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Robotized Test Setup for Autonomous Driving-Virtual Objects Injection
Building a test setup for the injection of virtual objects to the real car for the better
verification of the active safety functions

Preethi Bodduluri, Shiva Ajay Jagadeepan
Department of Electrical Engineering
Chalmers University of Technology

Abstract
This master thesis focuses on injecting virtual objects to active safety ECU of the
test car, to verify the active safety and autonomous driving functions of the car.
Virtual objects like a pedestrians, cyclists, cars and other stationary and dynamic
objects are placed in front of the car to ensure that the car activates its active safety
and autonomous functions by itself. These objects are used instead of the real obsta-
cles to avoid causing damage to the real actors. Another advantage is that, damage
cost can be reduced. High risk scenarios which can’t be tested in real time can be
implemented with ease by injecting virtual objects.

To perform the injection, vehicle-in-the-loop methodology is implemented by creat-
ing a virtual object in the simulation environment and sending it to the car. The
information of the created object in the desktop simulation environment, that is the
position, height, speed etc. are acquired in a SIMULINK model. This SIMULINK
model then sends the data using a CAN-box which acts as a bridge between the ECU
of the car and the desktop simulator. This hence, efficiently replaces the CAN-bus
message that would have been sent by the physical sensors to the ECU of the car
when a real actor is detected in the same physical environment. The car then per-
forms the required active safety function according to the scenario.

Finally, to evaluate the methodology, different scenarios are implemented. This is
done to check if the active safety functions like autonomous emergency braking,
collision forward warning on the physical car are working according to the expected
behaviour.

Keywords: Autonomous vehicles, Active Safety Function, ECU, Testing Hardware-
in-the-loop, Software-in-the-loop, Vehicle-in-the-loop
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1
Introduction

Autonomous cars make the mobility safer, sustainable and more convenient with the
help of the equipped sensors that read the surroundings and adapt to the changing
traffic conditions, it navigates itself without any human intervention. It ensures safer
journey for everyone, helps save fuel, provides a smoother ride, allows everyone to
relax on board and spend time efficiently. Volvo cars have been doing many research
projects for the development of this fully autonomous driving cars.

Figure 1.1: The figure shows a person relaxing on board and no longer requires
constant attention on the road (Source : Drive Me Project - Volvo Cars).

The development of the Autonomous cars raises the major concern to ensure safety.
The motive of Volvo Cars is to reduce the fatality rate by using the Active Safety
and Autonomous Driving (AD) functions. In order to ensure the working of these
functions in the real time, it is necessary that extensive testing is done. During the
development of these functions there is usually a large parameter space that has to
be investigated and some scenarios have to be tested using the computer simulations
and on real vehicles.
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1. Introduction

Though there are several tests that can be performed on the closed test track using
vehicle under tests and targets, the efficiency of such automated testing systems are
not good. These tests bring the necessity that all the parameters should be handled
with high accuracy and the replication of the test scenarios should be fast in the
real time.

Volvo cars along with project partners has developed a concept called Steer by
Server with an aim of increasing the efficiency of testing the future AD functions.
This concept of novel fully-automated test system involves testing on a mix of real
cars and radio-controlled test dummies in real time, and virtual objects. The signals
from the robotized targets are collected by the server and it controls the trajectories.
This is done to ensure that specified scenarios are followed by avoiding any conflicts.
A closed loop communication has to be developed between the server and the test
targets.

Figure 1.2: The figure shows different actors of the testing environment like a real
car, a virtual car, a pedestrian, a moose and a server controlling the actors with a
simulator connected to it.
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1. Introduction

1.1 Purpose
The purpose of the thesis work is to verify the capabilities of active safety functions
in autonomous driving vehicles by reproducing the potential high risk scenarios in
a virtual environment with a physical vehicle-in-the-loop methodology, this can be
observed in papers [4] [5].

The main challenges with the verification of the autonomous drive are to make sure
that the generated virtual environment for testing the test vehicle, is an exact repli-
cation of the real world. The whole purpose of replication is to send the virtual
objects to the real car at the same location and same time stamp where the objects
have been placed in the virtual environment. This is done to ensure that the vehicle
under test triggers the safety functions corresponding to the injected virtual obsta-
cles. Modeling and predicting uncertainties can also be a problem while performing
rigorous testing for high risk scenarios. Hence, verifying the autonomous driving
functions is important.

The current thesis is a part of a project, creating a robotized test setup for testing
the safety and autonomous driving functions of autonomous cars. Where the first
part of the project involves the generation of dynamic trajectory that is achieved
using a path planning algorithm which finds the best path to travel from a fixed
place to another, the second part involves taking the vehicle dynamics into account
and modeling a control algorithm for the control of car, also includes synchronizing
with the created path planning algorithm and making sure that the car follows the
proposed trajectory.

This thesis work involves injection of the virtual objects to the steer by server envi-
ronment to ensure efficient and reproducible testing of Autonomous driving functions
through a simulator. Scenario components such as cars, roads, guard rails, pedes-
trians or cyclists and all other objects other than the test vehicle are injected as
virtual objects. High risk scenarios can be created and analyzed in order to ensure
the working of the safety functions in the Autonomous test vehicle. The implemen-
tation of this is tested using both computer simulations and practically on a real
car. This can be done in the simulation environment and can later be interfaced to
the real test vehicle for testing it on the test track. This thesis will contribute to the
challenges currently faced by the vehicle manufacturers for testing their autonomous
vehicles, without the loss of life and property.

