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Deep Learning for Coronary Artery Segmentation in CTA Images
FREDRIK RING
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The mortality of cardiovascular diseases (CVD) calls for more knowledge of disease
mechanisms and prevention strategies. The SCAPIS study, which is a collaboration
between Swedish university hospitals and universities, aims to acquire this knowledge
and is the worlds largest study focusing on CVD to date. Among other biomarkers,
the SCAPIS study is interested in studying atherosclerotic plaque in coronary arter-
ies which is a major risk factor of CVD. Atherosclerotic plaques can be studied from
computed tomography angiography (CTA) images. The first step of the analysis
is segmentation of the coronary artery tree, which is tedious and time consuming
to do manually. Automatic segmentation techniques can speed up this procedure,
but unfortunately, current automatic methods lack the accuracy required and have
to be manually corrected. Thus, improving the performance of automatic software
could be highly valuable to a large scale study such as SCAPIS.

This thesis investigates the viability of a deep learning based automatic segmen-
tation approach and compares its performance to the commercial software Medis
QAngioCT Re and to the interobserver variability in manual segmentations from
two medical professionals. A version of the state-of-the-art network architecture for
vessel wall boundary segmentation, I2I-3D, is implemented in PyTorch and applied
to the task. I2I-3D is a fully convolutional network allowing for a variable input size
and full volume-to-volume segmentations. It has an encoder-decoder architecture
with multiple levels of deep supervision integrated into the decoder. Evaluation on
manually corrected segmentations on three CTA images shows that the implemented
method outperforms the commercial software for two different segmentation similar-
ity indices; Dice index and modified Hausdorff Distance. However, visual inspection
still implies some shortcomings. Although very precise in the segmentation bor-
der placement, the network segmentations include broken vessels and unconnected
islands of labellings. In contrast, the Medis software’s downfall is its inclusion of
small, clinically irrelevant vessels. When comparing to the interobserver variabil-
ity, both automatic approaches perform unfavourably. Nevertheless, I2I-3D shows
promising performance despite the relatively limited data set of 25 manually cor-
rected segmentations. The results encourage further development with clear room
for improvement. Most importantly, in order to reach full potential the method re-
quires a significantly larger data set. In conclusion, this thesis confirms the viability
of using deep learning to segment coronary arteries in cardiac CTA and should be
interpreted as a proof-of-concept, rather than the presentation of a finished product.

Keywords: coronary artery segmentation, volume-to-volume segmentation, deep
learning, fully convolutional networks, deep supervision, I2I-3D, CNN, cardiac CTA,
SCAPIS, medical image segmentation
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1
Introduction

1.1 Background

Cardiovascular diseases accounted for 45% of all deaths from non-communicable dis-
eases in 2015 [1]. Research is focusing on determining effective strategies for diagno-
sis and prevention, not least in Sweden. The Swedish CArdioPulmonary BioImage
Study (SCAPIS) is the largest study of its kind to date and aims to find risk factors
for diseases such as stroke, chronic obstructive pulmonary disease (COPD), sudden
cardiac arrest and myocardial infarction, with hopes to ultimately prevent these
diseases [2]. SCAPIS is performed in collaboration between six universities and six
university hospitals, collecting loads of data1, including cardiac CTA and anthropo-
metric data, of 30 000 Swedish individuals in order to study the disease mechanisms
and improve risk predictions.

One part of the data analysis is looking at coronary arteries in computed tomog-
raphy angiography (CTA) images. CTA images are volumes built up of multiple
X-ray measurements, where a liquid contrast agent has been injected into the ves-
sels to make them visible. The coronary arteries can show buildup of vascular plaque
causing stenosis; a narrowing of the vessel. Vascular plaque in coronary arteries is,
among other things, a direct risk factor for myocardial infarction. Commonly known
as heart attacks, myocardial infarctions are often the result of plaque coming loose
from the vessel walls and clogging up an artery, thereby preventing blood flow and
causing tissue damage. Segmentations of the lumen, i.e. the space available for
blood flow, and segmentations of the full vessel, i.e. the full space inside the vessel
wall, can provide information of stenosis, by comparing the diameters of the inner
and outer segmentations. A figure showing lumen and vessel wall segmentations in
a healthy vessel and a vessel with vascular plaque is shown in Figure 1.1. In the
right image, the space available for the blood to flow is clearly limited due to the
plaque buildup.

With segmentations of the coronary artery lumen and wall, problem areas are easier
to detect than if manually parsing the entire image (volume). Although provid-
ing valuable information, the segmentation process is tedious and time consuming.

1The complete subject examination consists of cardiac CTA and anthropometric measurements,
determination of ratio between abdominal fat and subcutaneous fat, fat content in the liver, ul-
trasound examinations and lung function tests as well as analysis of sleep quality, physical health
and a survey of general health answered by patients.
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1. Introduction

Figure 1.1: Cross section of coronary arteries in healthy vessel (left) and vessel with
plaque (right). Rough outline for vessel segmentation showing full vessel (dotted
green line), and lumen, i.e. the available space for blood flow (blue line).

With images being in 3D it is hard to view the data properly on a computer screen,
adding another obstacle to the process. Even though manual segmentations are con-
sidered the gold standard, an automatic method, such as Medis QAngioCT Re [3],
is typically used to create a proposal segmentation. That base segmentation is then
manually corrected by medical professionals. This procedure drastically reduces the
time needed to create the segmentations. Having fast and reliable segmentation
software that performs in line with what medical professionals desire is thus highly
valuable for large scale studies such as SCAPIS. Construction of an automatic coro-
nary artery segmentation tool is a complex task, partly due to vessel segmentation
being complex in its own right, and partly due to the volumes containing a large
number of lung vessels which should not be included in the segmentation.

With the field of image analysis moving towards deep learning approaches for seg-
mentation tasks, it is natural to wonder how a deep learning algorithm would com-
pare to non-learning based software like QAngioCT Re at the task of coronary artery
segmentation. If a deep learning tool performs well on the task, it could provide
professionals with better tools in their complex task of combating terrible diseases.
Deep learning algorithms have been successful on similar tasks in the past. In 2015,
Ronneberger et al. introduced U-Net, a fully convolutional network for biomedical
image segmentation which surpassed the performance of all competition on the ISBI
challenge on neuronal segmentation [4]. Further, Merkow et al. built on the general
structure of U-Net with integration of deep supervision in their network, I2I-3D,
which was used in vessel wall boundary segmentation [5]. These networks, and their
underlying building blocks, are reviewed in more detail in Chapter 2.

Investigating the possibility of using deep learning tools for coronary artery segmen-
tation is the focus of this thesis. A state-of-the-art deep learning network for medical
image vessel segmentation is applied to the task of coronary artery segmentation,
with data provided by the SCAPIS study, to determine if such an approach could
be viable.
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1. Introduction

1.2 Project description

The foundation for this thesis is a collaboration between researchers from Chalmers
University of Technology and the SCAPIS study. The Computer Vision and Medical
Image Analysis group at the Department of Electrical Engineering at Chalmers Uni-
versity of Technology have gotten access to manually segmented CTA data from the
study. The vision is to create a deep learning based tool for segmentation of coro-
nary arteries as well as detection and classification of stenosis and vascular plaque.
This master thesis project comprises the first step of the creation of such a tool;
deep learning based coronary artery segmentation. More specifically, the question
that this thesis aims to answer is:

Is deep learning viable for coronary artery segmentation?
To answer this question, a deep learning architecture suitable for the characteristics
of this particular problem has to be chosen. The architecture needs to be able to
handle 3D image data and learn to segment tiny structures from a relatively limited
data set. How viable the approach is can then be determined by comparison to
other methods, both automatic and manual. The main research question can thus
be divided into two sub-questions:

(1) What is state-of-the-art in the field of deep learning based medical image
segmentation in general and, more specifically, with focus on vessels?

Answering this question requires knowledge of the field; of what is being used and re-
searched in medical image segmentation, and what has led the field there. Through
this investigation, knowledge is gained both of the key elements behind deep learn-
ing and the specific characteristics of deep learning applications on medical images.
An exploration of the field also provides a scientific context in which to place the
report as well as ensures that the choice of network architecture can be made based
on previous research.

(2) How does a deep learning approach compare to other automatic approaches as
well as manual segmentations?

With this question, a shift from the theoretical possibilities towards practical im-
plementation is made. Having acquired both a solid foundation of knowledge on
deep learning medical image segmentation and a network structure, the potential of
the method needs to be tested. This requires reference points for performance. As
the algorithm aims to produce segmentations as close to manual segmentations as
possible, it is natural to compare the network segmentations to those from medical
professionals. Further, a comparison with an automatic software that is currently
in use for the task of coronary artery segmentation will be a clear test of its viability.

Combined, these questions lead to theoretical and practical knowledge of deep learn-
ing for medical image segmentation and, specifically, a conclusion of the viability of
using deep learning to segment coronary arteries in cardiac CTA.

3



1. Introduction

1.2.1 Limitations
This project does not deal with the construction of a full application. It does not
include a graphical user interface or executable software for image segmentation.
The end product is in the form of trained network parameters together with Python
scripts to load the parameters into the network, to train it further, and to segment
image volumes.

Further, the algorithm is not developed for stenosis detection. It is limited to vessel
wall segmentation and does not separate between what is lumen and what is vessel
wall. The aim of this thesis is to investigate coronary artery segmentation, meaning
the full volume occupied by coronary arteries. Thus, additional support for lumen
segmentation or stenosis detection are not covered in this project.

To study the potential of a deep learning based method for coronary artery segmen-
tation, a network architecture is not developed from scratch. Rather, an existing
architecture is used and adapted to the specifics of the problem. In the implementa-
tion of the deep learning network, hyperparameters and initialisation process will be
chosen based on recommendations from scientific articles on the subject, and small
scale tests. A thorough optimisation of the hyperparameters and investigation of
different initialisations will not be part of the study.

The project is also limited in terms of data. The main data set of manually seg-
mentated coronary artery images from SCAPIS to train and test performance on
contains 25 CTA images. This is only a small subset of the complete SCAPIS data,
as SCAPIS is still in an early phase and a protocol for manual segmentations has
not yet been established. This means that the data available in this project might
not represent the final data set for the SCAPIS study. The results should thus be
interpreted as an isolated study. However, they can also serve as an indicator of the
potential and viability of a deep learning approach using the full data set.

