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Abstract

Eleven-dimensional supergravity can be compacti�ed on AdS4×M7 whereM7 can be cho-
sen as the so called squashed seven-sphere. This allows two solutions, depending on the
orientation of the sphere, one with N = 1 supersymmetry and one non-supersymmetric.
Both solutions correspond to spontaneous symmetry breakings of the round sphere. How-
ever, recent conjectures concerning the string landscape have led to the statement that
non-supersymmetric AdS vacua should be unstable. By studying the standard model of
particle physics one can make certain predictions about the masses of neutrinos from this
conjecture, leading to measureable predictions from string theory.

This thesis aims to study the mass spectra of the squashed sphere in order to gain
some insight into whether or not any instabilities occur. This could then either disprove
or strengthen the proposed conjectures. The full spectrum is not found but some helpful
steps along the way have been provided. In particular, only the scalar, vector and spinor
spectra are studied.

The thesis also discusses some of the conjectures regarding the string landscape in
more detail and shows how these can be used to make predictions in particle physics. The
concepts of Kaluza-Klein compacti�cation and supersymmetry are also introduced, as well
as some group theoretical methods for studying di�erential operators on manifolds. The
full mass spectra of the round seven-sphere are derived using two di�erent methods.
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1

Introduction

In the beginning of the twentieth century two theories were formulated that forever changed
how we look upon our Universe. One described the physics of the very small, the other of
the very large. These two theories were quantum mechanics and general relativity. Physi-
cists have since been working on a way of combining the two into one, and thus creating
one sole theory of everything. Today, more than a century after Einstein introduced rela-
tivity, and almost a century after Heisenberg and Schrödinger formulated the foundations
of quantum mechanics, we are still not sure exactly what this theory is. Our best candidate
to date is something called M-theory [1]. It combines all the previous candidates, the �ve
string theories and eleven-dimensional supergravity, into one. However, this theory is so
complex that we have not even been able to �gure out what the M stands for (the leading
candidates are mystery, magic or membrane).

M-theory o�ers a unique framework for combining all four fundamental forces of Na-
ture. The idea is that instead of just looking at point particles as the fundamental entity, it
includes one-dimensional strings and higher-dimensional objects called p-branes (the gen-
eralisation of membranes to p dimensions). This seemingly simple modi�cation has shown
us that the Universe might be a whole lot stranger than we could have ever imagined before.
One of these strange and remarkable features of M-theory concerns the dimensionality of
spacetime. Most people are probably used to think of Nature as being four-dimensional,
three space dimensions and one time. But if M-theory is correct, we should have eleven
dimensions. So where could these extra dimensions be hiding?

One possible answer lies at the very heart of this thesis, and it is a concept called
compacti�cation [2, 3]. The idea is that we consider the extra dimensions as being too
small for us to detect. This has some profound consequences for the theory that we will
discuss in detail. One being that the geometry of the extra dimensions gives us information
about the masses of the particles in the four-dimensional theory.

In this thesis we will mostly study one special type of compacti�cation where we con-
sider our four-dimensional spacetime to be anti-de Sitter (AdS) and the seven extra dimen-
sions to make up a manifold which we call the squashed seven-sphere [4]. This is similar
to an ordinary round sphere in seven dimensions but with a particular deformation added
to the metric.

Since the full M-theory is still unknown we will instead work in its low-energy limit.
There we �nd the theory of eleven-dimensional supergravity [5]. This is a theory that
combines the ideas of supersymmetry, a symmetry between bosons and fermions, with the
concepts of general relativity [6].

A problem that arises when working in string/M-theory or supergravity is that it
does not seem to give us a unique four-dimensional e�ective theory corresponding to our
everyday world. In fact, it seems to be giving us an enormous landscape of possible
theories [7]. This landscape is so huge that almost all e�ective theories seem possible.
So why does our Universe look the way it does? In recent years this question has led to
several conjectures being proposed about the consistency of these e�ective theories [8, 9].

1



2 CHAPTER 1. INTRODUCTION

These conjectures show us that there is an even larger area of inconsistent e�ective theories
surrounding the string landscape, an area that has been dubbed the swampland [8].

One conjecture is the Weak Gravity Conjecture (WGC) [10, 11, 12]. This roughly
states that a consistent theory of quantum gravity must have gravity as its weakest force.
A consequence of this statement (or at least from a sharpened version discussed in Chapter
3) is that non-supersymmetric AdS vacua can not be stable [11]. This sharpened WGC has
then been used to make predictions regarding the masses of the neutrinos in the standard
model of particle physics [13]. It has also been shown to motivate the addition of some
beyond the standard model (BSM) particles, like for example extra Weyl fermions, which
could then lead to measureable predictions from string theory.

The squashed sphere has been shown to give a non-supersymmetric AdS vacuum as
one of its solutions [4]. In order to either disprove or strengthen the WGC we therefore
need to study the squashed sphere in more detaila. The aim of this thesis is to study the
mass spectra of the squashed sphere, and in that way try to contribute to the search for
potential instabilities.

1.1 Outline of thesis

The thesis is organised as follows. We begin our journey in Chapter 2 by discussing the
concept of compacti�cation in detail. This is the foundation of the whole thesis, and
the discussion is needed in order to be able to fully understand the motivation of the
thesis project. The motivation is then discussed in Chapter 3, where we wade through
the swampland of inconsistent e�ective theories. We there discuss the instability of non-
supersymmetric AdS vacua as well as some other conjectures regarding quantum gravity.
The aim of the thesis project is then to contribute to the work of either disproving or
strengthening one of these conjectures by analysing the instabilities of the squashed sphere.
The mathematical toolbox needed to decipher the spectra is the subject of Chapter 4. We
show how one can get geometrical information about a manifold by considering it as a coset
space. The chapter ends by giving a short description of the relevant di�erential operators
that will be studied. Chapter 5 gives a preparatory example of the di�erent methods we
want to use in order to solve for the mass spectra on a coset manifold. The main results
of this thesis are found in Chapters 6 and 7 where we explore the squashed seven-sphere
in detail. Chapter 8 summarises the results and discuss where to go from here.

The thesis aims to be accessible for an arbitrary master's level student of theoreti-
cal physics, meaning that some knowledge about general relativity, di�erential geometry,
quantum �eld theory and string theory is assumed. The main text also assumes some
familiarity with group theory and supersymmetry. However, since these are not subjects
that the typical master student may be familiar with we include some introductory notes
on these topics in the end, along with some other useful knowledge. Appendix A presents
the conventions used throughout the thesis. In Appendix B we introduce the concepts of
group theory. Supersymmetry is introduced in Appendix C. There we construct the theo-
ries of super-Yang-Mills in ten dimensions and supergravity in eleven dimensions. Note also
that this introduction to supersymmetry was written together with Adrian Padellarob as
a joint e�ort to gain the background knowledge needed for our separate master's projects.
Appendix D gives a brief introduction to the octonions while Appendix E discusses the
Dirac gamma matrices in seven dimensions.

aThis point was �rst raised by M.Du� in conversations with my supervisor.
bGothenburg University, guspadad@student.gu.se
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2

Kaluza-Klein compacti�cation

This thesis deals with eleven-dimensional supergravity, which is the low-energy limit of the
only available candidate for a theory of everything, M-theory. The idea that we might live
in eleven dimensions, instead of the four that we are used to, probably seems strange to
most people, and one could certainly ask oneself about the relevance of such a theory. In
this chapter we discuss one possibility of how to deal with these extra dimensions in order
to get a sensible theory out of eleven dimensions. The solution is to think of these extra
dimensions as being very small, so small that we are not equipped to feel them. This is
the subject of compacti�cation.

A picture that might help when thinking about compacti�cation is to consider a
tightrope-dancer. When balancing on a thin rope far up in the air the dancer can only
move forwards or backwards on the rope, i.e., he or she is only able to use one space di-
mension. If we instead imagine a small mite living on the rope. This mite can go around
the rope, inside the rope and back and forth on the rope, and is thus able to move around
freely in three space dimensions. In a similar fashion we can think of the extra seven
dimensions from eleven-dimensional supergravity as being too small for us to notice when
we move around in them. This is the so called Kaluza-Klein mechanism, named after its
�rst explorers the German mathematician Theodor Kaluza, [2], and the Swedish physicist
Oskar Klein, [3].

We will begin by studying the simplest example of compactifying only one dimension.
This is relevant when going from M-theory in eleven dimensions to superstrings in ten
dimensions, or when compactifying the standard model in the way discussed in Chapter 3.
This is also what Kaluza and Klein did when trying to combine gravity and electromag-
netism by going from �ve dimensions to four [2, 3]. From this we move on to discuss more
general aspects of compacti�cation and analyse what restrictions we can put on the geom-
etry of the di�erent dimensions. We then make a speci�c ansatz leading to a discussion
of the mass spectra arising due to the compactness of the extra dimensions. In particular,
this allows us to derive the mass operators of eleven-dimensional supergravity compacti�ed
to AdS4 ×M7. This will then lay the foundation for the rest of the thesis.

2.1 Toroidal compacti�cation

We will start by discussing the simplest type of compacti�cation, that of compactifying
only one dimension on a circle (or one-dimensional torus). This is done as an illuminating
example of how the Kaluza-Klein mechanism works, but also because it is a very funda-
mental concept in string theory, giving us the so called T-duality. We will also use this kind
of compacti�cation in the next chapter when we discuss the Weak Gravity Conjecture.

Consider a general D(= d+ 1)-dimensional metric given by

ds2 = gDMNdx
MdxN . (2.1)

3



4 CHAPTER 2. KALUZA-KLEIN COMPACTIFICATION

We single out the dimension given by xd and compactify it by identifying

xd ∼= xd + 2πR, (2.2)

i.e., it now describes a circle with radius R. The D-dimensional indices, M,N , can be
split into M = (µ, d) where µ = 0, . . . , d − 1 (the xµ coordinates are still considered non-
compact). This means that the metric splits into gDMN = {gµν , gµd, gdd}, where the di�erent
parts corresponds to a metric, a vector and a scalar in the d-dimensional spacetime. The
line element can now be parameterised according to

ds2 = gµνdx
µdxν + gdd(dx

d +Aµdx
µ)2, (2.3)

where gddAµ = gµd. Here we only consider the case where gµν , Aµ and gdd are independent
of the compact coordinate xd. The line element is invariant under reparameterisations

x′d = xd + λ(xµ), (2.4)

if we at the same time allow the vector to transform as

A′µ = Aµ − ∂µλ. (2.5)

We thus see that gauge transformations arise as a consequence of the compacti�cation from
higher dimensions [14]. This is what Kaluza and Klein �rst understood and in this way they
tried to combine Einstein's theory of gravity with Maxwell's theory of electromagnetism
by going from �ve dimensions down to four [2, 3].

Consider now a massless scalar �eld, φ, inD dimensions, and expand the xd dependence
of this �eld in a complete set of eigenfunctions

φ(xM ) =
∞∑

n=−∞
φn(xµ)einx

d/R, (2.6)

where the momentum in the xd direction is quantised as pd = n/R, and n is usually refered
to as the Kaluza-Klein excitation number. The Klein-Gordona equation for this massless
scalar is

0 = ∂M∂
Mφ = ∂µ∂

µφ+ ∂d∂
dφ =⇒ ∂µ∂

µφn(xµ) =
n2

R2
φn(xµ). (2.7)

We see here that the massless modes of the full D-dimensional theory become an in�nite
tower of massive d-dimensional �elds, labeled by n. We also see that the mass spectrum
depends on the geometry of the compact dimension (here only the radius R). This is
the core concept of Kaluza-Klein compacti�cation [4]. It is also the foundation of this
thesis, where we study the mass spectra arising when compactifying eleven-dimensional
supergravity on a speci�c kind of geometry, namely the so called squashed seven-sphere.
The idea is precisely this, that the geometry of the compact dimensions determine the
mass spectra of the four-dimensional theory.

One can also see that the d-dimensional mass-squared operator is now given by

M2 = −pµpµ =
n2

R2
, (2.8)

so that for distances much larger than the compact radiiR we will not see the xd-dependent
�elds and the theory becomes d-dimensional [14].

aNote that the Klein in the Klein-Gordon equation is the same as in Kaluza-Klein theory.
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5 CHAPTER 2. KALUZA-KLEIN COMPACTIFICATION

If we now de�ne gdd ≡ e2σ we get the Ricci scalar in D dimensions as

R = Rd − 2e−σ�eσ − 1

4
e2σFµνF

µν , (2.9)

where Rd is the d-dimensional Ricci scalar and Fµν the �eld strength of Aµ [14]. The
graviton-dilaton action of bosonic string theory becomes

S =
1

2κ2

∫
dDx

√
−gDe−2Φ (R+ 4∇µΦ∇µΦ)

=
πR
κ2

∫
ddx
√
−gde−2Φd

(
Rd − ∂µσ∂µσ + 4∂µΦd∂

µΦd −
1

4
e2σFµνF

µν

)
,

(2.10)

where gd is the determinant of gµν and we have introduced the d-dimensional dilaton
Φd = Φ − σ/2 [14]. From this action we see that Φ and σ are massless. They will then
label degenerate solutions of the �eld equations. Although these solutions are degenerate
the physics will still change when we vary Φ or σ. We then call these parameters for the
moduli of the theory, and the space that they parameterise for the moduli space of toroidal
compacti�cation. We will discuss this some more below, but �rst we consider the e�ects
of introducing strings.

2.1.1 T-duality in string theory

Compacti�cation also allows for some really remarkable string corrections. This is due to
the fact that a closed string can wind around the compacti�ed dimension.

We consider a two-dimensional conformal �eld theory on the world-sheet of a closed
string with one periodic scalar �eld

X ∼= X + 2πR. (2.11)

The world-sheet action, and thus the equations of motion, are unchanged by this identi-
�cation, and in particular the theory is still conformally invariant [14]. We should also
demand that the states are single-valued under this identi�cation. This implies that the
center-of-mass momentum is quantised as p = n

R just as in the ordinary �eld theory case
discussed above.

There is, however, another e�ect present only in string theory (or at least only in
theories including extended objects). This is the winding mentioned above. We de�ne the
winding number, W , by

X(σ + π) = X(σ) + 2πRW, W ∈ Z, (2.12)

where 0 ≤ σ ≤ π for the closed string. In other words the winding number is the number
of times the closed string winds around the compacti�ed dimension. The sign of W gives
us the orientation of the winding [15].

The mass-squared operator for a closed bosonic string with winding number W will
become [15]

M2 =
n2

R2
+
W 2R2

α′2
+

2

α′
(NL +NR − 2), (2.13)

where α′ is the Regge slope, with spacetime-dimension length-squared. One can see that
M2 is invariant under the interchange

R → R′ = α′

R
, n↔W. (2.14)
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This means that the theories in the limits R → 0 and R → ∞ are identical. We refer to
this duality as T-duality. A self-dual theory arise at R =

√
α′ [15]. One should also note

that the level-matching condition of ordinary closed bosonic string theory, i.e. NL = NR

is modi�ed if both W and n are non-zero, so that we now have NR −NL = Wn [15].
With T-duality one can relate di�erent string theories, like type IIA and type IIB, to

each other. This is a very large area of research in string theory, but since this thesis
mostly deal with supergravity we will not go into more detail on T-duality here. The
interested reader should look up further details in some of the great textbooks on string
theory ([14] or [15] are good places to start), because it is a truly remarkable phenomenon.
We simply state that T-duality seems to be telling us something very fundamental about
string theory, namely that strings have a di�erent concept of geometry than we are used
to. Note also that T-duality seems to be an exact, i.e. non-perturbative, symmetry [14].

T-duality is present in open string theory as well. This introduces some other excit-
ing e�ects such as interchanging Dirichlet and Neumann boundary conditions, and the
emergence of D-branes [15], but we will not go into this here.

2.1.2 Compacti�cation on T k

Instead of compactifying only one dimension on a circle we can compactify several dimen-
sions on a higher-dimensional torus, T k. The line element can now be written as

ds2 = gµνdX
µdXν + gmndY

mdY n, (2.15)

where Y m, m = 1, . . . , k, are the coordinates that make up the k-dimensional torus, all
having period 2π, and gmn is the metric of the torus. For simplicity we can consider the
rectangular torus. This has all internal circles perpendicular and the metric is thus given
by

gmn =
1

α′
R2
mδmn (no sum), (2.16)

where Rm is the radius of circle m [15]. We now do the identi�cation

Y m(σ + π, τ) = Y m(σ, τ) + 2πWm, Wm ∈ Z, (2.17)

where Wm is the winding number for the mth dimension of the torus. Expanding this in
modes one �nds that the di�erence between the momenta of the left- and right-moving
sectors is given by

pmL − pmR = 2Wm (2.18)

If we imagine that we do not have any anti-symmetric background �eld the momenta will
simply be quantised as

pmL + pmR = Km, (2.19)

where Km corresponds to the Kaluza-Klein excitation number [15].
If, however, the anti-symmetric background �eld, BMN , is turned on we �nd some new

interesting features of the theory. We get new scalar �elds in the d-dimensional theory
from the two-form �eld strength, BMN , when we split it according to the index structure
as Bµν , Bµn and Bmn. Combining this with the scalars from the metric we now have a

total of k(k+1)
2 + k(k−1)

2 = k2 scalars.
The relevant part of the action for closed bosonic strings are [15]

S = − 1

2πα′

∫
d2σ

(
gmnη

αβ −Bmnεαβ
)
∂αY

m∂βY
n. (2.20)
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7 CHAPTER 2. KALUZA-KLEIN COMPACTIFICATION

By expanding the internal �eld components in modes in the usual string theory way one
can �nd that

Km = gmn(pnL + pnR) +Bmn(pnL − pnR), with Km ∈ Z. (2.21)

This can be solved together with Eq.(2.18) to give

pmL = Wm + gmn
(

1

2
Kn −BnpW p

)
,

pmR = −Wm + gmn
(

1

2
Kn −BnpW p

)
,

(2.22)

which in turn gives us the mass operator [15]

M2 = 2gmn (pmL p
n
L + pmRp

n
R) + 4(NR +NL − 2). (2.23)

So we see that, although the Bmn term in the action is a total derivative and doesn't have
any local e�ect on the theory, it does a�ect the spectrum. These massless scalar �elds will
therefore also take part in the parameterisation of the moduli space when compactifying
string theory on T k. This is what we will discuss next.

2.1.3 Moduli space of toroidal compacti�cation

We have seen that the massless scalar �elds arising from compacti�cation will a�ect the
physics of the theory, but not the action. We call these k2 massless scalar �elds labeling
the di�erent vacua for moduli, and the space that they span for the moduli space of the
compacti�cation [15].

The moduli space for the �eld theory can be expressed as the coset space

O(k, k;R)/O(k,R)×O(k,R). (2.24)

We can easily see that the dimensions add up, since we have 2k(2k−1)
2 − k(k− 1) = k2 from

the above space, in agreement with the number of scalars from Bmn and gmn.
However, we saw earlier that when compactifying string theory on a circle we �nd T-

duality which relates theories with inverse radius. In T k compacti�cation we can write the
metric-dependent term in the mass-squared operator as

gmn (pmL p
n
L + pmRp

n
R) =

(
W K

)
G−1

(
W
K

)
, (2.25)

where G is a 2k × 2k matrix

G =

(
1
2g
−1 −g−1B

Bg−1 2(g −Bg−1B).

)
(2.26)

The T-duality symmetry then generalises to the interchange [15]

Wm ↔ Km, G↔ G−1. (2.27)

There are also some additional discrete shift symmetries given by

Bmn → Bmn +
1

2
Nmn, Km → Km +NmnW

n, (2.28)

7
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where Nmn is an anti-symmetric integer-valued matrix [15]. These symmetries can be
represented by the matrix operators

I =

(
0 1
1 0

)
,

S =

(
1 0

Nmn 1

)
,

(2.29)

acting on G by AGAT , where A is either I or S. Here I is the inversion and S the shift.
These operators generate the group O(k, k;Z) [15]. This means that the physical moduli
space of T k compacti�cation of string theory is the quotient space [15]

O(k, k;Z)

∖
O(k, k;R)

/
[O(k,R)×O(k,R)]. (2.30)

We will now turn to more general aspects of compacti�cation, and see that many of
the ideas from toroidal compacti�cation resurfaces.

2.2 Compacti�cation of supergravity

Now that we have seen some examples of how compacti�cation works we will turn to a
more general discussion. We will only discuss the case of compactifying eleven-dimensional
supergravity, however, most of the things discussed are equivalent in string theory. After
this general discussion we will go on to a speci�c ansatz, in the next section, which will be
used to derive the mass operators of interest for this thesis.

We are generally interested in compactifying some (4 + k)-dimensional theory to a
product manifold M4+k = M4 ×Mk. In order for us to follow through on the idea that
the extra dimensions should be small we need to choose Mk as a compact manifold. This
could, for example, be a torus T k, a sphere Sk or something else.

Since all observations of our Universe, to date, seem to indicate that our four-dimensional
spacetime is maximally symmetric, we most often choose M4 to be such a space [15]. This
means that we can express the Riemann tensor of M4 as

Rµνρσ =
R

12
(gµρgνσ − gµσgνρ), (2.31)

where gµν is the four-dimensional metric tensor, and, as usual, R is the Ricci scalar, pro-
portional to the four-dimensional cosmological constant. We have three possible solutions,
R = 0 implies Minkowski, R < 0 anti-de Sitter (AdS) and R > 0 de Sitter (dS) spacetime.