1.2 Scientific Challenges
The aim of the thesis work is to verify the capability of autonomous driving vehicles
by reproducing the potential high risk scenarios in a virtual environment with a
physical vehicle-in-the-loop. Following research questions will be addressed in the
thesis work:
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1. Introduction

1. Assuming that the Autonomous driving functions are implemented in the phys-
ical car, evaluate how accurate is the performance of the functions using the
vehicle-in-the-loop method? - This question focuses on understanding the ac-
curacy of a testing method called vehicle-in-the-loop where the implementation
involves merging the virtual environment with the real environment.

2. What are the potential and challenging scenarios that can be tested with the
given setup for the verification of the Autonomous Driving Vehicles? - This
question directs towards understanding the recreation of various dangerous
situations or scenarios that can happen in the real world, in a virtual environ-
ment.

1.3 Outline of the thesis
The document is structured to explain all the aspects of the thesis. The chapter 1
includes introduction explaining in brief the background of the thesis and related
challenges. Then, the chapter 2 gives an overview of the methods followed to im-
plement the project. In Chapter 3 the complete system architecture of the methods
are explained. Chapter 4 includes the evaluation and finally conclusions including
the future work are discussed in chapter 5 and 6 respectively.

4



2
Testing Methods

The testing and verification of the active safety functions is necessary to ensure safe
riding of cars. The functionality of ensuring safety of autonomous vehicles can be
tested using various testing methodologies. The Forward Collision Warning(FCW)
and Autonomous Emergency Braking(AEB), are considered to be some of the impor-
tant safety functions that have to be tested before releasing the car to the day-to-day
usage. Among the several methods, simulation method is one of the testing meth-
ods where the actual vehicle behavior is replicated with sensors and vehicle model
in a simulation environment. The developed autonomous driving and active safety
function modules can be tested using SIL (Software-in-the-loop), HIL (Hardware-
in-the-loop), VEHIL (Vehicles-in-the-loop) or mixed simulation methodologies as
mentioned in [6]. Hardware-in-The-Loop (HIL) and Software-in-The-Loop (SIL)
simulations have long been used to test electronic control units (ECUs) and soft-
ware.

Software-in-The-Loop testing or SIL testing is used to describe a test methodology
where executable code such as algorithms (or even an entire controller strategy)
usually written for a particular mechatronic system is tested within a modelling
environment, that can help prove or test the software.

Hardware-in-The-Loop or HIL testing is a test methodology that can be used through-
out the development of real-time embedded controllers to reduce development time
and improve the effectiveness of testing.

Vehicle-in-The-Loop or VEHIL testing is almost same as HIL testing methodology
which includes a real test vehicle in the place of embedded controllers and through
this test method the real vehicle behavior is validated.
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2. Testing Methods

Vehicle Environment Test Setup
SIL Created by traffic Simulator All ECUs and the CAN bus are simu-

lated by Vector CANoe.
HIL Created by traffic Simulator Only one physical ECU is present and

all the other ECUs and CAN bus are
simulated.

VEHIL Created by traffic Simulator It is a real test setup in which all ECUs
and CAN buses are physically present.

Table 2.1: This table represents the vehicle environments used for different methods
of testing.

The detailed behaviour and components involved in these test methods are explained
in the following subsections.

2.1 Software-in-The-Loop Testing
In this project, while performing SIL testing, the model-in-the-loop part is skipped
since the model of the controller unit that is used to perform active safety func-
tions is already present. The entire controller strategy part is made of executable
programs and algorithms. In this the traffic simulator with all simulated ECUs are
created in Vector CANoe platform. The traffic simulator is nothing but module that
creates traffic scenarios and gives the object information like the object’s relative
position, velocity, width, height corresponding to the test car, this can be found in
the paper [7].

Advantages of using SIL testing, according to [8] is that SIL testing and simula-
tion does not require real-time execution, as it uses the program codes, algorithms
and functions to perform various tasks. It requires special drivers or hardware to
run in real-time. Sometimes the software runs much faster than real-time, due to
the code’s simplicity and high processing speed of the system in which the code is
executed. But sometimes it runs slowly due to the low processing speed and com-
plexity. If realistic timing information is required, then this can either be simulated
numerically, or in some cases pseudo real-time blocks can be used in the modelling
environment to pace the model as required. Additionally, SIL test scenario doesn’t
require hardware for its implementation if it is not run in real time, this eliminates
the issues that a hardware can cause while execution.

Thus, Software-in-loop testing methodology can be used for it’s low cost and flexi-
bility. According to [9] it can also be understood that this is a useful technique for
software proving at earlier stages as well as in the testing phase of the design.
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2. Testing Methods

2.2 Hardware-in-The-Loop Testing
As the complexity of electronic control units (ECUs) increases, the number of com-
binations of tests required to ensure correct functionality and response increases
exponentially. Older testing methodology tends to wait for the controller design
to be completed and integrated into the final system before system issues could be
identified [10].

Hardware-In-the-Loop testing provides a way of simulating sensors, actuators and
mechanical components in a way that connects all the inputs and outputs of the
ECU being tested, long before the final system is integrated, this can observed
in [11]. It does this by using representative real-time responses, electrical stimuli
and functional use cases. In this method, the part of the simulation that represents
the environment, sensors and associated hardware is called the plant model which is
the model of the car and the parts of the simulation that represent other controllers
are called controller models. Hence, according to the [12] HIL is advantageous be-
cause it uses both real sensors and virtual sensors, this helps in extreme verification
of a functionality. It is also observed from the paper [13], that HIL testing can be
used to implement the real world logic.

