
Virtual vehicle modeling architecture with
centralized control
Mario Majdandzic
Pooja Sousthanamath

Department of signals and systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis 2018:NN

Virtual vehicle modeling architecture with
centralized control

Mario Majdandzic
Pooja Sousthanamath

Department of Signals and Systems
Chalmers University of Technology

Gothenburg, Sweden 2018

Virtual vehicle modeling architecture with centralized control

MARIO MAJDANDZIC,POOJA SOUSTHANAMATH

© MARIO MAJDANDZIC,POOJA SOUSTHANAMATH , 2018.

Supervisor: Anne Piegsa, Semcon
Examiner: Kristofer Bengtson, Signals and Systems

Master’s Thesis 2018:NN
Department of Signals and Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2018

iii

Virtual vehicle modeling architecture with centralized control

MARIO MAJDANDZIC, POOJA SOUSTHANAMATH
Department of Signals and Systems
Chalmers University of Technology

Abstract
As autonomous driving technology matures toward series production, the amount
of electronics in vehicles is growing quickly making the engineering of software in-
tensive components more complex and difficult. It is necessary to take a deeper
look at various aspects of vehicle modeling architectures for autonomous driving.
This paper describes a functional reference vehicle modeling architecture(VMA),
along with various considerations that influence such an architecture. With an aim
to evaluate the current state-of-the-art architectures and the new revised functional
VMA based on quality attributes (such as reusability, scalability and modularity) to
reduce complexity. The functionality is described at the logical level, without depen-
dence on specific implementation technologies. The description of functional VMA
includes it’s main components and the rationale for how these components should be
distributed across the architecture and its layers. A comparison with similar archi-
tectures is also provided, in order to highlight the similarities and differences. The
comparisons show that in the context of automated driving, the explicit separation
of concerns, decoupling of hardware and software components and vehicle platform
abstraction are unique to the proposed centralized control architecture These com-
ponents are not unusual in architectures within the Artificial Intelligence/robotics
domains; the proposed architecture shows how they can be applied within the auto-
motive domain. The outcome of the concepts presented in the revised architecture
is expected to trigger further research initiatives in this challenging area.

Keywords: VMA, centralized control, quality attributes.

iv

Contents

1 Introduction 2
1.1 Ethical and social aspects of modeling and simulation 3
1.2 Background - Role of architectures in Open Innovation Lab 4
1.3 Aim . 5
1.4 Limitations . 5
1.5 Problem definition . 5
1.6 Research questions . 6
1.7 Outline of the report . 6

2 Methodology 7
2.1 Introduction to Modeling and Simulation 7

2.1.1 Modeling architecture . 8
2.1.2 Quality Attributes : Reusability, Modularity and Scalability . 8
2.1.3 Complexity . 13

2.1.3.1 Abstraction . 13
2.1.3.2 Standardization . 15

2.1.4 Vehicle modeling architecture VMA 16
2.1.5 Functional decomposition in modeling architecture 17
2.1.6 Evolution in Vehicle modeling architecture 18

2.2 Modeling aspects that aid in Reusability, modularity and scalability
to reduce complexity . 18
2.2.1 Physical modeling . 18

2.2.1.1 Plant models illustration 20
2.2.2 Backward and forward modeling 21
2.2.3 Top-down and bottom-up approaches 22

3 Analysis 24
3.1 Analogy between different state-of-the-art vehicle model architectures 24

3.1.1 Ford motor company simulink based VMA 24
3.1.2 JMAAB hierarchical VMA . 26
3.1.3 Modelica VMA based on acausal approach 27
3.1.4 Analogy of the above mentioned VMAs 28

3.2 Dependencies due to current structuring in VMA 30
3.2.1 Hardware-Software dependency 30
3.2.2 Supplier dependency with OEM 30

3.3 Motivation for change in current architecture 31

vi

Contents

3.4 Approaches to apply other automotive architecture domains to VMAs 33
3.4.1 Current discussion in industry to move towards revised archi-

tecture . 34
3.4.2 Changes in relation to quality attributes: Reuse, modularity

and scalability to reduce complexity 35
3.5 Abstraction layers . 36

4 Results 38
4.1 Revised Centralized control Vehicle Modeling Architecture 38

4.1.1 Driver . 39
4.1.2 Environment . 40
4.1.3 Vehicle . 42

4.1.3.1 Sensors . 42
4.1.3.2 Actuators . 44
4.1.3.3 Sensor and Actuator Abstraction layer 44
4.1.3.4 Centralized control 45
4.1.3.5 Functionality distribution and Control hierarchy in

centralized control 46
4.1.3.6 Signal flow . 47
4.1.3.7 Signal flow illustration with ACC functionality . . . 49
4.1.3.8 Separation of concerns 51
4.1.3.9 What is different about this architecture 51

4.2 Evaluation and comparison of centralized control architecture 52
4.2.1 Evaluation of centralized control architecture based on quality

attributes . 52
4.2.1.1 Reusability . 52
4.2.1.2 Modularity . 52
4.2.1.3 Scalability . 53
4.2.1.4 Complexity . 53

4.2.2 Compare with traditional architectures 53
4.2.2.1 Comparison to Ford motor’s VMA 53
4.2.2.2 Comparison to European HAVEit architecture 54
4.2.2.3 Comparison to Open interface reference architecture 54

5 Conclusion and future work 56
5.1 Conclusion . 56
5.2 Discussion . 56
5.3 Future scope . 57

1

1
Introduction

The accelerated rise of new technologies, sustainability policies, and changing con-
sumer preferences in the vehicle industry has given rise to a challenge with regards
to test and verification [1]. Reduced time and cost frames lead to fewer physical test
vehicles. In addition, much of the functionality cannot be tested in real world traffic
due to safety reasons. In order to reduce the usage of resources on building different
prototype variations for testing of functions, realistic mathematical models of vehi-
cles can be used to simulate the behaviour of a vehicle. This opens up the possibility
for analysis and understanding of different parameter interaction and impact this
has on the simulation outcome, without the need of a otherwise required physical
prototype. Analysis and simulation is specifically important for autonomous vehi-
cles due to rare and potentially dangerous situations and maneuvers, that must be
inspected to reach adequate certainty to build the prototype. The current trend is
to replace the testing of prototypes with simulations, in order to save time, money
and predict its performance in the real world to get a broader understanding of the
complete system.

With a growing list of commercial, free or internally-developed OEM proprietary
model libraries, the need for a unifying Vehicle Model Architecture (VMA) was
quickly realized in the automotive industry [2]. The purpose of a standardized
model architecture is to provide consistent interfaces and system decomposition to
promote plug-n-play interoperability between model libraries [3].

Electronics in automobiles has come a long way since their introduction in this indus-
try a few decades ago. According to industry experts, 80% to 90% of the innovation
within the automotive industry is based on electronics. Automobiles of today rely
on electronics more than ever before; to not only provide better implementation of
functionalities but also to provide new, paradigm changing functionalities [4]. A big
part of electronics is software [5]. Also, with functions such as Lane Assist, Auto-
mated Emergency Braking, and Adaptive Cruise Control, the current generation of
automobiles has taken the first steps towards automated driving. The automotive
industry is heading towards highly and even completely automated vehicles. This is
no simple task. Among other things, a scalable systems architecture is needed that
covers all current and future functions and integrates them into one fully automated
system.

Vehicle system modeling is an important part of optimizing overall vehicle perfor-
mance among other things. To avoid building up complete vehicle models from

2

1. Introduction

scratch repeatedly, it is useful to develop a predefined vehicle model architecture.
The VMA should allow the exchange of subsystem models between different orga-
nizations (e.g. part/subsystem vendors, design organizations, universities) without
the need to "rework" the models to fit into existing vehicle system models. It should
also simplify the handling of alternate vehicle system configurations by allowing
substitution of one particular subsystem or strategy implementation for another [6].

In this thesis, A study will be done on various existing state-of-the-art architectures
and analyze them based on the quality attributes such as reusability, modularity
and scalability to reduce complexity. The main purpose of this work is to propose
a new classification of integrated centralized control architectures to overcome the
limitations posed by traditional architectures and also to accommodate the growing
demand of the automotive industry.

1.1 Ethical and social aspects of modeling and
simulation

Increasingly, prototypical self-driving vehicles are participating in public traffic [7]
and are planned to be sold starting in 2020 [8]. Self-driving vehicles will combine data
from inside vehicle with external data coming from the environment (other vehicles,
the road, signs, and the cloud). In such a scenario, different applications will be
possible: smart traffic control, better platooning coordination, and enhanced safety
in general. However, the basic assumption is that future self-driving connected cars
must be socially sustainable. Simulation platforms enable the artificial intelligence
brain powering an autonomous vehicle to run in a photo-realistic world that mimics
real-life traffic [9]. Manufacturers can also test hardware using a process called
hardware-in-the-loop, in which one server simulates the driving environment while
another contains the computer that will eventually run in the car. When combined
with public road testing, this type of simulation creates a robust validation process
in a fraction of the time it would take to drive an equivalent distance in the real
world. While scripting the infinite number of potential traffic situations may be
impossible, enabling diversity and spontaneity in simulation is a vital way to test
a car’s reaction to unforeseen scenarios, validating autonomous vehicle technology
without sacrificing safety [9]. Autonomous vehicles—particularly those that are
passenger cars—could significantly affect the country’s ability to cut greenhouse gas
emissions and move toward a carbon-free economy. Therefore, autonomous vehicles
must be assessed not only for their safety but also for their effect on carbon emissions
levels [10]. Efficient simulation of different scenarios causing carbon emissions can
relatively reduce the emission impact on society.

3

1. Introduction

1.2 Background - Role of architectures in Open
Innovation Lab

Vehicle manufacturers are investigating open innovation and third party develop-
ment as a source of creativity and new ideas [11]. With the growing trend of adapting
shorter development time, high functionality and reliability are required to ensure
robustness of the product. The Open Innovation Lab (OIL) research project which is
being conducted by Semcon AB and four other partner organizations aims at taking
the innovative step of exploring the potential of simulation-based testing methods as
support for open innovation and third party development, by establishing a common
platform and tool-chain for collaboration around different simulators.

Figure 1.1: The current work-flow in OIL project

OIL is a collaborative project among five automotive organizations, who would be
contributing their generic models to be stored in the platform’s repository for engi-
neers/users to access them. Fig. 1.1 shows the simple work-flow in the OIL project.
The number of models would grow exponentially when the user makes variants of
the existing models to test and verify different features. In the automotive industry,
there is a thriving demand for innovation and new functionality in modern cars,
this calls for a paradigm shift in automotive system architectures both in terms of
hardware and software. The key intent of OIL for this thesis is to propose a standard-
ized model architecture that would provide consistent signal interface and system
decomposition to promote plug-n-play interoperability between models and also to
support the quality attributes such as reusability, modularity and scalability to re-
duce complexity. Architectures for vehicular electrics, electronics, communication,
and software are facing several challenges driven by strategic trends like automated
driving, artificial intelligence, drivetrain electrification and connected systems and
services. It require innovations to reduce system complexity and improve reusability,
scalability, modularity and system integration, consequently driving the introduction
of new technologies. Factors like control hierarchies, distribution of functionality,
arbitration and conflict resolution etc. are considered for careful evaluation and a
summary of the analysis is presented.

4

1. Introduction

1.3 Aim
The master thesis project aims at:

• Analyzing the current state-of-the-art architectures and highlighting the limi-
tations posed by them.

• Proposing an architecture that overcomes the posed limitations and integrate
the growing demands of the automotive industry.

• Evaluating the quality of the current and proposed architecture using quality
attributes(reusability, modularity and scalability) to reduce complexity.

• Structure the architecture in such a way that it takes in new/innovative ideas
but also stays relevant to the current automotive community.

• Initiating a step towards using the architecture as a guideline for potential
solutions within future vehicle architecture design decisions.

1.4 Limitations
The main focus of the thesis project is described in the previous section 1.3 which are
found to be feasible for the time span of the project. Apart from these, a substantial
amount of issues/tasks would need extensive analysis which would be out of scope
of this thesis work

• The goal is to analyze and propose an architecture based on analysis. Creating
a prototype simulation architecture to see the full benefits of the architecture
is not under the scope of this thesis work.

• The role of Plant modeling (causal or acausal) approach is discussed. How-
ever, a thorough study regarding the same is necessary to view it’s benefits in
architecture design which will not be covered in this thesis work.

1.5 Problem definition

1. The current state-of-the-art architecture is outdated or will soon be, consid-
ering the technology advancements in vehicle industry.

2. Rework in building the models and consequently vehicle modeling architecture
is proven to be expensive and time consuming.

3. With the growing software components, the VMA seems to be getting complex
with each addition.

4. The current architectures are rigid and do not look scalable to future demand
in vehicle functionalities.

5

1. Introduction

1.6 Research questions
The thesis is based on the following research questions:

1. What are the current state-of-the-art VMAs? How do they differ
from each other? What are their limitations?

2. How can the structure of current vehicle modeling architecture change
to accommodate growing future automotive functions.

3. How does the new revised VMA differ from the current VMAs based
on quality attributes such as reusability, modularity and scalability
to reduce complexity

1.7 Outline of the report
The report is partitioned in the following way: Chapter 2 (Methodology) exam-
ines the term Modeling & Simulation and modeling architecture, how it is used in
automotive context. It further discusses the concepts of quality attributes which
is necessary to understand the discussion in later chapters. Chapter 3 (Analysis)
consists of detailed analysis of VMAs and the problems encountered by automotive
community due to limitations in VMAs and rapidly growing technology in vehicles.
Along with this, different ways of tackling the problems is also discussed. Chapter 4
(Result) proposes a revised centralized control architecture that is formulated after
considering the limitations and demands of the current industry. This chapter also
discusses in detail about the proposed architecture and how it overcomes the lim-
itations at the same time giving way to accommodate future technology demands.
In the final Chapter 5 (Conclusion and Future work), a conclusion of the entire
work is presented along with discussion about above mentioned research questions.
Potential future work that needs to be carried out to yield better benefits from the
vehicle modeling architecture is also discussed.

6

2
Methodology

2.1 Introduction to Modeling and Simulation
Simulation is a representation of the functioning of a system or process. The act of
simulating a system or process first requires the development of a simulation model.
A simulation model is a descriptive composition of a process or system including pa-
rameters that allow the model to be configurable to represent a number of different
systems or process configurations [12]. It is said to incorporate logical, mathematical
and structural aspects of a system. Simulation allows the identification of problems,
bottlenecks and design shortfalls before building or modifying a real system. Evalu-
ation, comparison and analysis are the key reasons for doing simulation. Prediction
of system performance and identification of system problems and their causes are
the key results[12]. Simulation proves to be advantageous in the following scenarios
among others [13]:

• Analyze the situation with sufficiently accurate calculation of the complex
analytic model.

• When the real system has some level of complexity, interaction or interdepen-
dence between various components, or pure size that makes it difficult to grasp
in its entirety. In particular, it is difficult or impossible to predict the effect of
proposed changes.

