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Abstract

The Computer vision field has evolved drastically since 2012 when AlexNet won Ima-
geNet by utilizing Convolutional Neural Network (CNN). With further advancement,
industries started to take interest and are now using CV for different implementa-
tions.

In the automotive industry CV take part in the development of complete situational
awareness around a vehicle. The CV problems semantic segmentation and depth
estimation are crucial for scene understanding and researchers have proposed several
methods to solve these.

This thesis studies if a fusion of two deep neural networks can improve their perfor-
mances for their respective tasks. The fusion is done by generating depth estimation
images from a CNN that are then used as input together with a RGB image to solve
semantic segmentation. Five different fusion networks were proposed and compared
with a baseline network. The fusion networks are all designed as Convolutional
Neural Networks with an autoencoder architecture. Their differences are how the
depth image is processed and the complexity of their architectures.

Several results was generated to evaluate the performances of the networks. Mean
Intersection over Union (MIoU) was the metric used to compare the accuracy and the
confusion matrix were investigated for a more detailed comparison. The generaliza-
tion of the networks were also compared and their estimated semantic segmentation
images as well. The models demonstrate similar performance and shows that a fu-
sion of two deep neural networks neither decreased nor increased their performances
with the proposed method. With this said another method to approach this study
could possibly yield different results since the depth image is generated from a CNN
the information that can be extracted from an encoder is similar to those in the
RGB image. Therefore, it cannot be confirmed if a fusion between two deep neural
networks can affect their performances.

Keywords: CNN, fusion, CV, deep neural network, semantic segmentation, unsu-
pervised, depth estimation, robustness.
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1

Introduction

Within computer vision (CV) there exists a variation of different tasks that can be
achieved with deep learning. One impressive task that have evolved from image-
level classification is pixel-wise classification on an image [39, 5, 50, 12|, there are
several industries that these networks can be applied to and one common is au-
tonomous driving. Additional examples of industries include agriculture [6], facial
segmentation [68], Geosensing [48] and medical image diagnostic [82].

In the past, depth data have mostly been acquired by sensors such as LiDAR [34],
but in 2016 an unsupervised method to train a monocular depth estimation model
was designed [64, 30]. Perceiving depth in a scene is an important task in robotics,
as its crucial for obstacle avoidance, navigation and planning. What these problem
solving methods have in common is that they use a convolutional neural network
(CNN) which have been the most common network within CV since 2012 [42, 71].

1.1 Background

The popularity of computer vision (CV) have increased since AlexNet won the an-
nually ImageNet Large Scale Visual Recognition Challenge in 2012 (ILSVRC2012)
and proved the utility of a CNN [67, 42], but the scientific field have been around
longer than that. When talking about CV the networks mostly consists of convolu-
tional layers and are known as CNNs. The history behind how CV and CNNs has
evolved can be traced back to 1959 when two neurophysiologists, David Hubel and
Torsten Wiesel, described the core response properties of the neurons in the visual
cortex by running some experiments on the brain of a cat [35]. They found out
that there are neurons that either activates for simple or complex structures in the
visual cortex and that the neurons that activates first during visual processing are
the neurons that process simple structures. The same principle appears in CNNs
where the features becomes more complex when advancing deeper in a network [42].

In 1980 the first convolutional layer appeared in the neural network called Neocog-
nitron. which was proposed by the computer scientist Kunihiko Fukushima. The
network, similar to the findings by Hubel and Wiesel [35], was built of simple and
complex cells which could recognize patterns unaffected by position shifts. The ar-
chitecture contained several convolutional layers with rectangular receptive fields
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and weight parameters [26]. In 1989 Yann LeCun applied backpropagation learning
to the Neocognitron and later in his research he proposed the pioneering network
LeNet-5. But, the ability to process images with high resolutions were constrained
by computing resources [46].

In 2004 K.-S. Oh and K. Jung proved that neural networks could be greatly ac-
celerated on GPUs [58] and in 2006 the first CNN running on a GPU, which was
four times faster than on a CPU, was proposed by K. Chellapilla et al.[10]. Soon
thereafter D. C. Ciresan et al. proved in 2010 that a standard deep neural network
could be trained with backpropagation more efficiently on a GPU and outperformed
previous methods on the MNIST handwritten digits benchmark [45] with their net-
work [14]. Later they implemented the same GPU method to CNNs in 2011 and won
four image competitions between May 15, 2011 and September 30, 2012 [71]. At the
same time the ILSVRC2012 winner AlexNet stated that their architecture was quite
similar to the one from Dan C. Ciresan et al. [42, 14]. With the contributions from
Dan C. Cireson et al. and the team behind AlexNet, 2012 have been associated as
the breakthrough year for deep convolutional neural networks [43, 19]. Since then
the top performing models for different challenges in the CV field have been CNNs
[67, 15, 2, 81, 23].

After the breakthrough new tasks within CV started to arise. At first, developers
used MNIST, PascalVOC and ILVSVRC as datasets to benchmark the model’s per-
formances in image classification. Then additional challenges was introduced, such
as object detection and localization, scene classification and parsing, and pixel-wise
segmentation [67, 23]. With the promising development in CV industries started to
take interest in it and have put a lot of resources in the field since then and seems to
keep on doing so according to market forecasts [69]. With the newfound interest by
industries, public datasets featuring road scenes started to appear, such as KITTI,
Cityscapes and BDD100k [2, 15, 81]. These datasets are most relevant for the au-
tomotive industry and feature CV tasks such as object detection and localization,
semantic segmentation, and depth prediction [5, 64, 2].

1.2 Aim

The aim of this project is to study how a fusion of two deep neural networks with
different tasks will affect their performances.

1.3 Scope

To achieve the aim of this project different networks with various tasks can be used.
However, to make this project feasible within the time frame of this project two
networks which are designed for the tasks, semantic segmentation and unsupervised
depth estimation, are used. The reason why those were chosen was because they
used the same input data which make a fusion of those easily applicable.

2
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1.4 Limitations

The aim is to study how a fusion affect the networks but the project is limited by
time and therefore we only train the semantic segmentation network while keeping
the second network pre-trained. The choice to use pre-trained weights also limit
the project to which type of dataset that can be used. Since the network with the
pre-trained weights is trained on a dataset with road scenes the only dataset that
can be used is those that contains road scenes.

The related work about multi-task learning seems to discuss valid methods to im-
plement for this study. But this type of concept was found too late in to the project
and unfortunately not a part of the method. Although, it is discussed to investigate
the possibilities to fuse the networks through multi-task learning for future work.

1.5 Related work

Some researches are closely related to the project scope and aim, these will be
presented in this chapter, this includes methods for semantic segmentation, unsu-
pervised depth estimation and multi-task learning.

1.5.1 Semantic segmentation

Semantic segmentation is an important problem to overcome to achieve complete
situational awareness. Multiple methods have been proposed to solve this task,
examples are ResNet [33], SegNet [5] and DeepLabv3+ [12].

The residual network ResNet was the winner of ILVSVRC 2015 [67]. It utilize
skip connections which are additional connections between nodes in different layers,
the connections skips one or more layers during processing [59]. These connections
contributes by mitigate the vanishing gradient problem, i.e. the problem that arises
when the gradients of the loss function approaches zero, and make it possible to
build deeper network without the error saturating or increasing.

The first autoencoder architecture used for semantic segmentation was proposed by
V. Badrinarayanan et al. and is called SegNet [5]. Autoencoders consists of an
encoder and decoder, the decoder is a series of downsampling convolutional layers
and the decoder is a mirrored reflection of the encoder with upsampling instead of
downsampling. Another characteristic feature of SegNet is the storing of indices
during downsampling, these are afterwards used in the upsampling to construct a
high resolution feature map.

An architecture that performed very good in the Cityscapes benchmark is DeepLabv3+,
which uses Atrous Spatial Pyramid Pooling [15]. Atrous Convolution, also called
dilated convolution, is a type of convolutional filer with spaces between the values
in the filter, which result in a larger range of view without increasing the number
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of parameters. DeepLabv3+ uses these Atrous convolutional layers with different
rates in a Spatial Pyramid, this helps the network to account for different object
scales [11].

1.5.2 Unsupervised depth estimation

The paper Unsupervised Monocular Depth Estimation with Left-Right Consistency
from Godard et al. on the Conference on Computer Vision and Pattern Recognition
2017 (CVPR2017) proposed a method for unsupervised depth estimation that other
research is now building upon [29, 17]. The paper presents a method that use
stereo-pair images during training to learn the disparity function that can map the
left image to the right and vice versa. When the disparity model is learned it can
be used to calculate the depth of a single image. The advantages with the proposed
method from Godard et al. is, that it is unsupervised and therefore do not require
annotated data, which in many cases are expensive and hard to come by, and only
require a single image as an input after training which makes it more applicable.

Unsupervised depth estimation networks have in general been deep and complex and
required a high computational cost. Poggi et al. confront the problem by presenting
a pyramidal architecture, PyD-Net, that can run on a CPU [64], which is based of
the unsupervised method proposed by Godard et al., described above [29].

1.5.3 Multi-task learning

A variety of problems can be solved by feeding a CNN with an input image, for
example semantic segmentation [5, 33, 11], image classification [42, 33, 46], and un-
supervised depth estimation [30, 64], but the problems are often solved individually.
By solving the multiple problems simultaneously with a single model it can increase
the efficiency during learning and inference and increase performance in some cases
[40, 75], this concept is called Multi-task learning (MTL). Although, a problem with
MTL have been the tuning of the multi-loss function [49], but A. Kendall et al. pro-
posed a method to solve the problem by considering the homoscedastic uncertainty
of each task when weighting the losses [40]. They tested the concept on a model
that solved semantic segmentation, monocular depth estimation and instance seg-
mentation with results that showed good performance and sometimes even better
than models that only focused on one task [40].



Theory

2.1 Deep learning

An artificial neural network is a collection of neurons that initially was inspired by
the brain of mammals and is used as a tool to find patterns, more known as features.
A neural network consists of layers with neurons, there exists three types of layers,
the input layer, hidden layers and output layer. The hidden layers are always in
between the input and output layers. An example of a neural network with a single
hidden layer of neurons can be seen in Figure 2.1a.

Deep learning is a category of machine learning algorithms, the definition of a deep
neural network is to have numerous hidden layers, an example of a deep neural
network with three hidden layers can be seen in Figure 2.1b. There is no exact
definition of how many hidden layers there are in a deep neural network, but usually
a network is called deep if the network has two or more hidden layers, whereas a
one hidden layer network is called shallow. The advantage of a deep neural network
is the ability to learn multiple levels of features. The deeper layers of a network
will learn complex shapes, for example, faces or digits while the shallow layers learn
more abstract features like edges. This makes it possible for a network to learn how
to solve complex classification tasks [62].

hidden layer

hidden layer 1 hidden layer 2 hidden layer 3

input layer

(a) Shallow neural network (b) Deep neural network

Figure 2.1: An example of a shallow and a deep neural network. Figures originally
from Michael Nielsen’s article [56]
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2.2 Deep Convolutional Neural Networks

Convolutional Neural Network (CNN) is a type of deep neural network which is
commonly adapted in computer vision or analysis of other visual images. There is a
lot of image processing tasks which utilize CNNs, one example is a classifier which
task is to identify a class between a fixed number of classes. A classification task to
distinguish if there is a cat in an image or not will be used as an example to describe
the different building blocks that appear in a CNN structure, the architecture can
be seen in Figure 2.2. It is a task that can be learned through supervised learning,
which refers to the network being provided with an input and ground truth output.
In this example the input is an image and the output is an array with 2 elements,
representing the probability of cat respectively no cat.