The Hardware-In-the-Loop testing is carried out by replacing the controller models
for real controllers and uses further input and output to test those components. All
the controllers within the scope of the test system are connected to their respective
inputs and outputs and wiring harnesses, a detailed representation of this can be
found in [14].

For a user who wants to perform testing with a HIL system will require a modelling
environment, such as Simulink, CANoe, Automotive Simulation Models(Model desk,
Control desk and Motion desk) or any other simulators, which can be used to create
the car model and may include a model of the controller strategies for components
not available for the test system. This environment is usually run on a workstation
or a laptop and is known as the host computer.
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2.3 Vehicle-in-The-Loop Testing
Vehicle-in-the-loop (VIL) methodology is advantageous over other methods for sev-
eral factors. As explained in [15], Vehicle-in-the-loop methodology is used to create
a safe, easily reproducible and resource saving testing environment. The ideology
of this method is to synchronize the test vehicle with that of the test environment
created on the simulator. This brings out combined advantages of using a real and
simulated environment. In this setup, the car can be either real or simulated with
vehicle dynamics acting on it and tested with some traffic scenarios. This testing
methodology can be adopted for aggressive testing of the active safety systems or
autonomous driving functions. By using this method the real actors are not affected
by any failure of the system.

The main reason for choosing Vehicle-in-the-loop (VIL) method over the others for
this project is that, it is a resource saving system. A further understanding of the
system can be obtained by looking into the figure 2.1, it gives an overview of whole
setup.

Figure 2.1 shows that two kinds of environments, the simulation environment and
real environment are involved in the setup. Simulation environment is developed on
a desktop based simulator. The data of the objects created on the desktop simu-
lator is sent to the real car by using a suitable communication protocol, discussion
regarding the choice of the protocol is done in the upcoming chapters. The ECU
of the real car is the main brain to which the required information is sent from the
simulator. The reactions of the car vary from it applying a brake to it controlling
the speed. The reaction of the car to the information from the simulator gives an
extra clarification that the active safety functions of the car are working good and
no real actors are harmed in the process of verification.

The only thing which cannot be examined is the placement of the virtual objects in
the real environment. This can be overcome by rendering the simulation environ-
ment where the virtual object are created, into a 3-D head-mounted virtual reality
tool, which is been included in the future scope of this thesis work.

While the Figure 2.1 gives a brief explanation of the VIL setup, the benefits of the
method is understood by implementing the Software-in-the-loop, Hardware-in-the-
loop and Vehicle-in-the-loop methodology. Further details regarding the implemen-
tation can be found in the subsequent chapter.

8



2. Testing Methods

Scenario Virtual Objects 

Simulator

Real Test Vehicle

O/P - Array of position, 
speed

Sent using a communication 
protocol

Simulation 
Environment 

ECU

Figure 2.1: Represents the Vehicle-in-the-loop setup in brief. The flow of data
such as the array of position, speed of an virtual object, from a desktop simulator
to that of the real test vehicle is indicated in the setup.
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3
System Architecture

This chapter focuses on providing a detailed description for the methodologies ex-
plained in chapter 3, that is, the implementation of Software-in-the-loop, Hardware-
in-the-loop and Vehicle-in-the-loop methodologies are represented with their respec-
tive architectures. Basic block diagram, figure 3.1 explains the similarities and dif-
ferences between the approaches. The commonality that is observed from figure 3.1
is that all the methods use a common traffic simulator to create an object list which
consists of an array of position, speed, etc. This object list data is then sent to
the respective ECU using a communication platform via a CAN bus. The data is
received by different ECUs in the 3 methods, that is, in Software-in-the-loop ap-
proach simulated ECUs are used, in Hardware-in-the-loop approach a physical ECU
and some simulated ECUs are used, in Vehicle-in-the-loop approach all the ECUs
used are physical. The tools used in the block diagram and the methodologies are
explained further in the below sub sections.

Traffic 
Simulator 

Communication 
Platform

Simulated 
ECUs

Physical ECUs

CAN-busObject 
list- 
array of 
position, 
speed 
etc.

Physical ECU 

Simulated 
ECU

Figure 3.1: Block diagram indicating the common tools and features used in three
testing methodologies, SIL, HIL and VIL.

3.1 Traffic Simulator
Traffic / Driving simulators are used to reproduce the environment of the real world.
The replication of the environment or the surroundings is done in the form of real

10



3. System Architecture

time models. These models mimic the behaviour of combustion engines, vehicle dy-
namics, electric components, and traffic environment. ASM (Automotive Simulation
Model), SPAS, VIRES - Virtual Test Drive are examples of some of the simulators.
These simulators contain information of the environment in the form of the roads,
traffic signs and dummy actors or pedestrians. This data from the traffic environ-
ment is retrieved for the implementation of the methodologies in the project.

