
DF

Impact of Feature Representation for
Imitation Learning in Autonomous Drive
Master’s thesis in Complex Adaptive Systems and
Engineering Mathematics and Computational Science

MALIN DAHL

ELVIRA RAMLE

Department of Mechanics and Maritime Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019:29

Impact of Feature Representation for
Imitation Learning in Autonomous Drive

MALIN DAHL
ELVIRA RAMLE

DF

Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems

Applied Artificial Intelligence Research Group
Chalmers University of Technology

Gothenburg, Sweden 2019

Impact of Feature Representation for Imitation Learning in Autonomous Drive
MALIN DAHL, ELVIRA RAMLE

© MALIN DAHL, ELVIRA RAMLE, 2019.

Supervisor: Josef Kindberg, CPAC Systems AB
Examiner: Peter Forsberg, Applied Artificial Intelligence

Master’s Thesis 2019:29
Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems
Applied Artificial Intelligence Research Group
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Schematic figure of a car entering a signalised intersection.

Typeset in LATEX, template by David Frisk
Gothenburg, Sweden 2019

iv

Impact of Feature Representation for Imitation Learning in Autonomous Drive
MALIN DAHL
ELVIRA RAMLE
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract

Autonomous drive in complex traffic scenarios is a demanding task to solve. With
high-dimensional input data available, problems related to redundancy and irrele-
vance are often implicated, hence determining what features bring the most useful
information is of vital importance. The purpose of this thesis is to investigate how
different dimensionality reduction methods affect the driving performance and how
to determine what features are most relevant.
Specifically, these questions were studied in a simulated environment where a car is
manoeuvred using deep neural networks through a sequence of signalised intersec-
tions. Four different dimensionality reduction methods have been studied: choice
of features based on reason, Principal Component Analysis, Auto-Encoders and
Integrated Encoders. The results showed that the models which used a feature
representation based on reason were shown to perform best.
Also, the weight distributions of a model using all available features indicated that
influential features may be partially identified by studying the spread of the weights.
Therefore, an approach is proposed where the choice of features should be based on
reason as well as a study of the features’ respective set of weights. In conclusion, es-
tablishing the most relevant feature representation is important since it may benefit
the training of the models.

Keywords: Feature Representation, Deep Neural Networks, Imitation Learning,
Dimensionality Reduction, Principal Component Analysis, Auto-Encoder,
Autonomous Drive.

v

Acknowledgements

We would like to thank Cpac Systems AB for the opportunity to work on this prob-
lem and providing us with the necessary tools. A special thanks to our supervisor,
Josef Kindberg at Cpac, for your creative ideas and feedback during the project.
We would also like to thank our examiner Peter Forsberg for taking on this project,
all the interesting discussions and your guidance throughout the thesis.

Malin Dahl and Elvira Ramle, Gothenburg, June 2019

Thesis Supervisor: Josef Kindberg, CPAC Systems AB
Thesis Examiner: Peter Forsberg, Applied Artificial Intelligence

vii

Contents

List of Figures xi

List of Tables xiii

Glossary xv

1 Introduction 1
1.1 Methods and Challenges of Autonomous Drive 2
1.2 Purpose . 3
1.3 Scope . 3
1.4 Related Work . 4
1.5 Outline of Thesis . 5

2 Theory 7
2.1 Artificial Neural Networks . 7

2.1.1 Impact of the Weights . 8
2.1.2 Training the Network . 9

2.2 Dimensionality Reduction Methods 10
2.2.1 Principal Component Analysis 10
2.2.2 Auto-Encoders . 12

2.3 Imitation Learning . 13
2.3.1 Benefits and Drawbacks . 14

3 Method 15
3.1 Description of Features . 16
3.2 Simulation Environment . 16
3.3 Data Gathering . 18
3.4 Model Network Architecture . 18
3.5 Dimensionality Reduction Models . 20

3.5.1 Reason . 20
3.5.2 Principal Component Analysis 22
3.5.3 Auto-Encoder . 22
3.5.4 Integrated Encoder . 23

3.6 Performance Comparison of Models 25

ix

Contents

4 Results 27
4.1 Training and Accuracy . 27
4.2 Driving Performance . 28

4.2.1 Episode Endings . 28
4.2.2 Traffic Light Behaviour . 29
4.2.3 Additional Driving Behaviour 32
4.2.4 Summary . 32

4.3 Feature and Weight Analysis . 34

5 Discussion 39
5.1 Impact of Dimensionality Reduction 39

5.1.1 Reason . 39
5.1.2 Principal Component Analysis 40
5.1.3 Auto-Encoder . 40
5.1.4 Integrated Encoder . 41
5.1.5 Further Discussion . 41

5.2 Analysis of Feature Selection . 42
5.3 Critical Remarks . 44
5.4 Future Work . 44

6 Conclusion 47

Bibliography 49

A Reproducibility of Results I
A.1 Training and Accuracy . I
A.2 Driving Performance . I

A.2.1 Summary . V
A.3 Feature and Weight Analysis . V

x

List of Figures

2.1 A simple example of a neural network. 8
2.2 An example of before and after a principal component projection. . . 11
2.3 A simple example of an auto-encoder. 13
2.4 A flowchart of the process of imitation learning. 14

3.1 A schematic figure of the sequence of intersections that the car needs
to pass in order to reach the end. 15

3.2 A bird’s-eye view over the environment used in the simulator Carla. . 17
3.3 The shared network structure between the different models considered. 19
3.4 The information flow in a PCA model. 22
3.5 The information flow in an auto-encoder model. 23
3.6 The integrated encoder model. 24

4.1 The way each episode ended. 29
4.2 The proportion of how often the vehicles passed the intersections

when the traffic light was either green or red. 30
4.3 How far from an intersection the vehicles stopped when the traffic

light was red. 31
4.4 How close to the centre of the lane a car was on average per episode. 33
4.5 The weight distributions for all 14 features in the reference model. . . 36

A.1 The way each episode ended for the reproduced models. II
A.2 The proportion of how often the vehicles passed the intersections

when the traffic light was either green or red for the reproduced models. III
A.3 How far from an intersection the vehicles of the reproduced models

stopped when the traffic light was red. III
A.4 How close to the centre of the lane a car was on average per episode

for the reproduced models. V
A.5 A comparison of the weight distributions for all 14 features in the

reproduced reference model. VII

xi

List of Figures

xii

List of Tables

3.1 The 14 features considered that were extracted from the simulation
environment. 16

3.2 The features that were included for the two Reason models. 21

4.1 The accuracies of the models for the reference and all four dimension-
ality reduction methods using either ten or six features. 28

4.2 The average maximum speed and standard deviation for all models. . 32
4.3 The collective weight sums for all features of the reference model. . . 34

A.1 The accuracies of the recreated models and the corresponding abso-
lute differences to the original models. I

A.2 The average maximum speed, standard deviation and their respective
differences for all reproduced models compared to the original models. IV

A.3 The collective weight sums for all features of the reproduced reference
model. VIII

xiii

List of Tables

xiv

Glossary

ADAM Adaptive Moment Estimation An optimiser posing as an alter-
native to stochastic gradient de-
scent, based on adaptive estimates
of lower-order moments.

AE Auto-Encoder A dimensionality reduction or noise
cancelling method in the shape of a
neural network.

CWS Collective Weight Sum A sum over all the weights, in ab-
solute value, for a specific feature’s
input neuron.

IE Integrated Encoder A specific network structure where
the dimensionality reduction is in-
tegrated with the rest of the net-
work.

IL Imitation Learning A variant of supervised learning
where the network tries to mimic
an expert.

PCA Principal Component Analysis A statistical tool for dimensional-
ity reduction based on the study of
eigenvectors of the data.

ReLU Rectified Linear Unit An activation function used in neu-
ral networks.

xv

Glossary

xvi

1
Introduction

Humans have always had a demand for fast, flexible and convenient transportation.
Through time, the requirement of having a human behind the wheel has been re-
garded as obvious and necessary, but during the past few years there has been a
shift in opinion. The introduction of the concept of autonomous vehicles in society
is apparent and the industry is exploding with ideas. Giants in the automotive in-
dustry are investing enormous amounts of money in development, among which we
find Baidu, Google, BMW and Tesla only to mention a few [1].

The status of the industry today is described completely different depending on
who you ask. In some regards and opinions, autonomous vehicles are already up
and running without humans intervening in most or all situations. The standard
system for classifying the level of how autonomous a vehicle is, has been put forward
by the Society of Automotive Engineers (SAE). The scale ranges from level 0 to 5,
where level 0 indicates no automation at all and level 5 implies that the vehicle is
capable of handling all situations and is in practise driver-less at all times [2].

Asking Elon Musk, the CEO of Tesla Motors, the company will have commercial,
autonomous cars of level 5 on the road by 2020 [3]. According to others, there are
still problems to address and autonomous vehicle experts claim that serious safety
issues are still apparent. The accident where a 49-year-old woman crossing the street
with her bicycle was killed by a self-driving Uber and the Tesla car crash killing its
driver when in autopilot mode, both during 2018, serve the purpose of proving the
imperfections of the systems [4, 5].

However, the research and development go on and along the failures there are bril-
liant examples of what autonomous vehicles can do. One of the early role-models
is the well-known ALVINN (Autonomous Land Vehicle In a Neural Network) from
1989, which consists of a neural network with one hidden layer. This relatively simple
network structure managed to safely control a truck-like vehicle along a 400 metres
long path in a wooded area at 0.5 m/s [6].

Today, the success of ALVINN is not particularly impressive, but that also shows
how far the technique has come. More modern examples include the concept car
360c of Volvo Cars, Google’s Waymo and the transportation focused truck Vera
from Volvo Trucks [7, 8, 9]. Successful control of autonomous vehicles in specific
environments is also reality. For example, NVIDIA managed to complete an 80 km
long highway route, including lane changes and merges, with no human intervention,
in October 2018 [10].

1

1. Introduction

Furthermore, an important motivation for developing autonomous cars is that they
have the potential of improving traffic safety drastically. The National Highway
Traffic Safety Administration (NHTSA) concluded that 94 % of all serious crashes
in USA the year 2016 were linked to human choices [11]. By using computer-based
systems, reaction times can be reduced to practically nothing and general informa-
tion processing like sign and map reading can be performed instantaneously. Also,
by optimising the systems, the car may drive more environmentally friendly. Au-
tonomous vehicles therefore shows great potential once the software and technology
has been proven safe and reliable.

1.1 Methods and Challenges of Autonomous Drive

During the past decades, the choice of methods used in the automotive industry and
autonomous drive has changed. With the massive improvement in computer force
and data storage, the possibilities to train neural networks to perform tasks became
realisable, even if the idea was born as early as in the 1940’s [12]. The structures of
the networks tend to increase and the concepts of deep learning and convolutional
networks are used by many developers in the field.

In order to train the networks, huge amounts of data are required. By now, the
hardware has become cheaper and is within reach of most developers, and many
different sensors like cameras, radars and LiDARs are used to collect the data. Big
data is not only possible to acquire, but also necessary for training and validating
of the systems. However, with big data comes big problems as well. On one hand,
having data from many different sources provides redundancy which can be used
for evaluation and confirmation of the performance of the system performance. On
the other, it also introduces correlation in the data and if all data is used without
reflection, the risk of overfitting the network increases which can reduce performance
greatly.

There are different approaches to reduce overfitting, where the most common is to
simply collect more data. More data forces the network to generalise further and
not over-adapt to specific data points. Other options are to use various dimensional-
ity reduction algorithms, such as Principal Component Analysis (PCA) or different
auto-encoder structures before or within the network structure [13]. Different di-
mensionality reduction methods may also help the network in prioritising important
data and further generalise its decision-making.

When training a network, there are different strategies to choose from. The sim-
plest variant is to use supervised learning, which implies training the network from
labelled data. In some situations, acquiring labelled data is a challenge on its own.
In autonomous drive, many decisions on how to control the vehicle are required in
sequence and it is difficult to decide at every time instance which specific decision
is the correct one. When possible, imitation learning is sometimes applied, meaning
that the network aims to imitate an experienced expert when training.

2

1. Introduction

1.2 Purpose

According to the Federal Highway Administration (FHWA), more than 50% of the
combined total of fatal and injury crashes occur at or near intersections [14]. In-
tersections can therefore be seen as a complex scenario for human drivers and are
difficult to comprehend for an autonomous vehicle as well. In order to be able to
understand the intersections and make wise decisions, it is important to process
all available features describing the surroundings correctly. Irrelevant information
should be ignored while relevant information should be interpreted properly for the
purpose of making optimal choices.
The purpose of this report is to investigate how different dimensionality reduction
methods affect the driving performance of a vehicle when driving through signalised
intersections. Also, an intention is that by investigating the methods and their
projections, an understanding of what type of information is the most relevant when
it comes to controlling a vehicle should be developed. Only features of physical
quantities, such as the speed of a vehicle or the distance to an intersection will
be considered in this thesis, as opposed to, for example, camera images or LiDAR
data.
By developing a new understanding of what features are important for vehicle con-
trol in intersections, the data gathering can become more effective since irrelevant
features do not have to be collected. Also, the training may converge faster since
fewer but still relevant features help the network generalise.
The questions that will be discussed are:

1. How do different dimensionality reduction methods affect the model training
and driving performance?

2. How to determine what type of information or set of features is the most rele-
vant to take into consideration when driving through signalised intersections?

