
Identifiability of parameters in
PBPK models
Identifiability analysis using the profile likelihood method for
model parameters in physiologically based pharmacokinetic
models

Master’s thesis in Engineering Mathematics and Computational Science

SIMON WATANABE

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019





Master’s thesis 2019:NN

Identifiability of parameters in PBPK models

Identifiability analysis using the profile likelihood method for model
parameters in physiologically based pharmacokinetic models

Simon Watanabe

Department of Mathematical Sciences
Applied Mathematics and Statistics

Chalmers University of Technology
Gothenburg, Sweden 2019



Identifiability of parameters in PBPK models
Identifiability analysis using the profile likelihood method for model parameters in
physiologically based pharmacokinetic models
Simon Watanabe

© Simon Watanabe, 2019.

Supervisors: Umberto Picchini, Department of Mathematical Sciences
Teodor Erngren, AstraZeneca, Early RIA DMPK
Rikard Johansson, AstraZeneca, Early RIA DMPK
David Janzén, AstraZeneca, Early CVRM DMPK
Elin Boger, AstraZeneca, Early RIA DMPK
Examiner: David Bolin, Department of Mathematical Sciences

Master’s Thesis 2019:NN
Department of Mathematical Sciences
Applied Mathematics and Statistics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Printed by [Name of printing company]
Gothenburg, Sweden 2019

iv



Identifiability of parameters in PBPK models
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Department of Mathematical Sciences
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Abstract

In the field of pharmacologics, physiologically-based pharmacokinetic (PBPK) mod-
els can be used for predicting the pharmacokinetics of a drug compound in the
body. These models are often a system of ordinary differential equations (ODEs)
that describe the transport of a drug between different compartments of the body.
The models depend on several parameters, some of which cannot be measured ex-
perimentally and instead these parameters are often estimated from experimental
data using maximum likelihood. However, in many applications in systems biology,
estimates will suffer from unidentifiability issues, meaning that well-determined es-
timates cannot be inferred from the data [17].

This problem comes in two forms, structural unidentifiability and practical unidenti-
fiability, both of which can be analyzed with the profile likelihood method developed
by Raue et.al [14]. The profile likelihood method is a numerical method for calcu-
lating likelihood-based confidence intervals of the parameters, which are then used
to assess identifiability.

In this project the profile likelihood method is implemented in MATLAB and used
to perform identifiability analysis on key model parameters for three PBPK models
using simulated data. Thus, the results of this project are both a showcase of the
profile likelihood method and an analysis of the identifiability of parameters in some
specific models used for pulmonary drug delivery.

The results indicate that if very precise measurements could be taken then all pa-
rameters considered would be identifiable. When a reasonable measurement error
is applied on the simulated data the same is not true. Some parameters, such as
the in-vivo pulmonary permeability and deposition fraction will remain identifiable,
but most other parameters will suffer from practical unidentifiability. With a rea-
sonable measurement error the identifiability of most model parameters will also be
dependent on the particular error realization. To address these issues, additional
data is considered by observing how the uncertainty in parameter estimates impacts
observables. By this method (also suggested by Raue [14]) additional measurements
are introduced in an effective manner to potentially resolve unidentifiabilities.

Keywords: structural unidentifiability, practical unidentifiability, pulmonary drug
delivery, maximum likelihood estimation.
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1
Introduction

In pharmacological research, the ability to make useful and accurate predictions of
the pharmacokinetics for drug-compounds is of importance. To do this one can use
physiologically based pharmacokinetic (PBPK) modeling to define a set of equa-
tions that describe the concentration of the compound in different compartments of
the body and the simultaneous transport between these compartments. The set of
equations are often a system of non-linear ordinary differential equations (ODEs).
Although many of the model parameters can be found in literature or can be mea-
sured in vitro/in vivo, some needs to be estimated from data, commonly with the
use of maximum likelihood.

In order for the estimate to be well-determined from the measured data, it needs
to be identifiable, but in many cases for large and complex models such as the ones
used in pre-clinical assessment of drug-compounds in pharmacology, this is not the
case[11]. Instead, estimates suffer from unidentifiability of two forms: structural and
practical[14][15][11]. Structural unidentifiability is a property of the model structure
for a given set of input and output functions, and if it is present, a subset of the model
parameters cannot be inferred from data, regardless of quality and size of the data.
Practical unidentifiability occurs when model parameters cannot be determined due
to insufficient amount and/or quality of available data but could be estimated in
principle. Factors that affects this includes noise level of the measurement errors,
biological variability, study occasion variability, number of measurements and when
and what is measured.

Obtaining reliable parameter estimates is important to make reliable predictions
from any model and possibly better understand the phenomenon under study. The
main goal of this project is therefore to assess the identifiability of key model pa-
rameters for three different PBPK models. In other words, the question we ask is
“can we obtain well-determined and reliable estimates of these parameters given a
model and data?”.

The models were developed by Teodor Erngren and Elin Boger at AstraZeneca
(Early RIA DMPK). To address the above question simulated data was used, mean-
ing that the analysis in this thesis provides an a priori assessment of parameter iden-
tifiability that can be used to guideline future projects. The simulated data should
reflect plausible experimental data, this of course relies on the assumption that the
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1. Introduction

models used here are suitable to describe the biological process which is measured,
but it also depends on defining a reasonable noise distribution that incorporates the
measurement error for real life experiments. To obtain plausible simulated data we
therefore use an experimental data set from [9] to calculate reasonable measurement
errors.

Our objective is to see which key model parameters can be estimated for a given
model and a simulated data set. To be able to do this we make use of the pro-
file likelihood method, developed mainly by Raue et.al. [14]. The profile likelihood
method is a numerical method for calculation of confidence intervals of the estimates
which then determine if they are identifiable. Moreover, it gives information about
the nature of the unidentifiability (when present) as in practical or structural and
it is possible to extract what additional information is needed to possibly resolve
any unidentifiabilities. The main motivating factor for using this method is that
it is an easy-to-interpret numerical method, as when the models are complex and
large it is not often possible or reasonable to make analytical calculations. Fur-
thermore, it makes fewer assumptions than most other existing methods to detect
non-identifiability and allows for asymmetrical confidence intervals[14]. The profile
likelihood method is implemented in MATLAB r2017b as a part of this project.

The three models considered will represent different types of molecules, where we
have two models for small molecules and one for large molecules. For the small
molecules, one model represents neutral molecules and one basic molecules. The
overall structure of all models are similar and are based on the PBPK model for lung
deposition developed by Boger et.al. in [5]. It is of note that no model development
was considered in this project, the models were given and no changes were made to
them.

2



2
Theory

This chapter introduces the definition of the likelihood based confidence intervals,
which in turn is used to define the identifiability of a parameter. To define these
concepts, an overview of the mathematical models, later defined in chapter 5, with
some useful notations is given first.

The ODE systems describing the three models that will be considered (given by
equations (5.2)-(5.28)) can be summarized as

dx(t;λ)
dt

= f(x(t;λ),λ), (2.1)

x(0,λ) = x0(λ) (2.2)
where λ = [λ1, ..., λP ] is the vector of parameters considered for estimation (defined
later in section 5.5) with length P = #parameters and x(t;λ) are the trajectories
of the unobserved states of the system evaluated with parameter values set to λ.
P in our case is mostly in the range of 6-10. The function f is continuous and
differentiable w.r.t. the parameters λ. Moreover, it is generally a non-linear function
of the unobserved states x.

The states in x cannot be observed directly, instead the observables are given by
functions gk(x(t;λ)), k = 1, ..., K (in this case given by equations (5.29)-(5.34)).
For example, gk(x(t;λ)) can be a linear combination of some of the states in x.
Furthermore, we assume that only noisy versions of the observables are possible to
measure. The data, denoted by y, is then given by discrete noisy measurements of
gk(x(t;λ)), k = 1, ..., K, where K < dim(x).

If some parameter transform is used, e.g. log-parametrization then λ is replaced by
log(λ). In our case, log10-parametrization was used since all parameters are assumed
to be positive and to simplify the notation θ ≡ log10(λ) is introduced.

2.1 Simulation of data

Simulation of data is achieved by first solving the system of ODEs in equation (2.1)
with θ fixed to some true values θtrue. The solution x(t;θtrue) is then used to produce
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2. Theory

simulated measurements. To do this the proper distribution of measurement errors
needs to be established. There are two common ways to do this by either Gaussian
or log-normal error distributions.

With additive Gaussian errors, measurements for observable k at time ti is given by

yk(ti) = gk(x(ti;θtrue)) + εki (2.3)

where εki are independent and identically distributed Gaussian error terms with
standard deviations σki as

εki ∼ N (0, σki), k = 1, .., K, i = 1, ..., Nk (2.4)

K is the number of observables and Nk is the number of time points for observable
k.

As will be shown later in chapter 5, the observables in our case are concentrations
and thus non-negative, which implies the use of log-normal measurement error for
the data y, where

y = [y1(t1), y1(t2), ..., yk−1(tNk−1), yk(t1), ...yK(tNK )]

as

log(yk(ti)) ∼ N (log(gk(x(ti;θtrue))), σki) (2.5)

which is to say that

log(yk(ti)) = log(gk(x(ti;θtrue))) + εki

εki ∼ N (0, σki),
(2.6)

or equivalently

yk(ti) = gk(x(ti;θtrue)) · eεki = gk(x(ti;θtrue)) · eki
eki ∼ logN (0, σki), k = 1, .., K, i = 1, ..., Nk.

(2.7)

In this project only simulated measurement data was considered, and the standard
deviations σki were assumed to be known, i.e. σki were not considered as parameters
for estimation.

2.2 Estimation

Given a data set of yk(ti), k = 1, .., K, i = 1, ..., Nk and assuming Gaussian errors
the likelihood is formulated as

L(θ|y) =
K∏
k=1

Nk∏
i=1

1√
2πσ2

ki

exp
(
− 1

2

(
yk(ti)− gk(x(ti;θ))

σki

)2)
(2.8)

4



2. Theory

or for log-normal errors

L(θ|y) =
K∏
k=1

Nk∏
i=1

1
yk(ti)

1√
2πσ2

ki

exp
(
− 1

2

( log(yk(ti))− log(gk(x(ti;θ)))
σki

)2)
. (2.9)

To estimate the parameters θ, maximum likelihood is applied[14][10][15][11], i.e.
solving the optimization problem

θ̂ = argmaxθL(θ|y) (2.10)

but in practice it is often easier to solve the equivalent problem of minimizing the
negative log-likelihood as

θ̂ = argminθ[−2 log(L(θ|y))] (2.11)

where the factor 2 is multiplied to simplify the expression in the following equations.
For equations (2.8) and (2.9) this leads to

− 2 log(L(θ|y)) =
K∑
k=1

Nk∑
i=1

(
yk(ti)− gk(x(ti;θ))

σki

)2
− const. (2.12)

and

− 2 log(L(θ|y)) =
K∑
k=1

Nk∑
i=1

( log(yk(ti))− log(gk(x(ti;θ)))
σki

)2
− const. (2.13)

respectively. In this thesis mostly log-normally distributed errors are considered and
therefore the following definition is introduced:

ξ2(θ) ≡
K∑
k=1

Nk∑
i=1

( log(yk(ti))− log(gk(x(ti;θ)))
σki

)2
. (2.14)

Thus the parameter estimates are found by solving the optimization problem

θ̂ = argminθξ2(θ). (2.15)

2.3 Confidence intervals

The main objective of this thesis is to analyze the identifiability of parameters us-
ing the profile likelihood method. To do this, the definition of finite-sample con-
fidence intervals (also called likelihood based confidence intervals) are introduced
here [14][15][10]. These are defined by a confidence region in the parameter space
where the likelihood, or equivalently ξ2, stays within a threshold ∆α. The definition
of the confidence region is

{θ|ξ2(θ)− ξ2(θ̂) < ∆α}, with ∆α = χ2(α, df). (2.16)

5



2. Theory

That is, all parameter values θ such that ξ2(θ) is within ∆α of the optimum ξ2(θ̂).
The confidence intervals are then given by the borders of the confidence region. Here
∆α is the 1 − α quantile of the χ2 distribution and df = 1 and df = P represents
point-wise and simultaneous confidence intervals respectively. In this thesis only
point-wise confidence intervals for the parameter estimates is considered.

With enough data and a suitable model the likelihood will be informative and have a
sharp peak at θ̂ which leads to a small restricted confidence region and consequently
narrow confidence intervals. With less informative data, as in less measurements or
higher measurement error, the likelihood will also be less informative and more
dispersed, hence leading to broader confidence intervals or even infinitely broad
confidence intervals. The nature of the confidence intervals defines the identifiability
of the parameters, which are explained in the following section.

2.4 Identifiability

For a parameter to be identifiable it must have a finite confidence interval [c−, c+],
with c−, c+ ∈ R [14]. For a two-dimensional example see right panel of Figure 2.1.
In the case of unidentifiability a distinction is made between structural and practical
unidentifiability.

Figure 2.1: Contour plots of ξ2(θ) for a two-dimensional parameter space, shown
on non-logarithmic scale for illustrative purposes. Shades from black to white
correspond to low and high values of ξ2, respectively. Thick white lines display
likelihood-based confidence regions and white stars the optimal parameter esti-
mates θ̂. Left panel: a structural non-identifiability along the functional relation
h(θ) = θ1 · θ2 − 10 = 0(dashed line). The likelihood-based confidence region is in-
finitely extended. Middle panel: a practical non-identifiability. The likelihood-based
confidence region is infinitely extended for θ1 −→ ∞ and θ2 −→ ∞, lower confidence
bounds can be derived. Right panel: both parameters identifiable. Figure taken
from Structural and practical identifiability analysis of partially observed dynamical
models by exploiting the profile likelihood, with permission from A.Raue and Bioin-
fromatics Journal.
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2. Theory

2.4.1 Structural unidentifiability

Structural unidentifiability is independent of the amount and quality of data and
is a property of the model structure for a given set of input and output functions.
Thus, given a perfect data set, any structurally unidentifiable parameters are still
not well-determined. This may be due to ambiguous parameterisation which can be
characterized as functional relations h(θsub) = 0, between a subset of parameters
θsub ⊂ θ where the observables remains unchanged[14][15][11], i.e.

h(θsub) = 0 ⇐⇒ gk(x(t,θ)) = gk(x(t, θ̂)), ∀k = 1, ..., K, ∀t (2.17)

The result is that all parameters θj ∈ θsub are structurally unidentifiable since vary-
ing the parameters according to the functional relations h makes no difference in the
observed values gk(ti,θ) and hence the value of ξ2(θ) is kept constant. Therefore an
infinite range of parameter values can be found along the functional relations that
are equally good and confidence intervals for these parameters are infinitely wide.
Another example of structural unidentifiaiblity occurs when the input/output func-
tions are such that certain parts of the model structure doesn’t affect the observables.
Parameters incorporated in these parts of the model structure are then structurally
unidentifiable. In a two-dimensional parameter space a structural unidentifiability
can be visualized as a perfectly flat valley, infinitely extended along the functional
relationship h, see for example left panel in figure 2.1. The remedy for structural
unidentifiability would be to measure additional states, i.e. increasing the number
of observables and/or perturb the system in another way by changing the input for
the model[14][15].

2.4.2 Practical unidentifiability

A parameter estimate is practically unidentifiable if the confidence interval extends
infinitely in either direction but the likelihood has a unique optimum[14][15][11].
This means that the parameter value of a practically unidentifiable parameter can
be infinitely increased and/or decreased without exceeding the threshold ∆α, but
unlike structural unidentifiability an optimum exists. The confidence interval in
this case need not be infinite in both directions as the parameter estimate can have
lower or upper bounds but not both, see for example middle panel in figure 2.1
where a lower bound can be obtained. In a two-dimensional parameter space practi-
cal unidentifiability can be visualized as an infinitely extended relatively flat valley
along which ξ2(θ) never exceeds the threshold ∆α. As with structural unidentifia-
bility, measurements of additional states can introduce more information about the
parameter to remedy the problem, but since practical unidentifiability arises due
to insufficient data, it is also possible to remedy this by increasing the amount of
measurements of the current observables or reduce the measurement error for the
current measurements[15][14].

7



2. Theory
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3
Methods

To calculate the likelihood-based confidence intervals the profile likelihood method
will be used[14]. This method is based on exploring the likelihood-based confidence
region in the direction of least increase, starting from the optimal parameter values.
Thus, for unidentifiable parameters it will explore the parameter space along the
infinitely extended relations where ξ2(θ) never exceeds the threshold. The optimum
is found by global optimization of the problem defined in equation (2.15).

3.1 Global estimation

The global estimation to find the optimum of ξ2(θ) is performed first and this es-
timate is then used as starting point for the profile likelihood calculation. Since
strictly speaking even so called global algorithms are local, as otherwise all com-
mon optimization methods only ensure a local optimum is found, the optimization
algorithm is started from M different start points. The integer M is chosen suffi-
ciently large to ensure the global optimum is found from at least one of the start
points. Moreover, since all parameters are log10-transformed this greatly improves
optimization efficiency and also ensures positivity of all parameters.

The start points should be chosen within reasonable ranges of the parameter values.
For P parameters, this can be achieved by calculating a P-dimensional grid over
the parameter space bounded by parameter ranges and randomly choosing one start
point in each box. For a 2-dimensional example see left panel of figure 3.1. The
easiest way of doing this assumes that all axes are divided into equal number of
intervals Nd. However, this method leads to the number of start points increasing
exponentially with the number of parameters asN#parameters

d , and the number of start
points gets unreasonably large for 6-10 parameters, even with a low Nd. Instead,
only taking the diagonal elements in the P-dimensional grid as start points leads to
the number of start points being equal to Nd. To further simplify things the diagonal
crossings are chosen as start points, instead of randomly choosing start points inside
each diagonal box. Then for parameter ranges defined by lower and upper limits, l

9



3. Methods

θ1

θ2

θ1

θ2

Figure 3.1: How multiple start points are chosen for the global optimization. The
figures are presented on non-logarithmic scale for illustrative reasons. Left: Start
points taken randomly inside each box of the grid. Right: Start points taken on the
diagonal crossings of the grid. The right side method leads to considerably fewer
start points but does not explore the parameter space as thoroughly as the left side
method. The number of start points for the left method on the other hand increases
exponentially with number of parameters.

and u, the start points θstart,i, i = 1, ...,M can be calculated by

θstart,i = log10 l + i− 1
M − 1 · (log10 u− log10 l), i = 1, ...,M (3.1)

and the number of start points is then equal to Nd + 1, for an illustration of this
see right panel of figure 3.1. For all results in this thesis equation (3.1) was used to
calculate start points for the global estimation.