To implement the project, Automotive Simulation Model (ASM) is the chosen sim-
ulator. The simulator consists of a model desk, this tool is used to set up initial
parameters for the model. These parameters are used to start the simulation en-
vironment. The simulation environment is visualized in ASM with the help of a
tool called motion desk, this tool is used to play the scenario created in model desk.
From the different models of the simulator, ASM traffic information is the only data
used in the project. Flexibility of ASM traffic makes it possible to create any type of
traffic scenario for testing of active safety functions. Highly complex road networks
and maneuvers on the roads can be recreated. Hence, high risk scenarios like the
ones mentioned below are used in the project:

• Obstacle crossing in front of the test vehicle (Autonomous car) with a closer
proximity. Figure 3.2 represents the start of the simulation of the said scenario.

• Collision avoidance when the test vehicle’s speed is increased.

• Test vehicle turning in an cross section with many virtual objects as obstacles.

Figure 3.2: This figure depicts the visualization of the objects used in ASM traffic
simulator for an example scenario.
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The information from these complex scenarios are then transferred via the Simulink
model using a CAN-bus to the ECU of the car.

3.2 Communication Platform - Vehicular Network
Toolbox

Simulink contains an inbuilt tool box that is used to send CAN messages to the ECU
of the car. In order to send messages over this interface, initially the parameters
are set according to the requirements by using a constant block. Then, a delay
block is introduced to ensure that the data is output after a fixed delay, so that
real time interface with that of the hardware can be maintained. A rate transition
block is introduced so that different working rates of the blocks don’t cause an issue.
Before the messages are packed into a CAN message with the required identifier and
data bytes, the parameters are sent through a data type conversion block to ensure
uniformity. This packed message is further sent to the CAN transmit block which
sends the message to the selected CAN device. Required actions are handled by the
ECU after receiving the messages. The implementation can be observed from the
figure 3.3.

Figure 3.3: The figure indicates the conversion of the CAN messages data into
required format and the transmission of the data to the ECU via a CAN transmit
block.

3.3 ECU
The active Safety ECU of the car is responsible for the control of the active safety
functions, this module contains all the active safety functions that get triggered
when an object or an unusual scenario is detected.
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3.3.1 Sending CAN messages to ECU
To initiate the injection of the object list, a CAN message is sent via the CAN chan-
nel to the active safety ECU. The ECU then enters into the data Injection Mode.
Data Injection Mode is activated or deactivated by sending XCP user defined com-
mand. It is done prior to sending the object data. It is represented as shown in
the table 3.1. An identifier indicating the injection mode is used before the byte
information.

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
0xF1 0xB1 0x00 0x00 0x00 0x00 0x00 0x00

Table 3.1: This command is used to start or stop the Data Injection mode
Then, the ECU replies by sending an response acknowledgement. It gives back the
response signal stating that the injection mode is enabled. Figure 3.2 represents the
notation.

Byte 0 Byte 1 Byte 2 Byte3 Byte4 Byte 5 Byte 6 Byte 7
0xFF 0xB1 0x01(enable)

or
0x00(disable)

0x00 0x00 0x00 0x00 0x00

Table 3.2: This command indicates the response received from the ECU.
Once the Injection Mode is activated, the fused Object parameters like the latitu-
dinal position, longitudinal position, velocity, height and width, are sent through
instrumented CAN to the ECU. The transmitted and the received signal to and from
ECU are examined through the CANoe/CANalyzer, a Vector CAN communication
instrument.

3.3.2 CANoe
Development, analysis and test of the ECU networks and individual ECUs can be
performed using the CANoe tool. The development phase in CANoe is explained as
a three phase model.

3.3.2.1 Phase 1

In Phase 1, firstly, the complete functionality of the system is distributed among
different network nodes and the design is refined. Then, the messages are defined
and the baud rate of the bus is selected. Later, each individual network node is
specified with a particular bus behaviour either in terms of incorporating a complex
protocol or by specifying the times at which the bus messages has to be sent. Once
the setup is established, simulation can be performed to estimate and understand
the bus load and latency times that can be expected for the specified baud rate.
Event driven messages can also be specified on the network node to ensure proper
transmission and reception of the messages.
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3.3.2.2 Phase 2

Next phase in the model is to finish the simulation of the remainder of the bus
and to establish the implementation of the components with that of the simulation.
This creates a developed network node. CANoe tool then requires a real bus for the
interface, this enables the simulation in real time.

3.3.2.3 Phase 3

The final phase is to ensure the integration of the whole system. All the created real
network nodes are connected to the bus, this makes CANoe perform as an intelligent
analysis tool that can monitor the message of the real network nodes. This moni-
tored messages can be compared with that of the intended behaviour of the system.
The whole system can thus provide a fair conclusion after analysis and testing.

The basic system requirements for each methodology have been explained in above
sections, the next sections will focus on explaining the working of each approach in
detail.

3.4 Software-in-the-loop Testing
In this methodology, no real hardware is used. The programming tool, CANoe is
used to simulate the behaviour of the car with active safety functions. The active
safety ECU (Electronic Circuit Unit) handles the active safety functions of the car.
The functions of the ECUs are replicated by using include files that contain the
unit level replication of the real behaviour of ECU hardware. All other ECUs are
interconnected via a backbone of the system in CANoe. Backbone is the complete
architecture of the car. The messages between the ECUs on the backbone is ex-
changed via a virtual CAN (Controller Area Network) bus.

