

Department of Mechanics and Maritime Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Design and evaluation of a software
architecture and software deployment
strategy

Master’s thesis in Automotive Engineering, and Software Engineering and Technology

DAN ANDERSON
ZIWEI HUANG

MASTER’S THESIS IN AUTOMOTIVE ENGINEERING, AND SOFTWARE

ENGINEERING AND TECHNOLOGY

Design and evaluation of a software architecture and

software deployment strategy

DAN ANDERSON

ZIWEI HUANG

Department of Mechanics and Maritime Sciences

Division of Vehicle Engineering and Autonomous Systems

CHALMERS UNIVERSITY OF TECHNOLOGY

 Göteborg, Sweden 2018

Design and evaluation of a software architecture and software deployment strategy

DAN ANDERSON

ZIWEI HUANG

© DAN ANDERSSON & ZIWEI HUANG, 2018

Master’s Thesis 2018:14

Department of Mechanics and Maritime Sciences

Division of Vehicle Engineering and Autonomous Systems

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone: + 46 (0)31-772 1000

Cover:

The Chalmers formula student 2017 race car that was used for evaluating the

deployment strategy.

Chalmers Reproservice

Göteborg, Sweden 2018

Design and evaluation of a software architecture and software deployment strategy

DAN ANDERSON

ZIWEI HUANG

Department of Mechanics and Maritime Sciences

Division of Vehicle Engineering and Autonomous Systems

Chalmers University of Technology

Abstract

The thesis is motivated by the Chalmers formula student driverless 2018 (CFSD’18)

project, a pilot project with the aim to deliver a qualified self-driving formula race car

and compete in the Formula student Germany 2018 competition. The thesis goal was

to design and evaluate the software development and deployment process for a purely

microservices-based distributed system on the CFSD’18 self-driving race car. The

work coincides closely with the vehicle laboratory Revere, operated by Chalmers

University of Technology and the University of Gothenburg. It explores the use of

OpenDLV based on libcluon, applying microservice architecture in the CFSD’18

project. A docker-based deployment strategy is investigated and evaluated. A project

specific deployment strategy is designed considering hardware related physical

constraints and Formula student Germany competition rules. Performance of certain

microservices has been measured and evaluated. The experience from this thesis

indicates the OpenDLV platform, libcluon, and the docker ecosystem are portable,

efficient and adaptive choices for a distributed embedded system, in particular

autonomous vehicle projects.

Keywords: Software deployment, microservices, OpenDLV, libcluon, Docker, self-

driving, Formula student

Acknowledgment

We would like to express gratitude towards our examiner Ola Benderius and our

supervisor Christian Berger for their professional guidance and support during the

project. Our grateful thanks also extend to the CFSD’18 team for their cooperation

and making this project possible. The assistance given by Björnborg Nguyen was

greatly appreciated.

We would also like to thank Revere for sharing their resources and offering valuable

help throughout the project.

Göteborg May 2018

DAN ANDERSON

ZIWEI HUANG

Thesis advisor: Christian Berger

Thesis examiner: Ola Benderius

Contents

Abstract .. I

Acknowledgment .. III

Contents .. V

1 Introduction.. 1

1.1 Problem domain & motivation .. 1

1.2 Research goal & research questions ... 2

1.3 Contributions ... 3

1.4 Limitation .. 3

1.5 Structure of the thesis... 3

2 Background ... 4

2.1 Formula student.. 4

2.2 Distributed embedded system .. 5

2.3 Software deployment .. 5

2.4 Microservices ... 6

2.5 Container-based virtualization ... 6

2.6 OpenDLV .. 7

2.6.1 OpenDaVINCI ... 7

2.6.2 libcluon .. 7

3 Related work .. 8

4 Research methodology ...10

4.1 Goals ..10

4.2 Study design ...10

4.3 Experimental material ..11

4.3.1 Computer – x86_64 ...11

4.3.2 Computer – Beaglebone Black ..11

4.3.3 Sensors for perception ...12

4.4 Deployment method ..13

4.4.1 Docker-compose ..13

4.4.2 Docker swarm & Docker stack ...14

4.4.3 Deployment strategy on the CFSD project ...15

4.4.4 Performance evaluation ..16

5 Results and data analysis ..18

5.1 Performance evaluation of Beaglebone Black ...18

5.2 Preformance evaluation of the x86_64 computer..19

5.3 Performance evaluation of proxy-camera ..19

6 Discussion ...22

6.1 Microservice architecture ...22

6.2 Software deployment workflow in the CFSD’18 ..23

6.3 Containerized software deployment process ..23

6.4 Automatic test and evaluation...24

7 Threats to validity ..25

7.1 Construct validity ...25

7.2 Internal validity ...25

7.3 External validity ..25

7.4 Reliability ...26

8 Conclusion & future work ...27

References ..28

Appendix A ...31

CPU logging script ...31

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 1

1 Introduction

Self-driving vehicle technology is a popular and important topic in both
automotive industry and academic field. An increased amount of companies and
university laboratories are working in this field. Chalmers University of
Technology and the University of Gothenburg are operating and maintaining the
vehicle laboratory Revere comprising 1/10 scaled cars, a Volvo XC90, and a
Volvo FH truck to conduct studies with automated driving [1]. To support
continuous development in different vehicle platforms the Revere lab
implemented a vehicle independent software framework called OpenDLV. The
open software framework handles hardware communication, safety and
override functions, sensor fusion, and other base self-driving concept functions.

The motivation of this thesis comes from Chalmers formula student driverless
(CFSD) project. The main work of the one-year project is to upgrade an electrical
powered race car to a driverless vehicle. The goal of the project is to deliver a
qualified driverless vehicle to participate and achieve top five in Formula student
Germany competition hosted from 6th until 12th of August 2018 in Hockenheim.

The CFSD’18 team consisted of 12 second-year master students from various
background and three main supervisors from Chalmers University of Technology
and the University of Gothenburg. The vehicle laboratory Revere provided rich
resources including both technical and non-technical support for the CFSD’18
team. The project started in August of 2017.

This thesis focuses on software deployment strategy in the distributed
heterogeneous computer networks. As the authors were members of the
CFSD’18 team, this thesis use practical experience from the CFSD project to
explore, design and evaluate software deployment strategy in the distributed
heterogeneous computer networks.

1.1 Problem domain & motivation

The CFSD project is a student-driven project with support from supervisors and
the vehicle laboratory Revere. The design, manufacturing, implementation, and
testing were all done by the CFSD’18 team, which was a big challenge since this
was the first year to build a driverless race car at Chalmers.

Fortunately, for the software environment part, the CFSD’18 team does not need
to start from scratch. The vehicle laboratory Revere has provided an
autonomous driving software framework OpenDLV. Since the whole OpenDLV
framework is a layered structure, the work for the team is to develop the vehicle
and competition specific software on the top layer and reuse the foundation part
for basic communication, sensor fusion, and other functions. The layers are
shown in Figure 1. However, this was the initial approach for first few months.
With the introduction of libcluon, the stacked layered architecture is gradually
transformed to purely microservice based structure.

2 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14

Figure 1, Layered Software Environments at Revere [2].