3.1.1 Sensitivity equations

For most deterministic optimization approaches the derivatives of the objective func-
tion ξ2(θ) (given by equation (2.14)) with respect to the parameters θp are needed[4].
To obtain these the sensitivities ∂x(t,θ)

∂θp
needs to be calculated, which is usually done

in one of two ways:

• By solving the sensitivity equations, given by the ODEs

d

dt

∂x(t;θ)
∂θp

= ∂f

∂x

∂x(t;θ)
∂θp

+ ∂f

∂θp
(3.2)

• or by finite difference approximation,

dx(t;θ)
dθp

≈ x(t;θ)− x (t;θ + h · ep)
h

(3.3)

10



3. Methods

Finite difference approximation is already implemented in most software, including
MATLABs lsqnonlin, and can be used for any general problem. However, the ap-
proach using sensitivity equations is much faster and gives more reliable results and
hence this is what will be used [4].

The sensitivities ∂x(t;θ)
∂θp

describe the dependency of the state variables on the pa-
rameter values, and by taking the time derivative and applying the chain rule and
Clairauts theorem equation (3.2) is obtained:

d

dt

∂x(t;θ)
∂θp

= ∂

∂θp

dx(t;θ)
dt

= ∂

∂θp
f(x(t;θ),θ) =

∂f(x(t;θ),θ)
∂x

∂x(t;θ)
∂θp

+ ∂f(x(t;θ),θ)
∂θp

. (3.4)

These ODEs can then be solved together with the rest of the ODE-system. An
efficient implementation of this using the CVODES solver is the AMICI (Advanced
Multilanguage Interface for CVODES and IDAS) implementation used in this thesis
[8]. When the solution ∂x(t;θ)

∂θp
has been found, the derivatives of the objective function

∂ξ2(θ)
∂θp

can be found by application of the chain rule

∂ξ2(θ)
∂θp

= ∂

∂θp

K∑
k=1

Nk∑
i=1

( log(yk(ti))− log(gk(x(ti;θ)))
σki

)2
=

− 2
K∑
k=1

Nk∑
i=1

( log(yk(ti))− log(gk(x(ti;θ)))
σki

)
· 1
gk(x(ti;θ))σki

∂gk(x(ti;θ))
∂x

∂x(t,θ)
∂θp

.

(3.5)

Furthermore, with AMICI it is possible to obtain the derivatives ∂gk(x(ti,θ))
∂θp

directly,
skipping the last application of the chain rule in equation (3.5).

3.2 Profile likelihood

To obtain the desired confidence intervals and perform identifiability analysis the
profile likelihood (PL) approach suggested by Raue et.al is utilized [14]. The general
idea of this method is to explore the likelihood in the direction of least increase
by fixating one parameter at a time and re-optimizing the remaining parameters,
conditionally to the value of the fixed one.

The PL for θj, denoted by ξ2
PL(θj), is calculated by iteratively solving the constrained

optimization problem
ξ2
PL(θj) = min

θp 6=j
[ξ2(θ)], (3.6)

with θj fixated to different values. Starting at the global optimum θj = θ̂j the PL is
calculated analogously in increasing and decreasing direction of θj-values, see figure
3.2 for an illustration in two-dimensions.
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3. Methods

Figure 3.2: Illustration of PL calculation for parameter θ1 in increasing direction.
The parameter value of θ1 is updated and then constrained optimization is performed
with θ1 fixated to its updated value. The dashed line is the PL. The calculation in
decreasing direction is analogous.

The PL re-optimizes for all parameters except θj and hence explores ξ2 in the
direction of least increase w.r.t. all other parameters conditionally on θj fixed
to its current value. Consequently for any structurally unidentifiable parameters
θj ∈ θsub ⊂ θ the profile likelihood is flat, as the direction of least increase would be
along the functional relations h(θsub) = 0. For practically unidentifiable parameters
the profile likelihood will have a minimum, but it will never exceed the threshold
∆α in increasing and/or decreasing direction. If a parameter is identifiable the
profile likelihood exceeds ∆α in both increasing and decreasing direction and these
points of passover represent the likelihood based confidence intervals. It has been
shown that the profile likelihood explores the likelihood in the desired way to detect
unidentifiabilities[14].

The PL given in equation (3.6) is a one-dimensional function, but each step of
calculating ξ2

PL(θj) is generally a multi-dimensional problem. Some notation is now
introduced to make this clearer. Let l = 1, ..., L denote the iterations in calculation
of profile likelihood for a parameter θj. Then, this results in a matrix of parameter
values

Θ = [θ1, ...,θl, ...,θL], (3.7)

where each θl is a solution to the constrained optimization problem in equation (3.6)
with θlj fixated to some value Cl, which are monotonously increasing as C1 < ... <
Cl < ... < CL. The corresponding objective function values

Ξ2 = [ξ2(θ1), ..., ξ2(θl), ..., ξ2(θL)] (3.8)
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3. Methods

determines whether or not the parameter is identifiable or practically/structurally
unidentifiable. The function ξ2

PL(θj) is then defined as the mapping R −→ R+ of θj
values in Θ to objective function values in Ξ.

3.3 Determining additional measurement points

Let the PL calculation of a parameter result in Θ as in equation (3.7). Then the
trajectories of observables given by functions gk along the PL of this parameter, that
is

gk(x(t;θl)), l = 1, ..., L, (3.9)

can give information about what new measurements are needed in the case of
unidentifiability[14][15].

For structural unidentifiability the observables gk are unaffected by any change in
the parameter along the functional relationship h(θsub). Since the PL calculation
explores the parameter space in the least increase of ξ2, the parameter values Θ
along the PL of the structurally unidentifiable parameters are such that

h(θlsub) = 0, l = 1, .., L (3.10)

and

gk(x(t;θ1)) =, ...,= gk(x(t;θl)) =, ...,= gk(x(t;θL)), ∀t. (3.11)

Hence, the trajectories gk(x(t,θl)) along the PL show no variation. Thus the struc-
tural unidentifiability is independent of accuracy and amount of data, even with an
infinite amount of perfectly measured data points the parameter value can be per-
turbed along h without affecting the observed states gk(x(t,θl)). The only remedy
is therefore to introduce qualitatively new measurements, e.g. by measuring some
of the previously unobserved model states[15].

However, for a practically unidentifiable parameter the uncertainty in the parameter
impacts the trajectories gk(x(t;θl)), l = 1, ..., L and they will reveal some variabil-
ity. The spots with largest variability in the trajectories can be thought of as places
where the uncertainty in the parameter affects the observables the most and addi-
tional measurements at these places are likely to efficiently introduce information
about the parameter compared to measurements at places with less variability[14].
To identify these places easily one can calculate a measure of variability for the
trajectories gk(x(t;θl)) at each time point. In the following results the range of log
of observables will be used as

range(log(gk(x(t)))) = max
l

log(gk(x(t;θl)))−min
l

log(gk(x(t;θl))). (3.12)

If the parameter values θl along the PL of some practically unidentifiable parameter
gives rise to large variability in the trajectories gk(x(t;θl)) at some time interval,

13



3. Methods

then the range in equation (3.12) will also be large. Additional measurements at
time intervals where equation (3.12) is large are then most likely to effectively resolve
practical unidentifiability. Moreover, since the range is calculated on the logarithm
of the trajectories it can be compared to the log-normal measurement error. If the
variability given by equation (3.12) is much smaller than the measurement error at
all times, then any new information introduced by additional measurements will be
outweighed by the measurement error.
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4
Implementation

All programming was done in MATLAB R2017b.

4.1 ODE-systems

The implementation of the ODE-systems in MATLAB was given at the start of the
project. However, due to the complexity and size of the models, a more efficient
ODE-solver than the standard solvers provided by MATLAB was used. The ODE-
solver used in this thesis was the CVODES-solver which can be accessed though
MATLAB with AMICI and as previously mentioned it also gives an efficient imple-
mentation for solving the sensitivity equations[8][1]. To use AMICI with MATLAB,
the ODEs needs to be defined using symbolic variables but otherwise no changes
needs to be made.

4.2 Optimizers

For the global optimization the MATLAB function lsqnonlin with the trust-region-
reflective algorithm was used unless otherwise noted. For problems where all param-
eters are unbounded the same function with the levenberg-marquardt algorithm is
recommended. An implementation for using the function fmincon with the models
in this project has been made as well, but it is significantly slower than lsqnonlin for
most cases. All these functions are deterministic algorithms. Moreover, lsqnonlin is
a non-linear least square solver and therefore suitable for the problems considered
in this thesis. For more information about these functions see MATLABs online
documentation[3]. A version of particle swarm optimization (PSO) has also been
implemented as a global optimizer and can be used when lsqnonlin gives unsatis-
factory results. PSO is a stochastic optimization algorithm and therefore doesn’t
guarantee that the point estimate found is an optimum but is more efficient in ex-
ploring the parameter space. Another advantage of PSO is that it doesn’t get stuck
as easily in local optimas like the other algorithms. PSO is however often slower to
use.
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4. Implementation

As mentioned in section 3.1 the global optimization relies on multiple start points
for local algorithms. To perform global optimization using multiple start points the
MATLAB function multistart was used with custom start points set as described in
section 3.1.

4.3 Profile likelihood

The profile likelihood for each parameter estimate θj is calculated by iteratively
solving the constrained optimization problem in equation (3.6) with θj fixed to
monotonously increasing/decreasing values starting from the global estimate θ̂j. Let
the current iteration be denoted by l and consider calculation of PL in increasing
direction, then the algorithm consists of two repeated steps.

1. Take an incremental step θlstep,j in increasing direction of θj conditionally on
all other parameters kept fixed. That is, calculate Cl = θl−1

j + θlstep,j.

2. Solve the constrained optimization problem

min
θ
ξ2(θ)

s.t. θj = Cl
(4.1)

and set θl as the solution.

Repeat until ξ2(θl) − ξ2(θ̂) exceeds the threshold ∆α, Cl exceeds a upper/lower
bound of θj or maximum number of steps is reached. The calculation in decreasing
direction is analogous, with Cl = θl−1

j − θlstep,j in step 1. To do this efficiently the
step sizes θlj at each iteration needs to be chosen in an adaptive manner and a
well-performing optimization routine to solve equation (4.1) has to be chosen.

The profile likelihood ξ2
PL(θj) as given in equation (3.6) is then the function R −→ R+

given by the solutions to equation (4.1).

4.3.1 Adaptive step size

The step size in θj should be taken such that the increase in ξ2 is sufficiently small to
obtain a smooth profile but large enough to be efficient. Since the value of the profile
likelihood is not known until the optimization problem in equation (4.1) is solved it
is assumed that the increase in ξ2 is small for small steps. Let θlstep be a vector of
same length as θl with the jth element set to θlstep,j, i.e. θlstep = [0, ..., θlstep,j, ..., 0],
then we assume that:

ξ2
PL(θl−1

j + θlstep,j) ≈ ξ2(θl−1 + θlstep) when ||θlstep|| = |θlstep,j| is small, (4.2)
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Using the assumption in equation (4.2) the step size |θlstep,j| should be chosen such
that it fulfills the condition

ξ2(θl−1 + θlstep)− ξ2(θl−1) ≈ q ·∆α (4.3)

where q ∈ (0, 1] [14]. This way at least 1
q
steps are needed in each direction for iden-

tifiable parameters. However, for unidentifiable parameters the likelihood is almost
flat and the condition is never fulfilled. Moreover if local minimas exist the condition
is unsuitable as ξ2(θl−1 + θlstep) < ξ2(θl−1) when θl−1 is in the neighbourhood of a
minimum. In practice therefore the following condition is used

|(ξ2(θl−1 + θlstep)− ξ2(θl−1))| ≤ q ·∆α. (4.4)

To get a suitable θlstep,j two methods have been implemented: Direct method and
slope method.

The idea of the direct method is that a large step size is often favoured for efficacy.
Therefore a max step size ηmax > 0 along with a minimal step size ηmin > 0 is set,
then do the following at each iteration l of the PL calculation for parameter θj:

1. Initialize by i = 0, ηi = ηmax

2. Set θlstep,j = ηi

3. • If: (4.4) is satisfied Or: ηi ≤ ηmin
⇒ θlstep,j = ηi and terminate.

• Else: Decrease step size by f · ηi, i← i+ 1.

4. Return to 2.

where f ∈ (0, 1). The direct method ensures that a larger step size is favoured but
the efficacy is dependent on the user-defined ηmax. Choosing the max step size is a
matter of guessing and a good value would be such that equation (4.4) is fulfilled
immediately without having to decrease the step size, but since this is often not
possible to know beforehand a sufficiently large value should be favoured to allow
the algorithm to find a suitable step size. In this case, ηmax is chosen as

ηlmax = log10(λ̂j + l · 0.2 · λ̂j)− log10(λ̂j + (l − 1) · 0.2 · λ̂j)

= log10

( 1 + l · 0.2
1 + (l − 1) · 0.2

)
,

(4.5)

with λj being the untransformed parameter value, such that θ̂j = log10(λ̂j) and
θl−1
j = log10(λl−1

j ). This way each iteration and parameter has a unique ηmax and
equation (4.5) represents a max step size of 20% of the untransformed estimate, if
only max steps has been taken. This was seen to work well in all cases considered
later.

The slope method is an improved version of the direct method which approximates
the slope at the last point θl−1 in the direction of θj to calculate the step size θlstep,j.
Starting from θl−1 do the following:
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4. Implementation

1. Take a small step of size ηmin in the direction of θj so that
θminstep = [0, .., ηmin, ..., 0].

2. Approximate the slope k by k ≈ ξ2(θl−1+θminstep)−ξ2(θl−1)
ηmin

.

• If k = 0: Set ηnew = ηmax

• Else if k > 0: Set ηnew = q·∆α

k

• Else if k < 0: Set ηnew = −q·∆α

k

3. If ηnew > ηmax: Set ηnew = ηmax.

4. Set i = 0 and ηi = ηnew.

5. Set θlstep,j = ηi

6. • If: (4.4) is satisfied Or: ηi < ηmin
⇒ θlstep,j = ηi and terminate.

• Else: Decrease step size by f · ηi, i← i+ 1.

7. Return to 5.

Compared to the direct method, the slope method calculates a reasonable guess at
a step size that fulfills the condition in equation (4.4) instead of starting from ηmax
which significantly reduces the number of necessary iterations of decreasing the step
size when ηmax is too large to fulfill condition (4.4).

4.3.2 Constrained optimization

The local re-optimization problem at iteration l is formulated by equation (4.1)
where Cl is calculated from the solution at the previous iteration θl−1 and the
step size θlstep,j. Since this problem needs to be solved multiple times for each
parameter an efficient solver that can handle constrained optimization is needed.
The implementation of profile-likelihood in this project allows the user to pass a
general script for the constrained optimization.

4.3.3 Start point

The choice of starting point θ0 for the local optimization can aid the optimizer
regardless of what algorithm is used and two ways have been implemented. Let
θl−1 be the solution to the local optimization problem at iteration l − 1 of the PL
calculation, then for the starting point at the next iteration l one can have
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Initialize:
l = 0
θl = θ̂

Step 1.
l ←− l + 1

Calculate ηmax, eq. (4.5)
⇒ Calculate θlstep,j(section 4.3.1)

⇒ Cl = θl−1
j + θlstep,j

Step 2.
Calculate θ0(section 4.3.3)
Local opt. ⇒ θl, eq. (4.1)

Set Cl = ub
Calculate θ0(section 4.3.3)
Local opt. ⇒ θl, eq. (4.1)

ξ2(θl)− ξ2(θ̂) > ∆α

or
l > max iter.

Terminate

Cl ≥ ub

Cl < ub

yes

no

Figure 4.1: Flowchart describing the implementation for calculation of profile
likelihood of parameter θj in increasing direction. The calculation in decreasing
direction is analogous. θ̂ is the global estimate, l denotes the current iteration,
ηlmax is the maximal step size at iteration l calculated by equation (4.5), θlstep,j is
calculated by either direct or slope method described in section 4.3.1, θ0 is the start
point calculated by either 0th order or 1st order proposal as described in section
4.3.3, ∆α is the threshold given by the 1 − α quantile of χ2

df distribution and ub is
the upper boundary for the parameter θj.

1. 0th order proposal: the optimal point at the last iteration θ0 = θl−1, or

2. 1st order proposal: the linear extrapolation θ0 = θl−1 + Cl−Cl−1
Cl−1−Cl−2

(θl−1− θl−2)
based on the two previous optimal points.

The 1st order proposal is almost always computationally more efficient as it uses
additional information reducing the risk of slow convergence of the optimization
algorithm or a convergence towards a non-global minimum[12].

4.3.4 Flowchart

Figure 4.1 gives an overview of the profile likelihood calculation.
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4.3.5 Confidence intervals

The PL calculation for a parameter θj gives the function ξ2
PL(θj) at values θj =

Cl, l = 1, ..., L. The likelihood-based confidence interval (CI) is then based on if
the values of ξ2

PL in increasing and decreasing direction exceeds the threshold ∆α or
not. If it exceeds the threshold then the point of passover represents the upper or
lower bound for the CI. This point of passover is obtained by spline interpolation.

4.4 Test problem

To validate the performance of the program it is tested on three problems were
analytical solutions of the identifiability is known. One of these is given here and
the other two can be found in appendix A.

