NeuCube and traditional machine learning methods
were similar, all three methods were able to achieve around 87% accuracy (5-fold
cross validation, 20 subjects, two classes), showing that NeuCube can be potentially
attractive for neurological brain related applications.

Keywords: EEG, MEG, machine learning, SNN, NeuCube, MLP, SVM, pattern
recognition

v

Acknowledgements
Foremost, I would like to express my gratitude to my thesis supervisor and examiner
Artur Chodorowski of Electrical Engineering Department from Chalmers University
of Technology, he was always available to provide help whenever I had questions
about my thesis. Artur is professional in the biomedical field so that he can always
give me useful suggestion and inspiration on my thesis research.

Besides my supervisor, I would like to thank Bushra Riaz Syeda who was a PhD
student in MedTech West, and her supervisor Prof. Justin Schneiderman and Prof.
Mikael Elam. They provided me with local clinical dataset and helped me have a
good understanding on dataset.

I also would like to thank Chalmers University of Technology, because I have spent
very happy two years here. As an international student, I was nervous about my
life in the beginning of master study, but the both living and study environment in
Chalmers University of Technology really helped me build confidence and develop
my great interest in my study.

Last but not least, I must express my sincere gratitude to my parents Zhuhua Xu,
and Cuilin Guo for providing me with unfailing support and encouragement during
my years of master study.

Yankun Xu
Gothenburg, Sweden, 2018

vi

viii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Purpose and goal . 1
1.2 Solution . 2
1.3 Limitation . 2
1.4 Related work . 3

2 Theory 5
2.1 What is EEG and MEG? . 5

2.1.1 What is EEG? . 5
2.1.2 What is MEG? . 6
2.1.3 Summary about EEG and MEG 6

2.2 NeuCube . 7
2.2.1 Overview . 7
2.2.2 Brain-inspired SNN . 8
2.2.3 Spiking neuronal model . 9
2.2.4 Input encoding . 12
2.2.5 Hebbian learning rule . 12
2.2.6 STDP learning rule . 13
2.2.7 deSNN . 14

2.3 Support Vector Machine . 17
2.4 Multilayer Perception . 19

3 Experiment 21
3.1 Data description . 21

3.1.1 Human wrist movement EEG data 21
3.1.2 Muscle Sympathetic Nerve Activity MEG data 21
3.1.3 Data extraction and cleaning 22

3.2 Data preprocessing . 23
3.2.1 Input encoding . 23
3.2.2 Normalization . 23
3.2.3 Averaging . 23
3.2.4 Training set ratio . 24
3.2.5 Alignment . 25

ix

Contents

3.3 Implementation of NeuCube . 25
3.4 Implementation of SVM and MLP in Python 30
3.5 Learning process . 31

3.5.1 Cross Validation . 32
3.5.2 Statement . 32

4 Results 33
4.1 Results for EEG data . 33
4.2 Results for MEG data . 36

4.2.1 2-subject situation . 36
4.2.2 20-subject situation . 40

5 Conclusion 43

Bibliography 45

x

List of Figures

2.1 EEG schematic diagram . 5
2.2 Simplified representation of NeuCube architecture which consists of

I: Input encoding module; II: 3D-SNN Cube module; III: Output/-
Classification module.[21] . 7

2.3 Single neuron and action potential[19] 9
2.4 Schematic diagram of the IF model[19] 9
2.5 Time course of membrane potential ui(t) and output firing spikes on

postsynaptic neuron i[19]. 11
2.6 Artificial neuron model . 12
2.7 STDP schematic diagram[36] . 13
2.8 An example to illustrate principle of deSNN learning rule.[39] 16
2.9 Definition of margin. 17
2.10 An example of MLP with one input layer, two hidden layers and one

output layer.[42] . 19
2.11 An example of output neuron xi with i = 1 19

3.1 MEG study design protocol. 21
3.2 MSNA value for 20 subjects in provided order. 22
3.3 Time sequence averaging protocol . 24
3.4 NeuCube user interface . 25
3.5 Information for loading data . 25
3.6 Encoding panel . 26
3.7 Spike encoding display . 26
3.8 SNN cube initialization and mapping panel 27
3.9 SNN cube after initialization . 27
3.10 Training SNN cube panel . 28
3.11 Classifier training panel . 28
3.12 Result panel . 30
3.13 Flow chart of learning process . 31

4.1 Accuracy box plot for different input encoding methods. 34
4.2 Accuracy with spike encoding via SVM and MLP methods. 35
4.3 Accuracy without spike encoding via SVM and MLP methods. 35
4.4 Accuracy on P3 data with spike encoding by different numbers of fold

cross validation. 38
4.5 Accuracy on P3 data without spike encoding by different numbers of

fold cross validation. 38

xi

List of Figures

4.6 Accuracy on P3 data with spike encoding by different numbers of
time sequence averaging. 39

xii

List of Tables

4.1 Optimal parameters of NeuCube for EEG task. 33
4.2 Accuracy(µ± σ) of NeuCube on EEG data with different numbers of

fold CV. 33
4.3 Optimal parameters of NeuCube for MEG task. 36
4.4 Accuracy(µ± σ) of NeuCube on MEG P1 and P3 data. 37
4.5 Accuracy(µ±σ) of NeuCube on MEG P3 data with different numbers

of fold CV. 37
4.6 Accuracy(µ±σ) of NeuCube with 50- and 100-time sequence averaging. 39
4.7 Accuracy(µ± σ) of three methods with input encoding 40
4.8 Accuracy(µ± σ) of SVM and MLP methods without input encoding . 40

xiii

List of Tables

xiv

List of Abbreviations

AI Artificial Intelligence. 1
ANN Artificial Neural Network. 8

BSA Ben’s Spiker Algorithm. 12

CT Computed Tomography. 6
CV Cross Validation. xiii, 33

deSNN Dynamic Evolving Spiking Neural Network. 8

ECOS Evolving COnnectionist Systems. 14
EEG Electroencephalography. 1
eSNN Evolving Spiking Neural Network. 14

fMRI functional Magnetic Resonance Imaging. 3

IF Integrate and Fire. 9

LIF Leaky Integrate and Fire. 10
LTD Long-Term Depression. 13
LTP Long-Term Potentiation. 13

MEG Magnetoencephalography. 1
MLP MutiLayer Perception. 1
MSNA Muscle Sympathetic Nerve Activity. 1
MW Moving-Window Spike Encoding Algorithm. 12

PET Positron Emission Tomography. 6
PSP PostSynaptic Potential. 10

RO Rank-Order. 14

SDSP Spike Driven Synaptic Plasticity. 15
SF Step-Forward Spike Encoding Algorithm. 12
SNN Spiking Neural Network. 1
SQUID Superconducting QUantum Interference Device. 6
STDP Spike-Timing Dependent Plasticity. 8
SVM Support Vector Machine. 1

TR Thresholding Representation. 12

xv

List of Abbreviations

xvi

1
Introduction

In recent years researches into AI field has increased tremendously. Many tech-
niques behind AI, such as machine learning, deep learning, are becoming powerful
in many practical fields, for example, computer vision, natural language processing,
biomedical imaging analysis, etc. Apart from these popular fields, pattern recogni-
tion with biomedical applications is another important field where AI is able to be
useful. Nowadays many brain physiological signals, such as EEG, MEG are utilized
as indication or biomaker to investigate many researches related to human brain,
for example, mental disorder, sleeping disorder, the correlation between the neuro-
response and behaviors of human, etc.

Many previous researches on classification of EEG/MEG data in relation to spe-
cific application have been done. Sonja et al. utilized machine learning on EEG
data to successfully achieve accurate classification of cholinergic intervention and
Alzheimer’s disease[1]. In terms of Ocular and Cardiac Artifacts, Ahmad et al. made
use of MEG data to make classification automatically via deep learning approach[2].
However, many researches, such as working memory performance in schizophrenia
and healthy adults, auditory perception, posed several challenges for traditional
machine learning methods[3][4]. In the thesis work, two practical applications will
be investigated, one is classification of human wrist movement using EEG data,
the other is using local MEG data from Sahlgrenska University Hospital to recog-
nize MSNA inhibition situation, which has been proved to be related to the risk of
hypertension[5]. A new SNN architecture framework, so-called NeuCube[23][22], is
used in the thesis, in addition another two traditional machine learning methods are
used as well to against NeuCube’s performance.

1.1 Purpose and goal
The purpose of this master thesis project is to implement some experiments on
EEG and MEG data to evaluate the performance of NeuCube framework on spatio-
temporal data. Meanwhile we hope use standard classifier to against NeuCube, in
the thesis we determine to use two traditional methods, SVM and MLP, in com-
parison with NeuCube. NeuCube framework is a kind of built-in software/toolbox
written in Matlab environment, and traditional machine learning methods are im-
plemented in Python. Three methods will be compared in order to see whether
NeuCube is advantageous or not.

1

1. Introduction

And the goals of this master thesis work are:

• Study the principles of NeuCube, and other machine learning methods.

• Explore different preprocessing method for raw brain data.