Leaky ReLU is one of several solutions to overcome a problem called dying ReLU
problem which occurs when using ReLU [51]

ouTPUT
| Convolutional
[ | Maxpooling
| Softmax

Figure 2.2: An example of a simple Convolutional Neural Network to classify if
there is a cat in an image

The hidden layers in a CNN consists of convolutional layers, pooling layers, activa-
tion functions and regularizers. Since there are a lot of different variations of the
mentioned layers and operations the ones that are used in this project will only be
discussed.

2.2.1 Convolutional layer

The most associated layers when speaking of CNN is convolutional layers. A de-
scription of convolutional layers was well put by Adit Deshpande were he briefly
explains a CNN [18]. He described a convolutional layer as a flashlight that is shin-
ing through the image starting from the top left. Imagine that the area covered by

6



2. Theory

the shining light is 3 x 3 and that the light is sliding through the image. With ma-
chine learning terms the flashlight is called a filter and the region that it is shining
over is called receptive field. The filter also consists of an array of numbers, often
referred as weights or parameters. An important detail is that the receptive field
needs to have the same depth as the input, so for a 32 x 32 x 3 image the filter
is of size 3 x 3 x 3. When the filter starts to convolve through the image it start
at the top left with element-wise dot product, which adds up to 27 multiplications
all summed up. This number only represent the top left corner in the image and
by repeating this process by sliding the filter through the image a feature map is
generated. The step size of each iteration can be adjusted and is called striding, for
this example a stride of 1 is used. After the convolutional filter a feature map will
have the size 30 x 30 x 1, this is because there is only 900 unique locations a 3 x 3
kernel can fit into a 32 x 32 image. It is possible to get feature maps with the same
size as the input by using a method called padding, which will be explained further
in subsection 2.2.2.

In the case of more than 1 filter, which is usually the case, the feature maps are
stacked in the third dimension, for example if a second filter is used the output

would be 30 x 30 x 2 [18]. An example of the whole process can be seen in Figure
2.3.

Image
Convolutional layer Feature map

®

Image kernel Conv filter

Feature

—r—ﬂ
1

32x32x3 30x30x1
Figure 2.3: Illustration of 3 x 3 x 3 convolutional filter applied to an 32 x 32 x 3
RGB input image, the result is a feature map of size 30 x 30 x 1

2.2.2 Padding operations

A commonly used operation in CNNs is padding. Padding is the process of adding
extra pixels outside an image to make it larger. An example of a padding of size 1,
i.e. adding a frame of extra pixels around the image, can be seen in Figure 2.4. The
type of padding decides the values of the added pixel, in this image the type is called
zero padding, meaning the added pixels have the value zero. Besides zero padding
there exists for example mirrored and constant padding. In mirrored padding the
added pixels are mirrored replicas of the image, this can be seen in Figure 2.5a.
The constant padding type is very similar to zero padding, but instead of filling the
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Figure 2.4: An example of zero padding of size 1

added pixels with zeros it can be any constant value, an example of this can be seen
in Figure 2.5b.
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(b) Constant padding, X can be any
(a) Mirrored padding constant value.

Figure 2.5: Two padding examples with padding size 1. Original image can be
seen in Figure 2.4a.

As described in subsection 2.2.1, when applying a convolutional filter with size
3 x 3 x 3 to an image of size 32 x 32 x 3, using stride 1, the output image will
be of size 30 x 30 x 1. However, it is not always desirable to get feature maps
with a decreased size, this is were padding is useful. By adding a padding of size 1
before the convolution layer the feature map will keep the same size as the input.
The relation between the input and output sizes for a convolutional layer can be
described as,

xr— K+ 2P

O

where y and z are the input and output of height or width, K is the filter size, P
padding size and S stride.

+1, (2.1)

Another reason to use padding is to attain the same amount of information from
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every pixel. When applying a convolutional filter, the pixels further away from the
border will be covered more times by the filter than the pixel around the edges, this
means getting less information from the edges and corners of the image.

2.2.3 Activation functions

For a CNN to solve complex tasks it is not enough to only use convolutional layers,
as the weights and biases in a convolutional layer transforms the input linearly.
Linear equations are easy to solve but limited to the complexity of a problem, by
using activation functions the input transformation will be non-linear resulting in a
non-linear model.

The feature maps provided from filters, for example a convolutional filter, can be
anything ranging from —oo to +00. By using an activation function the bounds
of the values can also be controlled. Which neuron from the feature map that will
be activated depends on which activation function that is used. The activation
functions that will be discussed further in detail are Leaky ReLLU and Softmax.

2.2.3.1 Leaky ReLU

Leaky Rectified Linear Unit (Leaky ReLU) is a non-linear activation function that
have been developed from the activation function Rectified Linear Unit (ReLU), the
difference between the activation functions can be seen in figure 2.6.

fot VAV
f)=y Jy=yp

v
Y

fO)=0 y , y
fy)=ay

Figure 2.6: A comparison of the two activation functions ReLU (left) and Leaky
ReLU (right).

ReLU have been a common activation function to use in the hidden layers because of
its benefits. Firstly, the math is simple and the computational cost during training
is low. Secondly, it is linear for positive values and thus will not plateau for large
x. If an activation function plateaus it can lead to something called The Vanishing
gradient problem, which can appear in the activation functions Sigmoid and Tanh
[61]. During backpropagation every weight is updated proportional to the partial
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derivative of the loss function Ej,ss with respect to the weight. The problem with
plateaus in activation functions is that it can lead to the gradient being vanishingly
small which prevents the weights of being updated [61] . The ReLU function is defined
as,

Aly) = maz(0,y). 2.2

where y is the input to the activation function.

When using ReLU negative neurons will not be activated, this decreases the ability
of the model to fit to data properly and information are lost [51]. This problem,
called the dying ReLU problem, will not appear for Leaky ReLU as it pass negative
values. The Leaky ReLU function follows as,

y, ity>0
fly) = . (2.3)
ay, ify <0,

where a is a small constant which decide the impact of negative values. By using
Leaky ReLU a network can keep the benefits from ReLLU but also solve the dying
ReL U problem at the same time with the cost of being a bit slower [79].

2.2.3.2 Softmax

Softmax is an activation function that is usually used for the last layer in a classifier.

In the example in Figure 2.2 the input to the Softmax is a feature map with the same

size as the output, in this case a 2 x 1 array. Softmax then generate an output with

values that represents probabilities for each class. The Softmax function follows as,
eYi

S(y)i = =, 24
W= 5o (2.4)
where y is the feature map from the previous layer and the indices ¢ and j define
the class.

The output from the Softmax function utilize Categorical Cross-Entropy as a loss
function, the loss function will be discussed later in subsection 2.2.6.

2.2.4 Pooling operations: Max pooling

Pooling operations in CNNs are used for dimension reducing purpose, by reducing
the sizes of the feature map the amount of operations is reduced and the efficiency
increases. Similar to a convolutional filter, the pooling has a receptive field and a
stride, and like the convolutional layer the pooling operation will stride through the
feature map. The highest value in the receptive field will represent the whole area
in the generated feature map.

Two common pooling operations are Average and Max pooling, Dominik Scherer
et al. proved Max pooling to be more suitable for CNNss [70]. When V. Badri-
narayanan et al. developed the architecture SegNet they introduced Max pooling
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with indices, illustrated in figure 2.7. The difference is that the index of the max
value in the receptive field is also saved, this index is then used in an operation
called upsampling, this operation will be explained later in subsection 2.3.1.

Max pool + @it feature map

Input feature map saving indices | F---- 0000000000

HE ) O Feature | L0000

= liooRoly

L i L 15x15
Index mask

Figure 2.7: Illustration of max pooling operation with saving indices. The output
is a feature map and corresponding index mask.

2.2.5 Supervised learning of a CNN

Supervised learning refers to that a model is trained using labeled data. The whole
idea is to tune a model so it can map the correlation between the input and output
data through iterations of parameter updates. To train a network using supervised
learning, a dataset including both input and ground truth output data, is required.

To convert an input to a prediction the input has to go through the different layers
and operations that exist in a CNN. When a prediction has been obtained it is then
compared to the ground truth output with a loss function, Ej,s, which is different
depending on the network’s task.

When the value from the loss function have been retrieved the goal is to either
minimize or maximize this value. This means that all the parameters have to be
tuned in order for the network to descend towards an optima. By calculating the
partial derivative for each parameter the update direction can be obtained, this
process is called backpropagation, the equation for backpropagation is,

aElloss
8?1)1'

(2.5)

where w; is the parameter to be updated. Lastly, when the partial derivatives
have been calculated, the parameters are updated such that the model can start to
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converge to an optimum. A simple weight update could look like,

aEwloss

T (2.6)

Wi = W; — 1]

The learning rate, 7, will decide the size of the update step. The size of a learning
rate can lead to different problems since it decides how rapid the network should
adapt for each update. A high learning rate may descend too fast in wrong direction
such that the model will end up with a suboptimal solution. A low learning rate
risk to get stuck in a saddle point and never reach an optimum.

2.2.6 Loss function: Categorical Cross-Entropy

Categorical Cross-Entropy is a loss function commonly used for multi-class classi-
fiers. The actual loss function is called Cross-Entropy but when it is combined with
Softmaz as activation function it is called Categorical Cross-Entropy. Its equation
can be described as,

C
CE = =3 tiog((y),) 2.)

where ¢; is the ground truth, C the number of classes and S(y); is the prediction
score for each class 7. In multi-class classification the labels ¢ is one-hot encoded
and as there is only one correct class, t,, which alone will keep its prediction value.

2.2.7 Optimizer: Stochastic gradient decent

The loss function measure how wrong the predictions are, the optimizer use this
information to make an educated update of the weights, with the goal to minimize
the loss. When picking an optimizer there is two properties to consider, convergence
rate and generalization, i.e. the performance on new data.

Stochastic gradient decent (SGD) is an optimizer that have been around since the
1950s and have the property to perform well on new data. The formula for the
weight update using SGD is,

0« 0 —nVeJ(0; @, y(i)), (2.8)

where 6 is the weights, n the learning rate, Vy the gradient and J the loss function.
What differ SGD from other gradient decent variants is that SGD performs an
update after each training sample that is randomly chosen.

The network can occasionally reach a local optima, that the network might assume
is the global optima, which prevents the network to reach its fully potential. To
make the network more likely to reach the global optima momentum can be used.
Momentum is a method that accelerate the convergence in the right direction, it
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will create a faster convergence and dampen the oscillations [66]. Momentum using
the optimizer SGD is described in the two equations as,

0« 6— Vt, (29)

vy = Y1 + Ve J(0; 29y, (2.10)

where v is the update term and ~ a constant that regulate the impact momentum
have each update. As can be seen the momentum is depending on the past update
term vy_1.

2.2.8 Regularization: Batch normalization

Overfitting is a big problem within machine learning that occurs when a neural net-
work descend to be too biased to the training data. This results in poor performance
and high uncertainties when the model is exposed to data it has not seen before.
To avoid this a bigger training set can be used, but as it can be hard and expensive
to get more data, the problem can be solved by using regularizers instead. As reg-
ularizers are quite effective they are common to use within deep learning, one type
of regularizer is Batch normalization (BN). BN was initially intended to solve the
problem called covariate shift [37], which refers to when the training inputs and the
test inputs have different probability distributions but the conditional distribution
of the outputs remain the same [74], this frequently occurs when working with real
world problems. To solve this problem BN was proposed, this method however was
also proven to work well as a regularizer [38].