We now start from the equations of motions of eleven-dimensional supergravity. These
are derived in Appendix C, but we will shift the notation slightly in order to better conform
with our main reference [4]. Compared to the appendix we will now denote the �eld
strength of the three-form as F ≡ 2H, and the three-form itself will be denoted AMNP

instead of BMNP . We will change the sign of the Riemann tensor so that AdS has negative
curvature scalar (as stated above). Capital letters will not be superindices but instead
ordinary spacetime indices in eleven dimensions, M,N, . . . for curved and A,B, . . . for �at
indices. In this notation the supergravity equations of motions are

RMN (ω̃)− 1

2
gMNR(ω̃) =

1

3

(
F̃MPQRF̃

PQR
N − 1

8
gMN F̃PQRSF̃

PQRS

)
,

Γ̂MNP D̃N (ω̃)ψP = 0,

DM F̃
MPQR = − 1

576
εPQRM1...M8F̃M1...M4F̃M5...M8 ,

(2.32)
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plus the Bianchi identity for F̃ [4]. Here ω̃ denotes the spin connection resulting from mak-

ing the choice T c
ab = 0 for the torsion, and D̃(ω̃) = DM (ω̃)+ 1

144

(
Γ̂ PQRS
M + 8Γ̂[PQRg

S]
M

)
F̃PQRS

[4]. Here Γ̂ are the eleven-dimensional gamma matrices. The coordinates of eleven di-
mensions will split into those of the four-dimensional maximally symmetric space, xµ

(µ = 0, 1, 2, 3), and those of the seven-dimensional compact manifold, ym (m = 4, . . . , 7),
so that we can write

xM = (xµ, ym). (2.33)

As before, this will allow us to split tensors into di�erent components depending on their in-
dex structure. For example the three-form can be split asAMNP = (Aµνρ, Aµνp, Aµnp, Amnp).
The internal indices (mnp) do not transform under four-dimensional Lorentz transforma-
tions so this three-form now gives us one three-form Aµνρ, seven two-forms, Aµνp, 21 vectors
Aµnp and 35 scalars Amnp in the four-dimensional theory. We can do the same thing to
the vielbein and the gravitino, giving us [4]

e A
M =

(
e α
µ e a

µ

e α
m e a

m

)
,

ψM = (ψµ, ψm),

(2.34)

note however that the spinor index of the gravitino will require some extra care. We will
deal with this shortly.

When giving vacuum expectation values (VEVs) to the �elds we must be careful not to
break the Lorentz symmetry or the maximal symmetry of the four-dimensional manifold.
This implies that any VEV must be proportional to an invariant tensor. The candidates
are the scalar, the metric and the Levi-Civita tensor. By studying the index structures of
the VEVs we can then see that we must set [4]

〈e a
µ 〉 = 〈e α

m 〉 = 0,

〈Fµνρq〉 = 〈Fµνpq〉 = 〈Fµnpq〉 = 0,

〈ψM 〉 = 0.

(2.35)

The only non-zero VEVs are therefore 〈e α
µ 〉, 〈e a

m 〉, 〈Fmnpq〉 and 〈Fµνρσ〉.
Due to us wanting a product space, M4 ×M7, we should choose

〈e α
µ 〉 = e̊ α

µ (x),

〈e a
m 〉 = e̊ a

m (y),
(2.36)

where the circle on top indicates that the object under it is a background value.
Note, however, that we could have considered a more general warped product space

where 〈e α
µ 〉 = f(y)̊e α

µ (x) for some warp factor f(y). These warped product spaces are
interesting in many cases of string theory, but in this thesis we will only concern ourselves
with spaces satisfying f(y) = 1.

The diagonality of the vielbein implies that the di�erential operators will split into two
parts. The Klein-Gordon equation for the massless scalar �elds of the eleven-dimensional
theory will for example split into

0 = �11φ = �4φ+ �7φ, (2.37)

which means that the di�erential operator in the seven-dimensional theory corresponds to
a mass operator in the four-dimensional theory, equivalent to what we saw in the case of
toroidal compacti�cation, Eq.(2.7).

9
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As stated above, maximal symmetry in the external spacetime also implies that the
VEV of the spinor �elds must vanish. We are, however, still interested in having unbroken
supersymmetry in the four-dimensional theory. This means that we must constrain the
VEV to stay zero after a supersymmetry transformation. Using the transformation found
in Appendix C we get

〈δεψ〉 = 〈D̃Mε〉 = 〈
(
DM +

1

144

(
Γ̂ PQRS
M + 8Γ̂[PQRg

S]
M

)
F̃PQRS

)
ε〉 = 0. (2.38)

We can start by considering the case of non-�ux compacti�cation, meaning that all the
components of F are set to zero. This gives us

DMε = 0. (2.39)

This is the so called Killing spinor equation. It tells us that ε is a covariantly constant
spinor. The number of available Killing spinors is the same as the number of available
supersymmetries, i.e., if we have only one spinor satisfying Eq.(2.39) we have N = 1
supersymmetry, and so on [4]. Since we assume that the full 11-dimensional manifold is
a product manifold we can decompose the Killing spinor into a sum of terms having the
form [4]

ε(x, y) = ε(x)⊗ η(y). (2.40)

If we start by considering the covariantly constant Killing spinor in the four-dimensional
maximally symmetric theory we �nd

Dµε(x) = 0 =⇒ [Dµ, Dν ]ε(x) =
1

4
Rµνρσγ

ρσε(x) = 0 =⇒ R = 0, (2.41)

which means that we are in Minkowski spacetime. In the same way we �nd in the internal
space that

Dmη = 0 =⇒ [Dm, Dn]η =
1

4
Rmnpqγ

pqη = 0, (2.42)

which is called the integrability condition [4]. Note that, since we do not assume the internal
manifold to be maximally symmetric, this does not imply that it must be �at [4]. Most
of the known solutions are, however, Ricci-�at, which means that Rmn = 0. Probably the
most important type of Ricci-�at manifolds are the so called Calabi-Yau (CY ) manifolds.
This is a class of complex manifolds that exist in any dimension and are generalisations
of the K3-manifold [15]. Since they are complex this means that they only exist in even
real dimensions and therefore they are mostly relevant when going from ten dimensions
to M4 ×M6, or perhaps when compactifying M-theory to something other than M4 ×M7

like for example M5 × CY3. This is a very large subject in string theory, but since we are
interested in compactifying to M4 ×M7 we once again simply refer the interested reader
to a good book on string theory, for example Becker, Becker & Schwarz, which has over
hundred pages on Calabi-Yau compacti�cation [15].

The known solutions of Ricci-�at seven-dimensional Einstein manifolds are T 7,K3×T 3,
CY3 × S1 and the so called Joyce manifolds, which are compact G2 manifolds.

The story is modi�ed when we allow non-zero �ux, i.e. non-zero Fmnpq and/or Fµνρσ.
These �uxes must be proportional to the Levi-Civita tensor. From the Bianchi identity
dF = 0 together with Eq.(2.35) we �nd

0 = 5(dF )mνρστ = 5∂[mFνρστ ] = ∂mFνρστ − 4∂[νFρστ ]m︸ ︷︷ ︸
=0

, (2.43)
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so that Fµνρσ must be independent of y. In the same way we see that Fmnpq must be x
independent [4].

We now have three options. Either we can keep both Fµνρσ and Fmnpq, or we can put
one of them to zero while keeping the other. In the next section we will set Fmnpq to
zero, and keep only the �ux in the external space, but for now we can brie�y discuss what
happens in the other two cases.

If we keep the F terms in both spaces we can write

F̊µνρσ = 2mεµνρσ,

F̊mnpq 6= 0,
(2.44)

where the 2m factor is just for convenience. This means that the equations of motion for
Fmnpq and RMN from Eq.(2.32) turns into

∇mFmnpq =
1

6
mεnpqrstuFrstu,

Rµν =
1

3

(
−16m2 − 1

12
FmnpqF

mnpq

)
gµν ,

Rmn =
1

3

(
FmpqrF

pqr
n − 1

12
gmnFpqrsF

pqrs + 8m2gmn

)
.

(2.45)

In order to have Rµν = Λgµν , i.e., maximal symmetry in the external spacetime, we must
demand that F 2 = FmnpqF

mnpq is constant. We can, however, see that we are still in AdS,
since F 2 ≥ 0 =⇒ gµνRµν < 0. The splitting of the spinor is now more complex, and
there are many di�erent types of solution. One case where it is possible to prove that all
supersymmetries are broken is found by setting

Fmnpq ∝ η̄Γmnpqη, (2.46)

where η is the Killing spinor [4]. This also implies that Amnp ∝ η̄Γmnpη, which are just
the structure constants of the octonions (see Appendix D). One possibility is to put this
into the squashed sphere compacti�cation. This will however render a somewhat di�erent
spectra than the one we study, especially leading to broken parity [4]. This is discussed at
more length by Du� et al. in Chapter 10 of [4].

Next we can investigate what happens when we put Fµνρσ = 0 and Fmnpq ∝ εmnpq.
The important point here is that in contrast to what happens in the next section we
will not get spontaneous compacti�cation to four dimensions. Instead this will lead to a
topology of the type M comp.

4 × AdS7 [4]. This does not, however, align with what we are
trying to accomplish by thinking of the extra dimensions as very small. There is perhaps
some possibility that we are the ones living in the small dimensions and because of the
compactness of these we do not feel the other seven dimensions. But in this thesis we focus
on the AdS4 ×M7 solution. The interested reader could for example look in [16].

2.2.1 The Freund-Rubin ansatz

We will now discuss the last case mentioned above, namely to put

〈Fmnpq〉 = 0,

〈Fµνρσ〉 = 3mε̊µνρσ(x),
(2.47)

where the 3m proportionality constant is just a choice. This is called the Freund-Rubin
ansatz [4]. With this ansatz we will be able to solve the equations of motions. Since

11
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the VEV of the gravitino must be zero due to maximal symmetry we need not concern
ourselves with its equations of motions. Einstein's equations become

R̊µν −
1

2
g̊µνR̊ = 3m2

(̊
εµρστ ε̊

ρστ
ν − 1

8
g̊µν ε̊

2

)
,

R̊mn −
1

2
g̊mnR̊ = −3

8
m2g̊mn̊ε

2,

R̊µn = 0.

(2.48)

These are solved by
R̊µν = −12m2g̊µν ,

R̊mn = 6m2g̊mn,
(2.49)

where g̊µν has Minkowski signature and g̊mn Euclidean. The maximally symmetric four-
dimensional vacuum is thus seen to be AdS, since we have Λ = −12m2.

We next decompose the eleven-dimensional gamma matrices of SO(1, 10), Γ̂, into
SO(1, 3)× SO(7) generators by writing

Γ̂A = (γα ⊗ 1, γ5 ⊗ Γa), (2.50)

where
{γα, γβ} = 2ηαβ,

{Γa,Γb} = 2δab,

γ5 = iγ0γ1γ2γ3,

(2.51)

which allows us to split the covariant derivative into [4]

˚̃Dµ = D̊µ +me̊ α
µ γαγ5,

˚̃Dm = D̊m − i
m

2
e̊ a
m Γa.

(2.52)

The spinor is split in the same way as before into a sum of terms ε(x, y) = ε(x)⊗ η(y),
which together with the splitting of the covariant derivative implies that the condition for
the supersymmetry transformation of the gravitino is

˚̃Dµε(x) = 0,

˚̃Dmη(y) = 0.
(2.53)

These are now the Killing spinor equations for the external and internal spaces, giving us
the maximal number of unbroken supersymmetries in each space [4]. In AdS spacetime
this is four. We will later discuss the round seven-sphere which allows for eight unbroken
symmetries and the squashed seven-sphere which has two solutions, one with N = 1 and
one with N = 0, depending on which orientation is used [4]. This orientation reversal will
be refered to as �skew-whi�ng�.

The Killing spinor equation for the external space becomes

˚̃Dmη(y) =

(
∂m +

1

4
ω ab
m Γab −

i

2
me a

m Γa

)
η = 0 =⇒ ∇mη = i

m

2
e a
m Γaη, (2.54)

where ∇m is the covariant derivative with only the spin connection term. This gives us
the integrability condition

[D̃m, D̃n]η =
1

4
W ab
mn Γabη = 0, (2.55)
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where W ab
mn is the Weyl tensor [4]. These linear combinations of the Spin(7) generators

Γab generate a subgroup of Spin(7) corresponding to the holonomy group, H, of the con-
nection in Eq.(2.54). This means that the maximal number of unbroken supersymmetries
is equal to the number of spinors left invariant by H, which in turn is given by the number
of singlets in the decomposition of the 8 representation of Spin(7) under H [4].

2.2.2 The mass spectrum

We will now very roughly outline the derivation of the four-dimensional mass operators
found by Freund-Rubin compacti�cation on an arbitrary M7. This is done just to give
you an idea of the steps needed. A more detailed derivation is found in [4]. The idea is
to linearise the eleven-dimensional �eld equations around some arbitrary background, and
then �nd the mass matrix by substituting the linearised �elds into the harmonic expansions
on M7. The spectrum is then found by diagonalising the mass matrix for each �eld [4].

The �uctuations are de�ned by [4]

gMN (x, y) = g̊MN (x, y) + hMN (x, y), (2.56)

ΨM (x, y) = 0 + ψM (x, y), (2.57)

AMNP (x, y) = ÅMNP (x, y) + aMNP (x, y), (2.58)

with F̊MNPQ = 4∇̊[M ÅNPQ]. We will also write fMNPQ = 4∂[MaNPQ]. The next step
is to put these expansions into the equations of motion and keep only terms up to linear
order. For example, Einstein's equations turn into [4]

δRMN =
1

2
∆̊LhMN + ∇̊(M∇̊PhN)P −

1

2
∇̊M∇̊Nh P

P

=
2

3
F̊ PQR

(M fN)PQR −
1

18
g̊MN F̊PQRSf

PQRS − F̊ PQR
(M F̊ S

N) QR hPS

− 1

36
hMN F̊PQRSF̊

PQRS +
1

9
g̊MN F̊PQRSF̊

QRS
T hPT .

(2.59)

Here we introduced the Lichnerowicz operator, ∆L, acting on transverse, traceless, sym-
metric tensors through ∆Lhmn ≡ −�hmn − 2Rmpnqh

pq + 2R p
(m hn)p. Next, we split all

indices into spacetime and internal indices, and use the Freund-Rubin ansatz. This gives
us a lot of equations. The (µν)-part of Einstein's equations becomes (we can now drop the
◦-notation)

∇Lhµν + 2∇(µ∇ρhν)ρ −∇µ∇νh ρ
ρ + 2∇(µ∇mhν)m −∇µ∇νh m

m

=
2

3
mgµνε

ρστεfρστε + 24m2gµνh
ρ
ρ − 24m2hµν ,

(2.60)

and so on [4]. Since pure gauge modes are of no interest to us we will use a particular
gauge that simpli�es a lot of things. This is

∇mhmν = 0,

∇m(hmn −
1

7
gmnh

p
p) = 0,

∇mamNP = 0,

Γmψm(x, y) = 0.

(2.61)

With this choice we can easily split all the �elds into x and y dependent parts, e.g.,
hµν(x, y) = hµν(x)Y (y), hµn(x, y) = Bµ(x)Yn(y), and so on [4]. Here Ym1...mp(y) are
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transverse modes of the Hodge-de Rahm operator, ∆p, discussed in more detail in Chapter
4.

Now, we simply (again, see [4] for details) expand all equations, using the known
qualities of the di�erent modes, and match the results with the relevant mass terms in AdS.
The resulting mass operators are collected in Table 2.1 [4]. The di�erent superscripts label
di�erent towers of states. The operators are independent of which topology used as the
compact manifold, and are therefore relevant for both the round seven-sphere in Chapter 5
and the squashed sphere of Chapter 7. In this thesis we will simply concern ourselves with
calculating the eigenvalues of the di�erent di�erential operators, not the complete mass
spectrum, i.e., we skip all the constants appearing in the table. The di�erential operators
appearing in the table are all discussed in more detail in Chapter 4.

In their derivation Du� et al., [4], �nd that certain modes must be excluded from some
of the towers. This is, however, not something we need to care about since we are only
interested in �nding the eigenvalues of the operators, but it is certainly important when
analysing the actual spectrum.

spin mass operator

2+ ∆0

(3/2)(1),(2) /D1/2 + 7m/2

1−(1),(2) ∆1 + 12m2 ± 6m(∆1 + 4m2)1/2

1+ ∆2

(1/2)(4),(1) /D1/2 − 9m/2

(1/2)(3),(2) 3m/2− /D3/2

0+(1),(3) ∆0 + 44m2 ± 12m(∆0 + 9m2)1/2

0+(2) ∆L − 4m2

0−(1),(2) Q2 + 6mQ+ 8m2

Table 2.1: Mass operators for Freund-Rubin compacti�cation on an arbitrary internal manifold.

2.2.3 Further demands on M7

In order to have massless Yang-Mills �elds in the external space we need to demand that
M7 admits the existence of some Killing vector �elds that generates the isometry group of
M7 [4]. The most obvious example would of course be a group manifold. The only group
manifold in seven dimensions that is also Einstein is the �at seven-torus, T 7 = [S1]7, with
the isometry group U(1)7 [4]. We will, however, not deal with this here but instead focus
on another type of manifolds admitting a group of motions. These are the homogeneuous
spaces corresponding to cosets G/H discussed in Chapter 4. We will especially look at

the round seven-sphere SO(8)/SO(7) and the squashed seven-sphere Sp(2)×Sp(1)
Sp(1)×Sp(1) . Other

solutions are also possible [4].

2.3 Compacti�cation on a G2 manifold

A G2 manifold is a manifold that has as its holonomy group the exceptional Lie group G2.
Whenever you compactify from eleven dimensions to M4 ×M7 and want to have N = 1
supersymmetry you will constrainM7 to have G2 holonomy. This means that there should
be one G2-covariantly constant Killing spinor, i.e.

∇G2η = 0. (2.62)
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In the Freund-Rubin solution this is exactly what we have. The Killing spinor equation is

∇aη = i
m

2
Γaη, (2.63)

when ∇ is the covariant derivative of the tangent space group, SO(7), but we can make it
G2 covariant by introducing

∇̃aη ≡
(
∇a − i

m

2
Γa

)
η = 0. (2.64)

As stated in Appendix B G2 is one of the �ve exceptional Lie groups. It has rank
2 and dimension 14. It is a subgroup of Spin(7) which is the covering group of SO(7).
The reason why we get N = 1 supersymmetry in G2 compacti�cation is that the spinor
of Spin(7) decomposes as 8 = 7 + 1 under G2, and the singlet exactly corresponds to the
covariantly constant Killing spinor [15], as per the discussion in Section 2.2.1.

A G2 manifold is characterised by a real, covariantly constant (with respect to the G2

covariant derivative), three-form, φabc. This also has a dual four-form, usually denoted
ψabcd = ?φabc. The three-form de�nes a metric on M7 [17]

gab =

√
Det(g)

3!4!
φac1c2φbc3c4φc5c6c7ε

c1···c7 =
1

4!
φac1c2φbc3c4ψ

c1c2c3c4 . (2.65)

If the Killing spinor is Majorana and well de�ned over the whole of M7 the three-form
can also be expressed as [17]

φabc = −iη̄Γabcη. (2.66)

The three-form can be chosen as the structure constants of the octonions, aabc, and we
will use the above relation in Appendix D to derive all possible contractions between aabc
and its dual four-form cabcd. Since this identity holds for any three-form of a G2 manifold
with a well-de�ned Majorana Killing spinor, the contraction identities found in Appendix
D will hold for any three-form characterising such a G2 manifold.
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Quantum gravity and the swampland

One of the big problems with string theory, in its present formulation, is that it does not
seem to single out our Universe as the only solution [7]. In fact it gives us an enormously
vast landscape of di�erent possible theories, depending on, for example, how we compactify
the extra dimensions. This landscape is so huge that it almost seems like you could pick
any reasonable e�ective theory and �nd it in some limit of string theory. However, in
recent years several ideas on how to exclude seemingly consistent e�ective theories from
this landscape of possibilities have been proposed. It has been conjectured that there exists
an even vaster area of inconsistent theories called the swampland [8]. Vafa and others have
proposed a collection of speci�c conjectures concerning how to distinguish a consistent
theory from an inconsistent one.

Here we discuss some of the proposed criteria and show examples where they are upheld
in string theory and supergravity. We also discuss how one can apply them to the standard
model of particle physics in order to put constraints on neutrino masses. Several of these
conjectures have been used in other cases as well, resulting in some rather non-trivial
predictions [18, 19]. It is therefore of great relevance to either prove or disprove these
conjectures, which is the motivation of this thesis, as discussed below.

Before turning to the conjectures of the swampland we brie�y discuss gauge/gravity
duality, since this is needed for some of the later discussions.

3.1 Gauge/gravity duality

One of the most exciting areas to emerge from string theory in the last twenty years is the
gauge/gravity duality (sometimes referred to as the AdS/CFT duality) [20]. This describes
a correspondence between operators in a D-dimensional quantum �eld theory and local
�elds in a (D + 1)-dimensional theory of gravity [21]. The statement is that the �eld
theory lives on the boundary of the gravity theory, and this is therefore sometimes called
holography [22].

One can study a system of N coincident D3-branes in type IIB string theory and take
di�erent limits of the 't Hooft coupling λ ≡ 4πgsN , where gs is the string coupling and N
is held �xed (and large). In the limit λ� 1 the branes will collapse into a black brane (the
generalisation of a black hole), and one can �nd that the near horizon limit is described by
AdS5×S5 [22]. In the other limit, λ� 1, one instead �nds that the low-energy excitations
corresponds to SU(N) gauge �elds that realise a four-dimensional conformal �eld theory
called N = 4 super-Yang-Mills [22]. We then have two di�erent theories in the opposite
limits, and the conjecture is that these are equivalent [20].

The duality has not yet been proven, but it has been succesfully tested in a lot of
di�erent cases, and no counterexamples have been found. The gauge/gravity duality is
therefore strongly believed to be true [22].

One very useful thing about the correspondence is that it relates strongly coupled
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17 CHAPTER 3. QUANTUM GRAVITY AND THE SWAMPLAND

systems in one limit to weakly coupled systems in the other limit [22]. So instead of doing
di�cult calculations in a strongly coupled �eld theory we can go over to the weakly coupled
gravity theory, and vice versa. This allows us to perform calculations that previously were
thought to be nearly impossible.

The idea that a gravity theory has a dual �eld theory picture will be of great use to us
when we discuss the conjectures regarding the string landscape and the swampland.