The model is a one-compartment pharmacokinetic model with first order absorption
given by:

dx1(t)
dt

= −kax1(t), x1(0) = F · dose

dx2(t)
dt

= kax1(t)− CLx2(t)
V

, x2(0) = 0

y(ti) = x2(ti)
V
· ei, ei ∼ logN (0, σi).

(4.6)

where x1(t) is the amount of available drug, x2(t) the amount of drug in the cen-
tral compartment and y(ti) is the measurement of the concentration in the central
compartment at time ti. The parameters are ka, CL, V and F , where ka is a rate
constant, F the bioavailability, CL the clearance rate and V is volume. Here dose is
assumed to be a known constant. Since F represents a fraction its domain is [0, 1].
ka, CL and V are all assumed to be positive. In this case F,CL and V cannot be
identified. This is since both CL and V are unknown and hence they cannot be
separated from the ratio CL

V
, and similarly for F and V . Meaning that the ratios

CL
V

and F
V
can be identified, or equivalently CL

F
and F

V
can be identified, but not the

parameters by themselves [16].

Taking measurements at time points as

tobs = [0.25, 0.5, 0.75, 1, 5, 12, 24] (4.7)

in hours, and assuming log-normal error with σi = 0.2, ∀i, the simulated data in
figure 4.2 is obtained. The true parameter values were set as in Table 4.1. For
estimation purposes log10 parametrization is used for the problem as all parameters
are positive, thus the only bound that needs to be considered is the upper boundary
of F . lsqnonlin with trust-region-reflective is used for the optimization since it can
handle bounded constraints. The parameter estimates are given in Table 4.1.
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Figure 4.2: Simulated model trajectory given by x2(t)
V

in blue and observed data
y(ti) in red. The observable was assumed to be log-normal with standard error σi
set to 0.2 for all measurements.

Parameter True Value Estimate Confidence interval
ka 1 0.99 [0.96, 1.02]
CL 4 1.44 (0, 10.47]
V 2 0.64 (0, 5.28]
F 0.5 0.17 (0, 1)

Table 4.1: True parameter values, global estimates and likelihood-based CIs for
problem 2. The global estimation was performed with lsqnonlin and trust-region-
reflective. multistart was used with 21 startpoints calculated using equation (3.1)
with lower and upper bounds of the parameter ranges as: ka : [0.0001, 10], CL :
[0.1, 100], V : [0.1, 10], F : [0.01, 1]. The data was given as in figure 4.2. The CIs
are calculated as the points of passover from the PLs in figure 4.3.
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Calculating the profile likelihoods gives figure 4.3 and likelihood-based confidence
intervals in Table 4.1. It is clear that F is structurally unidentifiable. For CL and
V upper bounds are found but no lower bound greater than 0, implying practical
unidentifiability by our definition. This is expected since the ratios F

V
≡ a and

CL
F
≡ b should be identifiable, and since F ≤ 1 then both CL and V are bounded

from above by CL ≤ b and V ≤ 1
a
. The parameter ka is identifiable.

Figure 4.3: Profile likelihoods for test problem 2. The threshold is given by the
red line. The data was assumed to have log-normal error distribution with std
σi = 0.2 for all measurements. The measurement times were taken as in equation
(4.7). The PLs were calculated with the following settings: the quantile of χ2-
distribution 1 − α: 0.95, max steps: 500, max step size: as in equation (4.5), min
step size: 10−6, adaptive step size method: slope, q: 0.1, optimizer: lsqnonlin with
trust-region-reflective, start point proposal: 1st order.

Plotting the trajectory of observable x2(t)
V

for parameter values along the profile
likelihood of ka it can be seen that the trajectories exhibits some variability, see
left figure in 4.4. To assess this more clearly the range of log of the trajectories
is calculated as in equation (3.12). Doing this gives the right figure in 4.4. This
analysis shows that the uncertainty in ka impacts the observables but the resulting
variability at a certain time is in general on the same scale as the measurement
error. Therefore additional measurements will not greatly improve the results for
ka, as the influence on the measurements from ka will be roughly the same as the
measurement error.

Similar analysis of the variability of trajectories can help in determining when ad-
ditional measurements should be taken to resolve practical unidentifiabilites when
these are present.
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Figure 4.4: Upper: Trajectories of the observable along the profile likelihood of the
identifiable parameter ka, plotted on log-scale. The trajectories are given by y(t;θl)
in equation (4.6) with parameter values θl given by the PL of ka. The red stars
are the observed measurements. Lower: Range of trajectories in the upper panel as
given by equation (3.12).
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5
Models

The models used in this project were developed by Teodor Erngren and Elin Boger
at AstraZeneca (Early RIA DMPK) and are multi-compartment PBPK models.
For small molecules, perfusion rate limited distribution was assumed in all tissues,
meaning that the blood flow to the tissues is the limiting process for drug distribution
[5]. This assumption is motivated by the fact that small molecules experience little
to no resistance when diffusing into or out from tissues. In contrast, distribution
of large molecules in tissues is assumed to be limited by endothelial transport. For
this reason the model for large molecules also considers the interstitial and vascular
spaces for all organs (including the lung).

5.1 Small molecules

Two models are considered for small molecules, one for neutral and one for ba-
sic compounds. The underlying structure of the models are given by the minimal
PBPK model illustrated in figure 5.1. Each of the lung compartments (central and
peripheral) are then decomposed into three sub-compartments: the epithelial lining
fluid (ELF), the epithelium (ep) and the sub-epithelium (sub) as shown in figure
5.2. The difference between neutral and basic molecules is that basic molecules can
be retained in lysosomes inside the lung and organs. Therefore lysosomic compart-
ments are added in connection to the lung and organs for the basic case. In the
following ODE-equations tb denotes the tracheobronchial region, i.e. central lung
compartment and al the alveolar region, i.e. the peripheral lung compartment.
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Qri
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QCOQCO

kMCC

ka

CLb

Figure 5.1: Minimal PBPK model for small molecules. Qbr is the bronchial blood
flow, QCO the cardiac output, Qri and Qpo the blood flows to richly and poorly
perfused organs respectively, ka the oral absorption constant, kMCC the mucociliary
clearance rate constant and CLb the blood clearance rate.

Asolid

ELF

Epithelium

Sub-epithelium

Qi (4)

P (3)

P (3)

D (2)

kMCC (1)

Figure 5.2: Schematic overview of the lung compartments in the neutral molecule
model. The model accounts for transport by: 1) mucociliary clearance (MCC), 2)
drug dissolution, 3) passive diffusion and 4) blood perfusion. Qi is the blood flow,
given by the bronchial blood flow Qbr or the cardiac output QCO in central and
peripheral lung, respectively. Asolid is the solid amount of drug administered by DPI,
kMCC the MCC rate constant, D the diffusion coefficient and P the permeability.
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5.1.1 Neutral molecules

Firstly, when drug is administered by inhalation of solid particles (dry powder in-
halation (DPI)) the deposited particles are dissolved in the ELF. The change in
drug-particle radius due to dissolution in region i, with i ∈ {tb, al}, is given by:

dri(t)
dt

= − D

ρri(t)
(Cs − CELF,i(t)fu,ELF ),

r(0) = ri,0

(5.1)

where D is the diffusion coefficient, ρ the particle density, Cs the solubility, CELF,i
the drug concentration in the ELF in region i and fu,ELF the unbound fraction in
the ELF. However, due to singularity issues when ri −→ 0, the following variable
change

ai(t) = r2
i (t)

is introduced. The change in the squared radius in region i is then

dai(t)
dt

= dai(t)
dri

dri(t)
dt

= 2ri(t)
dri(t)
dt

= −2D
ρ

(Cs − CELF,i(t)fu,ELF ),

ai(0) = r2
i,0.

(5.2)

Now for the lung-compartments as depicted in figure 5.2, starting with the rate of
change of concentration in ELF for region i (i ∈ tb, al). This is given by

VELF,i
dCELF,i(t)

dt
= Ni(t)4πD

√
ai(t)(Cs − CELF,i(t)fu,ELF )

− PAi
(
CELF,i(t)fu,ELF −

Cep,i(t)
Vu,lung

)
,

CELF,i(0) = dfidoseIT

(5.3)

where VELF,i is the volume of the ELF in region i, Cep,i the regional drug con-
centration in the epithelium, Ni the number of drug particles in region i, Vu,lung
the unbound lung volume of distribution and Ai the regional surface area. The
initial condition here is given by the deposition fraction in region i, dfi and the
intra-tracheal dose doseIT . Note that the first term only applies when dry powder
inhalation is administrated since Ni(t) ≡ 0 otherwise. The change of Cep,i is then
described by

Vep,i
dCep,i(t)

dt
= PAi

(
CELF,i(t)fu,ELF −

Cep,i(t)
Vu,lung

)

− PAi
(
Cep,i(t)
Vu,lung

− Csub,i(t)
Vu,lung

)
,

Cep,i(0) = 0

(5.4)

where Vep,i is the regional epithelial volume and Csub,i is the regional sub-epithelial
drug concentration which in turn is given by
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Vsub,i
dCsub,i(t)

dt
= PAi

(
Cep,i(t)
Vu,lung

− Csub,i(t)
Vu,lung

)

+Qi

(
Cblood,i −

bpCsub,i(t)
Kp,lung

)
,

Csub,i(0) = 0

(5.5)

where Qi and Cblood,i are the regional blood flow and concentration, respectively,
Kp,lung is the tissue to plasma partition coefficient for the lung and bp is the blood to
plasma ratio. Since the tracheobronchial region is perfused by the bronchial blood
flow with arterial blood we have Qi = Qbr and Cblood,i = Cart for i = tb while the
alveolar region is perfused by the entire cardiac output and venous blood and thus
Qi = QCO and Cblood,i = Cvein for i = al.

With DPI administration, particles deposited in the tracheobronchial region (Ntb)
are transported up towards the trachea by mucociliary clearance (MCC). The MCC
is described by the ODE

dNtb(t)
dt

= −kMCCNtb(t),

Ntb(0) = Ntb,0

(5.6)

where kMCC is the MCC rate constant and Ntb,0 the number of particles deposited
in the tracheobronchial region at t = 0. In the alveolar region we have no MCC and
therefore it is constant over time with Nal(t) = Nal,0.

The drug particles removed by MCC are then swallowed and ends up in the gut
compartment (see figure 5.1), where the change in drug amount is given by

dAgut(t)
dt

= kMCCNtb(t)mp(t)− kaAgut(t)

= kMCCNtb(t)
4π
√
atb(t)

3
ρ

3 − kaAgut(t),

Agut(0) = dosePO

(5.7)

where ka is the oral absorption constant and dosePO is the oral dose.

The remaining compartments in figure 5.1 are for the blood (arterial and venous)
and organs excluding the lung which are divided into two groups, richly perfused
e.g. liver and spleen, and poorly perfused e.g. skin and bone.

For arterial blood we have the following ODE

Vart
dCart(t)
dt

= −QCO

(
Cart(t)−

bpCsub,al(t)
Kp,lung

)
,

Cart(0) = 0
(5.8)
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and for venous blood we have

Vvein
dCvein(t)

dt
= −Qri

(
Cvein(t)− bpCri(t)

Kp,ri

)
−Qpo

(
Cvein(t)− bpCpo(t)

Kp,po

)

−Qbr

(
Cvein(t)− bpCsub,tb(t)

Kp,lung

)
− CLbCvein(t) + kaFAgut(t),

Cvein(0) = doseIV
Vvein

(5.9)

where Cri and Cpo are the concentrations in richly perfused and poorly perfused
organs respectively, CLb is the blood clearance rate, Qri and Qpo the blood flows to
richly and poorly perfused organs, Kp,j the plasma to tissue partition coefficient of
organ j, F the oral bioavailability and doseIV the intravenous dose. Lastly the rate
of change in Cri and Cpo are given by

Vri
dCri(t)
dt

= Qri

(
Cart(t)−

bpCri(t)
Kp,ri

)
,

Cri(0) = 0
(5.10)

and
Vpo

dCpo(t)
dt

= Qpo

(
Cart(t)−

bpCpo(t)
Kp,po

)
,

Cpo(0) = 0.
(5.11)

5.1.2 Basic molecules

For basic molecules there are additional states representing amount of drug retained
in lysosomes. In the PBPK model this corresponds to adding lysosomal compart-
ments to the epithelium, subepithelium, richly perfused organs and poorly perfused
organs with rate constants describing the transport into and out from these compart-
ments, see figure 5.3 for a schematic representation of the compartmental structure
in the lung for basic molecules.
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Asolid
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Epithelium

Sub-epithelium
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Figure 5.3: Schematic overview of the lung compartments in the basic molecule
model. The model accounts for transport by: 1) mucociliary clearance (MCC), 2)
drug dissolution, 3) passive diffusion, 4) blood perfusion and 5) lysosomal trapping.
Qi is the blood flow, given by the bronchial blood flow Qbr and the cardiac output
QCO in central and peripheral lung respectively. Asolid is the solid amount of drug
administered by DPI, kMCC the MCC rate constant, D the diffusion coefficient, P
the permeability and Kin and Kout are rate constants for lysosomal trapping.

The rate of change for the amount of drug in lysosomal compartments in the lung
are given by

dAlyso,i(t)
dt

= KinCi(t)Vi −KoutAlyso,i(t),

Alyso,i(0) = 0
(5.12)

with i ∈ {eptb, epal, subtb, subal} and where Ci is the concentration of drug in com-
partment i, Vi the volume of compartment i and Kin and Kout are rate constants
into and out from lysosomes. For amount of drug in lysosomal compartments in the
organs the same equation is used but with different rate constants, i.e.

dAlyso,i(t)
dt

= Kin,orgCi(t)Vi −Kout,orgAlyso,i(t),

Alyso,i(0) = 0
(5.13)

with i ∈ {ri, po}. However, as a simplification it can be assumed that the rate-
constants in the organs are the same as in the lung, meaning Kin,org ≡ Kin and
Kout,org ≡ Kout, reducing the number of parameters.

In order to accommodate for lysosomic trapping there is need to modify equations
(5.4), (5.5), (5.10) and (5.11) such that:
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Vep,i
dCep,i(t)

dt
= PAi(CELF,i(t)fu,ELF − fu,shallowCep,i(t))

− PAifu,shallow(Cep,i(t)− Csub,i(t))
−KinCep,i(t)Vep,i +KoutAlyso,ep,i(t),

Cep,i(0) = 0

(5.14)

Vsub,i
dCsub,i(t)

dt
= PAifu,shallow(Cep,i(t)− Csub,i(t))

−KinCsub,i(t)Vsub,i +KoutAlyso,sub,i(t)

+Qi

(
Cblood,i(t)−

bpCsub,i(t)
Kp,lung

)
,

Csub,i(0) = 0

(5.15)

for i ∈ {tb, al} and where the parameter fu,shallow is defined as:

fu,shallow = 1
Vu,lung

(
1 + Kin

Kout

)
. (5.16)

and

Vi
dCi(t)
dt

= Qi

(
Cart(t)−

bpCi(t)
Kp,sh,i

)
−Kin,orgCi(t)Vi +Kout,orgAlyso,i(t),

Ci(0) = 0
(5.17)

with i ∈ {ri, po} and where the shallow compartment Kp,sh,i is defined as

Kp,sh,i = Kp,i

1 + Kin,org
Kout,org

. (5.18)

The remaining equations are identical to the neutral molecule case.

5.2 Large molecules

For large molecules the overall structure for the PBPK model is represented by
figure 5.4, where the lung-compartments are decomposed into four separate sub-
compartments representing the epithelial lining fluid, the epithelium, the sub-epithelium
(or interstitial space) and the vascular space, see figure 5.5. Similarly, the other
organs (i.e. richly perfused and poorly perfused) are also decomposed into an in-
terstitial space and a vascular space, see figure 5.6 to accommodate for endothelial
transport. The interstitial spaces are then connected to lymph nodes which are in
turn reconnected to the rest of the system via the venous blood flow, see figure
5.4. The key difference between small and large molecules is that diffusion of small
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Figure 5.4: Minimal PBPK model for large molecules. Qbr is the bronchial blood
flow, QCO the cardiac output, Qri and Qpo the blood flows to richly and poorly per-
fused organs respectively, QLn, i with i ∈ {lung, ri, po} are the lymph blood flows,
Lflow,i with i ∈ {tb, al, ri, po} the respective lymphatic drainage, ka the oral absorp-
tion constant, kMCC the mucociliary clearance rate and CLb the blood clearance
rate

molecules is assumed to be rapid compared to the various fluid flows. The distri-
bution of small molecules in tissues (lung, richly and poorly perfused organs) are
then governed by the unbound lung volume of distribution Vu,lung and Kp values.
For large molecules on the other hand, the distribution is governed by endothelial
transport which is modeled by reflection coefficients σ. However, from a modeling
perspective the same equations describing transport between ELF, epithelium and
sub-epithelium can be reused in the large molecule case only with Vu,lung as a dummy
variable set to 1.
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Asolid
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(sub-epithelium)

Vascular space
Qi (6) Qi − Lflow(6)
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Figure 5.5: Schematic overview of the lung compartments in the large molecule
model. The model accounts for transport by: 1) mucociliary clearance (MCC), 2)
drug dissolution, 3) passive diffusion, 4) endothelial transport, 5) lymphatic drainage
and 6) blood perfusion. Qi is the blood flow, given by the bronchial blood flow Qbr

and the cardiac output QCO in central and peripheral lung respectively. Asolid is
the solid amount of drug administered by DPI, kMCC the MCC rate constant, D
the diffusion coefficient, P the permeability, Aflow and Bflow are the filtration and
re-absorption flows respectively and Lflow is the lymphatic drainage.