1.3 Outline of thesis
This chapter served as an introduction to the thesis, explaining the background and
relevance of the project. Further, it specified the questions the thesis aims to answer
as well as its delimitations.

Chapter 2 introduces the theoretical framework and key concepts of deep learn-
ing needed to understand the methods used in the project. This is followed by an
overview of the field of medical image segmentation, starting broadly with automatic
methods and ending with deep learning applications on vessel segmentations.

In Chapter 3, the methods used are described in detail. The chapter starts by
describing the data sets that were used and how they were processed. It then moves
on to describing network implementation in the deep learning framework PyTorch
and ends by describing the training and evaluation processes.

4



1. Introduction

In the following chapters, Chapters 4 and 5, the results of the implementation of
the deep learning algorithm are presented and analysed, respectively. In these chap-
ters, the focus lies on comparing the network segmentations to the Medis QAngioCT
Re segmentations and the manual segmentations in order to establish the viability
of the proposed method. Finally, a conclusion follows in Chapter 6.
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2
Theory

This chapter aims to give the reader the foundation needed to understand the con-
tents of this report, as well as to describe the research surrounding the topic. It
is sectioned into two parts; a section on deep learning and a section highlighting
related work.

2.1 Deep learning
The need for software able to make informed decisions from large amounts of data
is ever increasing in our digital society. Such software is highly dependent on the
interpretation of the data, which is a complex task to manage. Instead of manually
programming the interpretation into the software, there might be benefits to gain
from creating software that can take care of both the interpretation and the deci-
sion making. Such software, able to learn how to interpret data on their own are
generally classified as machine learning algorithms.

More generally, machine learning refers to a family of data-driven algorithms that
are able to automatically learn function mappings to desired output responses from
given inputs. Machine learning can be divided into two categories; supervised learn-
ing where the desired output is explicitly stated, and unsupervised learning where
the algorithm has to learn a suitable output on its own. The former will be the
focus of this report.

The actual learning process is mathematically guided and allows the algorithm to
find important features and disregard redundant information in the data without ex-
plicitly being programmed to. The algorithms find new ways of representing data to
fit a desired response over many iterations of tuning their parameters, usually called
training. This iterative optimisation process of tuning the parameters to the data
can be computationally intensive. Machine learning techniques have been around
for decades, but only with modern advances in computational power have their true
potential fully been demonstrated.

This section will introduce deep learning; a machine learning sub-type based on
artificial neural networks. The section will explore key concepts with a specific focus
on convolutional neural networks. The reader is assumed to have basic knowledge of
neural networks and machine learning. The following should serve as an overview,
rather than a complete mathematical derivation of the underlying theory. For a

7



2. Theory

deeper review of deep learning, see Deep learning by LeCun et al. [6].

2.1.1 Artificial neural networks
Artificial neural networks (ANNs) are a branch within machine learning, inspired
by the structure of the brain. ANNs are networks of inter-connected simple com-
puting units called neurons. Just like in the brain, these neurons are responsible for
passing along information in the huge network of neurons that constitute the brain.
A typical ANN structure can be seen in Figure 2.1. This type of network is known
as a feed-forward network as information only moves in one direction to produce an
output. It is also a fully connected network due to every neuron being connected
to all neurons in the previous and the next layer. The networks usually consists
of multiple layers of neurons. The information flows through the network layer by
layer and is manipulated in each pass between layers through weighted connections,
represented by arrows in the figure, and activation functions. The more layers a
network has, the deeper it is said to be and the more complex functions it can learn
to model. In the case of the network shown in Figure 2.1 there is only one hidden
layer, resulting in a quite shallow network.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.1: A simple feed-forward neural network structure with one hidden layer,
mapping from R4 to R1. Neurons are represented by coloured circles.

The mathematics driving the neurons of the network is simple. Each of the neu-
rons weighted inputs gets summed together, subtracted by a bias term and passed
through an activation function before moving on to the next layer. For neuron i in
the input layer of Figure 2.1 the computation at the neuron is simply

O
(I)
i = a(w(I)

i Ii −B(I)
i ) (2.1)

where Ii is input #i, w(I)
i is the weight from the weighted connection to the neuron,

B
(I)
i is the bias term, a(·) is the activation function, and O(I)

i is the output from the
neuron, with superscript (I) referring to the Input layer. There is no summation in
this expression due to there only being one input to this neuron. Similarly for the
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2. Theory

jth neuron of the Hidden layer, which will be referred to with superscript (H), the
expression for the computation at the neuron becomes

O
(H)
j = a(

4∑
i=1

w
(H)
ji O

(I)
i −B

(H)
j ). (2.2)

This expression shows the summation of the previous layers weighted outputs, but
is otherwise the exact same calculation as in the previous layer. This calculation
drives all of the neurons in the network and can be seen in the Output layer, with
superscript (O), as well,

O(O) = a(
5∑
j=1

w
(O)
j O

(H)
j −B(O)). (2.3)

The propagation of information through the network, from input to output, is com-
pletely described by these calculations. However, for the network to output a desired
response from an input it needs to learn appropriate values for its parameters, the
weights w and the biases B. This is achieved through iterative updates based on a
process named backpropagation.

2.1.1.1 Backpropagation

A simple way of describing the mathematics behind learning is that it should up-
date the parameters of the network in the way that most makes the output from
the network resemble the desired output. To do this, one first needs to describe
how different from the desired output the network output is. That is the role of the
loss function. There are many different viable loss functions, one of them being the
squared distance function, L = (O(O) −O∗)2 where O(O) is the network output and
O∗ is the desired output, which will be used in this demonstration. The task is now
to minimise L. The ideal outcome is to reach a case of L = 0, meaning that there
is no difference between the network output and the desired output.

Assume that for a specific time tn, the weights of the network w(tn) are such that
L 6= 0, with bold w referring to all the weights stacked in a vector. One way to
minimise L is to update the weights in the direction where L decreases fastest, or
in other words, where the slope of L(w) is largest. Mathematically, that can be
computed by differentiation, or the gradient in the multivariate case. The update
rule for each one of the weights, based on this approach, is shown in Equation 2.4,

wj(tn+1) = wj(tn)− η ∂L
∂wj

∣∣∣∣
t=tn

. (2.4)

The factor η is called the learning rate and is a hyperparameter determining how
large a single update step should be. The minus sign ensures that the update is
down the slope, so that L decreases. This method of updating the weights is appro-
priately named gradient descent, and is one of multiple viable optimisation methods

9



2. Theory

to tune the weights of a neural network.

Calculating ∂L
∂wj

∣∣∣
t=tn

is a straight forward task through the use of the chain rule. The
term can be split into its constituents as shown in Equation system 2.5, exemplified
for the small neural network described in Figure 2.1 and Equations 2.1-2.3, where
the gradient is calculated for a weight connecting the hidden and the output layer,
w

(O)
j , a weight connecting the first layer and the hidden layer, w(H)

ji , and a weight
connecting the input to the first layer, w(I)

j :

∂L

∂w
(O)
j

= ∂L

∂O(O)
∂O(O)

∂w
(O)
j

= 2(O(O) −O∗) a′︸ ︷︷ ︸
=δ(O)

O
(H)
j = δ(O)O

(H)
j

∂L

∂w
(H)
ji

= ∂L

∂O(O)
∂O(O)

∂O
(H)
j

∂O
(H)
j

∂w
(H)
ji

= δ(O) w
(O)
j a′︸ ︷︷ ︸

=δ(H)
j

O
(I)
i = δ(O)δ

(H)
j O

(I)
i (2.5)

∂L

∂w
(I)
i

= ∂L

∂O(O)
∂O(O)

∂O
(H)
j

∂O
(H)
j

∂O
(I)
i

∂O
(I)
i

∂w
(I)
i

= δ(O)δ
(H)
j w

(H)
ji a′Ii.

The same procedure is done for all of the weights and biases of the network. The
right hand side expressions in Equation 2.5 are easy to evaluate at the specific time
tn once the values have been propagated through the network. As can be seen from
the δs, the gradients all build on each other just like Equations 2.1-2.3 leading to
the network output, but in the opposite direction. The input data flows through the
network from input layer to output layer in order to calculate the output and the
first gradient. The updates are then calculated from the output layer to the input
layer, as gradients are propagated backwards in the network. This is the process of
backpropagation, first introduced by Rumelhart et al. in 1986 [7].

2.1.1.2 Activation function

While present in all layers of the network in Figure 2.1, the role of the activation
function has yet to be described. To understand why it is needed, assume a network
without activation functions. In vector notation, the computation at every layer
of the network can be described as follows: f(x) = a(Ax + B), where a(·) is the
activation function, x ∈ Rn is the input to the layer, A ∈ Rm×n is the weight matrix,
and B ∈ Rm is the bias vector. It is then clear that in a network without activation
functions, every layer represents an affine mapping: Ax+B. Assume two such layers,
with affine mappings f(x) = Ax + B and g(x) = Cx + D. Propagating x through
both layers, first through g and then through f , results in f(g(x)). Expanding this
expression gives as follows:

f(g(x)) = A(Cx +D) +B = (AC)x + (AD +B),
with (AC) being a matrix and (AD + B) being a vector, the result is a new affine
mapping. Thus; combining affine mappings gives no new complexity to the model.

10



2. Theory

Multiple layers would not have any benefits in a neural network, since they could
always be represented by a single layer. However, with the addition of non-linear
activation functions between the affine mappings the linearity is broken and the
network can model much more complex mappings.

While there are countless non-linear functions, many neural networks use one of
ReLU(x) = max(0, x), tanh(x) or the sigmoid function; σ(x) = 1

ex+1 . The reasoning
behind this is that these functions have gradients that are easy to compute, which
is crucial for learning as shown in Section 2.1.1.1.

2.1.1.3 Overfitting

The training of a neural network may seem straight forward but the process is quite
delicate and complex. There are unwanted phenomenons that need to be consid-
ered, such as overfitting. Overfitting is the phenomenon where the neural network is
overtrained on the training data set to the point that it fails to properly process new
data. While producing correct results on the training set, it might have been tuned
too well to the specific samples of the training set, rather than learning techniques
to properly process it. That way, it becomes more of a dictionary of the training
data, giving the correct output for the chosen input, but not being able to handle
new data. This behaviour is very undesirable and there are ways to combat it such
as data augmentation and drop-out layers. These methods are examples of regular-
isation methods which aim to help the network learn to generalise from the data it
sees in order to handle new data well.