To inject the objects to the ECU, as shown in figure 3.4, firstly, the objects are
created in a simulation environment. ASM (Automotive Simulation Model) is the
simulator used in the project, further information regarding the simulators has al-
ready been discussed in section 3.1. It generates an object list with the parameters
representing the placement of the object in proximity of the car. The object list
contains an array of the longitudinal position, lateral position, velocity, etc. These
parameters are then sent to CANoe ( a tool used to communicate with the ECU
of the car ) via a Simulink model. The Simulink model configures a CAN channel,
this configured CAN channel is used by CANoe to send the data. The data is now
converted into CAN format for the virtual ECU to understand.

The output signals from the virtual ECU are then monitored over the virtual
FlexRay channel. Flexray is a high-speed communication bus used in automotive
network communication protocols. The Flexray channel helps in monitoring the
active safety functional signals. These signals are used to check if the active safety
functionality of the car is causing the virtual ECU to perform the braking function
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or not. The main signals monitored are:

• Frontal collision warning signal that indicates if the object is placed in front
of it.

• Active Emergency Braking and the deceleration request signal indicates if the
braking is achieved.

Hence, Software-in-the-loop testing methodology explained above provides the un-
derstanding of the real vehicle performance in a simulation environment but it lacks
to replicate the troubles a real hardware causes during the implementation in the
real environment. This issue calls for exploring other testing methodologies.

Generation of
Object List

Communication
Interface to ECU

Virtual Active
Safety ECU

Transmission
of CAN

messages
using

SIMULINK

CAN format -
Object list,

array of
positions,
speed etc.

Vector CANoe
(Transmits

required CAN and
XCP messages to

ECU via CAN
Bus)

Implementation
on Traffic
Simulator 

Object list, array of
position, speed etc

Figure 3.4: Diagram represents the architecture of the system using complete
virtual testing. The blocks represent the flow of the data from one module of the
system to the other using different interfaces as explained in the text.

3.5 Hardware-in-the-loop Testing
HIL testing methodology is performed in a rig. This setup is an extension to the SIL
testing method, where the virtual active safety ECU is replaced with an instrumen-
tal ECU and sensors are emulated to enhance the verification process. The hardware
used in the setup are connected using Flexray, Ethernet and CAN cables to ease
the flow of information among them. The setup of the HIL rig for performing the
verification of the active safety functions usually contains a camera attached to the
ECU along with a traffic simulator. In this methodology, firstly the traffic simula-
tor (VIRES) is used to create scenarios replicating the real world traffic situations.
These scenarios are then played on the screen, that is placed in front of the camera.
Camera continuously captures the images of the screen playing the scenario and
sends the information as a camera input to the ECU. The simulator also contains
a RADAR model which mimics the working of a real RADAR sensor. The Radar
model is used to send the data in the form of detections. These detections indicate
that an object is placed in front of the ego car in the simulator. If the model detects
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that the object is in the range of the sensor, only then it sends the data to ECU via
the Ethernet cable. This RADAR detection data along with the frames captured by
the camera are fused together to form the RaCam fused data, this improves the ac-
curacy of the placement of the created object. The setup of the rig can be observed
from the block diagram 3.5. This fusion data is then used by the ECU to activate
the active safety functions.

In this project, HIL rig is modified to enhance the verification process. In the modi-
fied version, a desktop simulator (ASM) is used to re-create the real world scenario.
The VIRES simulator connected to the rig, sends the host vehicle details to the ECU
and runs the scenario continuously. The host vehicle data is the same in both the
simulators. A fused object list from ASM is then sent via a different CAN channel
connected to the ECU. This list bypasses the RaCam sensor data that is already
being processed in the ECU of the rig. This enables the ECUs ability to react to
the list of data sent by ASM instead of just RaCam fused data. The object list data
sent to the ECU is visualized through a software tool called CANalyzer. All the
information handled by the ECU, is additionally visualized through a VDR (Video
Data Recorder). The sent object list triggers the active safety functions of the ECU
and causes the car to break, it is visualized on the simulator the rig uses.

Major problem to be tackled during the implementation of this setup is synchro-
nization of the VIRES simulator time with that of the ASM simulator. It is also
important to maintain the synchronization of time between the simulator and ECU.
To solve the problem, time stamp information from the VIRES simulator is retrieved
and used by ASM and also sent to the ECU. This ensures that no data is lost during
injection of objects.
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Camera

Architecture 
(Active Safety 

ECU)

CANoe

VIRES 
(Simulator)

ASM 
(Simulator)

Camera Dectections 

Radar Detections

Ethernet

Object List

CAN Injection

RIG Setup

Figure 3.5: Diagram represents the architecture of the system using Hardware-in-
the-loop setup.
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3.6 Vehicle-in-the-loop Testing
Vehicle-in-the-loop method is implemented using a test vehicle. All ECUs in the
car are involved for the purpose of testing the active safety functions. These ECUs
continuously send and receive data among various nodes and themselves. As shown
in figure 3.6, this methodology also uses a desktop simulator similar to other ap-
proaches, to send the required object data to the active safety ECU. The scenario
created on the desktop simulator replicates the real time behaviour. CAN channel
is used to send object list to the ECU of the car. If the correct object information is
sent to the car, the safety functions like Forward Collision Warning, Active Emer-
gency Braking gets activated and the car decelerates and brakes to indicate that an
obstacle is in it’s way.

Object list, array of 
position, speed 
etc. (Desktop 

Simulator)

CANoe

Active Safety ECU

Figure 3.6: Diagram represents the architecture of the system using a real car.
The blocks represent the flow of the data from the desktop simulator to the CAN
bus via CANoe. The information is then sent via the CAN bus to the ECU, this
triggers the active safety functions.