BN normalize the output from a previous layer over one mini-batch, it does this by
subtracting the batch mean and divide it with the standard deviation of the batch.
The equations for BN follow as,

hi — w'x; (2.11)
L5 1 f:h (2.12)
g — i :
mi3
2 L s h 2 2.1
%FEZM—M@ (2.13)
B i is (2.14)
,/Jg%—e
Yi < 9(77% + B) = g(BN, 3(hs)), (2.15)
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Original Input Latent Representation Reconstructed Output
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Figure 2.8: An Autoencoder for image retrieval, adapted from [36]

h

where h and h are the hidden values before and after the BN. w is the weights,
x; the input and ¢ the activation function. pg is the mean and 0% variance of the
mini-batch. The parameters v and 3 are the scale variable respectively shift variable
and are learned in the optimization process [38, 37].

By using BN the network sees the training images in each mini-batch in a conjunction
together, this removes the deterministic values that would otherwise exist for each
training image [38].

2.3 Autoencoder

An autoencoder is a deep neural network with the purpose to compress (encode)
data into a short string of code that acts as a fingerprint towards the input which is
then extracted (decoded) to a target output. By forcing data dimension reduction, it
limits which features the network will act upon, therefore features that is inconsistent
and not frequently appearing in the dataset will disappear when the data is encoded,
which means that noise and unwanted data will be filtered out in the encoder. An
autoencoder can be used to retrieve damaged or corrupted images, an example of a
flowchart trained on MNIST can be seen in Figure 2.8. In this example the encoder
compresses the input data and can be represented as an encoder function h = f(x),
where h is called the latent representation which is the string of code. The decoder
that have the same architecture as the encoder but reversed, can be represented
as a decoder function r = g(h). It is an unsupervised learning algorithm, meaning
that no labeled data is required to train the model and the parameters are learned
through backpropagation where the target values are set to be equal to the input
data, r = y.

Autoencoders have also been utilized to pretrain classification models. Simply put,
the model is first trained on a large unlabeled dataset, then the weights are saved and
the decoder is replaced with a couple of fully connected layers and then tuned on a
small labeled dataset. Another classification problem within CV where autoencoders
are used is semantic segmentation, which will be discussed further in section 2.4.
Compared to the other problems this requires labeled data to train the model which
make it to a supervised learning method. In Figure 2.9 a fully convolutional encoder-
decoder architecture for semantic segmentation is illustrated as an example.
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Figure 2.9: An example of a fully convolutional autoencoder architecture for image
retrieval that restores damaged or corrupt images, source from [80]
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Figure 2.10: Illustration of an upsampling operation with saved indices from Fig-
ure 2.7

2.3.1 Upsampling in decoder

Models with an autoencoder architecture have to upscale the feature maps in the
decoder in order to output an equally large prediction as the input size. Compared to
Max pooling, which reduced the dimensions, the operation called upsampling does
the opposite and increases the dimensions. Although, there are several different
upsampling methods and to mention a few as example; Transposed convolution or
Bilinear upsampling [78]. V. Badrinarayanan et al. upsampled their features by
using the corresponding indices from the Max pooling operations in the encoder [5],
the operation can be seen in Figure 2.10.
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2.4 Semantic segmentation

Semantic segmentation is a rather advance classification task within computer vi-
sion. The goal of semantic segmentation is to classify regions in the image with its
corresponding class. An example of the input and the corresponding output of such
a network is shown in Figure 2.11. The left image is the input image to the network
and the right image is the semantically segmented image. Each color in the output
image represents a specific class.

(a) Original image (b) Pixel-wise classified image

Figure 2.11: An example of an input and output of an semantic segmentation

network. a) Original input image, b) the pixel-wise classified output. Image from
KITTI dataset [28]

2.4.1 SegNet

SegNet is a deep fully convolutional neural network for semantic segmentation [5].
The architectures consists of an encoder, a corresponding decoder followed by an
output layer with Softmax as the activation function, illustrated in Figure 2.12. The
network VGG16 designed for image-level classification is used as the encoder and
reversed for the decoder. Although, SegNet only use the 13 first layers and the
last three fully connected layers are excluded. The size of the convolutional layers
in each block is 3 x 3 and the Max pooling is 2 x 2 with stride 2. The amount
of extracted feature maps changes for each block and is respectively, 64, 128, 256,
512 and 512 [73]. In the convolutions the feature maps is batch normalized and
processed through a ReLU as the activation function. The decoder has a similar
process but in reverse and up-sampling instead of Max pooling [5].

Another feature in SegNet is the use of pooling indices during decoding which is
saved from the Max pooling during encoding. This make it possible to perform
non-linear upsampling and result in a feature map of higher resolution [5] .

2.5 Unsupervised depth estimation

Depth estimation is an important step toward situational awareness and scene un-
derstanding. The goal is to output a pixel-wise depth map of a given monocular or
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Figure 2.12: Illustration of the SegNet architecture that is designed to take a
RGB image as input and semantic segmentation as output. VGG16 is used as the
backbone architecture. Adapted from [5]

stereo-pair image, this is done by assigning a value representing the depth to each
pixel in the image. An example of a depth estimation provided from a model can
be seen in Figure 2.13.

Figure 2.13: An example of a depth estimation. The top to bottom: input image,
ground truth disparities and estimated depth disparities. Adapted from C. Godard
et al. [30].

There are depth estimation models that are either trained through supervised [21, 44]
or unsupervised [30, 64] learning. The advantage with unsupervised learning is that
no labeled data is required and is therefore not restricted to specific data scenes
where large image with corresponding depth map are available [30].

2.5.1 PyD-Net

The CNN PyD-Net is an example of an unsupervised depth estimation network [64].
The network is designed to only process one image, but the training framework use
stereo pair images during training, the reason lies behind the training framework
and, a simple illustration of the training framework is shown in Figure 2.14 [64].

PyD-Net was proposed to deliver good depth estimations but with a simple structure
such that it could be implemented for real-time use [64]. An illustration of the
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Figure 2.14: A simple illustration of the training framework used for PyD-Net,
adapted from [30]. The CNN, PyD-Net, is fed with the left image and decodes left
and right depth images. By sampling the left image with the predicted right depth
image the right image can be retrieved and vice versa for the left depth image. The
retrieved images are then compared to the target images that are the original stereo
pair.

architecture can be seen in Figure 2.15. The input features are extracted by an
encoder made of 12 convolutional networks stacked in 6 different levels, L1 to L6.
Each level in the encoder starts with a convolutional layer with stride 2 followed
by another convolutional layer with stride 1, both with the size 3 x 3 and with a
Leaky-ReLU with @ = 0.2. The number of extracted features increases for each
downsampling module, respectively 16, 32, 64, 96, 128 and 192. The resolution of
the image is divided by 2 for each level, starting from % in L1 to 6%1 in L6. The
extracted features from the encoder is initially processed in the highest level (L6)
by a depth decoder made of 4 convolutional layers which produce 96, 64, 32 and
8 feature maps respectively. The extracted output is later used twice. Firstly, to
extract a depth map for the current resolution by the use of a Sigmoid function,
and secondly, to pass information to the lower level in the pyramid. In the lower
level (L5) the encoded features is concatenated with the decoded features from the
higher level (L6) that is upscaled with a deconvolution layer with stride 2. The
concatenated features are then processed through the same process as the decoder
in L6. This process is repeated all the way down to the first level with the highest
resolution. Similar to the encoder the convolutions use 3 x 3 kernels with Leaky
ReLU except the last layer which uses Sigmoid to normalize the outputs. [64]

2.6 Public datasets

The demand of qualitative data has increased along the development of machine
learning. For supervised learning the performance of a model depends on architec-
ture, training methods and dataset. The purpose with a supervised network is to
design a network which can predict a possible output given an input, which is all
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Figure 2.15: Illustration of the PyD-Net architecture, the input is an RGB-image
and output six disparity maps with different feature levels. Source: Adapted from
[64].

based on a likelihood regarding what the model has seen during training. It is there-
fore important to know which data a model should be exposed to during training.
As an example, for image recognition in urban areas it is often preferable to have a
dataset with a variation of images with different environments.

There are several public datasets with some difference in size, labels, cities, weather
and daytime. The datasets KITTI [28, 52, 53, 1], Cityscapes [15] and BDD100K
[81] are three datasets focused on urban environments and are commonly used in
CV for autonomous drive. These datasets will be described in detail in this chapter.

2.6.1 Cityscapes

The purpose of Cityscapes is to benchmark networks which focus on semantic infor-
mation (pixel-level, instance-level, and panoptic) of urban street scenes. It contains
images from 50 different cities captured during several months, on different times of
the day and in different weather conditions. There is a total of 3178 fine annotated
images and 20000 coarse annotations, all with a resolution of 2048 x 1024. The
different annotations is semantic, instance-wise and dense pixel annotations [15].

Table 2.1 displays the percentage of pixels for each class in Cityscapes. Classes
like Road, Building, and Vegetation are well presented in the dataset, while the
Motorcycle class is especially underrepresented.
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Table 2.1: The percentage of pixel representation of each class present in the
Cityscapes dataset.

Void 11.472 Traffic light | 0.184 Car 6.192
Road 32.640 Traffic sign | 0.488 Truck 0.237
Side-walk | 5.387 Vegetation | 14.101 Bus 0.208
Building | 20.206 Terrain 1.025 Train 0.206
Wall 0.580 Sky 3.558 Motorcycle | 0.087
Fence 0.777 Person 1.079 Bicycle 0.366
Pole 1.087 Rider 0.120

2.6.2 KITTI

KITTI was developed to create benchmarks for networks with tasks such as stereo,
optical flow, visual odometry, 3D tracking and 3D object detection. Images are
captured from the city of Karlsruhe, in rural areas and on highways. The stereo and
flow matching dataset that was generated in 2012, contains 194 training and 195 test
image pairs at a resolution of 1240 x 376 pixels [28]. Whereas the stereo and flow
dataset from 2015, consist of 200 training and 200 test images [52, 53]. KITTTI later
provided a benchmark for semantic segmentation which contains semantic annotated
images taken from the stereo and flow dataset 2015. The data format and metrics
are in conform with Cityscapes [1].

The Table 2.2 shows the representation of classes in KITTI. The classes Road and
Vegetation is especially well represented. The classes Terrain and Sky appears rel-
atively often compared to Cityscapes.

Table 2.2: The percentage of pixel representation of each class present in the
KITTI dataset

Void 3.836 Traffic light | 0.307 Car 6.01
Road 23.098 Traffic sign | 0.551 Truck 0.224
Side-walk | 3.824 Vegetation | 30.323 Bus 0.066
Building 8.156 Terrain 9.42 Train 0.215
Wall 0.919 Sky 10.668 Motorcycle | 0.009
Fence 0.835 Person 0.094 Bicycle 0.058
Pole 1.360 Rider 0.028

2.6.3 BDD100K

BDD100K is the largest public dataset available for autonomous driving (AD) pur-
poses. By introducing new tools to annotate data such as image-level tagging,
bounding box and polygon annotation they managed to develop a diverse public
dataset containing 100K video clips, mainly captured within USA. The dataset con-
tains annotated data such as object detection, lane detection, drivable area and
semantic segmentation. [81]
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Table 2.3 shows the class representation in BDD100K. Similar to Cityscapes the
classes Road, Building, and Vegetation appear often, however in this dataset the
classes Void and Sky is common as well and the classes Train, Motorcycle and
Bicycle are poorly represented.