• When a new system or functionality is being developed, considering major
changes in physical layout or operating rules in an existing system, or being
faced with new and different demands.

• When a large investment in a new or existing system is being considered with
system modification of a type for which little or no experience is present and
hence considerable risk can be foreseen.

• To compare several alternative designs and rules of operation.

At times, Simulation can pose certain limitations, for instance simulation often re-
quires extensive resources to be spent on building and validating models. It does
not give an explicit solution to the problem, but rather a comparison between dif-
ferent solutions. Nevertheless, a good simulation model not only provides numerical
measures of a system, but provides insight into desired system performance for each
configuration of interest [12].

7

2. Methodology

2.1.1 Modeling architecture
A Modeling architecture is the functional decomposition of a whole system into
parts, with specific relations among the parts. One of the key requirements of mod-
eling architecture for complex systems is that the model construction should be
supported by hierarchical and modular composition of reusable models in a uni-
form and scalable way [14]. It aids people to work cooperatively and productively
together to solve a much larger problem. Simulation and architecture are closely in-
terlinked, quality attributes such as reusability, modularity and scalability are every
bit as important as obtaining accurate results. The modeling architecture helps in
addressing the demand to meet the quality attributes in the following ways [15]:

• If the focus is on reusability, the system is expected to encompass careful
separation and granularity of different parts of the system so that these can
be reused in multiple configurations as and when necessary.

• If the focus is on scalability, the system can be carefully separated among the
parts of the system, so that when a change affects one element, that change
does not ripple across the entire system.

• If the focus is on modularity, the system is deployed incrementally, by releas-
ing successively larger subsets, the architecture helps in reducing the inter-
dependency to avoid the “nothing works until everything works” syndrome.

• Reusability, scalability and modularity in turn aid in reducing the complexity
of the system.

2.1.2 Quality Attributes : Reusability, Modularity and Scal-
ability

Reusability, modularity and scalability can be defined as three main quality at-
tributes in modeling of automotive systems which can help in reduction of com-
plexity of the system. Quality attributes are the characteristics which provide basis
for evaluating quality of the system under discussion [16]. The key approach in
the project would be to enable architecture analysis of existing systems via above
mentioned quality attributes.

Reusability
Reuse is the isolation, selection, maintenance and utilization of existing software
artefacts in the development of new systems [17]. Reuse can mean different things
in various context from the reuse of small portions of code, through component
reuse, to the reuse of complete models. On a more abstract level, component design,
model design and modeling knowledge are prime candidates for reuse. The reuse of
simulation models is especially appealing, based on the intuitive argument that it
should reduce the time and cost for model development [18]. The idea of modellers
saving time and money by reusing their own, or other peoples’ models and model
components is appealing, and technology is apparently making it more possible [17].

8

2. Methodology

A spectrum can be used to represent different types of software reuse as shown in
the Fig. 2.1. The spectrum is cast in terms that are fairly recognizable to the
simulation community [17].

Figure 2.1: A spectrum of reuse

Code scavenging is a process of reusing existing code with slight or no modification
(by copy and paste). Since the working code is already available the complexity in
reusing the code is low.

Function reuse is the next step along the spectrum of reuse which involves reusage
of built-in functions from particular languages or systems. The functions that are
reused in this way are usually very specific in their functionality and are fine grained,
which enables checking that the function is performing as required.

Component reuse For present purpose, a component is defined as an encapsulated
module with a defined interface, providing limited functionality and able to be used
within a defined architecture. Components are usually larger than functions and
the complexity increases in reusing these components. It gets a little more tricky as
the components get bigger and offer broader functionality.

Full model reuse Full model reuse might imply, at one extreme that the executable
model is used in an environment other than that for which it is developed. This,
clearly raises many issues about validity. On the other hand, the model might
be reused many times for the same purpose, which is relatively straightforward.
However, the complexity increases significantly when reusing the full model.

The spectrum in Fig. 2.1 shows four types of software with two different horizontal
axes. The first, frequency, indicates that reuse is much more frequent at the right-
hand end of the spectrum, which is code scavenging. The second axis, complexity,
runs in the opposite direction, making the point that reuse of code is relatively easy,
whereas successful reuse of entire simulation models can be very difficult indeed.

In the analysis that follows in the paper, Component/Model reuse will be of major
interest, model reuse is considered to be synonymous with software reuse and de-
serves no special treatment in a simulation scenario [18]. The benefits of reuse can
be classified into both qualitative and quantitative benefits [18] are discussed below:

Qualitative benefits:

9

2. Methodology

• Fewer defects: Reusing models involve more feedback and thus more debugging
that finally improve the quality and reliability of models.

• Productivity improved: Although the introduction of systematic reuse can
have a negative impact on productivity in the beginning, long term systematic
reuse improves productivity.

• Interoperability: Applications that share the same component are made de
facto interoperable if the shared component allows them to communicate.

Quantitative benefits:

• Reduced development: and thus less time spent for developing new models.

• Time to market: is shortened due to the reduction of development time.

• Less documentation to write, reusing models means that we could also reuse
dedicated documentation.

• Less maintenance: Reusability reduces the amount of variability among mod-
els and hence does not need huge maintenance tools leading to reduction in
maintenance costs.

• Additional training costs: An additional cost to train engineers to handle
reusable components must be took into account, but that cost is quickly amor-
tized long-term.

• Small team: Dependency on experts/people for development of high fidelity
models within a certain domain is reduced. It results in resource utilization
and better communication between team members and thus an increase in the
productivity.

• Quick prototyping: due to the assembly of existing component.

Challenges in reusability

Though reusability has the above discussed benefits, it does introduce new challenges
[19]:

• How can a model user be confident that a planned reuse of the model is within
the range of uses intended by the model creator?

• How can one characterize the uncertainty of a model that is reused (possibly
with some adaptations to a new context)?

• How can one characterize the uncertainty of simulation models obtained through
the composition of multiple models?

• How can one accelerate the process of adapting and reusing models for different
purposes? What are the fundamental limitations of technologies for model
reuse?

10

2. Methodology

Modularity
Modularity is a design pattern that is built around the idea of autonomous modular
components that can be independently created, easily configured and reconfigured
into different systems [20]. It is a key feature of complex engineered systems for a
number of reasons. Firstly, by definition, complex systems are highly interconnected.
In these highly interconnected systems, the cost of interaction will be very low. This
low collaboration cost makes it much easier to unbundle homogeneous systems,
distribute them into modules, and then reconnect them into a composite whole
system. Secondly, complex systems are composed of autonomous elements, meaning
the complex systems cannot fully be constrained within one integrated top-down
model. Componentization gives each element a degree of autonomy, thus allowing
it to adapt. For developing a modular system, it requires, a module, an interface,
and a set of protocols for interconnecting those modules. Firstly, in order to create
modules, it is necessary to unbundle the monolithic system, this is called separation
of concerns. The idea is to capture what makes each component a separate concern,
that is to say, autonomous and different from everything else. Modularization and
mass distribution of components can be used as a highly effective way of engineering
complex system.

Advantages of modularity: Modularity provides the following benefits

• It can enable distributed collaboration and problem solving, when dealing with
a very large complex system that would require an expert to fully grasp and
manage. Through modularizing the system, various functions can be more
easily distributed across a large team with no team member creating or even
understanding the whole system.

• It enables sufficient reuse of modules. Modules can be combined and recom-
bined, making it more likely to be a sustainable solution. It should also be
much easier to manage and maintain the life-cycle of the system. Individual
components showing fatigue can be replaced without having to replace the
whole system, and within minimal time-frame.

• Modular systems are much more versatile, adaptive and can be customized
more easily. The modular design employed in the automotive industry makes it
easier for automotive manufacturers to offer a wide variety of customizations,
where they simply “snap in” upgrades, such as a more powerful engine or
seasonal tires.

• Modular design can be a very important mechanism in creating autonomy. By
designing for autonomy, the dependencies are reduced within the system and
the modules act as natural buffers to disaster spreading and for maintaining
security.

Limitations of modularity:

• Because everything has been dis-aggregated, everything will have to go through
some network of interactions to take place. Unless the cost of interaction is

11

2. Methodology

very low, this will place a very high burden on the system.

• Unless the protocols and interfaces to the modules are well designed, we can
waste a lot of time continuously negotiating contracts between modules.

• Excessive modularization can lead to a fractured system

• modular systems may be good for a lot of things but they are not optimized
for performance.

Challenges related to coping with modularization [21]:

• Automotive suppliers are required to acquire more systematic technology for
parts. Systematic technology is related to creation of sub-functions, compo-
nents and the structure of the product, in order for it to perform its specific
functions [22]. This is required to optimally combine and integrate parts.

• It is necessary to improve technology that functionally and structurally com-
bines parts, such as improving developmental capabilities for new processing,
materials and component technologies. This is the direction that has been
taken from the past in technological development and formation at automo-
tive suppliers.

• Automotive suppliers who undertake design development and production of
modules require the ability to adjust functional and structural interfaces in
complex product designs. There is a trend towards ongoing expansion in en-
trusting development tasks to automotive suppliers. If modularity in design is
sufficiently advanced, it is possible for automotive suppliers to devote their ef-
forts to development within their modules and easily reduce the developmental
process, costs and lead times.

Scalability
Scalability is defined as the ability to handle the addition of systems or objects with-
out suffering a noticeable loss in performance or increase in complexity [23]. Scalable
architectures provide the flexibility to integrate software from various sources by ef-
fectively enabling the integration of new innovations [4]. Scalability is very crucial in
large and complex systems, poor scalability can result in poor system performance,
necessitating the re engineering or duplication of systems. When the system is said
to be unscalable, it usually means that the additional cost of coping with a given
increase in complexity or size is excessive, or that the system cannot cope at this
increased level at all. The scalability of a system subject to growing demand is
crucial to its long-term success. At the same time, the concept of scalability and
our understanding of the factors that improve or diminish it are vague and even
subjective. Many systems designers and performance analysts have an intuitive feel
for scalability, but the determining factors are not always clear. They may vary
from one system to another. General reusable design patterns have been discovered
in the past for building scalable systems [24]. One such solution is parametrization.
Parametrization is a mathematical process consisting of expressing the state of a

12

2. Methodology

system, process or model as a function of some independent quantities called param-
eters [25]. Parametrized model aims at generating low-cost but accurate models that
characterize system response for different values of the parameters. Parametrized
model is important for applications in design, control, optimization, and uncertainty
quantification—settings that require repeated model evaluations over different pa-
rameter values [26]. However, when the system grows and becomes more complex,
parametrization has to be planned carefully to avoid unnecessary use of parame-
ters, this leads to large overhead for the system [27]. Parameters can be defined
individually for each component or have default common parameters across various
platforms. The planning for either kind of parametrization has to be carried out to
ensure scalability and flexibility [27].

2.1.3 Complexity
There is a consensus among the simulation community that a simple model is mostly
preferable to a complex one [28]. However, models of today are growing continuously
in complexity due to combined increase in the amount of hardware and software com-
ponents, forcing modelers to deal with problems that they are not very familiar with.
Despite the importance of reducing complexity, it remains at the lowest priority in
simulation research agendas. Although complexity is in some sense an intuitive con-
cept, there is no general definition or a single accepted definition of complexity when
applied to a model [29]. There are many ways to describe complexity in modeling
and simulation [28], in this thesis complexity is defined as a factor which relates to
model complexity with the cognitive aspect, i.e. the difficulty of understanding the
system being modeled, according to [30].

Quality attributes are considered to be an integral approach to reduce complexity
of the system. Apart from those, few other methods are introduced below to deal
with highly complex architectures.

2.1.3.1 Abstraction

Abstraction is a technique for hiding complexity of systems under discussion. It
works by establishing a level of simplicity on which a developer/user interacts with
the system, suppressing the more complex details below the current level. The devel-
opers work with an idealized interface (usually well defined) and can add additional
levels of functionality that would otherwise be too complex to handle. A simple ex-
ample is discussed to understand the concept of abstraction better. Adaptive cruise
control (ACC) and emergency brake assist (ABS) are being used as shown in Fig.
2.2, the control units need a coordinating module to ensure safe functioning /conflict
avoidance with each other. The complexity increases exponentially if these control
units are allowed to communicate in various combinations (combinatorial optimiza-
tion). This heightened complexity can be tackled by adding the motion management
for the two systems ACC and ABS that controls the access to the motor and brake
control unit. The coordinator modules for engine and brakes are no longer neces-
sary because their tasks are now carried out by the motion management. Above all,

13

2. Methodology

the functions and the actuators only have to use one communications channel, that
being the one to the motion management.

Figure 2.2: Example for abstraction between ACC and ABS to reduce complexity,
source: Elektrobit

Abstraction Layer: The process of abstraction discussed above has inspired to
develop abstraction layers, Abstraction layer is a way of hiding the implementation
details of a particular set of functionality. Abstraction layer, when exploited by sys-
tem designers enables separation of concerns to facilitate interoperability (between
systems, sub systems and components), platform independence (developed software
can be run on any vehicle platform without much preparation) and replacement of
hardware with software simulation. Layers of abstraction are introduced to support
a holistic understanding of the system and its architecture, as well as iterations
between the requirements level and a preoccupation with the (overall) integrated
system and lower level details of it [31].

While abstraction is a process of hiding complexity of systems, it can also use the
below strategies to reduce complexity further.

• Maintaining simplicity in model design: While creating a model, the goal
should be to pursue simpler models for the purpose it is being created. One
way to follow this would be to start with a simple model, validate and analyze
the model and when the results are obtained, a short study/discussion can be
conducted to decide if the model needs more complexity to be included. If the
model is too detailed, then the process of abstraction which initially seemed
to simplify the task will complicate the process even further [32]. However,
in cases where complex models are already created, simplification effort can
be applied to reduce the complexity to some level. One suggested process
to transform a given complex model into simpler, generic and more config-
urable models is Refactoring. According to [33], refactoring is "the process
of changing a software system in such a way that it does not alter the exter-
nal behavior of the code yet improves its internal structure". By refactoring
a model it will become well structured and comprehensible[34]. In general,
the motivation for refactoring in software development can be transferred to

14

2. Methodology

model implementation: improved comprehensibility of the implementation,
facilitated understandability and maintainability of the model code [34].

• Reduce level of detail and scope of model: One way of reducing the
level of detail in models is by introducing hierarchy. Hierarchy is considered
one method of model abstraction [35] and thus can simplify the simulation
model. The use of hierarchical modeling can be crucial for the manageability
of complex models [36]. It is said to be crucial because it does not always
simplify a model. That is because the number of elements in a model that
is hierarchically constructed could be the same as in a flat model, with the
difference that some of them are hidden by the hierarchy. A simplification
could be achieved if it is possible to aggregate some portions of the model
(e.g. a set of machines becomes one big machine).