Data augmentation refers to different methods of extending the available data through
software. By doing natural manipulations on the data, more variation can be repre-
sented which gives the network better conditions to learn important features. With
more variation represented, the training process is less susceptible to overfitting.
Which manipulations are viable for augmentation depends on the data. In the case
of images, typical manipulations include flipping along axis, rotation, scaling and
noise addition. For the coronary artery data, flipping along axis is not a viable
manipulation due to the asymmetry in the vessel structure. The left and right - as
well as top and bottom, and front and back - sides have characteristic shapes and
flipping will not represent naturally occurring data. Small rotations, scaling, and
additive noise are on the other hand feasible and were implemented in this project.

Drop-out is another technique to combat overfitting by randomly dropping units
and their connections in each training iteration [8]. Dropping refers to removing the
units from the learning process. This ensures that the network is not too dependent
on any single unit or small group of units. The network constantly has to learn to
process the data correctly from a new set of active neurons each training iteration,
which has been shown to significantly reduce overfitting.

Another regularisation method is weight decay, which reduces the size of the weights
by a factor every weight update. This has been shown to attenuate irrelevant com-
ponents of the vector, improving the networks ability to generalise from data [9].
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2.1.1.4 Optimiser

There are different ways of updating the network parameters, or optimising them,
based on the gradients. Gradient descent, as mentioned in Section 2.1.1.1, is one
such optimiser. In reality, stochastic gradient descent (SGD) is used in favour of
regular gradient descent, due to it being faster and computationally cheaper. Gra-
dient descent requires the gradients to be calculated for the entire training data set
for each update. SGD allows for updates after every data sample, which is much
more efficient.

While reliable, SGD requires careful choice of hyperparameters to tune the algo-
rithm. An optimal learning rate with or without decay, weight decay factor and a
momentum factor have to be set manually and greatly affect the outcome of the
optimisation. Both learning rate and weight decay have been explained previously.
Momentum acts as a sort of memory in the training process. Instead of calculating
completely new update terms every iteration, the new update term is complemented
by the previous update term, typically scaled down by a factor. The scaling factor
then tunes the balance between previous update terms (the memory) and the cur-
rent update term.

Another optimiser, Adam, builds on SGD and is able to adjust learning rate on its
own and individually for each weight [10]. For specific details of how this is achieved
the reader is referred to the paper in which the method is described, i.e. [10]. SGD
still sets the bar for finding good minimas of the loss function, whereas Adam might
get stuck in bad local mininas. However, Adam is faster to converge and does not
require the same level of manual tinkering.

2.1.1.5 Loss function

The loss function solely determines what the network is optimised for, since it is
what the learning algorithm minimises. It is a tricky task to choose the optimal loss
function. Typically, there is a discrepancy between the qualitative characteristics
wanted from the network and what can be mathematically described. An exampel
of a simple loss function was demonstrated in Section 2.1.1.1; the squared distance
loss L = (O − O∗)2. There are many different loss functions used in deep learning,
with each being suited for specific tasks. For image segmentation tasks with fully
convolutional neural networks, binary cross entropy (BCE) is a commonly used loss
function [4, 5]. It is formulated in Equation 2.6, with O = (o1, ...oN) being the
network output and O∗ = (o∗1, ..., o∗N) being the desired output, as described in
Section 2.1.1, for an image with N voxels:

lBCE(O,O∗) = −
N∑
n=1

o∗n · log(on) + (1− o∗n) · log(1− on). (2.6)

This is a measure of negative log likelihood and quantifies the difference between two
probability distributions, where the two terms in the sum represent the two classes,
i.e. the binary nature. Intuitively, one can think of cross entropy as a measure of
how easy it is to predict O∗ from O, where lBCE closer to 0 means easier.
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2.1.1.6 Deep supervision

In supervised learning applications, where the desired output is explicitly stated in
the training process, the parameter updates are typically calculated based on the
loss from comparing the network output and the desired output, as previously de-
scribed. In theory, one could also add outputs from deeper layers in the network and
calculate losses from them as well, in order to force the network to produce viable
outputs in its earlier stages. This is the idea behind deep supervision, which was
first introduced by Lee et al. [11]. Their article shows that the addition of deep su-
pervision not only decreases classification error rate, but also speeds up convergence.

Assume a network with N total outputs, from N different layers in the network.
Deep supervision works by calculating a loss for each of the outputs. Generally, to
compare the network output to the desired output one might need an additional
layer to produce an output shape corresponding to the desired output. All of the
networks losses are then summed together to create the total loss, which is used
for parameter optimisation. With N levels of supervision, and the individual losses
denoted by l, the total loss, L, is simply as shown in Equation 2.7, with superscript
denoting level,

L =
N∑
n=1

l(n)(O(n),O∗). (2.7)

2.1.1.7 Transfer learning

Transfer learning refers to the act of applying gained knowledge on one task to
a new task. This is largely relevant in the field of deep learning. In many deep
learning applications, there might not be a large enough data set to generalise from.
Something that can help is then to initially train the network on different data
sets with similar features to the main data set, before the main training. The data
representations learnt from those data sets might improve the learning on the main
data set, which gives the network a head start on learning to generalise [12]. This
training on different data sets before training on the main task, generally known as
pretraining, is a common practice in deep learning applications.

2.1.2 Convolutional neural networks
Convolutional neural networks (CNNs) are a special category of feed-forward net-
works whose core structure was first introduced under the name Neocognitron by
Fukushima et al. in 1982 [13]. Since then, CNNs have become largely popular in
computer vision applications. They are especially well suited for image analysis
due to their shift invariance and non-sensitivity to natural image variations such as
lighting and visual clutter [14]. As of 2017, CNN-based architectures are the top
performers in ImageNet’s Large Scale Visual Recognition Challenge in object detec-
tion, object classification and object localization [15, 16].
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What separates CNNs from the network type introduced in Chapter 2.1.1 is that
the operation driving the network is filtering, performed by discrete convolutions,
rather than Equations 2.1-2.3. Each layer of a convolutional neural network applies
trained filters on the input through convolutions. The filters are typically much
smaller in size than the image, meaning that they are applied locally to the image.
They are then shifted a set distance in the image, referred to as stride length, suc-
cessively building up the output.1 Each output voxel is the result of a dot product
between a filter and a local neighbourhood of the corresponding voxel in the input.
A visualisation of this is shown in Figure 2.2. This local application of the same
filter all across the image is what gives CNNs their shift invariance.

Figure 2.2: Visualisation of how the output is formed in a CNN. A filter is applied
to a local neighbourhood in the image through dot product. The result is a single
value at the centre of the corresponding position of the neighbourhood in the output
image. The filter is applied to the entire input image in this way.

The filtering process creates a loss of pixels around the borders, which can be seen
in Figure 2.3 as the filter can’t be moved up or right in the input image from
its current position, leaving the space above and to the right of the output pixel
empty. This can be handled by zero padding the input, placing zeros on the outside
of the input image, allowing the filter to be applied at the very borders of the image.

Intuitively, the filtering can be thought of as a means of feature extraction, where
the network learns important features of the data, as well as the appropriate filters
to extract them. It then applies these filters regularly along the image, "looking"
for the specific features it has been trained for. The output becomes a feature map,

1In reality, filters are duplicated to match the size of the input image in order to perform the
full filtering in one operation, rather than shifting and applying the filters iteratively.
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containing information of if and where features are located. At shallow levels in
the network these features may be distinctive gradients in images or characteristic
shapes of signals, but deeper layer filters are often far too abstract to have inter-
pretable conceptual counterparts.

In a CNN, convolutional filters are often interlaced with activation functions and
pooling layers. Pooling layers reduce the size of the input, typically by half along each
axis. There are different ways of pooling; max pooling converts a neighbourhood of
voxels into one voxel containing the largest value from the neighbourhood, average
pooling converts the neighbourhood into a voxel containing the average value, and
so on. An example of max pooling on a 2D image with a pooling window of size
(2, 2) and a stride length of 2 is shown in Figure 2.3. Pooling enables the network to
work with the data in multiple scales. By pooling the input the network effectively
gets a larger receptive field. As in Figure 2.3, four pixels represent a total of 16
pixels in the original image. This allows CNNs to learn features in both large and
small scales; using both global and local image information.

Figure 2.3: Maxpooling of the image matrix on the left with a pooling window
size of (2,2) and a stride length of 2. The result is seen on the right, where each
pixel is the maximum value of their respective neighbourhood in the image.

2.1.3 Terminology
To provide the reader with a quick view of terms that are useful to know in relation
to deep learning and the specifics of this thesis, a small dictionary is shown below.

Activation function Non linear function to break linearity in networks.
Epoch One full pass over every data point in the training process.
Layer Every single function applied to the input can be thought of as a layer that

the input propagates through and is changed by.
Level A block within the neural network where image resolution is constant.
Neuron A single computation unit in the network.
Tensor A multidimensional extension of vectors and matrices.
Training The process of having a neural network learn to produce desired outputs

from inputs through iterative updates of the network parameters.
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Volume / 3D image Used interchangeably to refer to the CTA images, which are
3D image volumes composed of stacks of 2D images.

Voxel The 3D equivalent of a pixel.

2.2 Previous work on medical image segmenta-
tion

Manual image segmentation is both hard and time consuming and many automatic
approaches have been developed with the aim to reduce the amount of manual work.
This section provides an overview of important automatic segmentation techniques,
both non-learning and deep learning based, used in medicine and specifically for
vessels.

2.2.1 Non-learning based medical image segmentation
Automatic image segmentation techniques have been used since before deep learn-
ing algorithms were applied to the task. A technique that has been around since
before the 21st century is the use of Watershed. Watershed is an algorithm that
interprets an image as a topological map where pixel intensities represent height
[17]. Simplified, the segmentation is constructed from borders defined by ”height”
differences. In 2004, Yu-Len Huang et al. successfully implemented Watershed to
segment breast tumors in 2D sonography [18]. The tool was used to assist medical
professionals, aiming to save time and help inexperienced physicians reach the cor-
rect diagnosis.