Table 2.3: The percentage of pixel representation of each class present in the
BDD100K dataset

Void 18.720 Traffic light | 0.180 Car 8.114
Road 21.493 Traffic sign | 0.339 Truck 0.971
Side-walk | 2.035 Vegetation | 13.207 Bus 0.556
Building | 13.259 Terrain 1.031 Train 0.014
Wall 0.479 Sky 17.299 Motorcycle | 0.024
Fence 1.031 Person 0.251 Bicycle 0.051
Pole 0.924 Rider 0.021

2.7 Performance evaluation metrics for semantic
segmentation

How a network performs on a desired task, e.g. classify or detect objects in an image,
can be calculated using different evaluation metrics. These metrics focus differ, some
focus on the ratio of correct estimated pixels were other focus on evaluating the
accuracy between classes. In this chapter we will discuss two kinds of performance
evaluation metrics for semantic segmentation, accuracy and confusion matriz.

2.7.1 Accuracy

Most papers use accuracy to measure the performance of a network, it is easy to
implement as it is a built-in metric in many of the commonly used functions within
machine learning. There exist various accuracy metrics for different network tasks,
but also different metrics within each specific task.

The paper written by A. Garcia-Garcia et al. proposes four metrics to calculate
accuracy for semantic segmentation [27]. To describe the metrics, the variables Cy;,
C;; and Cj; is used. Cj; defines the so called true positives which are the correct
classified pixels, C;; and C}; symbolize the false positive respectively false negative.
The metrics are defined as:

PA=-"="__ (2.16)
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This is a very simple method which gives a general overview of how good the network
is. However, it do not give any information on which of the classes the network
performs well.

Mean Pixel Accuracy (MPA) calculate the per-class pixel accuracy, which is
then averaged over the number of classes, as

1 & ooy
MPA = — > (2.17)
+ 15 Z%CEJ
]:

This metric gives an overview of which classes the network performs well.

Mean Intersection over Union (MIoU) represent how much the ground truth
object overlaps with the predicted object. IoU, also called Jaccard Index, describes
the ratio between the intersection over the union of the predicted segments and the
ground truth [16]. This is calculated for each class and thereafter averaged to get
the mean intersection over the unions, as

k )
MIoU = - i 1 Ci . (2.18)
=03 G+ X Ci—Cy
=0 =0

This method is the most commonly used for computing segmentation accuracy and
is used in various competitions, like the PASCAL VOC and KITTTI challenge [22][2].

Frequency Weighted Intersection over Union (FWIoU) is an extension of
MIoU. The FWIoU takes into account how frequent a class appear, this data is then
used to weight the class significance, as

k
1 k > CiiCii
FWIoU = —— = . (2.19)
Cy =0 3 Cij+ > Cj = Cy
i=0j=0 =0 j=0

2.7.2 Confusion matrix

A confusion matrix is a common way to show the performance of a network for each
individual class. It is a method to show for which classes the network is confused
and mixing up during prediction. The columns in the matrix represent the predicted
classes, the rows the actual classes and the diagonal the correctly classified samples
for each class.

In Table 2.4 a simple example of a confusion matrix is visualized. By looking at the
row for class A it can be established that there are in total 20 class A samples. 14
of them were correctly classified, out of the 6 that were miss-classified, 4 of them
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were classified as class B and 2 of them as class C. The same rules apply for class B
and C.

Table 2.4: Example 1 of a confusion matrix, values represent the numbers of
instances.

Predicted class

Class A | Class B | Class C
Actual | Class A 14 4 2
class | Class B 6 5 9
Class C 2 0 18

A confusion matrix can also be used to show the performance of a semantic segmen-
tation model. The confusion matrix then includes the prediction for every single
pixel in the dataset. However, this quickly becomes a large number. To make the
result more intuitive the values can be shown as percentage [47]. An example of this
is shown in Table 2.5, where 70 % of the pixels for class A were correctly classified,
20 % were miss-classified as class B, and 10 % as class C.

Table 2.5: Example 2 of a confusion matrix, values is represented in percentage.

Predicted class
Class A | Class B | Class C
Actual | Class A | 70 % 20 % 10 %
class | Class B 20 % 50 % 30 %
Class C 10 % 0 % 90 %

2.8 Robustness

The term Robustness appears quite often in articles within machine learning regard-
ing the performance of a model. However, when discussing what a robust model is
the definition vary a lot. In this chapter different definitions are discussed to get a
sense on what definitions that exists in the CV field today.

When some researchers discuss robustness in their papers, they do not specifically
define it. By reading their articles you can understand that they define it as how
well a network performs when tested on a similar but independent dataset from the
one it was trained on [32]. This is often tested by comparing the test error with
the training error, this type of robustness will be called test set robustness in this
project.

Another definition of robustness that has become more common since 2015 for CNNs
is susceptibility to adversarial input perturbations. In 2015 I. J. Goodfellow et al.
noticed that CNN classifiers could be easily tricked with carefully constructed noise
[31]. An adversarial input is an input an attacker has intentionally designed to cause
the network to give an incorrect prediction with high confidence. The attack can be
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either physical or digital. A physical attack can for example be a carefully designed
sticker on a road sign while a digital attack is created by changing the input to a
network by altering specific pixels leaving the input in many cases nearly unchanged
for a human eye [24, 7|. Adversarial perturbations can be applied to networks with
tasks such as image recognition, speech recognition, and semantic segmentation
(31,9, 3]. What seems to be the most common way to measure this type of robustness
is the percentage of unsuccessful adversarial attacks against the network. There
exist challenges like NIPS Adversarial Vision Challenge to compete and measure
the robustness against adversarial attacks [72]. There is no general defence system
that handle all kinds of adversarial attacks, however a network can be trained to be
resistant to one type of attack, for example, against a first-order adversary attacks
[55]. Some networks architectures is inherently more robust against attacks than
others, an example of this is networks that have residual connections and performs
multiscale processing [3].

In image recognition people have managed to create physical stickers to make net-
works predict an incorrect answer, however this is not as easily accomplished for
semantic segmentation. A paper about adversarial attacks against semantic seg-
mentation network presented a method to remove whole classes predicted from the
network [54]. Though, this was done by carefully and precisely redesign the digital
input and they did not manage to create any physical examples. It is more difficult
to create physical attacks, this is because the adversarial example needs to be able
to work from different ranges, light conditions, camera viewpoints etc [4].

When discussing adversarial attacks, we refers to a worst-case scenario for the net-
work. Instead of evaluating against these extreme perturbations some researchers
instead evaluate against noise. Alhussein Fawzi et al. [25] have shown how well a
network performs while the input is affected by random, and semi-random noise.
The noise robustness of the networks is tested in a similar manner as for adversarial
perturbations. Another approach by Devrim Unay et al. [20] proposed a method to
create a robust network for identifying neurodegenerative diseases in Magnetic Res-
onance (MR) brain images . To test the robustness of the network they added noise
in the form of different intensity filters to the input image. In these two examples
different kind of noise were added to the input of the network.
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Methods

The aim of this project was to study how a fusion of two deep CNNs would affect
the performance for different tasks. Although, a limitation was to only analyze and
test on one of the tasks, the pixel-wise classification. To reach a conclusion the
methodology illustrated in Figure 3.1 was applied. The process consists of six steps
whereas A-C is preprocessing, D the main task and E-F is analysis, each step are
explained in detail further in this chapter.

A D B

Designing
architectures Performance F
B C iivgifg — Evaliation Conclusion
Dataset || Data Comparison
selection & splitting | | preprocessing

Figure 3.1: Flowchart of this project methodology, consisting of six steps with the
categories A-C preprocessing, D main task and E-F analysis.

3.1 Deep-learning architecture for semantic seg-
mentation

Architectures for different networks in this project follows some similar boundaries.
Firstly, the same design as SegNet were applied for the autoencoder that process
the RGB input image. Secondly, each network have a RGB and a depth image as
input and output pixel-wise classification. The depth images was predicted from
PyD-Net with pre-trained weights from the original paper [64]. This let us keep the
uncertainties from PyD-Net which is a closer simulation of a fusion between two
CNNgs.

Lastly, they use the same CNN operations but varies in how they are applied. The
convolutional layers are of size 3 x 3 with stride 1 except the last one before the
Softmax activation function which is of size 1 x 1. In every hidden layer the convolved
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feature maps are also batch normalized and thereafter non-linearly transformed
through Leaky ReLU with a = 0.1. The size of the Max pooling layer is 2 x 2
with stride 2. The upsampling factor is 2 x 2 with stride 2 and is upsampled with
the pooling-indices that is saved from the max-pooling layer. Similar to SegNet the
proposed architectures also have five different blocks with different number of filters
in each convolutional layer. From large to small blocks the amount of filters is 64,
128, 256, 512 and 512. The last layer contains equally amount of filters as classes,
in our case 10.

3.1.1 Architecture 1 - P-SegNet

The first architecture that can be seen in Figure 3.2 almost have an identical ar-
chitecture to SegNet in Figure 2.12. The only difference is that the RGB-image is
processed through PyD-Net first to produce a depth image and then concatenated
with the RGB-image, thus it got its name PyD-SegNet (P-SegNet). The input size
to the autoencoder becomes W x H x 4, and because of the fourth channel the num-
ber of parameters in the first convolutional channel will be larger than for SegNet.
The idea of this architecture came from the RGB-D images used to create the FCN
by J. Long et al. [50].

[] Conv 3x3 + Leaky-ReLu + Batch-Norm
[] Conv 1x1 + Leaky-ReLu + Batch-Norm
B Maxpooling [ Upsampling

[] Softmax

Figure 3.2: P-SegNet architecture

3.1.2 Architecture 2 - DF-SegNet

Another approach to input the depth image is to concatenate it in the last block
after the upsampling layer and use it as a decoded feature map, thus it is called
Depth Feature SegNet (DF-SegNet). The same layers as in SegNet were used, the
design can be seen in Figure 3.3.
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PyD-Net

CONCAT.

[ Conv 3x3 + Leaky-ReLu + Batch-Norm
[ ] Conv 1xI + Leaky-ReLu + Batch-Norm
B Maxpooling [ Upsampling

[ ] Softmax

Figure 3.3: DF-SegNet architecture

3.1.3 Architecture 3 - D-SegNet

Double SegNet (D-SegNet) consist of two Autoencoders to process the depth and
RGB image separately and are concatenated right before the last convolutional layer.

The architecture can be seen in Figure 3.4.

B Iren ol

PyD-Net

® Iee. 17

[] Conv 3x3 + Leaky-ReLu + Batch-Norm
[[] Conv 1x1 + Leaky-ReLu + Batch-Norm
B Maxpooling = Upsampling

[ ] Softmax

Figure 3.4: D-SegNet architecture

CONCAT.
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3.1.4 Architecture 4 - BD-SegNet

Basic Double SegNet (BD-SegNet) is quite similar to D-SegNet. The only differ-
ence is that the autoencoder that process the depth image is less complex. The
architecture can be seen in Figure 3.5.