Hence, the three approaches give an insight about verifying the active safety func-
tions of a car by not involving the real actors in the verification process. While
Vehicle in the loop approach is more real time testing approach as the real car is
tested in the process.
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Evaluation

Once the setup is established, the next step is to test if the vehicle-in-the-loop
methodology is a good testing method. The question to answer while testing the
methodology is to understand how accurate do the autonomous driving functions
work. In order to explain this, a set of scenarios are created and analyzed by logging
the data received by the ECU. The Log contains the information of the signals that
indicate the working of active safety functions. Currently two active safety functions
are validated and the results are shown in the subsequent sections.

The high risk scenarios used for the testing are listed below:

• Autonomous Emergency Braking: In this scenario the autonomous test
vehicle is driven at a moderate speed and there is a stationary virtual target
before this vehicle. The autonomous car should decide either to steer before
the virtual target approaches or brake and wait.

Figure 4.1: Autonomous Emergency Braking Scenario.
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• Adaptive Cruise Control: In this adaptive cruise control scenario a virtual
target running at a lower speed than the test vehicle is made to switch from
the next lane to the lane where the vehicle under test is running. when the
test vehicle has the target before that it has to slow down and follow the target
with a constant distance between them.

Figure 4.2: Adaptive Cruise Control Scenario.

Once the scenarios are created, the log data is recorded and analyzed as explained
in the subsequent section.

Autonomous Emergency Braking
An Autonomous Emergency Braking (AEB) scenario is generated with one virtual
target in front of the test vehicle. To obtain the required signals for evaluation the
object data is sent via the vector CAN instrument to the ECU and a CANalyzer/-
CANoe is used to retrieve the information from the ECU.

The sample log for the AEB scenario from the CANalyzer is visualized in the fig-
ures 4.3 and 4.4. In this figure four important signals to indicate the working
of active safety functions can be observed. The first signal to monitor is the cll-
snThreat signal it goes high if there is a threat in front of the car, the threat could
be a pedestrian, a moose and other kinds of object. This data is sent from the
Simulink model to the ECU via the vector CAN instrument. The next signal to
monitor is the cllsnFwdWarnReq which goes high indicating that the car is about
to brake now. Some important signals to monitor are the AsySftyDecelReq and the
AsyBrkGainReq which indicate that the car is slowing down and is about to come
to an immediate stop. The results shown in the figures 4.3 and 4.4 are obtained
from testing the scenario in a rig. The figures 4.3 and 4.4 prove that the test is
successful.

20



4. Evaluation

Figure 4.3: From the figure two signals can be observed, AsySftyDecelReq signal
shows that the car is slowing down to apply brake signal at certain fixed point, and
final signal is the cllsnThreat, this indicates the presence of a object in front of the
car.
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Figure 4.4: The graph indicates CllsnFwdWarnReq signal,it is the request sent by
the active safety ECU to indicate that it has to start braking.

When the same setup is carried out on the real testing vehicle, it can be observed that
similar results are obtained from the ECU of the test vehicle. Figures 4.5, 4.6, 4.7
when compared with that of the figure ?? it can be observed that the CllsnFwd-
WarnReq signal, cllsnThreat signal, AsySftyDecelReq signal gave out the results as
intended.
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Figure 4.5: This graph indicates a Collision forward warning request signal that
gets activated when an object is placed in front of it. It goes high for an object in
front of it and goes low when it disappears.

Figure 4.6: This graph indicates a collision threat signal, it goes high on an
oncoming threat to the car. The range where the threat is closing towards the
car is indicated with the different level notations on the signal, such as the collision
threat low, high and medium.
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Figure 4.7: This graph indicates the deceleration signal output of the car from the
ECU when it starts decelerating to avoid possible collision of the to the car.

The figures 4.8, 4.9, 4.10 represent the graphs which are obtained when a stream
of data from the ASM simulator is sent to the ECU of the car. The data signals
that are retrieved from ASM for this purpose are the relative distance between
the ego vehicle and the object, relative velocity, width and height of the object.
These data signals along with some preset signals are sent to the car. From the
figures it can be observed that there are several spikes of requests this is because the
simulator sends similar data for several samples. Eliminating the spikes from the
signal while retrieving the data from the ASM in real time provides accurate signal
representation.

Figure 4.8: This graph indicates a Collision forward warning request signal that
gets activated when an object is placed in front of it. It goes high for an object in
front of it and goes low when it disappears.

24



4. Evaluation

Figure 4.9: This graph indicates a Collision forward warning request signal that
gets activated when an object is placed in front of it. It goes high for an object in
front of it and goes low when it disappears.

Figure 4.10: This graph indicates a Collision forward warning request signal that
gets activated when an object is placed in front of it. It goes high for an object in
front of it and goes low when it disappears.
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5
Conclusion

Thus, the main goal of this master thesis work is to build a test platform to verify and
validate the capabilities of the active safety and the autonomous driving functions
by injecting fused radar and camera information of the virtual obstacles, directly
into the active safety ECU of the real test car, by bypassing the sensor fusion part.
This has been achieved and tested with a set of potential high risk scenarios in both
simulation and real physical environment which are shown in the Evaluation section.