Another automatic approach used specifically for vessel-like structures is Frangi fil-
tering [19]. The filter enhances tube-like structures based on the eigenvalues of
the Hessian matrix, locally applied to the image. The Hessian is a matrix con-
taining the second order partial derivatives. From its eigenvalues one can deter-
mine the local principal directions in the data, making it a good measure for lo-
cal tube-likeness in an image. Among others, a method based on Frangi filtering
was applied by Martinez-Perez et al. to segment blood vessels in fluorescein reti-
nal images and reached 0.94 in segmentation accuracy (in this case meaning the
number of correctly segmented pixels divided by the total number of pixels)
when compared to medical professionals [20].

A commercial software building on Frangi filters, exclusively used for coronary artery
segmentation, is the Medis QAngioCT Re software [3]. The frangi filtered output
in QAngioCT Re is post-processed using geometric information to separate coro-
nary arteries from unwanted structures. To separate the aorta from the rest of the
coronary artery tree the software uses a Hough transform to determine its location.
The Hough transform is a feature extraction technique excelling at the detection of
circular shapes in images [21]. The software has performed well on the Rotterdam
Coronary Artery Evaluation Framework, currently placing 10th in coronary artery
segmentation and 14th in stenoses detection [22, 23]. The SCAPIS study utilises
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Medis QAngioCT Re for automatic coronary artery segmentation.

Even though automatic approaches like Watershed and Frangi filtering have proven
useful, the field of image segmentation is shifting away from such non-learning based
techniques towards deep learning. This is in part due to the impressive performance
of CNNs in image analysis.

2.2.2 Deep learning based image segmentation
Due to CNNs impressive performance in image classification, as mentioned in Sec-
tion 2.1.2, it was only natural to investigate their performance on segmentation
tasks as well. The first approaches used pixel-by-pixel classifications, where a single
pixel was classified based on the pixel values of a square neighbourhood centered
on it. The filter is applied in a sliding-window manner, being locally applied to a
neighbourhood at a time and building up the output as the filter moves across the
image. With this approach, Ciresan et al. used four stages of convolutional filters
together with fully connected layers to produce segmentations from pixel-by-pixel
classification and outperformed the previous state of the art in the ISBI 2012 EM
Segmentation Challenge [24]. Ning et al. used a similar architecture to segment
images of C. elegans embryos into five classes with an error rate of 29.0% [25].

A breakthrough by Long et al. in 2015 with a network architecture named fully
convolutional networks (FCNs) enabled the use of full image-to-image segmentations,
rather than constructing segmentations from pixel-by-pixel classifications on image
patches [26]. As the name suggests, FCNs have no fully connected layers. They are
composed solely from convolutional filter layers, pooling and activation functions.
This allows the networks to be size-agnostic, able to produce a full size segmentation
regardless of the input image dimensions. In their paper, Long et al. show FCNs
strong ability to produce both accurate classification and localisation while working
on a full image, improving accuracy and reducing computational cost when compared
to patch-by-patch pixel classification.

2.2.3 Medical image segmentation with U-Net
In 2015, Ronneberger et al. introduced a convolutional neural network structure
specifically developed for biomedical image segmentation called U-Net, building on
FCNs [4]. At its time of introduction, U-Net surpassed the performance of all other
methods on the ISBI challenge for neuronal segmentation in electron microscopy im-
ages, as well as the ISBI cell tracking challenge. What makes it ideal for biomedical
image segmentation is its ability to learn from a relatively small data set, something
that can otherwise be a problem in medical applications.

The U-Net network structure is shown in Figure 2.4. It has the typical CNN compo-
nents of filters, activation functions which are ReLU in this case, and pooling. What
separates it from other architectures is that after the standard encoder structure (left
side) of moving down in resolution and extracting features, it has a decoder structure
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(right side), turning the features into a full resolution segmentation in the same level
structure as in the encoder. This gives the network a U-shape, explaining the origin
of its name. The upscaling in the decoder is performed by what Ronneberger et
al. call up-convolutions, also known as transposed convolutions or deconvolutions.
There are also interconnections between the levels of the encoder and the decoder.
The outputs from the encoder levels are concatenated to the corresponding decoder
level inputs, where they are mixed together by convolution. As the network pools
the data in the encoder, the shallow fine detail information gets lost with the im-
age size reduction. This is a problem, since small scale localisation is important in
medical images. Having the encoder responses added back into the decoder combats
this problem, allowing the final layers of the network to have information of both
the shallow fine detail localisation and deep semantic information determining what
class the individual pixels belong to.

Figure 2.4: Image describing U-Net from the original paper by Ronneberger et
al. [4]. The filter sizes are written on top of every convolutional layer and the filter
input sizes are written on the sides.

The U-net structure has also been extended to 3D image segmentation by Çiçek et
al. [27]. One might assume that 3D data could be sliced into a stack of 2D images
and segmented slice by slice before restructuring the segmentations into a 3D vol-
ume, making the need for a 3D version of U-Net unnecessary. However, anatomical
structures have features in all three spatial dimensions, meaning that leaving out
one dimension would limit the information available to the network. Slicing 3D data
is thus not good practice when working with medical images, unless other measures
are taken to account for the three-dimensionality of anatomical features.

2.2.4 Vessel wall segmentation with I2I-3D
In 2016, Merkow et al. introduced a network structure originally designed for vessel
wall segmentation named I2I-3D [5]. The architecture builds on a 3D U-Net struc-
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ture with the addition of deep supervision. It has the general structure of a fine to
coarse, or shallow to deep, encoder followed by a coarse to fine, or deep to shal-
low, decoder with four levels, as well as the interconnections between encoder and
decoder that are present in U-Net. The complete structure, together with specifica-
tions of the number of filters used is shown in Figure 2.5. Upsampling is performed
by deconvolutions. The filter levels contain no drop-out layers and are completely
made up of the convolutional filters and ReLU functions shown in the image. The
mixing layers in the decoder, coloured orange, combine the information from the
previous layer with the corresponding encoder level output through 1 × 1 × 1 con-
volution filters. Merkow et al. showed that this approach, with deep supervision
placed at the end of every decoder level as illustrated in Figure 2.5, outperformed
the previous state of art in 3D vascular boundary detection.

Figure 2.5: Image of I2I-3D network structure from Dense Volume-to-Volume
Vascular Boundary Detection by Merkow et al. [5]. The filter size is written to the
left of every filter layer. Deep supervision is applied at the end of every decoder
level.

With I2I-3D having proved itself in vessel wall boundary detection, it was a natural
choice to investigate its coronary artery segmentation potential. The development of
a segmentation tool in this thesis was thus centered around this network architecture.
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3
Data and Methods

This chapter will describe the data sets used in the project and how they were
processed and used to train the model. The deep learning framework and the net-
work implementation will also be described, as well as the training and evaluation
processes.

3.1 Data

As described in Section 2.1, the data is what drives the training in deep learning and
is thus extremely important. The network needs to generalise from the information
it sees, meaning that the quality of the data can make or break the application.
A common approach in deep learning is to preprocess the data before feeding it to
the network, and to pretrain the network on different data sets before training on
the main task. Even if the pretraining data sets are different to the main data set,
they allow the network to start learning features, as described in Section 2.1.1.7.
To virtually enlarge the data set it is also good practice to augment the data. This
chapter serves to introduce the data sets, as well as the preprocessing and augmen-
tation methods used.

Four data sets were used to train the network; three data sets for pretraining in
addition to the main data set of manually segmented coronary arteries. All data sets
were produced by CT scans, ensuring that the network does not encounter the extra
difficulty of learning to handle images produced by different imaging modalities.

3.1.1 VISCERAL (VS) data set

A subset of the data from the study Cloud-based evaluation of anatomical structure
segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks
was used for pretraining, here referred to as data set VS [28]. The study contains
both MR and CT data with multiple segmented anatomical regions in the body,
e.g. the sternum, the pancreas and the spleen. A subset of 20 CT volumes of
the sternum were used in pretraining, due to their similarity in composition to the
coronary artery images as they are images of the same anatomical region. These
volumes had voxel dimensions of 0.82 × 0.82 × 1.5 mm3 An example image from
the set is shown in Figure 3.1. The data set was split into two sets; a training set
(17/20) and a validation set to evaluate the training (3/20).
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Figure 3.1: Example image volume from the VS data set, sliced along the three
spatial axes. The corresponding segmentation of the sternum is marked in red.

3.1.2 SCAPIS pericardium (PS) data set

From the SCAPIS study, a data set of 30 manually delineated CTA volumes of
the pericardium were used in pretraining [2, 29]. Voxel dimensions ranged between
0.32×0.32×0.30 mm3 and 0.43×0.43×0.30 mm3. The data was originally used to
implement and evaluate a multi-atlas segmentation technique on pericardium seg-
mentation. Due to being CTA volumes and heart segmentations from the SCAPIS
study, they are the exact same type of images as the coronary artery images used
in this project, but with a different corresponding segmentation; heart sac instead
of coronary arteries. It should be noted that they are images of different patients
than in the coronary artery segmentation data sets described below, meaning that
there is no risk of the network ever having seen an image in the test set of the main
data set during pretraining. This data set is referred to as PS and was split into a
training set (25/30) and a validation set to evaluate the training (5/30). Slices from
an image volume in the data set is shown in Figure 3.2.

Figure 3.2: Example image volume from the PS data set, sliced along the three
spatial axes. The corresponding segmentation is marked in red.
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3.1.3 Medis automatic coronary artery segmentations (AS)
data set

Automatically produced coronary artery segmentations from the software Medis
QAngioCT Re working on the SCAPIS data were also used in pretraining, referred to
as the AS data set [2, 3]. The data was of two different voxel sizes; 0.332×0.332×0.5
mm3 and 0.32×0.32×0.30 mm3. Medis QAngioCT Re segments all coronary arteries
it can find, regardless of size. This means that small, clinically irrelevant vessels will
be part of this data. The data set contains 77 CTA volumes with segmentations
which have not been reviewed by medical professionals. Althogh not manually
corrected, AS contains acceptable segmentations of the coronary artery tree for the
task of helping the network learn to segment vessel like structures in pretraining.
The classes are highly imbalanced in this data set, with coronary arteries making up
only an average of around 0.1% of the image voxels. This imbalance can be seen in
the example image in Figure 3.3. The data was split into three sets: a training set
used for training (59/77), a validation set used to evaluate the performance in the
training process (11/77), and a test set which was only used once during the final
evaluation (7/77).