Another possibility to try to obtain a simpler model (or many, various simpler
models) is to attack the scope component of complexity. In this case, divide
your system into parts and model each part separately creating a series of
simpler models instead of one huge model. Once these parts pass through all
phases of the simulation study and if and only if there is a need, integrate
these models into a bigger one. But this coarsening in scope can lead to less
flexibility of the model [28].

Abstraction can be challenging to achieve in the following ways [37]:

• It is difficult to plan for the new and future versions of models.

• Abstraction should not impact the system performance in terms of available
resources and computational time.

• Abstraction needs to be flexible for design alterations without requiring major
rework.

• Proprietary abstraction layers significantly limit developer’s visibility into the
system, if not sufficiently documented, developer is dependent on the abstrac-
tion interface. This can restrict design options.

2.1.3.2 Standardization

Companies having a large number of products, built with components/subsystems
from a large number of suppliers and selling them to a large number of customers is
complex. By standardizing processes and model interfaces, a company will be able to
increase its ability to manage this complexity and hence increase its speed and agility
in delivering the right product to the right customer. When calling for tenders, the
OEM can reference standards, and thereby increasing the level of understanding
between the seller and the buyer of a software module. Functions and modules
from various manufacturers that is necessary to build a complete system can simply
be exchanged, This reduces development costs and risk. Standardizing interface
could also result in reduction of profit for suppliers and component developers, as
a software module could be sold to several car manufacturers without the need to

15

2. Methodology

produce major changes. Test and tool suppliers can concentrate on the contents of
the value creation and not so much on individual interface adaptations[Elektrobit].

Though standardization helps in reducing complexity, it does pose a few limitations
[38]:

• Lack of adaption to the different and dynamic automotive market.

• Lack of uniqueness, the modelers cannot act upon opportunities to try different
designs and are forced to conform to the standard practice.

• Learning a standard and practising it can be time consuming process.

• Standardization leads to statically defined systems, when revisions are to be
made to the systems, backward compatibility should be ensured.

2.1.4 Vehicle modeling architecture VMA
One of the challenges with modeling a vehicle in general is the resource demanding
task of building a complete vehicle system one component at a time. To promote
the exchange and reusability of automotive subsystem models (e.g. engine, trans-
mission, chassis, etc), the practice of Vehicle Modeling Architecture (VMA) was
adapted [6]. The underlying idea behind VMA is that a core vehicle model (includ-
ing driver and environment), can be defined as modular system, decomposed into
several subsystems and components with fixed interfaces between them (discussed
in detail in section 2.1.5). The intention of the VMA is to act as a placeholder for
models with different levels of fidelity and feature content. As an example of where
VMA might prove to be useful, consider the case of an automotive original equip-
ment manufacturer (OEM), within the OEM there are usually different departments
working with models and simulation. Each department uses its own set of simula-
tion tools and models, each with their own modeling conventions. A department
working on powertrain may have a custom powertrain plant models suited for their
testing needs. Another group working on cooling may have their own powertrain
plant models for testing. An altogether different department in charge of the control
logic has its own powertrain models and so on. None of the departments can easy
share or reuse their models between each other without the need of some manual
modifications, because they all use different naming conventions, model structure,
numbers of ports, and other modeling conventions. VMA basically provides the ba-
sis for a standard Modeling architecture with an intention to not constrain the model
creators in their way of thinking, but rather to simplify the interconnections between
system and subsystems so that a vehicle model can be assembled in a Plug-n-Play
fashion using subsystem models from various sources. Achieving a high degree of
model reuse is a key benefit of using VMA.

16

2. Methodology

2.1.5 Functional decomposition in modeling architecture

Figure 2.3: Functional decomposition of a system

Functional decomposition is the process of breaking down a complex system into
simpler parts, of sub-systems and components as shown in Fig. 2.3. A System
can be defined as an integrated set of models that accomplish a defined objective
(What is to be created) [39]. A Subsystem is an extract of the system in its own
right, normally the sub-system needs to be integrated with the system or other sub-
systems for it to provide useful information [39]. A Component/Part is the lowest
layer of the architecture, which are models that make up a subsystem or system [39].
The guideline to decompose a system is discussed below:

• The system is first divided into self-controlled modules by their disciplines and
the signal interface between these modules is established, this completes the
first level of decomposition.

• Each of these modules are further decomposed into sub-systems to reduce com-
plexity and enhance readability, concluding the second level of decomposition.

• The process of decomposition is continued with until the whole system is at
the component level, which is the lowest layer of functionality

Creativity, previous experience and analysis is used to compose components/sub-
systems into architectures which meet functional requirements of the system under
observation. Functional decomposition can pose challenges such as:

• creating unnecessarily numerous, complex signal interfaces.

• It is internally focused, different organizations/departments have different de-
composition.

• The decomposition can get too detailed/large easily.

• The hierarchical block structure where the modules are coarse grained can
create cross-cutting concerns [40]. A cross-cutting concern is a concern that
affects several modules or components, it is directly responsible for tangling
or system inter-dependencies. [41]

17

2. Methodology

2.1.6 Evolution in Vehicle modeling architecture
The automotive domain is living an extremely challenging historical moment. Elec-
trification, autonomous driving, and connected cars are some of the driving needs
in this changing world. Increasingly, vehicles are becoming software-intensive com-
plex systems and most of the innovation within the automotive industry is based on
electronics and software [42]. Modern vehicles can have large number of Electronic
Control Units (ECUs) executing gigabytes of software. ECUs are connected to each
other through several networks within the car, and the car is increasingly connected
with the outside world. These novelties ask for a change on how the software is en-
gineered and produced and for a disruptive renovation of the electrical and software
architecture of the car [43]. The architecture of a modern car has to cope with a
large amount of concerns, including safety, security, variability management, net-
working, costs, weight, etc. If not actively managed, architecture and design diverge
over time. The architecture is then perceived as outdated and not useful, thus it
looses its ability to guide design decisions and implementation. Thus, the VMA has
the potential to provide a foundation for managing this so called vehicle evolution
if the architecture is reviewed, planned and developed accordingly [44].

2.2 Modeling aspects that aid in Reusability, mod-
ularity and scalability to reduce complexity

2.2.1 Physical modeling

Figure 2.4: Causal and Acausal model signal flow

The traditional approach of modeling the plant model is based on block-oriented
schemes with causal relations. The causality is realized artificially to replicate the
actual physical scenario and to fulfill appropriate conditions to perform simulations
on conventional sequential computers. Fortunately, new concepts which are based on
physically oriented connections and algebraic manipulation enable so called acausal
modeling. In this section, both approaches are compared and presented.

As shown in Fig. 2.4, an causal model is a model that uses the principle of
cause and effect to describe the system’s behavior. In causal models, the output is

18

2. Methodology

always an integral function of the input, which induces a time delay from input to
output. Conversely, an acausal model allows data to flow between function blocks
in both direction, the inputs and outputs of the system devices are not fixed (i.e.,
floating inputs/outputs) and the values of both can be chosen based on the asso-
ciation of the device with the other devices. If a system is to be decomposed with
causal interactions, a significant amount of effort in terms of analysis and analytic
transformations is essential to obtain a desired structure. It also requires a lot of
engineering skills and manpower and it is error-prone. In such a system architecture,
acausal approach proves to be beneficial. However, in order to allow the reuse of
models, the equations should be stated in a neutral form without consideration of
computational order which can be done by acausal modeling. The acausal approach
can also be applied in multiphysical packages as it has the functionality of both the
forward dynamic and backward dynamic solutions by symbolic manipulation (fur-
ther explained in 2.2.2). This avoids rearranging the model when switching between
forward and backward dynamic models, thereby reducing cognitive complexity.

Both causal and acausal modeling approaches prove to be useful in specific scenarios
discussed below [45]:

Causal models can be used in following scenarios

• Controller modeling: Intuitive way to model controllers

• Forced insight: process of formulating the equations can yield insight into how
the system works

• Familiarity: its is a friendly and familiar way of modeling

• legacy models: many organizations have already built their models in causal
approach and its too expensive for them to switch.

Limitations of causal models

• Enhancements get a lot more complicated for complex models.

• As complexity increases, so does the chance of errors.

• Modifications are hard to accomplish among several developers.

• prevents high fidelity modeling of larger systems, particularly in plant models.

• Hard to visually understand the purpose of the system.

• Difficult to connect due to pre-defined inputs and outputs.

Acausal models can be used in the following scenarios [45]

• Plant modeling: Intuitive way to model that cannot be applied to controller
models.

• Ease of modifying models: changing the model only requires changing the
connection

19

2. Methodology

• Visual clarity: diagrams are easier to understand via visual inspection.

Limitations of acausal models

• Not efficient for algorithm based models, for e.g., control algorithms.

• Loss of system insight, since the equations are not derived manually

2.2.1.1 Plant models illustration

Figure 2.5: example of causal and acausal modeling

Here an example is introduced of a causal model and an acausal model. Fig. 2.5
shows a common representation of DC motor, the left side shows an acausal model
of the DC motor whereas the right side shows a causal approach. In the causal
modeling approach (right side), the signals flow in connections between individual
blocks, transmitting the values of individual variables from the output of one block
to the inputs of other blocks. The processing of input information to output infor-
mation takes place in the blocks. Interconnection of the blocks in Simulink reflects
rather the calculation procedure than the actual structure of the model reality. In
acausal model (left side), a declarative notation of model is used; this means that
individual components of the model (as instances of model classes) are described
using equations directly and not the algorithm of their solutions.

It is evident from the above example that as the model gets more complex, the blocks
in the causal modeling will also increase rapidly and simulation of such a system
might increase the risk of errors relating to algebraic loop, whereas the acausal
model is straight forward to understand and also less complex to implement with
sufficient knowledge of the model and the tool. When it comes to reuse, it can be
seen that acausal models (rather than block diagrams) are easier to reuse because

20

2. Methodology

each component model can be formulated independently without knowledge of the
equations or causality assumptions used in other parts of the system.

Having said that, in order to achieve maximum flexibility and reuse, one must
identify when to use the acausal features. Block diagrams are preferred for conveying
strictly one-way information (e.g., the speed requested of a controller or the current
gear of a transmission). Using acausal models in such contexts would be awkward
and confusing. In cases where simultaneous equations or conservation principles are
used, the acausal approach makes it easier to create and reuse models.

Though, it has been strongly recommended to use acausal models as their benefits
are larger than causal models, the fact that causal models have been in use in the
industry for long cannot be dismissed. The automotive companies already have
many models based on causal modeling and switching their tools requires the trans-
formation from causal to acausal modeling diagrams which can be very drastic and
expensive. Both causal and acausal models have benefits and limitations of their
own, so instead of limiting ourselves to just one kind of practice why not look into
a way that would enable to use both causal and acausal modeling in the same ar-
chitecture. One possible way of achieving this would be to use two way connections
as mentioned in JMAAB plant modeling guidelines [46]. For details regarding two
way connections, one can refer to JMAAB plant modeling guidelines as this is out
of the scope of this thesis work.

2.2.2 Backward and forward modeling
Depending on the direction of calculation, vehicle models can be classified as ei-
ther forward or backward facing models [47]. Both forward and backward facing
approach may not directly contribute to the analysis of quality attributes, but they
aid in simulation and computation speed depending on the use case. In Back-
ward facing approach, the computation flows upstream, from the wheels to the
prime movers, against the physical power flow. This modeling takes the assump-
tion that the vehicle meets the target performance, and calculates the component
states. For instance, the vehicle speed is translated into rotational speed while the
traction/braking force is converted to torque, during these conversions the efficiency
of some components is assumed. The backward-facing approach proves to advanta-
geous or dis-advantageous based on the use case/test case being modelled [48]. The
main advantages of backward-facing approach are:

• Experimental tables are often computed in terms of speed and torque, so that
they can be directly implemented without the need for any conversions, which
makes it easier to simulate models in QSS.

• Backward-facing approach is beneficial in simplicity and computation cost.

• Reduced execution time.

The major disadvantages in implementing backward-facing or QSS approach are:

21

2. Methodology

• Causes the system to become increasingly complex by predicting the effect of
several systems in combination (whether between components or subsystems).

• It is not suitable for "best effort" performance simulations, since it requires the
theoretical speed profile to be always perfectly matched.

• Since the energy use is estimated by means of quasi-static steady-state exper-
imental maps, its use does not take into account dynamic effects.

• It is not based directly on relevant control signals for the vehicle, e,g. the
throttle position and the brake pedal position.

Where as the Forward facing approach/Dynamic simulation is best suited when
the purpose is to build a simulation model with realistic and appropriate description
of control signals, for control hardware and software development [47]. It simulates
the physical behaviors of each component with control. In forward-facing approach
the driver provides the accelerator and brake-pedal signals, this means the compu-
tational flow proceeds from prime movers through the transmission to the wheels
and then the vehicle acceleration is calculated. The advantages of forward-facing
approach are:

• Measurable and realistic control signals are used.

• Is advantageous in exploiting performance details.

Forward-facing approach can pose limitations in following scenarios :

• Lower simulation speed caused by the need of integration for vehicle compo-
nents speed. The components are executed at smaller time steps to provide
stability and accuracy for the higher order integration.

• It provides more detailed information of the vehicle system, while at the same
time introducing heavy computation consumption.

2.2.3 Top-down and bottom-up approaches
Two of the most common ways to approach system modeling is to either build up
the system from components or break the whole system into components. If an
engineer starts with a concept, then he/she can figure out what that means or how
it fits together by breaking it down (called top-down Modeling). If one starts with
behaviour or events, he/she can notice patterns and build up to a model or metaphor
(called bottom-up Modeling). Usually the modeller will model from behaviour to
pattern (bottom-up) while facilitating the client (for e.g., OEMs) to go from story
to components and relationships (top-down). In the current trend of building mod-
ular “autonomous vehicle” system, a top-down approach based on the definition of
the functional requirements for an autonomous vehicle [49] is adapted. Top-down
and bottom-up approaches are discussed according to [50]. Top-Down approach:
With the Top-Down approach, the Requirements and the System are considered
first. Additional abstractions and representations of the system and the concept(s)
are modeled (for e.g., a dynamic performance model and a structural analysis model)

22

2. Methodology

in such a way that the simulation results directly address requirements. Ideally,
multiple concepts would be developed to maximize the opportunities, to explore the
design space and best meet the requirements. The promising concepts should be
matured by increasing the fidelity of the models and development the sub-systems
to the cascaded requirements. The Top-Down approach typically allows for many
more concepts and studies to be conducted with greater flexibility in selecting the
appropriate tools for simulation resulting in a faster development cycle while raising
the probability that the product meets the performance requirements. Bottom-
up approach: The Bottom-Up approach starts with much lower-level components
being developed and integrated into higher-level sub-system models or assemblies.
More components at the lower-levels will need to be created before analysis can be
conducted and the simulation results may not address the product’s system-level re-
quirements. The bottom-up approach not only requires many more components to
be created at lower-levels early in the development process but, the work-flow often
encourages premature refinement of those components before their impact on the
system-level performance can be made. Bottom-up approaches will work best when
the designers and engineers can work together very fast and when the simulations
that need to be conducted are either integrated or at least highly associative.