• Understand the meaning of different parameters inside NeuCube and other
machine learning methods, and figure out optimal ones.

• Implement spike encoding on raw data to figure out if spike train is able to
simply represent original signal information.

• Implement NeuCube on public EEG data.

• Implement NeuCube on MEG data from local Sahlgrenska hospital.

• Using traditional machine learning methods, SVM and MLP in comparison
with NeuCube.

1.2 Solution
Recently, NeuCube SNN architecture is proposed by Prof. Nikola Kasabov to cap-
ture both temporal and spatial characteristics of physiological brain data, it has
potential to accomplish the goal of the thesis.[22][21]

1.3 Limitation
There is a big challenge for traditional machine learning methods to analyze EEG/MEG
data due to its spatio-temporal property. In term of common machine learning task,
such as pattern recognition on pictures or other static data, each sample contains
not too much information, for example, only one matrix with pixel value can rep-
resent a picture sample. Compared to the static pictures, however, EEG/MEG is
kind of dynamic data which contains hundreds or thousands data points(samples)
per channel in only one second. Sometimes we have about one hundred channels
and several seconds to study the behavior of human, so each sample would contain
tremendous times information as static data. In addition, EEG/MEG recordings
has low signal-to-noise ratio, noise can come from a variety of sources, and in real
world, it is not easy to find sufficient patients as available study samples, which
all make EEG/MEG classification task become much more difficult. Thus, tradi-
tional machine learning methods may not perform well on our applications in the
thesis[21].

2

1. Introduction

1.4 Related work
Many researches have been done using NeuCube SNN architecture. Nikola Kasabov
and Elisa Capecci et al.[6][7][8] have used EEG data as a type of brain data to study
Alzheimer’s Disease, absence epilepsy seizure data and human cognitive process, the
results are very satisfied and NeuCube has performed better than standard machine
learning methods. The spatio-temporal fMRI data is another important indicator to
study brain behavior, many researches have shown that NeuCube is a great feasible
tool to classify and segment fMRI data.[9][10][11] Apart from brain data, Long Peng
et al.[13] has proven the feasibility of NeuCube SNN architecture for electromyog-
raphy pattern recognition.

It is impressive that, in addition to physiological signal data, NeuCube is able to
analyze many other spatio-temporal data. Nikola Kasabov et al.[12] have used
NeuCube to analyze static features of patient over 60-day period to predict stroke,
and Enmei Tu et al.[14] have successfully solved traffic status classification problem
using NeuCube SNN architecture combined with graph matching input mapping
method.

3

1. Introduction

4

2
Theory

2.1 What is EEG and MEG?

2.1.1 What is EEG?
EEG is a kind of electrophysiological monitoring method to record electrical activity
of the brain[15]. It is a non-invasive approach to detect the fluctuations or changes
of human brain, with so many electrodes placed on the scalp according to specific
location. In EEG signal, one electrode means one channel, so EEG signal is also
called multi-channel signal. From few channels to hundreds of channels are all used
to record different brain activities. Cells in human are able to generate electric
potentials via ionic current flows between cell membrane, this electric potentials
usually help doctor to monitor the signs of patient. Neural activity in human brain
can also generate electric potential, and EEG is used to record this electric poten-
tial. When people suffer from many brain disease or disorders, such as epilepsy,
sleeping disorder, brain death, etc., some abnormalities would be appeared in the
EEG records.

In Figure 2.1, we can see that many electrodes are used to record activity of human
brain, and on the right side of picture, the multichannel EEG signals are shown on
the screen.

Figure 2.1: EEG schematic diagram

5

2. Theory

2.1.2 What is MEG?
Compared to EEG, MEG is a kind of neuroimaging technology to directly measure
neuronal activity of human brain. The difference between EEG and MEG source is
that EEG is to record scalp’s electrical activity generated from the electric potential
of cell from brain deeply, but MEG is to measure magnetic fields generated from
neuronal sources in human brain. MEG has much better performance on spatial
resolution which means source could be localized with millimeter precision that 2-3
mm for sources in the cerebral cortex. Except for spatial resolution, MEG is also
very good at temporal resolution which could be better than 1ms. Fundamentally,
sensitive magnetic fields, which are around 10fT - 1pT, are also generated from
electric potential of neuronal cell inside brain, when brain is processing information,
small currents flow in the neural system and would produce very weak magnetic
fields which can be measured by multichannel SQUID, that is introduced in the late
1960s by James Zimmerman[16]. The magnetic field B at a location r of a dipolar
point source with moment Q at location r0 in a homogeneous volume is given by
Sarvas[17]:

B(r) = µ0

4πQ×
r − r0

|r − r0|3
(2.1)

In terms of MEG sensors, usually SQUID consists of two sensors - gradiometer and
magnetometer. Magnetometer is used to measure a magnetic field, and provide
data on its strength and direction. As to gradiometer, there are two different ways
to construct the detector coils. One is to construct the detector channels from
first- or second-order gradiometers, where the two or three gradiometer coils are
located concentrically with a baseline on the order of centimeters. The other one
utilizes planar gradiometers that two adjoining detector coils are located on the
same plane[18]. In this master thesis project, the MEG data we will analyze has
102 locations and each location contains three sensors, one magnetometer and two
gradiometers with planar gradiometers approach.

2.1.3 Summary about EEG and MEG
In term of EEG, multichannel electrodes are placed on skull, meanwhile SQUID
is placed outside the skull, thus EEG and MEG are both completely non-invasive
methods to detect brain activity. They both have similar sample frequencies which
usually lies in the range 200-1000 Hz, depending on the purpose of study.

Compared to other neuroimaging technologies, such as CT, PET, fMRI, EEG and
MEG have a very high temporal resolution. In addition, they also do not require
injection of isotopes and not need people exposure to X-rays or magnetic fields,
which means children and infants are able to be studied.

6

2. Theory

2.2 NeuCube

2.2.1 Overview
NeuCube is a SNN architecture framework for mapping, learning and understand-
ing spatio-temporal brain data.[22][23] NeuCube consists of three main modules[21]:

• Input encoding module
• 3D-SNN Cube module
• Output/Classification module

In the first part, the encoding module utilizes properties of SNN to convert the
continuous input information data into discrete spike trains which is binary. After
converting, raw continuous signal is transformed into the form of spikes. There are
several encoding methods we are able to use, which would be discussed in the fol-
lowing part.

As to the SNN cube, it is scalable which means we can change the size of it. SNN
cube consists of many mimic neurons, the number of neurons is determined by three
parameters: length(nx), width(ny), height(nz) of reservoir, and the total number is
N = nx × ny × nz. For each neuron, probabilistic leaky integrate and fire model is
used in this framework[24].

Figure 2.2: Simplified representation of NeuCube architecture which consists of
I: Input encoding module; II: 3D-SNN Cube module; III: Output/Classification
module.[21]

There are two learning stages inside NeuCube framework, one is unsupervised learn-
ing and the other is supervised learning. Unsupervised learning is implemented
firstly, before training in cube, connection weights inside cube are initialized at first,
then training samples are input into cube, for single training sample, there is a spike
train for each channel, which means the number of channels determines the number
of input neurons, for example, in this thesis work, each sample in EEG dataset has
14 channels, so there are 14 input neurons inside the cube, which has N neurons in

7

2. Theory

total. The next, unsupervised learning is to modify or adjust all neuronal connec-
tion weights to encode the spatio-temporal relationships between input data. Two
fundamental learning rules are utilized during the training phase: Hebbian learning
rule[25], and STDP learning rule[26].

The second stage occurred in output module is to make use of deSNN[39] to train an
output classifier. This classifier is not similar with classifier used in traditional ma-
chine learning method. After cube training finished and before supervised learning
beginning, there are none neurons existed in classifier layer. For supervised learn-
ing, each training sample is input into cube again one by one, established connection
weights help every neuron inside cube have a spike train, then all neurons in cube
are connected to a newly created output neuron, thus the number of training sam-
ples determines the number of output neurons of classifier. The connection weights
between cube and classifier is generated and adjusted according to the learning rules
inside deSNN. Due to the class information for training samples, each output neu-
ron has their own label consistent with the label of every training sample, this is
the reason why we call this learning phase as supervised learning. When all output
neurons are created, every test sample can be input into the NeuCube, similar to
the supervised learning step, each test sample would create a output neuron, but
for recall phase, test output neuron will be used to make comparison that which
training output neurons is most similar one, then the label of this test sample is
consistent with the label of the closest training output neuron.

In the following parts, many terminologies and learning rules mentioned before will
be illustrated elaborately.