Figure 3.3: Example image volume from the AS data set, sliced along the three
spatial axes. The corresponding segmentation is marked in red.

3.1.4 Manual coronary artery segmentations (MS) data set
The main data set for this study consists of 25 manually corrected segmentations
from the Medis QAngioCT Re software performed on SCAPIS data. These manual
corrections typically consist of small scale corrections of placing segmentation bor-
ders, as well as removal of small vessels far out in the coronary artery tree. Vessels
with a diameter less than 2 mm are typically deemed clinically irrelevant and re-
moved from the segmentation. Naturally, these images are similar to the AS data
set, as can be seen in Figure 3.4. These volumes had the same voxel sizes as the AS
data; (0.332, 0.332, 0.5) mm and (0.39, 0.39, 0.5) mm.
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Figure 3.4: Example image volume from the AS data set, sliced along the three
spatial axes. The corresponding segmentation is marked in red.

Each of the 25 CTA volumes were processed by two medical professionals, A and
B, resulting in two sets of segmentations: MS-A and MS-B. The network trained
on both MS-A and MS-B. The data was split into 3 sets: a training set (18/25), a
validation set (4/25), and a test set for the final evaluation (3/25). Just like the AS
data set, this data set also has a class imbalance with around 0.1% the image voxels
being coronary arteries.

One should note that since medical professionals decide what vessels are interesting
enough to be part of the segmentation, there is subjectivity involved in the manual
corrections. As such, there is no guarantee that two medical professionals produce
completely similar segmentations from the same image data. Over the 25 images,
the mean Dice index similarity was 0.81 and the mean modified Hausdorff distance
similarity was 2.34 between MS-A and MS-B.

3.1.5 Preprocessing
All data samples were normalised to have zero mean and unit variance. A large
range of values in data will create a large range of values in the features extracted
from the filtering processes in the network. Normalising all data to zero mean and
unit variance is a way to keep the data consistent. In Efficient Backprop, LeCun et
al. describe that this process facilitates faster convergence [30].

Due to CT images having different sample spacings in different spatial directions,
the images are scaled to cube voxels. Having cube voxels means that moving one
voxel in any direction represents the same real world distance travelled, no matter
which direction is chosen, so that the image matrix represents the real world more
closely. The information needed for this, the slice thickness (z-dimension) and the
pixel spacing (x-y-dimensions) from the CT scan, is readily available in the DICOM
header incorporated into every DICOM image file [31].
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The VS data set images were small enough to be processed on the available GPU
memory, being of size 176, 176, 128. The PS data set was however too large and was
therefore downscaled to a factor 0.39, to a size of (200, 200, 176). For the AS and
MS data sets, the original image size of (512, 512, Z), where Z represents a variable
number of slices, also proved too large to process. This meant that all images were
shrunk to a maximum size of (248, 248, Ẑ), where Ẑ had a maximum value of 184
due to the GPU memory restriction. Any value larger than 184 in the z-dimension
resulted in a cut down to 184, equally from the top and bottom of the image. The
image shrinking was achieved through downscaling to a factor of 0.5 followed by
the removal of a 4 voxel wide frame in the x and y dimensions. No coronary artery
vessels are present in this 4 voxel wide frame, so this removal should not affect the
performance of the network.

3.1.6 Overview of data fed to network
To summarise; the network was fed data from four different data sets. Two of which
are of the anatomical region surrounding the heart, but not of coronary artery
segmentations, VS and PS, and two coronary artery segmentation data sets, AS
and MS, created by an automatic software and manually by medical experts, re-
spectively. All of the data was normalised to zero mean and unit variance and, if
needed, shrunken down to a smaller size due to GPU memory limitations.

During training, full images were used for the VS and PS data sets, and both full
images and patches from the images were used for the AS and MS data sets, with
roughly 1/6 of the images used in full size and 5/6 used to create patches. Data
augmentation was performed both on the full images and on the patches for the two
latter data sets in order to prevent overfitting.

3.1.7 Data Augmentation
Data augmentation was performed online, meaning that it was done in the training
loop. Offline data augmentation refers to augmentation done separately from train-
ing where the manipulated images are stored as an extra data set. With 3D images
being quite large to begin with, this can become a problem. Another drawback is
that the network will see the same images every epoch. The network may still be
susceptible to overfitting because of this. With online augmentation, the data set
is instead loaded into the training loop where it is manipulated with the methods
described in Section 2.1.1.3 every iteration. Since angles of rotation, scales, and
noise are chosen randomly, new transformations of the images will be used every
epoch, ensuring that the network never sees the same image twice.

The transformations used on the data were small scalings, small rotations and addi-
tive noise. Implementation of noise and rotations are straight forward with Pythons
SciPy library [32]. numpy.rand.normal() was used to generate both noise (mean 0,
variance 3 · 10−2) and small rotation angles (mean 0, variance 1), and the rotations
were performed using scipy.ndimage.interpolation.rotate(). On the patches,
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scaling was implemented by selecting different sized patches from the image. With
32 × 32 × 32 acting as the standard patch size, a side length was chosen from a
normal distribution with a mean of 32 and a variance of 3.2, with lower and upper
limits set to 16 and 64 respectively. On the recommendation of Merkow et. al, only
patches with at least 0.25% coronary artery voxels were used in training [5].

3.2 Implementation of I2I-3D
The focus of this thesis lies on the I2I-3D network described in Section 2.2.4. This
section describes the implementation of I2I-3D in the deep learning framework
PyTorch. A detailed description of the training process is included, with choices
for initialisation, loss function, and optimiser.

3.2.1 PyTorch
PyTorch is a deep learning framework released on Jan 19 2017 [33]. At the time
of writing this report, PyTorch is still in early-release beta but has already been
adopted by the deep learning research community. A year after its beta release on
Jan 12 2018, monthly arxiv.org framework mentions where 72 for PyTorch, com-
pared to 273 for the widely popular TensorFlow, 100 for Keras, 94 for Caffe, and 53
for Theano, showing its quick rise in popularity [33].

PyTorch was created for deep Python integration and builds upon the scientific
computation package Torch for Lua [34]. Unlike frameworks like Tensorflow which
require the user to create a static graph of the network which is differentiated sym-
bolically before any information is passed to it, PyTorch simply runs computations
function by function, line by line, and dynamically constructs the network graph
with each new computation. Although requiring that differentiation is performed
every iteration, it offers the possibility to easily integrate new code into the graph
and change the network structure dynamically and without compilation [35]. An
additional benefit when debugging is that one only has to break through the Python
abstractions, rather than both the Python abstractions and the abstractions of a
static graph to find errors.

PyTorch supports NVIDIAs parallel computing platform, CUDA, for GPU process-
ing. Loading networks and PyTorch tensors containing the inputs and outputs to a
GPU is handled by the cuda() function available in all tensor and neural network
objects. Using multiple GPUs for data parallelisation is initiated by passing the
neural network model through the torch.nn.DataParallell() function. Both of
these computation accelerators were used in training and evaluation.

3.2.2 Implementation of I2I-3D architecture
The I2I-3D network was implemented from scratch in PyTorch based on the article
by Merkow et al. and their Caffe implementation available at GitHub [5, 36]. In
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PyTorch, all neural networks are subclasses of the torch.nn.Module class. This
class contains all the functions needed to build a network; fully connected layers,
convolutional layers, activation functions, pooling layers, and so on. PyTorch also
has a sequential container, torch.nn.Sequential, which builds a block of the neu-
ral network from multiple functions connected in the order they are added to the
sequential container. For example, the line of code below will create a neural net-
work block consisting of two layers of (5, 5) convolution filters acting on a single
layer input, followed by a ReLU activation function.

torch.nn.Sequential(torch.nn.Conv2d(1, 2, (5,5)), torch.nn.ReLU())

The sequential block was used to build each level in the encoder and the decoder
of the I2I-3D network. A snippet of the code, containing the class construction and
the first level of the encoder is shown below.

import torch

import torch.nn as nn

class I2I3D(nn.Module):

def __init__(self):

super(I2I3D, self).__init__()

self.encoder_lvl_1 = nn.Sequential(

nn.Conv3d(1, 4, (3,3,3), padding=1),

nn.ReLU(),

nn.Conv3d(4, 4, (3,3,3), padding=1),

nn.ReLU()

)

The code shows the creation of the I2I3D class, as well as the construction of the
first encoder level, with two sets of four filter layers using filters of size (3, 3, 3) with
zero padding to keep the dimensions unaltered, each followed by ReLU activation
functions. The structure of the network is specified in the __init__ function, mean-
ing that it is created whenever an instance of the I2I3D class is created. The flow
of information has to be specified in a function named forward within the class,
showing how the network output is formed from the input, using the created blocks
from __init__. For example, if the I2I3D class only had the one layer shown above,
the forward function might look like the following:

def forward(self, x):

output = self.encoder_lvl_1(x)

return output

The encoder and decoder blocks, as well as the mixing layers for interconnections
and upscaling layers for deep supervision outputs were created in the __init__()
function and connected in the forward() function. To create probabilistic out-
puts, where each voxel has a probability of being a coronary artery, representing the
network’s certainty in its classification, a sigmoid was added to the outputs. This
normalises the voxel values to the interval (0, 1) which is easily interpreted. A voxel
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value larger than 0.5 was determined as coronary artery in the binarisation process
to create a segmentation.

One change to the original network architecture is the filter sizes used in the net-
work. Merkow et al. suggest using 32, 128, 256 and 512 filter layers in the four
levels. Due to memory limitations of the GPUs, these were changed to 4, 8, 16, and
32 layers, which represents a significantly lower amount of network parameters. One
attempt to tackle memory limitations was done by converting parameters and data
to floating point 16 instead of floating point 32 during training through a method
known as mixed precision training. Unfortunately, this attempt was ultimately un-
successful. For more information on mixed precision training the reader is referred
to an article by NVIDIA [37].

In total, the implemented version of I2I-3D network consists of 49 layers, counting
convolution and ReLU layers separately and including the 3 upscaling and/or flat-
tening layers, and a total of 113,185 trainable parameters. A schematic illustration
of the network structure is shown in Figure 3.5, where filter sizes are written on
the side of every filter layer. The flattening layers are used for the deep supervision
outputs to create single-layered outputs from the 8 and 16 layered decoder outputs.
The full code for the network can be found on GitHub1.