The scientific research questions such as the comparative accuracy of the perfor-
mance to the simulation environment and the real physical world doesn’t have much
difference in their performances but it becomes slow sometimes due to the processing
speed of the computer in which the simulator is running and the validation of the
potential and challenging high risk scenarios are also done by testing with different
scenarios like stationary/moving car on the road, lane change with cars before the
test vehicle, pedestrian crossing the road and Adaptive Cruise Control (following
the car before with the same speed). Further improvements in this master thesis
work and the future works that can be made are explained in the next section.
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6
Future Work

Though this project satisfies the required working of a vehicle-in-the-loop method-
ology, the data sent from the ASM in this project isn’t entirely accurate, a real
time working of the simulator to send the required data has to be implemented.
The real time implementation also leads to the possibility of allowing the synchro-
nization of the position of the car with that of the car in the simulation environment.

Another expansion to the existing project is to test the methodology with various
other scenarios apart from the ones mentioned in the current implementation. These
scenarios can help in enhancing the accuracy of testing the active safety functions.
These scenarios are:

• Highway Ramp Merge: Autonomous vehicle merges from a highway ramp,
there can be real and virtual targets on the lane to be merged, to make the
scenario complex. The Autonomous vehicle should adapt its speed and change
its maneuver accordingly. This can be observed from figure 6.1.

Figure 6.1: Highway Ramp Merge

• Collision Avoidance By Steering: In this scenario, a vehicle with advanced
driver assistance system driven by a driver with Virtual reality headset tries
to change lane to avoid the incoming high speed virtual target from behind
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and triggers the Active safety function corresponding to the slow real target.
This can be observed from figure 6.2.

Figure 6.2: Collision Avoidance By Steering

• Car Crash Ahead: In this a virtual vehicle in the opposite lane tries to
overtake the slow virtual vehicle before and crashes with the oncoming virtual
vehicle on the next lane ahead of the autonomous vehicle under test. This can
be observed from figure 6.3.

Figure 6.3: Car Crash Ahead

• Oncoming Vehicle In Wrong Direction: In this scenario an Autonomous
car is driving on a empty road and the virtual or real target vehicle in the next
lane drifts into the vehicle under test’s lane and the autonomous car should
decide what to do to avoid collision. This can be observed from figure 6.4.
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Figure 6.4: Oncoming Vehicle In Wrong Direction

• Cross Roads Junction: In this scenario an Autonomous test vehicle should
turn left at the intersection of the cross roads at low speed and multiple targets
like pedestrians and other target vehicles are crossing at the same time. This
scenario helps in testing the behavior of the vehicle under test from the sensor
signals and logic. This can be observed from figure 6.5.

Figure 6.5: Cross Roads Junction

• Swarm Traffic: Autonomous car driving in a crowded highway with real and
virtual targets. This scenario can be used to test lane change and platooning.
This can be observed from figure 6.6.
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Figure 6.6: Cross Roads Junction

The further scope of the project could be to render the simulated environment in
the traffic simulator and visualize it in the VR headset with the driver sitting in the
vehicle and driving it. This helps for the driver to understand why the car is braking
at certain instance even when the object is not exactly in the field of view of the
car. Another possibility of expansion could be to try the current implementation
methodology using different ECU’s.

Currently, the virtual object from the simulator is being sent from a desktop simu-
lator, this can be further modified by implementing wireless injection of the objects
by placing the simulator in the server.

By achieving the above suggested changes, the project could significantly contribute
to improvise the exiting technologies.
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Appendix

The main aspect to be considered while sending the required information to the
brain (ECU) of a car is to establish proper communication. This is crucial to ensure
that no data is lost while transmission. There are several methods to communicate
with the ECU of the car, some of the protocols that can be used are Diagnostic
Protocol Data Unit Application Programming Interface (D-PDU API), XCP- Mea-
surement and Calibration protocol.

A.1 D-PDU API
Communication access to the Vector network interfaces is established using this API.
Vector network refers to a hardware network interface which provides the communi-
cation via the hardware CAN channels and also converts the data to required CAN
message structure which is used to communicate with the ECU.

To establish the communication with the ECU, firstly a Open Diagnostic data eX-
change (ODX) scheme is developed to understand the description of the ECU. This
scheme supports the structured files, which are used for the ECU diagnosis and
validation. The D-PDU API application accesses a MVCI (Modular vehicle com-
munication interface) D-server. The D-server gets all the information about the
ECU using the ODX scheme. Then, the application request for the ECU is con-
verted into a byte stream by the D-Server, this is called as a diagnostic protocol
data unit(D-PDU). Modular vehicle communication interface protocol module then
transmits this D-PDU to the ECU of the vehicle. The MVCI module also receives
the response from the ECU of the car and sends it back to the D-Server. This
two way communication helps in understanding and transmitting necessary data
streams. The picture A.1 depicts the working of the D-PDU API.

In order to use the D-PDU API protocol in the project, firstly, a client and server ap-
plications are setup that communicate via TCP/IP communication protocol. Once
the client and server communicate with each other, data is sent out from the client
to the server. Data used here is a structure of 8 information fields containing details
about the object type, acceleration, long distance, latitude distance, vehicle speed
and other such fields. Server receives this data and sends it to the ECU. Data to be
sent is constructed as a fused RaCam object message and is sent over CAN bus.
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User specific D-PDU API 
Application or MVCI Diagnostic 

Server(3D)

Development Tool  
e.g. CANoe

D-PDU API 

Vector CAN Network Interfaces

ECU
CAN(FD)

Process
IS

O
 2

29
00

-2
 V

C
I

Figure A.1: Sample Application architecture using D-PDU API. This architecture
represents the flow of the data from the user specific application to the ECU by
opening the Server to convert the data into streams [1].