1.3 Scope

All data used for developing the model of the vehicle’s behaviour is simulated in
the open-source simulator Carla (Car Learning to Act) [15]. This puts a restriction
on how vehicles can behave due to their deterministic behaviour. Using data from
a simulated environment also restricts the scenarios the vehicle can be exposed to.
For instance, all signalised intersections the vehicle is subjected to are four-way
intersections where each incoming or outgoing road consist of two lanes with traffic
lights in all directions. Moreover, the same car model is used in all simulations,
starting at the exact same position and the weather conditions remained unchanged
as well.
Additionally, the vehicle is instructed to always drive straight in every intersection
in order to restrict the complexity of the environment and simplify the training.
Even though the car is instructed to go straight in each intersection, the road is

3

1. Introduction

sometimes curved which requires the vehicle to learn how to adapt and remain
close to the centre of the lane. In total, the environment is set up to include three
signalised intersections in sequence. To further simplify the task, no surrounding
vehicles are allowed in the simulation. This reduces the need to learn how other
vehicles behave and predict their intentions.
It is also assumed that all information provided to the vehicle, for example the
velocity and distances, is measured correctly and sent instantaneously without any
time-delays. The same is assumed for the control signal of the vehicle. This implies
that the signals are assumed to be noise-free and can be fed directly into any network
or model. Additionally, as a simplification, the networks used for controlling the
vehicle all share the same structure, i.e. the same number of neurons, hidden layers
and training parameters.

1.4 Related Work

When teaching a car how to drive, several studies have been carried out where
imitation learning was used. Two articles were written by Bojarski et al. and another
by Codevilla et al. [16, 17], where camera images were used in order to interpret the
environment and the vehicle was then controlled based on that information. Both
teams used a human driver to give feedback in all situations of how a human would
react and then used that data in order to train their neural networks. The human
therefore acted as an expert which the network tried to mimic. Bojarski et al only
collected data from the real world and managed to learn lane and road following
using less than 100 hours of driving data. Codevilla et al on the other hand collected
data both from the real world and a simulated environment. Their model managed
to travel to a random location, at least one kilometre from the start location, up to
88% of all runs after using roughly two hours of driving data.
A different variant of imitation learning was proposed by Kelly et al., where a so
called Human-Gated Dagger algorithm was used [18]. Just as with the articles by
Bojarski and Codevilla, the purpose was to teach a network to control a car. Dagger
stands for data aggregation and the term human-gated implies that a gate decided
whether the car was controlled by the network or the human. The idea with this
algorithm was to train the network to choose the same actions as the human driver
at all times, but also by letting a gate functionality determine which alternative that
ultimately controls the car. This is to ensure safety at the same time as a wider
state space is explored. A largely covered state space is important in order to ensure
that the network is capable of handling all possible traffic situations.
Additionally, Curran et al. investigated the convergence-performance trade-off by us-
ing Principal Component Analysis (PCA) to reduce the dimensionality of the state
space in a Super Mario game [19]. They performed PCA on the entire state space
and removed the dimensions that gave minimal loss of information according to the
analysis. The lower dimensional state space was then used in a reinforcement learn-
ing algorithm which managed to learn how to play Mario. As expected, the fewer
dimensions that were used, the worse the game went, but the convergence occurred

4

1. Introduction

much sooner. They observed that it was possible to learn the fundamental skills of
Mario using a lower dimensional state space, but in some scenarios where Mario had
a lot of surrounding enemies and needed to act quickly it was not enough.
Another common dimensionality reduction method is the use of an Auto-Encoder
(AE). Just as with PCA, these can be applied in all problems which may benefit from
dimensionality reduction. This method is especially good at noise reduction, but
has also proven to learn different features in data compared to other classical dimen-
sionality reduction methods [20, 21]. The applications are many and in an article by
Taghanaki et al, auto-encoders were used when classifying mammography images
in combination with direct supervised learning. The classification turned out to be
more accurate when the dimension of the input data had been reduced [22].

1.5 Outline of Thesis

The remainder of the thesis is outlined as follows: firstly, Chapter 2 includes the
necessary background theory in order to understand the remaining contents. The
theory includes a basic introduction to artificial neural networks, explanations of
several dimensionality reduction methods used throughout the thesis and the theory
behind Imitation Learning (IL). Secondly, in Chapter 3, the method is described in
more detail. More information about the available features, implemented models
and how they are evaluated are specified. Thirdly, in Chapter 4, all of the results
are displayed and are further discussed in Chapter 5. Lastly, the main results and
conclusions are summarised in Chapter 6.

5

1. Introduction

6

2
Theory

The theory behind the analysis is divided into three main parts. The first includes a
brief introduction to artificial neural networks and relevant concepts needed to un-
derstand the results. The second explains the theory behind two of the dimension-
ality reduction methods, namely Principal Component Analysis (PCA) and Auto-
Encoders (AE). Lastly, the concept of imitation learning is explained as well as its
benefits and drawbacks.

2.1 Artificial Neural Networks

When it comes to interpreting the world and carrying out various tasks, no machine
is yet better than the brain. The brain manages to generalise situations never ex-
perienced before and still make appropriate decisions. The suggestion of mimicking
the brain when designing a machine therefore seems like a promising idea. A brain
consists of numerous nerve cells, so called neurons, which receive electrical signals,
process them and then send out new signals to other neurons via different connec-
tions and synapses [23]. The amount of information this structure can handle is vast,
the processing speed is high and the generality of the various problems considered
is apparent.

Artificial neural networks resemble the human brain in many ways. Just as with
a real brain, the structures use neurons and connections to process and forward
information. The construction of the neural networks make them outstanding in
terms of generalisation compared to other more deterministic methods [24].

An example of a simple neural network is shown in Figure 2.1. The general structure
consists of sequential layers, starting with the input layer, followed by hidden layers
and resulting in the output layer. Firstly, the input neurons marked with X1,...,kmax

assume values observed from the world in some way. They could be pixel values of
an image or the position and speed of a car. Between the input layer and the first
hidden layer, there are connections with corresponding weights wkj, determining the
value of the hidden neurons marked with V1,...,jmax . The values of the neurons in the
hidden layer are computed as in Equation (2.1)

Vj = g

(∑
k

wkjXk − θj

)
, (2.1)

7

2. Theory

where g(·) is the activation function, wkj the weight for the connection between
neurons Xk and Vj and θj is the threshold for the neuron Vj, which is often regarded
as a weight as well.

Input
Layer

X1, ..., Xkmax

Hidden
Layer

V1, ..., Vjmax

Output
Layer

Y1, ..., Yimax

wkj wji

Figure 2.1: Simple example of a neural network, where X1,...,kmax define input
signals, V1,...,jmax the values of the neurons of the hidden layer and Y1,...,imax the values
of the output neurons. The values of the hidden and output layers are computed
using the weights wkj and wji respectively.

The choice of activation function g(·) depends on the problem, but is a non-linear
function often taking values between -1 and 1 or similar. Common examples are the
sigmoid function or Rectified Linear Unit (ReLU). The weights are what defines the
network, which are updated iteratively as the training progresses. The values of the
neurons in the output layer are computed similarly as in Equation (2.2)

Yi = g̃

∑
j

wjiVj − θi

 , (2.2)

where g̃(·) may be the same activation function as before, or a different one depend-
ing on the problem. Note however that it is possible to have many more hidden
layers in a network and that the values are computed accordingly with the same
basic idea of using the values of the previous layer when computing the next.

2.1.1 Impact of the Weights

As depicted in Figure 2.1, each input neuron is connected to a set of weights, which
further connect to the neurons in the upcoming hidden layer. These weights can
take any scalar value as long as it helps the network distinguish relevant features.

8

2. Theory

In the simplest case, if all weights connected to one specific feature’s input neuron
are zero, then this feature has no impact on the output of the network, which
can be concluded from Equation (2.1). Contrarily, if some weights of a specific
feature are large compared to the weights of other features, then this feature is more
influential.

In practise, however, the weight distributions are often more complex which makes
this type of precise conclusions difficult to draw. The difficulty increases even further
when the networks contain many hidden layers, since the weights in the subsequent
layers affect the influence of a feature as well. The value of a specific feature is prop-
agated through the network and is intertwined with the effect of all other features
which makes direct causality difficult to determine.

What can instead be done is to analyse the distribution of the weights directly
connected to the features, i.e. the weights in the first hidden layer, to see if any trends
are visible. If many weights are large in absolute value for a specific feature, the
chance of this feature having a big impact on the final network output increases. On
the other hand, if most of the corresponding weights for a feature are small, then the
chance decreases since other features with larger weights will tend to dominate.

Also, important to note is that the data set, on which the network is trained upon,
needs so be standardised to mean zero and variance one beforehand if the weights
are analysed. This is due to that if the set of weights are compared, they must
have the same prerequisites. If the features themselves vary largely in size, so will
the weights and the different sets of weights will therefore be incomparable. By
standardising the data, comparability is ensured.

2.1.2 Training the Network

In one way or another, the purpose of a network is to carry out a task. How the
training of the network is carried out can be done in several ways, but the most
common way is through supervised learning. When training the network, a measure
is also required to assess how well the task is carried out. In supervised learning,
one defines a loss function that measures the difference between the correct value
and the output of the network.

The loss function is also used when training the network with backpropagation,
which can be done with one of several iterative algorithms, such as Stochastic Gra-
dient Descent (SGD) or Adaptive Moment Estimation (ADAM) [25]. How the loss
function is defined also depends on the problem. The mean squared error is suitable
for continuous signals, whereas a binary measure is more appropriate for classifica-
tion problems. For classification problems, a probability measure is also common
when computing the loss, where one example is the softmax function.

In general, it is difficult to determine for how long a neural network should be
trained, namely for how many iterations the weights should be updated. If the
network is trained for too many iterations, there is a risk of overfitting which means
that the network has learned the data by heart and does not generalise well. One

9

2. Theory

way to avoid overfitting is by implementing early stopping. Early stopping is a rule,
which can be defined in many different ways, which determines when the training of
neural network should stop. A common rule for early stopping is to stop the training
once the computed loss does not decrease for some number of iterations.

An additional and different approach to handle overfitting is by introducing dropout
in the hidden layers. When dropout is used, a part of the neurons and their corre-
sponding weights and thresholds are not updated for one iteration. This forces the
network to generalise further and try to find new connections that were not utilised
to their full extent before.

2.2 Dimensionality Reduction Methods

When handling various tasks in autonomous drive, large data sets are required to
cover the complexity of the situations studied. Often there are many streams of data
as well, resulting in a high-dimensional feature space. The risk of having redundant
data is prominent, but still one cannot easily skip various features due to the risk
of losing important information. Studying which features and what combinations
produce the most valuable input for the algorithm or network is an important part
of the modelling process which may help the decision-making tremendously.

When a set of features have been presented as possibly relevant input data, there
are many dimensionality reduction methods that can be applied. In the following
sections two different approaches are presented: a linear projection in the form of
Principal Component Analysis (PCA) and a non-linear variant using neural networks
and Auto-Encoders (AE).

2.2.1 Principal Component Analysis

One way to analyse the importance of features is through Principal Component
Analysis (PCA). The most common use of PCA is for dimensionality reduction, but
the variance of the data can also be studied. In general terms, PCA is a statistical
tool where the feature vectors are projected onto the eigenvectors with the largest
eigenvalues. This implies that a principal component projection is linear and can be
computed with simple matrix multiplications.

When performing PCA, the data points are sorted row-wise with each measured fea-
ture column-wise; call this data matrix X. As a first step, the columns of the matrix
are standardised to mean zero and variance one in order for the various features to
have equal importance. Secondly, the product XᵀX is computed. Thirdly, it is diag-
onalised into XᵀX = PDP−1, where the diagonal matrix D contains the eigenvalues
of XᵀX and P the corresponding eigenvectors. For convenience, the eigenvalues are
sorted in descending order and the columns of P are organised correspondingly. Due
to the fact that the matrix XᵀX is symmetric and positive semi-definite, it is always
possible to decompose it into PDP−1.

10

2. Theory

The eigenvalues and eigenvectors can now be studied in many ways. One way
is to let the data be projected onto the eigenvectors to visually study the actual
dimensionality of the data. By actual, this implies that if for example two original
features of the data are collinear, then there will be one dimension in the projection
that is useless and its values are more or less equal to zero. This implies that
this extra dimension adds no variance to the data. The projection is performed by
computing Xproj = PX, where X is the standardised data. An example of such a
projection is shown in Figure 2.2, where the data is represented by the two variables
x1 and x2 in the left graph and then by the principal components p1 and p2 in the
right. In this example it is clear that there is more variance in the data for the
first component p1 than for p2, which is due to the fact that x1 and x2 are linearly
correlated.

x1-1 -0.5 0.5 1

x2

-2

-1

1

2

•

•

•
•
•

(a) Standardised, original data, repre-
sented by the variables x1 and x2.

p1-1 -0.5 0.5 1

p2

-2

-1

1

2

• • • • •

(b) Projected data onto the principal
components p1 and p2.

Figure 2.2: A comparison between before (to the left) and after (to the right) a
principal component projection for an example data set consisting of measurements
of the variables x1 and x2. In this example, the first principal component p1 provides
most of the variance in the data and the component p2 contributes only a little.

Another way to use the results from PCA is to determine the dimensionality and
spread of the data. In principle, due to commonly occurring noise in measurements,
all features in the matrix X represent one dimension more or less, but as shown in
the example in Figure 2.2, some dimensions have much smaller variance. What is
usually done is that the cumulative sum of the eigenvalues’ proportions is computed.
As mentioned, the diagonal of the matrix D is sorted in descending order resulting
in a set of eigenvalues {λi}n

i=1, where n is the number of eigenvectors in total. The
cumulative partial sum is calculated as in Equation (2.3):

V prop
k = 1

λsum

k∑
i=1

λi, k < n (2.3)

where k is an integer between 1 and n and λsum is the sum of all eigenvalues. If one

11

2. Theory

requires that a proportion η of the total variance needs to be explained, say 95%,
then k is determined through Equation (2.4):

V prop
k > η (2.4)

by finding the smallest k that satisfies this inequality.
In summary, by using PCA the data is projected onto a smaller number of features
which manages to explain almost all the variance in the data. As previously ex-
plained, this can help the training of the network a lot since it reduces the number
of weights that need optimisation.