Software deployment involves installation, configuration, packaging
components, uploading, activating and deactivating. The whole software
deployment process will become complicated in the distributed heterogeneous
computer networks. This thesis is to explore the already adopted software
deployment strategy at Revere and use it as the base to adjust and design an
efficient and traceable software deployment strategy for CFSD project.
Furthermore, evaluate the designed software deployment strategy and
contribute to the cross-platform development at the vehicle laboratory Revere.

1.2 Research goal & research questions

The aim of the research was to evaluate development and deployment strategies
for a purely microservice-based distributed system on the example of self-
driving race car project CFSD’18.

The microservice software structure is gradually adopted in the project. The
previous version of OpenDLV ecosystem built on top of OpenDaVINCI was
designed as layered structure, while the new version OpenDLV ecosystem is
refactored and designed as microservices using libcluon.

Through mining potential Docker-based technique and experimenting on
continuous deployment, the following three research questions will be
answered.

RQ1 What deployment strategy has the smallest impact on building, releasing,
deploying and running software bundles on the target system?

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 3

RQ2 How can the software be deployed in the fastest possible way while
preserving full traceability: As docker-compose or as docker stack+docker
swarm while considering hardware properties (x86_&4 vs armhf)?

RQ3 How can live data be visualized and recorded for further offline analysis?

1.3 Contributions

The thesis explores the use of OpenDLV, based on libcluon, to apply a microservice

architecture in CFSD’18 project. Docker-based deployment strategy is investigated

and compared. Performance of certain microservices have been measured and

evaluated.

All the result and experience concluded in the thesis will contribute to the cross-
platform development at the vehicle laboratory Revere as a large practical use
case. The thesis will also work as a good pre-study resource of software
architecture deployment for CFSD team in the following years. Furthermore, the
thesis indicates the OpenDLV platform, libcluon, docker ecosystem are portable,
efficient and adaptive choices for distributed embedded system, in particular
autonomous vehicle projects. Researchers interested in using OpenDLV, libcluon,
and Docker can find some insights from the thesis.

1.4 Limitation

Since the thesis focuses on the CFSD’18 project, the functionality of the software
was designed based on the Formula student Germany 2018 competition rules. In
contrast to real-work scale for OEMs, the thesis looked more closely into aspects
and constraints that matter for competitions (for example, fast but reliable
deployment); results, though, are of interest for the automotive domain in
general. Also, the software deployment strategy was constrained by the
competition rules.

1.5 Structure of the thesis

The rest of the thesis is structured as follows: Section 2 introduces the
background of the work, explaining the concepts and techniques related to this
thesis. The related work is summarized in Section 3. The research methodology
and the experiment settings are specified in Section 4. Next, Section 5 presents
the result from the experiment, and the discussion on the result and experience
can be found in Section 6. Then, the threads to validity are discussed in Section 7.
Finally, Section 8 concludes the thesis and indicates further work.

4 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14

2 Background

In this section, concepts and techniques related to the thesis are present and
explained in general. It covers both technical terms for the thesis and non-
technical information about the CFSD’18 project.

2.1 Formula student

Formula student Germany (FSG) is an international design competition for
students annually since 2006. The content of the competition is to design and
manufacture a single-seat formula race car to compete against teams from all
over the world. The challenge of the competition is not to build the fastest race
car, instead, is to deliver the best overall package of design, construction,
performance, and business planning [3]. Formula Student has traditionally been
about building a combustion engine car. In 2010 Formula student Germany
started a new class for electrical vehicles and in 2017 they introduced a new
class of competition, the Driverless Vehicle class.

The first Chalmers formula student project was initialized in 2001, building a
combustion engine car for the Formula Student UK competition in 2002. In 2013
CFS made the first prototype of an electric vehicle by converting an old
combustion car. In 2015 the project goal was changed to produce an electric
vehicle instead of combustion vehicle. In 2017 the next step was taken, and
Chalmers decided to build its first driverless race car by converting the electric
car from 2017, see Figure 2. The aim was to compete in the FSG Driverless
Vehicle class 2018.

Figure 2, Chalmers formula student 2017 competing in skidpad at Formula student Netherlands.

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 5

2.2 Distributed embedded system

One definition of embedded system from Marwedel [4] is “Embedded systems
are information processing systems embedded into enclosing products”.
Common examples including embedded system are cars, trains, planes, and
communication equipment.

The new term “cyber-physical system” appears more when the emphasis is put
on the link to physics. The definition according to Lee [5] is “Cyber-Physical
Systems (CPS) are integrations of computation and physical processes”. So, the
CPS can be understood as a close combination system of embedded system and
the target physical environment.

A distributed system is understood as a group of computation nodes working in
a dedicated network to solve a problem. A typical distributed system can be a
data center with thousands of servers or the control systems on the car.

2.3 Software deployment

Software deployment is generally interpreted as several interrelated activities to
make the target software system available to run. In a typical software
development lifecycle, a project normally starts from requirement specification
and then goes through design, developing, and testing. As shown in Figure 3,
software deployment can be considered as the final phase of the cycle. However,
considering iteration and agile approach to software development, the
deployment phase can continuously provide feedback for requirement and other
steps to adjust and improve.

The whole software deployment process will become complicated in the
distributed heterogeneous computer networks. This thesis is to explore the
already adopted software deployment strategy at Revere and use it as the base to
adjust and design an efficient and traceable software deployment strategy for the
CFSD’18 project.

Figure 3, Software development lifecycle.

6 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14

2.4 Microservices

In a monolithic architecture, an application or system is built as a single unit [6].
Consequently, modules in a monolithic application cannot be executed
independently [7]. Monolithic applications have good performance. However,
when increasing applications are being deployed to the cloud and distributed
system, microservice architecture seems a better choice. Compared with putting
all functionality into a single process in monolithic way, microservice make it
possible to separate each element of functionality [6].

Microservice pattern enable developers to build solutions with speed and safety
in a scaled way [8]. As microservice is a newly appeared software technique
terminology, there is no formal and strict definition for it. One proposed
definition of microservice involving architecture perspective is:

“A microservice is an independently deployable component of bounded scope that
supports interoperability through message-based communication. Microservice
architecture is a style of engineering highly automated, evolvable software systems
made up of capability-aligned microservices [8, p. 6].”

2.5 Container-based virtualization

In practice, microservices and containers are naturally paired, contributing to
greater modularity realization, code reuse and scalability of a distributed system
[9]. Docker [10] is a popular platform for container-based virtualization. The
core components for docker are docker engine, docker image, docker container,
and repository.

A container image is an executable that includes everything needed to run it. It’s
a lightweight stand-alone solution used to run the same software regardless of
the environment. The function of a container is like a virtual machine, but
instead of running a separate operating system the container only contains the
important software required to run the program and is sharing the kernel with
the host, Figure 4. [10].

Figure 4, Layered structure of a container based virtualized in comparison with a virtual machine setup.

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 7

2.6 OpenDLV

To support continuous development in different vehicle platforms, Revere
implemented a vehicle independent software framework called OpenDLV. The
open software framework handles hardware communication, safety and
override functions, sensor fusion, and other base self-driving concept functions.
Revere has successfully used OpenDLV on 1/10 scaled cars, a Volvo XC90, and a
Volvo FH truck [1].