Interstitial space

Vascular space
Qi (3) Qi − Lflow(3)

Lflow (2)

Aflow Bflow (1)

Figure 5.6: Schematic overview of the structure of organs in the large molecule
model. The model accounts for transport by: 1) endothelial transport, 2) lymphatic
drainage and 3) blood perfusion. Qi is the blood flow, given by Qri and Qpo in
richly and poorly perfused organs respectively, Aflow and Bflow are the filtration
and re-absorption flows respectively and Lflow is the lymphatic drainage.
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The compartmental structure for solid particles (Asolid), ELF and epithelium are
the same as for neutral molecules (cmp figures 5.5 and 5.2) and thus the ODEs that
describes the rate of change of particle radius, ELF concentration and epithelium
concentration given by equations (5.2) - (5.4) are reused but with Vu,lung as a dummy
variable set to 1. In the sub-epithelium for large molecules the change in drug
concentration is given by:

Vsub,i
dCsub,i(t)

dt
= ((1− σv,i)

Cvasc,i(t)
bp

Aflow,i)− ((1− σv,i)Csub,i(t)Bflow,i)

− ((1− σl)Csub,i(t)Lflow,i) + PAi

(
Cep,i(t)
Vu,lung

− Csub,i(t)
Vu,lung

)
,

Csub,i(0) = 0, i ∈ {tb, al}

(5.19)

where σv,i is the vascular reflection coefficient in region i, Aflow,i the filtration rate in
region i, Bflow,i the re-absorption rate in region i and Lflow,i the lymphatic drainage
in region i.

The drug concentration in vascular space of region i, with i ∈ {tb, al}, is given by

Vvasc,tb
dCvasc,tb(t)

dt
= QbrCart − (Qbr − Lflow,tb)Cvasc,tb(t)

− ((1− σv,tb)
Cvasc,tb(t)

bp
Aflow,tb) + ((1− σv,tb)Csub,tb(t)Bflow,tb),

Cvasc,tb(0) = 0
(5.20)

for the central lung and

Vvasc,al
dCvasc,al(t)

dt
= QCOCvein − (QCO − Lflow,al)Cvasc,al(t)

− ((1− σv,al)
Cvasc,al(t)

bp
Aflow,al) + ((1− σv,al)Csub,al(t)Bflow,al),

Cvasc,al(0) = 0
(5.21)

for the peripheral lung.

As before, MCC applies for particles deposited in central lung and the corresponding
ODEs for Ntb and the gut remains unchanged (equations (5.6) and (5.7)). For the
blood compartments the change in drug concentration is now given by

Vart
dCart(t)
dt

= (QCO − Lflow,al)Cvasc,al(t)−QCOCart(t),

Cart(0) = 0
(5.22)
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and

Vvein
dCvein(t)

dt
= (Qpo − Lpo)Cvasc,po(t) + (Qri − Lri)Cvasc,ri(t)

+ (Qbr − Lbr)Cvasc,br(t) + (QLn,po − LLn,po)CLn,vasc,po(t)
+ (QLn,ri − LLn,ri)CLn,vasc,ri(t) + (QLn,lung − LLn,lung)CLn,vasc,lung(t)
+ (Lpo + LLn,po)CLn,is,po(t) + (Lri + LLn,ri)CLn,is,ri(t)
+ (Lbr + Lal + LLn,lung)CLn,is,lung(t)− (Qpo +Qri +Qbr)Cvein(t)
− (QLn,po +QLn,ri +QLn,lung)Cvein(t)
− CLbCvein(t) + kaFAgut,

Cvein(0) = doseIV
Vvein

.

(5.23)
The organs are modeled by two compartments, the interstitial and the vascular
spaces as in figure 5.6, where the rate of change in drug concentration are given by

Vis,i
dCis,i(t)
dt

= ((1− σv,org)
Cvasc,i(t)

bp
Aflow,i)

− ((1− σv,org)Cis,i(t)Bflow,i)
− ((1− σl)Cis,i(t)Lflow,i),

Cis,i(0) = 0,

(5.24)

and
Vvasc,i

dCvasc,i(t)
dt

= QiCart(t)

− (Qi − Lflow,i)Cvasc,i(t)
+ ((1− σv,org)Cis,i(t)Bflow,i)

− ((1− σv,org)
Cvasc,i(t)

bp
Aflow,i),

Cvasc,i(0) = 0

(5.25)

with i ∈ {ri, po}.

In the large molecule model, lymph nodes are connected to all organs (including the
lung), see figure 5.4. The lymph nodes are decomposed into an interstitial lymph
space and a vascular lymph space, similar to the organs as in figure 5.6 but with an
additional influx to the interstitial space given by the respective lymphatic drainages
Lflow,i. The ODEs describing the rate of change in drug concentration in these
compartments are given by the following equations, starting with the interstitial
lymph space in connection to the richly and poorly perfused organs we have

VLn,is,i
dCLn,is,i(t)

dt
= ((1− σl)Cis,i(t)Lflow,i) + ((1− σv,Ln)CLn,vasc,i(t)

bp
Aflow,Ln,i)

((1− σv,Ln)CLn,is,i(t)Bflow,Ln,i)− (CLn,is,i(t)(Lflow,i + Lflow,Ln,i)),
CLn,is,i(0) = 0,

(5.26)
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with i ∈ {ri, po} and for the interstitial lymph space in connection to the lung we
have

VLn,is,lung
dCLn,is,lung(t)

dt
= ((1− σl)Csub,tb(t)Lflow,tb) + ((1− σl)Csub,al(t)Lflow,al)

+ ((1− σv,Ln)CLn,vasc,lung(t)
bp

Aflow,Ln,lung)

− ((1− σv,Ln)CLn,is,lung(t)Bflow,Ln,lung)
− (Lflow,tb + Lflow,al + Lflow,Ln,lung)CLn,is,lung(t),

CLn,is,lung(0) = 0.
(5.27)

Lastly, the change in drug concentration in all vascular lymph spaces is given by:

VLn,vasc,i
dCLn,vasc,i(t)

dt
= QLn,iCart(t)− ((1− σv,Ln)CLn,vasc,i(t)

bp
Aflow,i)

+ ((1− σv,Ln)CLn,is,i(t)Bflow,i)− (QLn,i − Lflow,Ln,i)CLn,vasc,i(t),
CLn,vasc,i(0) = 0,

(5.28)
with i ∈ {ri, po, lung}.

5.2.1 Reflection coefficients

The reflection coefficients represent restriction coefficients for endothelial transport
dependent on the size of the compound and take on values between 0 and 1. A larger
reflection coefficient corresponds to higher restriction of transport into tissues and
vice versa. The model accounts for three different modeling cases for the vascular
reflection coefficients σv,i.

1. The most complex case when we have unique reflection coefficients in the
peripheral lung, central lung and organs. Meaning that the restriction for
endothelial transport are different in all three compartments.

2. A simplified case, assuming reflection coefficients in central lung and organs
are the same, i.e. σv,tb ≡ σv,org.

3. The most simple case when all reflection coefficients in lung and organs are
the same, i.e. σv,tb ≡ σv,al ≡ σv,org.

In this thesis only case 1 and 2 are considered.
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5.3 Dosing

The models support four possible administration routes for the drug which are in-
corporated in the initial conditions of the ODE-systems.

1. Intravenous administration (IV): Cvein(0) = doseIV
Vvein

2. Oral administration (PO): Agut(0) = dosePO

3. Dry powder inhalation (DPI): Ni(0) = Ni,0 where Ni,0 = dfidoseDPI

ρ
4π√ai,03

3

,

for i ∈ {tb, al}

4. Intratracheal instillation (IT): CELF,i(0) = dfidoseIT , for i ∈ {tb, al}

Oral administration is not considered in this thesis.

5.4 Experimental measurements

The equations in sections 5.1.1, 5.1.2 and 5.2 describe the unobserved states x(t;θ)
for neutral, basic and large molecules respectively. For all three models the observ-
ables gk(x(t;λ)) are given by measuring the plasma concentration

Cplasma(t) = Cvein(t)
bp

(5.29)

and the total lung concentration which is given by the sum of amount of drug in
all lung compartments + the amount of solid drug particles. Since the models have
different compartmental structure in the lung, three different expressions for the
total lung concentration are obtained depending on the model.

• For neutral molecules:

Clung(t) = 1
Vlung

∑
i∈{tb,al}

(
VELF,iCELF,i(t) + Vep,iCep,i(t)

+ Vsub,iCsub,i(t) +Ni(t)ρ
4πa3/2

i

3

) (5.30)

• For basic molecules lysosomic compartments are also present in the lung and
thus:

Clung(t) = 1
Vlung

∑
i∈{tb,al}

(
VELF,iCELF,i(t) + Vep,iCep,i(t) + Alyso,ep,i(t)

+ Vsub,iCsub,i(t) + Alyso,sub,i(t) +Ni(t)ρ
4πa3/2

i

3

) (5.31)
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• For large molecules there is also a vascular space compartment and therefore:

Clung(t) = 1
Vlung

∑
i∈{tb,al}

(
VELF,iCELF,i(t) + Vep,iCep,i(t)

+ Vsub,iCsub,i(t) + Vvasc,iCvasc,i(t) +Ni(t)ρ
4πa3/2

i

3

) (5.32)

The simulated measurements of these quantities are then given by applying log-
normal errors, as described in section 2.1.

In this thesis, although only simulated data is used, these measurements represents
in vivo experiments performed on rats or mice. To obtain reasonable simulated data
it is important to know how actual experimental data would be taken and therefore
a short motivation on how the measurement times for simulated data were decided
is given here.

The procedure for measuring the lung concentration is terminal, meaning that each
lung measurement correspond to one animal. The plasma concentration need not
be terminal and several measurements of plasma for each animal can be obtained,
but no more than 10 measurements per animal is reasonable. In a standard pre-
clinical set up, around 7-9 measurements each of lung and plasma are measured.
This would correspond to 21-27 animals if three individual rats/mice are measured
at each measurement time to account for inter-individual/study occasion variability.
The lung and plasma concentration in this case would be measured at the same time
points for practical reasons.

In this thesis, a set up of 8 simulated measurements each of plasma and lung at
the same time points is used as a starting point. During the identifiability analy-
sis, additional measurements need to be considered for unidentifiable parameters,
and in these cases plasma concentration will also be measured at each new mea-
surement time for lung concentration. If only additional measurements of plasma
are needed but the current lung measurements are sufficient, we will consider only
adding plasma measurements as each new lung measurement would imply the need
for a new rat/mice.

5.4.1 Additional observables

In this thesis Cplasma and Clung are always considered as observables, as these are
common measurements in inhalation studies. However, two additional options for
measurements will be considered to potentially improve identifiability in estimation
studies. The first is the average concentration in ELF given by

CELF,avg(t) =
∑

i∈{tb,al}

VELF,iCELF,i(t)
VELF,tb + VELF,al

. (5.33)
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The second is the total concentration of drug in some richly perfused organ, e.g.
spleen, which will only be considered for large molecules. It is given by

Cri,tot(t) = Vvasc,riCvasc,ri + Vis,riCis,ri
Vri

(5.34)

where Vri is the total volume of the organ.

As with Cplasma and Clung, simulated data for these additional observables are ob-
tained by applying log-normal errors.

5.5 Parameters

The parameters that are considered for identifiability analysis are difficult, or not
possible to measure accurately by experimental methods, or rely on assumptions that
certain empirical models are true. For the three different models, also three different
sets of parameters are of interest. In the neutral molecule model the following
parameters are considered for estimation:

• Diffusion coefficient D - Can be calculated from Stokes-Einstein equation [13].
Clearly, this relies on the assumption that this equation is true. Furthermore,
there is some uncertainty around the viscosity of the ELF, which is an input
parameter to the Stokes-Einstein equation. It would therefore be interesting
to assess if it is feasible to estimate D from experimental data.

• Solubility Cs - Development of experimental methodologies of solubility in
biorelevant mediums is ongoing research but there is currently lack of con-
sensus of which dissolution media to use for characterizing the solubility of
compounds in ELF [6]. Estimating this parameter is thus of interest until
better experimental setups are developed.

• Unbound lung volume of distribution Vu,lung - In order to reduce the number of
experiments required prior to starting PBPKmodelling, it would be interesting
to assess if this parameter can be estimated directly from in vivo data.

• Permeability P - This parameter represents the in vivo pulmonary permeabil-
ity which cannot be determined experimentally [6].

• Fraction unbound in ELF fu,ELF - Currently not possible to measure but
experimental methods are emerging.

• Deposition fraction dftb - Obtained from deposition modeling. Nevertheless
interesting to see if feasible to estimate.

Note that only the tracheobronchular (i.e. central lung) deposition fraction, dftb, is
considered as a parameter since dfal = 1− dftb. One could equivalently have set the
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alveolar deposition fraction dfal as the parameter of interest.

For the basic molecule case, rate constants for the lysosomes Kin, Kout, Kin,org and
Kout,org are also of interest together with all parameters above. There are currently
no methods for determining rate constants experimentally.

For the large molecule Vu,lung is a dummy variable set to 1 as previously mentioned,
so this parameter is not of interest. Instead all vascular reflection coefficients σv,i
except for in the lymph nodes σv,Ln are considered together with the remaining
parameters in the neutral case.

All parameters of interest are defined as to be positive, moreover the parameters
fu,ELF , dftb, σv,org, σv,al and σv,tb are restricted to be less than 1. All other physical
parameters in the models are treated as constants, obtained by independent exper-
imental measurements or from literature. For a quick summary of all parameters
considered for estimation in each model and their domain see Table 5.1.

Parameter Neutral Base Large Domain
D Yes Yes Yes (0,∞)
Cs Yes Yes Yes (0,∞)

Vu,lung Yes Yes No (0,∞)
P Yes Yes Yes (0,∞)

fu,ELF Yes Yes Yes (0, 1]
dftb Yes Yes Yes (0, 1]
Kin - Yes - (0,∞)
Kout - Yes - (0,∞)
Kin,org - Yes∗ - (0,∞)
Kout,org - Yes∗ - (0,∞)
σv,org - - Yes (0, 1]
σv,al - - Yes (0, 1]
σv,tb - - Yes∗ (0, 1]

Table 5.1: Table for Parameters of interest for identifiability analysis for each
model and their domain. A star (∗) indicates parameters that can be eliminated by
assumption as described in section 5.2.1 and 5.1.2.

In the basic molecule model there is a possible simplification by setting rate con-
stants in lung as same as in the organs, and similarly for large molecules, reflection
coefficients in the central lung can be assumed to be identical to in the organs.
These simplifications will be considered as separate cases during the identifiablility
analysis.

5.5.1 Parameter ranges

To be able to calculate start points for the global estimation procedure, defined in
section 3.1 and equation (3.1), the parameter ranges defined by lower limits l and
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upper limits u needs to be chosen. The parameter ranges that were used are given
in Table 5.2.

parameter [unit] l - lower range limit u - upper range limit
D [dm2

h
] 10−6 10−2

Cs [nM ] 10−1 105

P [dm
h

]

10−3 small molecules
10−6 large molecules

102 small molecules
1 large molecules

Vu,lung [ mL
g lung tissue ] 1 5000

fu,ELF [−] 0.1 1
dftb [−] 1/3 1
Kin & Kin,org, [ 1

h
] 10−4 2

Kout & Kout,org [ 1
h
] 10−3 10

σv,org & σv,al & σv,tb [−] 0.2 1

Table 5.2: Parameter ranges used for calculating start points in the global opti-
mization problem.

5.5.2 Priors

To aid the global optimizer uniform priors can be set on some or all parameters.
In our case priors on the parameters D and Cs are set when DPI administration
is used. This is mainly to avoid the optimizer to explore the parameter space for
very large values of D and Cs as the gradient of equations (5.3) and (5.2) gets very
large which makes integration problematic. Without priors it was seen that the
global optimization often diverged to unreasonably large values. Since reasonable
parameter values are known from the ranges defined in Table 5.2, this information
will also be used to formulate the priors. A wider range of values for the priors
are set than what is defined in Table 5.2 since enforcing highly informative priors
defeats the purpose of estimation. With log10 parametrization the uniform priors
are chosen as

log10D ∼ U(−10, 1) (5.35)
log10Cs ∼ U(−6, 6). (5.36)

The addition of priors means that the objective function must be altered. In the case
of a uniform prior U(a, b), the density is 1

b−a and the term −2 log( 1
b−a) is added. Out-

side the support for the uniform densities the objective function should be infinite,
meaning that equation (2.14) needs to be modified as

ξ2(θ) ≡
K∑
k=1

Nk∑
i=1

( log(yk(ti))− log(gk(x(ti;θ)))
σki

)2

− 2
(

log
( 1

11 · I(−10,1)(D)
)

+ log
( 1

12 · I(−6,6)(Cs)
))
. (5.37)

41



5. Models

whenever DPI administration is considered andD and Cs are estimated. Here I(a, b)
are indicator functions defined as

I(a,b)(x) =

1, if x ∈ (a, b)
0, otherwise.

(5.38)

Since many optimizers does not allow for infinte values, the implementation of equa-
tion 5.37 is done such that when the optimizer steps outside the support of any of
the priors the ξ2 value is set to something large, e.g. 10100.
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Results

As a starting point for the identifiability analysis, simulated data with measurements
taken at time points

tobs = [2/60, 5/60, 15/60, 30/60, 1, 3, 6, 24] (6.1)
given in hours for both observables Cplasma(t) and Clung(t) will be used. The error
is assumed to be log-normal and first the standard deviations are set to a low value
of σki = 0.01, ∀k, i, to see which parameters are well-determined in an ideal case
when very precise measurements can be taken.

The measurement error is then increased to more reasonable values to obtain data
that reflects the current practices of in-vivo measurements. These values are ob-
tained from a data set of experimental measurements of Cplasma and Clung for IT
and IV administration in rats [9], see appendix B for details. The reasonable values
for the standard deviations obtained from this are

σITCplasma = 0.3159, for plasma measurements and IT administration
σITClung = 0.2056, for lung measurements and IT administration

σIVCplasma = 0.3752, for plasma measurements and IV administration
σIVClung = 0.2609, for lung measurements and IV administration

(6.2)

and in each of the four cases the standard deviations are assumed to be the same
at all times. For DPI administration no data was available so it is assumed to be
the same as for IT administration. In the cases when additional observables are
considered the corresponding standard deviations are set to 0.3.