23

3
Analysis

3.1 Analogy between different state-of-the-art ve-
hicle model architectures

The traditional VMAs [51], [6] and [52] consists of a high level breakdown of a
vehicle into key sub-systems trying to mimic the structure of the actual hardware as
much as possible. For example, low-level control components are grouped with the
hardware-based subsystem they control. Also, only systems that are needed for the
intended simulation purpose are represented in the architecture, for instance, there
is no need for unused subsystems or its components to be represented if they are
empty. The VMA will contain whichever subsystem components that are required
to simulate the vehicle under testing, the architecture can either have a flat structure
with minimum layers or a hierarchical structure with extensively elaborate layers.
Both architectures have their own benefits and limitations depending on the scenario
being used in.

In this section, three different VMAs will be discussed, the first one from Ford
motor company which is relatively flat architecture based on simulink models, a
JMAAB architecture which focuses on hierarchical structure and finally, a Modelica
architecture where the focus is to use acausal approach to structure the VMA.

3.1.1 Ford motor company simulink based VMA

Figure 3.1: Example for the flat vehicle model architecture

24

3. Analysis

At Ford Motor Company [51], a flat structured VMA is customarily used as an
important element of an infrastructure to enable a design process for new vehicle
systems. The flat vehicle model architecture shown in the Fig. 3.1 consists of three
layers where, the top-layer of the vehicle system can contain any combination of
the following subsystems: Driver, Environment, Powerplant, Transmission,
Driveline, Chassis, Braking, Steering, Bus. The connection between the sub-
systems is achieved via a single main bus that incorporates four sub-buses namely,
plant, control, driver and environment bus. The second layer as shown in Fig. 3.2
consists of more detailed sub-systems where one single block handles the interface
to the main bus. A bus selector is used to select the required bus from Driver, Envi-
ronment, Plant and Controller buses for the block. A bus creator is used to produce
the plant and controller buses, which are further combined into a bus specific for
the subsystem.

Figure 3.2: Layer2 of the vehicle modeling architecture

Going further down into the third layer, the granularity of the model increases by
breaking down the sub-system into components of fine detail. The third layer in-
cludes component blocks controller, actuator, plant and sensor (CAPS) to represent
local subsystem behavior.

Current design of CAPS subsystem The system to be controlled is called the
plant; a sensor measures the quantity to be controlled; an actuator affects the
plant; the controller processes the sensor signal to drive the actuator; the control
law or control algorithm is the algorithm used by the control processor to derive the
actuator signal.

Figure 3.3: CAPS system, often the sensors and actuators are not shown separately

25

3. Analysis

3.1.2 JMAAB hierarchical VMA
The Japan MATLAB Automotive Advisory Board (JMAAB) [52], talks about a
hierarchical architecture, where the components are partitioned based on the actual
vehicle parts arrangement whenever possible. To define the hierarchy, alternatively
one layer is dedicated for component partitioning and another layer for the pair of
a controller and a plant.

Figure 3.4: Example for the hierarchical vehicle model architecture

The hierarchical architecture shown in Fig. 3.4, consists of multiple layers and the
number of layers increase with increase in fidelity of a particular model. The prime
difference here is that the vehicle consists of vehicle body and controller and each
sub-system also has a separate controller block of it’s own. The idea behind this is
that, sometimes due to legacy reasons/limitations in signal interfaces, the controller
of two or more sub-systems need to be combined and such combined controllers can
be placed in the vehicle controller and the specific controllers which only comply to
that specific plant model/physical signals can be placed in the respective sub-system
controllers. Though the hierarchical structure has substantial layers, it contributes
to increase in modularity and readability of the vehicle model from the third party
developer perspective. Since the components are segregated in a systematic manner,
reuse of the artefacts is possible even at the lowest layers of the architecture.

All systems in either (flat and hierarchical) of the VMAs can be categorized as
either a containing system or a terminating system. Containing systems consist of
one or more subsystems, the system does not contain any models, its only purpose
is to describe the structure of interconnections between systems, subsystems and
components. Terminating systems consist of a structure into which models can
be inserted and any configuration settings needed to provide inputs or calculate

26

3. Analysis

outputs. The architecture of the terminating system must be as flexible as possible
in order to support a wide range of application testing and defined in such a way
that it is possible to use models of varying degrees of fidelity [51].

3.1.3 Modelica VMA based on acausal approach

Figure 3.5: Modelica based vehicle modeling architecture

In Modelica architecture [6], a combination of acausal approach (formulating phys-
ical connections) and sets of standard interface definitions is adapted from various
engineering domains to formulate a vehicle modeling architecture. The architecture
uses essentially the same subsystem decomposition, as was done in previous Simulink
related architectures, but avoids a priori causality assumptions. The decomposition
is shown in Fig. 3.5. A complete vehicle system model takes into account the
response of the various physical subsystems, the function of the controller modules
(both subsystem and vehicle level) as well as other "external" influences like the
environment and the driver. Decomposition of the system is briefly discussed below:

• Physical Subsystems: The first decomposition consists of all the major
physical subsystems in the vehicle like Accessories: which composes of com-
ponents connected to front end accessory drive(FEAD) of an engine is usu-
ally connected to the front side of powerplant.Electrical: composes of various
purely electrical components in the vehicle. Powerplant: represents the pri-
mary source of torque for the vehicle, there are physical connections from the
powerplant to the accessories and the transmission. The powerplant is also
connected to the electrical subsystem. Transmission: represents any "gearing"
done to deliver power from the powerplant to the wheels. One side of the
transmission is connected to the powerplant while the other side is connected

27

3. Analysis

to the driveline. Driveline: which is responsible for modeling the distribu-
tion of transmission output torque to each of the wheels. Brakes: The brake
subsystem is physically connected to each wheel, the electrical subsystem and
the brake pedal (associated with the driver). Chassis: The chassis subsystem
represents the vehicle body, frame, wheels and suspension system. Physically,
the chassis system is also connected to the electrical system and the steering
wheel.

• Controllers: Two different control strategies are used in this practice, a
simple open loop control strategy for individual plants and controllers and a
closed-loop control to capture communication between each subsystem plant
and controller pair as well as physical interactions across the various physi-
cal subsystems at vehicle level models. The controller decomposition is along
the same lines as for physical sub systems decomposition discussed above,
Vehicle system controller : This vehicle architecture includes a hierarchy of
controllers. At the top of this hierarchy is the vehicle system controller. It
communicates with each of the subsystem controllers on the vehicle. Sub sys-
tem controllers: These are associated with each physical sub system, these
controllers are responsible for controlling the function of their particular sub-
system. Each subsystem controller communicates with its associated physical
subsystem to exchange sensor and actuator information. In addition, each sub-
system may receive supervisory commands from a vehicle system controller.

• External Influences: Apart from the physical subsystems and controllers, a
vehicle system model must account for two important external influences. The
first influence is the driver and the other external influence is the environment.
The driver has tremendous response over the vehicle and the environment
could potentially influence things like air temperature, road surface effects,
obstacles or other vehicles etc.

3.1.4 Analogy of the above mentioned VMAs
The similarities and differences between the above mentioned VMAs is presented
here based on the following attributes: Structuring of the three VMAs At the
top level, all the three architectures are noticed to follow the same vehicle decom-
position of Driver, Environment and Vehicle. This decomposition can change at the
lower levels of hierarchy in individual systems but at the top layer usually the orga-
nizations try to maintain this standard decomposition to accommodate the vehicle
industry standards by mimicking the real vehicle and signal interfacing.

Layers of hierarchy The JMAAB, Ford and Modelica VMAs have different hierar-
chies, but depending on how detailed the system is expected to be, the hierarchical
layers can be extended. In cases where the system wants to be maintained simple
the existing hierarchical layers can also be removed by combining the common func-
tions. However, it is important to note that the way of creating or removing these
hierarchical layers is similar in all the three VMAs.

28

3. Analysis

Signal interfacing between subsystems and components In the Ford and
JMAAB VMA, the signal interfacing between the sub system and components is
carried out through BUS structure, which are modelled in Simulink. Whereas, in
Modelica VMA, the interfacing is accomplished by acausal modeling where a bi-
directional physical connection is established between the subsystems and compo-
nents with no necessity for signal naming convention.

Hardware-Software coupling Ford VMA uses CAPS to describe the local subsys-
tem behaviour, in the sense that it has dedicated controllers for each plant models.
While JMAAB and Modelica also have the recommendation to use CAPS system
with dedicated controllers to describe the behaviour of subsystems, one clear dis-
tinction between them is the additional recommendation to include a supervisory
control that aids in supervising the dedicated controllers at respective subsystem
levels.

Ease of use and complexity The Ford and JMAAB VMAs are straightforward
to understand when the system under discussion is simpler, as the system grows in
size, it can get difficult to understand the hierarchies and model functioning, due to
the explicit naming convention, hierarchy, dependency from other subsystems etc.
Whereas in Modelica VMA, complexity is reduced due to acausal modeling which
reduces signal dependency between subsystems and components and also is capable
of accommodating the changes when the system grows in size.

Degree of reusability in VMAs In Ford VMA discussed above, it is difficult to
reuse models due to the structure incorporated if the system is complex, it resembles
more of a flat architecture where common functions are grouped and the CAPS
models are tightly coupled to each other. In case of simpler models or carefully
maintained models, flat architecture proves to be much useful as it provides an
option of setting up the communication buses independent of the components and
also the hierarchy is not hard-coded in such a system, giving opportunities to the
modeler. The same is the case in JMAAB and Modelica VMA, with one difference
being that due to detailed levels of hierarchy, each model is very carefully separated
and this can sometimes benefit in reusing the models. This minimizes redundant
code and/or configuration options which greatly eases maintenance of the models.

In conclusion, Ford VMA has a relatively flat structure as the system grows in
size, structuring gets complex, leading to complex signal interfaces. Due to tight
coupling of the CAPS models, it can be difficult to decouple hardware components
from software components. In JMAAB VMA, the structure is hierarchical where the
models are carefully decomposed and decoupled aiding in better reuse opportunities.
The hierarchical structure also reduces cognitive complexity and similar to Ford
VMA due to causal nature of signal, the signal interfacing gets complicated as the
system grows. Finally in the Modelica VMA, acausal modeling approach is used
with limited hierarchical structure, due to clear decoupling of modules, reuse is
increased, complexity is reduced due to graphical view of the system and better
signal interfacing is provided due to bi-directional signal flow(acausal signal). In
both JMAAB and Modelica, the controllers are still tightly coupled with the plant
but they still offer some level of hardware-software decoupling due to the presence

29

3. Analysis

of supervisory control.

3.2 Dependencies due to current structuring in
VMA

This section will include dependencies caused by structuring of models in different
ways. The current VMA structure poses some limitations due to the way it is
structured. This section will discuss how the structuring causes dependency in
hardware and software modules and also at the market side how it causes the supplier
to be dependent on the OEM and vice versa.

3.2.1 Hardware-Software dependency
The current VMAs have specific structures they follow and these structures have a
predefined hierarchy with placeholder for components. Though these architecture
prove to be advantageous in many scenarios, they sometime causes limitations. In
a traditional simulation architecture, the flow in the signal is usually from left to
right typically in the CAPS system. The flow is from controller to the plant. This
usually limits the architecture by coupling the software and the hardware parts of
the vehicle. They have to follow a certain input output structure with fixed ports or
BUS structuring. If the hardware is exchanged, then the software component needs
to be changed if not they might not work independently since the control algorithm
is specifically designed for the physical system it needs to control. This acts as a
driving force to decouple the hardware from the software to form a decoupled ar-
chitecture that allows components to remain completely autonomous and unaware
of each other. This approach helps in moving vehicles from a platform deeply en-
twined with vehicle-specific hardware and available only to embedded and specialist
software engineers to a platform that is open and flexible to all the stakeholders
[53]. Hardware decoupling in our terms is the process of separating the hardware
components from software to reduce the direct dependency between them. One ap-
proach to achieve this decoupling is by introducing Abstraction Layers, discussed
in detail in section 3.5. The advantages foreseen with such a decoupling are [54]:

• Limit indefinite investment in hardware components.

• Decoupling provides the flexibility to easily adapt even to changing application
requirements

3.2.2 Supplier dependency with OEM
In the near future, there will be a fundamental shift in how vehicles interact with each
other and the outside environment. The increasing complexity of components and
the use of more advanced technologies for sensors and actuators, wireless communi-
cation, and multicore processors pose a major challenge for building next generation
vehicle control systems. Both the supplier and OEM need new ways that enable re-
liable and cost-effective integration of independently developed system components

30

3. Analysis

[55]. However, to achieve this, major changes to the basic architecture structure
is necessary. Fortunately, this will not require new and unproven technologies. By
starting with mature architectures used in mainframes and applying the same con-
cepts to vehicle systems, it will be possible to concurrently run separately developed
hardware and software components on the same platform. This approach democra-
tizes vehicles for software developers, moving vehicles from a platform, deeply en-
twined with vehicle-specific hardware and available only to embedded and specialist
software engineers to a platform as open and flexible as any other cloud comput-
ing environment [56]. A few advantages of decoupling hardware from software in
automotive system are discussed below [57]:

• Flexibility: OEMs can more easily switch suppliers and update vehicles with
new features after sale.

• Far easier to develop software on known, standard operating systems/hardware
platforms.

• Faster deployment by eliminating redundant validation and testing of reused
software

• Quicker deployment of diverse implementations of functionalities—e.g., fault-
tolerant versions

• Improved engineering productivity

• Minimized risk of bringing updated features to market

• Proven application software can be reused

The disadvantages of decoupling the hardware from software are:

• Suppliers fear losing business

• Lack of standard interfaces for hardware

• Added cost of computing headroom

• Need to better understand hardware virtualization

• Most supplier road-maps don’t yet comprehend hardware-software separation

• Standard operating system for central computers is needed

3.3 Motivation for change in current architecture
The complexity of modern vehicles has grown to levels that can hardly be handled
efficiently with today’s development practices. Yet another increase in complexity
can be seen with the trend toward new technologies such as hybrids and electric
drives. Although several architectural initiatives have been undertaken [AUTOSAR
(www.autosar.org) being a prominent example] an overall architectural concept is
still missing which would provide an umbrella for the description of the entire vehicle

31

3. Analysis

system across all functional and engineering domains [58]. There is always a gap
between how the architecture is perceived to be and how it actually turns out to
be. It was identified in [43] that there is not always an obvious connection between
architecture (or top-level design) and design requirements; it seems also that this
connection vanishes over time, once development requires changes on the system
design. The architecture is communicated as large documents, which are supposed
to be read by stakeholders. However, this does not always corresponds to the reality.
Automotive companies are competing in their race to develop new technologies and
software companies are competing with the vehicle manufacturers. In this race of
coping with the advancement of technology, the vehicle is slowly turning into a super
computer with more and more features and connectivity, due to this the foundation
or the architecture of the vehicle needs constant refinement to be up to date with
the software components that are included in it. The change is needed to support
the growth in content and complexity

Change in modeling approach: The VMAs discussed in section 3.1, follow dif-
ferent approaches (top down or bottom up) based on the use case and end user
choice. Top-down approach is considered to be efficient in structuring architectures
[49], however with the increase in software components in vehicle system , it can be
seen at the lowest level of hierarchy that the number of interconnecting sub-systems
and components increase drastically. This will eventually lead to a state where if
a certain module needs to be changed then the interconnecting modules also needs
to be changed due to signal interfacing dependency or similar. This is because the
module is tightly coupled with its interconnecting module. For e.g. in the CAPS
module the controller sits tightly together with the plant model that it is control-
ling, if either of the plant or the controller is replaced/upgraded then it leads to
replacement of the other one as well. This is the same as Hardware and Software
dependency that is discussed above in section 3.2.1. This limitation can turn out
to be a severe bottle neck with the growing components, for the change to occur
in this scenario, it has to be an integrated part of recursive discussions withing the
simulation community to shed some light on the limitations and agree collectively
upon possible solutions.