[ ] Conv 3x3 + Leaky-ReLu + Batch-Norm
[] Conv 1x1 + Leaky-ReLu + Batch-Norm
B Maxpooling [] Upsampling

[ ] Softmax

Figure 3.5: BD-SegNet architecture

3.1.5 Architecture 5 - EF-SegNet

The last architecture we designed was called Encoder Fuse SegNet (EF-SegNet).
In this architecture we fed the RGB and depth image into two separate encoders
with the same characteristics. The output layers from both encoders were then
concatenated before they were fed into a shared decoder.

PyD-Net CONCAT [

[] Conv 3x3 + Leaky-ReLu + Batch-Norm
[] Conv 1x1 + Leaky-ReLu + Batch-Norm
B Maxpooling [] Upsampling

] Softmax

Figure 3.6: EF-SegNet architecture
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In practice this means that the network deconstructs the features from the images
separately and then tries to reconstruct based on the feature maps. There is also
not equally amount of Max pooling layers as upsampling layers which there have
been in the other architectures. In EF-SegNet the upsampling layers only use the
Max pooling indices from the RGB-image encoder. The architecture for EF-SegNet
can be seen in Figure 3.6.

3.2 Dataset

Since the task semantic segmentation with supervised learning is analyzed the data
that is exposed to the networks have a huge impact on the outcome. First the
dataset has to meet the requirements for the specific task. Secondly, the variation
in the dataset have to be good enough such that there are enough differences in the
validation and test set to be able to evaluate how the network performs in general.

3.2.1 Dataset selection

The quality of the data used to train a neural network can have major impact of
the network performance. The data should be a good representation of the reality
and the number of samples and the variation in the dataset should be large enough
to increase the network’s ability to be generalized.

As it is supervised semantic segmentation networks that is trained the dataset needs
to contain pixel-level annotations, this is therefor our first requirement. This project
focus on autonomous driving, thus the data need to contain road scenes. These are
the only two requirements for the dataset, however it is preferable for the dataset
to contain stereo vision and annotated depth maps. Stereo vision is preferred to
give the opportunity to retrain the PyD-Net network in future work. Ground truth
depth information could, also in future work, replace the depth data from PyD-Net
to see how the semantic segmentation change in performance compared to having
the PyD-Net prediction as input to the network.

Another preferred property of the dataset is to have benchmark results for other
networks. Then the networks in this project can be compared to other networks
and a better understanding of the network’s performance can be gained.

The datasets discussed in section 2.6 was KITTI, Cityscapes and BDD100k. All
of them have pixel-level annotations and images taken in an urban environment
and therefore meets the two requirements. All of them have stereo vision however
only KITTT have depth information. KITTI and Cityscapes is the most commonly
used dataset by the three and have benchmark results for a range of networks [27].
KITTTI have 200 training images with pixel-annotations, Cityscapes 3178 images and
BDD100K 10 000 images.

All of the datasets exceed in one of the categories mentioned above. Though, we
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decided to use Cityscapes and KITTTI in this project. The reason BDD100k was not
chosen was because it do not have a lot of benchmark results and that Cityscapes
was large enough. Training the networks on both Cityscapes and BDD100k would
be too overwhelming for this study.

In the training session we only used Cityscapes as a training dataset. The reason
why we did not use KITTT as a training set was because of the small sample size of
the dataset. Instead KITTI was used as a test set.

3.2.2 Dataset splitting

During development of a network in deep learning it is beneficial to split the dataset
to three different sets, training, validation and test set. In total Cityscapes have
3178 fine annotated images with pixel-wise classification. These images have been
recorded over 21 different cities. To reduce that the network would end up bias
towards the different cities the dataset was splitted between the cities. The sets were
splitted such that the training set contained of 17 cities and both the validation and
test set contained of 2 cities each. Each city sequence contained of approximately
150 images each.

To ensure that the methodology would be consistent with the results the dataset
was splitted differently for three rounds. The different sets, train, validation and
test, had the same number of cities as previously mentioned but which cities were
different for every round and randomly chosen. The presence of the classes and the
number of images for the rounds can be seen in Table 3.1. The idea with the table
is to show the data that the networks have been trained on for the different rounds,
which mean that the values are taken from data that is exposed to the networks.

Table 3.1: The differences of the training sets between the rounds after the data
preprocessing; resizing, class selection and shuffle. The values for the classes are
how frequent they appear in the dataset in percentage.

Round
1 2 3
Images 2661 | 2560 | 2596
Void 15.33 | 14.82 | 15.53
Road 32.61 | 32.47 | 32.53

Sidewalk 5.29 5.33 5.43
Building 19.60 | 20.15 | 20.26

pr(;iisce Pole | 115 | 105 | 109
(%] Vegetation | 14.53 | 14.44 | 13.71
Terrain 0.97 | 1.00 | 0.89

Sky 3.42 | 3.53 | 3.46

Person 1.10 | 1.06 | 1.14

Car 6.00 | 6.16 | 5.97
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3.3 Data pre-processing

Before the data was used to train the networks, it had to be processed to be com-
patible with the training framework. This chapter explains the selection of classes,
one-hot encoding, resizing, generation of depth-predictions and normalization.

3.3.1 Selection of classes

Originally, the Cityscapes dataset contained of 33 different labeled classes. As seen
in Table 2.1 the proportions of how present each class is in the dataset variate.
Therefore, it was decided not to include every single class and only consider the
classes that had more than 1% presence in the dataset. The classes which were
excluded were merged with the class Void instead. The classes that we used can be
seen in Table 3.2.

Table 3.2: The classes used from Cityscapes in this project

# Name
Void
Road
Sidewalk
Building
Pole
Vegetation
Terrain
Sky
Person
Car

eI N E

3.3.2 One-hot encoding

Before initialization of the training session the data had to be preprocessed such
that Categorical Cross-Entropy could be utilized as a loss function. The labeled
data had annotations for 10 different classes for every pixel and had to be remade to
one hot-encoded matrices. This was done by stacking 10 layers with the same height
and width as the image, which mean that the size of the matrix was H x W x N
which contained a value of 1 for the i:th layer where class ¢ were present in the
labeled image. A simple example with three classes of how this process was done is
illustrated in Figure 3.7.
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Image
1|0 1o ly
0 0110
110‘L
2(0
10099

Figure 3.7: An example of one-hot encoding of a 3 x 3 image with 3 classes

3.3.3 Resizing images

Another preprocess that was done before training was to shrink the size of all the
images. The size of an input decides the size of all the feature maps which had
to be pre-allocated during training. Since the networks were quite complex there
was a limitation of how much memory space that could be allocated. The size of
the original images in Cityscapes was too large for the networks regarding memory
space and was instead resized to 384 x 256.

3.3.4 Depth predictions from PyD-Net

A limitation in this project was to not build and train an unsupervised depth es-
timation network. But to stay within the scope to actually fuse two deep neural
networks together we still had to get predictions from one. The network chosen
to generate depth predictions was PyD-Net with the pre-trained weights obtained
by M. Poggi et al. [64]. By simply feeding PyD-Net with all the images from the
dataset predicted depth estimations were obtained.

3.3.5 Normalization of input data

Considering how the networks are updating their weights explained in subsection 2.2.5
we decided to normalize our inputs. Without normalization the values between each
feature can end up being too high which will lead to some weight update corrections
being either over or under compensated. This can affect a network such that the
model will never reach an optima and instead fluctuate or diverge. This problem
can be avoided by using normalization [60]. The RGB images from the datasets
contains values between [0-255] for each color channel and the depth images pre-
dicted by PyD-Net as well. By dividing both the RGB and depth image with 255
the range of the inputs to the network became [0-1] instead.
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3.4 Training

The same training method were used for every network such that the comparison
would be fair. The networks were trained three times separately with the different
splits of the Cityscapes dataset.

The loss function used in this project was the Categorical Cross-Entropy, as it is
a multi-class loss function that was fit for our project. It was chosen over other
multi-class loss functions as it mathematically fulfils the requirement to penalizes
confident predictions that was wrong but also predictions which were correct but
with high uncertainties.

The used optimizer in the project is SGD. It is a popular optimizer within machine
learning and is recommended by Ashia C. Wilson et al. and Léon Bottou [77, 8]. The
main reason this optimizer was chosen above other popular optimizers like Adam
[41] is because SGD is good at generalizing which was more important than fast
convergence in this project [63]. We used a momentum 0.9, an initial learning rate
0.01 and a batch size of 6.

After every %th epoch we evaluated the loss on the validation set. Even if the weights
were updated to descend to the optima it did not always result in lower validation
loss after each epoch. One reason for this problem was that the learning rate was
too large for some epochs. To fix this problem we decreased the learning rate with
x 107! if the validation loss had not improved after 2 epochs.

As mentioned, every epoch did not necessarily result in lower loss as the loss usually
fluctuates. This means that the weights from the last epoch in the training were
not necessarily the best, because of this the weights that had the lowest validation
loss was saved. The reason for choosing the validation loss as an indicator and not
the training loss, is to reward generalization so the models perform good on data is
have not seen before.

The training session of our networks was carefully carried through such that the
same result could be achieved and not have a stochastic influence. This was the
most important criteria we had because we wanted to make sure that the different
networks were trained with the same prerequisites. Firstly, we made sure to use the
same hyperparameters, which were the learning rate, momentum and initialization
of weights. Secondly, to solve the stochastic influence of SGD but still maintain its
attribute we had to have fixed random orders of the data for each epoch.

3.5 Analysis

Before we started with experiments, we had to discuss which kind of result we
wanted to produce to compare the networks accordingly. Within our scope there
were two attributes that we wanted to analyze, the accuracy and the robustness of
the networks. How we defined these attributes will be discussed in this section.
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3.5.1 Accuracy

Accuracy is an important metric and in a lot of papers it is the only measurement of
the network’s performance. There exist different methods to decide the accuracy. In
Chapter 2.7.1 four performance evaluation metrics were presented, PA, MPA, MIoU
and FWIoU [27].

PA differ from the other methods, as it calculates the ratio between number of
correct classified pixels to the total number of pixels, while the other three metrics
take classes into consideration. As the performance class-wise could contribute to
an useful insight of the models total performance, PA did not qualify.

To be able to compare the proposed networks performance to other networks in a
fair way, the same accuracy metric would need to be used. The three metrics MPA,
MIoU and FWIoU is quite similar, though the absolute most common metric to
evaluate semantic segmentation models is MIoU, both as performance measurement
in reports as well as in competitions [27]. For these reasons we decided to use MloU
as accuracy metric in the project.

When creating a network to classify pixels on road scenes some classes might be
of more importance than other, that’s why we also choose to include IoU for the
individual classes as a metric. Then it can be observed for which classes the networks
performs well on.

3.5.2 Robustness

As discussed in section 2.8 researchers had different definitions of what a robust
neural network was. The different definitions were test set robustness [32], adver-
sarial robustness [7, 24] and noise robustness [25, 20]. Thus, we had to decide our
definition of what a robust network was for this project.

The first definition that was discussed in section 2.8 was how the network perform
on an independent but similar dataset. We decided to include this part for our
definition of robustness. The kind of experiments from these definitions gave us an
approximation of how well the networks performed in normal conditions.

The networks in this project were tested on a test set that was originally from the
same dataset as the training set, i.e. Cityscapes. However, the images in this dataset
was captured with the same hardware. Therefore, to further test the performance
of a network and in a more real-life scenario it was also evaluated on a different
dataset from the one it was trained on, in this case KITTI. This resulted in a more
generalized and realistic test.