As mentioned in chapter 5, three of the parameters are only incorporated in the
models for certain administration routes, namely D,Cs and dftb. The diffusion
coefficient D and solubility Cs are a part of the model structure only if there is
dissolution of solid particles in the lung, meaning they are only incorporated for
DPI-administration. Similarly dftb is only incorporated in the cases when the drug
is administered directly into the lung, i.e. for IT or DPI-administration.

The administration routes that will be addressed here are mainly IT and IV. More-
over, since the different administration routes represent different inputs to the mod-
els it is often the case that data from both administration routes is needed or sig-
nificantly improves the results as will be shown below. Thus the combination of IT
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and IV data is also treated. Lastly, since the dissolution process is not incorporated
unless DPI administration is used combined IT, IV and DPI data is studied as well.

Unless otherwise noted, the PL calculation is performed with the settings in Table
6.1. The max step size is calculated from equation (4.5).

α 0.05
max steps 500

min step size 10−6

adaptive step size method slope
start point proposal 1st order

optimizer lsqnonlin with trust-region-reflective

Table 6.1: Standard settings for PL algorithm.

The results of profile likelihood calculations and global optimizations for the pa-
rameters are presented on the untransformed, i.e. linear, scale for the sake of in-
terpretation. It is therefore important to note that since log10-parametrization is
used, any unidentifiability in the negative direction (meaning a confidence interval as
(−∞, ci]) will correspond to a parameter allowed infinitesimally close to 0 (meaning
a confidence interval as (0, 10ci ]).

6.1 Neutral molecules model

First the ideal case with precise measurement. A thorough analysis for this case is
given in appendix C and a summary of the most important results are given here.
First and foremost, there is large uncertainty in the estimate of fu,ELF , even with
very high precision on measurements (σk,i = 0.01, ∀k, i). Moreover, only IT data
seems to be sufficient to obtain well-determined estimates of all parameters except D
and Cs if precise measurements are possible. Lastly, all parameters are identifiable
with combined IT, IV and DPI data, see Figure 6.1 and corresponding Table 6.2.

Now the log-normal error is increased to more reasonable values by setting the stan-
dard deviations as in equation (6.2). First considering only IT or IV administration
the results vary with the error realization. For data with only IT-administration,
the parameters P and dftb remains identifiable but Vu,lung is sometimes missing a
lower bound, meaning practical unidentifiability, see for example Figure C.6 in ap-
pendix C. For some error realizations Vu,lung is still identifiable but it can either
have a narrow CI as depicted in Figure C.7 or exhibit large uncertainty with the
lower bound for the CI much farther away from the true value, often with a local
minimum as depicted in Figure C.8.
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Figure 6.1: Profile likelihoods of parameter estimates in the neutral molecule model
calculated with IT, IV and DPI data and low measurement error. The data was
given by IT, IV and DPI administration separately where Clung(ti) and Cplasma(ti)
where measured with ti as in equation (6.1). The log-normal standard deviations
were set to 0.01 at all measurements. All parameters are identifiable.

Low measurement error - IT/IV/DPI data
Parameter True value Estimate CI

D 0.000305 0.000381 [0.000273, 0.000493]
Cs 1000 811 [636, 1114]

Vu,lung 10 9.93 [9.83, 10.02]
P 0.1 0.100 [0.0987, 0.101]

fu,ELF 1 0.200 [0.0987, 1]
dftb 0.7 0.694 [0.685, 0.702]

Table 6.2: Parameter estimates and confidence intervals (CIs) for the neutral
molecule model with IT, IV and DPI data and low measurement error (σki = 0.01).
The CIs are calculated from the profile likelihoods in figure 6.1. All parameters are
identifiable but the CIs for D,Cs and fu,ELF are considerably wider than the rest.
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The results for fu,ELF are also inconsistent and can be grouped into two cases:

1. The PL of fu,ELF can have a minimum close to 0, and a flattening of the
profile likelihood is observed for increasing values, see figure C.8. Technically,
this case is identifiable since there is a minimum and an upper bound of 1 can
always be imposed since the parameter represents a fraction.

2. fu,ELF can be practically unidentifiable with no lower bound found, see figures
C.6 and C.7. This can also be a consequence of the PL calculation stopping
prematurely.

In both cases, calculation of CIs for the estimate of fu,ELF leads to the conclusion
that almost all values in its domain (0, 1] are feasible. Since the parameter had large
CIs even for very precise measurements these results implies that the current setup
is not suitable for estimating fu,ELF .

With only IV-administration all three potentially identifiable parameters P, Vu,lung
and fu,ELF are practically unidentifiable in some runs and identifiable in other runs,
see as examples figures C.9 and C.10.

The inconsistency in the results for only IT or IV administration means that this data
is insufficient and therefore combined IT and IV data is considered next. To see if
this gives consistent results, PL calculation is run for 1000 different error realizations
with data taken as in equation (6.1) and log-normal standard deviations given by
equation (6.2). The results are summarized in Table 6.3. The calculation of PLs and
CIs for D and Cs was disregarded as these are not possible to estimate unless DPI
administration is used. As stated above, the number of identifiable cases of fu,ELF
might be higher in reality as PL calculation is often stopped prematurely. However,
as previously mentioned, the current setup is not suitable to obtain reliable estimates
of fu,ELF since even in identifiable cases the CI is [δ, 1] with δ close to 0 (e.g. 0.005).
Moreover, some failures in the PL calculations are usually unavoidable since the
individual runs are performed using the same settings. Often if the constrained
optimization fails one can adjust the step sizes and the start point proposal or use
another optimizer to resolve this issue. However, in this case the number of times the
optimization routine returned any error or converged to a point ξ2(θl) significantly
larger than the previous ξ2(θl−1) are considered failures and are retracted from the
results.

The results in Table 6.3 shows that Vu,lung is identifiable in 72% of error realizations.
The lower bound c− of the CI [c−, c+] for Vu,lung when it is identifiable can either be
close to the true value of 10 or far from it, as described above. Out of all identifiable
cases, c− was less than 7 in 92% of cases and less than 2 in 26% of cases. In contrast
c+ was greater than 13 in only 7% of cases. Hence, even when Vu,lung is identifiable
a close lower bound is often not found. P and dftb are identifiable in all individual
runs, but it is unclear if this is still true with only IT data.
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Summary over 1000 error realizations - IT/IV data
Parameter Successful PL calculations Identifiable cases [%] False positives [%]
Vu,lung 964 72 6
P 975 100 6

fu,ELF 947 33(*) 3
dftb 990 100 4

Table 6.3: The PL calculations was run with settings as in Table 6.1. The IT and
IV data was generated with log-normal error distribution with standard deviations
set as in equation (6.2), the measurement times was set as in equation (6.1) for both
observables (Clung(ti) and Cplasma(ti)) on both administration arms. Total number
of data points in each run was thus n = 32. The constrained optimization was con-
sidered to have failed if the optimizer returned an error or a non-global optimum and
these cases are retracted to give the number of successful PL calculations. (*)The
number of identifiable cases are higher in reality as the PL calculation was stopped
prematurely (by reaching maximum number of steps) in some of the individual runs.

Since the analysis with low measurement error showed that IT administration alone
was sufficient to obtain well-determined estimates it is of interest to see if only IT
data is sufficient with a reasonable measurement error. To make the comparison fair
the number of measurements are doubled, yielding a data set of only IT measure-
ments of the same size as the IT and IV data. The measurement times were chosen
as

tobs = [2/60, 5/60, 10/60, 15/60, 20/60, 25/60, 30/60,
35/60, 40/60, 45/60, 1, 2, 3, 4, 6, 24]. (6.3)

Running the profile likelihood calculation for 100 random error realizations with
the same settings as before shows that Vu,lung is identifiable in only 21% of error
realizations, see Table C.4 in appendix C. P and dftb were identifiable in all individual
runs. The combined IT and IV data is thus the better alternative.

Taking a case with IT and IV data for which Vu,lung is practically unidentifiable,
see figure 6.2, and calculating the variability of trajectories along the PL of Vu,lung
by applying equation (3.12) gives Figure 6.3. This shows that the uncertainty in
the parameter greatly impacts the observable Cplasma(t) of the IT arm in the initial
phase. The variability is highest at t = 0 and rapidly decreases with time. Hence,
initial measurements as soon as possible after dosing could improve our results. The
same is true for fu,ELF , see Figure C.11. Three additional measurements of Cplasma
on the IT arm at 1, 2 and 3 seconds after dosing gives identifiability of Vu,lung and
fu,ELF in 100% of error realizations, see Table C.5. Moreover, the CIs for both
Vu,lung and fu,ELF are considerably smaller than in previous cases, see Figure C.12
for the PLs of an individual run.

Taking measurements in the first seconds after dosing is however unfeasible in prac-
tice, but the variability of trajectories indicate that measurements at any other time
will not lead to consistent improvement since the variability of trajectories is equal
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Figure 6.2: A case of practical unidentifiability of Vu,lung with IT and IV data for
neutral molecules. Data was generated with standard deviations set as in equation
(6.2) and measurement times as in equation (6.1).

Figure 6.3: Range of log of the observable trajectories calculated as in equation
(3.12) with θl along the PL of Vu,lung in figure 6.2.
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to or lower than the measurement error at these times. Indeed, running the same
analysis for 1000 error realizations of IT and IV data with double the amount of
measurements, taken as in equation (6.3) for both arms, leads to no improvement,
see Table C.6.

If measuring the average ELF concentration given by equation (5.33) is possible
then this can pose an alternative to early measurements. With only one additional
measurement of ELF on the IT arm at the final time point t = 24 well-determined
estimates of Vu,lung and fu,ELF are obtained in 100% of error realizations, see Table
6.4. The CIs are again smaller than compared to a case with no measurements of
ELF-concentration, see Figure 6.4.

Summary over 100 error realizations - IT/IV with additional measurement of ELF
Parameter Successful PL calculations Identifiable cases [%] False positives [%]
Vu,lung 100 100 7
P 100 100 5

fu,ELF 98 100 3
dftb 100 100 4

Table 6.4: The PL calculations was run with settings as in Table 6.1. The IT and
IV data was generated with log-normal error distribution with standard deviations
set as in equation (6.2), the measurement times was set as in equation (6.1) for both
observables (Clung(ti) and Cplasma(ti)) on the IT and IV arms. One measurement
of CELF,avg(t) as in equation (5.33) at t = 24h on the IT arm was added. The log-
normal standard deviation for the ELF-measurement was set to 0.3. Total number
of data points in each run was thus n = 33. The constrained optimization was
considered to have failed if the optimizer returned an error or a non-global optimum
and these cases are retracted to give the number of successful PL calculations.

Lastly, DPI data together with IT and IV data gives information about the disso-
lution process. The parameters D and Cs were identifiable but with considerably
larger CIs when using low measurement error (Table 6.2). Now with reasonable
measurement error they are practically unidentifiable as seen in Figure 6.5. For 100
error realizations of this case, the parameters D and Cs were only identifiable in 4
cases and these were all false positives, see Table C.7.

However, if Stokes-Einstein is assumed to be valid then D can be fixated [13][2].
If this assumption is made then Cs is well-determined, see Figure 6.6 for the PLs
calculated with IT, IV and DPI data and where D assumed to be known. Rerunning
the analysis for 100 error realizations with D fixated results in Table 6.5. Cs is
identifiable in all runs. Hence, if Stokes-Einstein is assumed to be valid and D is
calculated from this equation rather than by estimation, then Cs can be estimated.
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Figure 6.4: Profile likelihoods of parameter estimates in the neutral molecule model
calculated with IT and IV data. The data was given by IT and IV administration
separately where Clung(ti) and Cplasma(ti) where measured with ti as in equation
(6.1). A single measurement of CELF,avg(t) at the final time point t = 24h was
added on the IT arm. The log-normal standard deviation was set as in equation
(6.2) for measurements of Cplasma(t) and Clung(t). The standard deviation for the
ELF-measurement was set to 0.3.

Summary over 100 error realizations - IT/IV/DPI data, D-fixed
Parameter Successful PL calculations Identifiable cases [%] False positives [%]

Cs 100 100 4
Vu,lung 91 82 3
P 99 100 3

fu,ELF 95 32(*) 2
dftb 100 100 2

Table 6.5: The IT and IV data was generated with log-normal error distribution
with standard deviations set as in equation (6.2). The standard deviations for
DPI data was set to the same values as IT. The measurement times was set as in
equation (6.1) for both observables on all administration arms. The constrained
optimization was considered to have failed if the optimizer returned an error or a
non-global optimum. (*)The number of identifiable cases are higher in reality as the
PL calculation was stopped prematurely (by reaching maximum number of steps)
in some of the individual runs.
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Figure 6.5: Profile likelihoods of parameter estimates in the neutral molecule
model calculated with IT, IV and DPI data. The data was given by IT, IV and DPI
administration separately where Clung(ti) and Cplasma(ti) where measured with ti as
in equation (6.1). The log-normal measurement error was as in equation (6.2) at all
measurement times for the IT and IV data. The standard deviations for DPI data
was set to the same values as IT.
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Figure 6.6: Profile likelihoods of parameter estimates in the neutral molecule
model calculated with IT, IV and DPI data. The data was given by IT, IV and DPI
administration separately where Clung(ti) and Cplasma(ti) where measured with ti as
in equation (6.1). The log-normal measurement error was as in equation (6.2) at
all measurement times. The standard deviations for DPI data was set to the same
values as IT. D was assumed to be known and calculated from Stokes-Einsteins
equation.
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6.2 Basic molecules model

For the basic molecule model the rate constants for lysosomal trapping in organs
(richly and poorly) and lung (peripheral and central) can either be unique or assumed
to be identical. This leads to two separate cases where the simplified case with rate
constants assumed to be identical is considered first. Since the model structure for
basic molecules and neutral molecules are very similar, the results are expected to
be similar as well.

6.2.1 Simplified case

Once again a thorough analysis for data taken with precise measurements is given
in appendix D. The main results are the same as for neutral molecules, only with
the addition of rate constants that are also identifiable with low measurement error.

With measurement error set to reasonable values given by equation (6.2), the cases
of only IT or IV administration leads to inconsistent results just as in the neutral
molecule case and hence combined IT and IV data is considered immediately. The
results of 1000 error realizations show that P and dftb are identifiable in all runs
and Vu,lung is identifiable in the majority of runs, see Table 6.6. As discussed in the
previous section, the number of identifiable cases of fu,ELF is higher in reality because
of premature termination of the PL calculations, but there is high uncertainty in
the estimate of fu,ELF even in identifiable cases. The rate constants Kin and Kout

are only identifiable in 21% and 31% of cases respectively and the number of false
positives are much higher than expected. Since the rate constants were identifiable
with low measurement error, this indicates that uncertainty in the rate constants
impact the observables considerably less than the reasonable measurement errors.

Summary over 1000 error realizations - IT/IV data
Parameter Successful PL calculations Identifiable cases [%] False positives [%]
Vu,lung 926 80 8
P 971 100 9

fu,ELF 957 24(*) 6
dftb 959 100 5
Kin 873 21 17
Kout 881 31 10

Table 6.6: 1000 error realizations for the simplified case of the basic molecule
model. The IT and IV data was generated with log-normal error distribution with
standard deviations set as in equation (6.2), the measurement times was set as in
equation (6.1) for both observables. (*)The number of identifiable cases are higher
in reality as the PL calculation was stopped prematurely (by reaching maximum
number of steps) in some of the individual runs.
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Taking one case of practical unidentifiability of the rate constants, see Figure 6.7,
and calculating the range of trajectories as in equation (3.12) gives Figures 6.8-6.9.
Excluding the initial times, the plots show that variability is highest at 8− 16 h of
the IT arm and at the final time point for the IV arm, but the range of trajectories
is on the same scale as the measurement error. Nonetheless, taking additional
measurements at t = 8, 10, 12, 14, 16h on the IT arm and t = 18, 20, 22h on the IV
arm leads to some improvement for the rate constants, see Table 6.7. The number
of false positives are still higher than expected but lower than before and the rate
constants are identifiable roughly twice as often.

Figure 6.7: Profile likelihoods calculated for the basic molecule model with IT and
IV data and reasonable measurement error. The log-normal standard deviations
were set as in (6.2) for all measurements times. Data was taken at time points given
by equation (6.1).

With additional DPI data the results for D and Cs are the same as for the neutral
molecule case, i.e. practical unidentifiability of D and Cs, see Figure D.10 and
identifiability of Cs is obtained with D fixed. The rate constants are still not well-
determined.
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Figure 6.8: Range of logarithm of the observables calculated over θl at each sim-
ulated time point, see equation (3.12). θl given by the PL calculation of parameter
Kin in figure 6.7.

Figure 6.9: Range of logarithm of the observables calculated over θl at each sim-
ulated time point, see equation (3.12). θl given by the PL calculation of parameter
Kout in figure 6.7.
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Summary over 1000 error realizations - IT/IV data with additional measurements
Parameter Successful PL calculations Identifiable cases [%] False positives [%]
Vu,lung 921 94 7
P 978 100 7

fu,ELF 991 22(*) 3
dftb 915 100 6
Kin 928 59 10
Kout 961 67 7

Table 6.7: Settings for PL calculation as in equation (6.1). The IT and IV data
was generated with log-normal error distribution with standard deviations set as
in equation (6.2), the measurement times was set as in equation (6.1) + additional
measurements on the IT arm at t = 8, 10, 12, 14, 16h of both observables and ad-
ditional measurements on the IV arm at t = 18, 20, 22h of both observables. The
constrained optimization was considered to have failed if the optimizer returned an
error or a non-global optimum. (*)The number of identifiable cases are higher in re-
ality as the PL calculation was stopped prematurely (by reaching maximum number
of steps) in some of the individual runs.

6.2.2 Unique case

Here the rate constants in organs and lung are assumed to be different. For only
IT or IV administration cases there are problems for estimating Kin,org and Kout,org

due to noise in the data, even with very precise measurements. For example see
the case in Table 6.8 where the third best optimum is closest to the true values.
It seems therefore that the rate constants in organs have very little impact on the
observables since measurement error as low as σ = 0.01 influences the estimation.
However, combined IT and IV data seems to be sufficient to find well-determined
estimates as shown in figure D.11 and with additional DPI data all parameters are
identifiable see figure 6.10.