2.2.2 Auto-Encoders

As an alternative to linear methods for dimensionality reduction like PCA, non-
linear mappings from a larger dimension to a smaller can be considered. One such
method is an Auto-Encoder (AE), which is a specific type of neural network. An
auto-encoder consists of two main parts: the encoder and the decoder. The encoder
takes the features as input, for example the position and velocity of a vehicle, and
produces a lower-dimensional internal state. This internal state, called the hidden
state, is thereafter propagated through the decoder which tries to mimic the original
input state.
A simple example of an auto-encoder is presented in Figure 2.3. In this auto-
encoder, the encoder consists of one hidden layer where the nine input features are
transformed into six and finally to only three in the hidden state layer. The decoder
has a similar structure, but mirrored. Note that auto-encoders can be much more
complicated than this, using for example Long Short Term Memory (LSTM) or
convolutional layers [26, 27].
The purpose of all dimensionality reduction methods is to find a representation of
a set of features with fewer dimensions. This implies that even though the whole
network structure, as in the example in Figure 2.3, is used for training, only the
encoder part is used when the actual dimensionality reduction is performed. When
the auto-encoder has been trained, the input data is propagated through the encoder
and the hidden state is computed. The values of the hidden state are now the values
used when performing a specific task, for example controlling a vehicle.
Furthermore, one shared characteristic between all auto-encoders is that when it is
trained, the algorithm tries to minimise the error between the input layer and the
output layer. This implies that a difference between an auto-encoder and a regular
neural network is that no labelled data is required for training, but the input data
itself serves as comparison. An auto-encoder is therefore an unsupervised learning
method as opposed to supervised learning where labelled data is used.
A drawback with auto-encoders as dimensionality reduction method is that the
number of hidden states, and number of neurons in the intermittent layers, need to
be determined beforehand. An iterative and trial-and-error approach can be applied
where the behaviour of the loss function is studied depending on how many neurons
that are used.

12

2. Theory

Input
Layer

Output
Layer

Hidden
State

Encoder Decoder

Figure 2.3: A simple example of an auto-encoder. The encoder part consists of
one hidden layer where the input is mapped from nine input neurons, to six and
finally to three in the hidden state. The decoder has a similar, but inverse structure
which tries to reconstruct the original input state.

2.3 Imitation Learning

When trying to make a network learn, extensive amounts of data are needed and
gathering all this data is in general expensive and time-consuming. It can also be
difficult to gather enough data so that it covers all relevant cases. Also, if the task is
to control a car, this involves making sequential decisions which further aggravates
the data collection. Gathering a data set that includes most possible states with
their corresponding correct decisions becomes nearly impossible due to the infinite
number of states.

What is done instead, when appropriate, is try to mimic some sort of expert, which
in the case of car control could be a human driver or an advanced autopilot. The
field of training a network with the use of an expert is commonly referred to as
Imitation Learning (IL). Imitation learning is a variant of supervised learning, but
differs in how the data is gathered. In regular supervised learning, the data points
are usually independent where a set features are used for prediction or classification.
For example, the data set could include images of cats and dogs where the task is
to determine which images include which animal. In imitation learning however,
the data is instead gathered by observing the expert perform the task over time and
store the features and correct actions respectively, on which the network is thereafter
trained with.

A schematic figure depicting the workflow of imitation learning can be seen in Fig-
ure 2.4. A set of features at a time instance t, i.e. the state st, is collected from the
environment. This information is passed onto the expert and the network which both

13

2. Theory

aims to find the best action at and ãt to take respectively. The difference in choice
of action between the expert and the network is used for computing the loss, which
is thereafter used when updating the network and improving its performance.

Environment

Expert Correct Label

Network Network Output

st

st

at

ãt

Compute Loss

Figure 2.4: A flowchart of the process of imitation learning. The environment
produces a state st which is used by the expert and the network to propose a
suitable action at and ãt respectively. The difference in choice of action between
the expert and the network is used for computing the loss which defines how the
network should be updated.

2.3.1 Benefits and Drawbacks

The strength as well as drawback with imitation learning is that if an expert is used
when collecting data, only the states that the expert experiences are used to train
upon. On one hand, this is helpful since unrealistic states do not need to be explored
and only the perfect and relevant states are selected for training. On the other, this
means that if the expert always carries out the task perfectly, the network will not
learn how to behave in new and unseen situations. For example when learning to
control a car, if the expert always stays within the lane the network will be confused
if a small shift from the known position occurs and it will most likely not know how
to behave.
Also, since imitation learning is a variant of supervised learning, the networks are
trained relatively fast. By simply comparing network output with the expert’s rec-
ommendation, the network learns to distinguish relevant features quickly. The dis-
advantage though is that the network can never be better than the expert itself. In
the case where a robot tries to mimic a human, this can be good enough, meaning
that an almost as good robot can be very useful even if a real human being would
perform the job better.
However, in the case where a programmed autopilot is used, the network will only
represent a poor and less competent version compare to a human. An alternative
that helps fix this problem is, if possible, to combine the knowledge of different ex-
perts with different strengths when training the network. Also, an option is to use
imitation learning for pre-training of the network and then continue with other meth-
ods, such as reinforcement learning or other unsupervised learning techniques.

14

3
Method

Controlling a vehicle based on different types of information is the primary task in
this report. The purpose is to investigate how different dimensionality reduction
methods affect the driving performance of the vehicle when driving through sig-
nalised intersections. The four various methods used for dimensionality reduction
are choice of features based on reason (from now on only referred to as Reason),
Principal Component Analysis (PCA), Auto-Encoder (AE) and Integrated Encoder
(IE).

Regardless of which dimensionality reduction method is being used, the task of the
model is to take a set of features at a time instance as input and produce a choice
of action as output. This action then determines how the car drives. A schematic
figure of the traffic scenario studied is presented in Figure 3.1. The aim for the car
is to drive through three signalised intersections in a controlled manner following
traffic regulations, staying in its lane and stopping at red lights.

1 2 3

43 m
78 m

76 m
40 m

Start End

Figure 3.1: A schematic figure of the sequence of intersections that the car needs
to pass in order to reach the end. The car is initialised at 43 metres before the first
intersection and drives straight through the remaining intersections and finishes 40
metres after the last one.

The structure of this section consists of a description of the analysed features, the
simulation environment used when training and testing the models as well as an
explanation of how the data is gathered. Additionally, the network architecture
that was used is presented. In the sections that follow, the models using different
dimensionality reduction methods are described along with methods for comparing
their respective performance.

15

3. Method

3.1 Description of Features

In order to control a car in a complex environment like signalised intersections,
information about the environment needs to be provided. The various features
that were considered for further analysis are listed in Table 3.1, which make up 14
different features in total.

Table 3.1: The 14 features considered that were extracted from the simulation
environment. The x, y and z subscripts denote in what direction the feature was
measured. The simulated town which the car is subjected to lies in the xy-plane
and the z-axis is perpendicular to the plane and points in the direction of the sky.

Features
Velocity vx, vy, vz

Acceleration ax, ay, az

Angle to lane θ
Pitch angle φ

Distance to centre of lane dx, dy, dz

Distance to next traffic light tx, ty

State of next traffic light s =

Green
Red

Firstly, the six velocity and acceleration features were all measured in the global
coordinate system of the simulation environment. Secondly, the angle to lane was
measured as the heading angle relative to the direction of the lane. This implies
that angle to lane is based on the yaw angle of the vehicle. Thirdly, the pitch
angle, the three distance to centre of lane as well as the two distance to next traffic
light features were also defined according to the coordinate system of the simulator.
Lastly, the state of the next traffic light is simply the colour of the next upcoming
traffic light. Important to note is that a yellow traffic light was regarded as red as a
simplification. This made the state of the next traffic light either red or green, i.e.
a binary variable, whereas all other variables were continuous.

3.2 Simulation Environment

In order to train and try the different models, a simulated environment was required
and the simulator Carla of version 0.9.3 was used. Carla stands for Car Learning
to Act and is an open-source software with the purpose of aiding developers when
training and validating different autonomous driving systems [15]. Carla provides
up to five different environments, so called towns, with different characteristics. The
fifth one includes several traffic light intersections in sequence, which is the reason
for it being selected in this project. A bird’s-eye view of the environment can be
seen in Figure 3.2. To run the simulator, a computer with a GPU GeForce GTX
1050 Ti was used.

16

3. Method

Figure 3.2: A bird’s-eye view over the environment used in the simulator Carla.
The road stretching from bottom to top in the middle of the image was used when
training and running the models [28].

When running the simulator, many different types of data can be accessed. Camera
images of the surrounding environment as well as simulated LiDAR data are pro-
vided, but also signals from both fixed and moving objects. The various features
that were extracted in Carla are presented in Table 3.1, which make up 14 different
features in total.

The way the car is controlled in Carla is through two signals: the acceleration and
the steer, both of which are discretised. The acceleration is split into five categories
(±1.0, ±0.5 and 0) and the steer into eleven (±0.6, ±0.3, ±0.1, ±0.05, ±0.025 and
0). This results in 55 different classes in total. Note that the values are unitless and
relative so that +1.0 implies full gas or full right turn and −1.0 implies full break
or full left turn.

Additionally, an important feature in Carla is the built-in autopilot. When the
autopilot is activated, the host vehicle drives in a correct manner through the town,
stops at traffic lights and stays in its lane. Also, it is possible to specify where
the autopilot should drive by setting its final destination. Lastly, when in autopilot
mode, the control signal can be accessed and replaced if necessary, for example if
one wants to introduce noise to the signal.

17

3. Method

3.3 Data Gathering

The data used for training the neural networks of the various models was gathered
from the simulator Carla, described in Section 3.2, using the built-in autopilot. The
autopilot started 37 metres before the first traffic light intersection as shown in the
schematic sketch in Figure 3.1. The speed of the vehicle was randomly sampled
from a uniform distribution between 0.2 and 30 km/h.
The autopilot was then instructed to drive straight through all three intersections
until the end destination, also shown in Figure 3.1. Once the car reached the end,
it was removed from the simulation environment and a new car using the same
autopilot was spawned at the same starting point, but with a new random start
velocity. All events from when a single car was first created until it was removed
is hereby referred to as an episode. All cars were of the same model, a 2017 MKZ
Lincoln, the weather conditions were identical and the car drove down the same
road for simplicity.
Also, the traffic light times for green, red and yellow light in all intersections were
randomly assigned for each new car that was created, with values taken from different
uniform distributions. The green light was assigned to be between 4 and 7 seconds,
the red light between 1 and 3 seconds and the yellow light between 0.5 and 2 seconds.
It was also randomly assigned which one of the four traffic lights in each intersection
started with green light.
Since the autopilot drove according to traffic regulations and was good at driving
near the centre of the lane, noise needed to be introduced in order for the network
to learn how to recover from situations if it made an incorrect control decision. The
noise would ensure that a larger state space was explored and incorporated into
the models’ network. The autopilot sends approximately 30 control signals to the
vehicle’s control system every second. The noise was introduced every 1297th signal
for 10 consecutive signals. The choices of these noise parameters were based on
visual inspection as well as wanting a prime number in order to reduce the risk
of cyclic behaviour. The noise consisted of increasing or reducing the steer signal
to make the car either magnify or diminish the steer angle. The magnitude of
the noise was randomly sampled from a normal distribution with mean zero and
standard deviation 0.5.
Each time the autopilot gave a control signal to the vehicle, both the current state
of the environment, described by all 14 features listed in Table 3.1, and the control
signal, consisting of the steer and acceleration, were saved in pairs. In total 1 505 454
data points were collected and used for training the models’ neural networks. These
data points make up approximately 54 hours of driving.

3.4 Model Network Architecture

The neural networks used for controlling the vehicle in the four different models
had a common architecture, which is displayed in Figure 3.3. As can be seen in

18

3. Method

the figure, the networks consisted of two hidden layers with 600 and 900 neurons
respectively. The output layer had 55 neurons that represented the 55 discretised
control signals, which were introduced in Section 3.2. The black box in the figure
was defined differently for each model and determined what features to use and how
they were processed. All layers were fully connected and both hidden layers with
600 and 900 neurons used the ReLU activation function and a dropout of 50%. The
weights in the network were updated using the ADAM optimiser and the softmax
cross entropy loss function. For comparison, the accuracy of the network was also
computed as the fraction of how many correct classifications the network managed
to perform.

600

900

55

Modified
Features

Model Network

Figure 3.3: The shared network structure between the different models considered.
A set of modified features, which vary between the models, were used as input. These
were followed by two layers with 600 and 900 neurons respectively and the output
layer consisted of 55 neurons, each representing one action.

All neural networks were implemented and updated using Chainer’s neural network
framework and trained using the same data set, which was gathered as explained in
Section 3.3. The input data was standardised to mean zero and variance one and
the output signal translated into its corresponding discrete action. The data set was
split randomly into a training and validation set where the training set consisted of
80% of all data and the validation set of the remaining 20%. Early stopping was
implemented and stopped the training when the validation loss had not improved
over three sets, where each set consisted of the mean over five epochs. The batch
size was set to be 512 and the model was saved every tenth epoch. The latest
updated network, saved right before the early stopping was activated, was chosen
as the optimal model and used for further evaluation.
The car was controlled using the 55 outputs of the network in the Carla simulator.
In order to get a smooth control signal and avoid using a single discretised control
signal, which would narrow down the action space, an aggregated control signal
was created. The outputs from the neural network, which had been mapped by

19

3. Method

the softmax function, represented a normalised probability distribution of how good
each action was to perform. The aggregated, smooth control signal was constructed
as the sum over all 55 discretised actions multiplied with their respective probability
as described in Equation (3.1)

asmooth =
55∑

i=1
pi · ai, (3.1)

where pi is the probability of action i and ai is the discrete control signal which
neuron i represents consisting of one acceleration signal and one steering signal as
described in Section 3.2.