2.2.2 Brain-inspired SNN
SNN, which is considered as the third generation of ANN, is presented in the form of
spike trains for information processing. Inside SNN, there are many artificial spiking
neurons containing binary spikes only in order to network is able to process huge
amount of data[38]. Sometimes, the mechanism inside human brain can be seen as
the ultimate inspiration to develop new generation of machine learning or artificial
intelligence approach to handle spatio-temporal brain data, because human brain
has amazing capacity to learn and recall patterns with different time scales, ranging
from milliseconds to years. Due to functional similarity between neurons inside SNN
and biological neurons inside human brain, spiking model has powerful potential to
process spatio-temporal brain data by encoding both spatial and temporal informa-
tion in SNN as location of synapses and neurons and time of spike trains[22]. Thus
we usually call SNN as brain-inspired neural network. In term of traditional ANN,
each neuron inside the whole network contains only single value, but in SNN each
neuron represents a spike train.

8

2. Theory

2.2.3 Spiking neuronal model
From biophysiologic point of view, two neurons communicate by transmitting elec-
trical pulse which is so-called action potential or spike via synapse. Figure 2.3 shows
the structure of single neuron which consists of three parts, called dendrites, soma,
and axon, and action potential generted from axon or pre-synaptic neuron. The
action potential is a kind of electrical pulse has the range of 1-2ms duration and
around 100mV amplitude[19].

Figure 2.3: Single neuron and action potential[19]

In the past few decades, many different spiking neuronal models have been proposed.
From Gerstner and Kistler[19], for most of spiking neuronal models, transmitted
neural information in the synapse is represented mainly by timing of spikes rather
than shape of spikes. The mathematical description for a sequence of spike trains is
shown as equation 2.2:

S(t) =
∑

f

δ(t− t(f)
i) (2.2)

where f = 1, 2, 3, ... is the label of spikes and δ is the Dirac function.

A popular choice of spiking neuronal model for SNN is IF model. Figure 2.4 shows
the circuit of IF model happened inside soma cell. A current I(t) coming from
external current or input from presynaptic neurons is used to charge the RC circuit,
where R is membrane resistance and C stands for membrane capacitance. The
voltage u(t) across C is compared to a potential threshold ϑ. And output spike
δ(t− t(f)

i) would be generated when u(t) reach at this threshold at time t(f)
i [19].

Figure 2.4: Schematic diagram of the IF model[19]

9

2. Theory

In Figure 2.4, we can see that capacitor C is parallel with resistor R and the driving
current I(t) goes through this two components, I(t) = IR + IC . The current passing
through resistor can be calculated by Ohm’s law as IR = u(t)/R. For capacitive
current, we need use the definition of capacity and current as C = q/u and I = dq/dt
to get IC = Cdu/dt. Thus:

I(t) = u(t)
R

+ C
du

dt
(2.3)

Formula 2.3 represents the best-known spiking neuronal model LIF model, if we
multiply this formula by R, the standard form is shown as:

τm
du

dt
= −u(t) +RI(t) (2.4)

where τm = RC is the term of "leakage". Equation 2.4 can be used to describe IF
model as well if R tends to infinite.

LIF model can be stimulated by either external current or presynaptic spike trains,
here we only discuss the condition of biological spike trains stimulus. At first, we
introduce PSP εij(t) whose definition is:

ui(t)− urest =: εij(t) (2.5)

where ui(t) and urest are the membrane potential and resting membrane potential
of neuron i respectively. If several presynaptic neurons j transmitting spike trains
to the postsynaptic neuron i, we will have time course of membrane potential ui(t)
of neuron i as[19]:

ui(t) =
∑

j

∑
f

εij(t− t(f)
j) + urest (2.6)

where f = 1, 2, 3, ... and t(f)
j is presynaptic spike arrival times.

Except for formula 2.6 to describe the LIF model, time course of the membrane
potential ui(t) of a LIF model stimulated by presynaptic spike trains and mechanism
of output firing spikes are clearly shown as following:

10

2. Theory

Figure 2.5: Time course of membrane potential ui(t) and output firing spikes on
postsynaptic neuron i[19].

In Figure 2.5, an example of two presynaptic neurons j = 1, 2 sending spike trains
to postsynaptic neuron i is described. In part A, only neuron j = 1 sends one spike
to the neuron i, which leads to the time course of PSP becomes εij(t− t(f)

1), whereas
another spike driven by neuron j = 2 sends to neuron i as well with a short time
delay in part B, causing a second PSP that adds to the first one linearly. Followed
by principles shown before, several spikes driven by two presynaptic neurons are sent
to neuron i, but in part C ui(t) reaches the threshold ϑ which leads to an output
spike generated(shown in left-hand side of part C). After that, ui(t) will returns to
a value quickly below resting potential firstly then back to urest, sometimes we call
it as refractory period[20].

11

2. Theory

2.2.4 Input encoding
There are several input encoding schemes provided to convert the raw continuous
data into spike trains. In the NeuCube framework package, there are four available
built-in schemes: BSA[29], TR[30], SF, and MW.

Different encoding methods have distinct properties. BSA convert data into posi-
tive(excitatory) spikes only, it is suitable for signals with high frequencies[22], and
it has been implemented in the EEG data transformation task[31]. Except for BSA,
other three methods will generate both positive and negative(inhibitory) spikes.
AER is able to capture significant changes in data via a given threshold, the posi-
tive and negative spikes generated by the sign of changes. AER was implemented
initially in the artificial silicon retina[32]. Furthermore, SF and MW methods are
variants of AER method[33], among these four methods or other proposed methods,
which one should be chosen to carry the information of given signals depends on the
characteristic of them.

2.2.5 Hebbian learning rule
Hebbian learning rule, which is proposed by neuropsychologist Donald Hebb in 1949
is claiming how biological neurons learn: the connections between two cells/neurons
will be strengthened if the interaction between two neurons is persistent.[25] Some-
times, this learning rule is summarized as "Cells that fire together wire together."[34],
however, it is noticed that cell j needs to just fire before, not at the same time as
cell i in order to obey the learning rule.

In ANN field, hebbian learning rule can be regarded as a way to change or update
the weights between two artificial neurons. The weights would be increased if two
neurons activate simultaneously or synchronously and decreased if they activate
asynchronously. Figure 2.6 shows synapse weight wij from presynaptic neuron j to
postsynaptic neuron i.

Figure 2.6: Artificial neuron model

Equation 2.7 is the formulaic description of hebbian learning rule, where wij is the
weight of connection from neuron j to neuron i.

wij = xixj (2.7)

12

2. Theory

and equation 2.8 is used to update the weight.

∆wij = ηxixj (2.8)

2.2.6 STDP learning rule
STDP is a temporally asymmetric form of Hebbian learning induced by tight tem-
poral correlations between the spikes of pre- and postsynaptic neurons. Sometimes,
STDP can be seen as a spike-based formulation of a Hebbian learning rule.[35].
With STDP, LTP and LTDcan be introduced. A presynaptic spike arrival a few
milliseconds before a postsynaptic spike will increase synaptic strength, which leads
to LTP. In contrast, a presynaptic spike arrival a few milliseconds before a post-
synaptic spike will weaken synaptic strength, which leads to LTD. The change in
synaptic strength depends on the timing difference between the presynaptic and
postsynaptic spikes.

Figure 2.7: STDP schematic diagram[36]

Figure 2.7 shows the change of synaptic strength as a function of the timing differ-
ence between pre- and post-synaptic spikes, this diagram shows 60 spike pairings.
The x-axis is the timing difference between two spikes, and unit is millisecond. It
is noticed that here we use time of spiking on pre-synapse minus time of spiking
on post-synapse, so we can see that negative part of x-axis represent presynaptic
spike activated before postsynaptic spike, which leads to synaptic strength can be
increased. The efficacy or degree of change in synaptic strength is shown on y-axis.

We are still able to describe STDP model as in following formula:

∆wij =
N∑

f=1

N∑
n=1

F (tni − t
(f)
j) (2.9)

13

2. Theory

where ∆wij denotes the weight change of a synapse from a presynaptic neuron j to
postsynaptic neuron i, tfj means the presynaptic spike arrival times and tni means
postsynaptic neuron’s firing times, where f, n = 1, 2, 3,

In the equation 2.9, there is another parameter F , it is a function of ∆t which is
time difference between pre- and post-synaptic spike arrival times as shown in the
x-axis of Figure2.7. F (∆t) denotes the STDP function illustrated before, and this
function can be presented as equation 2.10:

F (∆t) = A+ exp(−x/τ+), if ∆t > 0
F (∆t) = A− exp(−x/τ−), if ∆t < 0

(2.10)

where A+ and A− determine the maximum values of synaptic change, and both of
them are positive, so we will see change achieve maximum modification if ∆t tends
to zero. τ+ and τ− determine the range of pre-to-postsynaptic interspike intervals
when the occurrence of synaptic strength is increased or weakened[37].

2.2.7 deSNN
The eSNN will be introduced firstly before we illustrate deSNN. The eSNN makes
use of principles of ECOS proposed by Kasabov[39], but as an extend of ECOS,
eSNN also uses IF model for spiking neuron and RO learning[40]. Before RO learn-
ing rule was published, Thorpe and Gautrais also discovered that earlier arriving
spikes between synapses contain most important information, that is an fundamen-
tal assumption for the RO learning rule. The RO learning used in SNN has many
advantages, such as fast, one-pass learning(reads input only once) and asynchronous
data processing. RO learning consists of two phases-learning phase and recall phase.