3.2 The Weak Gravity Conjecture

The most important conjecture for this thesis is the Weak Gravity Conjecture (WGC).
The simplest version of the WGC can be stated roughly as follows: Given a quantum �eld
theory coupled to gravity there must exist some object with an elementary gauge charge,
where the corresponding repulsive force is greater than the attractive force of gravity [10].

In a U(1) gauge theory coupled to gravity we can consider two objects with mass m
and minimal equal charge q placed a distance r from each other. The repulsive electric

force on the two objects will be Fe ∼ q2

r2
. The attractive force due to gravity is given by

Fg ∼ m2G
r2
∼ m2

M2
Plr

2 , where MPl is the Planck mass, and G Newton's constant. Now, the

WGC claims that Fg ≤ Fe which implies that the lightest state in the spectrum satis�es

m

MPl
≤ q. (3.1)

There are several motivations for the WGC. One is that it certainly is true in our
Universe, the gravitational force being by far the weakest of the four fundamental forces
of Nature. Another argument is that it seems to always be true in string theory, our only
known UV consistent theory able to couple a quantum �eld theory to gravity [10].

As an example we can study the spectrum of heterotic string theory. The heterotic
string is constructed by combining bosonic degrees of freedom in one direction with super-
symmetric degrees of freedom in the other direction. We will use the convention that the
left-movers are bosonic and the right-movers supersymmetric. The bosonic string lives in
26 dimensions and the superstring in 10, so in order to combine these one must compactify
the extra 16 dimensions in some way. This should be done on some even and self-dual
lattice [23]. These conditions on the lattice arise at the one-loop level. There are only
two even and self-dual lattices of dimension 16, namely the weight lattices of E8 ×E8 and
Spin(32)/Z2. This gives us two possible heterotic theories, and we call them the E8 ×E8

and the SO(32) heterotic strings. However, this distinction is only available in ten dimen-
sions; once we compactify a number of dimensions the two theories will share the same
moduli space [15].

When compactifying the heterotic string on the d-dimensional torus T d we get a
U(1)16+2d gauge symmetry, whose charges make up an even self-dual lattice, i.e. (pL, pR) ∈
Γ16+d,d. This is so because we need to compactify 16 + d of the left-moving dimensions
and d of the right-moving ones [15].

The mass spectra of the heterotic string is given by

1

2
M2 =

1

2
p2
L +NL − 1 =

1

2
p2
R +NR, (3.2)

where NL and NR are the oscillator contribution for the left- and right-movers, respectively
[15]. We are interested in the lowest mass states for a given set of charges. By writing
1
2(p2

L−p2
R) = NR−NL+ 1, we see that if we put NL = NR = 0 we must have p2

L−p2
R = 2.

On the other hand, if p2
L−p2

R < 2 we can have NR = 0 but NL must be non-zero. This state
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has 1
2M

2 = 1
2p

2
R, and is a so called BPS state. These are massive short representations

of extended supersymmetry algebras, where the mass equals the central charge (for more
information on extended supersymmetry, and its representations, see Appendix C). The
BPS state saturates the WGC bound. If instead p2

L − p2
R > 2 we can put NL = 0 which

gives us 1
2M

2 = 1
2p

2
L − 1. This is not a BPS state. It obeys the strict inequality M2 < p2

L.
So we see that the heterotic string gives us some examples of the WGC being valid.

We can also motivate the conjecture by considering an electrically charged black hole
with mass M and charge Q. The action of such an object in four dimensions is

S =

∫
d4x
√
−g
(
R

2κ
− 1

4
FµνF

µν

)
. (3.3)

The most general static and spherically symmetric solution is the Reissner-Nordström
metric

ds2 = −∆dt2 + ∆−1dr2 + r2dΩ2, (3.4)

where ∆ = 1 − 2M
r + Q2

r2
, and we use units where G = 1 [15]. The event horizon of this

black hole is at rH = M ±
√
M2 −Q2, and we see that it can only be present forM ≥ |Q|.

If M < |Q| we get a so called naked singularity. These are, however, forbidden by the
cosmic censorship hypothesis [15].

In particular, an extremal black hole is a black hole saturating the Reissner-Nordström
bound, i.e., with M = |Q|. We know that all (non-BPS) black holes should be allowed to
send out Hawking radiation. But, if the WGC is incorrect we have m > q for all states in
the spectrum. This means that when the black hole radiates a particle it will afterwards
have M ′ < |Q′|, violating the extremality bound. The only solution is for the WGC to
hold with at least one type of particle in the spectrum satisfying Eq.(3.1).

The WGC was �rst introduced by Arkani-Hamed et al. in [10], and there they also
give a generalisation of the conjecture to include more general types of charged objects.
As an example, consider a p-form Abelian gauge �eld in D dimensions. Then there must
exist electrically and magnetically charged objects of D − 1 and D − p − 1 dimensions
respectively. According to the generalised conjecture these then have tensions satisfying

Te ≤
(
g2

G

)1/2

, Tm ≤
(

1

g2G

)1/2

, (3.5)

where g is the coupling constant having dimension mp+1−D/2 [10]. The bounds are satu-
rated by BPS states but are strict for other types of objects. This fact, together with the
case of the heterotic string, motivates a small sharpening of the WGC that we will discuss
next.

3.3 A sharpened WGC, and AdS instability

Ooguri and Vafa, [11], have proposed a sharpening of the WGC allowing the inequality of
Eq.(3.1) to be saturated if and only if the underlying theory is supersymmetric and the
states saturating the bound are BPS states.

One motivation for the sharpened conjecture comes from considering extremal black
holes, again. If we allow these black holes to emit particles at the bound small perturbations
could easily tip the scale in the wrong direction, and the black hole would thus violate
the WGC. In this case we must have a good reason for why this does not happen. In the
supersymmetric case the BPS states do not allow for these �uctuations and instead provide
us with a robustness of the conjecture [11].
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The sharpened conjecture is further motivated by the cases we have already seen, e.g.
the heterotic string, and the charged branes discussed in the previous section. In connection
to those two cases it has been shown that string corrections to the mass/charge ratio of
extremal black holes also aligns with the sharpened conjecture [24]. The idea is that if the
mass/charge ratio of the extremal black hole is exact it would yield an in�nite number of
exactly stable particles, which seems highly improbable.

Kats et al., [24], study the higher derivative corrections, such as, e.g., R2 or F 4 terms,
to the action of the non-supersymmetric charged black holes arising when compactifying
the heterotic string on a d-dimensional torus. When discarding the contribution from the
dilaton �eld this gives a (10−d)-dimensional Reissner-Nordström black hole charged under
the U(1) gauge �eld of the heterotic string (either SO(32) or E8×E8). They �nd that the
leading order corrections are of the form M = |Q|(1− ε(Q)), with ε(Q) ≥ 0 [24].

When the dilaton �eld is included it does not give a Reissner-Nordström black hole but
something called a GHS black hole (for Gar�nkle, Horowitz and Strominger) [25]. This is
de�ned by

ds2 = −
(

1− 2M

R

)
dt2 +

(
1− 2M

r

)−1

dr2 + r

(
r − Q2e−2φ

M

)
dΩ2, (3.6)

where

e−2φ = e−2φ0

(
1− Q2e−2φ0

Mr

)
, (3.7)

and φ0 is the limit of φ at in�nity [24]. This has a dilatonic type charge D = −Q2/M which
for an extremal black hole is D = −M . Kats et al. �nd that the corrections to this charge
is given by D ∼ −|Q|(1 − α′/Q2), and to the mass/charge ratio by M ∼ |Q|(1 − α′/Q2).
This means that the net force between two particles of mass M , with dilatonic charge D

and U(1) gauge charge Q, F ∼ Q2−D2−M2

r2
, will be repulsive. This is in agreement with

the sharpened WGC [24].
The proposed sharpening of the WGC may seem like an innocent modi�cation, but,

as we will now see, it comes with an important consequence for AdS vacua supported by
�uxes.

Let us consider an AdS vacuum supported by a �ux, i.e. with a (p+ 1)-form gauge po-
tential with �eld strength along AdS given by Fi1...ip+2 ∼ εi1...ip+2 . A good example of such
an AdS vacuum is the one appearing in the Freund-Rubin compacti�cation of 11D super-
gravity discussed in the previous chapter. It has been shown that a non-supersymmetric
AdS space of this type is unstable if there is a p-brane charged with respect to the �ux
with charge smaller than tension [26]. This is due to the fact that a spherical brane can be
created that expands to the AdS boundary in �nite time, since the repulsive force of the
charge will win over the tension. This reduces the �ux, implying that the vacuum is unsta-
ble. It could however be a slow expansion and the system could possibly be quasi-stable
[26]. The sharpened WGC states that these branes must be present, and a corollary of the
sharpened version is therefore that non-supersymmetric AdS vacua supported by �uxes
must be unstable [11]. This is a rather remarkable result from such a simple conjecture,
giving us strict constraints on what we can expect from a consistent theory of quantum
gravity. It is therefore imperative that the sharpened WGC is tested and either proven or
falsi�ed, which is the motivation for this thesis.

In the holographic dual picture the situation gets even worse. Due to gravitational time
delay the lifetime will get shorter and shorter as we move closer to the horizon, eventually
becoming instantaneous in the near horizon limit. This implies that the dual �eld theory
could not even be meta-stable [11].
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3.3.1 Compactifying the SM and constraining neutrino masses

As an example of the large footprint the sharpened conjecture leaves we can study the
Standard Model (SM). Arkani-Hamed et al., [27], has shown that compactifying the SM
plus gravity to two or three dimensions results in a rich landscape of possible vacua.

We will compactify the SM on a circle (compare with Section 2.1). This produces a
reduced action of the gravitational sector

Sgr →
∫
d3x
√
−g(3)2πr

[
1

2
M2

(4)R(3) −
1

4

R4

r4
VµνV

µν −M2
(4)

(
∂R
R

)2

−
r2Λ(4)

R2

]
, (3.8)

where R is the Ricci scalar, Vµν the �eld strength of the graviphoton, Λ the cosmological
constant, M is the reduced Planck mass, R the radion �eld and r is a scale parameter
proportional to the expectation value of R [27]. Parenthesised indices indicate which
dimension the quantity belongs to, for instance, Λ(4) is the four-dimensional cosmological
constant.

Because of the 4D cosmological constant term in Eq.(3.8) the classical potential will
grow quickly when we make the circle smaller, but since the cosmological constant is so
small the quantum e�ects become important. At one-loop level the corrections comes from
the Casimir energy [27]. For a particle of mass m the contribution is of the form e−2πmR

when R � 1/m [27]. Thus, for any R, the only relevant particles are those with m < 1/R,
since the others are exponentially suppressed. They contribute ∼ ∓ n0

720π
r3

R6 to the e�ective
potential of a massless state, where ∓ are for bosons/fermions (with periodic boundary
conditions), and n0 is the number of degrees of freedom [27]. In the standard model we
only have two massless particles, namely the graviton and the photon, each having two
bosonic degrees of freedom. The e�ective potential is then

V (R) =
2πr3Λ(4)

R2
− 4r3

720πR6
. (3.9)

Comparing the two terms we see that for large radii the classical part wins and the vacua
will expand, while for small radii the quantum e�ects take over and the compact dimension
shrinks. This gives us a maximum at

Rmax =

(
1

120π2Λ(4)

)1/4

≈ 20µm, (3.10)

using the current experimental value of Λ(4) [27]. The associated mass scale is then m =
1

2πRmax ≈ 10−3eV, close to the neutrino mass scale around 10−2 − 10−1eV [13].
When we start from a radius smaller than Rmax the dimension will shrink. However,

when we reach a level where the inverse radius is comparable to the mass of the lightest
particles in the spectra their contribution must also be accounted for. In the SM the lightest
particles are the neutrinos, which according to the above will contribute to the potential
with a di�erent sign, since they are fermions. The potential will now look something like

V (R) =
2πr3Λ(4)

R2
− 4r3

720πR6
+

∑
i=νe,νµ,ντ

nir
3

720πR6
Θ(Ri −R), (3.11)

with Θ being a step function and Ri = 1/mνi [13]. Every neutrino has two degrees of
freedom if they are Majorana and four if they are Dirac. We now see that, depending on
the masses of the neutrinos, we could also get a minimum for the potential.
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At the moment we do not know the masses of the neutrinos, but they are constrained
by measurements on solar and atmospheric oscillations [13]. From these measurements
we only know the di�erence in mass (squared) between the neutrinos. If we denote this
di�erence between neutrino i and j as ∆m2

ij the experimental values are

∆m2
21 = (7.53± 0.18)× 10−5eV2,

∆m2
32 = (2.44± 0.06)× 10−3eV2, for normal hierachy (NH),

∆m2
32 = (2.51± 0.06)× 10−3eV2, for inverted hierachy (IH),

(3.12)

where normal hierachy means that mν1 < mν2 < mν3 and inverted means mν3 < mν1 <
mν2 [13]. We do not know which ordering is the correct one. From NH we now �nd

mν2 ≈ 8.6× 10−3eV, mν3 ≈ 4.9× 10−2eV, (3.13)

where ν1 can be arbitrarily light, and IH implies

mν1 ≈ mν2 ≈ 4.9× 10−2eV, (3.14)

with ν3 being arbitrarily light [13]. Using these experimental values one �nds that for
Majorana neutrinos the minima will always be present, independent of the mass of the
lightest neutrino. This means that we have a new SM vacuum with negative potential, i.e.
we have AdS3×S1 [27]. If the neutrinos instead are Dirac one �nds that the vacua can be
either dS, AdS or Minkowski [27]. Ibañez et al., [13], found that the bounds of the lightest
neutrino are the ones given in Table 3.1.

NH IH

Minkowski mν1 < 6.7meV mν3 < 2.1meV
de Sitter 6.7meV < mν1 < 7.7meV 2.1meV < mν3 < 2.56meV
anti-de Sitter 7.7meV < mν1 2.56meV < mν3

Table 3.1: Mass ranges of lightest neutrinos for di�erent vacua con�gurations according to [13].

Since the SM is non-supersymmetric, this will also be true of these vacua. The sharp-
ened WGC then tells us that if the AdS vacua are stable the underlying e�ective theory,
i.e. the four-dimensional SM, will belong to the swampland, and hence lack a consistent
UV completion. We thus see that Majorana neutrinos in the minimal SM is contradicted
by the WGC, and that the mass of the lightest Dirac neutrino is heavily constrained.

It could also be interesting to study the e�ect of the uncertainties in the value of the
cosmological constant. From Eq.(3.11) we see that the minimum is highly dependent on
the values of Λ(4). Ibañez et al., [13], found that in order to avoid AdS vacua, when using
Majorana neutrinos, the cosmological constant would need to be much larger than the
present experimental values. For the Dirac case, however, they found a lower bound on
Λ(4). This is very interesting since it is probably the only known example of a theory not
involving dark energy yielding a non-vanishing value of the cosmological constant [13]. By
plugging in the present experimental value they also found a lowest bound on the lightest
Dirac neutrino in order to avoid the AdS vacuum. This bound is mν1 > 7.7× 10−3eV for
NH and mν3 > 2.56× 10−3eV for IH [13]. This would then mean that the WGC predicts
the neutrinos of the standard model to be massive Dirac fermions.

One could also wonder what would happen if we went beyond the standard model,
and perhaps included some extra fermions. Ibañez et al. show that adding one or two
light Weyl fermions to the SM makes it possible to avoid the AdS vacuum even if one
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considers Majorana neutrinos [13]. If we add two Weyl fermions to the SM the bounds on
the Majorana neutrinos even reaches a level measureable through neutrinoless double beta
decay. The same result is found by adding an extra Dirac fermion or gravitino [13]. It is
also possible to add other types of particles, like axions, to the SM. This leads to a large
number of di�erent bounds on the mass ranges of the neutrinos in order to avoid the AdS
vacua. As an example of the results we collect the bounds connected to normal hierarchy
in Table 3.2, for inverse hierarchy a lower bound on the axion mass is also found. An
equivalent analysis is done for the compacti�cation of the SM on a two-torus, with similar
results. The complete results are collected in Table 5 of [13].

Model Majorana (NH) Dirac (NH)

SM no mν1 ≤ 7.7× 10−3

SM + Weyl mν1 ≤ 0.9× 10−2 mν1 ≤ 1.5× 10−2

mW ≤ 1.2× 10−2

SM + Dirac mD ≤ 2× 10−2 yes

SM + 1 axion no mν1 ≤ 7.7× 10−3

≥ 2 axions yes yes

Table 3.2: Bounds for lightest neutrino masses, in eV, to avoid an AdS vacuum for di�erent models [13].
A yes (no) implicates that we always (never) avoid the vacuum.

The above discussion has shown us that the WGC can be used to make predictions
regarding the masses of the neutrinos of the SM as well as the possible addition of some
BSM physics. Some additions even lead to measurable values of the masses. Such a
prediction has long been awaited by the string theory community, and it is therefore of
great importance to either prove or disprove this conjecture.

3.4 Instability of the squashed sphere

It has been shown that the squashed seven-sphere allows for two di�erent AdS vacua, one
with N = 1 supersymmetry and one with N = 0 [4]. The two solutions are related by the
so called �skew-whi�ng� which means that the orientation of the sphere is reversed [4].

Du� et al., [4], also show that both these solutions satisfy the Breitenlohner-Freedman
stability criteria, which is the AdS analogue of the positive mass criteria in Minkowski
space.

However, if the sharpenedWGC is correct we should have no stable non-supersymmetric
AdS vacua. So how does this align with the above statement? Well, fortunately there are
other ways that a non-supersymmetric solution can be rendered unstable.

One possibility is that the answer lies in perturbative e�ects, in coupling constant
space, due to massless global singlet marginal operators (GSMOs). Marginal operators are
operators of the same dimension as spacetime. Global singlet marginal operators are then
marginal operators that are invariant (singlets) under the available gauge symmetries [28].

The argument uses that a supergravity solution, AdS4 ×M7, is dual to a conformal
�eld theory in the large N limit, through gauge/gravity duality [20]. There could then
be some 1/N corrections to the beta functions of the dual �eld theory which could lead
to tadpoles on the gravity side, e�ectively shifting the true vacuum of the supergravity
theory [29]. The kind of operators that could be vulnerable to these corrections are just
the massless GSMOs [29].

The beta function for a coupling constant, g, connected to a certain operator can be
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expanded in the 1/N perturbation as

β = κ(g − g∗) +
a

N
+ . . . , (3.15)

for some constant a, and κ = δ − D, where δ is the dimension of the operator and D
is the dimension of spacetime [28]. The �xed point at N → ∞ is given by g = g∗. For
non-marginal operators we have κ 6= 0 and the beta function has a zero at g − g∗ = − a

Nκ ,
so the e�ect is just to shift the �xed point. But, when we have marginal operators there is
no zero and the conformal �xed point is removed. This would then cause the theory to �ow
towards some far away point in coupling constant space. The dual theory will therefore
not exist for large but �nite N , but only in the N →∞ limit [28].

Murugan, [28], argues that, for N = 2 supersymmetry, all non-supersymmetric solu-
tions due to skew-whi�ng should contain at least one such GSMO. This is due to the fact
that all supergravity compacti�cations of the form AdS4×M7 has an AdS4 massless gauge
multiplet transforming in the adjoint representation of the symmetry group of M7. The
dual �eld theory must then also contain such a multiplet, corresponding to the supersym-
metric completion of the conserved global vector currents of the symmetry group. This
multiplet is conserved under skew-whi�ng since it only depends on the global symmetry
group of the �eld theory. The scalars, π and S, of this multiplet for N = 2, could then be
used to form a condensate

O ∼ Tr(πS), (3.16)

which is thus a GSMO of the theory. This could then lead to the vacuum being unstable
[28]. The problem is that for N = 1, which we are interested in, the gauge multiplet does
not contain the scalars. It should still be possible to create similar condensates but it is
unclear exactly where they should appear. With this thesis we therefore aim to study the
mass spectra of the squashed sphere. If we could �nd the complete spectra we could use
it to look for the corresponding condensates of Murugan, and thus either strengthen the
WGC or perhaps disprove it.

Another possibility is that the instability is due to non-perturbative e�ects related
to Witten's bubble of nothing [30]. Witten showed that an R9 × S1 geometry admits a
solution where a bubble of nothing can nucleate and expand until it takes over the whole of
spacetime [30]. Further investigations have also been able to show that the same thing can
happen in AdS geometries [28]. It is in general, however, very complicated to see if these
bubbles can be constructed. One needs to know a whole lot more about the theory. Many
geometries have been shown to allow these bubble solutions and at the moment there are
no indications that the squashed seven-sphere should be an exception.

3.5 Moduli spaces and the swampland

In Chapter 2 we brie�y discussed the moduli space of compactifying string theory on the
k-dimensional torus. The moduli space is of course a more general concept than this. It
describes the set of parameters that de�nes a certain solution of a theory. This could
be something as abstract as the eccentricity of an ellipse, or it could be something more
concrete as the free parameters of the standard model. The idea is that a transformation
in the moduli space corresponds to changing the speci�c solution, but not the theory, you
are looking at. For example you can move around in the moduli space of the ellipse and
get ellipses of di�erent eccentricity but all of them will still be ellipses. The same thing
happens in compacti�cation of string theory, you can change the vacuum by changing the
value of the scalar �elds, but we still consider it the same theory (please note that some
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authors have another interpretation of the word theory, interchanging it with what we call
a speci�c solution of a theory).

In an article by Ooguri & Vafa, [9], they propose �ve conjectures regarding the moduli
space of a consistent quantum �eld theory coupled to gravity. We will brie�y discuss them
here and then look at an example where they are satis�ed, namely type IIB supergravity.

As we saw in Chapter 2 toroidal compacti�cation of string theory led to the moduli
space being parameterised by massless scalar �elds. In string theory this is always the
case, i.e. there are no free parameters in string theory [15]. But we could very well
imagine that it is possible to construct a consistent theory of quantum gravity where there
are �xed coupling constants that does not depend on scalar �elds. The values of these
constants would then also be part of the parameterisation of the moduli space. However,
Ooguri & Vafa's �rst conjecture forbids these imagined theories. The moduli space, M,
of a consistent theory of quantum gravity is conjectured to be parameterised solely by
the inequivalent expectation values of massless scalar �elds [9]. This is something that
of course already is at the core of string theory, and since no other consistent theories of
quantum gravity are available at the moment we leave the discussion at that.