3.5 Dimensionality Reduction Models

Four different model types were implemented for reducing the dimensionality and
selecting features for controlling a vehicle in a simulator. The four model types
included feature choice based on reason (Reason), Principal Component Analysis
(PCA), Auto-Encoder (AE) and Integrated Encoder (IE). More details on how the
models were designed are presented in the upcoming sections. Mutual for all models
is that once the features had been modified, they were given as input to the model
network introduced in Section 3.4.
The features that were available for the network to use are the 14 features listed
in Table 3.1. Since the feature containing the state of the upcoming traffic light
is binary while the rest of the features are continuous, the traffic light state was
extracted and processed separately for all models except the models referred to as
Reason.
In order to get an accurate comparison between the models, two models for each
dimensionality reduction method were created: one which reduced the dimension-
ality to ten features and another to six. An additional model was created for the
Reason models, which used all 14 available features. This model was created with
the purpose of serving as a reference model and to evaluate how well a deep neural
network could perform using all accessible information.

3.5.1 Reason

As the name of the method implies, the features that were chosen were selected based
on the authors’ own reasoning. Table 3.2 shows what features were included for
each of the two created models. A marked green box in the table indicates that the
feature was used and an unmarked grey that it was excluded. The selected features
for each model were used as input to the model network without any additional
processing.
The argument for removing the specific features from the model Reason 10 was
to remove the ones that were thought of to give the least important information

20

3. Method

Table 3.2: The features that were included for the two Reason models. A marked
green box indicates that the feature was used for the corresponding model, while an
unmarked grey box represents an excluded feature. There were 14 available features
in total, namely the same features as listed in Table 3.1. Reason 10 used ten features
and Reason 6 used six features.

Features Reason 10 Reason 6
Velocity vx

... vy

... vz

Acceleration ax

... ay

... az

Angle to lane θ
Pitch angle φ

Distance to centre of lane dx

... dy

... dz

Distance to next traffic light tx
... ty

State of next traffic light s

about the surroundings to the vehicle. Since the road that traversed the three
intersections lies in the xy-plane and never inclines, all features that were measured
in the direction of the z-axis were removed. This included the z-directed values of
the velocity, acceleration, the distance to the centre of the lane and the pitch angle
of the vehicle.

For the model Reason 6, the same features that were removed in Reason 10 were
discarded with the same explanation. The remaining four features that were removed
were the acceleration and the distance to the centre of the lane in the xy-plane. The
reason for removing the acceleration was that as few features as possible were to be
used and the velocity was chosen to represent the kinematic properties primarily.
The distance to the centre of the lane was removed with the motivation that since
the car was always initially positioned at the centre of the lane, the car’s angle to the
lane should be enough information in order to continue staying close to the centre.
Worth noticing is that if the vehicle was to be positioned further away from the
centre, but in the same direction as the road, this reasoning would not hold. Also,
the angle to lane implies one extra dimension whereas the distance to lane implies
two which also motivates the choice.

The velocity was retained for all models with the motivation that it is important for
the car to know how fast and in what direction it is going. Without knowing the
direction it would have been difficult for the vehicle to compensate and determine
how to angle the wheels. The angle to the lane was kept since the car needed to
have some type of knowledge about how the car was positioned relative to the road.
The distance to the next traffic light and its state were also kept since they were

21

3. Method

considered essential to know in order to not run any red lights and to stop at a
correct distance from the traffic light when necessary.

3.5.2 Principal Component Analysis

When using Principal Component Analysis (PCA) to reduce the dimensionality, all
14 features in Table 3.1 were considered. However, the state of the next traffic light
was handled separately and the principal component projection was performed for
the remaining 13 features. The data was ordered in a matrix X with 13 columns each
representing one feature. The matrix XᵀX was computed and the corresponding
eigenvalues and eigenvectors calculated, as described in Section 2.2.1.
Two models were created using PCA as dimensionality reduction method and the
projection was performed by projecting the data matrix X onto the either nine or
five eigenvectors with the highest corresponding eigenvalues. By using the largest
eigenvalues, it is guaranteed that the eigenvectors explains as much of the total
variance as possible. When combined with the traffic light state, the set included
ten or six features in total.
Figure 3.4 shows the information flow in a PCA model. The projection with PCA
was performed on All Features, which resulted in a set of Modified Features. These
were then combined with the traffic light state and sent as input to the Model
Network, which was trained as described in Section 3.4.

All Features PCA Modified Features Model Network

Traffic
Light
State

Figure 3.4: The information flow in a PCA model. The block All Features includes
all features listed in Table 3.1, except the traffic light state. These features are then
transformed using PCA into a set of Modified Features. The Modified Features are
merged with the traffic light state and sent as input to the Model Network, described
in Section 3.4.

3.5.3 Auto-Encoder

Two models were created that used Auto-Encoders (AE) to reduce the dimension-
ality; one model used ten features and the other six. Both auto-encoders had 13
input neurons which included all features except the state of the upcoming traffic
light. The number of neurons in the hidden state were set to be either nine or five
for the two auto-encoders instead of ten or six to compensate for the removal of the
traffic light state feature. The upcoming traffic light state was instead added as an
input neuron to the model network, unprocessed by the auto-encoder, in arrears for

22

3. Method

both models. The number of neurons in the first hidden layer of the encoder and
decoder part of the auto-encoder was set to be the mean value of the number of
input neurons (13) and the number of neurons in the hidden state (9 or 5), resulting
in either eleven or nine neurons.
All layers in the auto-encoders were fully connected without dropout and all but the
output layer used the ReLU as activation function. All other parameters for training
the auto-encoder were identical to training of the model network, namely using
the ADAM optimiser, early stopping and the softmax cross entropy loss function.
The same data set and batch size were used. The network that was last updated,
before the early stopping interrupted the training, was used as the model’s auto-
encoder.
Once the auto-encoders had been trained, the modified features computed using
the encoder part were used as input to the model network. A schematic sketch of
the entire process can be seen in Figure 3.5. The first flow starting at All Features
and ending at the Decoder represents the information flow through an auto-encoder
network. The Modified Features represent the hidden state in the auto-encoder.
The second flow from All Features to the Model Network represents the flow of
information used for determining how a vehicle is controlled. The training of the
model network began once the auto-encoder had finished its training. During the
model network training, only the encoder part of the auto-encoder was used and all
the corresponding weights remained fixed.

All Features Encoder Modified Features Decoder

Model Network

1

Traffic
Light
State

2

Figure 3.5: The information flow in an auto-encoder model. The model contains
two flows, referred to as the first and second flow which are indicated by the num-
bers in the figure. The first flow goes between All Features and the Decoder and
represents the flow of an auto-encoder as seen in Figure 2.3. The second flow starts
at All Features as well, but diverges after the Modified Features and ends at the
Model Network. Modified Features represent the hidden state in an auto-encoder
and the Model Network is the same neural network as in Figure 3.3 which uses the
Modified Features and the Traffic Light State as input.

3.5.4 Integrated Encoder

An Integrated Encoder (IE) is inspired by the auto-encoders and is basically a
different network structure used instead of the original model network, introduced
in Section 3.4. The alternate structure consists of taking the encoder part of an
auto-encoder, as seen in Figure 2.3, and prepend it to the original model network.

23

3. Method

This results in a neural network with four hidden layers. A generalisation of an
integrated encoder can be seen in Figure 3.6.

Traffic
Light
State

13

13 + n

2

n

600
900

55

All Features
Modified
Features

Model Network

Figure 3.6: The integrated encoder model. The input layer, denoted as All Fea-
tures with 13 neurons, contains all features from Table 3.1 except the traffic light
state. The Modified Features layer is equivalent to the hidden state layer of an
auto-encoder, where the number of neurons n is either equal to 9 or 5, making up
10 or 6 in total when the traffic light state is added. Between the input layer and
the hidden state, an intermittent layer is placed with (13 + n)/2 neurons. The last
two hidden layers and the output layer constitute the Model Network, presented in
Section 3.4.

The idea of the integrated encoders is that the first two hidden layers should trans-
form the given input features into a lower dimension. The second two, i.e. the
hidden layers of the model network, then aim to find the correct action to perform
in the same way as the original model network does. All weights in the network are
updated simultaneously unlike the auto-encoder models, described in Section 3.5.3,
where the encoder and the model network were trained separately. With this inte-
grated dimensionality reduction method, the network should have the opportunity
to find connections between what input features are directly relevant for vehicle
control.
Two integrated encoders models were created. The auto-encoder layers of the net-
works, namely the input layer and the first two hidden layers contained the same
number of neurons as the auto-encoders used for the auto-encoder models in Sec-
tion 3.5.3. This means that the input layer always contained 13 neurons representing

24

3. Method

all features available except the traffic light state. The first hidden layer had either
eleven or nine neurons while the second hidden layer, containing the modified fea-
tures, had nine or five (n = 9 or 5), which makes up ten or six in total when the
traffic light state is added. All neurons, except the traffic light state, in the second
hidden layer were fully connected to the first hidden layer. The last two hidden
layers and the output layer were identical to the original model network as specified
in Section 3.4.

The training of the entire network was identical to how the model neural network
was trained, which was described in Section 3.4. The only difference is that dropout
was not implemented for the first two hidden layers.

3.6 Performance Comparison of Models

When all models for each dimensionality reduction method had been trained, various
quantities evaluating their characteristics were collected. During the training of the
model network, the classification accuracy was measured. The accuracy was defined
as the fraction of how many times the network chose the same action as the autopilot,
i.e. how well it managed to imitate the correct behaviour. The fully trained models
were also tested in the Carla simulator and other quantities related to the driving
performance were measured. Each model was evaluated for 500 episodes, where
all episodes were initialised in the same manner as when the training data set was
gathered, which was explained in Section 3.3.

In every time step of the simulation, the absolute distance to the centre of the
lane was recorded. For each episode, the average distance was saved and used for
evaluating how well the models were at keeping the vehicles centred in the lane.
Additionally, the maximum speed of every episode was also stored with the purpose
of analysing whether the vehicles had a tendency to drive too slow or too fast.

Quantities regarding the models’ abilities to handle traffic lights were also collected
in the simulation. Every time a vehicle drove through an intersection, the state of
the traffic light was stored to determine whether the vehicle ran a red light or passed
lawfully at green. Furthermore, if the velocity of the vehicle was close to zero, more
specifically less than 0.007 m/s, and the upcoming traffic light was red, the distance
to the traffic light was measured. This situation was interpreted as if that the vehicle
intended to stop and wait for the light to turn green before continuing down the
road.

Lastly, information regarding the way the episodes ended were collected. The var-
ious ending categories that were tracked included whether the car reached the end
destination or not. If not, the reason for its failure was recorded. This could be
due to that the car froze, meaning that it stood still for too long. The episode was
therefore ended if the car had not moved during a full time lap of one traffic light,
implying that the opposite lights must have been green at some point and the car
should have moved. A different alternative to an ending was if the car collided with
an object. Additionally, if the heading angle of the car took an unreasonable value,

25

3. Method

defined as more than 50 degrees off the direction of the road, the episode ended.
The last alternative for an ending category was if the car ended up far outside the
main road, defined as more than 15 metres away from the centre of lane.

26

4
Results

The main questions posed in this report are how different dimensionality reduction
methods affect the model training and driving performance as well as how to de-
termine what set of features are the most relevant when driving through signalised
intersections. To answer these questions, a range of different models have been de-
veloped based on neural networks and imitation learning. All models include some
variant of dimensionality reduction, namely choice based on reason (Reason), Princi-
pal Component Analysis (PCA), Auto-Encoder (AE) and Integrated Encoder (IE).
An additional reference model was also created with no dimensionality reduction
performed. The features considered in the analysis are presented in Table 3.1.
In summary, the results firstly include a presentation of the results directly connected
to the training of the models. Secondly, a comparison between the different models
is presented regarding their driving performance. Lastly, an analysis of the different
features, their respective importance and set of weights is presented.

4.1 Training and Accuracy

In total, nine different models were trained: one reference model, two that based
their dimensionality reductions on reason, two on PCA, two on auto-encoders and
two on integrated encoders. All models were trained on the same data set until an
early-stopping trigger was activated. The early-stopping trigger used is described in
further detail, as well as the rest of the training parameters, in Section 3.4.
The latest updated models before the early-stopping was activated were used for
further comparison. Their accuracies were computed as the fraction of how many
times the network chose the same action as the autopilot. All accuracies for each
respective model are presented in Table 4.1. The highest value was achieved by
using all 14 features in the reference model and the lowest for the model using an
integrated encoder with only six features. Generally, all accuracies range between
82% and 95% which implies that all networks manage to find the correct label over
four out of five times.
As explained in Section 2.2.1, when dimensionality reduction is performed through
PCA, the data is projected onto a set of eigenvectors and the proportion of the
corresponding eigenvalues can be calculated according to Equation (2.3). This pro-
portion represents a measure of how much of the total variance is explained in the

27

4. Results

Table 4.1: The accuracies of the models for all four implemented methods: Refer-
ence, Reason, PCA, AE and IE using either fourteen, ten or six features. The same
data set was used for all models. The accuracy was computed after the training
was completed and defined as the fraction of how many times the network chose to
perform the same action as the autopilot.