Since the simplified case of the basic molecule model showed that reliable results
for the rate constants were not obtainable and since estimating Kin,org and Kout,org

in the unique case of the basic molecule model is problematic even for precise mea-
surements it is not expected that any of the rate constants should be consistently
identifiable with reasonable measurement error. Indeed, the results of running the
PL calculations over 1000 error realizations of IT and IV data is given in Table 6.9.
The data is not sufficient to estimate any of the rate constants. Moreover, failure
in the optimization routine is frequent which also suggest the lack of informative
data. To resolve these issues a more in-depth analysis of the simplified case should
be performed, since that case suffered from similar problems. When satisfactory
results are obtained from the simplified case one can also see if the same is true
in this more complex case with unique rate constants. However, this will not be
considered here. Some suggestions on the other hand can be given for starting this
task. For example, additional measurements at t = 8, 10, 12, 14, 16h on the IT arm
and t = 18, 20, 22h on the IV arm were seen to improve the number of identifiable
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Obj fcn value / Parameter True value Optimum 1 Optimum 2 Optimum 3
ξ2 - 23.60 24.21 28.95

Vu,lung 25 24.75 22.79 24.97
P 0.1 0.0987 0.0901 0.0999

fu,ELF 1 1 0.0335 1
dftb 0.7 0.706 0.701 0.705
Kin 0.015 0.0146 0.0148 0.0156
Kout 0.36 0.346 0.325 0.366
Kin,org 0.02 0.00578 0.00633 0.0278
Kout,org 0.4 0.0854 0.0774 0.456

Table 6.8: Basic molecules model with unique rate constants in lung and organs,
IT administration with σki = 0.01∀k, i. The 3 best optimas found (for the same
error realization) during global optimization with corresponding parameter values.
Note that the third best optimum have Kin,org and Kout,org values closest to the
true values. For the better two optimas the rate constants in organs are overfitted
to noise in the data. The parameters D and Cs are disregarded as they are not
incorporated in the model for IT administration.

Figure 6.10: Profile likelihoods calculated for the basic molecule model with IT,
IV and DPI data and low measurement error. The log-normal standard deviations
were set to 0.01 for all measurements. Data was taken at time points given by
equation (6.1).

57



6. Results

cases for the rate constants in simplified case. It would therefore be of interest to
see if more tightly sampled data could improve those numbers even more. Another
approach is to measure CELF,avg(t) or Cri(t).

Summary over 1000 runs - IT/IV data
Parameter Successful PL calculations Identifiable cases [%] False positives [%]
Vu,lung 739 91 10
P 948 100 11

fu,ELF 913 18(*) 7
dftb 954 100 6
Kin 764 9 16
Kout 771 29 12
Kin,org 833 12 6
Kout,org 874 17 10

Table 6.9: Settings for PL calculation as in equation (6.1). The IT and IV data
was generated with log-normal error distribution with standard deviations set as in
equation (6.2), the measurement times was set as in equation (6.1) for both observ-
ables on both administration arms. (*)The number of identifiable cases are higher
in reality as the PL calculation was stopped prematurely (by reaching maximum
number of steps) in some of the individual runs.

6.3 Large molecules model

With large molecules transport into and out from tissues as well as clearance rate
is slower than for small molecules. The time frame when a considerable amount
of drug is still available in the system is therefore longer. For small molecules
the lung and plasma concentrations dropped close to zero within 24 hours (see for
example Figures C.1, C.3 and C.5), this is not the case for large molecules in general.
Since the pharmacokinetics of large molecules operate on a larger time scale it is
generally easier to capture the different phases of the system dynamics than for
small molecules. For example, in the small molecule case the initial phase of the
system when drug enters the lung/blood stream cannot be measured as this happens
in a matter of seconds and such early measurements are not possible. Nonetheless,
it was seen that early measurements could provide the necessary information to
obtain well-determined estimates for neutral molecules. For large molecules the
analogous initial phase can take several hours and so this can be easily measured
compared to small molecules. However, this also means that the late phases of
the system dynamics, which can be in the range of hundreds or even thousands of
hours, is not captured with the measurements given by equation (6.1). Adding a
measurement at a late time point is clearly possible and easy with simulated data
but in practice taking measurements several hundreds of hours after dosing is not
common. Therefore one measurement at t = 72h is added to the times in (6.1)
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to have a starting point for identifiability analysis within a reasonable time frame.
Thus the measurement times for large molecules are

tobs = [2/60, 5/60, 15/60, 30/60, 1, 3, 6, 24, 72] (6.4)

in hours.

6.3.1 Simplified case: σv,tb ≡ σv,org

In the simplified case of the large molecule model, the vascular reflection coefficients
in central lung (σv,tb) and organs (σv,org) are assumed to be identical. The vascular
reflection coefficient for both these regions is denoted by σv,org.

For the case with precise measurements there are no unidentifiabilites except for
those parameters that are not incorporated in the model due to a certain admin-
istration route. We present here the case of IT, IV and DPI data which gives
identifiability of all parameters, see Figure 6.11. The corresponding CIs are given in
Table 6.10. As with the small molecule models, the CIs for the estimates of fu,ELF , D
and Cs are wider than the other parameters but considerably smaller compared to
the case of small molecules with low measurement error, see Table 6.2. A more
thorough analysis with precise measurements, considering IT and IV data, is given
in appendix E.

Figure 6.11: PLs of the parameters in the simplified large molecule model calcu-
lated with IT, IV and DPI data and low measurement error. The data was given by
measurement times as in equation (6.4). The log-normal standard deviations were
set to 0.01 for all simulated measurements.
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Low measurement error - IT/IV/DPI data
Parameter True value Estimate CI

D 0.0000394 0.0000406 [0.0000386, 0.0000428]
Cs 1000 992 [960, 1015]
P 0.0001 0.0000989 [0.0000974, 0.0001033]

fu,ELF 1 1 [0.871, 1]
dftb 0.7 0.699 [0.697, 0.701]
σv,org 0.6 0.602 [0.589, 0.616]
σv,al 0.78 0.780 [0.778, 0.782]

Table 6.10: Parameter estimates and confidence intervals (CIs) for the large
molecule model with IT, IV and DPI data and low measurement error (σki = 0.01).
The CIs are calculated from the profile likelihoods in figure 6.11 using spline inter-
polation to obtain the points of passover.

Figure 6.12: PLs for parameters in the simplified large molecule model with only
IT administration and reasonable measurement errors. The data was simulated
with log-normal error distribution and standard deviations set as in equation (6.2).
Measurement times are given by equation (6.4). The parameters D and Cs were
omitted as dissolution is not part of the model unless DPI administration is used.
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Now with error set as in equation (6.2) and starting with only IT administration, the
parameters P and dftb are identifiable, see Figure 6.12. Some indication of identifia-
bility of σv,org can be found but the data is not enough to obtain a well-determined
estimate. For only IV administration σv,al is identifiable but some information on
σv,org is found as well, although not enough to obtain a well-determined estimate,
see Figure 6.13. P in this case is practically unidentifiable and fu,ELF has a very
large CI as before. These results show that σv,org is close to identifiable with only
IT or IV data. Moreover, since P and dftb are identifiable with IT data and σv,al is
identifiable with IV data this suggests that the combined IT and IV data could be
sufficient to obtain identifiability of all these parameters simultaneously.

Figure 6.13: PLs for parameters in the simplified large molecule model with only
IV administration and reasonable measurement errors. The data was simulated with
log-normal error distribution and standard deviations set as in equation (6.2). Mea-
surement times are given by equation (6.4). The parameters D and Cs were omitted
as dissolution is not part of the model unless DPI administration is used. dftb is
structurally unidentifiable as it is not part of the model with only IV administration.

The PL calculations were thus performed on 1000 different error realizations of com-
bined IT and IV data, the summary is given in Table 6.11. Here the advantage of
being able to sample the early phase of the system is clearly seen as fu,ELF is identi-
fiable in all runs, something which was only possible with measurements in the first
couple of seconds for small molecules. The alveolar reflection coefficient is identifi-
able in all runs and P is identifiable in the majority of runs (97% of successful PL
calculations). The vascular reflection coefficient in the organs (and by assumption
also the central lung) is identifiable in roughly 50% of the runs. Moreover, the op-
timization routine only failed in 4 out of the total 5000 PL calculations (1000 runs
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for 5 parameters) which is significantly less compared to the small molecule cases.

Summary over 1000 error realizations - IT/IV data
Parameter Successful PL calculations Identifiable cases [%] False positives [%]

P 998 97 6
fu,ELF 1000 100 2
dftb 1000 100 4
σv,org 998 53 5
σv,al 1000 100 5

Table 6.11: Summary of PL calculation of 1000 different error realizations of IT
and IV data for the simplified case of the large molecule model. The settings for
the PL calculations were as in equation (6.1). The IT and IV data was generated
with log-normal error distribution with standard deviations set as in equation (6.2),
the measurement times was set as in equation (6.4). Total number of data points
were thus n = 36. The constrained optimization was considered to have failed if the
optimizer returned an error or a non-global optimum and these cases are retracted
to give the number of successful PL calculations.

Now to study the effect of uncertainty in the estimate of σv,org consider a case with
identifiable σv,org as in Figure 6.14. The corresponding CIs are given in Table 6.12,
were it should be noted that the CI for fu,ELF is still very large.

Reasonable measurement error - IT/IV data
Parameter True value Estimate CI

P 0.0001 0.00022 [0.0000706, 0.000803]
fu,ELF 1 0.217 [0.0383, 1]
dftb 0.7 0.698 [0.557, 0.785]
σv,org 0.6 0.656 [0.127, 0.851]
σv,al 0.78 0.817 [0.767, 0.857]

Table 6.12: Parameter estimates and confidence intervals (CIs) for the large
molecule model with combined IT and IV data and reasonable measurement er-
ror. The CIs are calculated from the profile likelihoods in figure 6.14 using spline
interpolation to obtain the points of passover. The parameters D and Cs were
omitted as dissolution is not part of the model unless DPI administration is used

One can calculate the trajectories of observables Clung(t;θl) and Cplasma(t;θl) for
θl along the PL of σv,org. Since σv,org is identifiable, these trajectories reflect how
the uncertainty in the estimate of σv,org manifests in predictions of the model. As
can be seen in Figure 6.15, there are some variability of the trajectories but the
predictions are consistent. However, if one were to extrapolate this to longer time
spans, it can be seen that the variability increases dramatically for Clung(t) on the
IT arm, see upper left panel in Figure 6.16. Moreover, there are two distinct bands
of trajectories. A warning is therefore in place, that just because a parameter is
identifiable does not justify extrapolating the results to unknown (i.e. unmeasured)
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Figure 6.14: PLs for parameters in the large molecule model with IT and IV
administration and reasonable measurement errors. The data was simulated with
log-normal error distribution and standard deviations set as in equation (6.2). Mea-
surement times are given by equation (6.4). The parameters D and Cs were omitted
as dissolution is not part of the model unless DPI administration is used. For this
particular error realization σv,org is identifiable.
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domains. Nonetheless, this analysis shows that additional measurements at later
time points can improve the results for σv,org. Taking additional measurements
at t = 200, 500 and 1000h on the IT arm gives identifiability of σv,org in 97% of
error realizations, see Table E.1, as compared to only 53% without, see Table 6.11.
Moreover, when it is identifiable the CI is also smaller than previously, see Figure
E.7 and Table E.2.

Figure 6.15: Trajectories Cplasma(t;θl) and Clung(t;θl) for θl along the PL of σv,org
in figure 6.14. Trajectories simulated over the same time span as the data was taken
(72h).

An alternative approach to late measurements, is to add measurements of a new ob-
servable. First, one measurement at t = 72h on the IT arm of the total concentration
in a richly perfused organ, given by Cri,tot(t) as in equation (5.34), was tried. For
a single error realization this lead to practical unidentifiability of σv,org, see Figure
E.8. Similarly, taking one additional measurement of CELF,avg(t) at t = 72h did not
improve the results, see Figure E.9. Thus the same dramatic improvement found in
the neutral molecule case with only adding one measurement of a new observable is
not seen here.

Lastly, to estimate the dissolution parameters, DPI data is added to the IT and IV
data (without late measurements) to estimate D and Cs. 100 error realizations of
combined IT, IV and DPI data shows that Cs is identifiable without need to fixate
D, see Table 6.13. D, however, is only identifiable in ca 60% of the error realizations.
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Figure 6.16: Trajectories Cplasma(t;θl) and Clung(t;θl) for θl along the PL of σv,org
in figure 6.14. Trajectories simulated for 2000h.

Summary over 100 error realizations - IT/IV/DPI data
Parameter Successful PL calculations Identifiable cases [%] False positives [%]

D 99 60 1
Cs 98 100 3
P 97 100 5

fu,ELF 99 100 4
dftb 97 100 4
σv,org 98 51 3
σv,al 98 100 8

Table 6.13: Summary of PL calculation of 100 different error realizations of IT, IV
and DPI data for the simplified case of the large molecule model. The IT and IV data
was generated with log-normal error distribution with standard deviations set as in
equation (6.2), the DPI data was generated with log-normal errors and standard
deviations same as for IT. The measurement times was set as in equation (6.4).
Total number of data points were thus n = 54. The constrained optimization was
considered to have failed if the optimizer returned an error or a non-global optimum
and these cases are retracted to give the number of successful PL calculations.
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6.3.2 Unique case

Here it is assumed that the vascular reflection coefficients in central lung and organs
are different. Thus the parameter σv,tb for the reflection coefficient in the central
lung is added.

The analysis with low measurement error shows similar results as the simplified case
with the main difference being the additional parameter σv,tb which is identifiable in
all cases (only IT or IV, IT/IV, IT/IV and DPI). However, it was seen that P was
practically unidentifiable for only IV administration.

Again, with reasonable measurement error the results are similar to the simplified
case. With IT administration P and dftb are identifiable. For the reflection co-
efficients there is a clear optimum for σv,tb but more data is needed to obtain a
well-determined estimate, see Figure E.14. For the remaining reflection coefficients,
σv,org and σv,al, the information after IT administration seems to be insufficient to
obtain identifiability. With IV administration only σv,al is identifiable, see Figure
E.15. As with the simplified case, the reflection coefficient in the alveolar part of
the lung is identifiable with IV administration and the reflection coefficient in the
trancheobronchular part of the lung is almost identifiable with IT administration.
However, the reflection coefficient in the organs show no sign of identifiability for
either administration route in the this case.

Running the analysis for 1000 error realizations of data from both IT and IV arms
leads to identifiability of σv,al in all runs, see Table 6.14. The trancheobroncheolar
reflection coefficient is identifiable slightly more often compared to σv,org in the
simplified case. In only 122 cases was σv,org identifiable. The addition of DPI data

Summary over 1000 error realizations - IT/IV data
Parameter Successful PL calculations Identifiable cases [%] False positives [%]

P 1000 98 6
fu,ELF 1000 100 2
dftb 1000 100 5
σv,org 1000 12 2
σv,al 1000 100 5
σv,tb 997 65 5

Table 6.14: Summary of PL calculation of 1000 different error realizations of IT
and IV data for the complex case of the large molecule model. The IT and IV data
was generated with log-normal error distribution with standard deviations set as in
equation (6.2), the measurement times was set as in equation (6.4). Total number
of data points were thus n = 36. The constrained optimization was considered to
have failed if the optimizer returned an error or a non-global optimum and these
cases are retracted to give the number of successful PL calculations.

gives identifiability of Cs in 100% of runs and identifiability of D in 64% of runs,
see Table E.4. Since additional measurements on the IT arm at late time points
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were seen to improve the number of identifiable cases of the central lung reflection
coefficient in the simplified case, the same should apply for σv,tb here. Moreover, to
see if this also helps in estimating the diffusion coefficient, three late measurements
are added to the combined IT,IV and DPI data. The new measurements are the same
as in the simplified case, i.e. at t = 200, 500 and 1000h on the IT arm. The results of
running 100 error realizations is presented in Table 6.15. Here σv,tb is identifiable in
all successful runs, as expected. However, there is not much improvement for D (73
out of 100 identifiable cases contra 64 without the additional measurements). The
proportion of identifiable cases for σv,org increased slightly compared to the values
in Table 6.14.

Summary over 100 runs - IT/IV/DPI with additional data for IT
Parameter Successful PL calculations Identifiable cases [%] False positives [%]

D 100 73 5
Cs 99 100 4
P 93 100 9

fu,ELF 99 94 2
dftb 100 100 6
σv,org 98 37 3
σv,al 100 100 1
σv,tb 90 100 8

Table 6.15: Summary of PL calculation of 100 different error realizations of IT, IV
and DPI data for the complex case of the large molecule model. The IT and IV data
was generated with log-normal error distribution with standard deviations set as in
equation (6.2), the DPI data was generated with log-normal errors and standard
deviations same as for IT. The measurement times was set as in equation (6.4) +
at t = 200, 500 and 1000 on the IT arm. Total number of data points were thus
n = 60. The constrained optimization was considered to have failed if the optimizer
returned an error or a non-global optimum and these cases are retracted to give the
number of successful PL calculations.
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7
Discussion and Conclusion

We have covered three PBPK models, two of which have a simplified and a complex
version of parametrization and 4 different combinations of administration routes.
Despite there being so many cases considered there are still a few overall conclu-
sions that can be made. First, reliable estimates of both the in-vivo pulmonary
permeability P and the deposition fraction dftb can be found in all cases. Sec-
ond, the standard setup (see beginning of chapter 6 and section 6.3) used for the
analyses was not suitable to obtain reliable estimates of fu,ELF since it resulted
in large CIs even in identifiable cases. The remedy seems to be to measure the
ELF-concentration, which also greatly improved the identifiability of Vu,lung in the
small molecule case. Third, with reasonable measurement error, it was seen that
combined IT and IV data were necessary or considerably better than only IT or
IV data. However, a fair comparison was only done in the neutral molecule case
where the number of data points were also equal. Lastly, with low measurement
error identifiability of all parameters were possible, which rules out any problems of
structural unidentifiability.