A natural metric for the moduli space is now given by the kinetic term of the available
scalar �elds [14]. We thus write

ds2 = gij(φ)dφidφj , (3.17)

for some massless scalars φi, we will see an explicit example of this below. The second
conjecture now concerns distances in the moduli space. The shortest geodesic between two
points in the moduli space is conjectured to be able to take arbitrarily large values. I.e., for
a �xed point p0 ∈M one can always �nd another point p ∈M such that d(p, p0) > T for
any positive T . In other words, the moduli space must be non-compact [9]. This conjecture
is true in all known examples of string theory [9]. Connected to this is the third conjecture:
The theory in the limit T = d(p, p0) → ∞, for some �xed point p0, will have an in�nite
tower of light states, compared to the theory at p0, with mass decreasing as m ∼ e−αT , for
some α > 0 [9].

The third conjecture implies that low energy e�ective theories de�ned in a speci�c point
of the moduli space can only be related to other e�ective theories de�ned by neighbouring
points, or, put in another way, the low energy e�ective description will break down when
we move too far in the moduli space [12].

If we take some e�ective �eld theory and compactify it on a circle the theory will have
the radius of the circle, R, as its moduli. The metric of the moduli space will therefore be

ds2 =

(
dR
R

)2

. (3.18)

The distance between a �xed point R0 and some other point R is then given by∫ R
R0

dR
R

= logR− logR0. (3.19)

We directly see that the second conjecture is satis�ed, since we are able to always �nd
an R that gives an arbitrary size to this distance. In particular, if we take the limit of
R → ∞ we see that we get light Kaluza-Klein states, since m ∼ 1

R . But we also have
T ∼ logR =⇒ m ∼ e−T , which aligns with the third conjecture.

If we instead take the limit R → 0 we should again expect some light states, since
lim
R→0

∫R0

R
dR
R diverges. The states can, however, not be particle states, since these are given
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by Kaluza-Klein modes which are highly massive in this limit. So the only option is that
these states are some extended objects (e.g. strings or branes) that wrap around the circle.
Conjecture three thus has the remarkable corollary that a consistent theory of quantum
gravity must include extended objects capable of wrapping a compact dimension [12].

The fourth conjecture states that the curvature of the moduli space is strictly negative
near the points at in�nity (if the dimension is larger than one) [9]. This is given by the
fact that there are points in�nitely far away while the volume of the space is �nite.

The �nal conjecture is the statement that the moduli space should be simply-connected
[11]. In all known examples from string theory the moduli space is found by the quotient

M = T /Γ, (3.20)

where T is some simply-connected space (often a so called Teichmüller space), and Γ is
some group action on T [9]. For example, the space O(d, d;R)/[O(d,R) × O(d,R)] of
toroidal compacti�cation is a Teichmüller space, while the T-duality symmetry O(d, d;Z)
is a group action on it, implying that the moduli space of toroidal compacti�cation is of the
above type [14]. Further, all known Γ's in string theory are generated by group elements,
gi, having �xed points. These �xed points are then gauge symmetries of M. We could
equally well consider the whole of Γ as a broken gauge symmetry ofM [9].

If every element of Γ can be decomposed to elements with �xed points this implies that
M is simply-connected, since all loops γ ⊂ M can be identi�ed with an element in Γ of
the form

∏
gi, implying that every segment of the loop can be contracted to a point [9].

We now turn to an example that includes all of these conjectures, type IIB supergravity
in ten dimensions. This theory has two scalar �elds, namely the dilaton, φ, and the axion,
χ. The corresponding kinetic term in the Lagrangian is given by [31]

Lkin = −1

2

(
∂µφ∂

µφ+ e2φ∂µχ∂
µχ
)
. (3.21)

By introducing the variable λ = χ + ie−φ, and thus combining the two real scalar �elds
into one complex, we can rewrite the Lagrangian as

Lkin = 2
∂µλ∂

µλ∗

(λ− λ∗)2
. (3.22)

This means that the metric of the moduli space can be expressed as

ds2 =
dλdλ∗

(Imλ)2
. (3.23)

The geodesic distance from a �xed point λ0 ∈M to another point λ ∈M is given by

T ∼ log (Imλ)− log (Imλ0) . (3.24)

This is of course divergent, and when we take the λ→ i∞ limit we see that there are light
states with mass ∼ e−T . So that conjectures two and three are upheld [9].

It is easy to show that the line element is invariant under the transformations

λ→ λ+ 1, λ→ −1/λ, (3.25)

generating the group SL(2,Z). In fact, it can be shown that the full moduli space can be
described as the coset space [31]

M = SL(2,Z)

∖
SL(2,R)

/
SO(2). (3.26)
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By integrating the line element over the fundamental region of this coset space one can
see that the volume of the moduli space is �nite [15]. But, at the same time it allows
for in�nite distances. This must mean that the metric has a constant negative curvature,
which in turn means that conjecture four is satis�ed.

Because both λ → λ + 1 and λ → −1/λ have �x points in the fundamental region of
SL(2,Z) the moduli space must be simply connected. This means that the last conjecture
is also true for this case. And thus, all the conjecture are true for type IIB supergravity
[9].

Ooguri & Vafa, [9], give a few more examples, and also discuss some counter examples
when a quantum �eld theory is decoupled from gravity. This means that these conjectures
need only be true in a theory of quantum gravity.

3.6 Symmetries in quantum gravity

Another criteria for the swampland is that we can not have any global symmetries in a
consistent theory of quantum gravity. This can be motivated from a number of di�erent
directions, for instance, by studying C, P and T violation in particle physics or in�ation
and baryon number non-conservation. We will only give one argument using our beloved
black holes. The interested reader is referred to Witten's discussion on the matter in [32].

Consider a particle charged under some global symmetry of the theory. This could
for example be lepton or baryon number conservation. If this particle gets eaten by a
black hole any information of the symmetry is lost to us, due to the no-hair theorem.
Even when the black hole evaporate due to Hawking radiation we still do not get the
information back. This implies that black hole formation and evaporation does not conserve
global symmetries. On the other hand, gauge symmetries such as electric charge are
conserved by black holes. Since, for instance, an electrically charged black hole will radiate
away electrically charged particles. This implies that a theory combining quantum theory
and gravity should only have gauge symmetries as its fundamental symmetries, no global
symmetries [32].

String theory once again gives us further motivation for this criteria, since all symme-
tries appearing in string theory are either local or approximate [32].

The criteria of only having local symmetries is connected to the WGC by the following
argument. When we take the limit g → 0, for the coupling of some gauge symmetry, the
local symmetry will e�ectively become global. There must therefore be something that
stops this limit from being taken smoothly. The answer is given by the WGC.

The conjecture states that we have some light charged particle with

me ≤ geMPl, (3.27)

and the same should hold for a magnetic monopole, with the inverse coupling. The mass of
these monopoles should also be proportional to the energy stored in their magnetic �elds,
which is linearly divergent [10]. The e�ective theory must then break down at a scale given
by

Λ ≤ geMPl. (3.28)

So that when the gauge coupling goes to zero the cut o� also goes to zero, stopping the
limit from being taken smoothly [10].

We now leave the discussion of the string landscape and the swampland. The next
chapter will provide us with some of the mathematical tools needed to decypher the mass
spectra of the squashed seven-sphere.
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Geometry of coset spaces

We now discuss some connections between group theory and geometry. In particular,
two important equations are derived. The �rst describes how to �nd the eigenvalues of a
covariant derivative acting on some harmonic function on a coset space, this is our so called
master equation (4.17). The second formula connects the Riemann tensor of a coset space
with the corresponding structure constants, Eq.(4.23). The chapter ends by a discussion
about the di�erential operators appearing in the mass operators of Table 2.1.

4.1 Lie groups acting on manifolds

For a physicist it is natural to think of a Lie group as the set of transformations acting
on a certain manifold. For instance, in quantum mechanics we have the rotations in R3

represented by the group SO(3), the Poincaré group acting on Minkowski spacetime, and
so on. In this chapter we will expand this notion to more general situations. We will study
a Lie group, G, a manifold, M , and the di�erentiable mapping σ : G×M →M satisfying

1) σ(e,m) = m for any m ∈M, and e being the identity element

2) σ(g1, σ(g2,m)) = σ(g1g2,m).
(4.1)

Moreover, the action is said to be transitive if, for any m1,m2 ∈M , there exists an element
g ∈ G such that σ(g,m1) = m2, i.e. that every point on the manifold can be reached from
every other point on the manifold [33].

We also de�ne the isotropy group of m ∈M as the subgroup of G satisfying

H(m) = {g ∈ G|σ(g,m) = m}. (4.2)

Sometimes H is also called the stabiliser or little group of m, and it is a Lie subgroup
of G [33]. The isotropy group can be thought of as the group that �xes a point on the
manifold. For example, if we stand at the north pole of a two-sphere we can rotate around
the polar axis without changing our position. The two-sphere therefore has U(1) as its
isotropy group.

The tangent space group of an n-dimensional Riemannian manifold is always SO(n).
This is the group of frame rotations that leaves the metric invariant. The isotropy group
is always a subgroup of the tangent space group [4].

Now, for any subgroup, H, of G we can construct the coset space G/H which will be
a manifold called a homogeneous space, with dim(G/H) = dimG− dimH. Especially, if G
acts transitively on the manifold M and H(m) is the isotropy group of m, then G/H(m)
is a homogeneous space homeomorphic to M [33]. In this context G is usually referred to
as the isometry group of M . Note that some extra care may be needed if the groups are
non-compact.
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A good example of a coset space is the two-sphere, S2. The group that acts transitively
on S2 is SO(3) and the isotropy group is SO(2). This means that one can express the
two-sphere as the coset space

SO(3)/SO(2) = S2. (4.3)

This is generalised to higher dimensions by [33]

SO(n+ 1)/SO(n) = Sn. (4.4)

That this is true can be proven by Hopf �bration, but we will not go through this here.
It is important to note that the coset G/H is only a group if H is a normal subgroup of

G. For instance, this is not the case for SO(2) in SO(3) so that S2 is not a group manifold.
The same holds for Sn in general. However, in the special case of S3 = SO(4)/SO(3) we
have a group structure, which is also expected since S3 is isomorphic to SU(2) [33].

A certain manifold can often be described by several di�erent cosets. For example
SO(8), Spin(7), SU(4) and Sp(2) all act transitively on S7 and they have the corresponding
isotropy groups SO(7), G2, SU(3) and Sp(1). This means that we can express S7 by [4]

SO(8)

SO(7)
,

Spin(7)

G2
,

SU(4)

SU(3)
, or

Sp(2)

Sp(1)
. (4.5)

There may be several di�erent ways in which to embed the subgroup, H, in G, this could
then lead to di�erent topologies [4].

4.2 A master equation

We will now study the eigenvalues of di�erential operators acting on the harmonic functions
living on a coset manifold. These transform as irreducible representations of the isometry
group (G). This will lead us to a master equation, Eq.(4.17), that is used many times
throughout the thesis. The derivation closely follows the ones given in [4] and [34]. In
order to �nd a general expression independent of which representation we are in at the
moment we will suppress the indices of the tensors or spinors as well as the tangent space
indices which characterise the irreducible representation.

Consider a Lie group, G, and its subgroup H. The complement will be denoted K,
so that G = H ×K. We only study reductive groups where [H,K] ⊂ K, since all known
coset space compacti�cations of eleven-dimensional supergravity are of this type [4]. One
can note that demanding reductivity is the same thing as saying that H is the isotropy
group of the coset space. If G is symmetric, as is the case for ordinary spheres Sn =
SO(n+ 1)/SO(n), we will also have [K,K] ⊂ H [34].

The indices M,N, . . . will run over all generators of G, a, b, c, . . . will be �at indices in
G/H, m,n, p, . . . curved indices in G/H and i, j, . . . are indices in H. The complete set
of generators on G will hence be denoted TM and they split into two types, namely the
generators of H, Ti, and the generators of K, Ta.

We denote coordinates on G/H by ym and we can associate a unique element in G,
Ly, with every point ym through

Ly ≡ ey
aTa , (4.6)

where ya = e a
m ym, and e a

m are the components of the vielbein on G/H [34]. In other
words, Ly is the element in G that represents the coset G/H. This implies that, with
g ∈ G, we have left translation, de�ned by

gLy = Ly′h, (4.7)
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where Ly′ is a new point and h ∈ H, both uniquely de�ned by the action of g. We want to
�nd an expression for the one-form L−1

y dLy = eMTM in the algebra of G, and we do this
by de�ning the connection on H, Ωi = Ω i

m dym, through

L−1
y dLy = eaTa + ΩiTi ⇐⇒ ∂mL

−1
y = −(e a

m Ta + Ω i
m Ti)L

−1
y , (4.8)

were we have used that 0 = d(L−1
y Ly) = (dL−1

y )Ly + L−1
y dLy, and e

a = e a
m dym.

Using the relevant representation of L−1
y we can obtain any given harmonic Y , which

means that we equally well can write

∂mY = −(e a
m Ta + Ω i

m Ti)Y. (4.9)

The fact that d2 = 0 gives us

d(L−1
y dLy) = (dL−1

y )(dLy) = (dL−1
y )LyL

−1
y (dLy) = ((dL−1

y )Ly)(L
−1
y dLy). (4.10)

We thus see that ω ≡ L−1
y dLy satis�es the Maurer-Cartan equation dω+ ω2 = 0, since, as

we saw before, (dL−1
y )Ly = −L−1

y dLy. This implies that

dω = d(eaTa) + d(ΩiTi) = −ω2. (4.11)

Considering only reductive algebras we have

(eaTa + ΩiTi)
2 = ea ∧ ebTaTb + Ωi ∧ ΩjTiTj + 2ΩiTi ∧ eaTa

=
1

2
ea ∧ ebf c

ab Tc +
1

2
Ωi ∧ Ωjf k

ij Tk︸ ︷︷ ︸
=0

+Ωi ∧ eaf b
ia Tb

=
1

2
eb ∧ ecf a

bc Ta + Ωi ∧ ebf a
ib Ta.

(4.12)

If we now project out the coe�cent of Ta in Eq.(4.11) and use the above result we get

dea = −1

2
eb ∧ ecf a

bc − Ωi ∧ ebf a
ib . (4.13)

The spin connection is de�ned to be torsionless, dea = −ωab ∧ eb. Comparing this to the
above expression we �nd

ω ab
m = −Ωi

mf
ab
i − 1

2
ecmf

ab
c . (4.14)

Since G is a reductive algebra and Ti are the generators of the Lie algebra of H we can
�x the embedding of H in the tangent space group by writing

Ti = −f bc
i Σbc, (4.15)

where Σ are the generators of the tangent space group, SO(n), [4].
Plugging all of the above results into the de�nition of a covariant derivative acting on

a harmonic Y we have

∇mY = ∂mY + ω ab
m ΣabY =

[
−
(
eamTa + Ω i

m Ti︸ ︷︷ ︸
=−Ωimf

bc
i Σbc

)
−
(

Ω j
m f ab

j +
1

2
ecmf

ab
c

)
Σab

]
Y

= −e a
m TaY −

1

2
e c
m f ab

c ΣabY.

(4.16)
This is our so called master equation. To underline the importance of this in the work to
come we state the �nal result one more time

∇mY +
1

2
e c
m fabcΣabY = −e a

m TaY. (4.17)

We will use this equation when deriving the mass spectra of both the round and the
squashed seven-spheres.
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4.3 The curvature

In this section we build on the above results to �nd a formula for the Riemann tensor ex-
pressed solely in the structure constants of G and some vielbeins, Eq.(4.23). The derivation
follows that of [34] and [35].

Without loss of generality we can assume the Killing form to be block diagonal, so that
κMN = f S

MR f R
NS = 0 for M ∈ H and N ∈ K.

As we saw in Eqs.(4.13) and (4.14) the vielbein and H connection satisfy

∂[me
a

n] + f a
bc e

b
m e c

n + f a
ib Ω i

[m e b
n] = 0, (4.18)

∂[mΩ i
n] + f i

jk Ω j
m Ω k

n + f i
ab e

a
m e b

n = 0. (4.19)

A connection, ω b
m c(y), de�ning parallel transport on the manifold is called invariant

if it also commutes with all group elements. One can construct the most general form of
an invariant connection by writing

ω b
m c(y) = Ω i

m f b
ic + e a

m ω b
a c(0). (4.20)

Here ω b
a c(0) is an arbitrary invariant tensor in the adjoint representation of H, restricted

to the coset [35]. One such set of tensors are the structure constants, which means that we
can choose ω b

a c(0) = 1
2f

b
ac . This will give us the same expression as in Eq.(4.14). With

this we can rewrite Equation (4.18) as

∂[me
a

n] + ω a
[m |b|e

b
n] = 0. (4.21)

The Riemann tensor is de�ned in the usual way

R a
mn b ≡ 2∂[mω

a
n] b + 2ω a

[m |c|ω
c

n] b. (4.22)

Plugging in the results of Equations (4.19) and (4.21), rewriting it a bit and using the
Jacobi identity for the structure constants we �nd our formula for the Riemann tensor
expressed only in the structure constants of G and vielbeins [35]

R a
mn b =

(
1

2
f a
bc f

c
de + f a

bi f
i

de +
1

2
f a
dc f

c
eb

)
e d

[m e e
n] . (4.23)

Note that f c
ab = 0 for symmetric coset spaces. This formula will be used in Chapter 6

when calculating the Riemann tensor of the squashed seven-sphere.

4.4 Di�erential operators on forms, spinors and tensors

Since our master equation concerns di�erential operators acting on some arbitrary har-
monic functions, we must know what these operators are. In seven dimensions we are
interested in di�erential forms of rank zero up to three (higher ranks are related to these
through the Hodge star operator [4]). The relevant operator for these are the corresponding
Hodge-de Rahm operators. For supergravity we are also interested in the Dirac operator
acting on spin-1/2 and the corresponding operator acting on the gravitino, with spin-3/2.
The graviton is a symmetric transverse and traceless mode and the corresponding operator
is the Lichnerowicz operator. We start by discussing the Hodge-de Rahm operator acting
on zero-forms, one-forms, two-forms and three-forms.
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4.4.1 Hodge-de Rahm

For a general p-form

ω =
1

p!
ωm1...mpdx

m1 ∧ · · · ∧ dxmp , (4.24)

the Hodge star operator is de�ned by

? ω ≡
√
|g|

p!(D − p)!
ωm1...mpε

m1...mp
mp+1...mDdx

mp+1 ∧ · · · ∧ dxmD , (4.25)

where D is the number of dimensions. We de�ne the exterior derivative, d, as mapping
p-forms to (p+ 1)-forms

dω = (p+ 1)∂[m1
ωm2...mp+1]. (4.26)

The adjoint of d, δ ≡ (−1)p ? d?, then maps a p-form into a (p− 1)-form

δω = −∇nωnm1...mp−1 . (4.27)

If dω = 0 we call ω closed, if δω = 0 we call it coclosed. If ω can be expressed as dα for
some form α we call ω exact, and coexact if ω = δα [4].

We can now de�ne the Hodge-de Rahm operator, ∆, as [33]

∆ ≡ dδ + δd. (4.28)

A form satisfying ∆ω = 0 is called harmonic. The norm of ω can be de�ned in the usual
manner [4]

(ω, ω) ≡
∫
d7x
√
gωm1...mpω

m1...mp . (4.29)

Due to the adjoint relation between d and δ one can show that they satisfy [33]

(ω, dω) = (δω, ω), (4.30)

which means that we have

(ω,∆ω) = (ω, dδω + δdω) = (dω, dω) + (δω, δω), (4.31)

and hence ∆ ≥ 0, with equality if and only if ω is closed and coclosed [33].
We will need the explicit expressions for the Hodge-de Rahm operator acting on zero-

, one-, two- and three-forms, since the others are related to these by the Hodge star
operator in seven dimensions. Hodge-de Rahm acting on a p-form will henceforth be
denoted ∆p. Using the expression for ω in Eq.(4.24), and acting with ∆ on a zero-form,
φ, in D dimensions, we �nd [33]

∆0φ = dδφ+ δdφ = δdφ = − ? d ? (∂mφdx
m)

= − ? d
( √

g

(D − 1)!
∂mφg

mnεnp2...pDdx
p2 ∧ · · · ∧ dxpD

)
= − ? 1

(D − 1)!
∂p1 [
√
ggnm∂mφ]εnp2...pDdx

p1 ∧ · · · ∧ dxpD

= − 1
√
g
∂n[
√
ggnm∂mφ] = −�φ.

(4.32)
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32 CHAPTER 4. GEOMETRY OF COSET SPACES

In a similar way we can �nd explicit expressions for all Hodge-de Rahm operators. The
results being [4]

∆0φ = −�φ,
∆1ωm = −�ωm +R n

m ωn,

∆2ωmn = −�ωmn − 2Rmnpqω
pq − 2Rp[mωn]p,

∆3ωmnp = −�ωmnp + 6Rq r
[mn ωp]qr + 3R q

[m ωnp]q.

(4.33)

Another operator that we will need is the linear operator Q = ?d. The eigenfunctions
of Q can be shown to be in a one-to-one correspondence with the eigenfunctions of the ∆3

operator, or more precisely one can show that Q2 ∼ ∆3 [4].