Reference Reason PCA AE IE
14 10 6 10 6 10 6 10 6

Accuracy [%] 94.9 94.7 93.4 93.3 89.0 88.3 86.1 83.5 82.4

new projected data set, i.e. how much of the information that was kept in the projec-
tion. Using this equation, it was computed that the PCA model using ten features
explained 90.2% of the total variance and the other using six explained 65.2%.

4.2 Driving Performance

To be able to assess the models’ performances, they were evaluated for 500 episodes
each in the Carla simulator under identical circumstances. Firstly, measurements
regarding how an episode ended are presented. Secondly, the models’ behaviour
around traffic lights is displayed, including both if they stopped before traffic lights
and at what distance. Thirdly, more general behaviour such as the speed and how
close to the centre of the lane they drove are shown individually. Lastly, a sum-
marised performance evaluation including all measurements is presented.

4.2.1 Episode Endings

The way each episode ended was recorded for all models and the final result can be
seen in Figure 4.1. The lower green bars in the figure show the number of times the
vehicle managed to drive from the start to end destination, as defined in Figure 3.1.
The dashed red bars represent the number of times a car froze, i.e. stopped for too
long, somewhere along the route. The upper third bars in the figure, coloured in blue,
show how often the heading angle of the car took an extreme value. The remaining
two alternatives an episode could end, i.e. by driving off the road or colliding with
an object, never occurred and are therefore not displayed in the figure.
As can be seen in the figure, the auto-encoder model using ten features, AE 10,
was best at completing the entire path out of all models. The auto-encoder using
six features, AE 6, on the other hand, did not perform very well, where less than
one third of the vehicles reached the end destination. The second best model was
Reason 6. The reference model and Reason 10 also performed well where 87% and
77% of the vehicles in the episodes reached the end respectively.
Furthermore, the PCA models behaved differently compared to one another, where
PCA 10 only managed to reach the end destination approximately half of the times
whereas PCA 6 completed 93% of the episodes. Neither of the integrated encoder

28

4. Results

Re
fer
enc

e

Re
aso

n 1
0

Re
aso

n 6

PC
A
10

PC
A
6

AE
10

AE
6

IE
10 IE

6
0

100

200

300

400

500

600
F
re
qu
en
cy

Episode Endings

Reached End

Froze

Extreme Angle

0

100

200

300

400

500

600

Figure 4.1: The way each episode ended. The lower green bars represent how often
the car reached the end destination. The dashed red bars show how often a vehicle
froze. The top blue bars, which are only clearly visible for IE 6 but also occurred
in two episodes of AE 6, represent how often the heading angle of the car took an
extreme value.

models completed more than 10% of the episodes. The integrated encoder and auto-
encoder models using six features were the only models that generated episodes
which ended due to that the heading angle took an extreme value.

4.2.2 Traffic Light Behaviour

This section presents how well the models handled the traffic light scenarios. Im-
portant to note when analysing the figures is that the models did not drive through
the same number of traffic lights. This was due to the fact that not all vehicles
reached the end destination and therefore did not pass all three intersections in
every episode, as can be concluded from Figure 4.1.
Figure 4.2 shows the proportions of how often a vehicle passed an intersection when
the traffic light was green and red respectively. The lower green bars show how often
it drove when the light was green and the upper dashed red bars show how often it
ran a red light. As can be seen, Reason 6 drove through the intersections at green
light most frequently, 95% of the times. Reason 10 and the reference model passed
just below 80% of the intersections at green light. The remaining models performed
worse and ran red lights more than 50% of the times where AE 10 performed the
worst and ran red lights more than 80% of the time.
Additional data was measured regarding the traffic lights. Figure 4.3 shows how

29

4. Results

Re
fer
enc

e

Re
aso

n 1
0

Re
aso

n 6

PC
A
10

PC
A
6

AE
10

AE
6

IE
10 IE

6
0%

20%

40%

60%

80%

100%

Traffic Light Passings

Passed Green Light

Ran Red Light

0%

20%

40%

60%

80%

100%

Figure 4.2: The proportion of how often the vehicles passed the intersections when
the traffic light was either green or red. The lower green bars show how often it
drove when the light was green and the upper dashed red bars show when it ran a
red light.

far from an intersection the vehicles stopped when the traffic light was red. The
boxes in the figure show the interval between the first and third quartile of the data,
namely where 50% of the data lies. This interval is referred to as the interquartile
range. The dashed red lines show the second quartile, i.e. the median. The whiskers
start at both the upper and lower edges of the boxes and the lengths are set to be
the minimum of the most extreme outlier and the interquartile range multiplied by
1.5. The diamond markers are the outliers, i.e. all data points that lie outside the
whiskers’ range. Important to note when studying the figure is that the vehicles did
not necessarily stop at every intersection encountered. This would occur if the traffic
light turned green as the vehicle was approaching, meaning that the vehicle did not
have to stop, or if a vehicle ignored the light and drove through the intersection
regardless of whether the traffic light was red or not.

It can be seen in Figure 4.3 that Reason 10 is the best out of all models at stop-
ping close to the traffic lights in terms of the median distance, with a median of
0.99 metres. Both Reason 6 and the reference model stopped relatively close too,
with median distances of 1.47 metres and 1.45 metres. However, all these three
models have outliers grouped at approximately 42 and 75 metres. The collection of
outliers at 42 metres represents the number of times a vehicle stopped immediately
after initialisation at the starting position and the other collection at 75 metres il-
lustrates when a vehicle stopped shortly after the stop mark of a traffic light, see
Figure 3.1.

30

4. Results

Re
fer
enc

e

Re
aso

n 1
0

Re
aso

n 6

PC
A
10

PC
A
6

AE
10

AE
6

IE
10 IE

6

0

10

20

30

40

50

60

70

80
D
is
ta
n
ce

[m
]

Distance to Traffic Light when Stopping at Red Light

0

10

20

30

40

50

60

70

80

Figure 4.3: How far from an intersection the vehicles stopped when the traffic light
was red. The red dashed lines show the median value. The boxes span the first to
the third quartile and the whiskers start at the box edges with a length of 1.5 times
the interquartile range. The diamond markers represent the outliers.

Furthermore, the PCA models performed worse than the reference and Reason mod-
els with a larger median distance and interquartile range. The larger interquartile
range might imply that the decision making of where to stop was not as well-defined
as for the reference and Reason models, whose stopping distances were relatively con-
centrated around their small median values. The same applies for the auto-encoder
and integrated encoder model where the ranges are even larger.

The median distance to the traffic light for both the auto-encoder and integrated
encoder models increased when fewer features were used. Though, it is important
to note is that even though AE 10 has a small median distance to the traffic light,
AE 10 had a tendency to run a lot of red lights, meaning that it did not stop at
intersections very often.

When combining the result from the two figures, 4.2 and 4.3, it can be concluded
that Reason 6 performed the best since it drove through intersections at green light
most often and when it was red it stopped close to the intersection while having
few outliers. It is harder to distinguish whether Reason 10 or the reference model
performed the second best, since the reference model passed green lights more often,
while Reason 10 stopped closer to the intersections. The rest of the models frequently
ran red lights and stopped far away from the intersections and thus did not handle
traffic lights well.

31

4. Results

4.2.3 Additional Driving Behaviour

Apart from information about how the episodes ended and the performance regard-
ing traffic lights, additional information was also collected concerning the speed and
positioning of the vehicle. The average maximum speed for all models can be seen
in Table 4.2. For each episode, the maximum speed was noted and the mean and
standard deviation in the table was computed using all 500 samples. As can be seen
in the table, all models had approximately the same maximum speed where PCA 10
drove the fastest at 21.4 km/h and IE 6 was the slowest at 18.3 km/h.

Table 4.2: The average maximum speed (Mean) and standard deviation (Std) for
all models, measured in km/h. The maximum speed was noted in each episode and
the mean and standard deviation were calculated using all 500 data points for each
model.

Reference Reason PCA AE IE
Speed [km/h] 14 10 6 10 6 10 6 10 6

Mean 19.0 18.7 19.2 21.4 18.6 18.5 20.0 18.7 18.3
Std 6.3 6.3 6.1 6.6 6.2 6.2 5.9 6.4 6.5

Also, how close to the centre of the lane the vehicles drove on average can be seen
in Figure 4.4, where the boxes are interpreted in the same manner as described
in Section 4.2.2. The distance to the centre of the lane was measured at every
time instance and the average was computed over the whole episode. Note that all
episodes were of different lengths since the traffic light times were randomised and
the episodes ended in different ways, for example by freezing somewhere along the
route or reaching the end. The lanes are approximately 3.5 metres wide and as can
be seen in the figure, most of the models stayed close to the centre, less than 10 cm,
except the AE 6 and IE models. Both of the PCA models have outliers, but the
median values are small.

4.2.4 Summary

Overall, four different aspects on driving through intersections were assessed: the
ability to reach the assigned end destination, the understanderstanding of how to
behave around traffic lights, correct lane positioning and suitable speed. As a general
comment, the results show that all models managed to understand some elements
of driving through intersections, though some are better than others.
To start with, Table 4.2 shows that all models managed to choose suitable speed
and neither drove too slow nor too fast. Furthermore, most models kept the car
in the middle of the lane, as can be seen in Figure 4.4. The reference model, both
Reason models and AE 10 had close to perfect positioning in the lane and so did
the two PCA models, apart from a set of outliers. In regard of the three remaining
models: AE 6, IE 10 and IE 6 had more critical behaviours with no median distance
smaller than 45 cm.

32

4. Results

Re
fer
enc

e

Re
aso

n 1
0

Re
aso

n 6

PC
A
10

PC
A
6

AE
10

AE
6

IE
10 IE

6

0

100

200

300

400

500

600
D
is
ta
n
ce

[c
m
]

Mean Distance to Centre of Lane

0

100

200

300

400

500

600

Figure 4.4: How close to the centre of the lane a car was on average per episode.
The red dashed lines show the median value. The boxes span the first to the third
quartile and the whiskers start at the box edges with a length of 1.5 times the
interquartile range. The diamond markers represent the outliers.

What seems to distinguish the different models the most is how they behaved around
traffic lights, as described in Section 4.2.2. This is where the reference and Reason
models stood out, due to that they stopped at reasonable distances at red light and
managed to pass the intersection at green most frequently. They also belong to
the models that reached the end most often, even though PCA 6 and AE 10 were
successful in this aspect as well, see Figure 4.1. However, as previously noted, the
models PCA 6 and AE 10 did not perform well in regard of the traffic lights.

Additionally, all models were recreated in order to study their stability when re-
trained and their results can be seen in Appendix A. At recreation, the models were
evaluated for 300 episodes instead of 500. The results of the reference and Reason
models were easy to reproduce and showed the same type of behaviour as previously
described. The PCA models mostly showed the same driving behaviour as before,
with the exception that PCA 10 reached the end destination more often than before
and PCA 6 passed the intersections at green light more often.

The behaviour of the AE and IE models were more difficult to reproduce, on the
other hand. Both the AE 6 and IE 10 model managed to reach the end destination
more often than before, but kept the same trend of running red lights. All AE and
IE models tended to stop closer to the intersections and drove closer to the centre
of the lane, except the AE 10 model.

In summary, the reference and Reason models performed well, or even the best, in
all categories. They were also stable in training and the behaviours were easy to

33

4. Results

reproduce. Moreover, among these three models, Reason 6 is the one that performed
the absolute best since it both reached the end most frequently and handled the
highest proportion of traffic light passings correctly.

4.3 Feature and Weight Analysis

By studying the distribution of the weights for each feature’s input neuron, their
respective likelihood to affect the network’s output can be analysed, as explained in
Section 2.1.1. The distributions for all 14 features are presented in Figure 4.5. All
graphs include histograms of the values of the 600 weights for each input neuron split
into 0.05 units wide bins between the values -1.5 and 1.5, where the relatively few
values larger in absolute value were truncated. The histograms in red correspond to
the features chosen for the model Reason 6, see Table 3.2, namely subfigures a, b,
g, l, m and n. The features in blue represent the remaining eight, i.e. subfigures c,
d, e, f, h, i, j and k. In addition, the collective sum of the weights in absolute value
for each distribution is presented in Table 4.3.

Table 4.3: The collective weight sums for all features of the reference model. The
sum was taken over all the weights in absolute value corresponding to each feature’s
distribution in Figure 4.5.

Features Collective Weight Sum
Velocity vx 268.4

... vy 46.8

... vz 43.5
Acceleration ax 63.0

... ay 25.2

... az 27.3
Angle to lane θ 302.0
Pitch angle φ 73.1

Distance to centre of lane dx 99.4
... dy 93.7
... dz 138.5

Distance to next traffic light tx 190.8
... ty 84.0

State of next traffic light s 256.2

When analysing the distributions in Figure 4.5 and Table 4.3, several things can
be noted. Firstly, the distributions corresponding to the velocity (a, b and c) tend
to be more spread than the ones related to the acceleration (d, e and f) when
compared dimension-wise. The same can also be concluded from the collective
weight sum, where the sum related to vx is larger than ax, vy than ay and vz than
az. The x-direction dominates notably, where the collective weight sum is 268 for
the velocity and 63 for the acceleration compared to 46 and 25 for the y-direction
respectively.