2.6.1 OpenDaVINCI

OpenDaVINCI is an open source development architecture for virtual, networked,
and cyber-physical system infrastructures. OpenDaVINCI is a compact

middleware, written entirely in standard C++. It runs on a variety of POSIX-

compatible OS and Windows [11].

OpenDaVINCI powered a variety of different scaled car for international self-
driving research. One example is Berkeley´s AGV, the self-driving car from
University of California, Berkeley's CHESS group in a joint research project with
RWTH Aachen. OpenDaVINCI also powered the ARM-based self-driving
miniature car "Meili" that won the 2013 international CaroloCup competition.

As shown in Figure 1, the OpenDLV system is stacked on the top of OpenDaVINCI.

2.6.2 libcluon

libcluon [12] is the world's first header-only middleware for distributed systems
for robotic applications. It is a lightweight and efficient library written in modern
C++ library to glue distributed software components together. The usage is
simply done by including the cluon-complete.hpp into the project. libcluon
contains well-designed features, including several native implementations of
data serialization and deserialization.

The newest OpenDLV ecosystem by the writing time is realized with libcluon,
transformed from previous layered stacked structure [13]. The software
structure is entirely based on microservices. Because of strong focus on
continuous deployment, Docker ecosystem is explored and widely used for
building and storing images for microservices.

8 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14

3 Related work

Software applications are increasingly integrated to heterogenous collection of
software components; thus, deployment becomes an essential step of software
life cycle [14]. Carzaniga’s [14] study pointed out that the general problems
related to software deployment systems involve evolution of both hardware and
software system, components dependency and distributed heterogeneous
platforms.

Many studies explored the possible approaches to evolve software deployment.
New deployment approach should be able to perform on different platforms and
networks and decentralize control for both software producers and consumers
[15]. Software Dock is proposed as a cooperative framework to support
deployment process via release docks and field docks. In robotics research, a
model-based approach and a domain specific language are presented to achieve
more flexible deployment on a wide range of robot platforms [16]. Moreover,
there are already well-developed robot software distributed frameworks like
ROS [17] and OpenRTM.

Agile software development methodology aims to improve the efficiency of
software development process through early and fast delivery and close
collaboration with customers [18]. Involving the feedback from end-users to the
development process early help to reduce redundant and unclear features.
Continuous deployment is to deploy the newest product to customers as soon as
the new code has been generated. Continuous deployment has been successfully
performed in organizations such as Facebook [19] and GitHub [20]. The common
benefits from continuous deployment are reducing risks for each release,
involving feedback from use early, avoiding useless features. However, adopting
continuous deployment can introduce some social and technical challenges [21].
One problem regarding infrastructure is that proper software and hardware are
required to handle continuous deployment. Testing can also be a challenge
because continuous deployment needs continuous quality tests and code review.
Some social challenges come from team coordination, team experience, customer
adoption and others [21].

Microservices, inspired by service-oriented computing, are small application
available to be tested, scared and tested separately [22]. Ebert [23] points out
microservices have been increasingly adopted by industries for transformation
from function-oriented legacy architectures to modern flexible service-based
system. Ebert [23] also states that “The International Data Corporation has
forecasted that by 2021, 80 percent of application development on cloud
platforms will be with microservices.”

Microservice has been increasingly adopted in software system for its attractive
benefits. Some of the most important advantages are faster product delivery,
increased infrastructure automation and organized scalability [24]. By splitting
applications to multiple microservices, each microservice is supposed to run, test
and deploy individually. This methodology is also in line with common agile
principle of continuous delivery.

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 9

Some experience about migration a monolithic architecture towards
microservices in real-world cases have been collected and reported. One case
study [25] is done in collaboration with Danske Bank’s FX Core currency
conversion system. According to the banking domain experience report, the
migration process was highly business-driven to facilitate proper definition and
boundary of function and service. Containerization technology Docker and
product in its ecosystem including docker-compose, docker swarm cluster,
docker registry have been widely used for automation, orchestration, and
integration. Learned from the banking case study, because of the challenging
management of many independent microservices, the importance of well-
designed software architecture and automation needs to be emphasized.

Microservice is not a perfect software structure for all applications and has
drawbacks in real production process. Some interviews [26] have been done
with practitioners owning experience in microservice-based systems to analyze
existing harmful aspects of the microservice design pattern. Three drawbacks of
the microservices are recognized as very harmful: (1) splitting applications
based on traditional technical layers instead of business services, (2) hardcoded
endpoints in the microservice network, and (3) ambiguous data ownership. The
most frequent challenging part is to split and redesign a monolithic application,
particularly when the horizontal layered structure has been a habit of
development team.

One popular tool to cooperate with microservice architecture is Docker. Docker
is an open-source platform to facilitate consistent development and deployment,
based on container virtualization technology. Two typical usecases of choosing
Docker are projects looking for high capacity and continuous integration [27].
Docker owns a wide range of customers including ADP, AR Group, and Cornell
University. Containerization has been reviewed, discussed and supported as a
lightweight virtualization solution in edge cloud environment [28]. However,
little research of containerization technology can be found in distributed
embedded system, in particular self-driving cars area.

The Revere laboratory operated by Chalmers University of Technology and the
University of Gothenburg has adopted containerized deployment and
microservice in their research on autonomous vehicles [29]. The build, test, and
deployment process are encapsulated via VirtualBox, Docker, and Jenkins [1]. A
few limitations come from lack of proper overlay network, conflicts of specific
features, and pulling regularly large amount of data for end users [29]. The
Revere laboratory provided the CFSD’18 team technical support on the already
developed self-driving software environment OpenDLV. The main challenge for
this work was to explore any possible reusable part, to find the bottleneck of the
current deployment strategy, and to extend the functionalities to fulfill the
Formula student Germany competition rules.

10 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14

4 Research methodology

Scientific research is mutually nested by knowledge questions and practical
problems [30]. In design science, a practical problem in this mutual problem
nesting hierarchy is always on the top-level [31]. Based on this thesis, the clear
practical problem is to deliver a qualified Formula self-driving race car and
complete the final competition Formula student Germany in August 2018. More
precisely, this thesis will focus on the distributed embedded software
deployment strategy on the CFSD’18 race car.

Knowledge can be learned from exploring effects produced from the interaction
between an artifact and a problem domain [30]. To achieve the research goal,
practical questions and knowledge questions should be carefully balanced. This
thesis will adopt a top-down analysis way by performing a design in the practical
problem domain, then exploring generalizable distributed embedded software
deployment strategy. The practical design is to design an efficient, stable and
traceable software deployment strategy for the CFSD’18 race car.

To build connection between the practical problem and the bottom generalized
knowledge question, evaluation, and continuous experimentation will be
performed on the practical design on the CFSD’18 race car. Evaluation will
include the reflection on relationship between the software structure and
deployment strategy. Also, key indicators of the performance of deployment
process will be explored and discussed. Furthermore, continuous experiment
will be tried to collect informative feedback and use logged data to improve the
design of software iteratively.

4.1 Goals

The aim of the research is to evaluate development and deployment strategies
for a highly modular and purely microservices-based distributed system on the
example of self-driving race car project the CFSD’18.