4.4.2 Dirac and Lichnerowicz

The Dirac operator acting on a regular spin-1/2 fermion is de�ned in the usual way

( /D1/2ψ)α ≡ i(γa) β
α ∇aψβ, (4.34)

where ∇a is a covariant derivative without an a�ne connection. When acting on the
gravitino we need to include the a�ne connection acting on the vector index of the spin-
3/2 particle. We write

/D3/2ψn,α ≡ i(γm) β
α (Dmψ)n,β, (4.35)

where Dm now has an a�ne connection term.
For spaces with Rmn = 6m2gmn one can prove that the eigenvalues, λ, of the Dirac

operator are bounded by [4]

|λ| ≥ 7

2
m. (4.36)

This is saturated by the Killing spinor discussed in Chapter 2.
The �nal operator of interest to us is the so called Lichnerowicz operator. This is an

operator that acts on transverse trace-free symmetric tensors, and it is de�ned by [4]

∆Lhmn ≡ −�hmn − 2Rmpnqh
pq + 2R p

(m hn)p. (4.37)

This is not positive semi-de�nite in general, and in fact one needs some knowledge about
the Riemann tensor in order to put any bounds on the eigenvalue spectrum [4].
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5

The round seven-sphere

We will now study the spectrum of the round seven-sphere. This is done in two ways in
preparation for the more complicated case of the squashed sphere. Both methods use our
master equation of Chapter 4, Eq.(4.17). The �rst method uses the square of the master
equation in order to be able to express the eigenvalues in terms of the quadratic Casimir
operator. In the second method we expand the spherical tensors, or spinors, in modes and
act on these with the master equation, for the di�erent di�erential operators.

We will �rst need to discuss the geometry of the sphere, as well as the representations
appearing in the spectrum. This is not done in much detail, since a more thorough pre-
sentation is available in [4]. Any uncertainties that may appear can certainly be resolved
by studying that paper.

Note that in this chapter we denote the SO(7) gamma matrices by γa and the SO(8)
matrices by Γa.

5.1 The sphere as a coset space

As previously explained the n-dimensional sphere Sn can be expressed as the coset space
SO(n + 1)/SO(n), i.e., the isometry group divided by the isotropy group. Moreover,
SO(n+ 1) acts transitively on Sn so that we also have a homogeneous space, as a sphere
should be. As discussed in Chapter 4, the seven-sphere can be described by several di�erent
coset spaces, but we will choose to only work with SO(8)/SO(7). The tangent space group
is of course also SO(7), which simpli�es things a bit.

We embed the sphere in R8 as the surface of radius 1/m

δMNdy
MdyN = m−2, (5.1)

where yM are Cartesian coordinates, M = 1, . . . , 8 and the metric δMN is the ordinary
eight-dimensional Kronecker delta, invariant under SO(8).

Since S7 ∼= SO(8)/SO(7) the induced metric on the sphere will be [4]

ds2 =

(
δmn +

ymyn

m−2 − ypyp

)
dymdyn, (5.2)

where m,n, p = 1, 2, . . . , 7.
This is consistent with the sphere having the Riemann tensor

Rmnpq = m2(gmpgnq − gmqgnp), (5.3)

as expected from a maximally symmetric space [36]. This can also be found using Eq.(4.23)
with the generators of SO(8)/SO(7). The Ricci tensor is then given by Rmn = 6m2gmn
and the Ricci scalar by R = 42m2.

33



34 CHAPTER 5. THE ROUND SEVEN-SPHERE

5.2 Representations

The massless spectrum of eleven-dimensional supergravity is given by the multiplet con-
sisting of one graviton (transforming in 1 = (0, 0, 0, 0) under SO(8)), eight gravitinos
(8s = (0, 0, 0, 1)), 28 spin 1 �elds (28 = (0, 1, 0, 0)), 56 spin 1/2 �elds (56s = (1, 0, 1, 0)),
35 scalars (35v = (2, 0, 0, 0)) and 35 pseudoscalars (35c = (0, 0, 2, 0)). It should then be
possible to derive all massive multiplets from this massless one by multiplication with some
massive representation of SO(8) [37],

R⊗ {1, 8s, 28, 56s, 35v, 35c} . (5.4)

Since it is known that the massive gravitons are in one-to-one correspondence with
the spherical SO(8) tensors sitting in the (n, 0, 0, 0) representation, we use this as the
multiplying representation above. This multiplication is done in [37]. However we must
also add lower helicity states to the spin-2, 3/2 and 1 �elds to make them massive, in a
form of Higgs mechanism [37]. The result is in�nite towers of representations given by

spin-2 : (n, 0, 0, 0),

spin-3/2 : (n, 0, 0, 1)⊕ (n− 1, 0, 1, 0),

spin-1 : (n− 1, 0, 1, 1)⊕ (n, 1, 0, 0)⊕ (n− 2, 1, 0, 0),

spin-1/2 : (n+ 1, 0, 1, 0)⊕ (n− 1, 1, 1, 0)⊕ (n− 2, 1, 0, 1)⊕ (n− 2, 0, 0, 1),

spin-0 : (n+ 2, 0, 0, 0)⊕ (n− 2, 2, 0, 0)⊕ (n− 2, 0, 0, 0)⊕ (n, 0, 2, 0)⊕ (n− 2, 0, 0, 2).
(5.5)

Since the Dynkin labels must be non-negative integers the representations above with
negative labels, e.g. (n − 2, 0, 0, 0) for n = 0, 1, does not exist for those n. For every n
Eq.(5.5) gives an irreducible representation of OSp(8, 4) (n = 0 is the massless multiplet)
[4].

The massless SO(8) multiplet decompose under SO(7) as [38]

(0, 0, 0, 0)→ (0, 0, 0),

(0, 0, 0, 1)→ (0, 0, 1),

(0, 1, 0, 0)→ (1, 0, 0)⊕ (0, 1, 0),

(1, 0, 1, 0)→ (1, 0, 1)⊕ (0, 0, 1),

(2, 0, 0, 0)→ (2, 0, 0)⊕ (1, 0, 0)⊕ (0, 0, 0),

(0, 0, 2, 0)→ (0, 0, 2).

(5.6)

5.3 Quadratic Casimir approach

We now turn to the calculation of the eigenvalues of all the di�erential operators found in
Table 2.1 for the above representations.

The �rst method discussed is one where we use the results of Chapter 4 and express the
di�erential operator as a generator of G/H. Since the round seven-sphere is a symmetric
space the structure constants in Eq. (4.17) are zero and we have

∇aφ = cTaφ, (5.7)

the constant c is added for dimensional reasons. Squaring this gives

�φ = c2TaTaφ = −c2(CG − CH)φ, (5.8)
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where CG and CH are the quadratic Casimir operators belonging to the respective groups.
In the last equality we simply rewrote TaTa = TMTM − TiTi = −(CG −CH), and we have
chosen the Killing form to be diagonal, as can always be done for compact semi-simple Lie
algebras. The indices i, j, . . . are here taken to be in H.

The quadratic Casimirs for the vector representation ((0, 1, 0, 0) and (1, 0, 0) respec-
tively) of SO(8) and SO(7) can be calculated using the formulas of Appendix B, along
with the normalisation (λi, λj) = δij . This gives us CG = 12 and CH = 6, so that
−�φa = 6c2φa.

To �nd the constant we use our knowledge of the Killing vectors. There are 28 Killing
vectors on S7 satisfying the Killing equations

∇(aKb) = 0. (5.9)

Acting with another derivative on this, and using that the Killing vectors are transverse,
one �nds

2∇a∇(aKb) = �Kb +∇a∇bKa = �Kb + [∇a,∇b]Ka

= �Kb +RabKa = �Kb + 6m2Kb = 0.
(5.10)

Comparing this with the above expression for −�φa one sees that c2 = m2. Now we are
ready to turn to the di�erential operators in Table 2.1.

5.3.1 The integer ranked forms

The Hodge-de Rahm operator acting on a scalar, ∆0, is simply equal to −�, so that the
spectrum of the scalar is given by

−�φ = m2(CG − CH)φ. (5.11)

For the SO(8) representation (p, 0, 0, 0) we have CG = p(p+ 6) and for (0, 0, 0), in SO(7),
CH = 0. This implies that

∆0φ = m2p(p+ 6)φ. (5.12)

Hodge-de Rahm acting on a vector, or one-form, is equal to ∆1φm = −�φm +R n
m φn.

For S7 R n
m = 6m2δnm. The spectrum of the vector representation, (p−1, 1, 0, 0) in SO(8),

is thus
∆1φm = m2[p(p+ 6)− 1]φm + 6m2φm = m2[p(p+ 6) + 5]φm, (5.13)

since, according to the formulas in Appendix B, CG = p(p+6)+5 and for (1, 0, 0) in SO(7)
we have, as mentioned above, CH = 6.

For the two-form

∆2φmn = −�φmn − 2Rmpnqφ
pq − 2Rp[mφn]p. (5.14)

In this case the curvature terms are

−2Rmpnqφ
pq − 2Rp[mφn]p = −2m2(gmngpq − gmqgnp)φpq − 12m2δp[mφn]p

= 2m2gmqgnpφ
pq + 12m2φmn = −2m2φmn + 12m2φmn

= 10m2φmn.

(5.15)

The representation (p− 1, 0, 1, 1) has CG = p(p+ 6) + 8 and (0, 1, 0) gives CH = 10. This
means that

∆2φmn = m2[p(p+ 6)− 2]φmn + 10m2φmn = m2[p(p+ 6) + 8]φmn. (5.16)

35



36 CHAPTER 5. THE ROUND SEVEN-SPHERE

For the three-forms we are actually interested in the linear operator Q = ∗d, but since
Q2 and ∆3 have the same eigenvalues, as mentioned in Chapter 4, we will here study the
Hodge-de Rahm operator on a three-form. When doing the mode expansion method below,
the linear operator will be used instead. We have

∆3φmnp = −�φmnp + 6Rq r
[mn φp]qr + 3R r

[m φnp]r, (5.17)

and

6Rq r
[mn φp]qr + 3R r

[m φnp]r = 6m2(δq[nδ
r
m − gqrg[mn)φp]qr + 18m2δr[mφnp]r

= −6m2φmnp + 18m2φmnp = 12m2φmnp,
(5.18)

so that for (p− 1, 0, 2, 0)→ (0, 0, 2) or (p− 1, 0, 0, 2)→ (0, 0, 2) we get

∆3φmnp = m2[p(p+ 6) + 9− 12 + 12] = m2(p+ 3)2 =⇒ Qφmnp = ±m(p+ 3), (5.19)

since CG = p(p+ 6) + 9 and CH = 12 in both cases. Using this method it is not possible
for us to decide which sign goes with which representation.

5.3.2 The Lichnerowicz operator

The Lichnerowicz operator, ∆L, acting on a symmetric, traceless and transverse tensor
hmn is de�ned by

∆Lhmn = −�hmn − 2Rmpnqh
pq + 2R p

(m hn)p. (5.20)

For the seven-sphere the curvature terms are

−2Rmpnqh
pq + 2R p

(m hn)p = −2m2(gmngpq − gmqgnp)hpq + 12m2δp(mhn)p

= −2m2gmnh
p
p︸ ︷︷ ︸

=0, traceless

+2m2hmn + 12m2hmn = 14m2hmn. (5.21)

The representation (p − 2, 2, 0, 0) goes to (2, 0, 0) which means that CG = p(p + 6) + 12
and CH = 14. The Lichnerowicz operator thus has the eigenvalues

∆Lhmn = m2[p(p+ 6) + 12− 14 + 14]hmn = m2[p(p+ 6) + 12]hmn. (5.22)

5.3.3 The half-integer spins

To �nd the eigenvalues of the Dirac operator we use a similar approach. We start with the
ordinary Dirac operator

/D1/2ψ = iγn∇nψ = λψ, (5.23)

and act on this with another Dirac operator, i.e.,

− γm∇mγn∇nψ = − γmγn︸ ︷︷ ︸
gmn+γmn

∇m∇nψ = −�ψ − γmn∇[m∇n]ψ = λ2ψ. (5.24)

We then use the identities

∇[m∇n]ψα =
1

2
R β
mnα ψβ =

1

8
R pq
mn (γpq)

β
α ψβ, (5.25)

and
γmnγpq = γmnpq − 4δ

[m
[pγ

n]
q] − 2δmn[pq]. (5.26)
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Plugging this into Eq.(5.24) gives us

λ2ψ = −�ψ − m2

8

(
γmnpq − 4δ

[m
[pγ

n]
q] − 2δmn[pq]

)
(gmpgnq − gmqgnp)ψ

= −�ψ +
m2

4
δmn[pq](gmpgnq − gmqgnp)ψ = −�ψ +

1

4
Rψ = −�ψ +

42m2

4
ψ.

(5.27)

The SO(8) representations for the spin-1/2 are (p, 0, 1, 0) and (p, 0, 0, 1). These gives us
CG = p(p+7)+7 and they both go to the (0, 0, 1) representation of SO(7), with CH = 21

4 .
This means that −� = [p(p+ 7) + 7

4 ]m2, and

λ2ψ =

[
p(p+ 7) +

7

4
+

42

4

]
m2ψ =

(
p+

7

2

)2

m2ψ =⇒ λ = ±
(
p+

7

2

)
m. (5.28)

However, we again see that this method is unable to tell us which sign goes with which
representation. This problem will be resolved when we use the method of expanding in
modes below.

The eigenvalues of the Dirac operator when acting on a spin-3/2 �eld are found in the
same way, however the covariant derivative must now also include a connection for the
vector index of the gravitino, we denote this derivative with Dn. The Dirac operator is
then

/D3/2ψp = iγn(Dnψ)p = λψp, (5.29)

and we act with one more Dirac operator to get

λ2ψα = −γmγnDmDnψ
α
p = −γmnD[mDn]ψ

α
p −�ψαp

= −γmn 1

2

(
R q
mnp ψ

α
q + R α

mn β︸ ︷︷ ︸
= 1

4
R qr
mn (γqr)αβ

ψβp

)
−�ψαp

= /D
2
1/2ψp −

1

2
γmnR q

mnp ψq.

(5.30)

We also have

1

2
γmn(gmpδ

q
n − δqmgnp) =

1

2

(
γ q
p − γqp

)
= γ q

p = γpγ
q − δqp, (5.31)

and because of the gauge choice we made earlier, γmψm = 0 (Eq.(2.61)), we can now write(
γpγ

q − δqp
)
ψq = −ψp. (5.32)

This �nally gives us the eigenvalues of the spin-3/2 operator as

λ2ψp = ( /D
2
1/2 + 1)ψp =

(
−� +

42

4
m2 + 1

)
ψp. (5.33)

We have the representations (p− 1, 1, 1, 0) and (p− 1, 1, 0, 1) in SO(8) and these gives
us CG = p(p+ 7) + 13, while the SO(7) representation is (1, 0, 1), giving us CH = 49

4 . This
means that −�ψm = m2[p(p+ 7) + 3

4 ]ψm and

λ2 =

[
p(p+ 7) +

49

4

]
m2 =

(
p+

7

2

)2

m2 =⇒ λ = ±
(
p+

7

2

)
m. (5.34)

We can not say anything about the sign this time either. We will now turn to the other
method, where we expand the harmonics in modes.
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5.4 Mode expansion method

As mentioned earlier there is another method one can use to �nd the eigenvalues of the
di�erent di�erential operators. This is inspired by an article from Gibbons & Perry [39].
Since the curvature contributions will be unchanged we will only concern ourselves with
the derivatives. The spherical tensor is expressed as

T = TM1...Mny
M1 . . . yMn , (5.35)

where TM1...Mn has the symmetry properties of the irreducible representation we are in.
For example, if we take the vector representation we write the tensor of rank n+ 1 as

TPQM1...Mn−1 , (5.36)

which is anti-symmetric in P and Q and symmetric in the Mi's. It is also traceless on
any pair of indices. We will not write out the T in the following but simply impose its
symmetries on the y's, so that the vector is given by

y[MyM1]yM2 . . . yMn . (5.37)

In particular, we will look at how these tensors split into the irreps of SO(7), so that if we
have an SO(7) index a we write the vector as

φa = y[M
a yM1]yM2 . . . yMn . (5.38)

It is also natural to here introduce a notation using the Young tableaux of Appendix

B. The Young tableau of the vector, (p − 1, 1, 0, 0), is for example

p︷ ︸︸ ︷
• • • • . . .•
a

, and we

thus write the vector as φa . We now see directly from the tableau how to expand the
tensor in modes.

5.4.1 The scalar

Using this method we expand the scalar representation, (p, 0, 0, 0), in modes as

φ = y(M1 . . . yMp). (5.39)

The y's are SO(8) vectors and the SO(8) indicesMi split into (a, 8 = ·), where a are seven
dimensional SO(7) indices (we will often omit the 8 index, since it is just a scalar index).

By acting with a derivative on yM and using our master equation again, we �nd

∇ayM = −(Tay
M )8. (5.40)

Since the generators of SO(8) can be written as (TMN )PQ = 2δPQMN we directly see that
the index structure must be

∇ayM = (−Ta8)8byMb = −yMa . (5.41)

When taking the next derivative, in order to end up with the box operator, it can either
hit the same yM or a new one. So we need to know two things: First

∇ay(M∇ayN) = y(M
a yN)

a . (5.42)
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To evaluate this we need to use the full SO(8) vectors. In SO(8) the Kronecker delta is
left invariant, i.e.,

δMN = yMP y
N
Q δ

PQ = yMa y
N
a + yM8 yN8 =⇒ yMa y

N
a = δMN − yMyN . (5.43)

But the mode expansion must be traceless. This means that the delta term will be zero,
and we have

y(M
a yN)

a = −y(MyN). (5.44)

We also need to know what happens if the derivative acts two times on the same y.
This can be checked in steps. One sees that

∇byMa = (Tay
M )b = (Ta8)b8yM8 = δbay

M , (5.45)

which tells us that
∇a∇ayM = −∇ayMa = −7yM . (5.46)

Now, when the �rst derivative hits we get one term from every y, adding up to a total
of p terms. We then get p(p − 1) terms when the next derivative act on another y and p
terms, with an extra seven in them, from when the second derivative act on the same y.
This means that we have

�φ = −[p(p− 1) + 7p]φ = −[p(p+ 6)]φ, (5.47)

which is the same result we found when using the Casimir method.

5.4.2 The one-form

As previously stated the vector is expanded as

φa = y[M
a yM1]yM2 . . . yMp . (5.48)

We are again interested in the box operator acting on this expansion. The only new thing
compared to the scalar case will be the added anti-symmetry. From the �rst derivative we
get

∇bφa = (∇by[M
a )yM1]yM2 . . . yMp + y[M

a (∇byM1])yM2 . . . yMp + y[M
a yM1]∇byM2 . . . yMp︸ ︷︷ ︸

p−1 such terms.

= δaby
[MyM1]yM2 . . . yMp − y[M

a y
M1]
b yM2 . . . yMp − y[M

a yM1]yM2
b . . . yMp︸ ︷︷ ︸

p−1 such terms.

.

(5.49)
Acting with the second derivative we get lots of terms, we can evaluate this in steps.

When acting on the �rst term in the equation above we get

∇bδaby[MyM1]yM2 · · ·+ δaby
[M∇byM1]yM2 · · ·+ y[MyM1]∇byM2︸ ︷︷ ︸

p−1 terms

· · ·

= −y[M
a yM1]yM2 · · · − y[MyM1]

a yM2 · · · ,
(5.50)

where we used that y[MyM1] = 0 because the scalars commute. But y[My
N ]
a = −y[M

a yN ]

so the two remaining terms cancel. Using the same arguments, and the results from the
scalar case, when acting on the next two terms in Eq.(5.49) we end up with

�φa = −[p(p+ 6)− 1]φa , (5.51)

precisely as in the case of the Casimir method. To get the eigenvalues of ∆1 we simply
add the contribution from the Ricci tensor.
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5.4.3 The two-form

For the representation (p− 1, 0, 1, 1) we could expand using two spinors, but since an even
number of spinor indices gives a tensor we can also use Young tableaux to understand how
to split the two-form in modes. The only way to construct a two-form Young tableau in this

representation is by writing

p︷ ︸︸ ︷
• • • • . . .•
a
b

with p− 1 symmetric and three anti-symmetric

boxes. This gives us the mode expansion

φab = y[M
a yNb y

M1]yM2 . . . yMp . (5.52)

Acting with ∇c on this we get four di�erent kinds of terms, depending on which y it acts
on. Acting a second time we get four or �ve terms for every one of the �rst four. We skip
writing them out here. After some cancellations and using the previous results one ends
up with

�φab = −[p(p+ 6)− 2]φab , (5.53)

as before.

5.4.4 The Lichnerowicz operator

The Lichnerowicz operator act on hab in the representation (p − 2, 2, 0, 0) which is the

Young tableau
• • • • . . .•
a b

. We express this as

hab = y[M
a yM1]y

[N
b yM2]yM3 . . . yMp . (5.54)

Acting with the �rst derivative gives us

∇chab =δacy
[MyM1]y

[N
b yM2] · · · − y[M

a yM1]
c · · ·+ δbcy

[M
a yM1]y[NyM2] . . .

− y[M
a yM1]y

[N
b yM2]

c · · · − y[M
a yM1]y

[N
b yM2]yM3

c . . .︸ ︷︷ ︸
p−1 such terms.

. (5.55)

Acting with the second derivative and rewriting some terms in the same way as before,
using the symmetries of the modes, we again �nd the same results as above, namely

−�hab = [p(p+ 6)− 2]hab . (5.56)

5.4.5 The Q-operator

Q is the linear operator ?d acting on a three-form, φ = φabcdx
adxbdxc. We express the

three-form as

φabc = y[M
a yNb y

P
c y

M1]yM2 . . . yMp . (5.57)

The derivative in Q gives us

∇a
• • • . . .•
a
b
c

= −
d • • . . .•
a
b
c

− (p− 1)

• d • . . .•
a
b
c

. (5.58)

The second tableau can be turned into the form of the �rst by writing

0 = 5y[M
a yNb y

P
c y

M1y
M2]
d = 4y[M

a yNb y
P
c y

M1]yM2
d − y[M

a yNb y
P
c y

M2]
d yM1

=⇒ y[M
a yNb y

P
c y

M1]yM2
d =

1

4
y[M
a yNb y

P
c y

M2]
d yM1 .