Towards a more functionally software driven architecture enabling REUSE:
The current VMAs comprise of both the hardware and software components in the
architecture, looking at the growing trend in automotive industry, software compo-
nents are going to outnumber the hardware components. In the sense, the vehicle
is expected to be comprised of software intensive units and controlled completely or
mostly by software components which would enable easy updates over the air. In
order to achieve this, a functional system architecture approach is advised where
the intention is to focus on restructuring the vehicle to encompass the separation
between software and hardware components so that the hardware components don’t
hinder the reuse, exchange adding new functionality to the software components.
The focus should strictly be on hierarchy, functional separation and definition of
interfaces to witness desired results.

32

3. Analysis

Separation of concerns: Each vehicle system structure has various layers and
these layers in turn have multiple subsystems and controllers. The integration be-
tween these layers are very tight, since all the components and subsystems are
exchanging the signal flow (for e.g., request and information). In such a scenario,
conflicts might arise in situations when a high priority signal is unable to execute or
receive information due to some other interfacing dependency. This will hamper the
overall performance of the car and might in some cases cause severe consequences.
Restructuring the architecture in a way where the priority of the software compo-
nents are clearly defined and structured so as to not come in conflict with each other
will overcome the limitation. This scenario appears to be slightly more challenging
as it is difficult to manage the priority of multiple software intensive units. It is
a critical case and demands extra consideration and evaluation of all the software
units in the system.

Reduce complexity in the system When the vehicle system gets more complex,
it implies that the interfacing between the subsystems and components also get
complex. This will lead to extended simulation time and also understanding such
a complex architecture will consume a lot of time. As discussed before in Section
2.1.3.1, the current complex vehicle system pushes for a change in architecture to
resolve this limitation. One way would be by abstracting the information in the
architecture to reduce complexity. With the increasing complexity , this abstraction
process should be an iterative change and discussion on this needs to be carried out
at a regular basis. The discussion on how abstraction helps reduce complexity can
be found in Section 2.1.3.1.

Towards a more scalable system. The current software components, though
at the top of updated architecture layer are identified with certain limitations and
the changes are being looked into. Similarly the new architecture or the refined
architecture will soon become obsolete given the rate at which the vehicle systems
are being developed right now. This only means that no certain architecture is ideal.
Each architecture should be scalable to accommodate future changes and also the
engineers behind the architecture should be open to changes in the trend and hence
the architecture. The architecture has to be scalable not only within a single vehicle
with varying optional systems, but also throughout all product lines ranging from
different vehicle sizes, applications etc.

3.4 Approaches to apply other automotive archi-
tecture domains to VMAs

All of the above discussed limitations are the current issues that the automotive
community is facing as well and that needs immediate attention. An effort is made
in this project to shine some light on these limitations and discuss how they are
being handled in other fields of automotive industry and if it is even possible to
adopt the same ideas to vehicle modeling architectures.

33

3. Analysis

3.4.1 Current discussion in industry to move towards re-
vised architecture

One struggle car makers have when designing the next safe autonomous systems
is the question of distributed versus centralized processing. Why is this a concern?
Cars are becoming smarter, more connected and ever more automated. The conven-
tional approach is to distribute processing of sensed data around the vehicle and let
the information be processed at different layers of architecture. Another topology
under consideration by car makers is the centralized processing model where the
raw data coming from the sensors and algorithms built to react to sensed data are
in the same high computational layer of the architecture.This will be the focus of
the thesis, to look into the centralized control VMAs and how the current industry
is working towards it.

Reducing number of ECUs in E/E architecture The increasing use of elec-
tronic systems in automobiles brings about advantages by decreasing their weight
and cost and providing more safety and comfort [59]. In the earlier days of automo-
tive electronics, each new function was implemented as a stand-alone ECU, which
is a subsystem composed of a micro-controller and a set of sensors and actuators.
This approach quickly proved to be insufficient with the need for functions to be dis-
tributed over several ECUs and the need for information exchanges among functions
[60]. Therefore, an architecture of integrated electronic systems in an automobile is
important to be designed in order to optimize the total function, cost and produc-
tivity [61]. Many automotive OEMs implement most of their functionality in form
of software systems. Each ECU is a system embedded with software. It’s no longer
possible to study an ECU as a stand-alone system. The automotive industry is fac-
ing the challenge of the rapidly growing significance of software and software-based
functionalities. Research has shown that software complexity is a major reason for
project delay and cost overrun. AUTOSAR is a very recent international effort to
address the issue of complexity management of highly integrated ECUs for future
requirements [62]. Multicore processors having multiple processing units are inte-
grated on a single chip, have emerged to be the main computing controllers not only
for high-end servers but also for embedded control systems. Using multicore proces-
sors, more centralized architecture designs can be adopted for automotive control
systems [63].

Trade-off based on ECU layouts in a functional architecture As electrical
and electronic content has continued to add functionality, many wire systems in
today’s automobiles have become bigger, heavier and more complex than ever. The
architecture is analyzed for the following metrics

• Control Latency: In control applications, the electronic system typically in-
teracts in a closed loop with the plant and the environment using sensors and
actuators. An interesting measure of performance in such a system is given
by the end-to-end latency from sensors to actuators. The delay is measured
between sensing a change in the environment and the arrival of the corre-
sponding control signal at the actuator function. From experimental results

34

3. Analysis

conducted in [64], it was established that on a centralized architecture it is
easier to achieve shorter latencies. The reasons being:

1. Communication over serial busses is generally slower than communication
local to an ECU;

2. It is possible to control the relative order of execution of functions within
an ECU. Whereas, across ECU’s in an asynchronous communication net-
work, there is no way of ensuring sampling alignment across the receiver
and transmitter.

In distributed architectures, the lack of synchronization among ECUs leads to
scenarios where the sampling alignment is so unfavorable that it introduces
one-period delays at each sample.

• Geometric metrics: In the discussion, three geometric attributes are consid-
ered: total wire length, number of cut leads and number of ECUs. These three
attributes vary considerably according to the chosen architecture and are the
greatest cost drivers for assembly and manufacturing costs. From experimen-
tal results conducted in [64], due to the locations of the sensors and actuators,
a centralized architecture configuration naturally caused a larger wire length
since each I/O wire had to be routed all the way back to the target ECU. On
the other hand, the decentralized configuration allowed the modeller to route
the signal coming from the I/O to the nearest bus connection, hence reducing
the total wire length significantly.

• Serial data metrics: In serial data metrics the measure is based on how exten-
sively the architecture uses the serial bus for communication. The comparison
is based on: number of signals communicated locally versus the number of mes-
sages transmitted over the bus, the amount of data (number of bytes) in those
messages, and the bus utilization (as percentage of the total bandwidth used
for communication). It was observed in [64] that the distributed architectures
use the serial bus much more extensively than the centralized architecture.

The trade-off though is clearly the reduced latency in a centralized architecture while
the decentralized architecture supports a geometrically distributed sensor actuator
configuration and is generally more flexible.

3.4.2 Changes in relation to quality attributes: Reuse, mod-
ularity and scalability to reduce complexity

One among many motivation for radically departing from traditional VMA to the
centralized control architecture is complexity reduction. Since the industry is moving
to highly automated system, the back end comes into the system providing dynamic
information and more sensors are required for doing highly automated driving func-
tions. It will be challenging to manage the complexity that arises from these new
functions if the architecture is not changed. The architecture’s main benefit is a sig-
nificant reduction in the amount of software that must be developed and validated.
The outcome of the developed architecture is to reuse the basic platform software,
and know that the applications that have already been tested are going to work

35

3. Analysis

in the next ECU, even if it is from a different supplier. Of course the final tests
will still have to be conducted. To reduce the complexity of electronics in modern
vehicle, OEMs are struggling to integrate as many software components as possible
into the existing ECU, without degrading the performance of the ECU.

3.5 Abstraction layers
The term Abstraction Layer originates from operating systems, where it is the layer
between computer hardware and the OS kernel. The interface between application
software and hardware of a highly integrated system leads to a high complexity.
That complexity needs to be hidden (or managed) in order to operate that many
actuators and sensors precisely for a certain control application. However, for good
performance the components must have the most direct access to all actuators and
sensors. The challenge here is to provide a high-level hardware abstraction that is
convenient for the intended user and still allows high-performance.

From the control designer’s view point the Abstraction Layer is the separation of
the hardware components from low-level control (i.e. software). In this way, the
control layer is analogous to the operating system layer that provides the basic
functionality for subsystems/components. The system has following requirements
for the implementation of an Abstraction Layer:

• The layer is expected to comply to the system’s domain model (vehicle system
framework)

• It is expected to be applicable in real-time and enhance or at least maintain
efficiency of the architecture

• The focus of the layer is to be on dedicated hardware (protocols, platforms)

The abstraction layer is thought to validate all input values from control and the
validation of the hardware state represented mainly by the sensor values. This would
be to ensure that all values that enter the control algorithm from the abstraction
layer and vice versa, are confirmed to be valid. The abstraction layer is not only
a convenient interface to the hardware it is the ONLY interface. This can be ex-
ploited by system designers to hide necessary changes of hardware implementation,
e.g. sensor measurement principles or the hardware can be replaced by a software
simulation. The concept of model based approach that governs the interaction be-
tween system components and the concept of an abstraction layer that governs the
location of hardware composition, setup, calibration, and validation promise a way
of tackling the complexity of highly integrate vehicle system [65]. The other inten-
tion of introducing abstraction layer is because it enables hardware and software
decoupling, for e.g., if at any point the software has to be updated or changed then
it can be done without having to change the hardware components. The abstraction
layers are built to be scalable to all the future changes, in the sense that if new hard-
ware is introduced then the abstraction layer is the only one needing an update to
include the abstraction between the components, assuming that the hardware being
exchanged still functions the same with the old software.

36

3. Analysis

Figure 3.6: Abstraction layer to showcase hardware-software decoupling

Fig. 3.6 shows an example of an example of how abstraction layer aids in hardware
and software decoupling [66]. The vehicle model is the hardware component under
discussion which takes the following inputs:

• Steering wheel angle[rad]

• Accelerator pedal position[%]

• Brake pedal position[%]

But, the output signals from software are in a slightly different format:

• Road wheel angle[rad]

• Accelerator pedal position[%]

• Brake deceleration request[m/s2]

If the abstraction layer was not present, then either the software (control algorithm)
or the hardware component had to be changed to accommodate these inconsistencies.
This shows clear dependency between the software and hardware component. The
abstraction layer aids in reducing this dependency by providing a fix to match the
signal inconsistencies. Road wheel angle is multiplied by the steering ratio to obtain
the steering wheel angle. The mapping between brake deceleration and brake pedal
position is done using the look up table. As the vehicle model and software algorithm
both accept accelerator pedal position, no change is made to this signal. This is just
an example to exhibit the usage of abstraction layer.

37

4
Results

4.1 Revised Centralized control Vehicle Modeling
Architecture

This section will utilize some of the concepts discussed in the previous chapter to try
and present a possible improvement to the current vehicle modeling architecture.
The purpose of partitioning the architecture in this way is to support models of vary-
ing levels of detail, provide common interfaces and system decomposition in order to
promote model reuse and to support a wide domain of vehicle engineering activities.
The introduced architecture is based on AUTOSAR and other pioneer VMAs, the
vehicle architecture is partitioned in a way that tries to mimic the other standards
as close as possible so as not to deviate too much from the current community stan-
dards but does however try and extend the system to be more re-usable, scalable,
modular and less complex. AUTOSAR layered architecture is considered as an in-
spiration to build the revised architecture, various individual concepts introduced in
AUTOSAR are also considered (for ex., abstraction layer) and integrated into one
single architecture. The revised vehicle architecture is intended to accommodate the
autonomous driving software functions but at the same time also works perfectly
with the standard vehicle without advanced software units, this is elaborated in
Section 4.1.3.9 after introducing the entire architecture.

38

4. Results

Figure 4.1: Top level of the centralized control vehicle architecture

The top-level of the vehicle architecture describes the system at it’s most basic
level of functional operation. The functional partitioning of the vehicle consists of:
Driver, Environment and Vehicle (control system and physical plant systems) as
shown in Fig. 4.1. The red lines in the architecture represent the signal interfacing
between the system, subsystem and components in the architecture.

4.1.1 Driver
The first source of excitation comes from driver, it can either be a human driver or a
control algorithm that is involved in controlling the vehicle and it’s subsystems. The
driver or the control algorithm interacts with the Human machine Interface HMI,
this could for instance include the sensors/buttons which the driver uses to send
information to different parts of the vehicle’s embedded motion functionality (i.e,
actuators or controllers). The signal interface between the driver and the vehicle
subsystems allows for bi-directional interactions. The driver subsystem shown in
Fig. 4.2 includes human machine interface (HMI) and the Driver management
(signal interpretation and feedback control) placed in the vehicle subsystem. Also,
sensing of vehicle’s state and environment can further improve the interpretation of
driver’s intention, and/or to correct a control error.

39

4. Results

Figure 4.2: Driver subsystem in centralized control vehicle architecture

4.1.2 Environment
The Environment Subsystem defines the physical state of the exterior space sur-
rounding the vehicle and driver that affects operation and performance of the vehi-
cle system and subsystems. It provides the vehicle with external inputs dependent
on its global position and velocity and provides each vehicle road-wheel with local
road topology and condition inputs. It is also capable of providing continuous infor-
mation on ambient air conditions. The environment subsystem communicates with
other vehicles (V2V) and infrastructure (V2I) and map information. Inputs to envi-
ronment model is the vehicles position, including orientation in global coordinates.
Outputs are the relative position to each obstacle, in vehicle coordinate system.

40

4. Results

Figure 4.3: Environment subsystem in centralized control vehicle architecture

The surrounding physical state of the vehicle can be described in terms of the con-
ditions of atmosphere, road/terrain, and traffic/surroundings of the vehicle [67].