During learning phase, a new output neuron i is created after entering each input
pattern, and the connection weights wji(j = 1, 2, 3, ... represents input vector dimen-
sions) between input vector and neuron i are calculated according to RO learning
rule:

wji = α ·modorder(ji) (2.11)
where α is learning parameter(in a partial case it is equal to 1); mod is a modula-
tion factor which defines the importance of the order of the first spikes; order(j, i)
stands for the rank of the first spike at single synapse j, i among all synapses, by the
way we only care about the first spike from each synapse and order(j, i) = 0 when
neuron i receives the first spike, then order(j, i) = 1, 2, 3, ... as following first spikes
received[39].

After training phase of single input pattern is finished(input spikes from all synapses
are sent to the network), we need set a threshold Thi of neuron i to decide i spike
or not when a new pattern sent in the network again in the recall phase. Formula
2.12 shows the threshold Thi defined as a fraction(C) of total PSP of neuron i, εimax

[39]:
Thi = C · εimax (2.12)

14

2. Theory

where

εimax =
∑

j

modeorder(ji) (2.13)

When all input patterns sent to network, output neurons whose number equals to
the number of input patterns are created, then recall phase is used to help testing
the network. During the recall phase, the PSP of a neuron i at time l, εi(l), is
calculated as[39]:

εi(l) =
∑

t=0,1,2,...,l

∑
j

ej(t) ·modorder(ji) (2.14)

where ej(t) = 1 if neuron i receives a first spike at time t on synapse j. An output
spike(not an output neuron as training phase does) will be generated if εi(l) reaches
the threshold Thi, then the class of this activated neuron i is able to recognize the
new input pattern.

The deSNN is an extend of eSNN because only RO learning used in SNN may not
be very satisfied for the classification task of spatio-temporal data, and the word
"d", a short for "dynamic", stands for a new adaptive learning rule, so-called SDSP,
is utilized together with RO learning rule in SNN to adjust the connection weight of
synapses wji in order to synapses become dynamic[39]. There are many advantages
when we use deSNN, for example, reducing computational cost, utilizing both first
spike and following spikes information.

During the learning phase of deSNN, similar to steps implemented in the eSNN, a
new output neuron i will be created for each training input sample, and its connec-
tion weights wji is calculated initially as wji(0) based on the first spike from each
synapse j according to the RO learning rule, then this synapse will become dynamic
and adjust the weight based on the consecutive spikes at synapse j according to
SDSP learning rule. wji will be increased with a small value if a new spike sent in
synapse j at time t, whereas decreased if no spike appears at time t. The formulaic
representation is[39]:

wji(t+ 1) = wji(t) + ∆wji(t) (2.15)

where

∆wji(t) = ej(t) ·D (2.16)

where ej(t) = 1 if there is a consecutive spike at synapse j at time t, otherwise it
equals to −1; D stands for a draft parameter to adjust the weight how much "go
up" when ej(t) = 1 or "go down" when ej(t) = −1. In SDSP learning rule drift is
bi-stable, which means if a weight is larger than defined High value (resulting in
LTP) or smaller than Low value(resulting LTD), this connection weight is fixed to
this threshold value for the rest of the training phase.[39]

15

2. Theory

As in the eSNN, deSNN also need a threshold Thi of neuron i to determine this out
neuron spike or not, Thi is calculated as formula 2.12 shows, but in this situation
total PSP of neuron i is calculated based on adjusted weights:

εimax =
∑

t=0,1,2,...,T

∑
j

fj(t) · wji(t) (2.17)

where T represents the length of time period of input pattern; fj(t) = 1 if there is
a spike at synapse j at time t, otherwise it equals to 0; wji(t) is the dynamic weight
calculated using formula 2.16.

During the recall phase, PSP of neuron i is calculated as:

εi =
∑

t=0,1,2,...,T

∑
j

fj(t) · wji(t) (2.18)

As decision rule in eSNN, εi of new input pattern is used to compared to Thi to
decide which output neuron will be activated in order to new input pattern is able
to recognized.

Figure 2.8: An example to illustrate principle of deSNN learning rule.[39]

There is a simple example that can help illustrate principle of deSNN learning rule.
As Figure 2.8 shown, there are four neurons transmitted to single output neuron,
RO learning rule is used to recognize only the first spike of a spike train from each
input neuron, then output neuron receives spikes from the first neuron to fourth
one in order. In this case the parameter mod is set to 0.8, thus the initial weights
w1, w2, w3, w4 of four synapses is: 1, 0.8, 0.64, 0.512 according to equation 2.11, then
SDSP learning rule is applied to adjust these weights so that each spike train will
be drifted two times due to there are three spikes in total within spike train for all
neurons, in this case, SDSP’s high and low value is set to 0.6 and 0 correspondingly,
from equation 2.16 drift parameter D is 0.00025 and ej is kept to 1 due to all spikes
are positive in this example, thus finally the first three weights are fixed to 0.6 and
the fourth one is 0.5125 because 0.512 + 0.00025× 2 lies in the range (0, 0.6). After
deSNN learning, we can add all four weights to calculate the total information that
the output neuron receives from all input neurons.

16

2. Theory

2.3 Support Vector Machine
SVM is a popular machine learning algorithm for solving problems in classification,
regression.[41] Suppose in two-class classification task, inputs can be mapped into a
feature space, and each data point is regarded as a vector with dimension p which
is equal to the number of features, then there are many hyperplanes that are able
to separate these data points into two classes, but the concept of SVM is to find
best hyperplane so that the distance from the hyperplane to the nearest data point
of each class is maximized.

In order to describe theory of SVM illustratively, we start from linear model on
two-class classification problem in form of

y(x) = wTφ(x) + b (2.19)

where φ(x) and b denote fixed feature-space transformation and bias.[41] All input
vectors xn : x1, ...,xN has their own labels tn : t1, ..., tN , where tn ∈ {−1, 1}. For
all training data points, there exists many parameter pairs w, b make y(xn) > 0 for
points with tn = +1 and y(xn) < 0 for points with tn = −1 according to 2.20 if
training data set is linearly separable, so that when new data points are input into
this model, we can classify them according to the sign of y(x). However, the SVM
is to find the decision boundary that makes margin is maximized.

Figure 2.9: Definition of margin.

In Figure 2.9, the line y = 0 denotes the decision boundary, and the margin is defined
as the perpendicular distance from decision boundary to the nearest data points.
According to form 2.20 the margin can be described as |y(x)|

‖w‖ , we could introduce
label tn to help eliminate the absolute sign of y(x) due to tny(x) > 0 for all data
points. Thus we get the margin:

tny(xn)
‖w‖

= tn(wTφ(xn) + b)
‖w‖

(2.20)

Then we wish to optimize the parameters w, b in order to maximize the margin, so
we need solve margin maximum problem:

17

2. Theory

arg max
w, b

{
1
‖w‖

min
n

[tn(wTφ(xn) + b)]
}

(2.21)

For all data points, the condition

tn(wTφ(xn) + b) ≥ 1 (2.22)

is satisfied, because the nearest data point satisfies tn(wTφ(xn) + b) = 1, then we
can transform the optimization problem 2.21 into a simple form:

arg max
w, b

1
2‖w‖

2 (2.23)

subject to the constraints 2.22, the factor 1/2 is introduced for later convenience.
In order to solve this optimization problem, Lagrange function is introduced.[41]

Usually, training dataset is not linearly separable so that we need a nonlinear clas-
sifier to accomplish classification task. Kernel trick is proposed to build nonlin-
ear classifier, kernel function which comes from dual function when we solve La-
grange function, is defined by k(x,x′) = φ(x)Tφ(x′), kernel trick is to replace
dot product by different nonlinear kernel functions. Sometimes, we need intro-
duce soft-margin trick if data cannot be separated. In the thesis Gaussian kernel
k(x,x′) = exp(γ

∥∥∥x− x′
∥∥∥2

), γ > 0 is used.

18

2. Theory

2.4 Multilayer Perception
MLP which is a class of feed-forward ANN, consists of three parts - one input layer,
several(≥ 1) hidden layers, one output layer. Figure 2.10 shows a MLP, where each
circle represents a artificial neuron or perception.

Figure 2.10: An example of MLP with one input layer, two hidden layers and one
output layer.[42]

Learning algorithm is to train the parameters weight wij and bias b between every
two layers. Apart from input layer, as shown in Figure 2.11, each neuron xi is
the output of all presynaptic neuron xj (j = 1, ..., d) from previous layer. The
feed-forward propagation rule is:

y(x) = f(wT · x + b) (2.24)
where x, w represent input and weight vector, f(·) denotes the nonlinear activa-
tion function, and b is bias added for setting a threshold to help activation function
always work. There are many different activation functions, we use the sigmiod
function f(x) = 1/(1 + exp(x)) in the thesis. Sometimes bias also can be regarded
as a weight wi0 coming from a input neuron with a constant value 1.