34

4. Results

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Velocity, vx

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Velocity, vy

(a) (b)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Velocity, vz

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Acceleration, ax

(c) (d)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Acceleration, ay

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Acceleration, az

(e) (f)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Angle to Lane, θ

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Pitch Angle, φ

(g) (h)

35

4. Results

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Distance to Centre of Lane, dx

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Distance to Centre of Lane, dy

(i) (j)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Distance to Centre of Lane, dz

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Distance to Next Traffic Light, tx

(k) (l)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Distance to Next Traffic Light, ty

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

State of Next Traffic Light, s

(m) (n)

Figure 4.5: The weight distributions for all 14 features in the fully trained reference
model. Each histogram contains the 600 weights for each feature, indicated by the
respective title, that connect the input layer with the first hidden layer. Only weights
that lie between -1.5 and 1.5 are shown in the graphs. The histograms coloured in
red (a, b, g, l, m and n) represent the features chosen for the model Reason 6 and
the ones coloured in blue represent the remaining ones (c, d, e, f, h, i, j and k).

36

4. Results

Secondly, the distribution of the angle to lane (g), which is based on the yaw angle
of the vehicle, shows more variability than the pitch angle (h). The collective weight
sum suggests the same: 302 compared to 73. Additionally, the angle to lane is more
spread than the three distance to centre of lane features (i, j and k), which are all
four related to how the vehicle is positioned. Moreover, the distance to centre of lane
distributions in each respective direction show relatively equal spread and collective
weight sum.
Lastly, the remaining three distributions (l, m and n) are the only ones related to
information about where the traffic light is positioned and its current state. What
can be noted is that the distribution for the distance to the next traffic light in the x-
direction is more spread than in the y-direction and the collective weight sum is 190
compared to 83. Also, the distribution regarding the state of the next traffic light
has an asymmetric spread with large weights in the negative spectrum, resulting in
a relatively high weight sum at 256.
In order to establish reproducibility of the results regarding feature and weight
analysis, the reference model was recreated. The corresponding distributions and
collective weight sums can be seen in Appendix A.3. In summary, the distributions
and sums show the same overall characteristics which indicate that the results are
stable and reproducible.

37

4. Results

38

5
Discussion

Controlling a vehicle through signalised intersections is a challenging task. Manag-
ing to stay within the lane, as well as knowing when and where to stop for traffic
lights, requires a model well-aware of the environment that makes appropriate de-
cisions at all times. How the environment is represented is an important aspect
when modelling how to drive. Two principal questions are addressed in this report
regarding this subject: what features and how they should be represented in order
for the model to learn how to control a car most efficiently.

The discussion is divided into four parts, where the first discusses the impact of
different dimensionality reduction methods when applied before training a neural
network. The second part further expands on the weight analysis as a tool for
determining which features are the most relevant for the task at hand. The third
section reports on the most important critical remarks and source of errors and the
fourth elaborates on relevant future work.

5.1 Impact of Dimensionality Reduction

In general, all model types managed to learn some or most aspects of driving through
signalised intersections. The difference in behaviour between the models and dis-
cussion on why they differed are presented in the upcoming sections, where each
dimensionality reduction method and model type is discussed individually at first.
Thereafter, a deepened discussion follows on the relation between the accuracy and
driving performance as well as on general convergence.

5.1.1 Reason

The models that based their dimensionality reduction on reasoning, namely Rea-
son 10 and Reason 6, are the models that performed best among all different model
types. Between the two Reason models, Reason 6 is the one performing the utter
best due to the slightly higher percentage of correct traffic light passings as well
as a higher tendency to reach the end destination. What is interesting to note
is that Reason 6 also performed better than the reference model with the same
argument.

39

5. Discussion

However, the reference model produced the highest accuracy which is in order with
the theory on neural networks, where more information should generally increase
the accuracy. Though, this suggests that accuracy is not a sufficient measure in
order to evaluate how well a model performs. Supposedly, the reference model
tries to minimise the loss and increase the accuracy, in which it succeeds, but does
not manage to generalise as well as the model Reason 6 in terms of driving. This
implies that some sort of dimensionality reduction or preprocessing of the features
and data may be beneficial instead of simply feeding all available information to the
network.

5.1.2 Principal Component Analysis

Generally, when Principal Component Analysis (PCA) was used for dimensionality
reduction, the performance was worse both in terms of accuracy and in driving
performance than the reference and the Reason models. Also, determining which
model is best between PCA 6 and PCA 10 is difficult, since the models showed
different behaviour when recreated. However, the reason why the PCA models
had troubles controlling the car is probably not related to their lower accuracies
primarily. PCA 10 had practically the same accuracy as Reason 6, see Table 4.1,
but showed worse performance in all driving measures. Instead, the issues are most
likely linked to the nature of PCA and how it projects the data.
The strengths of projection based on PCA is its ability to reduce correlation. When
two or more features are linearly correlated, a PCA projection eliminates the cor-
relation and leaves only features linearly independent of one another. This can be
very useful if the underlying problem with the data set is correlation. On the other
hand when the data is not primarily correlated, but instead includes features which
are irrelevant for the task, PCA does not seem to be a suitable method to use for
dimensionality reduction.
This is the case in this report where for example several quantities are measured
in both x-, y- and z-direction. Since the car only moves horizontally, the speed in
z-direction should be irrelevant. PCA, however, does not take this into consider-
ation and only focuses on keeping the statistical variance and features orthogonal
to each other. Note that if the car had been driving on slopes on the contrary, the
situation would have been different and the z-direction might have been relevant. In
conclusion, this implies that PCA does indeed reduce correlation in the data set, but
does not further aid the network in finding which features are relevant for driving
through intersections.

5.1.3 Auto-Encoder

Concerning the Auto-Encoder (AE) models, they showed more or less the same
difficulties as the PCA models, especially in regard of handling traffic lights. The
reason for the AE models showing a similar behaviour is most likely due to their
similar construction. Both methods try to find a representation of the data with

40

5. Discussion

fewer dimensions, but still keep as much of the information as possible. The major
difference between the two is what tools they use to do it. PCA projection is
built entirely on linear mapping using matrix multiplication. Alternatively, the AE
projection constructed through a neural network may use non-linear mappings in
any way suitable.
However, as explained in the discussion regarding PCA in Section 5.1.2, PCA models
try to reduce correlation and the same applies to AE models. The dimensionality
reduction functionality does not concern itself with the fact that the data is used
for controlling a car through signalised intersections, but only focuses on keeping as
much of the information content as possible, even if some information is useless for
the task. Therefore, since PCA did not show promising results in this application,
the results of the AE models follow the same trend. Reducing correlation, even if
done with non-linear mappings, when irrelevance is still a significant problem, does
not improve the overall performance.

5.1.4 Integrated Encoder

The Integrated Encoder (IE) models proved to be an interesting case. The models
tended to freeze almost every run, they rarely stopped at appropriate distances at
traffic lights and the accuracies were the lowest for all measured models. However,
they should be best in theory. The reason is because they have what the other meth-
ods lack: a direct connection between the dimensionality reduction functionality and
the control of the car, since the two parts are trained jointly.
As explained in Section 5.1.2 and 5.1.3, the PCA and AE models try to minimise
correlation and do not focus on relevance primarily. Contrarily, the IE models have
the opportunity of understanding what input features are relevant for driving by
forcing the network to learn this connection. The IE models did not show good
results generally though and were outperformed by the Reason models. The expla-
nation for why the IE models did not work in practice is probably due to convergence
problems. For example, when the model IE 6 is studied, the main results show an
accuracy of 82.4% and when retrained, the accuracy drops to 80.0%. This implies
that the network has difficulties of finding the global optimum and tends to get
stuck in local minima instead.

5.1.5 Further Discussion

As concluded, the Reason models generally outperformed the other models and
Reason 6 specifically proved to be the best model in terms of driving. This shows
that accuracy is not a good enough measure for driving performance for the mod-
els, since the reference model drove worse, but produced a higher accuracy than
Reason 6.
There are several reasons why high accuracy might not imply good driving be-
haviour. Firstly, the data collected using the autopilot proved to be imperfect. The
autopilot controlled the car in a stable manner, but ran red lights occasionally and

41

5. Discussion

sometimes confused itself of where to go, which resulted in a spinning-like behaviour.
This means that some portion of the data may have been mislabelled due to the
incapability of the autopilot.

Secondly, determining how high accuracy is enough in order to drive well is also
complicated. As explained, all models have accuracies above 80%, which could be
interpreted as if the models take the correct decision in at least four out of five
times. But the models showed high variability in driving performance, so the last
few percentage units seem to make the whole difference in regard of comprehending
the traffic situation.

Lastly, the accuracy values do not directly define which scenarios are covered by the
model and which are not, for obvious reasons. For example, if one model shows an
accuracy of 85% and another at 88%, then this does not necessarily imply that the
second model knows everything the first model does and more. On the contrary, it
might have focused on a different set of data points. When the models are tested
in practice, it is possible that the first model has learnt more relevant features for
driving even if the accuracy is lower.

Another conclusion from the preceding discussion is that the IE models did not work
as expected, which is most likely due to instability problems. Instability at reproduc-
tion also concerned the PCA and AE models, where PCA 10 dropped 1.1 percentage
units and AE 10 increased 2.0 percentage units at recreation, see Appendix A.1. This
strongly indicates that none of these models generally converge to the global opti-
mum when trained with the proposed method. Different training settings may be
tuned in order to aid the optimiser in finding the global optimum and, in regard of
the driving performance measures, longer evaluation may be considered.

5.2 Analysis of Feature Selection

As explained earlier, the model that was concluded to perform the best was Rea-
son 6. From the weight distribution analysis performed in Section 4.3, a relationship
between the features used by Reason 6 and the weights in the first layer of the refer-
ence model can be seen. Simply put, the features of Reason 6 had some of the most
spread distributions and the largest Collective Weight Sums (CWS). This suggests
that the weight distributions of a network trained with all available features may
provide information about which features are relevant and which are not. Using the
collective weight sum may therefore prove to be a useful statistical measure when
determining feature relevance.

Listed below are all 14 features sorted in descending order according to their col-
lective weight sums depicted in Table 4.3. The features in bold are the six features
used in Reason 6.

42

5. Discussion

1. Angle to lane, θ 8. Distance to next traffic light, ty
2. Velocity, vx 9. Pitch angle, φ
3. State of next traffic light, s 10. Acceleration, ax

4. Distance to next traffic light, tx 11. Velocity, vy

5. Distance to centre of lane, dz 12. Velocity, vz

6. Distance to centre of lane, dx 13. Acceleration, az

7. Distance to centre of lane, dy 14. Acceleration, ay

Important to note when studying the collective weight sums in detail is that Reason 6
did not use all of the six features with the largest sums, but differed by two. The
sums suggest that the distance to the centre of lane in x- and z-direction should be
used, but were instead replaced by the velocity and the distance to the traffic light
in y-direction. Those two features are according to the collective weight sums the
eleventh and eighth feature that should have been picked.
The most probable cause why the collective weight sums did not suggest the velocity
and distance to the traffic light in y-direction is due to the definition of the coordinate
system in Carla. The selected road is nearly parallel to the x-axis, resulting in very
small variations in the features measured along the y-axis, which is probably why
they are not suggested.
However, understanding why the network seemed to prioritise the distance to the
centre of lane in z-direction is difficult. Since the road is entirely flat and does
not include any elevation, the car should maintain the same height above the road
and this feature should therefore be completely irrelevant. The collective weight
sum of this feature was nonetheless the fifth highest. A possible explanation may be
because of the preprocessing and standardisation of the data. When standardisation
is performed on a practically constant feature, extremely small variations in the
data may be magnified to an unreasonable extent. It can therefore be concluded
that only comparing the weight distributions and blindly use the collective weight
sum as indicator are not enough to get a full picture of what set of features to
select.
In order to improve the selection method, it could be favourable to combine the
weight analysis with some type of reasoning as well. For example, if there is no
movement along an axis, then all components in that direction should be removed.
Additionally, it could be a good idea to cluster features into groups such as those
regarding the position in the lane or velocity related features. By grouping the
features together, it may be determined if some groups are irrelevant and can be
ignored or if only a maximum number of features is required from a specific group.
As an example, this is what was done for the model Reason 6, where the angle to
lane was prioritised over the three distance to centre of lane features, which are all
four related to the lane positioning.
As a final remark, one issue with the weight distribution analysis is that only weights
in the first layer, that are directly connected to the input features, are studied. An
exhaustive weight analysis would consider all weights in all layers, but this is not

43

5. Discussion

plausible with large networks due to the large number of combinations and immense
complexity. However, as the results show, the first layer may still give an indication
about feature relevance and when combined with reasoning, it may result in a set
of promising features.

5.3 Critical Remarks

Several restrictions were made to simplify the task, as mentioned in Section 1.3,
which might have affected the final results. One restriction was that the same
model network structure was used for all models, even though different types of
inputs might have benefit using other structures. The same reasoning goes for
the decision to use the same data set when training all models, namely that other
uniquely adapted data sets might enable better individual performance.
Other aspects of the training and choice of parameters which might have influenced
the performance include the construction of the autopilot in Carla. Sometimes
the autopilot shows abnormal behaviour such as running red lights or navigates
incorrectly and this type of behaviour is recorded and used for training the models.
Most often however, the autopilot acts more deterministic in terms of not drifting
too far from the centre of the lane or driving faster than 20 km/h. This results
in low diversity in the training data and therefore also in the models’ behaviour.
In order to increase the variety of the data, noise was induced where the rate of
the noise was tuned manually after visual inspection in Carla. This improved the
models’ performances since a larger state space was covered.
Additionally, many of the parameters used in the model network were tested and
evaluated using the Reason 10 model. The reason why is because this model did not
require any further preprocessing and the initial idea was that this model included
enough information to control the car. For example, some specifically tuned param-
eters are the optimiser, the dropout rate and activation function. The same goes
for the number of neurons in the hidden layers which were tested in the simulator
and then fixated and used by all models. Though, important to note is that Rea-
son 10 did not turn out to be the best performing model, so the parameters were
not excessively adapted.
Lastly, the model network used 55 discretised actions instead of continuous control
signals which might otherwise seem like an obvious choice. The reason for this was to
be able to evaluate and compare the models using the classification accuracy. When
predicting continuous variables, the evaluation would instead be done by comparing
the root mean square error of the loss, which is less intuitive to interpret.