Figure 3.5: The I2I-3D network archtitecture implemented in PyTorch for coronary
artery segmentation.

1https://github.com/frefdrk/i2i3d-pytorch
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3.2.3 Training I2I-3D
Moving from just a network structure to a useful model requires training. A training
loop in PyTorch requires the specification of a loss function and an optimiser. Choice
of loss function, optimiser as well as the optional initialisation process are covered in
upcoming sections. Assuming these choices have been made, example code showing
the simple fashion behind a PyTorch training loop is shown below.

import torch

import torch.nn as nn

import torch.optim as optim

from torch.autograd import Variable

network = I2I3D() # Construct a network from the class created above

network = nn.DataParallell(network) # These two lines enable

network.cuda() # parallell GPU computing

lossFunction = nn.BCELoss() # Binary cross entropy selected as loss

optimiser = optim.Adam(network.parameters()) # Adam chosen as optimser , gets fed with

# the network parameters

for data in dataset:

image, seg = data # Extract image and segmentation from data

output = network(Variable(image).cuda()) # Load to GPU, produce output

loss = lossFunction(output, Variable(seg)) # Calculate loss

optimiser.zero_grad() # Reset optimiser to not keep

# gradients from previous iteration

loss.backward() # Backpropagate from loss

optimiser.step() # Perform the update

After the network has been initialised, one can simply pass the data through it,
calculate the loss and update the parameters with a few lines of code. Naturally,
with the addition of data augmentation in the loop and preprocessing before it,
the code can become more complex. Still, the core of training a neural network in
PyTorch is encapsulated in the code above.

3.2.3.1 Initialisation of network parameters

Initialisation of network parameters can be performed in a multitude of ways. For
this thesis, initialisation follows the method proposed by Xavier Giorot et al., suit-
ably named Xavier initialisation [38]. This initialisation is chosen based on the fact
that Merkow et al. used it in their original implementation of the I2I-3D network
[36]. With Xavier initialisation, biases are initialised to be 0 and weights, w, are
initialised with values sampled from a distribution according to Equation 3.1

wl ∼ U

[
−

√
6

√
nl−1 + nl+1

,

√
6

√
nl−1 + nl+1

]
(3.1)
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where U [a, b] is the uniform distribution in the interval (a, b), l represents the current
layer and nl is the number of parameters in layer l. Clearly, the distribution has
mean 0. The variance of a uniform distribution X, Var[X], in the interval (a, b) is

Var[X] = (b− a)2

12

which gives that

Var[U ] = 1
nl−1+nl+1

2

meaning that the variance of the weights is not dependent on the size of the layer
they belong to, nl, but rather on the average size of the previous and next layer,
(nl−1 and nl+1).

3.2.3.2 Loss function and deep supervision

Binary cross entropy (BCE), described in Section 2.1.1.5, was chosen as loss func-
tion due to its popularity in binary segmentation tasks. Due to deep supervision
integration, the I2I-3D network has three outputs from which to calculate a loss
as visualised in Figure 3.5, with two deep outputs that get flattened and upscaled
in addition to the standard network output. The BCE loss is calculated for each
output and summed together to create the total loss for the network. Using the
definition of BCE from Equation 2.6, the total loss L becomes

L = −
3∑

k=1

N∑
n=1

o∗n · log(o(k)
n ) + (1− o∗n) · log(1− o(k)

n ) (3.2)

where superscript k denotes the outputs from the network.

3.2.3.3 Optimiser

The role of the optimiser is to update the parameters of the network based on the
gradients, as described in Section 2.1.1.1 with gradient descent. In reality, stochastic
gradient descent (SGD) is used in favour of regular gradient descent, due to it being
faster and computationally cheaper. Gradient descent requires the gradients to be
calculated for the entire training data set for each update. SGD allows for updates
after every data sample, which is much more efficient.

While reliable, SGD requires careful choice of hyperparameters to tune the algo-
rithm. An optimal learning rate with or without decay, momentum which acts as
a memory that keeps part of the previous update term in the next iteration, and
weight decay which reduces the size of the weights by a chosen factor each iteration
have to be set manually and greatly affect the outcome of the optimisation.
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3.2.3.4 Training algorithm

We can now combine the previously described topics into an actual algorithm for
the training process of a neural network. A step by step description follows below.

1. Preprocess the data to be used
2. Initialise the network
3. Select and augment a sample or subset of the data
4. Feed data to network and produce output
5. Calculate loss between output and ground truth data
6. Backpropagate gradients from the loss
7. Update parameters based on gradients with optimiser
8. Repeat from step 3 until stopping criteria is met

This process continues for a chosen number of epochs or until a certain criteria is
met, for example reaching a plateau of the loss or some other measure on the vali-
dation data set. The latter criteria was used in this project, where a plateau of Dice
index decided when to stop training.

The training of the I2I-3D network was sectioned into two parts, both following
the steps above. The first part implemented the loss function for deep supervision
from Equation 2.7 and continued until the Dice index plateaued. The second part
continued from the first but with the deep supervision removed, only calculating the
loss from the top-most output of the network, once again until Dice index plateaued.

3.3 Evaluation
To judge whether a deep learning approach is viable for coronary artery segmenta-
tion, the I2I-3D network was tested against the Medis QAngioCT Re software and
the medical professionals. On each of the two medical professionals’ segmentations,
similarity is calculated between it and (1) the deep learning segmentation, (2) the
Medis QAngioCT Re segmentation and (3) the other professional manual segmen-
tation. This gives an assessment of whether or not the deep learning segmentations
exhibit better conformity to the manual segmentations than the automatic software
or the medical professionals themselves. Similarity is measured by two metrics:
Dice index and modified Hausdorff distance, which are both good similarity mea-
sures when working with unbalanced classes, and the latter being especially suited
for cases where the shape of the segmentation is of importance, as in this thesis [39].

Dice index (DI) is a commonly used similarity measure in medical image segmen-
tation [40, 41, 42]. It is also known as the overlap index, with formulation shown
below [39]:

DI = 2TP
2TP + FP + FN

.

Here, TP stands for True Positives which is the number of voxels correctly classified
as coronary arteries, FP stands for False Positives which is the number of voxels in-
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correctly classified as coronary arteries, and FN stands for False Negatives which is
the number of voxels incorrectly classified as non-coronary arteries. With DI taking
all of this into account, it penalises segmentations that are either too inclusive or
too exclusive. It gives a much better measure of performance than simply counting
the number of correct voxel segmenations. Due to the imbalance of classes, with
only 0.1% coronary arteries, a network that would produce an output of only zeros
(representing the non-coronary artery class) would have 99.9% of voxels correctly
classified, seeming like good performance while actually failing completely to seg-
ment the arteries. On the other hand, that same network’s DI would be 0, which is
completely in line with the performance. However, one shortcoming of DI is the lack
of consideration to spatial position. If a segmentation result is wrong by consistently
being one voxel distance off the true segmentation, it would not improve the score
in any way compared to a segmentation result that is wrong by being consistently
off by a hundred voxels. There is no relativeness in DI, only whether each voxel is
correct or not is considered. To complement this measure, a distance metric called
the modified Hausdorff distance is also used.

Instead of counting voxels, the modified Hausdorff distance gives a measure of how
close in space the edge points of the respective segmentations lie. Given two sets
of points, X = {x1, ..., xNx} and Y = {y1, ..., yNy}, the modified Hausdorff distance
(mHD) is given by:

mHD = max
(
d(X,Y), d(Y,X)

)
d(X,Y) = 1

Nx

∑
x∈X

min
y∈Y
||x− y||

where ||x − y|| refers to the Euclidean distance [43]. It measures the average dis-
tance from each point in set X to its closest point in set Y, as well as the other
way around, and returns the largest of the two averages as the similarity measure.
A low mHD value thus represents high similarity.

For the evaluation, the network output was produced as described in Section 3.2.2.
After binarising the network output by thresholding at 0.5 to construct a segmen-
tation, the output was post-processed by manually editing the segmentation in a 20
voxel wide outer frame in the x and y dimensions to the non-coronary artery class.
This was done due to the training data not having any coronary arteries in this
region. The reason for this was twofold; not including this region frees up memory
in the GPU during training, and prevents misclassification in this region as long as
there are no coronary arteries present.
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Results

This chapter presents the results of this study. It covers the speed of the network,
the outcome of the training and, most importantly, the segmentation performance
on coronary arteries in cardiac CTA compared to Medis QAngioCT Re and manual
segmentations by medical professionals.

4.1 Run times
The results were produced on a computer with a NVIDIA GeForce GTX TITAN X
GPU with 12 GB of memory and a NVIDIA GeForce GTX 1070 GPU with 8 GB of
memory running on Ubuntu 16.04. Segmentation of an image of size (256, 256, 192)
took 0.4 seconds on the TITAN X and 1.7 seconds on the 1070. Training for an
epoch took 28.6 seconds on the VS data set, 127.6 seconds on the PS data set, 339.7
seconds on the AS data set, and 182.0 seconds on the MS data set, using both GPUs
in parallel.

4.2 Network training

During all stages of training, the learning rate was set to 10−4 as this proved to be
large enough to provide a relatively fast learning process, after tests starting from
a learning rate of 10−7. Decreasing the learning rate during later epochs was han-
dled automatically by the Adam optimiser. No weight decay was used, due to early
testing on the AS data set showing better performance without it. The training
on the AS and MS data sets was performed with both image patches and full size
images, after early testing showed that this was advantageous. The data serving as
foundation for these decisions is shown in Figure 4.1.

The I2I-3D network was trained for a thousand epochs on each of the pretraining
data sets; VS, PS and AS. The segmentation performance on each of the data sets
before and after training for the training and validation set respectively is listed
in Tables 4.1 and 4.2. The tables show the performance measured in Dice index,
precision, and recall.

These tables show large increases in all performance metrics after training for the
VS and PS data sets, and significantly smaller increases for the two data sets of
coronary arteries, AS and MS, indicating that learning to segment coronary arteries
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Figure 4.1: Plots of segmentation performance for training with and without
weight decay (left) as well as training on only patches and on both patches and
full images (right) on the AS data set. Using weight decay resulted in decreased
performance, whereas training on both patches and full sized images resulted in a
large improvement.