Figure 2.11: An example of output neuron xi with i = 1

19

2. Theory

When we keep following the feed-forward rule in MLP, finally outputs Y′(x) would
be generated in output layer, after that a loss function L is used to calculate the
difference between predicted output and true label Y(x), sometimes we also call it
cost function. As activation function, we still have many options for cost function,
in the thesis we choose cross-entropy loss function:

L = − 1
N

N∑
i=1

M∑
j=1

yijlogpij (2.25)

where N is the number of training samples, M is the number of all classes, yij is
true label for the instance i, and pij is our prediction which is in form of probability
for the instance i in class j. The aim of MLP is to find optimal weights and bias
so that the value of loss function should be as small as possible, during the learning
process we update the weights and bias via backpropagation algorithm.[42]:

w ← w + η∆w
b← b+ η∆b

where η is learning rate. It is noticed that the number of neurons in output layer
depends on how many classes we want to classify in the classification task.

20

3
Experiment

3.1 Data description

3.1.1 Human wrist movement EEG data
The HWM EEG data is distributed with the NeuCube software toolbox[23] and is
free to use. This dataset is collected from human wrist movement behavior with
three different patterns: moving wrist either to the left or to the right, or holding
hand straight.[44] There are 60 samples, within each sample 14 channels are tested
and 128 sampling points from time domain are recorded in each channel.

3.1.2 Muscle Sympathetic Nerve Activity MEG data
In this thesis work, MEG data coming from Sahlgrenska University Hospital is uti-
lized to investigate the correlation between MEG recordings and MSNA response in
brain. Many previous researcher proved that MSNA inhibitor response happened
when starting/arousing stimuli, such as visual flash, auditory beep or electrical stim-
ulation to the finger, is correlated to cardiovascular responses during stress. Usually
MSNA is divided into two classes, inhibitor and non-inhibitor, and higher and sus-
tained blood pressure response in non-inhibitor is more likely to cause cardiovascular
disease[43]. In this experiment protocol, which is shown in Figure 3.1, we apply three
electrical pluses on the finger with every other heartbeat and the pulse train with
three pulses is repeated after 30 to 60 seconds for 72 times. Because Pulse 1 is trig-
gered after 30 to 60 seconds during every trail, pulse 1 might be surprising, whereas
Pulse 3 comes after four heartbeats of Pulse 1 therefore Pulse 3 is expected. A 1.5
seconds response after each pulse is measured by MEG whose sampling frequency
is 1000Hz, thus we record 1500 sampling values during 1.5s interval.

Figure 3.1: MEG study design protocol.

21

3. Experiment

There are 20 subjects measured in the MEG experiment, each subject has their
own MSNA values, which is shown by ascent order in Figure 3.2. Usually 30 is a
threshold to distinct non-inhibitor and inhibitor, thus the first 10 subjects are non-
inhibitors and the last 10 subjects are inhibitors. In practical work, I get the data
with only No.2 and No.20 subjects in the beginning, and get full 20 subjects dataset
later. Therefore, classification task with 2-subject situation is tested initially, after
that 20-subject situation is investigated.

Figure 3.2: MSNA value for 20 subjects in provided order.

In term of dataset we used in the thesis work, MEG signals starting from three
different pluses are separated, and within each pulse signal, we have 306 data points,
102 channels and three sources per channel - one is from magnetometer sensor and
another two comes from gradiometer.

3.1.3 Data extraction and cleaning
When we look into the channel data from MEG dataset, there are many different
channel information missing in different subjects, for example, some subjects have
full 306 channel information, but some of them miss one or several data from mag-
netometer sensor. In order to keep the length of data consistent, we need find the
channels all 20 subjects contain, thus, there are only 84 channels left for experiments.
Furthermore, only information from magnetometer is used in the experiments, so
data from only 87 magnetometer sensors is extracted for pattern recognition task.

22

3. Experiment

3.2 Data preprocessing

3.2.1 Input encoding
In NeuCube SNN architecture, the raw data is encoded into spike trains initially.
Encoding approach is a built-in module embedded in NeuCube toolbox, but the per-
formance of SVM and MLP on the data with input encoding approach is evaluated
in later experiments, so we have to write input encoding approach function manually
for traditional machine learning methods. There are four input encoding approaches
embedded in NeuCube framework, and TR method has the best performance ac-
cording to Figure 4.1, thus only AER method is chosen to test the performance of
input encoding on traditional machine learning methods. The AER operation can
be represented as mathematical formula[30]:

d

dt
logI = dI/dt

I
(3.1)

where I is the intensity of signal. Then adding a threshold setting, AER input
encoding approach is available for traditional machine learning methods.

3.2.2 Normalization
The AER input encoding approach is "self-normalized"[30]. For traditional machine
learning methods, however, it is hardly to find a useful classifier on the data with
quite large or small amplitude, thus centering or normalization is an essential oper-
ation before training. In this thesis, formula:

xnew = xold −mean(x)
std(x) (3.2)

where x is all data from each channel, is used to normalize the data per channel in
both two applications.

3.2.3 Averaging
Compared to time consuming of EEG task, NeuCube has to spend tremendous
time training the SNN cube. In EEG task, about 20 seconds is cost to train the
network for each run. As to MEG task, however, it has more information in the
training set due to longer time sequence, more channels and training samples, in
only 2-subject situation experiments approximately MEG task with original data has
324(1500

128 ×
101
14 ×

144×0.8
60×0.5) times information compared to EEG task, which makes MEG

task costs at least 30 minutes during training for each run. Thus, time sequence
averaging and sample averaging are proposed to help NeuCube be more efficient in
MEG task. In addition, averaging is able to reduce the influence of noise, and help
SVM and MLP to spend less time training classifiers significantly as well.

23

3. Experiment

Time sequence averaging

In both EEG and MEG data, each channel records brain information in form of
a time sequence. Sometimes a time sequence has thousands sampling data points,
a mean sliding window is used to help reducing the time sequence. We need set
the averaging number of sliding window initially, then move sliding window forward
half averaging number for each time until the sliding window reaches the end of
time sequence. For example, averaging number 10 is chosen in Figure 3.3, the first
data point in new sequence is the mean of first 10 data points from original time
sequence, and the second data point is the mean of No.6 to No.15 data points
original old time sequence, and so on. We assume original time sequence contains
N sampling data points, and averaging number is n, then we will achieve a new
time sequence with {2× around(N

n
)− 1} data points. The time sequence averaging

should be implemented before input encoding. In the thesis work, {n = 20, 50, 100}
are evaluated on MSNA application with 2-subject situation.

Figure 3.3: Time sequence averaging protocol

Sample averaging

As described in Section 3.1.2, each subject from MSNA application contains 72
trails/samples. Because these 72 samples come from same experiments repeatedly,
we can take mean of some samples as single sample in order to reduce the the size
of training set. We assume the averaging number is m, then only 72

m
samples left in

each subject. We only use sample averaging approach in 20-subject situation, and
the averaging number 12 is chosen, thus in new dataset we have 6 samples in each
subject and 120(6× 20) samples in total.

3.2.4 Training set ratio
Training set ratio determines that how many samples from whole dataset would be
trained for classification model. However, in the thesis, we need manually set differ-
ent ratios for different tasks. In term of EEG wrist movement task, 0.5 ratio is set
because we only have 60 samples in total, and the number of test samples shall not
less than 30 samples. Whereas 0.8 ratio is set for MEG classification task because
we have abundant samples.

24

3. Experiment

3.2.5 Alignment
The data we are using in the thesis is spatio-temporal, NeuCube SNN architecture is
able to capture channels’ location information, but it is a big challenge for traditional
machine learning methods. Thus we need implement extra preprocessing before
using SVM and MLP classifier, here we determine to align or flat the data matrix
into a vector for every single sample, the order of channel follows the default setting
of dataset.

3.3 Implementation of NeuCube
In this part, wrist movement EEG dataset will be used to illustrate the processing
routine of NeuCube. First of all, Figure 3.4 shows the user interface of NeuCube,
here classification on EEG task is chosen. After loading dataset, information panel
shows the information of the loaded data, shown as Figure 3.5.

Figure 3.4: NeuCube user interface

Figure 3.5: Information for loading data

25

3. Experiment

Figure 3.6 is encoding panel, there are four available encoding methods as discussed
before here, for expected TR method, we set the parameter "Spike Threshold" as
0.5. In terms of other settings, "Training Set Ratio" is 0.5, and full training and
validation time length are chosen. After finishing the setting of encoding approach,
original and encoded signal are displayed as Figure 3.7 shown where signal from
only one feature/channel of one sample can be displayed once.

Figure 3.6: Encoding panel

Figure 3.7: Spike encoding display

26

3. Experiment

Before training SNN cube, we need initialize the Cube firstly. In the Initialization
Panel shown as Figure 3.8, we need set the neuron coordinates and mapping location
of features/channels if they are provided in the dataset. In experiments, We are
able to choose brain coordinates and mapping location of features/channels based
on Talairach template coordinates in the EEG task, but for MEG task, automatic
neuron coordinate and graph matching[14] mapping location method are chosen. In
addition only LIF neuron model is available, and in this case we choose 2.5 "Small
World Radius" which is an important parameter influencing the performance. When
initialization is finished, the cube including all neurons with initialized weights are
generated, Figure 3.9 shows the neurons and mapped features in the cube.