With neutral molecules it was seen that a well-determined estimate of Vu,lung could
only be obtained in ca 70% of cases, depending on the error realization. This was
for combined IT and IV data and did not improve with increasing the amount of
data. In the case that Vu,lung is identifiable, a close lower bound for the CI was often
not found. Initial measurement on the IT arm was considered as a hypothetical
test, and served to show the methodology of using the PL approach to resolve
unidentifiabilities. However, since the measurements needed to be in the first seconds
(where variability was high) this approach would not be feasible in practice. Instead,
if the ELF-concentration could be measured, this would lead to consistent results
of identifiable parameter estimates. It was also seen that only one measurement of
ELF-concentration would be needed in that case.

For basic molecules the main conclusion is that reliable estimates of the lysosomal
input/output rate constants cannot be inferred with the current setup. Besides the
rate constants, the results are mostly the same as for neutral molecules, which is
expected since the model structure is identical with the exception of the lysosomal
compartments. The rate constants could be made identifiable with a low measure-
ment error. Thus, a future study of the effect of increasing the amount of data could
be made to assess if and when the rate constants are consistently identifiable with
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reasonable measurement error. Moreover, additional measurements of the drug con-
centrations in organs and/or ELF for basic molecules were only discussed briefly and
a separate, thorough study of this would be informative. In particular, additional
measurement of an organ would be of interest when considering the simplified case,
since rate constants in the organs are assumed to be identical to the ones in the lung.
Thus only a few measurements of the drug concentration in the organs could provide
the necessary information to obtain reliable estimates. The question is then, how
many measurements are needed and when should they be taken? Following such
a study would be the more complex case, where rate constants in lung and organs
are assumed to be unique. A more realistic model perhaps, but in this case mea-
suring the organ is not likely to improve the identifiability of rate constants in the
lung which we saw could not be obtained consistently with reasonable measurement
error.

The DPI data is only added as a last step to see if D and Cs can be estimated, and
for small molecules both parameters cannot be estimated simultaneously. However,
since D can be calculated from Stokes-Einstein we may fixate this one and estimate
Cs which in that case is consistently identifiable.

With large molecules we get identifiability of fu,ELF but the estimate is still un-
reliable as the CI is large. It is also clear that a well-determined estimate of the
alveolar reflection coefficient can be obtained using data with IV administration.
In the more complex case, where reflection coefficients in central lung and organs
are assumed to be different, we could obtain identifiability of the tracheobronchular
reflection coefficient but not the reflection coefficient in the organs. In the simplified
case, the two reflection coefficients are assumed to be identical and the similarities
in the results indicates that the ability of σv,org to be estimated in the simplified case
comes mostly from the central lung. It should also be noted that to estimate σv,tb
one needs to observe the system at the late phase, since this is where the parameter
impacts the observable the most. In our case with simulated data this is not an
issue but in practice taking measurements several hundred hours after dosing is not
common. Instead, with the assumptions in the simplified case, one could try to
estimate this parameter by observing the drug-concentration in an organ (since σv,tb
is assumed to be identical to σv,org). We saw however, that only one measurement
of the organ-concentration was not enough and a more thorough study of this par-
ticular case is needed. Similarly the addition of only one ELF-measurement did not
seem to lead to consistent improvement.

The DPI data was more informative for large molecules than small molecules, since
Cs could be determined without fixating D. The diffusion coefficient was also iden-
tifiable in some 60% of error realizations using the standard setup for the data. For
the more complex model (with unique reflection coefficients) we also considered if
observing the system’s late phase on the IT arm could benefit the estimation of the
diffusion coefficient. Although σv,tb was identifiable more often, just as the same
analysis for the simplified model showed, we did not see a big improvement for the
number of identifiable cases for the diffusion coefficient.
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Lastly, it should be noted that in all cases where identifiability is obtained we did
not consider optimizing the number of data points. This is no trivial task as there
are countless ways to decide on the measurement times of each observable. The
results of this project could nevertheless give a reasonable starting point for further
analysis of this sort.

The profile likelihood method was seen to work well with these models overall and
the implementation used here is flexible and can be reused in future projects.
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A
Test problems

To evaluate the performance of the profile-likelihood program it is tested on three
problems where analytical solutions are known. One of these is given in section 4.4
and the other two are presented here.

A.1 Problem 1: A structurally unidentifiable model

The model is given by a single ODE as

dx(t)
dt

= −(k1 + k2)x(t), x(0) = x0 (A.1)

and the measurements are

y(ti) = k3x(ti) + εi, εi ∼ N (0, σi), i = 1, ..., N

Assuming that x0 is known the parameter k3 is identifiable but k1 and k2 are struc-
turally unidentifiable as only the sum k1+k2 is well-determined by the model, i.e. we
have a functional relationship between the parameters k1 and k2 as in k1+k2 = const.

The true parameter values were set as in Table A.1 and 7 observed time points are
chosen as

tobs = [0.25, 0.5, 0.75, 1, 5, 12, 24]. (A.2)
Simulation of measurements taken with additive Gaussian error distribution and
σi = 0.2,∀i = 1, ..., 7 is presented in figure A.1. The global estimation procedure was
performed using lsqnonlin with the trust-region-reflective algorithm and 21 different
start points. The parameter ranges were set to [−5, 5] for all three parameters k1, k2
and k3. For this setting the global optimum was found as in Table A.1.

Calculation of the profile likelihood for k1, k2 and k3 results in figure A.2 where it can
clearly be seen that k1 and k2 are structurally unidentifiable. This analysis shows
that just performing a global estimation is not enough as the estimate of k2 is close
to its true value but in reality the parameter is not identifiable. Furthermore we can
plot the parameter values of k1 and k3 along the profile likelihood of k2 to recover
the functional relationship, see figure A.3. A clear negative relationship between k1
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Figure A.1: Simulated model trajectory in blue and observed data in red. The
observable was assumed to be normally distributed with standard deviation set to
0.2 for all measurements.

Parameter True value Estimate
k1 0.333 0.56825
k2 0.667 0.56825
k3 2 2.3666

Table A.1: Arbitrarily set true parameter values and their global estimates for
problem 1. The estimation was performed using lsqnonlin wiht the trust-region-
reflective algorithm.
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and k2 is seen which is expected as the functional relationship between k1 and k2 is
k1 + k2 = const. In this particular case it is k1 + k2 = 1 but due to measurement
error we obtain k̂1 + k̂2 = 1.13.

Figure A.2: Profile likelihoods for parameters in problem 1: k1 and k2 are struc-
turally unidentifiable, k3 is identifiable. ∆α = 95%-quantile of χ2

1. Note that the
true value k3 = 2 is included in the confidence interval.

Figure A.3: The values of parameters k1 and k3 along the profile likelihood of k2
plotted against k2. Note that this plot can only detect functional relationships of
one parameter (in this case k2) as only one parameter is fixed at a time during the
calculation of profile likelihood.
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A.2 Problem 2

The model is given by the ODE

dx(t)
dt

= −k2x(t), x(0) = k1x0 (A.3)

and the observable is

y(ti) = k3x(ti) · ei, ei ∼ logN (0, σi).

Assuming x0 is known we have the parameters θ = (k1, k2, k3) but only k2 and the
product k1 · k3 are well-determined [7]. Here the parameters ki, i = 1, 2, 3 are
assumed to be positive.

Measurement time points for the observable are chosen as

tobs = [0.5, 1, 5, 12, 24].

and the log-normal standard deviations for the measurement error are set to σi =
0.2, ∀i. The simulated data is shown in figure A.4 and the true parameter val-
ues along with the estimates obtained after global optimization using trust-region-
reflective is presented in Table A.2.

Figure A.4: Simulated model trajectory in blue and observed data in red. The
observable was assumed to be log-normal with standard error set to 0.2 for all
measurements.

The profile likelihoods for the parameters are presented in figure A.5. As expected
k2 is the only identifiable parameter and looking at the plot for k2 and k3 along
the profile likelihood of k1 (figure A.6) we see a negative relationship between the
logarithm of k1 and k3, which means that log(k1 · k3) = const.⇐⇒ k1 · k3 = const..
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Parameter True Value Estimate
k1 2 2.34
k2 1 1.045
k3 3 2.34

Table A.2: True parameter values and global estimates found by optimization for
problem 3.

Figure A.5: Profile likelihoods for parameters in problem 3.

Figure A.6: The parameter values of k2 and k3 along the profile likelihood of
k1 plotted against k1. Note the use of log10-parametrization. We see a negative
relationship between k1 and k3 while k2 is unaffected.
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B
Calculation of reasonable

measurement error

The measurement error for simulated data used in this project was estimated using
data from Hendrickx et.al [9]. The data provided is for 12 different compounds in
the small molecule category with experimental measurements for Clung and Cplasma
taken with IT and IV administration. The measurement error was estimated by
taking an average of the sample standard deviation calculated for all measurement
times with more than 1 measurements for each of the cases IT-Clung, IT-Cplasma, IV-
Cplasma and IV-Clung. This was done in two steps. First the data was split into the
4 groups: IT-Clung, IT-Cplasma, IV-Cplasma and IV-Clung for all compounds. Then,
for each group, the sample standard deviation was calculated for measurements
at each measurement time when the number of measurements was more than 1.
Plotting the standard deviation against the mean of measured values shows a clear
increasing trend, see figure B.1, indicating that the error is log-normal rather than
normally distributed. Hence, the standard deviations of the log of measurements (at
each measurement time) is calculated to obtain the standard deviations assuming
log-normal error distribution. Plotting again against the mean of measurements in
figure B.2 shows no clear groupings or trends, indicating that the measurement error
doesn’t have any strong dependency on when the measurement is taken. Therefore
it will be assumed that the error is log-normally distributed with constant standard
deviation over time, i.e. no time-dependency in the measurement error. To obtain
a value for the logarithmic standard deviation for each group the average of the
standard errors over all measurement times and compounds is taken to give the
values as in Table B.1.

VII



B. Calculation of reasonable measurement error

Figure B.1: Standard deviations vs mean of measurement of data from [9], plotted
on log-log scale. For each group (IT - Cplasma, IT - Clung, IV - Cplasma, IV - Clung)
the standard deviations were estimated from the experimental measurements when-
ever more than one measurements were taken at the same time. The x-axis is the
corresponding mean of measurement values at that time. The different colors rep-
resent the 12 different compounds considered in [9]. Note that there is no grouping
of colors.

Figure B.2: Logarithmic standard deviations vs mean of measurement of data
from [9],plotted with logarithmic x-axis. For each group (IT - Cplasma, IT - Clung,
IV - Cplasma, IV - Clung) the logarithmic standard deviations were estimated from
the experimental measurements whenever more than one measurements were taken
at the same time. The x-axis is the corresponding mean of measurement values at
that time. The different colors represent the 12 different compounds considered in
[9].
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Group std
IT - Cplasma 0.3159
IT - Clung 0.2056
IV - Cplasma 0.3752
IV - Clung 0.2609

Table B.1: Measurement errors estimated from data.

Since no DPI data was provided it is assumed that the standard deviations for DPI
administration is the same as for IT administration since these are most similar. For
measurements of additional observables such as CELF or Cri the standard deviation
is to 0.3. These values will be used also for large molecules since no other data was
available.
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C
Neutral molecules

The analysis with low measurement error and additional Figures and Tables from
section 6.1 are given here.

C.1 Analysis for Low measurement error

All data simulated with log-normal errors with standard deviation 0.01, i.e. eki ∼
logN (0, 0.01), ∀k, i at time points given by 6.1.

With only IT administration the simulated data is seen in Figure C.1. Global
optimization to find the estimates, followed by PL calculation gives Table C.1 and
Figure C.2. As expected, D and Cs are structurally unidentifiable. All parameters
except D and Cs are identifiable since both upper and lower bounds for the CIs are
found. Looking at the profile for fu,ELF in Figure C.2 it is reasonable to suggest
that it is practically unidentifiable if the upper bound of fu,ELF ≤ 1 is removed, but
this is not considered here since fu,ELF is per definition a fraction. However, the CI
for fu,ELF is much larger than the others (Table C.1) indicating large uncertainty
for this parameter even with precise measurements.
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Figure C.1: Simulated trajectories of the observables Cplasma(t) and Clung(t) for
the neutral molecules model with IT administration. The red stars are simulated
data taken with low measurement error (σki = 0.01) at times given by equation
(6.1).

Low measurement error - IT data only, n = 16
Parameter True value Estimate CI

D 0.000305 0.000063 (0,∞)
Cs 1000 50.1 (0,∞)

Vu,lung 10 9.89 [9.708, 10.08]
P 0.1 0.099 [0.0968, 0.103]

fu,ELF 1 0.19 [0.083, 1]
dftb 0.7 0.69 [0.682, 0.702]

Table C.1: Parameter estimates and confidence intervals (CIs) for the neutral
molecule model with only IT administration and low measurement error (σki = 0.01).
The total number of measurements were n = 16 points taken as in figure C.1. The
CIs are calculated from the profile likelihoods in figure C.2 using spline interpolation
to obtain the points of passover. D and Cs are structurally unidentifiable. fu,ELF
has a large CI. The parameters Vu,lung, P and dftb have narrow CIs.

XI



C. Neutral molecules

Figure C.2: Profile likelihoods of parameter estimates in the neutral molecule
model with only IT administration and n = 16 data points taken as in figure C.1.
The log-normal standard deviations for the measurement errors were set to σk,i =
0.01 ∀k, i. D and Cs are not incorporated in the model unless drug is administrated
by DPI. Note that the profile of fu,ELF suggest it is practically unidentifiable (no
upper bound) if it is allowed to take on values greater than 1. The parameters
Vu,lung, P and dftb are clearly identifiable.

In the case of only IV-administration the parameter dftb will be unidentifiable since
it is not incorporated in the model structure. With data as in Figure C.3 the
estimates and CIs in Table C.2 are obtained. Compared to IT-administration with
the same measurement error and measurement times the CIs are wider in the case
of IV-administration.
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C. Neutral molecules

Figure C.3: Simulated trajectories of the observables Cplasma and Clung for the
neutral molecules model with IV administration. The red stars are simulated data
taken with low measurement error (σki = 0.01) at times given by equation (6.1).

Figure C.4: Profile likelihoods of parameter estimates in the neutral molecule
model with only IV administration and n = 16 data points taken as in figure
C.1. The log-normal standard deviations for the measurement errors were set to
σk,i = 0.01 ∀k, i. The structurally unidentifiable parameters D,Cs and dftb are not
incorporated in the model structure unless drug is administrated by DPI.
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Low measurement error - IV data only
Parameter True value Estimate CI

D 0.000305 0.0001 (0,∞)
Cs 1000 100 (0,∞)

Vu,lung 10 9.71 [9.33, 10.05]
P 0.1 0.10146 [0.091, 0.114]

fu,ELF 1 0.050973 [0.0232, 1]
dftb 0.7 0.57735 (0, 1)

Table C.2: Parameter estimates and confidence intervals (CIs) for the neutral
molecule model with only IV administration and low measurement error (σki =
0.01). The CIs are calculated from the profile likelihoods in figure C.4 using spline
interpolation to obtain the points of passover. D,Cs and dftb are structurally uniden-
tifiable. The CIs for the other parameters are slightly wider compared to the case
of only IT-administration in Table C.1.

When estimating over the combined data set of IT administration and IV adminis-
tration the results are similar to the case of only IT administration but with slightly
narrower CIs (see Table C.3), implying that IV-data is not necessary to obtain
well-determined estimates if precise measurements are possible.

Low measurement error - IT/IV data
Parameter True value Estimate CI

D 0.000305 0.000159 (0,∞)
Cs 1000 200 (0,∞)

Vu,lung 10 10.02 [9.91, 10.11]
P 0.1 0.1 [0.099, 0.101]

fu,ELF 1 0.430 [0.118, 1]
dftb 0.7 0.695 [0.686, 0.702]

Table C.3: Parameter estimates and confidence intervals (CIs) for the neutral
molecule model with IT and IV data and low measurement error (σki = 0.01). The
CIs are calculated from the profile likelihoods in figure C.4 using spline interpolation
to obtain the points of passover. D and Cs are structurally unidentifiable.

Lastly, with additional DPI-data to the IT and IV data, information about the
dissolution process of the drug compound is also incorporated. Hence the goal
here is to be able to estimate D and Cs together with the other parameters. The
additional DPI data is shown in Figure C.5. Calculation of the profile likelihoods
with the combined IT, IV and DPI data yields Figure 6.1 and Table 6.2 in the main
text. Even though all parameters are identifiable it is clear that the CIs of D,Cs
and fu,ELF are much larger than the other parameters.
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C. Neutral molecules

Figure C.5: Simulated trajectories of the observables Cplasma and Clung for the
neutral molecules model with DPI administration. The red stars are simulated data
taken with low measurement error (σki = 0.01) at times given by equation (6.1).
max steps was set to 1000 in this case.

C.2 Additional Figures and Tables - Reasonable
measurement error

With only IT or IV administration, the data is insufficient to obtain consistent
results. Here are some particular cases of PLs calculated for different error realiza-
tions.