Table 4.1: Training performance on training data. Table shows how the training
affected performance on each of the datasets, where Dice index (DI) before and after
training are listed together with precision and recall. The network column shows
the training in chronological order, where "post XX" refers to a completed training
on dataset XX.

Network Dataset DI Precision Recall
Initialised VS 0.03 0.01 0.41
post VS VS 0.92 0.94 0.90
post VS PS 0.00 0.22 0.00
post PS PS 0.97 0.98 0.97
post PS AS 0.01 0.00 0.71
post AS AS 0.70 0.66 0.75
post AS MS 0.50 0.46 0.59
post MS MS 0.64 0.59 0.72

is a tough problem. Note that after training on VS, the performance on the VS
validation data set is lower than on the VS training data set. This is a sign of over-
fitting, where the network is tuned too well to the training data. On the PS data set,
the metrics are consistantly high both for the training and validation set, indicating
that the I2I-3D structure is apt at heart sac segmentation. Another interesting fact
is that performance on the MS data set is significantly better on the validation data
than on the training data. With only four images in the MS validation data set, this
effect may be due to those images being "easy" cases that do not include hard to
learn features that may be present in the training set. This behaviour is also visible
for the AS data set, but to a lesser degree.
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Table 4.2: Training performance on validation data. Table shows how the training
affected performance on each of the datasets, where where Dice index (DI) before
and after training are listed together with precision and recall. The network column
shows the training in chronological order, where "post XX" refers to a completed
training on dataset XX.

Network Dataset DI Precision Recall
Initialised VS 0.03 0.01 0.99
post VS VS 0.81 0.84 0.80
post VS PS 0.01 0.4 0.01
post PS PS 0.97 0.98 0.96
post PS AS 0.01 0.00 0.74
post AS AS 0.78 0.78 0.78
post AS MS 0.61 0.58 0.64
post MS MS 0.74 0.71 0.79

The AS and MS data sets, which are both coronary artery segmentations, are of
special interest to the study, and were thus investigated in greater detail. The mean
DI on the validation data set during pretraining on AS is shown in the left plot of
Figure 4.2. The plot indicates strong performance in vessel segmentation, as the
DI reaches a value of 0.78. The jumps visible in the left plot at epoch 350 and 750
correspond to reinitialisations of the optimiser after continuation from a previously
completed training session. Adam changes learning rates individually for each pa-
rameter during training, and the reinitialisation will reset these learning rates back
to 10−4 which might explain this behaviour. The reset might have increased the
learning rate enough for the system to leave a local minimum in the next iteration.

On the manually segmented training set the network trained 500 epochs with deep
supervision and 500 epochs without deep supervision. The best performing network
training on the full MS training data set was obtained after 70 deep supervision
epochs and no training without deep supervision, which is what the segmentation
results are based on. A graph showing the DI on the test set for the first 300 epochs
can be seen in the right plot of Figure 4.2. Notice the starting DI being high at
around 0.6, hinting at a successful pretraining where the network learnt to segment
vessel structures well. Due to this, the network only had to fine tune its parameters
to the manually segmented data rather than having to learn from scratch.

4.3 Segmentation performance for test data

4.3.1 Pretraining segmentation results
On the AS test data set containing 7 images, the pretrained I2I-3D network achieved
0.81 in mean DI and 3.37 in mean mHD. Segmentations for two of the 7 test images
are shown in Figure 4.3. Aside from some unconnected islands of labellings, the
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Figure 4.2: DI on validation data during pretraining on the AS data set (left)
and main training on the MS data set (right). The final DI on the validation
set in pretraining was 0.78. During main training on manual segmentations, peak
performance was achieved at epoch 70.

network segmentations greatly resemble those from Medis QAngioCT Re. The net-
work being able to segment vessels to this extent explains the high DI at the start
of training on the main data set shown in the right plot of Figure 4.2.

4.3.2 Final segmentation results
To compare the segmentation performance of the different methods, similarity was
measured between each of them and the manual segmentations, MS-A and MS-B,
and the manual segmentations were also compared to each other. This was done
to evaluate how the deep learning based method compares to the software used by
professionals today as well as to how coherent the professionals are, also known as
the interobserver variability.

Segmentations from one of the three cases are shown in Figure 4.4. Both the seg-
mentations from the network only pretrained on VS, PS and AS data set, referred to
as I2I-3D pretrained, and from the network trained on VS, PS, AS and the manually
segmented data set MS (both MS-A and MS-B), referred to as I2I-3D fully trained,
are shown. Segmentations for each of the methods on all three evaluation cases can
be found in Appendix A.

From the 77 training images used to pretrain the network on vessel segmentation,
the I2I-3D pretrained network performs admirably in mimicking Medis QAngioCT
Re. Further, with the 25 manual segmentations in the main training the network
learns to disregard small vessel structures, although not completely successfully,
and therefore produces segmentations that resemble the manual segmentations to a
higher degree than I2I-3D pretrained. From a visual inspection, it is clear that the
incorporation of the small vessels is the largest source of dissimilarity between the
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Figure 4.3: Segmentations for two volumes in the test data set of AS from Medis
QAngioCT Re and the pretrained I2I-3D. The rows correspond to the two volumes,
with the left figures being the Medis segmentations and the right figures being the
pretrained I2I-3D segmentations.

manual segmentations and the I2I-3D pretrained and Medis QAngioCT Re.

Moving on to a comparison on a smaller scale, there is generally no significant
difference in where the segmentation borders are placed between the manual seg-
mentations, Medis QAngioCT Re and the fully trained I2I-3D, as exemplified by
Figure 4.5, aside from how much of the aorta is part of the segmentation, i.e. the
area in the bottom right corner of the images. A small difference that is visible
is that Medis QAngioCT Re seems to favour a smaller vessel diameter, with more
bright pixels outside of the red segmentation than the others, whereas I2I-3D is
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Figure 4.4: Segmentations on one volume in the test data from each of the seg-
mentation methods. The top left figure shows the MS-A segmentation, the top right
shows the MS-B segmentation, the bottom left shows the Medis segmentation, and
the bottom middle and right figures show the pretrained and fully trained I2I-3D
segmentations respectively. The fully trained I2I-3D segmentation contains some
unconnected blobs, clearly not part of the coronary artery tree, but does a better
job of resembling the two manual segmentations than those from the pretrained
network and Medis QAngioCT Re. This is largely due to Medis QAngioCT Re not
excluding small vessel from the segmentation.

more in line with the medical professionals. While this is generally only a small
difference, it is significantly larger in some regions of the segmentation resulting in
a quite discernible difference between the automatic methods, as shown in Figure
4.6. In this case, I2I-3D is much more in line with the medical professionals than
Medis QAngioCT Re.

The segmentation performance measured by the two similarity metrics, represented
by the mean over the three images, are listed in Table 4.3 for the tested methods
on both data sets, MS-A and MS-B. Performance metrics on both MS-A and MS-B
are also visualised in Figures 4.7 and 4.8 respectively. These metrics tell the same
story as the visual inspection; the pretrained I2I-3D and Medis QAngioCT Re per-
form close to identically, while the fully trained network achieves significantly better
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Figure 4.5: Image highlighting segmentation border placement for segmentations
from professional A (top left), professional B (top right), Medis QAngioCT Re
(bottom left), and the fully trained I2I-3D (bottom right). Area marked in red
represents the segmentation.

similarity metrics. Over the three test images, the two professionals (i.e. the in-
terobserver variability) achieve the highest similarity in both similarity measures.
The fully trained I2I-3D network shows better performance and less variation than
Medis QAngioCT Re on both MS-A and MS-B.

Table 4.3: Similarity metrics measuring segmentation performance. A high DI
as well as a low mHD are desired. The I2I-3D network can not compete with the
interobserver agreement, but outperforms the non-deep learning based automatic
software in similarity to both medical professionals.

Segmentation MS-A MS-B
method DI mHD DI mHD

Professional A - - 0.89 2.18
Professional B 0.89 2.18 - -
I2I-3D fully trained 0.73 3.51 0.74 3.47
I2I-3D pretrained 0.57 4.63 0.58 4.57
Medis QAngioCT Re 0.58 4.69 0.60 4.64

In addition to the fully trained I2I-3D, two networks trained solely on segmentations
from one of the professionals were also implemented, i.e. only having trained on MS-
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Figure 4.6: Image highlighting segmentation border placement for segmentations
from professional A (top left), professional B (top right), Medis QAngioCT Re
(bottom left), and the fully trained I2I-3D (bottom right). Area marked in red
represents the segmentation.

A and MS-B respectively. However, neither of these produced results on par with
the fully trained I2I-3D, and they are thus left out of the comparison.
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Figure 4.7: Performance of segmentation methods on the three images in data set
MS-A. Professional B shows both the best performance and the least variation in DI.
In mHD, B has the best performance, but I2I-3D shows the least variation. While
professional B achieves the best results, the fully trained I2I-3D does outperform
Medis QAngioCT Re, whereas the pretrained I2I-3D is close to Medis QAngioCT
Re’s performance.
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Figure 4.8: Performance of segmentation methods on the three images in data
set MS-B. Once again, the professional shows the best segmentation performance,
followed by the I2I-3D network. The fully trained network shows better performance
and less variation than the Medis QAngioCT Re software. The pretrained I2I-3D is
close to Medis QAngioCT Re in performance.
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5
Discussion

5.1 Analysis of method
This study investigated the coronary artery segmentation performance of a version of
the I2I-3D network implemented in PyTorch. By building the network from scratch
in PyTorch rather than using the Caffe implementation provided by Merkow et al.,
a significant amount of time was consumed by implementing and testing the net-
work. Had a different methodology been chosen, for example starting from the Caffe
implementation, this project could most likely have reached further in the investi-
gation of the network’s potential. There could also have been time to investigate
improvements to the architecture of the network. That said, there is also value in
providing an implementation of the network in another framework1, expanding its
availability for further research. With the network showing promising performance,
that value should not be neglected.

A limiting factor of this project is the relatively small data sets. With a test set of
only three images in the main data set, one could certainly question the weight of
the results. A clear indication that the data sets were too small was shown in Tables
4.1 and 4.2, where the performance was better on the AS and MS validation sets
than on the respective training sets. Since the network has trained on the training
set but never seen the validation images, one expects the performance to be higher
on the training set than on the validation set. That fact that it is not may be an
indication that some hard to learn features in the training sets were not represented
in the validation sets. To do the evaluation thoroughly would thus require a larger
data set. With the SCAPIS study progressing, that will become a reality in time.
Working with medical data, as that provided by SCAPIS, requires that ethical con-
cerns are taken into consideration. It should not be possible to connect any data
sample to an individual taking part in the study. As such, the data used in this
project was stripped of identification tags in information headers.