4.2 Study design

To answer the research questions, systematically mining into Docker-based
orchestra technique and experimenting on continuous deployment have been
done. The traceability is treated as a key factor of the continuous deployment
process.

In a distributed software system, container orchestration is required to facilitate
the process of deploying complex multiple containers on a group of
hosts/machines. A benchmarking is performed on the potential choice for
container orchestration, Docker Swarm + Docker Stack.

To make most of live data and facilitate offline evaluation, continuous
performance measurement strategy is designed to monitor the whole system
load. The measurement process itself should be designed as fully automated.

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 11

The microservice software structure is gradually adopted in the project. The
previous version of OpenDLV ecosystem built on top of OpenDaVINCI is designed
as layered structure, while the new version OpenDLV ecosystem is refactored
and designed as microservices using libcluon.

The thesis will also explore the impact of transforming the existing OpenDLV
multi-layer software stack to fully decoupled, cluon-based microservices.
Compare the two architectural differences and reflect on the differences.
Furthermore, the software build process will be discussed.

4.3 Experimental material

The software platform is OpenDLV. Two versions of OpenDLV have been
investigated. The previously developed OpenDLV is a stacked layered structure
with OpenDaVINCI as the base. The newly OpenDLV has transformed to fully
microservices structure realized with libcluon.

Docker is heavily used for software deployment. The completed project source
code is built as docker image. Docker image provides the possibility to
encapsulate everything need to execute.

The key hardware includes two computational nodes and three sensors for
perception.

4.3.1 Computer – x86_64

The computer used in the car has an AMD Razer 7 1700 CPU with 8 cores and
3GHz clock frequency [32]. The motherboard has ports for USB 3.0 and Ethernet
that will be used to connect the sensors. The x86_64 computer will run Arch
Linux and run the proxy microservices for camera, LiDAR, and IMU.

 Computer hardware:

 AMD Ryzen 7 1700 3.0 GHz
 GeForce GTX 1060 Mini ITX OC 6GB
 Gigabyte GA-AB350N-Gaming WiFi (ITX)
 Corsair Hydro Series H60 High-Performance Liquid CPU Cooler
 2x16gb G.Skill Flare X series 2400MHz DDR4 (not ECC)
 Samsung 850 EVO 500GB 2.5" SATA-600
 M4-ATX 6-30V DC/DC (250 Watt) PSU

4.3.2 Computer – Beaglebone Black

The Beaglebone Black is the computer used for low-level interface with the car. It
has a 1GHz ARM Cortex-A8 processor. The general purpose input and outputs
(GPIO) are limited to 3.3V and 4mA [33]. To make the GPIOs usable for this
application a custom designed PCB was connected to the Beaglebone, see Figure
5. The board converts the inputs and outputs to the voltage and current levels
required. It also includes a CAN transceiver that enables the two CAN bus
channels available on the Beaglebone. The CAN bus allowed the autonomous
system to communicate with the ECU and motor controllers of the car. The

12 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14

Beaglebone is connected to the autonomous network through a wired Ethernet
connection. The Beaglebone run Arch Linux and the microservices needed to
control the input and outputs.

Specifications of Beaglebone I/O-Cape:

 10 Digital outputs (controls GND, max 500mA)
 3 Digital input 24V (max 31V)
 1 Analog out 0-10V (max 20mA)
 3 PWM (controls GND, max 500mA)
 2 CAN-bus channels
 3 Analog input 0-10V
 2 Analog input 0-5V

Figure 5, Beaglebone (lower PCB) with a custom designed input and output cape (top PCB).

4.3.3 Sensors for perception

The camera is a ZED stereo camera from Stereo Labs, see Figure 6, and has a USB
3.0 interface [34].

Figure 6, The stereo camera used for detecting the cones.

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 13

The lidar is a Velodyne 16 from Velodyne, see Figure 7. It has its own interface
box that’s communicates through Ethernet [35].

The IMU/GPS system is an Ellipse 2N from SBG systems, see Figure 8, which uses
sensor fusion to estimate a more accurate position. The interface can be either
CAN-bus or USB, but for this project serial-over- USB is used [36].

Figure 7, The LiDAR used for detecting cones.

Figure 8, The IMU/GPS system used in the car.

4.4 Deployment method

This section presents the designed deployment method. The Docker-based
deployment strategy is investigated and compared to docker-compose and
docker swarm + docker stack. A project specific deployment strategy is designed
considering hardware related physical constraints and Formula student
Germany competition rules.

4.4.1 Docker-compose

Docker is a fast-growing software containerization platform. Docker platform
provides a series of tools and technology to facilitate software containerization
development. Docker-compose is an efficient tool to define, configure and run a
multi-container application in a single file. It makes it possible to run a complex
application involving multiple microservices by one docker-compose.yml file.
Furthermore, the docker-compose file helps define multi-configuration for
running images.

The technical way to run multiple containers is to add all microservices that are
supposed to run in the docker-compose.yml file and run the command “docker-
compose up”.

Docker-compose provides great features to be used in the docker-compose.yml
file. All features can be found in docker compose reference documentation
online. Version three is the newest version of the compose file. However, the
third version removes the function “group_add” [37], which is needed for
modules using shared memory. Therefore, it was decided to use the second
version in this project.

14 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14

The snippet in Code 1 is an example of docker-compose.yml file, used for testing the velodyne16.

version: '2'

services:
 #proxy-velodyne16
 velodyne16:
 image: chalmersrevere/opendlv-device-lidar-vlp16-
multi:v0.0.2
 network_mode: "host"
 volumes:
 - .:/opt/opendlv.data
 working_dir: "/opt/opendlv.data"
 command: "opendlv-device-lidar-vlp16 --
vlp16_ip=0.0.0.0 --vlp16_port=2368 --cid=111 --verbose"

Code 1, Example of a docker-compos. yml file.

4.4.2 Docker swarm & Docker stack

Docker swarm provides the possibility to create a cluster of containers running
on multiple machines. Docker version later than version 1.12.0 support swarm
mode for natively managing a cluster of Docker Engines [38]. The highlight
features include natively cluster management, decentralized design, and load
balancing.

Docker stack enables a group of interrelated services to be orchestrated
together. In other words, a group of services can be defined to be allocated and
scaled on different computing nodes using one single file.

These two docker technique are beneficial to distributed system with multiple
machines on fast software deployment. Compared with docker-compose, the
docker swarm and docker stack provide the possibility to deploy multiple
services to a group of docker engines instead of one docker engine.

Docker stack enables user to define which docker engine to run the specific
container on. The example showed in Code 2 is a part of docker-stack.yml for
docker stack. In this example, the container will be run on the manager node.

services:
 communication-test-send:
 image: communication-test-send:latest
 command: "communication-test-send --cid=112"
 deploy:
 placement:
 constraints: [node.role == manager]

Code 2, Example of docker-stack.yml file for running docker stack on the manager node.

More investigation has been done to check whether docker swam and docker
stack suits OpenDLV deployment requirements. In the swarm mode, overlay
network is used to connect containers. However, the overlay network does not
support multicast and it is still an open issue opened from 2015 [39]. Hence, it
can’t be used in OpenDLV since the communication between microservices rely
on multicast.