5.4 Future Work

As concluded, the best performing model was based only on reasoning without
any further dimensionality reduction. In order to continue the work, it would be

44

5. Discussion

interesting to evaluate how well the weight distributions solely disclose what features
are the most relevant, as a comparison to the model Reason 6. This implies creating
a model using the six features with the largest Collective Weight Sums (CWS) and
evaluate this model in Carla with the metrics described in Section 3.6.
Furthermore, as already discussed in Section 5.2, an optimal approach is probably to
combine the weight analysis with reasoning in order to get an idea of what features
should be used. It would therefore be interesting to evaluate if this method would
work in other environments as well and not only the studied signalised intersec-
tions in the simulator. For example, the environment could be extended to include
roundabouts, highways or sharp turns. Additionally, it would be interesting to test
the other dimensionality reduction methods, namely the PCA, auto-encoders and
integrated encoders, to see if the same results are achieved in a different environ-
ment.
It would also be of interest to investigate the use of a more iterative approach when
selecting the set of features based on the weight distribution analysis. The proposal
is to train a neural network using all available features and when it has been fully
trained, the feature with the lowest collective weight sum is removed and a new
network is trained with the remaining features. The procedure continues until the
requested number of features have been selected or the model performance does
not improve further. This algorithm might not guarantee convergence to a global
optimum, but might increase generalisation.
Moreover, the training, validation and evaluation are currently all performed in the
same environment. It would be valuable to recreate the models in another set up
than the sequential intersections as seen in Figure 3.1. The new set up would still
include intersections and the same type of features, but the size of the lane, the
distance between the intersections and initialised velocities could vary for example.
This would give a better measure of how good the models are at generalisation.
Also, the input signals are at present noise-free so it would be interesting to add
noise to make the signals more realistic. These noise signals could for example be
simulated or generated by gathering data from the real world.
Lastly, the feature selection and dimensionality reductions are only investigated from
an autonomous drive perspective. It would be interesting to see if the proposed fea-
ture selection algorithm is applicable in other areas which involve high dimensional
classification problems. This could for example be applied to the classification of
mammography images, which was described in Section 1.4, or microarray analysis,
which is used in cancer research and many other areas [29]. Other related prob-
lems also include predictive maintenance of complex machines or engines, where the
number of possible input features is high and determining which are relevant may
be a challenge.

45

5. Discussion

46

6
Conclusion

Primarily two questions have been investigated in relation to feature representation
in autonomous drive. Firstly, how do different dimensionality reduction methods
affect the model training and driving performance and secondly, how to determine
the most relevant set of features for the specific task at hand. Among the four
dimensionality reduction methods, namely feature choice based on reasoning (Rea-
son), Principal Component Analysis (PCA), Auto-Encoders (AE) and Integrated
Encoders (IE), the variant that performed best is Reason. Specifically, the Reason
model that used only six features proved to be most successful in terms of driv-
ing.

In regard of the two dimensionality reduction methods PCA and AE; these models
did not improve the model performance, but instead worsened it compared to the
reference model using all available features. This is most likely due to how they
reduce the dimension in general. Both focus on lowering the dimension by reducing
correlation in the data, but does not take the features’ relevance for the specific
task into consideration. When irrelevance in data is prominent, due to inclusion
of features in vertical direction when only driving horizontally for example, these
methods lack in efficiency.

Furthermore, the IE models specifically, but also the PCA and AE models generally,
were proven difficult to reproduce. This is due to convergence problem, which can be
noted from the fact that the accuracy of the fully trained models varied notably. This
also serves as an explanation why the IE models did not perform as expected, whom
where predicted to perform best in theory due to their model construction.

Therefore, dimensionality reduction through reasoning is the method that was found
most successful. This also proves the importance of detailed assessment of the data
and task beforehand and that dimensionality reduction may improve performance.
Furthermore, neural networks aim to minimise the loss and increase the accuracy as
defined by their nature. But, as was shown, the accuracy does not disclose entirely
how the car drives ultimately, since the model driving the best was not the one with
the highest accuracy.

In order to determine what features should be used when training a model, the
features represented in the best performing model was studied in relation to the ref-
erence model using all available features. It was shown that the weight distributions
of the weights in the first layer of the reference model may indicate which features
are relevant for the task and which are not. A well-spread corresponding weight dis-

47

6. Conclusion

tribution and high Collective Weight Sum (CWS) may indicate if a feature should
be included in the model or not. As proposed, the best performance is most likely
achieved when the set of features is chosen through both weight distribution analysis
and reasoning based on the specific characteristics of the task and environment. Re-
garding future work, it would be interesting to investigate this idea further in both
tasks related to autonomous drive but also in other high-dimensional problems, for
example classification tasks in medical science or predictive maintenance of complex
machines.
In conclusion, it is important to assess what features are to be used and in what rep-
resentation to ensure that irrelevant information is ignored and relevant is accounted
for appropriately. Neural networks are indeed famous for their generalisation capa-
bilities, but have proven to benefit further by suitable preprocessing and reasonable
choice of features.

48

Bibliography

[1] Christina Mercer and Tom Macaulay. “Which companies are making driver-
less cars?” In: Techworld, Jan. 2019. url: https://www.techworld.com/
picture - gallery / data/ - companies - working - on - driverless - cars -
3641537/.

[2] On-Road Automated Driving (ORAD) committee. “Taxonomy and Definitions
for Terms Related to Driving Automation Systems for On-Road Motor Vehicles
J3016_201806”. In: SAE International, 2018. doi: https://doi.org/10.
4271/J3016_201806. url: https://www.sae.org/standards/content/
j3016_201806/.

[3] Aarian Marshall. “Elon Musk Promises a Really Truly Self-Driving Tesla in
2020”. In: Wired, Feb. 2019. url: https://www.wired.com/story/elon-
musk-tesla-full-self-driving-2019-2020-promise/.

[4] “Uber car ’had six seconds to respond’ in fatal crash”. In: BBC, May 2018.
url: https://www.bbc.com/news/technology-44243118.

[5] “Tesla car that crashed and killed driver was running on Autopilot, firm
says”. In: The Guardian, Mar. 2018. url: https://www.theguardian.com/
technology/2018/mar/31/tesla-car-crash-autopilot-mountain-view.

[6] Dean A. Pomerleau. “Advances in Neural Information Processing Systems 1”.
In: ed. by David S. Touretzky. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1989. Chap. ALVINN: An Autonomous Land Vehicle in a
Neural Network, pp. 305–313. isbn: 1-558-60015-9. url: http://dl.acm.
org/citation.cfm?id=89851.89891.

[7] Volvo Cars. Volvo Cars Concepts - 360c. 2019. url: https://www.volvocars.
com/intl/cars/concepts/360c.

[8] Waymo. Waymo. 2018. url: https://waymo.com/.
[9] Volvo Trucks. Vera - The future of autonomous transports. Oct. 2019. url:

https://www.volvotrucks.com/en-en/about-us/automation/vera.html.
[10] NVIDIA Danny Shapiro. “Around the Valley in 80 Kilometers: NVIDIA Au-

tonomous Test Vehicle Completes Fully Driverless Highway Loop”. In: Oct.
2018. url: https://blogs.nvidia.com/blog/2018/10/10/self-driving-
highway-loop/.

[11] National Highway Traffic Safety Administration. “USDOT Releases 2016 Fatal
Traffic Crash Data”. In: NHTSA, Oct. 2017. url: https://www.nhtsa.gov/
press-releases/usdot-releases-2016-fatal-traffic-crash-data.

49

https://www.techworld.com/picture-gallery/data/-companies-working-on-driverless-cars-3641537/
https://www.techworld.com/picture-gallery/data/-companies-working-on-driverless-cars-3641537/
https://www.techworld.com/picture-gallery/data/-companies-working-on-driverless-cars-3641537/
http://dx.doi.org/https://doi.org/10.4271/J3016_201806
http://dx.doi.org/https://doi.org/10.4271/J3016_201806
https://www.sae.org/standards/content/j3016_201806/
https://www.sae.org/standards/content/j3016_201806/
https://www.wired.com/story/elon-musk-tesla-full-self-driving-2019-2020-promise/
https://www.wired.com/story/elon-musk-tesla-full-self-driving-2019-2020-promise/
https://www.bbc.com/news/technology-44243118
https://www.theguardian.com/technology/2018/mar/31/tesla-car-crash-autopilot-mountain-view
https://www.theguardian.com/technology/2018/mar/31/tesla-car-crash-autopilot-mountain-view
http://dl.acm.org/citation.cfm?id=89851.89891
http://dl.acm.org/citation.cfm?id=89851.89891
https://www.volvocars.com/intl/cars/concepts/360c
https://www.volvocars.com/intl/cars/concepts/360c
https://waymo.com/
https://www.volvotrucks.com/en-en/about-us/automation/vera.html
https://blogs.nvidia.com/blog/2018/10/10/self-driving-highway-loop/
https://blogs.nvidia.com/blog/2018/10/10/self-driving-highway-loop/
https://www.nhtsa.gov/press-releases/usdot-releases-2016-fatal-traffic-crash-data
https://www.nhtsa.gov/press-releases/usdot-releases-2016-fatal-traffic-crash-data

Bibliography

[12] Stanford Eric Roberts. “Neural Networks: History: The 1940’s to the 1970’s”.
In: 2000. url: https://cs.stanford.edu/people/eroberts/courses/
soco/projects/neural-networks/History/history1.html.

[13] C. O. S. Sorzano, J. Vargas, and A. Pascual Montano. “A survey of dimension-
ality reduction techniques”. In: arXiv e-prints, arXiv:1403.2877 (Mar. 2014),
arXiv:1403.2877. arXiv: 1403.2877 [stat.ML].

[14] Federal Highway Administration. “Intersection Safety”. In: FHWA, July 2018.
url: https://highways.dot.gov/research-programs/safety/intersection-
safety.

[15] CARLA Team. “CARLA Simulator”. In: CARLA, 2019. url: http://carla.
org/.

[16] Mariusz Bojarski et al. “End to End Learning for Self-Driving Cars”. In: CoRR
abs/1604.07316 (2016). arXiv: 1604.07316. url: http://arxiv.org/abs/
1604.07316.

[17] Felipe Codevilla et al. “End-to-end Driving via Conditional Imitation Learn-
ing”. In: CoRR abs/1710.02410 (2017). arXiv: 1710.02410. url: http://
arxiv.org/abs/1710.02410.

[18] Michael Kelly et al. “HG-DAgger: Interactive Imitation Learning with Human
Experts”. In: CoRR abs/1810.02890 (2018). arXiv: 1810.02890. url: http:
//arxiv.org/abs/1810.02890.

[19] William Curran et al. “Using PCA to Efficiently Represent State Spaces”. In:
CoRR abs/1505.00322 (2015). arXiv: 1505.00322. url: http://arxiv.org/
abs/1505.00322.

[20] Hongyu Shen et al. “Denoising Gravitational Waves with Enhanced Deep Re-
current Denoising Auto-Encoders”. In: (2019). arXiv: 1903.03105 [astro-ph.CO].

[21] Yasi Wang, Hongxun Yao, and Sicheng Zhao. “Auto-encoder based dimen-
sionality reduction”. In: Neurocomputing 184 (2016). RoLoD: Robust Local
Descriptors for Computer Vision 2014, pp. 232–242. issn: 0925-2312. doi:
https://doi.org/10.1016/j.neucom.2015.08.104. url: http://www.
sciencedirect.com/science/article/pii/S0925231215017671.

[22] Saeid Asgari Taghanaki et al. “Pareto-optimal multi-objective dimensionality
reduction deep auto-encoder for mammography classification”. In: Computer
Methods and Programs in Biomedicine 145 (2017), pp. 85–93. issn: 0169-2607.
doi: https : / / doi . org / 10 . 1016 / j . cmpb . 2017 . 04 . 012. url: http :
//www.sciencedirect.com/science/article/pii/S0169260716309269.

[23] B. Mehlig. “Artificial Neural Networks”. In: CoRR abs/1901.05639 (2019).
arXiv: 1901.05639. url: http://arxiv.org/abs/1901.05639.

[24] Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. “Generaliza-
tion in Deep Learning”. In: arXiv e-prints, arXiv:1710.05468 (Oct. 2017),
arXiv:1710.05468. arXiv: 1710.05468 [stat.ML].

[25] Diederik P. Kingma and Jimmy Lei Ba. “Adam : A method for stochastic
optimization”. In: (2014). arXiv: 1412.6980v9.

[26] Guangquan Lu et al. “Multi-task learning using variational auto-encoder for
sentiment classification”. In: Pattern Recognition Letters (2018). issn: 0167-
8655. doi: https://doi.org/10.1016/j.patrec.2018.06.027. url: http:
//www.sciencedirect.com/science/article/pii/S0167865518302769.