The performance of the networks was evaluated by estimating their accuracy. The
metrics which were used, as presented in the accuracy section 3.5.1, were MIoU and
IoU.

Resistance against adversarial attacks was the second definition discussed. The task
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for our networks was semantic segmentation and how these kinds of attacks could
possibly affect them were considered. Digital adversarial attacks were able to create
worst-case scenarios for the networks since they could manipulate an input image to
achieve a specific output, but to achieve those kinds of attacks were quite advanced.
On the other hand, physical adversarial attacks seemed as a bigger threat. However,
physical attacks against semantic segmentation has proven to not be so effective
[54, 4]. Therefore, we did not include adversarial robustness in our definition of a
robust network.

The last robustness definition we have discussed was robustness against noisy data.
For some cases it would be reasonable to consider this kind of robustness, for example
when identifying patterns in MR images since the images are usually of low quality
[20]. However, this type of robustness was outside of the scope for this project and
was therefore not considered in our definition of robustness.

MIoU and IoU was decided to be used to evaluate the performance of the networks,
though these metrics are rather weak on their own and they are therefore supple-
mented with other methods to make a more proper comparison, for example the
confusion matrix.

Within a decision-making system for autonomous driving some classes will activate
more similar actions for the vehicle. For example, the car should not drive on either
the class Vegetation or Sidewalk, so if the network misclassified one as the other it
would be considered better than if Sidewalk got mixed up with Road.

To be able to monitor what the networks predicts for the individual classes we chose
to generate the confusion matrix. As described in subsection 2.7.2 the confusion ma-
trix shows the percentage of how many pixels of a class that was correctly classified,
miss-classified and for which class they were miss-classified as.

It is hard to use the confusion matrix to give an exact measurement of the network’s
robustness as it is a combination of multiple result. Though, it is useful tool to get
an indication of the robustness, as it gives an insight of how the networks predicts.

Another useful insight of the networks was the consistency of their performance.
This was done by estimating the IoU and MIoU for each image and then their mean
and standard deviation (std) over all the images were calculated. An accuracy which
yield small std indicates that it is consistent to perform as good as the mean value.
We decided to include the results from the distributions to support the robustness
analysis of a network.

To validate the robustness of the networks for this project we first had to measure the
accuracy, both the MIoU and the IoU for the individual classes. This was done by
evaluating the networks on a similar independent dataset, i.e. on a separate test set
of the datasets KITTI and Cityscapes. Secondly the confusion matrix was generated
that described how the networks predicted and lastly, by estimating the distribution
of the networks we could analyze how consistent their performance were.
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Experimental Results

4.1 Setup

To carry out the experiments the network was trained on Cityscapes, the perfor-
mance was evaluated on both Cityscapes and KITTI [15, 28]. The network was
trained for 30 epochs with a Categorical Cross-Entropy loss and the SGD optimizer
with 0.9 momentum and an initial learning rate 0.01. Decreasing learning rate was
used as the network failed to improve. This is more thoroughly discussed in the
Chapter 3.4.

The graphic processing unit used for training the networks was a GeForce RTX
2080 from Nvidia [57]. The tools that were used to build and train the models were
mostly taken from the Keras Functional API framework [13] and some were custom
written as well.

4.2 Learning trends

Table 4.1: The MIoU over three rounds with shuffled data for the different models.
[1] and [2] represent testing on the Cityscapes respectively KITTI dataset. Bolded
values indicates the best model for the evaluated dataset row.

MIoU Model

SegNet | P-SegNet | DF-SegNet | D-SegNet | BD-SegNet | EF-SegNet

Train | 56.3 58.6 53.8 54.4 54.6 47.2
Round | Val 52.7 53.6 51.3 50.9 51.4 45.6
1 Test!! | 51.6 52.6 50.6 49.3 50.2 44.9
Test? | 29.2 31.2 28.8 30.7 30.6 25.0
Train | 52.2 52.0 52.2 49.9 53.3 474
Round | Val 50.8 50.4 50.6 48.3 49.2 45.2
2 Test!! | 46.8 46.2 46.7 44.7 46.8 41.5
Test?) | 29.9 31.5 31.6 28.3 28.3 21.7
Train | 51.2 50.7 53.6 54.9 51.1 49.8
Round | Val 47.8 48.2 48.5 48.4 46.5 45.0
3 Test!t | 48.3 48.4 49.2 48.5 47.02 44.3
Testl? | 29.2 29.05 29.92 27.37 30.3 23.9

37



4. Experimental Results

To evaluate if the training method would yield consistent results the models was
trained three times. For each training round the data was randomly rearranged
between the categories training, validation and testing, the performance differences
for each round are visualized in Table 4.1 and Table 4.2. The tables contains MIoU
and loss evaluated on the train, validation and test data from Cityscapes, as well as
test data from KITTI, for each training round.

The weights are saved based upon the validation loss, which mean that this is
the only metric that is expected to be consistent within our training framework.
Therefore it is the only metric that is compared throughout the three rounds. As
observed in Table 4.2, the difference of the validation loss between the rounds is
insignificant, it can therefore be concluded that the training method is consistent
and independent of the order in the dataset.

Table 4.2: The Categorical Cross-Entropy loss over three rounds with shuffled data
for the different models. [1] and [2] represent testing on the Cityscapes respectively
KITTTI dataset. Bolded values indicates the best model for the evaluated dataset
row.

LOSS Model
SegNet | P-SegNet | DF-SegNet | D-SegNet | BD-SegNet | EF-SegNet
Train | 0.294 0.251 0.314 0.309 0.296 0.470
Round | Val 0.424 0.421 0.429 0.436 0.423 0.529
1 Test!! | 0.439 0.429 0.442 0.461 0.445 0.576
Test? | 1.501 1.510 1.549 1.483 1.371 1.638
Train | 0.374 0.367 0.368 0.392 0.318 0.476
Round | Val 0.421 0.428 0.423 0.464 0.428 0.535
2 Test!! | 0.503 0.514 0.504 0.538 0.515 0.634
Test!? | 1.446 1.376 1.358 1.536 1.587 2.019
Train | 0.362 0.384 0.328 0.299 0.368 0.419
Round | Val 0.443 0.442 0.440 0.459 0.465 0.539
3 Testl] | 0.489 0.493 0.480 0.492 0.514 0.596
Test!? | 1.378 1.567 1.444 1.574 1.282 1.778

An advantage of training the models multiple times is that an average of the models’
performances can be estimated. This averaged result will be less biased than a
result from only one training round [65]. To take advantage of this property, all
the following results will be an average over the performances for each of the three
training rounds.

The Figure 4.1 shows the MIoU and loss for the training and validation set during
training. It can be seen in the figure that all models and measurements converge,
i.e. the derivative level out towards zero, this implies that the networks have found
a minimum. The network is trained with a loss function based upon the training
loss, and because the training loss converge it implies that the networks manage to
resist overtraining towards the training data. The reason the networks manage to
converge is mostly due to the regularization i.e. the batch-normalization.
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Figure 4.1: Loss and MIoU values for the training and validation set for each
model, calculated during the training session.

The figure also shows that the training and validation data, for both MIoU and loss,
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starts to diverge from each other after some epochs, leading the training and valida-
tion metrics to converge to different values. This is another type of overfitting than
the one mentioned in the paragraph above and is harder to avoid. This overfitting
occurs as the models learns features that is unique to the training set, and as these
features do not exist in the validation set the model will perform worse on this set.
EF-SegNet, is the model that have the lowest difference between the validation and
training metrics, meaning it overfit least in this type of overfitting.
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—— SegNet
—— P-SegNet
0.7 —— DF-SegNet 0.7
—— D-SegNet
0.61 —— BD-SegNet 0.6
—— EF-SegNet
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Figure 4.2: Loss and MIoU values for the training and validation set for all the
models, calculated during the training session.

As mini-batches are used in this project, one update of the weights, i.e. one step,
is with respect to a specific mini-batch. The step will be taken in a sub-optimal
direction and as the mini-batch does not represent the whole dataset perfect, this
will occasionally result in an update that would increase the validation loss. After
one fifth of an epoch the validation metrics are estimated and can possibly yield
a larger validation loss due to the weights being updated too bias to the training
set. With a large learning rate this can lead to large fluctuations of these validation
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metrics, this occurrence can be seen for the models in the beginning of the training
in Figure 4.1. As the learning rate decreases throughout the training, the fluctuation
decreases as well.

In Figure 4.2 the training and validation metrics are separated such that they could
be compared between the different models. The model that stand out mostly in
this figure is EF-SegNet. It has the highest loss and lowest MIoU on both the
training and validation data. The rate of the convergence is very similar for the
different models, they all converge around epoch fifteen, judging by the training
loss. There are a lot of factors that dictates the convergence speed, for example,
the learning rate, loss function, dataset, complexity of task and architecture. The
difference between the models is their architecture, which also is not that dissimilar.
Therefore, it is not unreasonable that they converge around the same time.

The validation metrics for D-SegNet and BD-SegNet fluctuates more in the be-
ginning of the training than they do for the other models. The behaviour is not
surprising as these two models have more parameters and the network therefore
have more parameters to tune. With a high learning rate this can lead to large
changes in the weights and therefore fluctuations.

4.3 Accuracy

The Table 4.3 shows the Mean Intersection over Union (MIoU) in Equation 2.18
and the class-wise Intersection over Union (IoU) for all the models, generated on
the test set from Cityscapes.

Table 4.3: Mean Intersection over Union (MIoU) in Equation 2.18 and class-wise
Intersection over Union (IoU) comparison between the six models. The table was
generated using images from the Cityscapes test set.

Model
SegNet | P-SegNet | DF-SegNet | D-SegNet | BD-SegNet | EF-SegNet
MIoU 48.57 48.61 48.48 47.07 47.84 43.24
Void 54.55 54.67 54.63 52.79 54.13 48.73
Road 90.32 90.13 90.14 89.3 89.53 85.67
Sidewalk 40.79 41.03 40.98 37.15 37.75 30.82
Building 66.81 67.23 66.99 65.35 67.11 62.23
Class | Pole 0.01 0.78 0.01 0.04 0.16 0.0
IoU | Vegetation | 68.78 69.02 68.79 68.42 69.08 61.66
Terrain 14.86 14.59 15.21 14.25 13.66 8.40
Sky 73.05 73.68 73.53 72.82 72.09 68.61
Person 3.42 4.39 3.12 3.19 6.45 0.01
Car 59.74 59.52 59.44 55.89 57.36 49.11

P-SegNet performs best regarding MIoU and IoU for half of the classes. Though,
SegNet and DF-SegNet have only slightly lower MIoU which mean that the difference
is to insignificant to declare that P-SegNet is best. The result shows clearly that
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EF-SegNet, performs considerably worse than the other models. It has the lowest
MIoU, but also the lowest IoU for all the classes. Therefore, it can be concluded
that EF-SegNet is worse than the other models.

The classes Road, Sky, Vegetation and Building have the highest accuracies while
Pole and Person have the lowest, this is true for all models. This means that the
models are certain with their predictions for some classes and uncertain for some,
the reason why is discussed further in chapter 5.

The MIoU and IoU evaluated from KITTI can be seen in Table 4.4. Similar conclu-
sions as the previous results in Table 4.3 regarding the performance of the models
can be drawn. P-SegNet still performs marginally better, but for this case all the
other models, except for EF-SegNet, have similar MIoU. The classes Terrain and
Sky have similar IoU in both of the results for Cityscapes and KITTI, while the
classes Sidewalk, Building and Void have considerably lower IoU on KITTI.