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 15

To solve the problem that overlay network in swarm mode does not support
multicast, third party plugins have been tried. One popular third-party plugin,
Weave Net [40] Docker plugin, declared that it supports multicast in swarm
mode. However, after contacting with Weave Net Docker plugin development
team, it was found the plugin currently only works for x86_64. Furthermore, the
plugin version for armhf platforms will not be released in the near future.
Considering that there is one armhf computer in the CFSD system, it is clear that
the Weave Net Docker Plugin cannot solve the problem of multicast in overlay
network.

Though docker swarm and docker stack are suitable for software deployment to
a group of docker engines, lack of multicasting in the overlay network currently
makes them impossible to be integrated with OpenDLV. Therefore, docker-
compose was chosen as the deployment tool for this work.

4.4.3 Deployment strategy on the CFSD project

In the target system, there is a x86_64 computer, an armhf computer
(Beaglebone black), a Velodyne16 LiDAR, a ZED camera and, an IMU/GPS device,
see Figure 9. The arm computer will start up directly when power is supplied to
the unit. Once the autonomous system starts it will start the x86_64 computer
using wake-on-lan. This is done to reduce power consumption of the system. The
arm computer uses 100mA while the x86_64 uses 1A on idle. The x86_64
computer acts as a router since it has the possibility to connect to a WAN using
WiFi and bridge it to the Ethernet port. A service computer will be able to
connect to the system by connecting to the switch.

The x86_64 and arm computer will need to maintain its own docker-
compose.yml file separately. In the docker-compose.yml, specify the exact
microservices that will run on the computation node. Furthermore, each
computer maintains its own local docker registry storing previous stable images.
This make it possible to quick roll back if needed.

Figure 9, physical layout of the five devices and an Ethernet switch.

16 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14

On the two computers, the operating system is the pre-installed OpenDLV.OS,
which is an Arch Linux based operating system capable of running the
containerized OpenDLV framework. The installation process is automated by
available scripts in the OpenDLV.OS repository on the GitHub [41] which makes
it possible to quickly recover from accident hardware failure and run
containerized OpenDLV framework on a fresh computer.

The concrete software deployment flow is shown in Figure 10. The source code
of each microservice is pushed to GitHub. In the CFSD’18 project, each
microservice is housed in its individual repository. GitHub facilitates the
tracebility by git commit hash, which is used to label docker images later. In each
repository on GitHub, a travis.yml is maintained to automatically run tests, build
and push images to Docker Hub. Although Docker Hub itself provides the basic
functionality to hook a GitHub repository and automate the image building,
Travic-CI is chosen here for more freedom in the automation process. The
ChalmersFSD organization on Docker Hub owns all microservices of the CFSD’18
project. Each image is tagged with its microservice name and git commit hash
(seven characters). The next step is to write and configure an appropriate
docker-compose.yml file to define microservices that will run on the race car.
Lastly, the command “docker-compose up” is used to start up all containers on
one node.

Figure 10 Software deployment process in CFSD’18.

4.4.4 Performance evaluation

OpenDLV [13] is a modern open source software environment to support the
development and testing of self-driving vehicles. OpenDLV provides a large
number of proxy microservices for commonly used devices on self-driving
vehicles. The proxy microservices provide the function for hardware and
software interfaces in OpenDLV.

As shown in Figure 9 in Section 4.4.3, the two computational notes in the system
are a x86_64 and a Beaglebone Black. The performance of microservices running
on the system is logged and evaluated as part of continuous experimentation,
where the result is used as feedback to software design and implementation. To
enable the possibility of continuous experimentation, highly automated scripts

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 17

and process have been designed and implemented. A bash script was design for
logging the CPU load and then automatically plot it using a plot script, as listed in
Appendix A. The plotting script was implemented in Python 3. When building the
docker image the image was tagged with the git commit hash key. The tag was
then used as label in the plot to keep track of the performance of a specific
update.

18 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14

5 Results and data analysis

This section presents the data collected from the microservice performance
measurements using the CFSD’18 deploymeny strategy and evaluation scripts.

5.1 Performance evaluation of Beaglebone Black

The performance of the Beaglebone proxy modules was measured by logging the
CPU load for 5min. To analyze how much the standard messages effect the CPU
load three different tests were done. The first test was without any modifications
to the proxy modules and the results are presented in Figure 11. The second test
was done with preventing the microservices to read messages sent by itself, a
feature introduced in libcluon to v0.0.90, shown in Figure 12. The third test was
to arrange the microservices on different CIDs to avoid them from processing
unnecessary information, as shown in Figure 13. After updating to libcluon
v0.0.90 the CPU load was decreased by about 6%. After updating and adjusting
the CID usage the CPU load was decreased by additional 28%, giving a total
decrease of 34%.

Figure 11, CPU load of the three proxy microservices
running on Beaglebone. Before upgrading to libcluon

v0.0.90.

Figure 12, CPU load of the three proxy microservices
running on Beaglebone. After upgrading to libcluon

v0.0.90.

Figure 13, After upgrading to libcluon v0.0.90 and using appropiate conference ID. CPU load of the three proxy

microservices running on Beaglebone.

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 19

5.2 Preformance evaluation of the x86_64 computer

The performance of proxy microservices on the x86_64 was measured in the
same way as for the Beaglebone, by logging the CPU load for 5min. At the time of
testing the available microservices was for the ZED camera, the velodyne 16 and
the IMU.

In the plots generated the labels on the right are the image name used in the
docker-compose.yml for the measurement. To be precise, the green label
represents the microservice odsupercomponent. The three proxy microservices
using libcluon are not depend on odsupercomponent. The odsupercomponent is
part of the previous OpenDaVINCI-based version of OpenDLV, and was still
included in the experiment to see how much CPU load it would cost if running
OpenDaVINCI rather than libcluon. As displayed in Figure 14, the heaviest
microservices in the experiment is proxy-camera, consuming around 26% of
CPU load. The odsupercomponent consumed approximate 5% even though it
was actually not needed for the system.

Figure 14, CPU Load bar chart of four microservices on the x86_64.

5.3 Performance evaluation of proxy-camera

Recently, the old version of the proxy microservices using OpenDaVINCI have
been gradually refactored to use libcluon. An evaluation experiment was
designed to compare the performance of different software structure and
implementation. The performance evaluation was conducted for the rather
heavy microservice proxy-camera. In the experiment, four versions of proxy-
camera have been evaluated. The details of the four proxy-camera versions and
the differences of implementation among them can be found in the Table 1. The
seven characters (e.g. 6dda418) is the hash key of commitment on GitHub. The
version master.0af4299 used in this experiment is using libswscale v3.4.2.

Table 1, Different versions of proxy-camera.

Proxy-Camera Version Implementation details

old proxy OpenDaVINCI+OpenDLV+SystemV IPC&
Semaphores & OpenCV

ubuntu.6dda418 OpenCV 2.x + libcluon (POSIX shared memory)

20 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14

v4l.2728dde v4l2 low-level interface + libcluon + libswscale
(supplied from Alpine Linux)

master.0af4299 (3.4.2) v4l2 low-level interface + libcluon + libswscale (self-
compiled)

CPU load was observed for 5 minutes. All the data were logged without verbose (i.e. no image display). Figure
15 below shows the performance of four different versions of proxy-camera. From the chart, the v4l.2728dde
and master.0af4299 (3.4.2) are more than 10% lower than old proxy and ubuntu.6dda418. The exact
procentage value of the CPU load, after 5 minutes, is shown in

Table 2. The implementation approach using “v4l2 low-level interface + libcluon
+ libswscale” shows promising performance, which decreases the CPU load more
than 10% compared with old proxy (using OpenDaVINCI).