• Atmosphere: The Atmospheric Subsystem defines the physical state (for e.g.,
atmospheric conditions) of the atmosphere surrounding the vehicle and driver
that affects operation and performance of the vehicle system and subsystems.

• Road/Terrain: The Road/Terrain Subsystem defines the physical state of
the ground surface at the contact patches of the wheels/tracks. It describes
the road/terrain conditions (e.g., surface coefficient of friction, surface slope
or gradient (surface pitch and roll), surface geometry, etc.).

• Traffic: The Traffic Subsystem defines the local traffic around the vehicle.
It describes the conditions (e.g., vehicle dynamics, position, velocity, and vol-
umes/footprints of surrounding vehicles, pedestrians, other occupied spaces,
and unoccupied spaces, etc.), the vehicle dynamic states of the vehicle can be
described in both local and global coordinate systems.

• Surroundings: The Surroundings Subsystem defines the infrastructure sur-
rounding the vehicle. It describes surroundings conditions of the infrastructure
(e.g., traffic lane configuration, lane width, clearance height, speed limits, traf-
fic lights, etc.)

41

4. Results

4.1.3 Vehicle
The Vehicle Subsystem at the most basic and abstract level of purpose and function
is partitioned into the following subsystems: Sensor abstraction, Centralized
control, Actuator abstraction, Actuator devices, Internal sensors and
Plant models. Together they represent a conceptual breakdown of the vehicle
according to key functions.

Figure 4.4: Vehicle subsystem in centralized control vehicle architecture

4.1.3.1 Sensors

High specification modern vehicles have environment sensors (camera, radar, GPS
with electronic map, etc.) that can give information (relative distance and speed,
etc.) about objects ahead of subject vehicle. It can be both fixed objects (road
edges, curves, hills, . . .) and moving objects (other road users, animals, . . .). Based
on the positioning of sensors and the information it provides, the sensors can be
classified into either Internal or External sensors:

• Internal sensors: The internal sensors focus on the dynamic states of the
car and it’s internal data. These sensors are positioned at the car and focus on
vehicle itself. Typical representatives are gyros, accelerometers, steering angle
sensors as well as sensors for wiper activity, indicators and further more.

• External sensors: The external sensors focus on the car’s surrounding en-
vironment. These sensors are mounted on the car but record the immediate

42

4. Results

environment. Typical representatives are radars, lasers, ultrasonic sensors,
cameras and further more.

Apart from these two, there are also meta sensors which are not the actual sensor
but rather source of data derived from measurements of other sensors. Typical
representatives are cloud data, navigation maps, Car2X and further more. This
meta sensor information is included as a part of environment.

It can be seen in the Fig. 4.5, that the internal and external sensors are positioned
separately from each other. The reason being, Internal sensors are considered to
be carrying critical information about the vehicle and it’s states for e.g., the wheel
speed etc, therefore it is positioned closely to the centralized control unit in order to
have a low latency, internal sensor data is abstracted by actuator abstraction layer.
Where as external sensors consist of raw data that is be abstracted before it is fed
to the control algorithms and also it is the external sensors that allow fusing of one
or more types, which is why the external sensor data has to pass through the sensor
abstraction and sensor fusion layers before entering the centralized control.

Individual shortcomings of each sensor type cannot be overcome by just using the
same sensor type multiple times. Instead, it requires combining the information
coming from different types of sensors, which is why the concept of Sensor Fusion
is adapted. In Fig. 4.5, the sensor fusion layer is introduced for the exact reason,
it is placed in close proximity to the abstraction layer and external sensors, since it
is a common practice to combine external sensor types. Sensor fusion takes inputs
from different sensors and sensor types and use the combined information to perceive
the environment more accurately. That results in better and safer decisions than
independent systems could do. An example is presented to better understand the
concept of sensor fusion: for e.g., radar might not have the resolution of light-based
sensors, but it is great for measuring distances and piercing through rain, snow and
fog. These conditions or the absence of light do not work well for a camera, but it
can see color (street signs and road markings) and has a great resolution. Radar
and camera are examples of how two sensor technologies can complement each other
very well. In this way a fused system can do more than the sum of its independent
systems could. Sensor fusion also helps in maintaining some basic functionality in
case of emergencies or malfunctions.

43

4. Results

Figure 4.5: Sensors in centralized control vehicle architecture

4.1.3.2 Actuators

Actuators are an essential part of electronic control systems in vehicles. It is their
job to convert the electrical signals from the control unit into an action. In Fig. 4.5,
the actuator devices are seen to be placed in direct connection to the plant models
since they receive command signals from the controller and implements the action
on the physical plant models accordingly.

4.1.3.3 Sensor and Actuator Abstraction layer

The abstraction layer introduced in Section. 3.5, is integrated as a part of the
centralized control vehicle architecture for sensors and actuators. The abstraction
layer enables the ability to change sensors and actuators without re implementing
the control model. The sensor abstraction layer on the left side addresses the task of
transforming individual sensor data into a format that’s understood by the central-
ized control, the transformation can be simple in some cases like a simple conversion
of acceleration from the unit [g] to [m/s2] ans complex in other cases depending on
the type of sensor that is being processed.

The actuator abstraction layer addresses the task of transforming the control signals
into the format easily understood by the actuator devices, the transformation can
be as simple as a unit conversion of an angle from [rad] to [degree] or complex in
some cases for e.g., vehicle dynamic influencing actuators. The sensor and actuator
abstraction layers have the following advantages:

44

4. Results

• It simplifies and allows the architecture to be more “portable” by removing
(hardware and software) dependency.

• With emerging XML standards, the abstraction layer guarantees compatibility
and interoperability with future technologies.

• It establishes a two-way communication channel with sensors and actuators so
sensor/actuator-specific commands can be sent and their results collected and
passed up the hierarchy.

• It enhances sensor/actuator capabilities by providing transparent support for
any sensor/actuator-specific commands.

4.1.3.4 Centralized control

Figure 4.6: Control system in centralized control vehicle architecture

The centralized control system presented in Fig. 4.6 comprises of three different
layers. All layers work in a sense-plan-act loop, this loop is expected to be at least an
order of magnitude faster than the nominal system loop to execute fast deliberative
behaviour in presence of unexpected events. The first layer from the top is the route
planning layer, this layer is dedicated to strategic functions that involve planning
of trajectories or the motion of the vehicle in discussion from point A to point B,
this layer is intended to receive information from environment and external sensor

45

4. Results

subsystems. The trajectory/route is planned in this layer and then fed to the lower
layer for further evaluation of the control signals.

The second layer in the centralized control system is Decision and control layer,
as the name suggests the main functions that are carried out in this layer is to make
decision based on the trajectory planned, decisions are made with the help of control
algorithms. Decision and control layer refers to the functional components which are
concerned by the vehicle characteristics and behavior in the context of the external
environment it is operating in. The control algorithm in the layer contains reactive
control algorithms to the unexpected events in the environment, for e.g., collision
avoidance by braking etc.

The third layer Coordination layer, identifies the current driving situation first,
then decide how to coordinate the system’s actions based on input from decision
and control layer. An operational coordination layer includes events that can gen-
erate vehicle motion by estimating the vehicle states and has the capability to send
command signals to the actuator. The most important characteristic for this layer
is that it deals with continuous dynamic behaviour of the vehicle as a whole system.
It is a layer where a failure can result in significant physical damage or economics
losses or even threat to human life. This is the level where most of the controller
for the vehicle propulsion system is designed.

4.1.3.5 Functionality distribution and Control hierarchy in centralized
control

The control system is separated in different hierarchical layers as discussed in section
4.1.3.4. Each layer can be seen as a functional domain that encapsulates several other
control systems internally. The reason behind the partitioning of the layers is the
complexity of the vehicle system and the different demands in execution time. At
the lowest layer control systems that are time critical are placed while at the higher
level the layer consists of functionalists that are not time critical. Higher layers
are responsible for the overall goals and objectives of the integrated vehicle system,
while lower layers are responsible for solving the resulting sub-problems. The layers
are organized in such a way that the most time critical modules or functionalities
are placed at the lowest layer, the execution time for functions in coordination layer
is around 10ms. Basically, the coordination layer includes time critical functionality
that has low computational load and high priority in terms of conflict in signals. As
one goes higher up in the hierarchy, the time criticality reduces, decision and control
layer takes more time (roughly around 1s) than the functions in the coordination
layer since it mainly consist of decision and control algorithms. The top most layer
which is route planning is the last when comes to priority and time criticality since it
does not pose any severe threats to the vehicle or the person in the vehicle. It takes
roughly around 10s to execute and has low priority in terms of conflict resolution or
emergencies.
The intention behind this structure of control system is to consider the Decision
and control (cognitive driving intelligence) as well as the coordination layer(vehicle
motion) as two cooperating, relatively autonomous entities. Neither knows the in-

46

4. Results

timate details about the other and the decision layer makes motion demands of the
vehicle platform in world coordinates, which the latter makes a best effort to fulfill.
The task of the decision layer is to perceive the world and make motion requests in
this world, while the task of the coordination layer is to realize the desired motion
requests while keeping its own features and limitations in mind. In such an ideal
de-coupling, the same decision and control layer should be able to operate over a
variety of vehicle motion operations with only minor changes, provided the interface
between them remains the same.

4.1.3.6 Signal flow

The request signals are flowing downwards and the actual values that is needed to
perform this calculations are flowing upwards. Apart form the request signals and
actual value signals, a third kind of signal is being used in the structure which is the
capability signal. This signal basically is carrying the capability of the actuator and
internal sensors. The purpose of doing this is to make sure at all point of time that
the critical devices such as actuators and internal sensors are performing as desired.
The capability of devices is measured by basically checking the health of the signal
being collected from the devices. A quick preprocessing of data with min/max range
can be used to check the capability of the actuator and sensor devices. The capability
estimation can be added in the coordination layer as that is in direct communication
with the actuator and sensor devices. This can help in early testing of the hardware
components during HIL (hardware-in-loop) testing and also to check the validity
of the plant models with control algorithms being designed for respective hardware
components. Capability estimation of components also reduce the risk of component
failure thereby reducing cost. The three signals in discussion can be seen in Fig.
4.7

47

4. Results

Figure 4.7: Signal flow and conflict resolution in centralized control vehicle archi-
tecture

It can be seen that the decision and control layer also include arbitration and coor-
dination units. The Arbitration concept is the process of settling an argument or a
disagreement by an entity that is not involved [68]. For e.g, Arbitration allows the
selection of different automation modes (for instance if the driver chooses to disable
or enable a certain ADAS system) and decides on the control signal that is most
suitable to set as command. e.g. lets assume that we are driving on a straight road
with Autonomous Emergency Braking (AEB) active. We are closing in to a vehicle
which the system deems unsafe, the arbitration unit will either warn the driver or
override the drivers controls if a collision is expected. Coordination unit is used as
distribution strategy between different requests, e.g. we want to brake in a situation
but we have multiple ways of performing that maneuver. Do we use engine-braking,
disc brakes or some kind of energy recovery system, the coordination unit will aid
in the distribution of the request command to different actuators.

48

4. Results

4.1.3.7 Signal flow illustration with ACC functionality

Figure 4.8: example for centralized control vehicle architecture

Fig.4.8 shows an example to better understand the layering and functionality in
each layer. Consider an example where the vehicle wants to move from point A to
point B with Adaptive cruise control,

• The driver model is used to send out information about the accelerator pedal
position and if ACC functionality should be turned on or off.

• The request for ACC functionality service to be activated is sent as a request
to decision and control layer.

• The ACC algorithm in decision and control layer receives the actual signal
value of distance sensors from external sensors which has been abstracted and
possibly fused.

• The arbitration in decision and control compares the ACC algorithm output
with that of driver’s interpretation and accordingly sends Speed/Acceleration
request to coordination layer.

• In coordination layer, the arbitration takes into account requested speed/ac-
celeration from the layer above and compares it with vehicle motion stability
control algorithm to send a request to the coordination.

• The coordination will take the request from the arbitration and distributes the
powertrain requests to the right components accordingly.

49

4. Results

• Coordination layer sends Wheel torque as a request to respective actuator
devices through abstraction layer.

• Vehicle motion sensors which are part of internal sensors are sending sensor
data to motion/stability control in coordination layer.

• In addition, motion and stability control block estimates the current vehicle
states and gives feedback to the ACC algorithm in decision and control layer.

The route planning layer generates the trajectory that the vehicle needs to follow
using the information from the environment subsystem and the trajectory (the coor-
dinates in world map) is sent as an output to the decision and control layer. Apart
from these functionalities, few other critical functionalities which are proving to be
mandatory like safety and diagnostics management and energy management are in-
cluded in the example. The safety and diagnostics management subsystem is
expected to perform plausibility checks on the data transferred between modules in
the architecture and collect all plausibility check results and derive suitable strate-
gies in terms of safety and error handling. Since the safety subsystems consists a
lot of checking and decision making to perform it is placed in decision and control
layer where it will have direct access to the data necessary to perform the safety
checks. The Energy management subsystem consists of electrical and thermal
management in the vehicle, these are placed in the coordination layer because they
determine the vehicle motion in case of energy critical conditions especially in hybrid
and electric vehicles. For e.g., if the vehicle is an hybrid electric then the energy
management subsystem is responsible for measuring the state of charge of the bat-
tery and in situations when the engine has to take over the energy manager has to
step in and send the respective signals, this is a time critical event and can lead to
severe consequences which is why it is placed in coordination layer.
It is important to note that this is not a set standard of how the control structure
should look like, this is just one way of doing it. For e.g., the number of layers in the
control system structure will change depending on the type of vehicle under discus-
sion, if the control system is being designed for a truck then an additional payload
management layer can be included above the route planning layer, the addition of
payload information in the control structure can yield better results. From control
design point-of-view the integrated vehicle control consist of five potentially distinct
layers:

• The physical layout of local control based on hardware components, e.g. AB-
S/EBS, TCS, TRC, suspension.

• Layout of simple control actions, e.g. yaw/roll stability, ride comfort, forward
speed.

• The connection layout of information flow from sensors, state estimators, per-
formance outputs, condition monitoring and diagnostics.

• The layout of control algorithms and methodologies with fault-tolerant syn-
thesis, e.g. lane detection and tracking, avoiding obstacles

50

4. Results

• Layout of the integrated control design.

This can be used as an inspiration and all or a combination of them can be used
based on different use case.

4.1.3.8 Separation of concerns

The functionality distribution in the centralized control system enables a relatively
clean separation of concerns. The functionalities in decision and control layer need
not be concerned with the finer details of how the motion it desires is achieved, it is
only responsible for generating command signals based on the set control algorithms.
The vehicle motion in the coordination layer does not need to be concerned with
how and why the motion commands are generated - it is only concerned whether
they are realizable and if so, how to best realize them given the current platform
capabilities. Concepts related to stabilization of the platform, like traction control,
anti-lock brakes etc. are transparently realized by the coordination layer, without
the decision and control layer having to be aware of them.