Figure 3.8: SNN cube initialization and mapping panel

Figure 3.9: SNN cube after initialization

27

3. Experiment

Then unsupervised and supervised learning will be applied. Figure 3.10 and 3.11
show the SNN cube training panel and deSNN classifier training panel respectively.
There are many crucial parameters determining the performance of classifier, we
need use grid search approach to find optimal ones. The optimal setting is described
in the Result chapter.

Figure 3.10: Training SNN cube panel

Figure 3.11: Classifier training panel

In NeuCube, we are also able to figure the status of weights before and after both
SNN cube and classifier training phase. We take the EEG example to figure out
weights how to update, it is stated that there are 1471 neurons existed in the cube,
we only plot the weights connected each other from the first five neurons. In term
of SNN cube, matrix 3.3 shows the initialized weights, and matrix 3.4 shows weights
after training in the cube according to STDP learning rule. As to weights between
cube and classifier layer, in this case, we set training set ratio as 0.5 which means
we have 30 output neurons both in training and prediction phase, matrix 3.5 and
matrix 3.6 shows weights between cube and deSNN classifier generated in training
and prediction phase respectively, the statement is that the whole matrix has 30
lines and 1471 columns which means 30 output neurons in classifier layer and 1471
neurons in SNN cube.

28

3. Experiment



0 0.030661 0.033644 0 0.1046 ...
0 0 0.052697 0 0.021 ...
0 0.024634 0 0 0 ...
0 0 0 0 0 ...
0 0 0 0 0 ...
...


(3.3)



0 0.067032 0.062942 0 0.19335 ...
0 0 0.081641 0 0.09338 ...
0 0 0 0.000585 0 ...
0 0.024634 0 0 0 ...
0 0 0 0 0 ...
...


(3.4)



−25.186 −26.25 −22.5 −32 −27 ...
−23.186 −26.25 −25.75 −32 −27.25 ...
−18.75 −21.75 −19.5 −32 −22.5 ...
−19.5 −20.75 −18.75 −32 −23.25 ...
−21.474 −22.5 −22.25 −32 −23.25 ...

...


(3.5)



−19.75 −16.25 −15.75 −32 −18.75 ...
−22 −16.5 −16 −32 −16 ...
−25.25 −21.75 −20.75 −32 −26.25 ...
−22.498 −19.25 −19 −32 −23.75 ...
−23.59 −23.25 −23.5 −32 −27.25 ...
...


(3.6)

29

3. Experiment

Finally, results are plotted as Figure 3.12 shown where both true and prediction
label are displayed and visualized.

Figure 3.12: Result panel

3.4 Implementation of SVM and MLP in Python
In the experiments, the Python implementation of SVM and MLP was used via
scikit-learn library[45]. In term of SVM, we use svm.SVC() to call the SVM clas-
sification function, the only parameter we need tune is the kernel function, here
kernel=’rbf’ is set to use radial basis function kernel. As to MLP function, only
one hidden layer with 50 neurons and 0.01 learning rate are chosen, other parameters
are kept as default setting.

30

3. Experiment

3.5 Learning process

Figure 3.13: Flow chart of learning process

The learning process of the thesis is shown as the flow chart Figure 3.13. Initially we
need select the optimal spike encoding method for our data to convert continuous
signal into spike trains in order to later fair comparison between NeuCube and
traditional machine learning methods. Then we use gird search method to figure
out optimal parameters existed in each training model. Averaging procedure is
optional for the task, as illustrated in section 3.2.3, the aim of averaging is to reduce
computational cost, rather than an necessary step. The next step is to train our

31

3. Experiment

model, in order to investigate the stability of model, 10 runs for each model is chosen
during the training process, after which mean and standard deviation are recorded
for showing performance of model. Finally, cross validation is used to reduce the
effect of bias within dataset.

3.5.1 Cross Validation
In the thesis, we use k-fold cross validation to validate the performance of classifier.
K-fold means that we separate the whole dataset as k parts, then pick up one of
them once as testing set, and training classifier using the data from rest (k − 1)
parts, after that we need loop k times, mean and standard deviation of accuracy
from k times will be recorded. Usually, larger k is able to bring better performance.
In the thesis, we do not have abundant samples, more folds cross validation can
bring worse performance, so that 2-fold and 5-fold cross validation are used for both
EEG and MEG classification applications.

3.5.2 Statement
It is noted that in the Results chapter, accuracy which is generated from 10 runs,
is shown as the form of µ ± σ. By the way, for the no cross validation situation,
µ and σ come from 10 accuracy, whereas for cross validation situation, each run
generate one µ and one σ, where µ is the mean of 10 means, and σ is the mean of
10 standard deviations.

32

4
Results

In this part, results will be shown. In section 4.1, where results about EEG classi-
fication task are shown, whereas in section 4.2, MEG classification with 2 subjects
will be shown firstly, then 20 subjects situation will be investigated.

4.1 Results for EEG data
Before we investigate the performance of NeuCube on EEG data, many parameters
and setting of NeuCube should be set firstly. After grid search, optimal parameters
and settings are found as shown in Table 4.1:

Data encoding method Thresholding Representation(TR)
Neuron Coordinate in NeuCube Brain Coordinates

Data mapping location 14-channels EEG locations
Spike threshold 0.5

Small World Radius 2.5
Potential Leak Rate 0.002

STDP rate 0.01
Firing Threshold 0.5
Refractory Time 6
LDC probability 0

Mod 0.4
Drift 0.25
Sigma 1
K 3

Table 4.1: Optimal parameters of NeuCube for EEG task.

Then we can test the performance of NeuCube classifier on public EEG data, the
result is shown as Table 4.2

Classifier no CV 2-fold CV 5-fold CV
NeuCube 87% ± 5% 76% ± 4.5% 58% ± 5.5%

Table 4.2: Accuracy(µ ± σ) of NeuCube on EEG data with different numbers of
fold CV.

It is satisfied that accuracy achieves around 87%, but the performance becomes
worse when we implement cross validation, and there is a strange thing that per-

33

4. Results

formance under 5-fold cross validation is worse than the performance under 2-fold
cross validation. In my opinion, it is caused by insufficient samples in the dataset(60
samples in total), 5-fold means only 12 samples in the test set, thus few mis-classified
samples may bias the performance significantly.

TR input encoding method is chosen in the before test, now all four available input
encoding methods will be tested, meanwhile keep all other parameters and settings
unchanged. According to Figure 4.1, TR achieves the highest accuracy, thus TR is
chosen for the rest of tests.

Figure 4.1: Accuracy box plot for different input encoding methods.

Then two traditional machine learning methods are used to test their performance
on this three-class EEG public data. In order to make comparison fairly, EEG data
is converted into spike trains firstly before using machine learning methods. Figure
4.2 shows the result that both methods perform very poorly with and without cross
validation. Then we want to input the raw EEG data without input encoding into
these two machine learning classifiers, the result is shown in Figure 4.3, we can see
that accuracy is still lower than 50% for both classifiers with and without cross
validation, which means these two classifiers fail.

34

4. Results

Figure 4.2: Accuracy with spike encoding via SVM and MLP methods.

Figure 4.3: Accuracy without spike encoding via SVM and MLP methods.

In term of three-class public EEG data, three different methods are used to test and
make comparison. It is obvious that NeuCube performs better than the other two

35

4. Results

traditional machine learning methods. SVM and MLP can be seen as very efficient
in machine learning field, but it does fail in this spatio-temporal EEG signals, but
in my opinion, the reasons leading to this failure is that firstly, we may not have
enough samples during the training procedure(only 30 samples in the training set
due to training set ratio equals to 0.5), secondly this EEG data is generated by
wrist movement where it is always difficult to distinct different classes/patterns in
machine learning field. However, in other word, NeuCube is efficient to process
and recognize spatio-temporal signals, it does not need transfer time sequence and
channels matrix of each sample into a vector that is processed by classifier indeed.
NeuCube not only uses the spatio-temporal signals naturally, but also intuitively
mimic the processing procedure of human brain.)

4.2 Results for MEG data

4.2.1 2-subject situation
As in the EEG task, grid search is also used to figure out optimal parameters and
settings in MEG task. From Table 4.3, we can see that, compared to Table 4.1,
three parameters-small world radius, Mod, Drift are different, and we use automat-
ically neuron coordinate and graph matching method for data mapping location. It
is noticed that parameters used in the SNNcube training do not affect the result
too much, whereas these three changed parameters determine the performance of
classifier mainly.

Data encoding method Thresholding Representation(TR)
Neuron Coordinate in NeuCube Automatically

Data mapping location Graph Matching
Spike threshold 0.5

Small World Radius 2
Potential Leak Rate 0.002

STDP rate 0.01
Firing Threshold 0.5
Refractory Time 6
LDC probability 0

Mod 0.35
Drift 0.1
Sigma 1
K 3

Table 4.3: Optimal parameters of NeuCube for MEG task.