Figure 15, CPU Load line chart of 4 versions of proxy-camera.

Table 2, CPU load percentage of 4 versions of proxy-camera after 5 minutes.

Proxy-Camera Version Load percentage after 5 mins

old proxy 28.5%
ubuntu.6dda418 26.9%

v4l.2728dde 12.5%
master.0af4299 (3.4.2) 15.6%

Furthermore, deeper investigation was performed on the version
master.0af4299 (3.4.2). The memory consumption and CPU load were monitored
for 30 minutes. From Figure 16 and Figure 17, it can be found that the memory
consumption is stable at 0.7% and the CPU load is stable around 15.9%.

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 21

Figure 16, Memory Consumption of master.0af4299 (3.4.2) for 30 minutes.

Figure 17, CPU load of master.0af4299 (3.4.2) for 30 minutes.

22 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14

6 Discussion

In this section, we summarize our reflections about results and answer the three
research questions from our work in the CFSD’18 project.

To answer the first research question about the efficient and traceble
deployment strategy, the microservice software architecture and deployment
workflow is discussed in 6.1 and 6.2. In 6.3, docker related orchestra technology
is discussed to answer the second research question regarding fast deployment
process. The third research question on live data is answered in 6.4 by
explaining the automated log process and its benefits to software development.

6.1 Microservice architecture

libcluon [12], the header-only middleware for distributed systems for robotic
applications, greatly contributes to the upgrade of OpenDLV ecosystem to
transform from stacked layered architecture to purely microservices-based
architecture.

Docker images of microservices using libcluon are much lighter than
microservices based on OpenDaVINCI. The size of docker images using libcluon
is usually about 10MB, while the images for OpenDaVINCI is in the range of
100MB to 1GB. The reason for the great size difference is that the layered
architecture covers everything from the bottom layer to the microservice layer
and requires all dependencies for all microservices to be present in the image,
while libcluon generates a single executable per image that contains only the
minimum set of dependencies

Using libcluon and microservice architecture have brought many benefits to the
CFSD’18 project regarding development and deployment process. Firstly,
developers have much more freedom to design the microservices they are
working on since they are complety independent. For example, the team member
of the CFSD’18 working on perception (lidar, camera, and IMU processing)
appreciate the appearance of libcluon. When using OpenDLV based on
OpenDaVINCI, they have suffered a lot from including new libraries to the
OpenDLV layered structure. The layered structure is not flexible for new
onboard developers to add new libraries they plan to use. However, libcluon
offers the flexibility to newly involved developer to add new libraries and better
control of the microservices. Secondly, libcluon improves the portability of
created docker images. Using libcluon, each microservices can be built as
separate images only containing the target microservices. Before, the layered
structure based on OpenDaVINCI created a large image covering all
microservices together. Furthermore, the ability to build images independently
for each microservice enhances traceability in the development and deployment
process. One simple approach to realize traceability is to tag docker images with
git commit hash key. The high traceability of code and images will greatly save
time and effort spent in testing, deployment, updating and other many related
activities.

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 23

6.2 Software deployment workflow in the CFSD’18

The software deployment strategy in the CFSD’18 combines several platforms to
automate the deployment process, see Figure 10 in Section 4.4.3. GitHub, Travis,
Docker Hub and docker related container technology provide the possibility to
automate the deployment process with high tracebility and robustness of the
system. The process not only helps to reduce a lot of manual work but also
reduce risks and uncertainties when deploying to target machines.

The use of OpenDLV.OS increases the robustness of containerized OpenDLV
framework. The installation of OpenDLV.OS is automated with available settings
to be customized. After installation, the computer is ready to run all containers in
the OpenDLV ecosystem. This shows the possibility to quickly turn a fresh
computer to an active working embedded system.

One of the most important reasons to use docker in projects in the Revere lab
including the CFSD’18 is that one docker image can encapsulate everything
needed for the piece of software. This excellent feature make it possible to
ensure that the execution environment of related code is exactly the same,
reducing potential problems caused by execution environment. As a result,
developers can better focus on the code implementation itself and the following
steps like testing and deployment can benefit from the encapsulation feature as
well.

The containerized technology Docker has been widely used in several projects
supported by Revere lab. The good experience of using Docker ecosystem from
Revere lab encouraged the CFSD’18 project to persist on using Docker.

6.3 Containerized software deployment process

Docker swarm and docker stack are great tool for running containers on a group
of machines with traceability. In the CFSD’18 project, there are a x86_64 and a
armhf, which is a rather simple system. However, the truck and dolly
combination in Revere lab has up to fifteen computers. Using docker swarm and
docker stack will be much more efficient than only using docker-compose for the
truck with dolly combination. The key point is that only one docker-compose.yml
is needed to deploy multi services to specific nodes if using docker swarm +
docker stack. Otherwise, each docker engine needs to maintain one docker-
compose.yml file and run separately.

However, further research done to explore docker orchestra approach indicates
limitation of docker swarm + docker stack. As explained in Section 4.4.2, docker
swarm + docker stack are not suitable for OpenDLV ecosystem by the writing
time. The limitation comes from lack of support for multicast in the overlay
network created by docker swarm. The possible third-party plug-in WeaveNet to
support multicast in the docker swarm only has the release for x86_64 platforms.
Instead, docker-compose has been chosen as the tool for deployment even
though it is not the best for a system containing multiple target machines. More
precisely, each target machine owns its own docker-compose.yml and has to be

24 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14

triggered separately. This leads to docker-compose introduces limitation to fully
automation of the deployment process.

6.4 Automatic test and evaluation

An automated logging script was designed to answer the third research question;
How can live data be visualized and recorded for further offline analysis? The
script automatically logs the CPU load, plots charts and stores raw data in a
folder labeled with date and time. The script was useful when continuously
evaluating the live performances microservces running on the two computers.

When evaluating the performance of microservices on the Beaglebone it was
found that the number of standard messages sent has high impact on the CPU
load even if it’s not further processed after the message handler. This is most
likely because the module extract all messages to check whether they are
relevant before discarding or processing them. This problem can be avoided by
selecting different CIDs for different microservices, hence prevent them to
process irrelevant messages.

When code is frequently updated, for example, several times a day, traceability of
original code and related images becomes an important factor to ensure the
correctness and efficiency of testing. Proper approach of improving traceability
can also reduce the risks of misleading communication between developers and
testers. Furthermore, traceability of evaluation make it possible to clearly show
the result to the whole team. Otherwise, it is easy for team members to feel
confused on which version of the microservices have been tested and measured.

Git is a good tool to facilitate version control of source code. The git commit hash
key (the short version, seven characters) can be directly used as the record of
code version. From experience, it shows a good practice to use git commit hash
key as part of tag when building docker images, especially for frequent testing
and comparison between different versions.