Another data set that could have been used as either another pretraining data set or
another evaluation set is from the Rotterdam Coronary Artery Algorithm Evaluation
Framework which provides data to compare methods for coronary artery segmenta-
tion and stenoses detection [23]. Using this data would have been the next step in
the investigation into I2I-3D’s potential, given more time. With facts in hand, that
would have been a better use of time than that spent trying to implement mixed

1Available at https://github.com/frefdrk/i2i3d-pytorch
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precision learning.

Why attempts to implement mixed precision were unsuccessful is not known. As
the network was not able to learn with mixed precision, there might have been a
problem of vanishing gradients, i.e. gradients being too small to affect parameters
in the update. One parameter in mixed precision learning, the loss scaling factor,
should be tuned to combat this problem and that might not have been done correctly.

5.2 Analysis of results
With the I2I-3D network architecture having performed well on vessel wall bound-
ary detection in prior research, it is expected that it is also able to learn to segment
full vessel structures. However, with relatively low filter sizes of only 4, 8, 16 and 32
layers in the four respective filter blocks it is surprisingly effective at the task, able
to outperform a commercial automatic software in similarity metrics measured to
manual segmentations. On one hand, this is showing impressive performance. On
the other hand, when analysing the segmentations in Figure 4.4 by eye one can see
that Medis QAngioCT Re is better at keeping vessel structures intact, and its main
fault is including the small, clinically irrelevant vessels of a diameter below 2 mm.
The fully trained network, having learnt to not include these, has the upper hand in
that regard. Even with the impressive numbers in Table 4.3, one should not be too
hasty in celebrating the performance of the network when compared to QAngioCT
Re. The similarity metrics do not tell the complete story.

A more fair comparison of how the two automatic methods compare in full coro-
nary artery vessel segmentation is shown in Figure 4.3. Clearly, the network can
produce segmentations similar to Medis QAngioCT Re, but that was not the goal
of this study. This study aims to reach beyond the Medis QAngioCT Re’s seg-
mentations and produce segmentations as close to the manual ones as possible.
The network suceeds in that aspect. During the training on the manual segmenta-
tions, the network learns to disregard the small vessels that Medis QAngioCT Re
includes, although not perfectly, which improves the similarity indices to manual
segmentations quite drastically. The network also learns to place the segmentation
border more in line with the manual segmentations than Medis QAngioCT Re, as
shown in Figures 4.5 and 4.6. These are both improvements that could set apart
a deep learning approach from regular automatic approaches. However, it seems
that what the network learns when training on the manual data unfortunately also
results in there being broken vessels, as can be seen in the left most vessel in Figure
4.4. There are ways to combat this issue. Using more manually segmented train-
ing data could be a first step, for example. Post-processing on the probabilistic
network output could also be applied. As an example, applying Frangi filtering
techniques to detect vessel-like structures in the probabilistic output might produce
more sophisticated segmentations than simply thresholding at 0.5. Other alterna-
tives for post-processing include using connected component analysis to distinguish
large connected components (vessels) from small connected components (non-vessel
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blobs), using conditional random field modeling to produce segmentations from lo-
cal information in the probabilistic output rather than thresholding every voxel at
a fix threshold, and to simply exclude any structures smaller than 2 mm in diameter.

Nevertheless, using a state-of-the-art network architecture, designed for use on med-
ical images and for vessel (wall) segmentation in the form of I2I-3D, gives promising
results. While not quite keeping up with medical professional segmentations, the
similarity measures favour the deep learning approach over commercial segmentation
software. A deep learning method for coronary artery segmentation, as suggested
in this thesis, definitely seems viable.

In addition to this, it is important to remember that these results were achieved
using a rather limited data set. With 77 automatic coronary artery segmentations
in pretraining and 25 manually corrected segmentations for the main training, these
results show great potential in regards to what could be possible to achieve with a
larger data set. That said, any results obtained with such a small evaluation set,
three images in this case, should be taken with a grain of salt as pointed out previ-
ously. Nevertheless, the strong ability of the U-shaped, interconnected fully convolu-
tional network with integration of deep supervision, but otherwise quite bare-boned
structure, to segment these tiny structures in the evaluation data from limited and
highly unbalanced data sets should be encouraging for future work.

None of the data used to train the network is published online. It was generously
made available from the SCAPIS project for this specific study, meaning that testing
the repeatability of the results achieved in the thesis is limited to those connected
to the SCAPIS project.

Finally, a point regarding the proposed method for coronary artery segmentation
in this thesis should be made clear; the proposed deep learning tool aims to assist
medical professionals in their work rather than to replace them altogether. The
segmentation results and, in continuation, any diagnoses based on them should be
inspected by a professional.

5.3 Subjectivity in manual segmentations
The similarity metrics between the medical professionals segmentations verify the
subjectivity in the process of producing manual segmentations mentioned in Sec-
tion 3.1.4. With a Dice index of 0.89 and a modified Hausdorff distance of 2.18 in
the test data set, it is clear that they differ, although not to a huge degree. The
question of how a neural network handles such subjectivity in the training data is
interesting. Looking at Figure 4.4, the network looks to be more similar to the seg-
mentation from professional B than that from professional A in the presented case,
which the similarity metrics agree with. Whether the subjectivity in the data is a
problem or not is difficult to answer. Since medical professionals don’t completely
agree on what the ground truth is in terms of segmentations, the most one can hope
of from the network is that it produces segmentations that are more similar to the
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group of medical professionals than any one professional from that group. With the
professionals each having their own subjective ideal segmentation, the network will
never be able to agree completely with all of them. This needs to be understood by
anyone wanting to use a deep learning tool in this fashion. Alternatively, one could
construct a separate network for each individual. The subjectivity would still be
present, but there would only be the subjectivity of one individual to learn. This
was attempted in this project, but did not result in segmentations on par with the
network trained on both MS-A and MS-B on either of the MS-A or MS-B test data
sets. Either way, if the tool is to be used to produce an automatic segmentation to
then manually correct, having the tool produce some sort of average segmentation
in relation to a large group of medical professionals seems like the way to go from
an engineer’s point of view.

5.4 Future work
With the SCAPIS study advancing, more and more segmentation data will be pro-
duced. This could certainly benefit deep learning algorithms which are so deeply
dependent on training data. With a starting point in the proposed I2I-3D network,
there are also additions and changes to be investigated. A successful implementa-
tion of mixed precision training would allow for a deeper network which potentially
could improve the network performance. The architecture does not include either
batch normalisation layers or drop-out layers, as Merkow et al. did not include these
in their original architecture, both of which have shown to have a positive impact
on learning [44] [6]. Modified versions of the ReLU activation function, such as the
Leaky ReLU which has a non-zero response for negative inputs, have also shown
improvements compared to regular ReLU in CNN applications [45].

These points, together with hyperparameter optimisation and post-processing pos-
sibilities previously mentioned clearly show that there is still a lot of potential to
investigate. With deep learning based segmentation of coronary arteries being the
first step in the development of a larger tool, this should be done thoroughly.

Building on this deep learning approach to construct a deep learning based tool able
to detect stenosis and vascular plaque is a vision of the Computer Vision and Medical
Image Analysis group at the Department of Electrical Engineering at Chalmers
University of Technology. Using the proposed I2I-3D structure can be encouraged
based on the results of this thesis.
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In a large-scale study such as SCAPIS, it is important that the automatic segmenta-
tion tools used are able to produce high-quality segmentations in order to minimise
the need for laborious and time consuming manual correction. The field of au-
tomated image analysis has been moving away from traditional image processing
techniques in favour of deep learning for some time now. In the case of image seg-
mentation, fully convolutional networks are leading the way, with U-Net inspired
networks such as I2I-3D being front runners in medical applications.

The main research question of this thesis is whether or not a deep learning method
for coronary artery segmentation in CTA images is viable. To answer that ques-
tion, a version of the state-of-the-art deep convolutional neural network architecture
named I2I-3D was applied to data from the SCAPIS study. The network was imple-
mented in the PyTorch deep learning framework, with pretraining on three separate
data sets. To investigate the viability, the network segmentations were compared
to both commercial segmentation software and manual segmentations performed by
two medical professionals. The comparison was made by establishing how similar the
different methods were to each of the manual segmentations through two separate
similarity metrics. One metric, Dice index, measures the segmentation overlap, i.e.
counts correctly and incorrectly classified voxels and gives a single value correspond-
ing to the performance. The other metric, modified Hausdorff distance, determines
how close in space two segmentations are, i.e. determining similarity in overall shape.

What can be concluded from the results is:
1. The I2I-3D network is able to learn well from the limited data set but can not

perform on par with manual segmentations.
2. The I2I-3D network beats the commercial software Medis QAngioCT Re in

both similarity measures on both evaluation data sets. Manual inspection of
the segmentation shows that the network loses some important structures of
the coronary tree, making it harder to determine a clear winner between the
two. The largest source of dissimilarity between the manual segmentation and
Medis QAngioCT Re segmentations is that the latter includes small vessel
structures, while the former does not. I2I-3D does however perform better in
segmentation border placement than Medis QAngioCT Re.

3. The results are promising for future development, as there are clear additions
and changes to investigate for potential improvements, such as batch normal-
isation layers, drop-out layers and post-processing of the probabilistic output
from the network.
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The main research question of this thesis was: Is deep learning viable for coronary
artery segmentation? With the network outperforming the commercial software in
both similarity metrics, the viability has been demonstrated. However, a visual in-
spection of the segmentations show that there is still room for improvement. With
more data and implementation of the proposed additions possibly improving the
performance further, the future for a deep learning based coronary artery segmen-
tation tool looks bright.
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A. Segmentations for the three test volumes in the MS dataset

Figure A.1: Volume #1 in test set of the MS dataset.
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A. Segmentations for the three test volumes in the MS dataset

Figure A.2: Volume #2 in test set of the MS dataset.
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A. Segmentations for the three test volumes in the MS dataset

Figure A.3: Volume #3 in test set of the MS dataset.
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