4.1.3.9 What is different about this architecture

In the analysis a set of current state of the art architecture are discussed and above
in the results, the centralized control vehicle architecture is presented. This section
will highlight what are the key differences between the traditional architectures and
the centralized control architecture:

• One key difference is the centralizing of the control system into one single
module with different layers based on time criticality and reuse, and the unique
signal flow between these layers.

• The addition of abstraction layers for sensors and actuators which enables
hardware-software decoupling and increased reuse opportunities between the
devices and control software

• The segregation of internal and external sensors based on the critical data they
output, measurement of capabilities of the critical devices like actuators and
internal sensors.

• Including the concept of sensor fusion along with the abstracted external sensor
data before feeding it to the control system.

• Separation of concern by decoupling the functionality of the layers in the
control system structure. Since the layers are not concerned with how the
other layer carries out the task, it creates a clean separation of concern in the
architecture.

The Layers/structuring in centralized control architecture has the ability to adapt
to the future changes of incorporating autonomous software functions or working
seamlessly with the current vehicles with limited autonomous functions. An exam-
ple is provided to better explain the above claimed difference. In Fig. 4.7, the
arbitration in decision and control layer, gets commands from route planning layer

51

4. Results

and the driver interpretation based on planned trajectory. In case of autonomous
driving, the input to this arbitration can be from the autonomous function and in
cases where there is no such input, then the arbitration just considers driver inter-
pretation from an actual driver. The same is applicable to coordination layer as
well. The functional distribution among these layers can be decided based on use
case.

4.2 Evaluation and comparison of centralized con-
trol architecture

The revised architecture with centralized control architecture is evaluated based
on the quality attributes of reusability, modularity and scalability and then a brief
comparison is done with other existing pioneer vehicle architectures.

4.2.1 Evaluation of centralized control architecture based
on quality attributes

In this section, the centralized control architecture is briefly evaluated based on
previously discussed quality attributes such as: reusability, modularity, scalability
to reduce complexity.

4.2.1.1 Reusability

The centralized control vehicle architecture aids in reusability of components in the
following way:

• The separation of concerns in centralized control results in independent func-
tionality distribution. This makes it easier to reuse the control algorithms and
other software functionality as they are not tightly coupled with each other.
Each module in the centralized control is working as a individual entity.

• The hardware-software decoupling enables reuse of both hardware and software
components. For e.g, the plant models can be replaced/changed by still using
the same control algorithm or vice-versa. The sensors and actuator units
can also be reused. Abstraction is the approach used to decouple hardware-
software and enhance reusability.

4.2.1.2 Modularity

Modularity as defined previously, is configuration and reconfiguration of the modules
in the architecture. The centralized control architecture is structured in a way
to enable plug and play of components. The layers in the control system have
specific signal interfacing which makes partitioning and reconfiguration of system
even easier. These fixed signal interfaces and abstraction layer helps in decomposing
the modules into independent components, these components can then be either used
as it is or bunched together to perform desired functionality.

52

4. Results

4.2.1.3 Scalability

The centralized control architecture accommodates the current day standard vehicle
requirements but also is scalable to future automotive changes. One example for
this is the ability to adapt from manual vehicle to autonomous vehicle by help of
arbitration in decision and control layer. Also, the layers on the whole can be added
or changed depending on use case for e.g., if the centralized control is being designed
for trucks then a separate layer can be added for payload management of the vehicle
since it plays a major role in the simulation. The abstraction layer makes it further
easy to update hardware components with minimum changes to the software units
and vice-versa.

4.2.1.4 Complexity

All the above quality attributes can be used to reduce complexity of the system.
Enhancing reusability, modularity and scalability in a system leads to reduced func-
tional and cognitive complexity.

4.2.2 Compare with traditional architectures
In this section, we make comparisons with the architectures of ford motor company’s
VMA, Junior - Stanford’s entry in the 2007 DARPA Urban Driving Challenge and
the HAVE-IT project. It is useful to compare the proposed architecture with those
from other similar ongoing/previous projects. The intent of the comparison is to
highlight similarities and differences, rather than make claims of which architec-
ture is "better". The reason being, the system architecture is still largely driven
by qualitative aspects like legacy considerations, brand values, organizational and
development processes, commitments to specific technology partners and so on [69].

4.2.2.1 Comparison to Ford motor’s VMA

A comparison is made to the VMA being used at Ford motor company(2003), though
this VMA was presented a long time ago, it is still majorly in practice in the current
automotive industry. In the VMA, the primary decomposition of the architecture
consists of Driver, environment and vehicle, this has been a standard for decom-
posing the top layer of architecture, the proposed architecture also follows the same
ideology. Going further down into decomposition, the VMA has CAPS system,
closely coupling the controller to the plant and also to actuator and sensors to some
level to mimic the real vehicle onto the simulation architecture. Whereas in our
proposed solution, the controller is decoupled especially from plant models and ad-
ditionally, the sensors and actuators are in standalone structure with abstraction
layers to support exchange and reusability of the hardware and software compo-
nents. The signal flow in the traditional VMA is only concerned with data transfer,
in the proposed architecture an extra step has been taken to consider the signal flow
so as to also measure the capabilities of critical sensor and actuator devices. The
same comparison also holds good for Modelica architecture, in Modelica architec-
ture, the structure is the same as VMA just the plant models are modelled in an

53

4. Results

acausal approach to gain better understanding, reuse and reduced complexity. In
the proposal, it is strongly recommended to opt acausal modeling approach but also
an alternate option is provided to use the causal models using two way connectors
to gain the benefits of acausal plant modeling.

4.2.2.2 Comparison to European HAVEit architecture

Similar comparison has been done with the European HAVEit (Highly automated
vehicles for intelligent transport) architecture [70]. This architecture consists of four
layers: ’Driver interface’, ’Perception’, ’Command’ and ’Execution’. The Perception
layer consists of environmental and vehicle sensors and sensor data fusion. The Com-
mand layer contains a component named ’Co-Pilot’, which receives the sensor fusion
data and generates a candidate trajectory. The selected trajectory is then handed to
the Execution layer in the form of a motion control vector. The Execution layer con-
sists of the Drive-train control, which in turn controls the steering, brakes, engine,
and gearbox. These layers correspond closely to the route planning, Decision and
control and coordination layers in the centralized control of the architecture being
proposed in this thesis work. Both the architecture follow Sense-Plan-Act approach
where the environmental data is sensed and the desired reaction is planned in coop-
eration with the control algorithms and finally the action is executed. Also similar
usage of a motion control vector as an interface to the vehicle platform/execution
layer can be seen in the proposed architecture. Proposed architecture additionally
incorporates energy management as an explicit part of the coordination layer, which
is especially valuable for electric and hybrid drive-trains and safety and diagnostics
as a part of decision and control layer. This comparison highlights the fact that
the proposed architecture is in-line with the common thought of the automotive
industry.

4.2.2.3 Comparison to Open interface reference architecture

Finally, the proposed architecture is compared to the open interface reference archi-
tecture (in close relation to AUTOSAR) by Elektrobit Automotive GmbH. In the
open architecture, they create a specification of their own and add vehicle abstrac-
tions to convert the specifications back and forth as the data flows from sensor to
actuator. In the proposed architecture the abstraction layers are introduced specifi-
cally for sensors and actuators to enhance reusability and decoupled way of working
in the industry. The idea of separating the internal and external sensors is encour-
aged by open architecture, where the abstractions on sensor data are based on type
clustering of sensor devices into interoceptive, exteroceptive and other sensors. The
open architecture is specifically designed for vehicle motion, which is why the control
system only includes situative behaviour arbitration and motion management, these
two components mainly focus on decomposing the functional behavior, distribution
of interpretation (vehicle/driver) and centralization of decision. Though, it is just
for vehicle motion, the overall idea still resonates with the proposed architecture
where the layers in the centralized control are intending to serve similar purpose.
Apart from these similarities, the proposed architecture incorporates safety and di-

54

4. Results

agnostics as an integral part of control rather than having a separate unit for it as
done in open architecture. The open robinos specification (open reference architec-
ture), is to facilitate common understanding of the architecture and to enable and
accelerate the development of highly automated systems across the industry. Open
robinos has similar such specification for other automotive features as well and the
specification might differ based on use case but the over all architecture still remains
the same as the one presented above.

The above comparison has lead us to believe that the explicit separation of concerns,
decoupling of hardware and software components and vehicle platform abstraction
components are unique to the proposed centralized control architecture. The in-
corporation of these functions is, to some extent, a deliberate action to resolve the
short-comings perceived during early state-of-the-art surveys. Furthermore, the pro-
posed architecture is scalable and can been applied to a larger variety of vehicles
(commercial trucks, passenger cars, as well as novel, legacy free designs) and there-
fore can necessarily incorporate features related to greater isolation of functionality
into distinct components and abstraction of vehicle interfaces. The unique parti-
tioning gives the modelers the opportunity to develop and test specific algorithms
without having to change or modify the rest of the architecture. The structure also
reduces the cognitive complexity of the system and makes it relatively easy to foresee
potential pitfalls and debug causes of objectionable behavior.
Having discussed how the proposed architecture works towards fulfilling the current
need of automotive industry, it is only reasonable to point out that the centralized
control architecture has some limitations of itself too. An architecture needs to
be evaluated in its context, because the context imposes unique constraints with
associated implications on the design. Thus, it is chosen to believe that every
architecture that works has merits in its own context and that there is rarely a
definitively best solution to any given architectural problem.

55

5
Conclusion and future work

5.1 Conclusion
The paper, introduces the concept of modeling and simulation and the benefits these
give to realize the desired change in the vehicle industry. To better simulate a real
vehicle an architecture has to be adopted, developing this architecture every time
a simulation needs to be done, is the same as reinventing the wheel which is why
standardization is encouraged in architecture design to enable reuse. The tradi-
tional vehicle modeling architectures are introduced and benefits and limitations of
the same are discussed, in the process it was noticed that the current architectures
are outdated compared to the growing demand of highly automated vehicles. The
analysis of current state of the art architectures also showed potential concern in
relation to quality attributes such as reusability, modularity and scalability to re-
duce complexity. A proposal for a centralized control architecture is presented which
works on sense-plan-act strategy, by including layers for strategic (route planning),
tactical (decision and control) and operation (coordination) functions. The auto-
motive industry and suppliers can rely on this architecture to ease of use in the
development and utilization of ECU software. It is needed in order to handle in-
creasing functional complexity in a cost efficient way. At the same time, the fact that
there are no uniquely and definitively correct solutions in architecting is acknowl-
edged. It is believed that patterns exist for highly automated vehicle architectures
and these patterns ought to be documented and debated. In this paper, an effort
has been done to touch upon the same concern by describing the principal concerns
of reusability, modularity and scalability and respective proposal to overcome the
said concerns, together with some reasoning regarding their distribution across the
architecture. A specific architecture incorporating the ideas has been presented in
section 4. The architecture highlights the need for a virtual integration environment
that allows the architect to take advantage of the architectural degrees of freedom
and efficiently analyze the impact of the changes

5.2 Discussion
In this section, research questions are revisited and discussed based on the revised
architecture with centralized control.

1. What are the current state-of-the-art VMAs? How do they differ
from each other? What are their limitations? Three different current
state-of-the-art VMAs, ford motor company’s simulink based VMA, JMAAB

56

5. Conclusion and future work

hierarchical VMA and Modelica’s acausal approach based VMA are presented
in section 3.1. Later in the same section, all the three architectures are com-
pared to find, Form motor company’s VMA is relatively flat in hierarchy with
minimal layers and tightly coupled CAPS system. The JMAAB architecture
is hierarchical in nature, along with individual controllers coupled to plant
models it has a vehicle supervisory control at the top level that supervises
other controllers. The Modelica VMA, though hierarchical in nature it follows
acausal approach to structure the system. The comparison is mainly done on
structuring of VMAs, layers of hierarchy, signal interfacing, hardware-software
decoupling, ease of use and complexity of system and finally, degree of reusabil-
ity in VMAs. The limitations of the three current VMAs are discussed based
on quality attributes of how reusable are the model/components? How scal-
able is the architecture and how modular is the architecture? These quality
attributes in-turn help to solve the challenges posed by complexity on the
VMAs.

2. How can the structure of current vehicle modeling architecture change
to accommodate growing future automotive functions. The current
VMA though hugely in practise needs changes to it’s structure to accommo-
date future changes in automotive industry. The architecture is analyzed based
on the modeling approach and the structure is revised in a direction towards
a more functionally software driven architecture to enable higher reuse. It is
further analyzed in section 3.3 how separating the concerns in the architecture
aids in achieving the results for quality attributes discussed. Later in Chap-
ter 4, a new revised architecture is presented, which involves restructuring
of the virtual vehicle to accommodate the future growing needs and also the
improvements for the discussed current VMA’s limitations.

3. How does the new revised VMA differ from the current VMAs based
on quality attributes such as reusability, modularity and scalability
to reduce complexity Section 4.1.3.9, covers a detailed evaluation and com-
parison of the revised VMA with centralized control compared to traditional
state-of.the-art VMAs. The comparison is done based on quality attributes
such as reusability, modularity and scalability to reduce complexity of the
architecture. Along with comparison to traditional state-of-the-art architec-
tures, the revised architecture is compared to European HAVEit architecture
and open interface reference architecture by Elektrobit(based on AUTOSAR),
which have been an integral part of discussion in the automotive community.

5.3 Future scope
The proposed vehicle modeling architecture in this thesis is a high level abstraction
and needs further realization and validation by implementing the architecture in
vehicle simulations. The outcome of the concepts presented in this architecture is
expected to trigger further research initiatives in this challenging area. The sys-
tem modules at its current state is more focused on vehicle motion control, it could

57

5. Conclusion and future work

be of interest to extend the architecture to cover other system modules like driver
interfaces and integration with vehicle infotainment. Metadata could also be one
potential approach to enable reuse more effectively by including data about the mod-
els and how they are supposed to be used correctly. Further investigation is still
needed in this area, for e.g., decide what kind of formalization is needed to describe
component data, what characteristics of a model should be expressed in the data,
increase of effectiveness by developing a standard vocabulary, can metadata be gen-
erated from model components and perhaps verified against templates. Furthermore
it could also be of interest to investigate if the reuse process can be automated by
algorithms and frameworks that select the right component for a certain simulation
scenario and confirmed by validation.

58

Bibliography

[1] P. Gao, H.-W. Kaas, D. Mohr, and D. Wee, “Automotive revolution–perspective
towards 2030 how the convergence of disruptive technology-driven trends could
transform the auto industry,” Advanced Industries, McKinsey & Company,
2016.

[2] J. Batteh and M. Tiller, “Implementation of an extended vehicle model archi-
tecture in modelica for hybrid vehicle modeling: development and applications,”
in Proceedings of the 7th International Modelica Conference; Como; Italy; 20-
22 September 2009, no. 043. Linköping University Electronic Press, 2009, pp.
823–832.