As description in section 3.1.2, we have P1 and P3 both for MEG task. According
to Bushra[43], there is no significant difference between P1 and P3 in the selected
region of interests. As to this thesis work, P1 and P3 are tested at the same time
initially by NeuCube even if P3 is the expected one. Without cross validation,
training set ratio=0.8 bring quite satisfied performance to both two pulse signals,

36

4. Results

which is shown in Table 4.4. Thus, it is "safe" for us to use P3 only for the following
test, and with 2-fold and 5-fold cross validation, we get the result shown in Table
4.5.

Classifier P1 P3
NeuCube 96% ± 2% 95% ± 1%

Table 4.4: Accuracy(µ± σ) of NeuCube on MEG P1 and P3 data.

Classifier no CV 2-fold CV 5-fold CV
NeuCube 95% ± 1% 97% ± 1% 96% ± 2%

Table 4.5: Accuracy(µ± σ) of NeuCube on MEG P3 data with different numbers
of fold CV.

According to Table 4.5, NeuCube still achieve good performance on binary MEG
classification task under different numbers of fold cross validation, then performance
of SVM and MLP classifier will be investigated following. As in the procedure of
EEG task, the situation with input encoding is tested firstly. For both classifiers,
accuracy does not reach 70% with and without cross validation, as shown in Figure
4.4. So far NeuCube performs still better than another two methods, however,
accuracy of SVM and MLP classifiers is increased significantly when we only use raw
data without spike encoding. From Figure 4.5, we can see that accuracy of SVM
is higher than MLP situation among all three cross validation situation. Compared
to accuracy achieved by NeuCube, only SVM is able to achieve the accuracy that is
higher than 95%. In a short, we are able to achieve good performance using three
methods under 2-subject situation, in my opinion one reason is that the MSNA
values for these two subjects are quite different, the inhibitor one’s MSNA value
is 83.51 and the non-inhibitor one is -23.35, thus we can always find a classifier to
separate two classes well. By the way, we can also see that without input encoding,
the performance of SVM and MLP is much better than the situation with input
encoding, I think the reason is that input encoding method reduces the information
of raw data significantly, a spike train with only one and zero is not sufficient for
traditional machine learning methods to recognize.

37

4. Results

Figure 4.4: Accuracy on P3 data with spike encoding by different numbers of fold
cross validation.

Figure 4.5: Accuracy on P3 data without spike encoding by different numbers of
fold cross validation.

38

4. Results

Next, averaging method will be investigated, but only time sequence averaging is
utilized in 2-subject situation. Due to the issue of time consuming, we use SVM and
MLP initially to test how many numbers of time sequence averaging used is satisfied.
It is noticed that we use input encoding here because our aim is to investigate the
influence of time sequence averaging on SNN. According to Figure 4.6, with 20-, 50-
, 100-time sequence averaging, the accuracy is increasing for both SVM and MLP
classifier, under 100-time sequence averaging, both SVM and MLP even achieve the
similar accuracy compared to NeuCube’s performance on raw data. Because 20-
time sequence averaging cannot improve result significantly, only 50- and 100-time
sequence averaging is used to test NeuCube classifier. From 4.6, we can see that
time sequence averaging cannot keep the satisfied performance, only around 75%
accuracy is achieved.

Figure 4.6: Accuracy on P3 data with spike encoding by different numbers of time
sequence averaging.

Classifier 50 100
NeuCube 77.3% ± 5.5% 71.3% ± 3.8%

Table 4.6: Accuracy(µ±σ) of NeuCube with 50- and 100-time sequence averaging.

NeuCube still has very satisfied performance on 2-subject MEG binary classification
task. For the other two traditional machine learning methods, however, with and
without input encoding bring different results. SVM and MLP both perform excel-
lent on raw MEG data with normalization only, but with input encoding, they per-
form worse. However, it is surprising that under input encoding situation, increasing

39

4. Results

numbers of time sequence averaging can improve the performance significantly. In
my opinion, input encoding procedure might lead to some noise or anomaly informa-
tion which can be fixed by time sequence averaging approach, meanwhile NeuCube
is able to fix this issue directly. If we use time sequence averaging approach in
NeuCube, however, accuracy is decreased by around 20% with both 50- and 100-
time sequence averaging even if NeuCube does spend much less time on training.
It is strange that time sequence would improve performance for traditional machine
learning methods, but impair for NeuCube, I think the reason is that NeuCube mim-
ics human brain processing, whole time sequence contains important information,
time sequence averaging might lost some information located between every spikes,
but for SVM and MLP, time sequence averaging can be seen as just a preprocessing
procedure that is not able to impair the performance.

4.2.2 20-subject situation
Under 20-subject situation, our task is still to train the binary classifier. Within 20
subjects, half subjects with higher than 30 MSNA value are belong to non-inhibitor
class, and another half subjects are inhibitor. In this experiment, sample averaging
approach is used to reduce the computational cost. Within each subject, 12 sam-
ples averaging is used, which means there are only 6(72/12=6) samples left in each
subject, and 120(6×20subjects=120) samples left in whole dataset.

NeuCube SVM MLP
Accuracy 86.5% ± 3.5% 72% ± 6% 74% ± 7%

Table 4.7: Accuracy(µ± σ) of three methods with input encoding

SVM MLP
Accuracy 90% ± 4% 84% ± 7%

Table 4.8: Accuracy(µ± σ) of SVM and MLP methods without input encoding

The results are shown in Table 4.7, we can see that NeuCube achieves around
87% accuracy which is quite satisfied because we only have around 100 samples for
training and we have 20 subjects now. Due to NeuCube uses the data with input
encoding, we will compare the performance of SVM and MLP with input encoding to
NeuCube, and the result is that the accuracy both SVM and MLP achieve is about
10% lower than NeuCube’s accuracy. If we do not use input encoding approach
when training SVM and MLP classifier, the accuracy is increased. We can see from
Table 4.8 that SVM achieves around 90% accuracy which is even slightly higher
than NeuCube’s performance, and MLP achieves around 84% accuracy. And as
discussed in Section 4.2.1, for traditional machine learning methods, input encoding
preprocessing would not help a lot. In addition, compared to the performance under
2-subject situation, all three methods perform worse, I think the reason is that the
subjects we used in before situation have significant difference on MSNA values,

40

4. Results

but in 20-subject situation, every subject has unique MSNA values, which means
few difference on MSNA values may be existed among samples from two classes,
for example, as MSNA value plot shown in Figure 3.2, the MSNA values of No.5
to No.10 subjects are closed to No.11 subject, but they are belong to two classes.
Furthermore, because we always randomly select training set from all samples which
mix all subjects, higher accuracy variance happened in 20-subject situation.

41

4. Results

42

5
Conclusion

The thesis work investigates the performance of NeuCube on EEG/MEG data with
two practical biomedical applications, and two traditional machine learning methods
are used to make comparison to NeuCube. According to Chapter 4, we can see that
the performance of NeuCube on both applications are quite satisfied, showing that
NeuCube can be potentially attractive for neurological signals with brain related
applications, and NeuCube has capacity to catch up both spatial and temporal in-
formation of signals.

In terms of two traditional machine learning methods used in the thesis, SVM and
MLP success to classify the application with MEG signal, but achieve poor per-
formance on the application with EEG signal. However, we cannot conclude that
traditional machine learning method is good or worse at pattern recognition on
physiological signals, because only two traditional methods are chosen in the thesis,
meanwhile few preprocessing operation is utilized before we implement SVM and
MLP methods.

In the future, there are many works can be continued. Firstly, as to task with
MEG signal, we use graph matching method for mapping input neurons inside SNN
cube, but if we know the coordinates of measured channels according to Talairach
template, this prior information may help us achieve much better performance.
Secondly, we could search many other preprocessing approaches on EEG/MEG data
if we use traditional machine learning methods. Thirdly, deep learning methods such
as convolution neural network, recurrent neural network, etc. can be utilized to make
comparison to NeuCube framework. Fourthly, we can use NeuCube framework to
test other biomedical applications to investigate whether or not NeuCube is suitable
for other spatio-temporal signal classification task.

43

5. Conclusion

44

Bibliography

[1] Simpraga, S., Alvarez-Jimenez, R., Mansvelder, H. D., Gerven, J. M., Groen-
eveld, G. J., Poil, S. S., & Linkenkaer-Hansen, K. (2017). EEG machine
learning for accurate detection of cholinergic intervention and Alzheimer’s
disease. Scientific Reports, 7(1), 5775.

[2] Hasasneh, A., Kampel, N., Sripad, P., Shah, N. J., & Dammers, J. (2018).
Deep Learning Approach for Automatic Classification of Ocular and Cardiac
Artifacts in MEG Data. Journal of Engineering, 2018.