A.2 XCP Protocol
This is the universal measurement and calibration protocol used in the automotive
industry for connecting calibration systems to the ECUs of the car and testing it.
This protocol originated from ASAM (Association for Standardization of Automa-
tion and Measuring Systems) [16]. This calibration tool requires very less memory
and short execution time based on the scaling of software components. It consists of
different transport layer for CAN, FlexRay and Ethernet. The CANoe or CANape
is used as the master where the ECU is the slave. The third party producer in-
terface can also be done with small modifications to the XCP transportation layer.
Once the master slave connection is configured the XCP slave (ECU) provides the
XCP master (CANoe/CANape) with the access to measure signals and calibrate
the parameters in the ECU with the help of an ECU description file in ASAM for-
mat (A2L).

This protocol has different functionalities such as:

• Generation of A2L file based on the configuration of the ECU.

• Entire datasets can be acquired or stimulated synchronous to events triggered
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by timers or operating conditions.

• It enables read and write access to the variables and memory addresses of the
ECU during development, testing and in vehicle calibration using the created
A2L based on the ECU configuration.

• Initialization and switch-over of the memory area of the ECU for calibration
data.

• Support of time stamps.

• Protection against unauthorized writing and reading in the ECU’s memory.

• This protocol also supports programming of flash memory and EEPROM.

• It provides Block transfer communication mode.

• Transmission of service request packets.

XCP Master
XCP Driver 

CMD RES ERR EV SERV DAQ STIM

Command / Response / Error /  Event / 
Service Request Proccesor

DAQ 
Processor

STIM 
Processor 

PGM CAL DAQ STIM

XCP Slave

XCP Handler Bypass

Resources

CTO DTO 

Figure A.2: The figure represents the communication interface between XCP Mas-
ter (CANoe/CANape)and the XCP Slave (ECU)over a integrated XCP Driver [2]and
the distinction between the Command Transfer Object (CTO) and the Data Transfer
Object (DTO) through various layers.
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A.3 XL driver Library
This API enables the development of own applications for CAN, CAN FD, LIN,
MOST, Ethernet, FlexRay, digital/analog input/output (DAIO) or ARINC on sup-
ported Vector devices. This tools makes these applications independent of hardware
and operating systems. It provides bus specific methods that can be easily used to
operate bus interfaces from Vector, it gives access to channels and ports. The net-
work node is configured to send and receive messages using the bus specific methods.
More than one channel can also be used for each bus system.

XL driver uses certain principles to establish the bus interface. The main principles
that are followed by the XL driver library are:

• Initializing the port of the driver to the required channels for a specified bus
type.

• Configuring the initialized port and the respective channels.

• Defining tasks to transmit and receive messages.

Using the above mentioned principles as key aspects, XL driver library provides
functions to perform various actions such a reading or writing hardware settings.
An example of the application interface can be viewed in the figure A.3.
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Figure A.3: The figure represents a sample application architecture using XL
driver Library [3]. In this diagram an external application can communicate with
the ECU of the car via a bus interface communication provided by the XL driver
library.
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A.4 CAN Communication
CAN communication is a message-based protocol which facilitates carrier-sense,
multiple-access. It was originally designed for multiplex electrical wiring in au-
tomotive industry, it replaces complex wiring with a two-wire bus. This protocol
also follows collision detection and arbitration on message priority. It means that
on occurrence of collisions the priority of the message to be sent is resolved by the
bit-wise arbitration, where the priority is decided by the identifier field of the mes-
sage being sent.

The protocol used in the project is in accordance with the ISO 11898 (International
Organization for Standardization). The specification of the standard contains 11 bit
identifier which gives a signalling rate from 125 kbps to 1 Mbps. This is referred
to as Standard CAN. Standard CAN protocol is used in the conversion of the data
from the ASM simulator.

SOF 11-
bit
Iden-
tifier

RTR IDE r0 DLC 0...8
Bytes
Data

CRC ACK EOF IFS

Table A.1: Representation of Standard CAN 11-bit identifier.

The complete description of figure A.1 is as follows:

• SOF is the Start of the Frame bit, indicates the starting of a message. It is
also used to synchronize the nodes of a bus.

• Identifier - The priority of the message is established using this 11-bit identifier.

• RTR is the single remote transmission request bit. This bit dominates when
the information is required from another node. The request is received by all
the nodes, but the required node is determined by the identifier.

• IDE represents the Identifier extension bit, a dominant bit in this field repre-
sents that a CAN identifier with no extension is being transmitted.

• r0 stands for reserved bit.

• DLC is the data length code, it is 4 bit long and indicates the number of bytes
of data being transmitted.
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• Data represents the field where 64 bits of application data can be transmitted.

• CRC is the cyclic redundancy check bit, this 16 bit contains the check sum of
the previous application data. It is used for error detection.

• ACK, the integrity of data on each node is acknowledged using this field. A
dominant bit on this field indicates that an error free message is sent.

• EOF is a 7-bit field which indicates the End of the frame. Furthermore it
disables the bit stuffing. A dominant value on this field indicates a stuffing
error.

• IFS is a 7-bit interframe space. Indicates the time required by the controller
to move a received frame to its position in message buffer.
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