Table 4.4: MIoU and class-wise IoU comparison between the six models. The
table was generated using images from the KITTI test set. The numbers represent
the models in order: SegNet, P-SeqNet, DF-SeqgNet, D-SegNet, BD-SegNet and EF-
Segnet.

Model
SegNet | P-SegNet | DF-SegNet | D-SegNet | BD-SegNet | EF-SegNet
MIoU 29.4 30.6 30.1 28.8 29.7 23.5
Void 12.55 12.94 12.52 10.69 12.09 7.83
Road 60.95 60.99 61.32 60.07 62.64 48.21
Sidewalk 8.35 8.07 8.16 5.70 5.66 4.12
Building 15.71 16.98 17.56 21.04 18.4 15.6
Class | Pole 0.00 0.60 0.02 0.22 0.22 0.0
IoU | Vegetation | 56.2 56.85 58.78 54.63 60.89 46.86
Terrain 17.63 20.0 20.4 13.64 17.37 3.38
Sky 73.45 76.3 74.75 73.6 72.55 66.4
Person 0.44 0.63 0.76 0.38 0.65 0.0
Car 40.14 44.74 38.99 41.37 44.39 25.14

These results can also be compared to evaluate if the networks are robust according
to the definition made in this report. One of the criterions to determine if a network
is robust is the general performance on data it have not seen before. Looking at
the results it can be concluded that the models can be defined as robust for that
criterion for the classes Terrain and Sky.

4.4 Predictions

In Figure 4.3 and Figure 4.4 the models’ predictions on four images from Cityscapes
test set respectively on four images from KITTT is shown. This is visualized to give
an broader understanding of the models performance. The weights from round 1
was used to generate the predictions since it was the training round that gave the
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overall highest MIoU. More predictions of images from the Cityscapes respectively
KITTI can be found in Appendix B.

Original

Depth

® Ground
truth

SegNet

P-SegNet

DF-SegNet

D-SegNet

BD-SegNet

EF-SegNet

Figure 4.3: Predictions of four images from Cityscapes. From top to bottom:
Original image, corresponding depth map, pixel-wise classified ground truth, pixel-
wise predictions from the six different models.
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| Original

Depth

Ground
truth

SegNet

P-SegNet

DF-SegNet

D-SegNet

BD-SegNet

EF-SegNet

Figure 4.4: Predictions of four images from KITTI. From top to bottom: Origi-
nal image, corresponding depth map, pixel-wise classified ground truth, pixel-wise
predictions from the six different models.

In Figure 4.3 the models managed to predict the classes Road, Vegetation, Building
and Sky, all the classes that had a high IoU. The prediction on the classes Car and
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Person varies between the models. P-SegNet, have the most accurate prediction
while EF-SegNet, do not manage to predict the class Person at all and very poorly
for Car.

The predictions on the image from KITTI is not as good as the predictions on the
image from Cityscapes. It is to be expected as the models was trained on Cityscapes
and the datasets are slightly different. The images of the datasets was captured using
different hardware, which effects the hue, saturation and exposure of the image. The
images also have different dimensions in Width x Heigth, 2048 x 1024 in Cityscapes
and 1242 x 375 in KITTI. Though, the basic features for the classes remains the
same between the datasets which explains why the networks can predict some of the
classes in the image.

4.5 Confusion matrix

The confusion matrices are presented in this section, and as described in subsec-
tion 2.7.2, they are remade to show proportions for easier analysis. The columns
shows which class the network have predicted on. As example in Table 4.5, the value
for index Confusion(Sidewalk, Building) is 0.4 which mean that SegNet predicted
Sidewalk when the ground truth was Building 0.4 % of the occasions when Build-
ing was present. In other words, the column represents how certain the network is
with its predictions. If the columns Building and Terrain are compared it can be
noted that the network predicts Building quite frequent for different classes, but it
almost only predicts Terrain when the ground truth is Terrain which mean that the
network is certain when it predicts Terrain.

Table 4.5: Confusion matrix for SegNet trained on Cityscapes. The diagonal
shows the proportional correct classified pixels and the rows the proportional of the
misclassified pixels for each class. Note that this is not loU accuracy, the relationship
s explained in subsection 2.7.2

Predicted class

Void | Road | Sidewalk | Building | Pole | Vegetation | Terrain | Sky | Person | Car

Void 63.8 | 5.1 4.2 16.8 0.0 4.0 0.5 0.5 0.6 4.5
Road 1.7 | 954 2.0 0.0 0.0 0.0 0.1 0.0 0.1 0.7

% Sidewalk 9.2 | 16.6 70.0 1.7 0.0 0.1 0.9 0.0 0.2 1.3
o | Building 3.9 0.0 0.4 90.8 0.0 3.0 0.0 0.6 0.2 1.1
= | Pole 20.6 | 0.6 6.2 47.6 0.0 17.6 0.6 1.8 1.7 3.1
-g Vegetation | 2.5 0.1 0.2 8.0 0.0 87.6 0.5 0.5 0.0 0.6
< | Terrain 16.2 | 5.4 11.4 0.8 0.0 10.4 54.3 0.0 0.2 1.3
Sky 0.7 0.0 0.0 5.6 0.0 1.6 0.0 92.1 0.0 0.0
Person 40.6 | 3.7 3.2 17.8 0.0 3.0 0.1 0.0 15.8 | 15.8
Car 4.5 2.4 0.3 3.1 0.0 0.8 0.1 0.0 0.2 88.7

The proportional confusion matrix for SegNet and P-SegNet is presented in Table 4.5
respectively Table 4.6, the remaining classes confusion matrices can be found in
Appendix A. The classes with a high IoU in Table 4.3 also have a high score in
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the confusion matrices. This is to be expected since the confusion matrix is used to
calculate the IoU. What can be seen in the confusion matrix, that can not be seen
by looking at the IoU, is both the correctly classified and miss-classified predictions
compared to the ground truth.

Table 4.6: Confusion matrix for P-SegNet trained on Cityscapes. The diagonal
shows the proportional correct classified pixels and the rows the proportional of the
misclassified pixels for each class. Note that this is not loU accuracy, the relationship
1s explained in subsection 2.7.2

Predicted class

Void | Road | Sidewalk | Building | Pole | Vegetation | Terrain | Sky | Person | Car

Void 64.1 | 4.9 4.2 16.3 0.0 4.2 0.6 0.6 0.7 4.5
Road 1.9 | 95.3 1.9 0.0 0.0 0.0 0.1 0.0 0.0 0.7

2 | Sidewalk | 9.6 | 169 | 69.4 1.5 0.0 0.1 1.1 00 | 02 | 12
© | Building 3.8 0.0 0.4 90.5 0.0 3.2 0.0 0.6 0.2 1.1
= | Pole 21.8 | 0.6 6.0 44.8 1.2 18.0 0.8 1.8 2.0 3.1
g Vegetation | 2.6 0.1 0.2 7.3 0.0 88.0 0.6 0.6 0.1 0.6
< | Terrain 153 | 5.7 10.2 0.9 0.0 10.7 55.5 0.0 0.1 1.6
Sky 0.6 0.0 0.0 4.5 0.0 1.6 0.0 93.3 0.0 0.1
Person 39.1 | 3.6 2.6 16.3 0.1 2.8 0.1 0.0 18.0 | 17.3
Car 44 2.6 0.3 2.9 0.0 0.7 0.1 0.0 0.3 88.7

The biggest difference between the confusion matrices for SegNet and P-SegNet is
in the class Pole. SegNet never predicts the class at all while P-SegNet predict the
class correct 1.2 % and miss-predict the class Person as Pole 0.1 %. Apart from
this class there is little difference between the confusion matrices.

Apart from discussing the difference between the matrices for the two models the
classes can be discussed. Some classes give interesting insight, to discuss these classes
we use the confusion matrix from P-SegNet as a reference, as the matrices are so
similar is should not make an impact. As said before, the proportional of correct
classified pixels in P-SegNet are very low for the class Pole, 1.2 %. When P-SegNet
predicts a pixel which in reality have the class Pole, it 44.8 % of the time predict
is as the class Building and 21.1 % as the class Void. What is interesting is that a
pixel representing the class Building or Void never gets miss-classified as Pole.

A pixel representing either Sky or Road is most of the times correct classified. What
sets them apart is the percentage of times that other classes is predicted as them.
For the class Sky this barely happens, for Road however this happens relatively
often for pixels representing the class Sidewalk, Void and Terrain. The class Void
is a more extreme case of Road, the predictions of pixels representing Void is fairly
good, however pixels representing other classes gets predicted as Void a lot.

4.6 Distribution

The distribution of the MIoU and the IoU for certain classes on P-SegNet and SegNet
will be presented in this chapter, the remaining classes, as well as MIoU for all
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models, can be found in Appendix C. The process of generating these distributions
are explained in subsection 3.5.2.
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The MIoU distributions can be seen in Figure 4.5a and 4.5b. The distribution is
very similar between the two models, though SegNet have slightly lower standard
deviation. This means SegNet can be trusted to give more consistent predictions
that is closer to the average MIoU, making it more robust.

The class-wise distributions are given in Figure 4.5¢-j. The classes that are presented
is Road, Car, Pole and Terrain, these classes cover together all unique results which
is the reason they were chosen. The result between the classes are, as expected
considering the distribution of MIoU, roughly the same. The largest difference
can be seen in the class Pole were PydSegNet have somewhat higher average IoU
resulting in an also increasing standard deviation. This was anticipated as the
confusion matrix for SegNet, in Table 4.5, showed zero prediction of the class Pole,
while PydSegNet, in Table 4.6, had some few percentage correct classified pixels.

Road is the only class that have high average loU and low standard deviation,
making it the only robust class regarding consistency. The Car class have decent
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Figure 4.5: Distribution of MioU and IoU for the classes Road, Car, Pole and
Terrain on SegNet and P-SegNet, generated by calculation the accuracy for every
image in Cityscapes test set. The dashed line represents the averaged MIoU which
is also presented in the top-right box together with the standard deviation.
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high average IoU but a very large standard deviation. The class have 60+ predictions
of images with an IoU of 0-5 % resulting in unreliable predictions and therefor low
robustness. Terrain almost have as high standard deviation as Car, however the
class IoU mode, i.e. the most repeated IoU, is clearly 0-5 %
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Discussion

Based on the results in Table 4.3 and Table 4.4 it seems like the models, except
EF-SegNet, which had depth predictions from PyD-Net as input performed similar
regarding MIoU. Among all the models it seems like P-SegNet scores the highest
MIoU value but just with a small margin. Some of the reasons why the model
performs similar can be explained. Firstly, the same data have been exposed for
the models. Secondly, the models have been trained through the same prerequisites
regarding the training method. Lastly, the architectures are quite similar to each
other since they all are designed as SegNet and process the inputs with convolutional
layers. But there can be additional factors that affect why the networks performs
similar.

Between the proposed networks and SegNet there were no noticeable differences in
the results, and the reason why is hard to pinpoint. Both PyD-Net and SegNet are
CNNs with an encoder and decoder, which mean that both networks extract features
such as edges in the encoder to determine either depth or classes. A hypotheses is,
that the same information is extracted from both a RGB and depth image, when
processing through convolutional layers. This means that the additional depth image
would not supply the network with any new information, thus the lack of differences
between SegNet and the proposed fusion networks. The proposed MTL model by A.
Kendall et al. were designed to solve semantic segmentation, instance segmentation
and depth estimation and only consists of one encoder followed by three separate
decoders for each task [40]. Their model is an evidence that the same features
extracted from an image can provide information to both distinguish classes and
depth.