(5.59)
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We thus have

d

• • • . . .•
a
b
c

= −1

4
(p+ 3)

d • • . . .•
a
b
c

. (5.60)

The Hodge-star operator will then give us

(?dφ)efg = −p+ 3

4

1

3!
ε abcd
efg y[M

a yNb y
P
c y

M1]
d yM2 . . . yMp . (5.61)

Now, in eight dimensions we can form the projection operators

P± ≡
1

2

(
δN1...N4
M1...M4

± 1

4!
ε N1...N4
M1...M4

)
. (5.62)

This means that we can write

1

4!
εM1...M8

TM5...M8 = ±TM1...M4 , (5.63)

which, in our case, implies

ε abcd
efg8 yaybycyd = ±4!yeyfygy, (5.64)

and we get

(?dφ)abc = ∓(p+ 3)y[M
a yNb y

P
c y

M1]yM2 . . . yMp = ∓(p+ 3)φabc. (5.65)

5.4.6 Spin-1/2

For the spinor representation the generators are the gamma matrices. As mentioned earlier
we will denote the eight-dimensional matrices with ΓM and the seven-dimensional by γm.
Using our master equation on a spinor ΣA

α we have

∇aΣA
α =

1

2
(Γa8) β

α ΣA
β , (5.66)

where A = (α, α̇) are the spinor indices of SO(8) belonging to either (0, 0, 1, 0) or (0, 0, 0, 1).
We can construct the SO(8) matrices explicitly as

ΓM =

{(
0 σa

−σa 0

)
,

(
0 −1
−1 0

)}
, (5.67)

so that the chiral gamma matrix is

Γ1 . . .Γ8 =

(
1 0
0 −1

)
, (5.68)

given that σ1 . . . σ7 = 1.
The σ-matrices are anti-symmetric and real, and we want the SO(7) matrices to be

hermitian. This means that we can de�ne them as γa = ±iσa. We also want them to
satisfy γ1 . . . γ7 = +i, so we choose the minus sign, i.e., γa = −iσa. This gives us

ΓM =


(

0 iγa

−iγa 0

)
︸ ︷︷ ︸

Γa

,

(
0 −1
−1 0

)
︸ ︷︷ ︸

Γ8

 . (5.69)
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The SO(8) matrices satisfy

yMP ΣA
CΣB

D(ΓP )CD = (ΓM )AB, (5.70)

which means that we can write

yMa ΣA
CΣB

D(Γa)CD + yMΣA
CΣB

D(Γ8)CD = (ΓM )AB

=⇒ yMa ΣB
D(Γa)AD + yMΣB

D(Γ8)AD = (ΓM )CBΣA
C .

(5.71)

If we now choose A = α we get

yMa ΣB
D(Γa)αD = −yMΣB

D(Γ8)αD + (ΓM )CBΣα
C︸ ︷︷ ︸

=0

=⇒ iyMa (γa) β
α ΣA

β = yMΣA
α , (5.72)

if we instead had chosen A = α̇ we would have found iyMa (γa) β
α ΣA

β = −yMΣA
α . Note that

we do not make any di�erence between α and α̇ in SO(7), since there is only one spinor
representation, (0, 0, 1).

We can now �nd the eigenvalues of the Dirac operator. The representation (p, 0, 0, 1)
corresponds to α and (p, 0, 1, 0) to α̇. The spinor is expanded as

ψα = y(M1 . . . yMp)ΣA
α . (5.73)

By �rst acting with the covariant derivative we get

∇aψα = −py(M1
a yM2 . . . yMp) +

1

2
y(M1 . . . yMp)(Γa8) β

α ΣA
β . (5.74)

One easily �nds that

Γa8 =

(
−iγa 0

0 iγa

)
, (5.75)

giving us (Γa8) β
α = −iγa and (Γa8) β̇

α̇ = iγa, so that

∇aψα = −py(M1
a yM2 . . . yMp) − i1

2
y(M1 . . . yMp)(γa)

β
α ΣA

β . (5.76)

Acting with iγa on this we get

i(γa) β
α ∇aψβ = −ip(γa) β

α y(M1
a . . . yMp)ΣA

β +
1

2
y(M1 . . . yMp)(γa) β

α (γa)
γ
β ΣA

γ . (5.77)

Using the results of Eq. (5.72) this becomes

− py(M1 . . . yMp)ΣA
α −

7

2
y(M1 . . . yMp)ΣA

α = −(p+
7

2
)y(M1 . . . yMp)ΣA

α (5.78)

Exactly as when using the quadratic Casimir approach, but we now see that we get the
minus sign for the (p, 0, 0, 1) representation. Had we chosen the α̇ instead we would have
found the plus sign belonging to the (p, 0, 1, 0) representation.
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5.4.7 Spin-3/2

The last operator we will deal with is the spin 3/2 operator, /D3/2. This is done in the
same way as the spin 1/2 operator, the only di�erence is that we start in the SO(8)
representation (p− 1, 1, 0, 1). We expand as

ψa,α = y[M
a yM1]yM2 . . . yMpΣA

α . (5.79)

We act with the covariant derivative �rst, and get

Dbψa,α = δaby
[MyM1] · · ·−y[M

a y
M1]
b · · ·−(p−1)y[M

a yM1]yM2
b · · ·+

i

2
y[M
a yM1] . . . yMp(Γb8) β

α ΣA
β .

(5.80)
We now act with the SO(7) gamma matrices, and multiply with i, on each block of this
(either on the α, β part or the α̇, β̇ part of the gamma matrices)

i(γb) β
α Dbψa,β = iγay

[MyM1] . . .︸ ︷︷ ︸
=0

−iy[M
a γby

M1]
b · · · − i(p− 1)y[M

a yM1]γbyM2
b . . .

+
1

2
y[M
a yM1]yM2 . . . yMpγbγbΣ

A
α

=− ψa,α − (p− 1)ψa,α −
7

2
ψa,α = −(p+

7

2
)ψa,α,

(5.81)

where we once again used the results of Eq.(5.72).
Now that we have shown several examples of how our methods work we will move on to

the squashed sphere. This is not a symmetric space so the structure constants of Eq.(4.17)
will not vanish automatically. This will lead to more complex situations. First we need to
discuss the geometry of the squashed sphere in order to �nd the structure constants and
the Riemann tensor, which we will need in order to derive the eigenvalues.
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6

Geometry of the squashed sphere

In this chapter we study the geometry of the squashed seven-sphere. This is mainly done by

regarding the sphere as the coset space Sp(2)×Sp(1)C

Sp(1)A×Sp(1)B+C and using the results of Chapter

4 to derive the curvature and Killing metric. Here Sp(1)A and Sp(1)B make up the
SO(4) ∼= Sp(1) × Sp(1) subgroup of Sp(2), and Sp(1)B+C denotes the diagonal Sp(1)
subgroup of Sp(1)B × Sp(1)C . We will also brie�y discuss other ways of looking at the
geometry. But �rst, a few words on the meaning of squashing.

6.1 How to squash a sphere

There are several, equivalent, ways of describing the squashed seven-sphere. As mentioned
above we will mostly consider it as a coset space and work from a group theoretical per-
spective. But to see the meaning of squashing it is easier if we use another approach.

The squashed seven-sphere corresponds to a spontaneous symmetry breaking of the
round sphere. The seven-sphere can be recognised as an S3 bundle over S4 [4]. This
means that we can express the metric as a combination of the S4 metric and a gauge part
coming from the S3 ∼ SU(2), in a sort of inverse Kaluza-Klein mechanism [4]. This metric
can be written as

ds2 = dµ2 +
1

4
sin2 µΣ2

i + λ2
(
σi − cos2 µ

2
Σi

)
, (6.1)

where dµ2 + 1
4 sin2 µΣ2

i is the S4 metric, 0 ≤ µ < π, and both Σi and σi are one-forms
satisfying the SU(2) algebra [4]

dσi = −1

2
εijkσj ∧ σk, i, j, k = 1, 2, 3, (6.2)

and correspondingly for Σi. The cos2 µ
2 Σi term is the gauge potential of an SU(2) instan-

ton. Note that if this was zero we would simply have S4 × S3 [4]. The parameter λ is a
constant that deforms the SU(2) �bres relative the S4 space. There are two values of λ
that gives us an Einstein metric, these are λ2 = 1 and λ2 = 1

5 , where λ
2 = 1 corresponds to

the round sphere and λ2 = 1
5 to the squashed sphere [4]. Note that all values of λ could be

considered as some squashing of the sphere but only these two gives us an Einstein metric,
therefore when we talk about the squashed sphere we always refer to the λ2 = 1

5 case.

6.2 The algebra of the coset space

We now turn to considering the squashed sphere as the coset space Sp(2)×Sp(1)
Sp(1)×Sp(1) , beginning

by deriving the algebra of this space.
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45 CHAPTER 6. GEOMETRY OF THE SQUASHED SPHERE

Since Sp(2) is isomorphic to SO(5), which has SO(4) as a subgroup we will start there.
We can realise SO(4) with the help of the gamma matrices along with the conventions

γα =

(
0 σα

σ̄α 0

)
, {γα, γβ} = 2δαβ, (6.3)

where
σα = (−i1, σi),
σ̄α = (+i1, σi),

(6.4)

and σi are the ordinary Pauli matrices, satisfying [σi, σj ] = 2iεijkσk and {σi, σj} = 2δij .
The generators of SO(4) are the usual anti-symmetric combinations of two matrices,

γαβ . Using the conventions above these are

γαβ =

(
σαβ 0

0 σ̄αβ

)
≡
(
σ[ασ̄β] 0

0 σ̄[ασβ]

)
. (6.5)

To go from SO(4) to SO(5) we use the chiral gamma matrix, γ5, and add the generators
γα5 = γ[αγ5] to the ones given above. With our conventions these have the form

γ5 =

(
1 0
0 −1

)
=⇒ γα5 =

(
0 −σα
σ̄α 0

)
. (6.6)

It is easy to check that the set {γαβ, γα5} satis�es the SO(5) algebra.
To keep track of the di�erent Sp(1) algebras appearing in the coset space we denote

them with di�erent superscripts A,B or C. As mentioned in the beginning of the chapter
Sp(1)A × Sp(1)B is the SO(4) subgroup of Sp(2), and Sp(1)C is the algebra appearing in
G together with Sp(2). We then embed Sp(1)A × Sp(1)B+C in Sp(2) by introducing the
generators [40]

SpA1 : ii ≡ −
i

2

(
σi 0
0 0

)
,

SpB1 : ji ≡ −
i

2

(
0 0
0 σi

)
,

SpC1 : li ≡ −
i

2
σi.

(6.7)

Next, we de�ne

Hi ≡ Ii ≡ −
i

2

(
σi 0
0 0

)
⊗ 12×2,

Hî ≡ Ji + Li,

(6.8)

where Ji ≡ − i
2

(
0 0
0 σi

)
⊗ 12×2 and Li ≡ − i

214×4 ⊗ σi. These six generators, Hi and Hî,

comprise the H in the coset G/H [40].
For the complement, in the decomposition G = H ×K, we de�ne the generators [40]

Qα ≡
1

2

(
0 −σα
σ̄α 0

)
⊗ 12×2,

Tâ ≡
2√
5

(Ji −
3

2
Li).

(6.9)

Note that Qα are just the γα5 generators mentioned earlier. The normalisation has here
been chosen for later convenience, and the relative factor between Ji and Li in Tâ comes
from demanding the Killing form to be diagonal.
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46 CHAPTER 6. GEOMETRY OF THE SQUASHED SPHERE

We will also use the 't Hooft symbol de�ned by

σαβ ≡ iηαβi σi =⇒

{
ηoji = −δji ,
ηjki = εijk,

σ̄αβ ≡ iη̄αβi σi =⇒

{
η̄oji = +δji ,

η̄jki = εijk.

(6.10)

By using the above generators we can now �nd all the structure constants of the coset.
This can then be used to �nd the Riemann tensor, as in Chapter 4. Since we will not
always know where the calculations are going to end up, we use the indices i, j, k for the
intermediate steps and then place the correct indices where they should be in the end.

The easiest structure constants to �nd are the ones from [H,H]. We can directly see
that, since [σi, σj ] = 2iεijk,

[Hi, Hj ] = εijkHk. (6.11)

The di�erent Sp(1) algebras all commute with each other, which means that

[Hî, Hĵ ] = [Jî + Lî, Jĵ + Lĵ ] = [Jî, Jĵ ] + [Lî, Lĵ ] = ε̂iĵk̂(Jk̂ + Lk̂) = ε̂iĵk̂Hk̂. (6.12)

The structure constants involving the Tâ generators gives us[
Hî, Tâ

]
=
[
Jî + Lî,

2√
5

(Jâ −
3

2
Lâ)
]

=
2√
5

[Jî, Jâ]︸ ︷︷ ︸
=εijkJk

− 3√
5

[Lî, Lâ]︸ ︷︷ ︸
=εijkLk

=
2√
5
εijk

(
Jk −

3

2
Lk

)
= ε̂iâb̂Tb̂,

(6.13)

and [
Tâ, Tb̂

]
=

4

5

[
(Ji −

3

2
Li), (Jj −

3

2
Lj)

]
=

4

5

(
[Ji, Jj ] +

9

4
[Li, Lj ]

)
=

4

5
εijk

(
Jk +

9

4
Lk

)
.

(6.14)

The squashed sphere is not a symmetric space, and therefore has [K,K] ⊂ K + H. This
means that the above expression should be able to give us both something in Hî and in
Tâ. With this in mind we write[

Tâ, Tb̂
]

= εijk

[
c1(Jk + Lk) + c2

2√
5

(Jk −
3

2
Lk)

]
= εijk

[
Jk

(
c1 + c2

2√
5

)
+ Lk

(
c1 − c2

3√
5

)]
,

(6.15)

for some constants c1 and c2. Comparing this with the above result we get a system of
equations for c1 and c2 which is solved by c1 = 6

5 and c2 = − 1√
5
, which means that

[
Tâ, Tb̂

]
=

6

5
εâb̂k̂Hk̂ −

1√
5
εâb̂ĉTĉ. (6.16)

Turning to the structure constants involving Qα

[Hi, Qα] =

[
− i

2

(
σi 0
0 0

)
,
1

2

(
0 −σα
σ̄α 0

)]
=
i

4

(
0 σiσα

σ̄ασi 0

)
=
i

4

[(
0 iηiαk σ

k

iη̄αik σ
k 0

)
+

(
0 δiα

δiα 0

)]
.

(6.17)
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In particular, if we set α = a = 1, 2, 3, and write δia1 = iσ0δia or −iσ̄0δia, we �nd

[Hi, Qa] =
1

2
εiabQ

b +
1

2
δiaQ0. (6.18)

Setting α = 0 instead gives us

[Hi, Q0] = −1

2
δibQ

b. (6.19)

The bracket [Qα, Qβ] is evaluated as

[Qα, Qβ] =
1

4

[(
0 −σα
σ̄α 0

)
,

(
0 −σβ
σ̄β 0

)]
=

1

4

(
σβσ̄α − σασ̄β 0

0 σ̄βσα − σ̄ασβ
)

=
i

2

(
ηβαk σk 0

0 η̄βαk σk

)
.

(6.20)

If α = a, β = 0 we get

[Qa, Q0] =
i

2
δak

(
−σk 0

0 σk

)
= δak

[
− i

2

(
σk 0
0 0

)
︸ ︷︷ ︸

=Hk

+
i

2

(
0 0
0 σk

)]
, (6.21)

and one can write

i

2

(
0 0
0 σk

)
= −Ji = c1(Ji + Li) + c2

2√
5

(Ji −
3

2
Li), (6.22)

which is solved by c1 = −3
5 and c2 = − 1√

5
implying that

[Qa, Q0] = δkaHk −
3

5
δk̂aHk̂ −

1√
5
δĉaTĉ. (6.23)

Setting α = a, β = b instead leads to

[Qa, Qb] =
i

2
εbak

(
σk 0
0 σk

)
= εabkHk +

3

5
εabk̂Hk̂ +

1√
5
εabĉTĉ. (6.24)

From a quick calculation one can see that Li commutes with Qα. This helps us a great
deal in evaluating the last two commutators. Here we have

[
Hî, Qα

]
= [Ji + Li, Qα] = [Ji, Qα] = − i

4

[(
0 0
0 σi

)
,

(
0 −σα
σ̄α 0

)]
= − i

4

(
0 σασi

σiσ̄α 0

)
=

1

4

(
0 ηαik σ

k

η̄iαk σ
k 0

)
− i

4
δαi
(

0 1

1 0

)
.

(6.25)

Now, taking α = a gives us

[Hî, Qa] =
1

2
ε̂iabQb −

1

2
δîaQ0, (6.26)

and α = 0 has

[Hî, Q0] =
1

2
δîbQb, (6.27)

since δα=0
i = 0.
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Finally, the last commutator to check is

[Tâ, Qβ] =
2√
5

[Jâ −
3

2
Lâ, Qβ] =

2√
5

[Jâ, Qβ], (6.28)

and we just evaluated this commutator, so multiplying the above results with the new
prefactor we get, for β = b

[Tâ, Qb] =
1√
5
εâbcQc −

1√
5
δâbQ0, (6.29)

and for β = 0

[Tâ, Q0] =
1√
5
δcâQc. (6.30)

Collecting all these results the non-zero structure constants are

f k
ij = εijk, f k̂

îĵ
= ε̂iĵk̂,

f 0
ia = f a

0i =
1

2
δai, f i

a0 = δia,

f b
ia =

1

2
εiab, f i

ab = εabi,

f 0
îa

= f a
0̂i

= −1

2
δâi, f î

0a =
3

5
δîa,

f b
îa

=
1

2
εiab, f î

ab =
3

5
εab̂i,

f b̂
îâ

= ε̂iâb̂, f î
âb̂

=
6

5
εâb̂̂i,

f ĉ
âb̂

= − 1√
5
εâb̂ĉ, f c

âb = f â
bc =

1√
5
εâbc,

f 0
âb = f b

0â = f â
b0 = − 1√

5
δâb.

(6.31)

Note that we get exactly the results of Bais et al., [35], if we instead take Qα =
√

5
9
√

2

(
0 −σα
σ̄α 0

)
⊗12×2 and Tâ = 2

√
2

9 (Ji−3
2Li). However, as we will see, our normalisations

better aligns with Du� et al., [4].
By using the expressions for the octonionic structure constants found in Appendix D

a0iĵ = −δij , aijk̂ = −εijk and aîĵk̂, (6.32)

we can see that the structure constants of the complement, i.e, f ĉ
âb̂

, f c
âb and f 0

âb , can be

combined into one expression, f c̄
āb̄

= − 1√
5
aāb̄c̄, where ā = (0, î, i). This is very useful since

these are exactly the structure constants appearing in our master equation, Eq.(4.17), and
we have derived several identities for these structure constants in Appendix D.

6.3 Killing metric and curvature

With the structure constants given by Eq.(6.31) we can now see that the Killing metric is
diagonal. Since

κMN ≡ f S
MR f R

NS (6.33)
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gives us

κij = −2

(
εiklεjkl +

1

4
δaiδja + εiabεjab

)
= −2

(
δij +

1

4
δij +

1

4
δij

)
= −3δij , (6.34)

κîĵ = −2

(
ε̂ik̂l̂εĵk̂l̂ +

1

4
δîĵ +

1

4
ε̂iabεĵab + ε̂iâb̂εĵâb̂

)
= −2δîĵ

(
1− 1

4
− 1

4
+ 1

)
= −5δîĵ ,

(6.35)

κ00 = −2

(
1

4
δaiδ

ai +
3

10
δâiδ

îa +
1

5
δâbδâb

)
= −9

2
, (6.36)

κab = −2

(
1

2
δaiδ

i
b +

1

2
εaciεbci +

3

10
δâiδ

î
b +

3

10
εaĉiεbĉi +

1

5
εaĉdεbĉd +

1

5
δaĉδbĉ

)
= −2δab

(
1

2
+ 1 +

3

10
+

3

5
+

2

5
+

1

5

)
= −6δab,

(6.37)

and we get the same result for κâb̂.
The curvature two-form can be evaluated using Eq.(4.23). For example, we have

R0
a =

(
1

4
f 0
aĉ f

ĉ
DE +

1

2
f 0
âi
f î
DE +

1

2
f 0
ai f

i
DE +

1

4
f 0
Dc f

c
Ea +

1

4
f 0
Dĉ f

ĉ
Ea

)
eDeE ,

(6.38)
where (DE) can be either (de), (d̂ê), (d0) or (0e) according to Eq.(6.31). Evaluating this
further we �nd

R0
a =

(
− 1

20
εd̂êa +

6

20
εd̂êa −

1

20
εêad̂

)
ed̂eê +

(
1

20
εdea +

3

20
εdea −

1

4
εdea +

1

20
εdea︸ ︷︷ ︸

=0

)
edee

+

(
− 1

20
δad −

3

20
δad −

1

4
δad +

1

20
δad

)
ede0 +

(
1

20
δae +

3

20
δae +

1

4
δae

)
e0ee

=
1

5
εd̂êae

d̂eê − 8

20
δade

de0 +
9

20
δaee

0ee =
17

20
e0ea +

1

5
εad̂êe

d̂eê.

(6.39)
In the same way we �nd the other non-zero curvature forms to be

R0
â =

1

20
e0eâ − 1

5
εâbĉe

beĉ,

Rab =
17

20
eaeb +

2

5
δa
d̂
δbêe

d̂eê,

Ra
b̂

=
1

20
eaeb̂ − 1

5
εab̂ĉe

0eĉ +
1

5
δad̂δb̂ee

d̂ee +
1

5
δab̂e

ceĉ,

Râ
b̂

=
2

5
εâb̂ce

0ec +
2

5
δâdδb̂ee

dee +
5

4
eâeb̂.

(6.40)

We now see the bene�t of using our normalisation, for these are now the same forms as
found by Awada et al., [41], and later used by Du� et al., [4]. Note that Awada et al.
use a metric equivalent to Eq.(6.1) in their derivation. From these we can calculate the
curvature scalar, using RAB = 1

2R
A
BCDe

C ∧ eD, and we �nd

R =
89

10
. (6.41)
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50 CHAPTER 6. GEOMETRY OF THE SQUASHED SPHERE

To relate this to the ordinary round sphere we will de�ne m2 ≡ 9
20 so that R = 42m2 and

Rab = 6m2gab exactly as in the round case.
It will also be useful to calculate explicit expressions for the spin connection. We use

Eq.(4.14) to �nd

ω 0
m a =

1

2
Ωi
mδai −

1

2
Ωî
mδâi −

1

2
√

5
eĉmδaĉ,

ω 0
m â =

1

2
√

5
ecmδcâ,

ω a
m b =

1

2
Ωi
mεiba +

1

2
Ωî
mε̂iba +

1

2
√

5
eĉmεĉba,

ω a
m b̂

= − 1

2
√

5
e0
mδab̂ +

1

2
√

5
ecmεcb̂a,

ω â
m b̂

= Ωî
mε̂ib̂â −

1

2
√

5
eĉmεĉb̂â.