[3] ——, “Implementation of an extended vehicle model architecture in modelica
for hybrid vehicle modeling: Development and applications,” 10 2009.

[4] V. M. Navale, K. Williams, A. Lagospiris, M. Schaffert, and M.-A. Schweiker,
“(r) evolution of e/e architectures,” SAE International Journal of Passenger
Cars-Electronic and Electrical Systems, vol. 8, no. 2015-01-0196, pp. 282–288,
2015.

[5] P. Pelliccione, E. Knauss, R. Heldal, M. Ågren, P. Mallozzi, A. Alminger,
and D. Borgentun, “A proposal for an automotive architecture framework for
volvo cars,” in 2016 Workshop on Automotive Systems/Software Architectures
(WASA), April 2016, pp. 18–21.

[6] M. Tiller, P. Bowles, and M. Dempsey, “Development of a vehicle model ar-
chitecture in modelica,” in Paper presented at the 3rd International Modelica
Conference, 2003.

[7] M. Persson and S. Elfström, “Volvo car group’s first self-driving autopilot cars
test on public roads around gothenburg,” Volvo Car Group Media Relations,
pp. 04–29, 2014.

[8] J. D. Stoll, “Gm executive credits silicon valley for accelerating development of
self-driving cars,” The Wall Street Journal, vol. 10, 2016.

[9] S. Danny, “To be safe in the real world, avs must spend time in a virtual one,”
2018.

[10] A. C. Myriam Alexander-Kearns, Miranda Peterson, “The impact of vehicle
automation on carbon emissions,” 2016.

[11] M. Broy, “Challenges in automotive software engineering,” in Proceedings of
the 28th international conference on Software engineering. ACM, 2006, pp.
33–42.

[12] J. S. Carson, “Introduction to modeling and simulation,” in Proceedings of the
2004 Winter Simulation Conference, 2004., vol. 1, Dec 2004, p. 16.

59

Bibliography

[13] ——, “Introduction to modeling and simulation,” in Proceedings of the 2004
Winter Simulation Conference, 2004., vol. 1, Dec 2004, p. 16.

[14] A. Kara, F. Deniz, D. Bozağaç, and N. Alpdemir, “Simulation modeling archi-
tecture (sima), a devs based modeling and simulation framework,” pp. 315–321,
07 2009.

[15] A. Koziolek, Automated improvement of software architecture models for per-
formance and other quality attributes. KIT Scientific Publishing, 2014, vol. 7.

[16] G. Falcone, Hierarchy-aware software metrics in component composition hier-
archies. Logos Verlag Berlin GmbH, 2010.

[17] R. Reese and D. L. Wyatt, “Software reuse and simulation,” in Proceedings of
the 19th conference on Winter simulation. ACM, 1987, pp. 185–192.

[18] S. Robinson, R. E. Nance, R. J. Paul, M. Pidd, and S. J. Taylor, “Simulation
model reuse: definitions, benefits and obstacles,” Simulation modelling practice
and theory, vol. 12, no. 7-8, pp. 479–494, 2004.

[19] R. Fujimoto, C. Bock, W. Chen, E. Page, and J. H. Panchal, Research chal-
lenges in modeling and simulation for engineering complex systems. Springer,
2017.

[20] J. Colchester, “Modular systems design,” 05 2015.
[21] M. Takefumi, “Automotive parts modularization and its challenges for local

suppliers in hiroshima region.”
[22] R. M. Henderson and K. B. Clark, “Architectural innovation: The reconfig-

uration of existing product technologies and the failure of established firms,”
Administrative science quarterly, pp. 9–30, 1990.

[23] B. C. ord Neuman, “Scale in distributed systems,” ISI/USC, 1994.
[24] D. V, “Building blocks of a scalable architecture,” January 09, 2018.
[25] D. Hughes-Hallett, A. M. Gleason, D. Flath, P. F. Lock, S. P. Gordon, D. O.

Lomen, D. Lovelock, W. G. McCallum, D. Quinney, B. G. Osgood et al., Cal-
culus: Single Variable. Wiley, 1998.

[26] W. R. Group, “An introduction to parameterized model reduction, multifidelity
modeling, and uncertainty quantification,” 2018.

[27] O. TIGGES, “Scalable software systems, from developer laptops to server
farms,” November 26, 2014.

[28] L. Chwif, M. R. P. Barretto, and R. J. Paul, “On simulation model complex-
ity,” in Proceedings of the 32nd conference on Winter simulation. Society for
Computer Simulation International, 2000, pp. 449–455.

[29] R. Brooks and A. Tobias, “Choosing the best model: Level of detail, complexity,
and model performance,” vol. 24, pp. 1–14, 08 1996.

[30] M. W. Golay, P. H. Seong, and V. P. Manno, “A measure of the difficulty of
system diagnosis and its relationship to complexity,” International Journal Of
General System, vol. 16, no. 1, pp. 1–23, 1989.

[31] M. Broy, M. Gleirscher, P. Kluge, W. Krenzer, S. Merenda, and D. Wild, “Au-
tomotive architecture framework: Towards a holistic and standardised system
architecture description,” 2009.

[32] G. J. Holzmann, “Designing executable abstractions,” in Proceedings of the
second workshop on formal methods in software practice. ACM, 1998, pp.
103–108.

60

Bibliography

[33] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: im-
proving the design of existing code. Addison-Wesley Professional, 1999.

[34] C. Triebig and F. Klügl, “Refactoring of agent-based simulation models.” in
Multikonferenz Wirtschaftsinformatik, 2008.

[35] J. J. Luna, “Hierarchical relation in simulation models,” in Proceedings of the
25th conference on Winter simulation. ACM, 1993, pp. 132–137.

[36] T. Daum and R. G. Sargent, “Scaling, hierarchical modeling, and reuse in an
object-oriented modeling and simulation system,” in Proceedings of the 31st
conference on Winter simulation: Simulation—a bridge to the future-Volume
2. ACM, 1999, pp. 1470–1477.

[37] V. Siddha, K. Ishiguro, and G. A. Hernandez, “Hardware abstraction layer,”
Aug. 28 2012, uS Patent 8,254,285.

[38] S. Martínez-Fernández, C. P. Ayala, X. Franch, and E. Y. Nakagawa, “A survey
on the benefits and drawbacks of autosar,” in Proceedings of the First Interna-
tional Workshop on Automotive Software Architecture. ACM, 2015, pp. 19–26.

[39] A. P. Sage, System of systems engineering: innovations for the 21st century.
John Wiley & Sons, 2011, vol. 58.

[40] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer, “Feature (de) compo-
sition in functional programming,” in International Conference on Software
Composition. Springer, 2009, pp. 9–26.

[41] G. Kamble, “Aop-introduced crosscutting concerns,” in Proceedings of Interna-
tional Symposium on Computing, Communication, and Control (ISCCC 2009),
2009.

[42] P. van Staa, “How kets can contribute to the re-industrialisation of
europe,” in European Technology Congress, Wroc law, June 12-13,
2014: http://docplayer. net/21724658-Date-2012-how-kets-can-contribute-to-
the-re-industrialisation-of-europe. html, 2014.

[43] P. Pelliccione, E. Knauss, R. Heldal, S. M. Ågren, P. Mallozzi, A. Alminger, and
D. Borgentun, “Automotive architecture framework: The experience of volvo
cars,” Journal of Systems Architecture, vol. 77, pp. 83–100, 2017.

[44] O. Barais, A. F. Le Meur, L. Duchien, and J. Lawall, “Software architecture
evolution,” in Software Evolution. Springer, 2008, pp. 233–262.

[45] S. Chad, “Physical modelling,” Director of Maplesim development.
[46] A. Ohata and S. Komori, “Jmaab plant modeling guidelines and vehicle archi-

tecture,” , pp. 484–487, 2009.
[47] R. Trigui, M. Desbois-Renaudin, B. Jeanneret, and F. Badin, “Global forward-

backward approach for a systematic analysis and implementation of hybrid
vehicle management laws. application to a two clutches parallel hybrid power
train.” in EET-2004 European Ele-Drive Conference, 2004, pp. 12–p.

[48] I. Briggs, M. Murtagh, R. Kee, G. McCulloug, and R. Douglas, “Sustainable
non-automotive vehicles: The simulation challenges,” Renewable and Sustain-
able Energy Reviews, vol. 68, pp. 840–851, 2017.

[49] R. Matthaei and M. Maurer, “Autonomous driving–a top-down-approach,” at-
Automatisierungstechnik, vol. 63, no. 3, pp. 155–167, 2015.

[50] L. Matthew, “Bottom(s)-up or is the top-down? a working definition of systems
engineering,” 11 2013.

61

Bibliography

[51] C. Belton, P. Bennett, P. Burchill, D. Copp, N. Darnton, K. Butts, J. Che,
B. Hieb, M. Jennings, and T. Mortimer, “A vehicle model architecture for
vehicle system control design,” SAE Technical Paper, Tech. Rep., 2003.

[52] A. Ohata and S. Komori, “Jmaab plant modeling guidelines and vehicle archi-
tecture,” in 2009 ICCAS-SICE, Aug 2009, pp. 484–487.

[53] E. SYSTEMS, “Decoupling Hardware from Software in the Next Generation of
Connected Vehicles,” Tech. Rep., 05 2018.

[54] M. Kersting, “Independent and future-proof: decoupling of hardware and soft-
ware through image abstraction,” Tech. Rep., 2015.

[55] I. N. E. EPAM Systems. (2018, May) Decoupling hardware
from software in the next generation of connected vehicles. [On-
line]. Available: https://www.epam.com/content/dam/epam/en/free_library/
whitepapers/Automotive-White-Paper.pdf

[56] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control tech-
nology, vol. 12, no. 1, pp. 161–166, 2011.

[57] P. Hansen, “The hansen report on automotive electronics,” 2002.
[58] M. Broy, M. Gleirscher, S. Merenda, D. Wild, P. Kluge, and W. Krenzer, “To-

ward a holistic and standardized automotive architecture description,” Com-
puter, vol. 42, no. 12, 2009.

[59] S. Chakraborty and S. Ramesh, “Programming and performance modelling of
automotive ecu networks,” in VLSI Design, 2008. VLSID 2008. 21st Interna-
tional Conference on. IEEE, 2008, pp. 8–9.

[60] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in automotive
communication systems,” Proceedings of the IEEE, vol. 93, no. 6, pp. 1204–
1223, 2005.

[61] Y. Furukawa and S. Kawamura, “Automotive electronics system, software, and
local area network,” in Proceedings of the 4th international conference on Hard-
ware/software codesign and system synthesis. ACM, 2006, pp. 2–2.

[62] G. N. Vo, R. Lai, and M. Garg, “Building automotive software component
within the autosar environment-a case study,” in Quality Software, 2009.
QSIC’09. 9th International Conference on. IEEE, 2009, pp. 191–200.

[63] K. Senthilkumar and R. Ramadoss, “Designing multicore ecu architecture in
vehicle networks using autosar,” in Advanced Computing (ICoAC), 2011 Third
International Conference on. IEEE, 2011, pp. 270–275.

[64] S. Kanajan, C. Pinello, H. Zeng, and A. Sangiovanni-Vincentelli, “Exploring
trade-off’s between centralized versus decentralized automotive architectures
using a virtual integration environment,” in Design, Automation and Test in
Europe, 2006. DATE’06. Proceedings, vol. 1. IEEE, 2006, pp. 1–6.

[65] S. Jörg, J. Tully, and A. Albu-Schäffer, “The hardware abstraction
layer—supporting control design by tackling the complexity of humanoid robot
hardware,” in Robotics and Automation (ICRA), 2014 IEEE International Con-
ference on. IEEE, 2014, pp. 6427–6433.

[66] V. Patil, “Generic and complete vehicle dynamic models for open-source plat-
forms,” 2017.

62

https://www.epam.com/content/dam/epam/en/free_library/whitepapers/Automotive-White-Paper.pdf
https://www.epam.com/content/dam/epam/en/free_library/whitepapers/Automotive-White-Paper.pdf

Bibliography

[67] J. S. Albus, “4d/rcs: a reference model architecture for intelligent unmanned
ground vehicles,” in Unmanned Ground Vehicle Technology IV, vol. 4715. In-
ternational Society for Optics and Photonics, 2002, pp. 303–311.

[68] D. González, J. Pérez, V. Milanés, F. Nashashibi, M. S. Tort, and A. Cuevas,
“Arbitration and sharing control strategies in the driving process,” Towards a
Common Software/Hardware Methodology for Future Advanced Driver Assis-
tance Systems, p. 201, 2017.

[69] S. Behere and M. Torngren, “A functional architecture for autonomous driv-
ing,” in Automotive Software Architecture (WASA), 2015 First International
Workshop on. IEEE, 2015, pp. 3–10.

[70] R. Hoeger, A. Amditis, M. Kunert, A. Hoess, F. Flemisch, H.-P. Krueger,
A. Bartels, A. Beutner, and K. Pagle, “Highly automated vehicles for intelligent
transport: Haveit approach,” in ITS World Congress, NY, USA, 2008.

63

	Introduction
	Ethical and social aspects of modeling and simulation
	Background - Role of architectures in Open Innovation Lab
	Aim
	Limitations
	Problem definition
	Research questions
	Outline of the report

	Methodology
	Introduction to Modeling and Simulation
	Modeling architecture
	Quality Attributes : Reusability, Modularity and Scalability
	Complexity
	Abstraction
	Standardization

	Vehicle modeling architecture VMA
	Functional decomposition in modeling architecture
	Evolution in Vehicle modeling architecture

	Modeling aspects that aid in Reusability, modularity and scalability to reduce complexity
	Physical modeling
	Plant models illustration

	Backward and forward modeling
	Top-down and bottom-up approaches

	Analysis
	Analogy between different state-of-the-art vehicle model architectures
	Ford motor company simulink based VMA
	JMAAB hierarchical VMA
	Modelica VMA based on acausal approach
	Analogy of the above mentioned VMAs

	Dependencies due to current structuring in VMA
	Hardware-Software dependency
	Supplier dependency with OEM

	Motivation for change in current architecture
	Approaches to apply other automotive architecture domains to VMAs
	Current discussion in industry to move towards revised architecture
	Changes in relation to quality attributes: Reuse, modularity and scalability to reduce complexity

	Abstraction layers

	Results
	Revised Centralized control Vehicle Modeling Architecture
	Driver
	Environment
	Vehicle
	Sensors
	Actuators
	Sensor and Actuator Abstraction layer
	Centralized control
	Functionality distribution and Control hierarchy in centralized control
	Signal flow
	Signal flow illustration with ACC functionality
	Separation of concerns
	What is different about this architecture

	Evaluation and comparison of centralized control architecture
	Evaluation of centralized control architecture based on quality attributes
	Reusability
	Modularity
	Scalability
	Complexity

	Compare with traditional architectures
	Comparison to Ford motor's VMA
	Comparison to European HAVEit architecture
	Comparison to Open interface reference architecture

	Conclusion and future work
	Conclusion
	Discussion
	Future scope