A better approach for this project could have been to focus on different methods
to process the information in a depth image rather than test different CNN archi-
tectures. As an example the depth could have been processed through a method
called depth-aware convolutional layer proposed by W. Wang and U. Neumann [76].
Compared to a convolutional layer it takes two inputs instead, the feature map and
the depth image where the depth information monitors the scale of the feature value
based on the depth difference between neighbouring pixels. Another example could
be to design a MTL network similar to the one proposed by A. Kendall et al. [40] but
instead use predicted depth images as the target instead of annotated depth data
as they did. We highly recommend that these methods should be carried through
for future work that will have the same aim as this project.
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Although it is a small margin it is still interesting to discuss why P-SegNet performs
better than the rest of the models. P-SegNet, DF-SegNet and SegNet have the same
architecture and the only difference between them is how the depth image have been
fused or for SegNet not at all. These are also the top three performing models out of
the six. In P-SegNet the depth image is concatenated with the RGB image before it
is fed to the layers compared to DF-SegNet where the depth image is concatenated
with the feature maps after the last upsampling layer. This means that the depth
image is only processed through two convolutional layers in DF-SegNet and might
be the reason why it performs worse than P-SegNet. D-SegNet and BD-SegNet
use another approach to process the depth image which is with a second encoder-
decoder. They performed a bit worse compared to the other top-three and among
themselves D-SegNet was the worst. But the network that differentiated among
them all was EF-SegNet which performed the worst. EF-SegNet do not have the
same amount of upsampling layers as max-pooling layers which makes upsampling
with saved max-pooling indices complicated. A lazy approach that was carried
through for EF-SegNet was to only use the max-pooling indices from the RGB
encoder to determine the upsampling indices. This is probably one of the reasons
why EF-SegNet performs the worst.

In the result it was concluded that the classes Pole, Terrain and Person is poorly
classified independent on model or training round, this could for example be seen
in Table 4.3. These three classes have one important thing in common, they are
all very badly represented in Cityscapes. As seen in Table 3.1 these classes have
representation around 1 % which is the lowest of all classes. As was seen in the
confusion matrices in Table 4.5 and 4.6, Poles is often predicted as Building, but
pixels representing Buildings is never predicted as Pole. One reason could be that
compared to Poles, Buildings is a lot more represented in the dataset. The networks
have therefore trained more to recognize buildings giving the networks a better
chance to learn unique features of buildings. The features of a Pole could, in addition
to this, be quite similar to some of the features in a Building, but as buildings are
more complex in their structure, they could have additional features that poles do
not have.

Terrain is a class that would sometimes be predicted as Void, Road, Sidewalk or
Vegetation. If we disregard the Void class for now, a conclusion of this behavior
can be drawn. The features of Road, Sidewalk and Terrain can be quite similar as
all these classes represent different categories of the ground. When considering the
miss-classification as Vegetation
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Conclusion

The aim throughout this project have been to study if a fusion of two deep neural
networks could affect their performances. In particular, if depth predictions from
PyD-Net would provide additional information that could affect the performance of
pixel-wise classification through SegNet. Five architectures was proposed to process
the depth image with different approaches. The results from the project concluded
that, with the method used, the depth information neither increased nor decreased
the performance of the networks. Although, there is still a possibility that a fusion
will affect the networks with another methodology and is recommended to investigate
for future work. The result from the project can therefore neither prove or disprove,
that a fusion of two deep neural networks can affect the networks performance.

A secondary aim was to investigate and define the robustness of deep neural net-
works. To be able to conclude that the networks are robust they had to have similar
MIoU on Cityscapes as on KITTI, a low standard deviation and perform arguably
good on their confusion matrix. Since the networks MIoU differs on the datasets
evaluated on, they cannot be declared as robust. The MIoU however have relatively
low standard deviation, this makes us certain that the networks will give consistent
predictions with a performance around the MIoU for every image.

By evaluating the robustness regarding the classes with the same definition, it can
be concluded that Sky and Terrain have both similar IoU for Cityscapes and KITTTI,
and that if these two classes are predicted, it is high probability that the prediction is
correct. This check two of the boxes for robustness, however their standard deviation
is above 20 % and cannot be considered low. Road have a standard deviation below
10% which shows that the predictions are consistent, making the class robust in that
sense.

Overall, this project has concluded that the performance of a semantic segmentation
network can not be increased by directly fusing it with a depth network producing
inferior depth images.
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Confusion matrices

The confusion matrices for the different networks evaluated on Cityscapes.

Table A.1: Confusion matrix for DF-SegNet trained on Cityscapes. The diagonal
shows the proportional correct classified pixels and the rows the proportional of the
misclassified pixels for each class. Note that this is not loU accuracy, the relationship
s explained in subsection 2.7.2

Predicted class

Void | Road | Sidewalk | Building | Pole | Vegetation | Terrain | Sky | Person | Car

Void 63.3 | 5.3 4.0 16.5 0.0 44 0.5 0.5 0.7 4.8
Road 1.7 | 95.6 1.8 0.0 0.0 0.0 0.1 0.0 0.0 0.7

% Sidewalk 9.5 17.8 68.7 1.5 0.0 0.1 0.9 0.0 0.1 1.4
S | Building 3.6 0.0 0.5 90.4 0.0 3.7 0.0 0.6 0.2 1.1
= | Pole 20.3 | 0.6 6.3 46.5 0.0 19.6 0.7 1.6 1.3 3.0
£ | Vegetation | 2.2 | 0.1 0.2 6.7 0.0 89.2 06 | 05| 01 | 06
< | Terrain 14.4 6.7 9.3 0.8 0.0 11.0 56.0 0.0 0.1 1.6
Sky 0.5 0.0 0.0 5.8 0.0 2.0 0.0 91.7 | 0.0 0.0
Person 40.8 3.4 2.9 19.6 0.0 3.3 0.1 0.0 14.5 15.3
Car 4.2 2.4 0.2 3.0 0.0 0.9 0.1 0.0 0.3 88.9

Table A.2: Confusion matrix for D-SegNet trained on Cityscapes. The diagonal
shows the proportional correct classified pixels and the rows the proportional of the
misclassified pixels for each class. Note that this is not loU accuracy, the relationship
1s explained in subsection 2.7.2

Predicted class
] Void | Road | Sidewalk | Building | Pole | Vegetation | Terrain | Sky | Person | Car
Void 62.5 | 5.3 4.0 18.0 0.0 4.1 04 0.5 0.9 4.2
Road 1.8 | 95.5 1.8 0.1 0.0 0.0 0.0 0.0 0.1 0.7
% Sidewalk 10.1 | 20.8 64.6 2.3 0.0 0.1 0.8 0.0 0.3 1.0
o | Building 4.4 0.1 0.5 89.9 0.0 3.1 0.0 0.7 0.2 1.2
= | Pole 20.8 1.0 6.6 47.0 0.1 17.6 0.6 2.1 1.3 3.1
g Vegetation | 3.0 0.0 0.2 7.2 0.0 87.6 0.6 0.6 0.0 0.7
< | Terrain 18.0 5.3 9.1 1.0 0.0 12.3 52.7 0.0 0.1 1.4
Sky 0.5 0.0 0.0 4.9 0.0 1.8 0.0 92.7 | 0.0 0.1
Person 32.3 6.9 2.8 22.8 0.0 2.7 0.1 0.0 19.2 13.1
Car 5.3 3.4 0.2 4.0 0.0 1.0 0.1 0.0 0.5 85.6




A. Confusion matrices

Table A.3: Confusion matrix for D-SegNet trained on Cityscapes. The diagonal
shows the proportional correct classified pixels and the rows the proportional of the
misclassified pixels for each class. Note that this is not loU accuracy, the relationship
s explained in subsection 2.7.2

Predicted class

Void

Road
Sidewalk
Building
Pole
Vegetation
Terrain
Sky
Person
Car

Actual class

Void
62.8
1.9
10.9
3.7
19.0
2.5
17.0
1.1
29.6
4.5

Road
5.7
95.5
194
0.1
0.9
0.0
5.4
0.0
5.6
3.3

Sidewalk
3.6
14

63.5
0.6
6.6
0.2
8.0
0.0
3.9
0.2

Building
16.9
0.1
2.8
90.7
47.9
7.2
1.1
5.4
18.5
2.9

Pole
0.0
0.0
0.0
0.0
0.2
0.0
0.0
0.0
0.0
0.0

Vegetation
4.0
0.0
0.2
2.9
17.3

88.2
15.3
1.9
2.8
0.8

Terrain
0.4
0.0
0.9
0.0
0.5
0.5

50.4
0.0
0.1
0.1

Sky
0.6

0.0

0.0

0.6
1.9

0.5

0.0

91.5
0.0

0.0

Person
1.3
0.1
0.9
0.3
2.8
0.1
0.3
0.0

26.1
0.7

Car
4.7
0.9
1.4
1.1
2.9
0.7
2.5
0.0
13.5

87.6

Table A.4: Confusion matrix for EF-SegNet trained on Cityscapes. The diagonal
shows the proportional correct classified pixels and the rows the proportional of the
misclassified pixels for each class. Note that this is not loU accuracy, the relationship
s explained in subsection 2.7.2

Predicted class

Void

Road
Sidewalk
Building
Pole
Vegetation
Terrain
Sky
Person
Car

Actual class

Void
57.8
2.6
9.2
3.8
18.3
2.8
17.2
0.9
34.3
6.8

Road
8.1
94.2
31.6
0.1
1.8
0.1
9.8
0.0
8.1
4.4

Sidewalk
3.9
2.2

54.3
0.4
6.1
0.4

25.4
0.0
3.4
1.1

Building
18.6
0.1
1.4
88.8
48.3
10.2
1.4
7.0
31.0
6.0

Pole
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Vegetation
4.7
0.0
0.1
4.6
17.9

84.5
12.2
2.4
3.9
1.2

Terrain
0.3
0.0
0.5
0.0
0.6
0.5

31.5
0.0
0.1
0.1

Sky
0.5
0.0
0.0
0.8
1.8
0.6
0.0

89.7
0.0
0.0

Person
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Car
6.1
1.0
2.8
1.6
5.2
0.8
2.5
0.0
19.3

80.5
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Predictions

Predictions on the Cityscapes and KITTI dataset.
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B. Predictions
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Figure B.1: Predictions of four images from Cityscapes. From top to bottom:
Original image, corresponding depth map, pixel-wise classified ground truth, pixel-
wise predictions from the six different models.
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B. Predictions
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truth
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Figure B.2: Predictions of four images from KITTI. From top to bottom: Origi-
nal image, corresponding depth map, pixel-wise classified ground truth, pixel-wise
predictions from the six different models.
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C

Distributions

The distribution of the MIoU score for all the models on Cityscapes and the remain-
ing classes not mentioned in the result for SegNet and P-SegNet.
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C. Distributions
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Figure C.1: Distribution of MIoU on the Cityscapes dataset for all the models
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Figure C.2: Distribution of the IoU on the classes Building, Person and Pole for
SegNet and P-SegNet
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Figure C.3: Distribution of the IoU on the classes Sky, Void and Vegetation for
SegNet and P-SegNet
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