(6.42)

To be able to use these we must also �nd an explicit formula for Ωi
m. This is done by using

Eq.(8.1.17) in [4], and solving for Ωi
m. This gives us

Ωi
m = −2e a

m δia cotµ+
√

5e â
m δiâ,

Ωî
m =

6

2
√

5
e â
m δîâ,

(6.43)

where µ is the parameter appearing in Eq.(6.1).

6.4 The squashed sphere as a G2 manifold

We saw in Chapter 2 that the integrability condition for the Killing spinor only includes
the Weyl tensor. So in order to discuss the holonomy of the squashed sphere we need to
�nd an expression for this.

The Weyl tensor is de�ned by the relation

Wabcd ≡ Rabcd −m2(gacgbc − gadgbc). (6.44)

The integrability condition, Eq.(2.55), only involves a term of the form W cd
ab γcd which

we will de�ne as Wab. It is then a straightforward, but somewhat lengthy, task to use
Eq.(6.40) to �nd that the only non-zero terms of Wab are [4]

Woi =
4

5

[
γ0i +

1

2
εijkγĵk̂

]
,

Wij =
4

5

[
γij + γîĵ

]
,

Wiĵ =
4

5

[
−γiĵ −

1

2
γjî +

1

2
δijγkk̂ −

1

2
εijkγ0k̂

]
,

Wôi = −4

5

[
γ0̂i +

1

2
εijkγjk̂

]
,

Wîĵ =
4

5

[
2γîĵ + γij + εijkγ0k

]
.

(6.45)

We can also see that [4]

Wii = 0, W0̂i = εijkWjk̂, and Wîĵ = Wij + εijkW0k. (6.46)
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51 CHAPTER 6. GEOMETRY OF THE SQUASHED SPHERE

From Eq.(6.45) together with the identi�cations of Eq.(6.46) we get 14 independent
Wab. This means that the holonomy group of the squashed sphere, with the connection of
Eq.(2.55), is generated by these 14 generators. So what is this group?

Well, the fact that the dimensionality is 14, together with our previous discussions on
certain manifolds, hints at the possibility of the squashed sphere being a G2 manifold.
And, this is in fact the case [4]. The 14 generators generate the spinor representation of
G2 [35].

This implies that there is only one Killing spinor, as per the discussion in Section 2.3.
The Killing spinor is then covariantly constant under G2-covariance, i.e.,

∇̃aη =
(
∇a − i

m

2
γa

)
η = 0, (6.47)

and we can use it to write the three-form as

φabc = −iη̄γabcη. (6.48)

These things will be used in the next chapter when we discuss the Killing spinor equation
in more detail. There we will use the octonionic structure constants, aabc, as the three-form
and normalise the Killing spinor according to η̄η = 1.
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7

Mass spectra of the squashed
seven-sphere

This chapter presents the main results of the thesis. We calculate the eigenvalues of some
mass operators on the squashed seven-sphere. The operators dealt with are the ones acting
on the scalar, the vector and the spinor. This analysis turn out to be immensely more
di�cult than for the round sphere, and we will not complete the task. The mass operators
are still the same as in the round case, but the di�erential operators are not. This is due
to the squashed sphere not being a symmetric space, and the fabc part of Eq.(4.17) will
therefore generally not vanish.

We start by discussing how the di�erent representations split into representations of G
and H. The tangent space group is of course still SO(7), as in the round case, and as for
all seven-dimensional manifolds.

7.1 Representations

From the discussion of the round sphere we know that the scalar, spinor and vector corre-
spond to the SO(8) representations

(n, 0, 0, 0), (n, 0, 0, 1)s, (n, 0, 1, 0)c, and (n− 1, 1, 0, 0). (7.1)

So we want to decompose these under Sp(2)× Sp(1) to �nd the representations under G.
These decompositions are listed in Chapter 8 of [4], so we skip replicating this here. What
happens is that they get decomposed into sums of several terms. For example, the scalar
decomposes as

(n, 0, 0, 0)→
[n/2]∑
r=0

(n− 2r, r;n− 2r), (7.2)

where [n/2] denotes the integer part of n/2, and (p, q; r) is a representation of Sp(2)×Sp(1)
[42].

The other interesting thing to know is how our G representations decompose under H,
in G/H. There are several books of tables giving us these decompositions, we have used
McKay & Patera [38].

We will often use the (10, 1) representation of the previous chapter. From McKay &
Patera, [38], we �nd that this decomposes under SU(2)A × SU(2)B+C as

(10, 1)→ (1, 1)⊕ (0, 2)⊕ (0, 0). (7.3)

One also �nds that the spinor (0, 0, 1) of SO(7) decomposes as [38]

(0, 0, 1)→ (1, 1)⊕ (0, 2)⊕ (0, 0), (7.4)
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53 CHAPTER 7. MASS SPECTRA OF THE SQUASHED SEVEN-SPHERE

so it seems like the (10, 1) representation could be very useful when dissecting the Dirac
spectra of the spinor. The vector decomposes as

(1, 0, 0)→ (1, 1)⊕ (0, 2). (7.5)

Note that, in order to �nd these decompositions, one has to go via the G2 decomposition
of SO(7).

7.2 The scalar

We begin with the easiest spectra, the scalar. Since the SO(7) generators of the scalar
is zero, the f -term in the master equation will vanish once again. Using the quadratic
Casimir approach we thus simply �nd

∆0φ = −�φ = −TaTaφ. (7.6)

In the same way as before we can write TaTa = −20
9 m

2(CG − CH), where the 20
9 m

2

is added for dimensional reasons, note that it is numerically equal to 1 (we saw in the
previous chapter that m2 = 9

20). For the scalar we have CH = 0 which means that

∆0φ =
20

9
m2CG, (7.7)

in agreement with the results of Nilsson & Pope, [42].

7.3 Killing spinor equation

Next we analyse the Killing spinor equation on the squashed sphere. This gives us some
�rst indications of the problems arising when squashing the sphere.

As seen in Chapter 2 the Killing spinor equation is

(∇aη)β = i
m

2
(γa)βγηγ , (7.8)

and the Killing spinor must obey the integrability condition

W ab
mn γabη = 0, (7.9)

where W is the Weyl tensor.
We can construct a useful representation of the seven-dimensional gamma matrices by

writing [43]

(γa)βγ =

{
(γa)bc = −iaabc, a, b, c = 1, . . . , 7,

(γa)b8 = −iδab,
(7.10)

where aabc are the octonionic structure constants introduced in Appendix D. This rep-
resentation is discussed in more detail in Appendix E. There we also construct explicit
expressions for γ(2), γ(3) and γ(4) which will be needed below. One important thing to
remember is the symmetry properties. In seven dimensions we have that γ(1) and γ(2)

are anti-symmetric while γ(0) and γ(3) are symmetric. These properties are then re�ected
around γ(3), so that γ(4) and γ(7) are symmetric while γ(5) and γ(6) are anti-symmetric.

We can now solve the integrability condition and �nd an explicit expression for the
Killing spinor. This is done by �rst writing

(Wab)γδηδ = 0 ⇐⇒ (Wab)γdηd = −(Wab)γ8η8. (7.11)
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54 CHAPTER 7. MASS SPECTRA OF THE SQUASHED SEVEN-SPHERE

The non-zero parts of the Weyl tensor are listed in Eq.(6.45). These gives us, for example,

(W0i)γdηd =
4

5

[
(γ0i)γdηd +

1

2
εijk(γĵk̂)γdηd

]
= −(W0i)γ8η8 = −4

5

[
(γ0i)γ8η8 +

1

2
εijk(γĵk̂)γ8η8,

] (7.12)

which, using the expressions in Appendices D and E for the octonions and the gamma
matrices, and setting γ = 0, implies

δidηd +
1

2
εijkcĵk̂0dηd = 0 =⇒ δidηd +

1

2
εijkεjklδldηd = 2δidηd = 0 =⇒ ηi = 0. (7.13)

Continuing in the same manner we �nd that the Killing spinor has the simple form

η =



0
0
0
0
0
0
0
1


, (7.14)

with perhaps some function in front.
Turning to the Killing spinor equation we now �nd

(∇aη)β = i
m

2
(γa)βγηγ = i

m

2
((γa)βcηc + (γa)β8η8) . (7.15)

If we now take β = 8 this becomes

0 = −m
2
δacηc = ∂aη8 +

1

4
ω de
a (γde)βγηγ = ∂aη8. (7.16)

This means that there should not be any function in front of η in Eq.(7.14). If we instead
put β = b we �nd

m

2
δabη8 = −1

8
f de
a adebη8 =

1

8
√

5
aadeadebη8 =

3

4
√

5
δabη8 =

m

2
δabη8. (7.17)

This proves that the Killing spinor of Eq.(7.14) solves the Killing spinor equation.
Using the Killing spinor equation and the expression aabc = −iη̄γabcη from Appendix

D we can also �nd an identity that is needed later on

∇aabcd = −i∇a(η̄γbcdη) = −2iη̄γbcd∇aη = mη̄γbcdγaη = −mη̄γabcdη = −mcabcd. (7.18)

7.4 Spin 1

The eigenvalues of the vector harmonics have already been found by Yamagishi, [44], but
we will employ the methods of Chapter 5, in particular the quadratic Casimir approach,
to see that this still work for the squashed sphere. We �nd that they need to be somewhat
modi�ed, or rather that we need to square the master equation one extra time. This
analysis is also done by Du� et al., [4], but we will do it in more detail.
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The relevant di�erential operator for the one-forms are of course the Hodge-de Rahm
operator. Acting on vectors this is

κ2Ya = ∆1Ya = −�Ya +RabYb = −�Ya + 6m2Ya, (7.19)

where, once again, m2 = 9
20 for the squashed sphere.

Taking our master equation (Eq.(4.17)) acting on a vector and squaring it we have(
∇b +

1

2
fefbΣef

)(
∇b +

1

2
f cdbΣcd

)
Ya = (TbTbY )a. (7.20)

Evaluating this, and using that the tangent space generators in the vector representation
are just δabcd , we get

(TbTbY )a = �Ya +
1

2
(∇bf cdb )δaecdYe +

1

2
f cdb δ

ae
cd∇bYe +

1

2
fefbΣef∇bYa +

1

4
fefb f

cd
bΣefΣcdYa

= �Ya +
1

2
(∇bfacb )Yc +

1

2
facb∇bYc +

1

2
facb∇bYc +

1

4
f cdb f

ac
bYd

= �Ya −
1

2
(∇bfabc)Yc − fabc∇bYc −

1

4
fabcfdbcYd.

(7.21)
We again press on the fact that since we are working in the orthogonal groups, there is no
di�erence between upper or lower indices, and we raise and lower them as we please.

Now, the structure constants of the coset space can be expressed as fabc = −2
3maabc,

which we saw in the previous chapter, and the octonionic structure constants are diver-
genceless, i.e., ∇aaabc = 0. This means that

(TbTbY )a = �Ya +
2

3
maabc∇bYc −

m2

9
aabcadbcYd = �Ya +

2

3
maabc∇bYc −

2

3
m2Ya, (7.22)

where we used the identity aabcadbc = 6δad from Appendix D. We can once again write
(TbTbY )a = −20

9 m
2(CG − CH)Ya. Together with Eq.(7.19), which gives us

�Ya = 6m2Ya − κ2Ya, (7.23)

this means that

− 20

9
m2(CG − CH)Ya = 6m2Ya − κ2Ya +

2

3
maabc∇bYc −

2

3
m2Ya

⇐⇒ aabc∇bYc = −8mYa +
3

2

κ2

m
Ya −

10

3
m(CG − CH).

(7.24)

Using the Killing forms found in Chapter 6 we can see that CH = 6
5CSU(2)A+2CSU(2)B+C

,

and applying the formulas for the Casimirs found in Appendix B we get CH = 12
5 . Using

this above gives us

aabc∇bYc = −8mYa +
3

2

κ2

m
Ya +

10

3

12

5
m− 10

3
mCG =

3

2

κ2

m
Ya −

10

3
mCG. (7.25)

If we now de�ne the operator DYa ≡ aabc∇bYc and square this we �nd

D2Ya = aade∇daebc∇bYc = aade(∇daebc)∇bYc + aadeaebc∇d∇bYc. (7.26)

From Appendix D we know that aadeaebc = 2δadbc − cadbc, and we can also see that
2δadbc∇d∇b = ∇c∇a −�δac. Therefore

D2Ya = aade(∇daebc)∇bYc +∇c∇aYc −�Ya − cadbc∇d∇bYc. (7.27)
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Now, the anti-symmetric properties of cabcd implies that cabcd∇b∇cYd is simply a Bianchi
identity for the Riemann tensor, so that term is zero. Since the one-forms are diver-
genceless we can write ∇c∇aYc = [∇c,∇a]Yc = RabYb. So we only need to analyse
the term aade(∇daebc)∇bYc. When evaluating the Killing spinor equation we saw that
∇aabcd = −mcabcd and in Appendix D we derive the identity aadecdebc = −4aabc. Plugging
all of this in we �nd

D2Ya = 4maabc∇bYc + κ2Ya = 4mDYa + κ2Ya. (7.28)

This means that, from Eq.(7.25), we must have(
3

2

κ2

m
− 10

3
mCG

)2

= 4m

(
3

2

κ2

m
− 10

3
mCG

)
+ κ2 = 7κ2 − 40

3
m2CG

⇐⇒ κ4 − m2κ2

9
(28 + 40CG) = −400

81
m4C2

G −
160

27
m4CG

⇐⇒
(
κ2 − m2

9
(14 + 20CG)

)2

=
m4

81
(14 + 20CG)2 − 400

81
m4C2

G −
160

27
m4CG

=
196

81
m4 +

80

81
m4CG

⇐⇒ κ2 =
20

9
m2

(
CG +

7

10
± 1√

5

√
CG +

49

20

)
.

(7.29)

We can see that these eigenvalues perfectly align with the ones found by Yamagishi, [44].
So this does not give us anything new. But it shows us that this method should work.
However, when we next turn to the Dirac equation we will encounter some peculiarities.

7.5 Dirac operator

The eigenvalues of the Dirac operator has been found by Nilsson & Pope, [42], in a com-
pletely di�erent way than the methods we work with in this thesis. However, when we go
to higher spins this method becomes extremely complicated. The hope is that our methods
could more easily be generalised to the higher spin cases. It is then very important that
we understand these methods completely. We therefore start with the Dirac case, where
we know the eigenvalues, and try to resolve as many question marks as possible.

7.5.1 Solving Dirac directly

We begin by trying to solve the Dirac equation directly using the generators of the (10, 1)
representation discussed in the previous chapter. Our master equation can be used to
express the Dirac operator as

iγa∇aψ = −iγa
(

1

2
f bcaΣbc + Ta

)
ψ = −i

(
1

8
f bcaγ

aγbc + γaTa

)
ψ. (7.30)

As stated above, the (10, 1) representation split into (1, 1)⊕ (0, 2)⊕ (0, 0) under H. These
representations have the dimensions 4, 3 and 1 respectively. So, in order to see what is
happening, we want to use our gamma matrices, with the octonions, and try to get our
(10, 1) basis into this splitted, 4 + 3 + 1, form.

The indices of the di�erent Sp(1) algebras will be denoted as Ii : A, Ji : Ȧ and Li : Ã,
so that, for example, the (1, 1) representation has indices (A, Ȧ). Since Hi = Ii, we see that
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these only have indices without any dots or tildes. This indicates that we should change
the basis so that Hi lives only in the �rst 4× 4 block. Following the approach of Aspman
& Nilsson, [45], we start by interchanging columns two and three, where we think in 2× 2
blocks, and then interchange the corresponding rows. For example, this means that we do
the transformation

2iH1̂ =


0 0 1 0
0 σ1 0 1

1 0 0 0
0 1 0 σ1

→


0 1 0 0
0 0 σ1 1

1 0 0 0
0 0 1 σ1

→


0 1 0 0
1 0 0 0
0 0 σ1 1

0 0 1 σ1

 , (7.31)

and, especially, this means that we get

Hi = − i
2


σi 0 0 0
0 σi 0 0
0 0 0 0
0 0 0 0

 , (7.32)

as we wanted. Note that we de�ne the tensor product to mean that we put the left term
into the right term, i.e.,

σ1 ⊗ 1 =

(
σ1 0
0 σ1

)
, (7.33)

instead of the, perhaps, more usual reversed meaning. This is only a de�nition, and this
particular choice simpli�es a lot of things for us.

We apply the corresponding transformations to all the generators, and the result is

Hi = − i
2

(
σi ⊗ 1 0

0 0

)
,

Hî = − i
2

(
1⊗ σi 0

0 σi ⊗ 1+ 1⊗ σi

)
,

Tâ = − i√
5

(
−3

21⊗ σa 0
0 σa ⊗ 1− 3

21⊗ σa

)
,

Qα =
1

2

(
0 −σα ⊗ 1

σ̄α ⊗ 1 0

)
.

(7.34)

Next, we want to do a change of basis that resembles what we do in quantum mechanics
when we go from 1

2 ⊗
1
2 to 1 ⊕ 0. This is done to every 4 × 4 block, in the generators, to

bring them into the same basis as the gamma matrices. Starting with, for example, the
�rst block in Hi

H
(1)
i = − i

2
σi ⊗ 1 = − i

2
(σi)

B
A δ Ḃ

Ȧ
, (7.35)

we �nd the (·, ·) entry by multiplying with 1√
2
ε from both sides, i.e. 1

2εH
(1)
i εT , where

ε =

(
0 1
−1 0

)
[40]. Doing this we get

− i

2

1√
2
εAȦ(σi)

Ḃ
Ȧ
δ B
A

1√
2
εḂB = − i

4
εAȦ(σi)

Ḃ
Ȧ
εḂA = − i

4
Tr(εσiε

T ) = 0. (7.36)

The (j, ·) entry is instead found by multiplying with i√
2
(σj)

AȦ = i√
2
εAȦ(σj)

Ḃ
Ȧ

from the

left and with 1√
2
εḂB from the right (the (·, j) entry is found by the opposite multiplication
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but with a −i in front of the σj). For (j, ·) we thus have

− i

2

i√
2
εAȦ(σj)

Ḃ
Ȧ

(σi)
Ċ

Ḃ
δ B
A

1√
2
εĊB =

1

4
εAȦ(σjσi)

Ḃ
Ȧ
εḂA =

1

4
Tr(εσjσiε

T ) = −1

2
δij .

(7.37)
In the same way we �nd that the (·, j) entry is equal to 1

2δij , which we already knew since
the matrix still had to be anti-hermitian after the change of basis. Lastly we �nd the (j, k)
entry by multiplying with iσj from the left and −iσk from the right, as

− i
2

i√
2
εAȦ(σj)

Ḃ
Ȧ

(σi)
Ċ

Ḃ
δ B
A (−i)(σk) Ḋ

Ċ

1√
2
εḊB = − i

4
εAȦ(σjσiσk)

Ḃ
Ȧ
εḂB

= − i
4
Tr(εσjσiσkε

T ) = − i
4

2iεjik = −1

2
εijk.

(7.38)
We recognise that we can combine these entries and write the full block as a t' Hooft
symbol, −1

2η
αβ
i , so that we now have

Hi = −1

2

(
(ηi)

αβ 0
0 0

)
. (7.39)

We do the same thing for Hî and Tâ and end up with

Hî = −1

2



(η̄î)
αβ

(εi)jk 0

0 0


,

Tâ =
1

2
√

5



3(η̄â)
βγ

(εa)jk −5δaj

5δak 0


,

(7.40)

where for example (εa)jk are 3 × 3 matrices, Mjk, enumerated by a, and all the empty
blocks are �lled with zeros. We see that these generators are now almost in the 4 + 3 + 1
form.

We also want to perform this change of basis on the second and third block of the Qα
generators, but this time we skip the i when �nding the (j, ·) and the (j, k) entries. The
result is

Qα =
1

2



0
(η̄α) ĵ

β δαβ

−(η̄α)k̂γ

−δαγ

0


, (7.41)
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where now (η̄α) ĵ
β is a 4× 3 matrix and (η̄α)k̂γ a 3× 4 matrix, both enumerated by α.

It is a good idea to check whether or not we have done anything illegal. This is done by
verifying that our refurnished generators still satisfy the algebra. We will not go through
this here, but by using the identities for the 't Hooft symbol, found in the end of [46], one
soon �nds that the whole algebra is still satis�ed (this can also be done rather quickly by

using a computer). For example, since ηαβi ηβγj = −δijδαγ − εijkηαγk , we directly see that
[Hi, Hj ] = εijkHk as expected.

Before turning to the Dirac equation it is useful to �rst express the gamma matrices in
a similar form as the generators. By using that aαβî = −η̄îαβ and aîĵk̂ = ε̂iĵk̂ we �nd

γî = i



(η̄i)
αβ

−(εi)jk δij

−δik 0


,

γα = i



0
−(η̄α) ĵ

β −δαβ

(η̄α)k̂γ

δαγ

0


= −2iQα.

(7.42)

To solve Eq.(7.30) we also need to evaluate the f -term, i.e. 1
8γ

af bc
a γbc = − 1

8
√

5
aabcγabc.

We use the expression given in Appendix E for γabc in our basis. This gives us

(aabcγabc)
n

m = −6iδmn,

(aabcγabc)
8

m = 0,

(aabcγabc)
8

8 = 42i,

(7.43)

which means that

1

8
γaf bc

a γbc =

{
3i

4
√

5
δmn, for (µ, ν) = (m,n),

− 21i
4
√

5
, for (µ, ν) = (8, 8).