However, there are several constraints to realize fully automated testing for
hardware proxy microservices. One concern is that the correctness of proxy-
camera needs to be manually tested first, including checking right image, right
color, display size and other visible parameters. Another constraint is that the
camera and the computer used for testing sometimes are remote from
developers. Then at least one tester is needed to be present in the lab where the
camera and computer is to manually set up physically connection between
hardware. In other words, the testing cannot be directly triggered by developers
when code has been updated unless the hardware are always in the active state
(power on).

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 25

7 Threats to validity

In this section, the four aspect of validity threats concluded by Runeson and
Höst [42] are discussed for the experiments conduct in this thesis.

The validity of a study represent the degree of truth that other researchers can
trust and rely on. It presents that the study was performed in an unbiased
environment under some conditions. Alternatively, the study result should be
able to be reproduced if other researchers do the same experiment using the
same settings. Potential factors that might affect the experiment results in this
study will also be mentioned and explained to better control the experiment.

7.1 Construct validity

Construct validity refers to the modification between how the thesis actually
conduct and the approach designed and stated in the report. The hardware and
software used in the thesis are exactly the experiment materials specified in
Section 4.3. To trace the microservices performance experiment, the git hash of
the code generating the image were recorded. In reality, other research groups
might use different hardware, for example, different cameras and computers.
This can be a thread to conclude the similar performance result.

7.2 Internal validity

Internal validity concerns whether potential relations between different factors
exist. In the thesis, when conducting performance test, the unrelated processes
running on the x86_64 computer and Beaglebone Black was reduced to a
minimum. The purpose is to reduce the risk that other unrelated processes on
the computation node affect the observation target microservices. The controlled
environment adds internal validity.

However, all the performance tests are done in the indoors laboratory
environment. These hardware and software will be running on the CFSD race car
later. One threat to internal validity could be that during the tests a 450W power
supply was used instead of the 250W power supply. Limiting the power might
have an effect on the computational performance. Another related threat could
be that the stability of the two power supplies can vary.

7.3 External validity

External validity is concerned with the possibility of generalization of the
findings and interest to other people outside the CFSD’18 and Revere lab. The
thesis summarizes the experience of using microservice architecture in a self-
driving race car project. The features, usability, and performance of some
microservices in OpenDLV ecosystem have been extended, tested and evaluated.
All the experience in this thesis indicates the OpenDLV platform, libcluon, docker
ecosystem are portable, efficient and adaptive choices for distributed embedded
system, especially autonomous vehicle projects.

26 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14

7.4 Reliability

Reliability refers to the dependence of the data collection and result analysis. All
experiment hardware are static and software environment is controlled by
docker encapsulated image and git commit hash key as reference. These
practices improve the reliability of the collected data and analysis. Also, because
the data logging and present process has been highly automated, the risk of
manually introduced errors in data collection has been greatly lowered.

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 27

8 Conclusion & future work

The thesis is motivated by the CFSD’18 project, delivering a qualified self-driving
formula race car. The goal was to investigate the software architecture in the
system, design and evaluate the software development and deployment process
for a highly modular and purely microservices-based distributed system on the
example of self-driving race car project CFSD’18.

In order to answer the research questions, the work follows the designed
methodology in Section 4.2 and conducts experiments in a traceable way.

Firstly, the deployment strategy of the CFSD’18 project has been designed by
considering the hardware physically connection and Formula student Germany
competition constraints. The workflow covers several platforms including
GitHub, Travis, Docker Hub and docker-related technology. With OpenDLV.OS
preinstalled on the computer, the only file that needs maintenance is the docker-
compose.yml file. All docker images are labeled with git commit hash key to
facilitate traceability, which makes it easy to rollback to previously images.

Secondly, docker-based strategies have been explored, tested and compared.
Docker-compose is suitable for deploying multiple microservices at once on one
docker machine. This is already chosen as part of deployment strategy in the
Revere lab in previous work. While docker swarm + docker stack are designed
for simple, scalable deployment on multiple docker machines. This should be a
great choice for a complex distributed system. However, the limitation of
applying docker swarm in deploying microservices using OpenDLV comes from
the lack of support for multicast in the docker overlay network.

Thirdly, the microservices performance on the x86_64 and arm platform
Beaglebone have been measured and evaluated. To reduce the risk of operation
errors in the testing and make the testing efficient, automation scripts for data
logging and analysis has been implemented. The performance evaluation shows
the promising result of using OpenDLV and libcluon. All experiments have been
performed in a traceable and controlled environment to improve the validity of
the thesis.

All the result and experience concluded in the thesis will contribute to the cross-
platform development at the vehicle laboratory Revere as a large practical use
case. The thesis indicates the OpenDLV platform, libcluon, docker ecosystem are
portable, efficient and adaptive choices for distributed embedded system,
especially autonomous vehicle projects.

Further work can be explored in using docker swarm + docker stack as a
deployment method when the multicast in the swarm network is available. Also,
comparing the practical use of OpenDLV and libcluon in several different scaled
projects in Revere lab might help to improve the adaptivity and functionality of
OpenDLV ecosystem. Another opportunity for further work is to evaluate the
messages handler in OpenDLV to reduce the CPU load.

28 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14

References

[1] C. Berger, "An Open Continuous Deployment Infrastructure for a Self-driving

Vehicle Ecosystem," in IFIP Advances in Information and Communication

Technology, vol. 472, Cham, Springer, 2016, pp. 177-183.

[2] Revere, "OpenDLV," 25 October 2016. [Online]. Available:

https://www.chalmers.se/en/researchinfrastructure/revere/Resources/Pages/

OpenDLV.aspx.

[3] F. S. Germany, "About: Formula Student Germany," 11 05 2018. [Online].

Available: https://www.formulastudent.de/about/concept/.

[4] P. Marwedel, Embedded System Design, Switzerland: Springer International

Publishing, 2018.

[5] E. A. Lee, "Computing Foundations and Practice for Cyber-Physical Systems: A

Preliminary Report," University of California at Berkeley, Berkeley, 2007.

[6] M. Fowler, "Microservices," 25 March 2014. [Online]. Available:

https://martinfowler.com/articles/microservices.html.

[7] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin and

L. Safina, "Microservices: Yesterday, Today, and Tomorrow," in Present and

Ulterior Software Engineering, Cham, Springer, 2017, pp. 195-216.

[8] I. Nadareishvili, R. Mitra, M. McLarty and M. Amundsen, Microservice

Architecture: Aligning Principles, Practices, and Culture, Sebastopol: O'Reilly

Media, Inc., 2016, p. 6.

[9] J. Stubbs, W. Moreira and R. Dooley, "Distributed Systems of Microservices Using

Docker and Serfnode," in 2015 7th International Workshop on Science Gateways,

Budapest, 2015.

[10] Docker, "What is Docker," Docker, 2018. [Online]. Available:

https://www.docker.com/what-container. [Accessed 13 02 2018].

[11] C. Berger, "OpenDaVINCI," CSE Chalmers, [Online]. Available:

http://opendavinci.cse.chalmers.se/www/. [Accessed 12 05 2018].

[12] C. Berger, "libcluon:Github.com," Christian Berger, [Online]. Available:

https://github.com/chrberger/libcluon. [Accessed 12 05 2018].