[3] Johannesen, J. K., Bi, J., Jiang, R., Kenney, J. G., & Chen, C. M. A.
(2016). Machine learning identification of EEG features predicting working
memory performance in schizophrenia and healthy adults. Neuropsychiatric
Electrophysiology, 2(1), 3.

[4] Stober, S., Sternin, A., Owen, A. M., & Grahn, J. A. (2015). Deep feature
learning for EEG recordings. arXiv preprint arXiv:1511.04306.

[5] Timio M, Lippi G, Venanzi S, et al. (1997). Blood pressure trend and cardio-
vascular events in nuns in a secluded order: a 30-year follow-up study. Blood
Pressure, 6(2), 81-87.

[6] Capecci, E., Morabito, F. C., Campolo, M., Mammone, N., Labate, D., &
Kasabov, N. (2015). A feasibility study of using the neucube spiking neural
network architecture for modelling Alzheimer’s disease eeg data. In Advances
in neural networks: Computational and Theoretical Issues (pp. 159-172).
Springer, Cham.

[7] Kasabov, N., & Capecci, E. (2015). Spiking neural network methodology
for modelling, classification and understanding of EEG spatio-temporal data
measuring cognitive processes. Information Sciences, 294, 565-575.

[8] Capecci E, Espinosa-Ramos J I, Mammone N, et al. (2015). Modelling absence
epilepsy seizure data in the neucube evolving spiking neural network architec-
ture. In 2015 International Joint Conference on Neural Networks (IJCNN) (pp.
1-8). IEEE.

45

Bibliography

[9] Kasabov, N. K., Doborjeh, M. G., & Doborjeh, Z. G. (2017). Mapping,
learning, visualization, classification, and understanding of fMRI data in the
NeuCube evolving spatiotemporal data machine of spiking neural networks.
IEEE Transactions on Neural Networks and Learning Systems, 28(4), 887-899.

[10] Murli, N., Kasabov, N., & Handaga, B. (2014). Classification of fMRI data
in the NeuCube evolving spiking neural network architecture. In International
Conference on Neural Information Processing (pp. 421-428). Springer, Cham.

[11] Doborjeh, M. G., Capecci, E., & Kasabov, N. (2014). Classification and
segmentation of fMRI spatio-temporal brain data with a NeuCube evolving
spiking neural network model. In 2014 IEEE Symposium on Evolving and
Autonomous Learning Systems (EALS) (pp. 73-80). IEEE.

[12] Kasabov N, Feigin V, Hou Z G, et al. (2014). Evolving spiking neural networks
for personalised modelling, classification and prediction of spatio-temporal
patterns with a case study on stroke. Neurocomputing, 134, 269-279.

[13] Peng, L., Hou, Z. G., Kasabov, N., Bian, G. B., Vladareanu, L., & Yu, H.
(2015). Feasibility of Neucube spiking neural network architecture for EMG
pattern recognition. In 2015 International Conference on Advanced Mechatronic
Systems (ICAMechS) (pp. 365-369). IEEE.

[14] Tu, E., Kasabov, N., & Yang, J. (2017). Mapping temporal variables into the
neucube for improved pattern recognition, predictive modeling, and under-
standing of stream data. IEEE Transactions on Neural Networks and Learning
Systems, 28(6), 1305-1317.

[15] Electroencephalography,
https://en.wikipedia.org/wiki/Electroencephalography

[16] Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V.
(1993). Magnetoencephalography—theory, instrumentation, and applications to
noninvasive studies of the working human brain. Reviews of Modern Physics,
65(2), 413.

[17] Sarvas, J. (1987). Basic mathematical and electromagnetic concepts of the
biomagnetic inverse problem. Physics in Medicine & Biology, 32(1), 11.

[18] Malmivuo, P., Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: prin-
ciples and applications of bioelectric and biomagnetic fields. Oxford University
Press, USA.

[19] Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: Single neurons,
populations, plasticity. Cambridge University Press.

46

Bibliography

[20] Schmidt, Robert F.; Thews, Gerhard. (1983). Human physiology. Springer-
Verlag. p. 725. ISBN 978-3540116691.

[21] Kasabov, N. K., Doborjeh, M. G., & Doborjeh, Z. G. (2017). Mapping,
learning, visualization, classification, and understanding of fMRI data in the
NeuCube evolving spatiotemporal data machine of spiking neural networks.
IEEE Transactions on Neural Networks and Learning Systems, 28(4), 887-899.

[22] Kasabov, N. K. (2014). NeuCube: A spiking neural network architecture for
mapping, learning and understanding of spatio-temporal brain data. Neural
Networks, 52, 62-76.

[23] NeuCube
https://kedri.aut.ac.nz/R-and-D-Systems/neucube

[24] Kasabov, N. (2010). To spike or not to spike: A probabilistic spiking neuron
model. Neural Networks, 23(1), 16-19.

[25] Hebb, D. O. (2005). The organization of behavior: A neuropsychological theory.
Psychology Press.

[26] Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9),
919.

[27] Kasabov, N., Dhoble, K., Nuntalid, N., & Indiveri, G. (2013). Dynamic
evolving spiking neural networks for on-line spatio-and spectro-temporal pattern
recognition. Neural Networks, 41, 188-201.

[28] Kasabov, N. K. (2007). Evolving connectionist systems: the knowledge engi-
neering approach. Springer Science & Business Media.

[29] Schrauwen, B., & Van Campenhout, J. (2003). BSA, a fast and accurate spike
train encoding scheme. In Proceedings of the International Joint Conference
on Neural Networks, 2003. (Vol. 4, pp. 2825-2830). IEEE.

[30] Lichtsteiner, P., & Delbruck, T. (2005). A 64×64 AER logarithmic temporal
derivative silicon retina. Research in Microelectronics and Electronics, 2,
202–205.

[31] Nuntalid, N., Dhoble, K., & Kasabov, N. (2011). EEG classification with BSA
spike encoding algorithm and evolving probabilistic spiking neural network. In
LNCS: vol. 7062 (pp. 451–460). Springer.

[32] Delbruck, T., & Lichtsteiner, P. (2007). Fast sensory motor control based
on event-based hybrid neuromorphic-procedural system. IEEE International

47

Bibliography

Symposium on Circuits and Systems (pp. 845-848). IEEE.

[33] Kasabov N, Scott N M, Tu E, et al. (2016). Evolving spatio-temporal data
machines based on the NeuCube neuromorphic framework: design methodology
and selected applications. Neural Networks, 78, 1-14.

[34] Lowel, S., & Singer, W. (1992). Selection of intrinsic horizontal connections in
the visual cortex by correlated neuronal activity. Science, 255(5041), 209-212.

[35] Jesper S and Wulfram G. (2010) Spike-timing dependent plasticity. Scholarpe-
dia, 5(2):1362.

[36] Bi, G. Q. and Poo, M. M. (1998). Synaptic modifications in cultured Hippocam-
pal neurons: dependence on spike timing, synaptic strength, and postsynaptic
cell type. J Neurosci, 18:10464-72.

[37] Song, S., Miller, K.D., and Abbott, L.F. (2000). Competitive Hebbian learn-
ing through spike-timing-dependent synaptic plasticity. Nat Neurosci 3, 919-926.

[38] Ponulak, F., & Kasinski, A. (2011). Introduction to spiking neural networks:
Information processing, learning and applications. Acta Neurobiologiae Exper-
imentalis, 71(4), 409-433.

[39] Kasabov, N., Dhoble, K., Nuntalid, N., & Indiveri, G. (2013). Dynamic
evolving spiking neural networks for on-line spatio-and spectro-temporal pattern
recognition. Neural Networks, 41, 188-201.

[40] Thorpe, S., & Gautrais, J. (1998). Rank order coding. In Computational
neuroscience (pp. 113-118). Springer, Boston, MA.

[41] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

[42] MA Nielsen. (2015). Neural Networks and Deep Learning. Determination Press.

[43] Syeda, B. R. (2018). Bringing MEG Towards Clinical Applications. Diss.
Göteborgs Universitet, 2018.

[44] NeuCube v1.3 User Manual. (2016). Auckland University of Technology.

[45] Scikit-learn.
https://scikit-learn.org/stable/index.html

48

	List of Figures
	List of Tables
	Introduction
	Purpose and goal
	Solution
	Limitation
	Related work

	Theory
	What is EEG and MEG?
	What is EEG?
	What is MEG?
	Summary about EEG and MEG

	NeuCube
	Overview
	Brain-inspired SNN
	Spiking neuronal model
	Input encoding
	Hebbian learning rule
	STDP learning rule
	deSNN

	Support Vector Machine
	Multilayer Perception

	Experiment
	Data description
	Human wrist movement EEG data
	Muscle Sympathetic Nerve Activity MEG data
	Data extraction and cleaning

	Data preprocessing
	Input encoding
	Normalization
	Averaging
	Training set ratio
	Alignment

	Implementation of NeuCube
	Implementation of SVM and MLP in Python
	Learning process
	Cross Validation
	Statement

	Results
	Results for EEG data
	Results for MEG data
	2-subject situation
	20-subject situation

	Conclusion
	Bibliography