XV



C. Neutral molecules

Figure C.6: A case when the random error realization leads to Vu,lung and fu,ELF
being practically unidentifiable. Profile likelihoods of the parameters calculated for
the neutral molecule model with only IT administration. The parameters D and Cs
were excluded as they are not incorporated in the model with only IT administration.
The data was given by Clung(ti) and Cplasma(ti) for the neutral model taken at time
points given by equation (6.1) and log-normal errors with standard deviations set
as in equation (6.2). max steps was set to 1000 in this case.
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Figure C.7: A case when the random error realization leads to Vu,lung being iden-
tifiable with a narrow CI. Profile likelihoods of the parameters calculated for the
neutral molecule model with only IT administration. The parameters D and Cs
were excluded as they are not incorporated in the model with only IT administra-
tion. The data was given by Clung(ti) and Cplasma(ti) for the neutral model taken at
time points given by equation (6.1) and log-normal errors with standard deviations
set as in equation (6.2).
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Figure C.8: A case when the random error realization leads to identifiability of
Vu,lung but with a wide CI. fu,ELF is considered identifiable in this case even though
the profile likelihood shows practical unidentifiability, this is because an upper bound
of 1 is imposed since the parameter represents a fraction. The calculation of the
PL of fu,ELF was stopped before it reached 1 in this case. Profile likelihoods of the
parameters calculated for the neutral molecule model with only IT administration.
The parameters D and Cs were excluded as they are not incorporated in the model
with only IT administration. The data was given by Clung(ti) and Cplasma(ti) for the
neutral model taken at time points given by equation (6.1) and log-normal errors
with standard deviations set as in equation (6.2).

XVIII



C. Neutral molecules

Figure C.9: A case when the random error realization for data with IV administra-
tion leads to practical unidentifiability of Vu,lung and P . The parameters D and Cs
were excluded. The data was given by Clung(ti) and Cplasma(ti) for the neutral model
taken at time points given by equation (6.1) and log-normal errors with standard
deviations set as in equation (6.2).
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Figure C.10: A case when the random error realization for data with IV admin-
istration leads to identifiability of Vu,lung and P . The parameters D and Cs were
excluded. The data was given by Clung(ti) and Cplasma(ti) for the neutral model
taken at time points given by equation (6.1) and log-normal errors with standard
deviations set as in equation (6.2).

Summary over 100 error realizations - IT data with double the measurement times
Parameter Successful PL calculations Identifiable cases [%] False positives [%]
Vu,lung 87 21 5
P 99 99 13

fu,ELF 89 21(*) 8
dftb 97 97 7

Table C.4: The PL calculations was run with settings as in Table 6.1. The IT
data was generated with log-normal error distribution with standard deviations set
as in equation (6.2), the measurement times was set as in equation (6.3) for both
observables (Clung(ti) and Cplasma(ti)). Total number of data points in each run was
thus n = 32. The constrained optimization was considered to have failed if the
optimizer returned an error or a non-global optimum and these cases are retracted
to give the number of successful PL calculations. (*)The number of identifiable cases
are higher in reality as the PL calculation was stopped prematurely (by reaching
maximum number of steps) in some of the individual runs.
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Figure C.11: Range of log of the observable trajectories calculated as in equation
(3.12) along the PL of fu,ELF in figure 6.2.

Summary over 100 error realizations - IT/IV with additional IT data
Parameter Successful PL calculations Identifiable cases [%] False positives [%]
Vu,lung 100 100 6
P 100 100 5

fu,ELF 98 98 2
dftb 100 100 7

Table C.5: The PL calculations was run with settings as in Table 6.1. The IT
and IV data was generated with log-normal error distribution with standard de-
viations set as in equation (6.2), the measurement times was set as in equation
(6.1) + at t = 1, 2 and 3 seconds on the IT arm for both observables (Clung(ti)
and Cplasma(ti)). Total number of data points in each run was thus n = 38. The
constrained optimization was considered to have failed if the optimizer returned an
error or a non-global optimum and these cases are retracted to give the number of
successful PL calculations.
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Figure C.12: One example of profile likelihoods for when additional measurements
of Cplasma in the IT arm at 1,2 and 3 seconds is considered.

Summary over 1000 error realizations - IT/IV with double the amount of data
Parameter Successful PL calculations Identifiable cases [%] False positives [%]
Vu,lung 987 76 8
P 978 100 5

fu,ELF 924 30(*) 4
dftb 992 100 3

Table C.6: The PL calculations was run with settings as in Table 6.1. The IT and
IV data was generated with log-normal error distribution with standard deviations
set as in equation (6.2), the measurement times was set as in equation (6.3). Total
number of data points in each run was thus n = 64. The constrained optimization
was considered to have failed if the optimizer returned an error or a non-global
optimum and these cases are retracted to give the number of successful PL calcula-
tions. (*)The number of identifiable cases are higher in reality as the PL calculation
was stopped prematurely (by reaching maximum number of steps) in some of the
individual runs.
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Summary over 100 error realizations - IT/IV/DPI data
Parameter Successful PL calculations Identifiable cases [%] False positives [%]

D 100 4 4
Cs 100 4 4

Vu,lung 92 90 9
P 100 100 6

fu,ELF 93 39 3
dftb 98 100 2

Table C.7: The PL calculations was run with settings as in Table 6.1. The IT
and IV data was generated with log-normal error distribution with standard devi-
ations set as in equation (6.2). The log-normal standard deviations for the DPI
data was set to the same values as for IT. The measurement times was set as in
equation (6.1) for both observables (Clung(ti) and Cplasma(ti)) on all administration
arms. Total number of data points in each run was thus n = 48. The constrained
optimization was considered to have failed if the optimizer returned an error or a
non-global optimum and these cases are retracted to give the number of successful
PL calculations.

XXIII



D
Basic molecules

The analysis with low measurement error for the simplified case and additional
Figures and Tables for section 6.2 results are given here.

D.1 Simplified case - Low measurement error

With precise measurements, i.e. data generated with measurement error set to 0.01
for all measurements, and only IT administration the profile likelihoods in Figure
D.1 are obtained. Simulated data in this case is seen in Figure D.2. The results
of PL calculation show that all parameters except D and Cs are identifiable, but
the CI for fu,ELF is large. Changing the administration route to IV leads to similar
results, see Figure D.3 and corresponding data in figure D.4.

Figure D.1: Profile likelihoods calculated for the simplified case of the basic
molecule model with IT administration and low measurement error. The log-normal
standard deviations were set to 0.01 for all measurements. Data was taken at time
points given by equation (6.1). D and Cs are not identifiable with only IT admin-
istration.
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D. Basic molecules

Figure D.2: Simulated trajectories of the observables Cplasma and Clung for the
simplified case of the basic molecules model with IT administration. The red stars
are simulated data taken with low measurement error (σki = 0.01) at times given
by equation (6.1).

Figure D.3: Profile likelihoods calculated for the simplified case of the basic
molecule model with IV administration and low measurement error. The log-normal
standard deviations were set to 0.01 for all measurements. Data was taken at time
points given by equation (6.1). D,Cs and dftb are not identifiable with only IV
administration.
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Figure D.4: Simulated trajectories of the observables Cplasma and Clung for the
simplified case of the basic molecules model with IV administration. The red stars
are simulated data taken with low measurement error (σki = 0.01) at times given
by equation (6.1).

The variability of trajectories along the PL of fu,ELF indicate the need for addi-
tional measurement of Cplasma in the initial seconds after dosing, see figure D.5. As
mentioned in the neutral molecule case however, this is not feasible in practice and
will therefore not be considered again.
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Figure D.5: Range of log of the observable trajectories calculated as in equation
(3.12) with θl along the PL of fu,ELF in figure D.1.

With both IT and IV data the results are similar to the case of only IT administra-
tion, see Figure D.6 and with the additional DPI data identifiability of D and Cs is
obtained as well, see Figure D.7. The DPI data is shown in Figure D.8.

Figure D.6: Profile likelihoods calculated for the simplified case of the basic
molecule model with IT and IV data and low measurement error. The log-normal
standard deviations were set to 0.01 for all measurements. Data was taken at time
points given by equation (6.1). D and Cs are not identifiable with no DPI adminis-
tration.
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Figure D.7: Profile likelihoods calculated for the simplified case of the basic
molecule model with IT, IV and DPI data and low measurement error. The log-
normal standard deviations were set to 0.01 for all measurements. Data was taken
at time points given by equation (6.1).

Figure D.8: Simulated trajectories of the observables Cplasma and Clung for the
simplified case of the basic molecules model with DPI administration. The red stars
are simulated data taken with low measurement error (σki = 0.01) at times given
by equation (6.1).

Thus the results with low measurement error for basic molecules are the same as
for neutral molecules, i.e. only IT seems to be sufficient to obtain well-determined
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D. Basic molecules

estimates of all parameters except D and Cs. With IT, IV and DPI data the calcu-
lations show that D and Cs are also well-determined but with larger CIs compared
to all other parameters except fu,ELF . The uncertainty in the estimate of fu,ELF is
high regardless of administration route.

D.2 Additional Figures and Tables - Reasonable
measurement error

Figure D.9: Profile likelihoods calculated for the simplified case of the basic
molecule model with IT, IV and DPI data and reasonable measurement error. The
log-normal standard deviations were set as in equation (6.2) for all measurement
times. Data was taken at time points given by equation (6.1). In this particular
case both rate constants are identifiable.
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Figure D.10: Profile likelihoods calculated for the simplified case of the basic
molecule model with IT, IV and DPI data and reasonable measurement error. The
log-normal standard deviations were set as in equation (6.2) for all measurement
times. Data was taken at time points given by equation (6.1). Stokes-Einsteins
equation was assumed to be valid for calculating D. In this particular case Kout is
practically unidentifiable and Kin gives an example of optimization failure.

Figure D.11: Profile likelihoods calculated for the unique case of the basic molecule
model with IT and IV data and low measurement error. The log-normal standard
deviations were set to 0.01 for all measurements. Data was taken at time points
given by equation (6.1). D and Cs are not identifiable unless DPI administration is
used.
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E
Large molecules

The analyses with low measurement error for both simplified and unique case as
well as additional Figures and tables for section 6.3 are given here.

E.1 Simplified case - Low measurement error

With a low measurement error (σki = 0.01 ∀k, i) and measurement times as in equa-
tion (6.4), the PL calculation for only IT gives PLs as in Figure E.1. Corresponding
data is given in Figure E.2. All parameters except D and Cs are identifiable.

Figure E.1: PLs of the parameters in the simplified case of the large molecule model
calculated with only IT data and low measurement error. The data was given by
measurement times as in equation (6.4). The log-normal standard deviations were
set to 0.01 for all simulated measurements.
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Figure E.2: Simulated trajectories of Clung(t) and Cplasma(t) for the simplified case
of the large molecule model with IT administration. The red stars are simulated
data with log-normal error and standard deviation set to 0.01, taken at time points
given by equation (6.4).

Similarly, only IV data gives identifiability of all parameters except D,Cs and dftb,
see Figure E.3 for the PLs and Figure E.4 for the corresponding data.

Figure E.3: PLs of the parameters in the simplified case of the large molecule model
calculated with only IV data and low measurement error. The data was given by
measurement times as in equation (6.4). The log-normal standard deviations were
set to 0.01 for all simulated measurements.
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Figure E.4: Simulated trajectories of Clung(t) and Cplasma(t) for the simplified case
of the large molecule model with IV administration. The red stars are simulated
data with log-normal error and standard deviation set to 0.01, taken at time points
given by equation (6.4).

The combined IT and IV data should then obviously give identifiability of all pa-
rameters except D and Cs and this is also what is obtained, see figure E.5.

Figure E.5: PLs of the parameters in the simplified case of the large molecule model
calculated with IT and IV data and low measurement error. The data was given by
measurement times as in equation (6.4). The log-normal standard deviations were
set to 0.01 for all simulated measurements.
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The addition of DPI data, seen in Figure E.6, gives identifiability of all parameters
as seen in Figure 6.11 of the main text.

Figure E.6: Simulated trajectories of Clung(t) and Cplasma(t) for the simplified case
of the large molecule model with DPI administration. The red stars are simulated
data with log-normal error and standard deviation set to 0.01, taken at time points
given by equation (6.4).

XXXIV



E. Large molecules

E.2 Additional Figures and Tables - Simplified
case

Summary over 1000 error realizations - IT/IV data with additional measurements of IT
Parameter Successful PL calculations Identifiable cases [%] False positives [%]

P 992 94 6
fu,ELF 999 82(*) 2
dftb 998 100 5
σv,org 980 97 8
σv,al 997 100 6

Table E.1: Summary of PL calculation of 1000 different error realizations of IT
and IV data for the simplified case of the large molecule model. The IT and IV data
was generated with log-normal error distribution with standard deviations set as
in equation (6.2), the measurement times was set as in equation (6.4) + additional
measurements of both Clung(t) and Cplasma(t) at t = 200, 500 and 1000h on the IT
arm. Total number of data points were thus n = 42. The constrained optimiza-
tion was considered to have failed if the optimizer returned an error or a non-global
optimum and these cases are retracted to give the number of successful PL calcula-
tions. (*)The number of identifiable cases are higher in reality as the PL calculation
was stopped prematurely (by reaching maximum number of steps) in some of the
individual runs.

Figure E.7: PLs of the parameters in the simplified case of the large molecule
model calculated with IT and IV data with additional measurements at late time
points on the IT arm, all with reasonable measurement error. The IT and IV data
was given by measurement times as in equation (6.4) + t = 200, 500 and 1000 for
IT, with log-normal standard deviations as in equation (6.2).
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Reasonable measurement error - IT/IV data with additional measurements of IT
Parameter True value Estimate CI

P 0.0001 0.0000944 [0.0000596, 0.000301]
fu,ELF 1 1 [0.107, 1]
dftb 0.7 0.670 [0.586, 0.743]
σv,org 0.6 0.589 [0.412, 0.687]
σv,al 0.78 0.780 [0.727, 0.823]

Table E.2: Parameter estimates and confidence intervals (CIs) for the simplified
case of the large molecule model with combined IT and IV data and reasonable
measurement error. The measurement times were taken as in equation (6.4) +
t = 200, 500 and 1000 for IT. The CIs are calculated from the profile likelihoods
in figure 6.14 using spline interpolation to obtain the points of passover. The pa-
rameters D and Cs were omitted as dissolution is not part of the model unless DPI
administration is used

Figure E.8: PLs of the parameters in the simplified case of the large molecule
model calculated with IT and IV data + one additional measurement of Cri,tot, all
with reasonable measurement error. The IT and IV data was given by measurement
times as in equation (6.4) with log-normal standard deviations as in equation (6.2).
The Cri,tot - data was taken at t = 72h on the IT arm with log-normal standard
deviation set to 0.3.
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Figure E.9: PLs of the parameters in the simplified case of the large molecule model
calculated with IT and IV data + one additional measurement of CELF,avg, all with
reasonable measurement error. The IT and IV data was given by measurement
times as in equation (6.4) with log-normal standard deviations as in equation (6.2).
The CELF,avg - data was taken at t = 72h on the IT arm with log-normal standard
deviation set to 0.3.

E.3 Unique case - Low measurement error

With low measurement error and only IT data similar results as in the simplified case
is obtained, with the only difference being the addition of σv,tb which is identifiable,
see Figure E.10.
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Figure E.10: PLs of the parameters in the unique case of the large molecule model
calculated with only IT data and low measurement error. The data was given by
measurement times as in equation (6.4). The log-normal standard deviations were
set to 0.01 for all simulated measurements.

However, with only IV administration it is seen that P is practically unidentifiable,
see figure E.11.

Figure E.11: PLs of the parameters in the unique case of the large molecule model
calculated with only IV data and low measurement error. The data was given by
measurement times as in equation (6.4). The log-normal standard deviations were
set to 0.01 for all simulated measurements.
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With both IT and IV data the PLs as in figure E.12 were obtained. All parameters
except D and Cs are identifiable.

Figure E.12: PLs of the parameters in the unique case of the large molecule model
calculated with IT and IV data and low measurement error. The data was given by
measurement times as in equation (6.4). The log-normal standard deviations were
set to 0.01 for all simulated measurements.

Lastly, the addition of DPI data gives the PLs as in figure E.13 and corresponding
CIs in Table E.3. All parameters are identifiable.
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Figure E.13: PLs of the parameters in the unique case of the large molecule
model calculated with IT, IV and DPI data and low measurement error. The data
was given by measurement times as in equation (6.4). The log-normal standard
deviations were set to 0.01 for all simulated measurements.

Low measurement error - IT/IV/DPI data
Parameter True value Estimate CI

D 0.0000394 0.0000386 [0.0000368, 0.0000406]
Cs 1000 1015 [990, 1039]
P 0.0001 0.0000994 [0.0000979, 0.0001023]

fu,ELF 1 1 [0.915, 1]
dftb 0.7 0.698 [0.696, 0.701]
σv,org 0.6 0.586 [0.562, 0.610]
σv,al 0.78 0.781 [0.779, 0.783]
σv,tb 0.66 0.651 [0.640, 0.662]

Table E.3: Parameter estimates and confidence intervals (CIs) for the unique case
of the large molecule model with IT, IV and DPI data and low measurement error
(σki = 0.01). The CIs are calculated from the profile likelihoods in figure E.13 using
spline interpolation to obtain the points of passover.
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E.4 Additional Figures and Tables - Unique case

Figure E.14: PLs of the parameters in the unique case of the large molecule model
calculated with only IT data and reasonable measurement error. The data was given
by measurement times as in equation (6.4). The log-normal standard deviations were
set as in equation (6.2).
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Figure E.15: PLs of the parameters in the unique case of the large molecule model
calculated with only IV data and reasonable measurement error. The data was given
by measurement times as in equation (6.4). The log-normal standard deviations were
set as in equation (6.2).

Summary over 100 error realizations - IT/IV/DPI data
Parameter Successful PL calculations Identifiable cases [%] False positives [%]

D 100 64 2
Cs 100 100 3
P 96 100 6

fu,ELF 100 100 2
dftb 100 100 1
σv,org 98 19 1
σv,al 100 100 7
σv,tb 100 75 5

Table E.4: Summary of PL calculation of 100 different error realizations of IT, IV
and DPI data for the unique case of the large molecule model. The IT and IV data
was generated with log-normal error distribution with standard deviations set as in
equation (6.2), the DPI data was generated with log-normal errors and standard
deviations same as for IT. The measurement times was set as in equation (6.4).
Total number of data points were thus n = 54. The constrained optimization was
considered to have failed if the optimizer returned an error or a non-global optimum
and these cases are retracted to give the number of successful PL calculations.
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