[13] C. Berger, "OpenDLV: Github," Chalmers Revere, [Online]. Available:

https://github.com/chalmers-revere/opendlv. [Accessed 12 05 2018].

[14] Carzaniga, Antonio; Fuggetta, Alfonso; Hall, Richard S.; Heimbigner, Dennis; van

der Hoek, Andre; Wolf, Alexander L.; COLORADO STATE UNIV FORT COLLINS

DEPT OF COMPUTER SCIENCE, "A Characterization Framework for Software

Deployment Technologies," Defense Technical Information Center, Fort Belvoir,

Virginia, United States, April 1998.

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 29

[15] R. S. Hall, D. Heimbigner and A. L. Wolf, "A cooperative approach to support

software deployment using the Software Dock," in Proceedings of the 1999

International Conference on Software Engineering, Los Angeles, 1999.

[16] N. Hochgeschwender, L. Gherardi and A. Shakhirmardanov, "A model-based

approach to software deployment in robotics," in Intelligent Robots and Systems

(IROS), IEEE/RSJ International Conference on Intelligent Robots and Systems,

Tokyo, 2013.

[17] "ROS," Open Source Robotics Foundation, [Online]. Available:

http://www.ros.org/.

[18] K. Beck, J. Grenning, R. C. Martin, M. Beedle, J. Highsmith, S. Mellor, A. v.

Bennekum, A. Hunt, K. Schwaber, A. Cockburn, R. Jeffries, J. Sutherland, W.

Cunningham, J. Kern, D. Thomas, M. Fowler and B. Marick, "Manifesto for agile

software development," 2001.

[19] Feitelson, Dror G.; E. Frachtenberg Facebook; K. L. Beck Facebook, "Development

and Deployment at Facebook," IEEE Internet Computing, vol. 17, no. 4, pp. 8-17,

2013.

[20] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu and V. Filkov, "Quality and productivity

outcomes relating to continuous integration in GitHub," in Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering, Bergamo, Italy, 2015.

[21] G. G. Claps, R. B. Svensson and A. Aurum, "On the journey to continuous

deployment: Technical and social challenges along the way," Information and

Software Technology, vol. 57, pp. 21-31, January 2015.

[22] J. Thönes, "Microservices," in IEEE Software (Volume: 32, Issue: 1, Jan.-Feb. 2015),

IEEE, 2015, pp. 113-116.

[23] X. Larrucea, I. Santamaria, R. Colomo-Palacios and C. Ebert, "Microservices," in

IEEE Software (Volume: 35, Issue: 3, May/June 2018), IEEE Software, 2018, pp. 96-

100.

[24] M. Fowler, "Microservices," 24 04 2014. [Online]. Available:

https://martinfowler.com/articles/microservices.html. [Accessed 12 05 2018].

[25] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen and M. Mazzara, "From

Monolithic to Microservices: An Experience Report from the Banking Domain," in

IEEE Software (Volume: 35, Issue: 3, May/June 2018), IEEE Software, 2018, pp. 50-

55.

[26] D. Taibi and V. Lenarduzzi, "On the Definition of Microservice Bad Smells," in IEEE

Software (Volume: 35, Issue: 3, May/June 2018), IEEE Software, 2018, pp. 56-62.

[27] C. Andersson, "Docker," in IEEE Software (Volume: 32, Issue: 3, May-June 2015),

IEEE Software, 2015, pp. 102-105.

[28] C. Pahl and B. Lee, "Containers and Clusters for Edge Cloud Architectures -- A

Technology Review," in Future Internet of Things and Cloud (FiCloud), 2015 3rd

International Conference on, IEEE, 2015, pp. 379-386.

30 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14

[29] C. Berger, B. Nguyen and O. Benderius, "Containerized Development and

Microservices for Self-Driving Vehicles: Experiences & Best Practices," in IEEE

International Conference on Software Architecture Workshops (ICSAW), 2017.

[30] R. Wieringa, "Design science methodology: principles and practice," in Proceeding

ICSE '10 Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering, Cape Town, 2010.

[31] R. Wieringa, "Design science as nested problem solving," in Proceeding DESRIST

'09 Proceedings of the 4th International Conference on Design Science Research in

Information Systems and Technology, Philadelphia, 2009.

[32] AMD, ”AMD Ryzen 7 1700,” AMD, [Online]. Available:

https://www.amd.com/en/products/cpu/amd-ryzen-7-1700. [Använd 12 05

2018].

[33] beaglebone.org, "Beaglebone," beaglebone.org, [Online]. Available:

http://beagleboard.org/bone. [Accessed 12 05 2018].

[34] S. Labs, "Meet ZED," Stereo Labs, [Online]. Available:

https://www.stereolabs.com/zed/. [Accessed 12 05 2018].

[35] Velodyne, "Velodyne 16," Velodyne, [Online]. Available:

http://velodynelidar.com/vlp-16.html. [Accessed 12 05 2018].

[36] S. Systems, "Ellipse2-N: Miniature INS/GPS," SBG Systems, [Online]. Available:

https://www.sbg-systems.com/products/ellipse-n-miniature-ins-gps. [Accessed

12 05 2018].

[37] Docker, ”Docker-Compose Versions,” Docker, [Online]. Available:

https://docs.docker.com/compose/compose-file/compose-versioning/#version-

1-to-2x. [Använd 29 05 2018].

[38] Docker, "Swarm mode overview," Docker, [Online]. Available:

https://docs.docker.com/engine/swarm/. [Accessed 14 05 2018].

[39] Weaveworks, "Multicast in Overlay driver," github, [Online]. Available:

https://github.com/docker/libnetwork/issues/552. [Accessed 14 05 2018].

[40] Weaveworks, "Integrating Docker via the Network Plugin (V2)," Weaveworks,

2018.

[41] C. Berger, ”OpenDLV.OS,” Github, 14 05 2018. [Online].

[42] P. Runeson and M. Höst, "Guidelines for conducting and reporting case study," in

Empir Software Eng (2009), Springer, 2008, pp. 131-164.

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2018:14 31

Appendix A

CPU logging script

1. #Example of usage:
2. #sh cpuload.sh gpio
3. #for logging data for module 'gpip'
4. cmd=$1
5. delay=5
6. loops=$[300/$delay]
7. folder="$(date "+%Y%m%d-%H%M")"
8. mkdir "$folder" 2>/dev/null
9. image="$(docker ps --filter "name=$cmd" --format '{{.Image}}')"
10. container="$(docker ps --filter "name=$cmd" --format '{{.Names}}')"
11. pid="$(docker inspect -f '{{.State.Pid}}' $container)"
12.
13. file="$folder/$cmd.cpu"
14. file2="$folder/$cmd.mem"
15.
16. date | tee -a $file $file2;
17.
18. ps -p $pid -o cmd= | tee -a $file $file2;
19. echo "image=$image" | tee -a $file $file2
20. echo "Start of logging" | tee -a $file $file2
21. for i in `seq 1 $loops`; do
22. ps -p $pid -o %cpu= | tee -a $file;
23. ps -p $pid -o %mem= | tee -a $file2;
24. sleep $delay;
25. done
26.
27. echo "End of logging" | tee -a $file $file2
28.
29. python3 plot.py 1 $folder
30. python3 plot.py 2 $folder