50

https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/History/history1.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/History/history1.html
http://arxiv.org/abs/1403.2877
https://highways.dot.gov/research-programs/safety/intersection-safety
https://highways.dot.gov/research-programs/safety/intersection-safety
http://carla.org/
http://carla.org/
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1710.02410
http://arxiv.org/abs/1710.02410
http://arxiv.org/abs/1710.02410
http://arxiv.org/abs/1810.02890
http://arxiv.org/abs/1810.02890
http://arxiv.org/abs/1810.02890
http://arxiv.org/abs/1505.00322
http://arxiv.org/abs/1505.00322
http://arxiv.org/abs/1505.00322
http://arxiv.org/abs/1903.03105
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2015.08.104
http://www.sciencedirect.com/science/article/pii/S0925231215017671
http://www.sciencedirect.com/science/article/pii/S0925231215017671
http://dx.doi.org/https://doi.org/10.1016/j.cmpb.2017.04.012
http://www.sciencedirect.com/science/article/pii/S0169260716309269
http://www.sciencedirect.com/science/article/pii/S0169260716309269
http://arxiv.org/abs/1901.05639
http://arxiv.org/abs/1901.05639
http://arxiv.org/abs/1710.05468
http://arxiv.org/abs/1412.6980v9
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2018.06.027
http://www.sciencedirect.com/science/article/pii/S0167865518302769
http://www.sciencedirect.com/science/article/pii/S0167865518302769

Bibliography

[27] Junfeng Zhang and Haifeng Hu. “Exemplar-based Cascaded Stacked Auto-
Encoder Networks for robust face alignment”. In: Computer Vision and Image
Understanding 171 (2018), pp. 95–103. issn: 1077-3142. doi: https://doi.
org/10.1016/j.cviu.2018.05.002. url: http://www.sciencedirect.
com/science/article/pii/S1077314218300687.

[28] CARLA Team. “CARLA Simulator”. In: Screenshot by author. CARLA, 2019.
url: http://carla.org/.

[29] Rajeshwar. Govindarajan et al. “Microarray and its applications”. In: Journal
of Pharmacy And Bioallied Sciences 4.6 (2012), pp. 310–312. doi: 10.4103/
0975- 7406.100283. url: http://www.jpbsonline.org/article.asp?
issn=0975-7406;year=2012;volume=4;issue=6;spage=310;epage=312;
aulast=Govindarajan;t=6.

51

http://dx.doi.org/https://doi.org/10.1016/j.cviu.2018.05.002
http://dx.doi.org/https://doi.org/10.1016/j.cviu.2018.05.002
http://www.sciencedirect.com/science/article/pii/S1077314218300687
http://www.sciencedirect.com/science/article/pii/S1077314218300687
http://carla.org/
http://dx.doi.org/10.4103/0975-7406.100283
http://dx.doi.org/10.4103/0975-7406.100283
http://www.jpbsonline.org/article.asp?issn=0975-7406;year=2012;volume=4;issue=6;spage=310;epage=312;aulast=Govindarajan;t=6
http://www.jpbsonline.org/article.asp?issn=0975-7406;year=2012;volume=4;issue=6;spage=310;epage=312;aulast=Govindarajan;t=6
http://www.jpbsonline.org/article.asp?issn=0975-7406;year=2012;volume=4;issue=6;spage=310;epage=312;aulast=Govindarajan;t=6

Bibliography

52

A
Reproducibility of Results

In the following sections, the results of all the recreated models are presented and
compared to the results displayed in Chapter 4, which will hereby be referred to as
the original models. The recreated models were created under the same conditions as
the original models and the metrics were measured the same way, with the exception
that the recreated models were evaluated for 300 episodes instead of 500. Firstly, the
training accuracy is presented. Secondly, the metrics related to the models’ driving
performance are given. Lastly, the corresponding feature and weight analysis is
presented.

A.1 Training and Accuracy

Table A.1 shows the accuracy of the recreated networks. As can be seen in the
table, the accuracy did not differ more than 2.4% for any models compared to
what was achieved for the original models as presented in Table 4.1. The Reason
models, PCA 6 and AE 6 differed the least by 0.1% and the reference and IE 10
also displayed small differences of 0.2% and 0.7% respectively. The remaining three
models: PCA 10, AE 10 and IE 6, differed the most with 1.1%, 2.0% and 2.4%.

Table A.1: The accuracies of the recreated models and the corresponding absolute
differences to what was presented in Table 4.1 for the original models; Reason, PCA,
AE and IE using either fourteen, ten or six features. The accuracy was computed
after the training was completed and defined as the fraction of how many times the
network chose to perform the same action as the autopilot.

Reference Reason PCA AE IE
14 10 6 10 6 10 6 10 6

Accuracy [%] 94.7 94.8 93.5 92.2 88.9 90.3 86.0 84.3 80.0
Abs. Diff. -0.2 +0.1 +0.1 -1.1 -0.1 +2.0 -0.1 +0.7 -2.4

A.2 Driving Performance

Figure A.1 shows how the episodes ended for the recreated models. As can be seen
when comparing to the results in Figure 4.1, the reference, Reason and AE 10 models

I

A. Reproducibility of Results

all behaved similarly as the original models, where approximately the same fraction
of the vehicles reached the end destination. The remaining models, on the other
hand, demonstrated a different behaviour and managed to complete the route more
often. The largest increase was made by IE 10 which improved its ability to reach
the end by 77%.

Re
fer
enc

e

Re
aso

n 1
0

Re
aso

n 6

PC
A
10

PC
A
6

AE
10

AE
6

IE
10 IE

6
0

50

100

150

200

250

300

350

F
re
qu
en
cy

Episode Endings

Reached End

Froze

Extreme Angle

0

50

100

150

200

250

300

350

Figure A.1: The way each episode ended for the reproduced models. The lower
green bars represent how often the car reached the end destination and the dashed
red bars show how often a vehicle froze. Note that the reproduced models never
experienced any extreme angles, so no blue bar is visible in this plot.

Figures A.2 and A.3 show the reproduced models’ abilities to handle the traffic light
scenarios. The first figure, Figure A.2, displays how often the vehicles passed the
traffic light at green or red light. When comparing the passings to Figure 4.2, it
can be seen that several models showed a similar behaviour, more specifically the
Reason models, AE 10 and IE 10. Out of the remaining models: the reference,
PCA 10, AE 6 ran more red lights than previously while the last two, i.e. PCA 6
and IE 6, displayed a better behaviour and passed at green more often.

II

A. Reproducibility of Results

Re
fer
enc

e

Re
aso

n 1
0

Re
aso

n 6

PC
A
10

PC
A
6

AE
10

AE
6

IE
10 IE

6
0%

20%

40%

60%

80%

100%

Traffic Light Passings

Passed Green Light

Ran Red Light

0%

20%

40%

60%

80%

100%

Figure A.2: The proportion of how often the vehicles passed the intersections
when the traffic light was either green or red for the reproduced models. The lower
green bars show how often it drove when the light was green and the upper dashed
red bars show when it ran a red light.

Re
fer
enc

e

Re
aso

n 1
0

Re
aso

n 6

PC
A
10

PC
A
6

AE
10

AE
6

IE
10 IE

6

0

10

20

30

40

50

60

70

80

D
is
ta
n
ce

[m
]

Distance to Traffic Light when Stopping at Red Light

0

10

20

30

40

50

60

70

80

Figure A.3: How far from an intersection the vehicles of the reproduced models
stopped when the traffic light was red. The red dashed lines show the median value.
The boxes span the first to the third quartile and the whiskers start at the box edges
with a length of 1.5 times the interquartile range. The diamond markers represent
the outliers.

III

A. Reproducibility of Results

Figure A.3 shows how far from the intersection the vehicles stopped when the lights
were red. The reference and Reason models maintained their ability to stop close
to the intersection while the PCA models and AE 6 improved their competence
slightly with fewer outliers and a lower median distance. The integrated encoders
also improved their performance and stopped more than 10 metres closer to the
intersections, though the median distance remained relatively big, at 12 and 30
metres respectively. AE 10 was the only model that performed worse than the
original models and stopped more than 40 metres away from the intersections.

Table A.2 depicts the average maximum speed, standard deviation and their re-
spective differences for all reproduced models compared to what was displayed in
Table 4.2. As can be seen in the table, the maximum speed did not change signifi-
cantly, where PCA 10 showed the largest difference and drove 2.5 km/h slower than
the original models.

Table A.2: The average maximum speed (Mean), standard deviation (Std) and
their respective differences (Diff. Mean and Diff. Std) for all reproduced models
compared to the original models, measured in km/h. The maximum speed was
noted in each episode and the mean and standard deviation were calculated using
all 300 data points for each model.

Reference Reason PCA AE IE
Speed [km/h] 14 10 6 10 6 10 6 10 6

Mean 18.8 18.5 18.8 18.9 19.4 19.0 19.1 18.9 18.2
Diff. Mean -1.2 -0.2 -0.4 -2.5 +0.8 +0.5 -0.9 +0.2 -0.1

Std 6.0 6.2 6.2 6.4 6.3 6.3 6.5 6.0 6.5
Diff. Std -0.3 -0.1 +0.1 -0.2 +0.1 +0.1 +0.6 -0.4 0.0

Figure A.4 shows how far from the centre of the lane the reproduced vehicles drove
on average. Most models showed a similar behaviour to the original models and
managed to keep close to the centre of the lane, namely the reference, Reason, PCA
and AE 10 models. Contrarily, both the AE 6 and IE 10 models showed an im-
provement compared to the original models, whereas IE 6 increased its interquartile
range, meaning that it tended to drive further away from the centre.

IV

A. Reproducibility of Results

Re
fer
enc

e

Re
aso

n 1
0

Re
aso

n 6

PC
A
10

PC
A
6

AE
10

AE
6

IE
10 IE

6

0

100

200

300

400

500

600
D
is
ta
n
ce

[c
m
]

Mean Distance to Centre of Lane

0

100

200

300

400

500

600

Figure A.4: How close to the centre of the lane a car was on average per episode
for the reproduced models. The red dashed lines show the median value. The boxes
span the first to the third quartile and the whiskers start at the box edges with
a length of 1.5 times the interquartile range. The diamond markers represent the
outliers.

A.2.1 Summary

From all the results presented above in Section A.2, it can be concluded that the
reference and Reason models’ behaviour were reproducible for all metrics. The
PCA, AE and IE models, on the other hand were not as stable even though the
networks achieved approximately the same accuracy with the same data set, as
seen in Table 4.1. The unstable models were able to maintain their ability to stay
close to the centre of the road at approximately the same maximum speed, but
showed differences to the original models in their capability to handle traffic light
scenarios.

A.3 Feature and Weight Analysis

Figure A.5 displays the weight distributions for the reproduced reference model.
When comparing the weights that were displayed in Figure 4.5, it can be seen that
the distributions look similar in shape. This can also be verified by comparing the
Collective Weight Sum (CWS) difference in Table A.3. As can be seen in the table,
the differences are on average small, but the reproduced weights tend to be slightly
larger which implies that the distributions are more spread and not as peaked around
zero.

V

A. Reproducibility of Results

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Velocity, vx

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Velocity, vy

(a) (b)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Velocity, vz

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Acceleration, ax

(c) (d)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Acceleration, ay

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Acceleration, az

(e) (f)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Angle to Lane, θ

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Pitch Angle, φ

(g) (h)

VI

A. Reproducibility of Results

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Distance to Centre of Lane, dx

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Distance to Centre of Lane, dy

(i) (j)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Distance to Centre of Lane, dz

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Distance to Next Traffic Light, tx

(k) (l)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

Distance to Next Traffic Light, ty

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight Values

0

50

100

150

200

F
re
qu
en
cy

State of Next Traffic Light, s

(m) (n)

Figure A.5: A comparison of the weight distributions for all 14 features in the
fully trained reproduced reference model. Each histogram contains the 600 weights
for each feature, indicated by the title, that connect the input layer with the first
hidden layer. Only weights that lie between -1.5 and 1.5, i.e. the majority, are
shown in the figures. The histograms that are coloured red represents the features
that were chosen for the Reason model that used six features.

VII

A. Reproducibility of Results

Table A.3: The Collective Weight Sum (CWS) for all features of the reproduced
reference model. The sum was taken over all weights corresponding to each feature’s
weight distribution in Figure A.5. The third column, Rel. Change, shows the relative
change of the CWS compared to the firstly created reference model’s CWS, which
are listed in Table 4.3.

Features CWS Rel. Change [%]
Velocity vx 243.0 -9.4

... vy 47.6 +1.8

... vz 41.6 -4.4
Acceleration ax 62.8 -0.4

... ay 25.2 +0.2

... az 24.3 -10.9
Angle to lane θ 309.6 +2.5
Pitch angle φ 68.2 -6.7

Distance to centre of lane dx 99.8 +0.4
... dy 98.1 +4.7
... dz 128.6 -7.1

Distance to next traffic light tx 168.0 -11.9
... ty 75.6 -10.0

State of next traffic light s 227.5 -11.2

VIII

	List of Figures
	List of Tables
	Glossary
	Introduction
	Methods and Challenges of Autonomous Drive
	Purpose
	Scope
	Related Work
	Outline of Thesis

	Theory
	Artificial Neural Networks
	Impact of the Weights
	Training the Network

	Dimensionality Reduction Methods
	Principal Component Analysis
	Auto-Encoders

	Imitation Learning
	Benefits and Drawbacks

	Method
	Description of Features
	Simulation Environment
	Data Gathering
	Model Network Architecture
	Dimensionality Reduction Models
	Reason
	Principal Component Analysis
	Auto-Encoder
	Integrated Encoder

	Performance Comparison of Models

	Results
	Training and Accuracy
	Driving Performance
	Episode Endings
	Traffic Light Behaviour
	Additional Driving Behaviour
	Summary

	Feature and Weight Analysis

	Discussion
	Impact of Dimensionality Reduction
	Reason
	Principal Component Analysis
	Auto-Encoder
	Integrated Encoder
	Further Discussion

	Analysis of Feature Selection
	Critical Remarks
	Future Work

	Conclusion
	Bibliography
	Reproducibility of Results
	Training and Accuracy
	Driving Performance
	Summary

	Feature and Weight Analysis