(7.44)

The Dirac equation now reads

iγa∇aψ = −
(
iγ îTî + iγαQα +

i

8
γaf bc

a γbc

)
ψ = λψ. (7.45)
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Remarkably, this gives us a completely diagonal matrix

λψ = 2δABψ +
1

4
√

5



−15 0 0 0 0 0 0 0
0 −15 0 0 0 0 0 0
0 0 −15 0 0 0 0 0
0 0 0 −15 0 0 0 0
0 0 0 0 17 0 0 0
0 0 0 0 0 17 0 0
0 0 0 0 0 0 17 0
0 0 0 0 0 0 0 9


ψ. (7.46)

This should then be compared to the results found by Nilsson & Pope [42]. This is done
in more detail in the next chapter, we can just mention here that the results do not agree.
For some reason this method does not seem to give us the whole picture. We therefore
move on to the method corresponding to what we did for the vector.

7.5.2 Quadratic Casimir approach

The next method we will use is similar to the vector case, i.e. a variation of the quadratic
Casimir approach of the round sphere. We start by noting that the result found for the
round sphere, namely Eq. (5.27),

λ2ψ = −�ψ +
R

4
ψ = −�ψ +

21

2
m2ψ, (7.47)

is still valid for the squashed sphere, since only the Ricci tensor and Ricci scalar enters in
the calculation, and these are equal for the round and squashed sphere [35]. So with this
in mind we square our master equation acting on a spinor,

(TbTbψ)α = �ψα +
1

4
fdec (γde)

β
α (∇cψ)β +

1

64
ffgc f

de
c (γgfγde)

β
α ψβ +

1

8
(∇cfdec )(γdeψ)α,

(7.48)
where we used that the tangent space generators Σab = 1

4(γab). Using now again that
fabc = −2m

3 aabc and that ∇aaabc = 0 we get

(TbTbψ)α = �ψα −
m

6
aabc(γab)

β
α (∇cψ)β +

1

144
m2aadeaabc(γdeγbc)

β
α ψβ

= �ψα −
m

6
aabc(γab)

β
α (∇cψ)β +

1

144
m2
(

2δdebc − cdebc
)(

γdebc − 4γ
[d

[bδ
e]
c] − 2δdebc

)
ψ

= �ψα −
m

6
aabc(γab)

β
α (∇cψ)β −

1

144
m2cabcd(γabcd)

β
α ψβ −

7

12
m2ψα.

(7.49)
Our expressions for the gamma matrices, found in Appendix E, implies that

cabcdγabcd = 24

 −δab 0

0 7

 ≡ 24A. (7.50)

As before, we write TbTb = −20
9 m

2(CG − CH) and then move around some things to get
(omitting spinor indices)

aabcγab∇cψ =
6

m
�ψ − 7

2
mψ −mAψ +

40

3
m(CG − CH)ψ

=

(
63m− 6

m
λ2 − 7

2
m−mA+

40

3
m(CG − CH)

)
ψ.

(7.51)
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If we now want to follow the same recipe as in the spin-1 case we should square the operator
on the left hand side of this equation and try and �nd some equation for this square that
can be solved. If we de�ne D̃ψ ≡ aabcγab∇cψ and square this we �nd

D̃2ψ =− 16mD̃ψ − 2macdeγcdef∇fψ − 4γcd∇c∇dψ − 4ccdefγef∇c∇dψ
− 12�ψ + acefadghγefgh∇c∇dψ,

(7.52)

where we have skipped all the intermediate steps, it is just a lot of manipulation of the
octonionic structure constants and of the gamma matrices. We also used that ∇aabcd =
−mcabcd as before.

Eq.(7.52) is, however, troublesome. The γ(4) terms will give us some symmetric com-
bination of two covariant derivatives, and this is not something we know how to evaluate.
So instead we use a little trick. We can add the Dirac operator to the operator we want to
square without violating any rules. This should give us some terms with γ(3) in them. In
seven dimensions γ(3) and γ(4) are dual, so with some luck and a good choice of parameters
we could perhaps get rid of the bad parts.

So we de�ne the operator D ≡ acde(γcd)
β
α (∇eψ)β + ξ(γc) β

α (∇cψ)β , where ξ is a pa-
rameter we want to decide, and then square this (once more omitting the spinor indices).
We skip the intermediate steps also this time and just give the result

D2ψ =− 16maabcγab∇cψ − 4cabcdγab∇c∇dψ + (ξ2 − 4)γab∇a∇bψ + (ξ2 − 12)�ψ

− 4ξaabcγa∇b∇cψ − 2maabcγabcd∇dψ −mξcabcdγabc∇dψ + aabcadefγbcde∇a∇fψ
+ 2ξaabcγdab∇(c∇d)ψ.

(7.53)
The parts we want to get rid of are the ones with γ(3) or γ(4). So we dualise

−mξcabcdγabc = −mξ 1

6
εabcdefgaefgγabc = −imξaefgγdefg. (7.54)

Comparing this to the term with aabcγabcd above we see that these two will cancel if ξ = −2i.
The two last terms with γ(3) and γ(4) will actually also cancel when we put ξ = −2i,

this can be checked in the same way as above, but we can also evaluate the terms using
our expressions for the gamma matrices. If we for example take the (8, 8) component of
the two terms we have

(aabcadefγabef + 2ξaab(cγd)ab)
8

8 = aabcadefcabef + 2iξaab(cad)ab

= −4aabcadab + 12iξδcd = −24δcd + 12iξδcd,
(7.55)

which is zero for ξ = −2i. By doing the same thing for the other component we �nd that
they all cancel each other for the same value of ξ.

So, if we now put ξ = −2i we have

D2ψ = −16maabcγab∇cψ−4cabcdγab∇c∇dψ−8γab∇a∇bψ−16�ψ+8iaabcγa∇b∇cψ. (7.56)

We can next use that ∇[c∇d]ψα = 1
8R

cd
ef (γef ) β

α ψβ as we saw in Chapter 5, and that

� = R
4 − λ

2. This gives us

D2ψ = −16maabcγab∇cψ − 4Rψ + 16λ2 + 2R+ iaabcγaR
de

bc γde −
1

2
cabcdγabγefR

ef
cd

= −16maabcγab∇c − 2R+ 16λ2 + iaabcγadeR
de

bc −
1

2
cabcdγcdefRabef .

(7.57)
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Dualising between γ(3) and γ(4), as well as between a and c, turns the last term into

−1

2
cabcdγcdefRabef =

i

12 · 6
ε ijk
abcd ε mnp

cdef aijkγmnpRabef =
i

12 · 6
2 · 5!δabijkefmnpaijkγmnpRabef

=
i

3

(
δabefaijkγijkRabef + 6δ

i[a
ef δ

b]jk
mnpaijkγmnpRabef + 3δijefδ

abk
mnpaijkγmnpRabef

)
=
i

3
Raabcγabc − 2iaabcγdbcRad + iaabcγadeRbcde

= 14im2aabcγabc − 12im2aabcγabc + iaabcγadeRbcde

= 2im2aabcγabc + iaabcγadeRbcde.
(7.58)

The second term in this expression will add with the corresponding term of Eq.(7.57). The
Riemann tensor can be written as

Rabcd = Wabcd + 2m2δabcd , (7.59)

where Wabcd is the Weyl tensor, which means that

2iaabcγadeRbcde = 2iaabcγade

(
Wbcde + 2m2δbcde

)
= 2iaabcγaWbc + 4im2aabcγabc, (7.60)

where Wab ≡ Wabcdγcd. We can then use the expressions in Eq.(6.45) to evaluate the
part involving the Weyl tensor. After a bit of calculation, and splitting of the indices into
(0, i, î), we �nd that this part is actually zero [40].

The gamma matrices of Appendix E tells us that

aabcγabc = 6i

 −δab 0

0 7

 ≡ 6iA. (7.61)

Putting all of this together

D2ψ = −16maabcγab∇cψ +
(
−2R+ 16λ2 − 36A

)
ψ

= −16mDψ − 32imγa∇aψ +
(
−84m2 + 16λ2 − 36m2A

)
ψ,

(7.62)

where we added and subtracted 16mξγa∇aψ on the left side in order to get the full D
operator back. This can be re-expressed as

(D + 8m)2ψ = 16(λ−m)2ψ − 36(1 +A)ψ. (7.63)

Using Eq.(7.51) we can see that

Dψ =
179

3
mψ − 6

m
(λ+

m

6
)2ψ −mAψ +

40

3
m(CG − CH)ψ. (7.64)

If we now assume that D and A commute, so that we can diagonalise them simultaneously,
we can plug Eq.(7.64) into Eq.(7.63) to �nd the eigenvalues. Setting α = a gives us four
roots, these should correspond to the (1, 1) and (0, 2) representations so we put CH = 12

5 ,
as before. The result is

λ1,2 = −m
2
± 2
√

5

3
m

√
CG +

63

20
,

λ3,4 =
m

6
± 2
√

5

3
m

√
CG +

49

20
.

(7.65)
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These should then also be compared to the results of Nilsson & Pope, [42]. This is also
done in the next chapter. We can of course directly see that these do not give the same
results as in the previous example, and they also do not align perfectly with Nilsson &
Pope.

For the α = 8 component, corresponding to the singlet representation, (0, 0), we put
CG = CH = 0 which gives us one root corresponding to the known singlet

λ = −7

2
m, (7.66)

and three roots with other, nonsensical (complex-valued and strange), eigenvalues which
we throw away.

7.5.3 G2 covariance

A third option is to de�ne a G2 covariant derivative and use this to evaluate the Dirac
equation. As discussed in Chapter 2 this derivative is

∇̃a ≡ ∇a − i
m

2
γa, (7.67)

where ∇a is the ordinary covariant derivative used in the previous sections. Using this
derivative will change things a whole lot. We rewrite our master equation as

∇̃aψ −
m

12
aabcγbcψ = −(Ta +

im

2
γa)ψ, (7.68)

where we simply added the term to make the derivative G2 covariant. Squaring this we
�nd(
�̃− m

6
aabcγbc∇̃a −

m2

144
cabcdγabcd −

7

12
m2

)
ψ =

(
−20

9
m2(CG − CH)− 7m2

4
+ imγaTa

)
ψ.

(7.69)
We can use our master equation to rewrite the last term as

imγaTaψ = −imγa
(
∇a −

m

12
aabcγbc

)
ψ = −mλψ + i

m2

12
aabcγabcψ ≡ −mλψ −

m2

2
Aψ,

(7.70)
where A is the same matrix as appearing in Eq.(7.50). This means that

aabcγab∇̃cψ =
6

m
�̃ψ + 7mψ + 6λψ +

40

3
m(CG − CH)ψ + 2mAψ

=
6

m
�ψ − 7

2
mψ +

40

3
m(CG − CH)ψ + 2mAψ,

(7.71)

where we used that �̃ = �− imγa∇a − 7
4m

2.
We follow the recipe of the previous section and de�ne the operator

D ≡ aabcγab∇̃c + ξγa∇̃a. (7.72)

When squaring this we note that this new derivative satis�es ∇̃aabcd = 0 and [∇̃a, ∇̃b]ψ =
1
4Wabψ. Then we can use dualisation to �nd that ξ = −2i again cancels some bad terms,
and, since γabWab = 0, almost all terms actually cancel. In the end, the only thing left is

D2ψ = −16�̃ψ = −16

(
�− imγa∇a −

7

4
m2

)
ψ = 16

(
λ2 +

m

2

)2
− 144m2. (7.73)
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From Eq.(7.71) we �nd

Dψ =

(
63m− 7

2
m− 6

m
λ2 +

40

3
m(CG − CH) + 2mA− 2λ− 7m

)
ψ

=

(
105

2
m− 6

m
λ2 − 2λ+

40

3
(CG − CH) + 2mA

)
ψ.

(7.74)

Combining Eqs.(7.73) and (7.74) we now have a quartic equation for λ, again assuming
that D and A commute. We still hope that the 8th component correspond to the singlet
so we set CG = CH = 0. This does in fact give us the same eigenvalue as before, namely

λ = −7

2
m, (7.75)

which is the known eigenvalue of the singlet [4]. However, the roots we throw away are
di�erent, i.e., the full equation is not the same as before. For the other block, α = 1, . . . , 7,
the quartic equation does not factorise in a nice way, and we can not get any sensible
eigenvalues out of it. So something seems to be missing in this method.
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8

Conclusions and outlook

In this thesis we have studied the mass spectra of eleven-dimensional supergravity com-
pacti�ed on the squashed seven-sphere. We now give a short summary of the motivation
for this study and then move on to discuss the results and where to go from here.

In Chapter 3 we discussed some proposed conjectures about features of a consistent
theory of quantum gravity. One of these was the sharpened version of the Weak Gravity
Conjecture (WGC) [10]. This led to the corollary that non-supersymmetric AdS vacua
supported by �uxes must be unstable [11]. We saw that one could use this to make
predictions regarding the masses of neutrinos and the size of the cosmological constant.
In particular we saw that, in order to have Majorana neutrinos, we need to include some
beyond the standard model physics [13]. This could then lead to measurable predictions
from string theory, something that has long been looked for.

The squashed seven-sphere allows for one non-supersymmetric AdS vacua supported
by a �ux. It therefore provides us with a great opportunity to test the WGC. In order to
look for possible instabilities it is important that we know more about the mass spectra of
the theory.

In this thesis we studied a few di�erent methods that could be used to �nd the mass
spectra. These were applied to the ordinary round seven-sphere with great success, how-
ever when moving on to the squashed sphere some problems were encountered. This was
most evident in the Dirac operator spectra. We �rst tried to solve for the Dirac operator di-
rectly by using a speci�c representation of the generators, namely the (10, 1) representation
dicussed in Chapter 6. This gave us the eigenvalues

λ1 = 2− 15

4
√

5
,

λ2 = 2 +
17

4
√

5
,

λ3 = 2 +
9

4
√

5
.

(8.1)

When instead using a method that involved squaring our master equation, Eq.(4.17),
we found the eigenvalues

λ1,2 = −m
2
± 2
√

5

3
m

√
CG +

63

20
,

λ3,4 =
m

6
± 2
√

5

3
m

√
CG +

49

20
,

λ0 = −7

2
m,

(8.2)

plus three non-sensical roots that we threw away. None of these perfectly align with the
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previous results of Nilsson & Pope, [42]. They found that

λ = −m
2
± 2
√

5

3
m

√
CG +

81

20
,

λ =
m

6
± 2
√

5

3
m

√
CG +

49

20
.

(8.3)

We thus see that the second method came really close. The only di�erence is the 63 under
the square root of λ1,2, instead of the 81 from [42]. Another possible problem is that λ0,
which is the correct eigenvalue of the singlet representation, only comes out for exactly that
representation, i.e. when setting CG = CH = 0, otherwise the resulting quartic equation
does not factorise in a good way. This is also in contrast to Nilsson & Pope who found
that the singlet is contained in the whole tower having the 81 eigenvalue above, meaning
that it is the special case of that eigenvalue when CG = 0.

The problem here is, probably, that we assumed our operator D = aabcγab∇c− 2iγa∇a
to commute with the traceless matrix

A ≡

 −δab 0

0 7

 . (8.4)

If this is not the case we should not be able to diagonalise the two operators simultaneously
[40]. This has actually been shown to be the problem in the last few days by Nilsson &
Pope and the solution will be discussed in a future paper [40].

By using that our (10, 1) representation has CG = 19
4 , since CG = CSp(2) + 3CSp(1) [4],

we �nd that the eigenvalues of Nilsson & Pope are

λ =
−3± 8

√
11

4
√

5
,

λ =
1± 24

4
√

5
.

(8.5)

These obviously do not align with Eq.(8.1), but we can see that if we instead had

λ1 = − 2√
5
− 15

4
√

5
,

λ2 =
2√
5

+
17

4
√

5
,

(8.6)

we would have had the results of the second row in Eq.(8.5).
We also used a method that incorporated the G2 holonomy of the squashed sphere.

This gave us the correct eigenvalue for the singlet, i.e., λ = −7
2m, but again only when

we set CG = CH = 0, otherwise the equation did not factorise in a manageable way. For
the other components it did not factorise in a good way at all, so something seems to be
missing from this analysis. Here we again assumed that our di�erential operator commuted
with the traceless matrix, so this could at least be part of the problem also in this case.

As mentioned above the problem with the second method has been resolved, but the
other two methods are still not understood completely.

The same type of problems that arose for the Dirac equation also seems to be present
for the higher spins. It would therefore be very interesting if these could be resolved
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completely in the case where we know the answer, so that we can fully trust our methods
when moving on to the unknown.

In addition to our representation of the squashed seven-sphere as the coset space
Sp(2)×Sp(1)
Sp(1)×Sp(1) , it has been shown that one can express it as the coset space Sp(2)

Sp(1) , where

Sp(1) is one of the algebras in the SO(4) ∼= Sp(1) × Sp(1) subgroup of Sp(2) [47]. This
coset space has however not been studied in as much detail as the one we consider. A
corresponding treatment of this coset space would therefore be very interesting, and could
perhaps lead to some simpli�cations.
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A

Conventions

Dear Reader, if the thought of living in a world with eleven dimensions worries you, you
will probably tremble in fear when facing the immense vastness of the convention-space of
theoretical physics. This appendix will serve as a guide through this wilderness.

A.1 Weights

Symmetrisation and anti-symmetrisation, written y(ayb) and y[ayb] respectively, is de�ned
to have weight one, meaning that T[ab] = Tab if the tensor is anti-symmetric in a and b.
We thus have, for example,

y[ayb] =
1

2
(yayb − ybya). (A.1)

With this convention, an arbitrary tensor Tab splits into its symmetric and anti-symmetric
parts as

Tab = T(ab) + T[ab]. (A.2)

A.2 A matter of signs

The Minkowski metric will always have the signature ηαβ = diag(−1,+1,+1, . . . ,+1).
The two-dimensional Pauli sigma matrices are de�ned in the usual way as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.3)

and we de�ne
σα ≡ (−i1, σi), α = 0, i, i = 1, 2, 3,

σ̄α ≡ (+i1, σi).
(A.4)

The sigma matrices are generalised to higher dimensions through the introduction of
the gamma-matrices, γα, which in four dimensions are constructed as

γα ≡
(

0 σα

σ̄α 0

)
. (A.5)

These satisfy the Cli�ord algebra {γα, γβ} = 2ηαβ . It may be worth noting that this is in
contrast to our main reference [4], who uses {γα, γβ} = −2ηαβ . In even dimensions we can
create the chiral gamma-matrix, and we will always choose it to have the form(

1 0
0 −1

)
. (A.6)
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The general de�nition is, in D dimensions,

γD+1 ≡ (i)γ1γ2 · · · γD, (A.7)

where the inclusion of the i depends on whether or not we can have both Majorana and
Weyl fermions in the given dimension. In odd dimensions we instead �nd that

γ1 · · · γD = ±(i)1, (A.8)

where we choose the plus sign. We will do most of our work in seven dimensions, where
we thus use the convention

γ1 · · · γ7 = i1. (A.9)

The anti-symmetrised combination of gamma-matrices, which we write for example
γαβγ ≡ γ[αγβγγ], and similarily for other numbers of matrices, will appear frequently.
Sometimes we will denote it as γ(n), so that we have γ(2) = γab and so on. The set of
anti-symmetrised combinations of di�erent numbers of matrices form a complete basis of
the Cli�ord algebra.

We also introduce the 't Hooft symbol ηαβi , and its dual η̄αβi , de�ned by

σαβ ≡ iηαβi σi,

σ̄αβ ≡ iη̄αβi σi,
(A.10)

which in our conventions satisfy

ηαβk :

{
η0i
j = −δij ,
ηijk = εijk

η̄αβk :

{
η0i
j = +δij ,

ηijk = εijk.

(A.11)

There are several identities involving the 't Hooft symbols that we will need. Most of them
can be found in the end of [46].

A.3 Indices

The matter of indices is a very tricky one in this type of work, since we move around in so
many di�erent dimensions, use a lot of di�erent sets of operators and so on. We will try to
be as clear as possible every time we change the meaning of the indices. The general rule
is that capital letters belong to higher dimensions than lower case letter. When discussing
compacti�cation we thus use capital letters for the full dimension and split it into µ, ν, . . .
for spacetime and m,n, . . . for the compact dimensions. i, j, k will most often be reserved
for three-dimensional indices, as for example when we discuss the algebra of the squashed
seven-sphere, or the Pauli matrices σi.

The beginning of the alphabet, i.e., a, b, c, A,B,C or α, β, γ etc., will usually indicate
�at indices while m,n, p,M,N, P, µ, ν, ρ etc. usually indicate curved indices. Greek letters
will many times also be reserved for spinor type indices, so that for example we usually
write (γa) β

α ∇aψβ , for the Dirac operator.
When we work in the orthogonal groups we raise and lower indices with δab, so we

don't really need to bother with the right placing. We will therefore be a bit sloppy with
the indices at those occasions.
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Group theory and Lie algebras

This appendix discusses the theories of groups and Lie algebras. These are both extremely
huge subjects on their own and we will simply give a brief introduction and state the
necessary results. If however the subjects presented in this chapter feels unfamiliar or
uncomfortable to you, we highly recommend looking them up in some of the available text
books. Our main references are Fuchs & Schweigert [48], Wybourne [49], Hamermesh [50]
and Ramond [51]. Group theory is probably one of the most fascinating subjects out there
so you will not regret it.

The sections discussing the eigenvalues of the quadratic Casimir and the dimension of
irreducible representations will be a bit more technical. This is partly because the results
have not been found anywhere else and also because they are crucial for the work in this
thesis.

B.1 Groups

A group, G, is a set of elements, g, with an associated composition law (multiplication,
addition, etc.) that satis�es the following four axioms,

1) If g1, g2 ∈ G =⇒ g1g2 = g3 ∈ G, (closure)

2) If g1, g2, g3 ∈ G =⇒ (g1g2)g3 = g1(g2g3), (associativity)

3) There is a unique element, e, called the identity element,

such that eg = ge = g,∀g ∈ G.
4) There is a unique element, g−1 ∈ G, called the inverse of g,

satisfying gg−1 = g−1g = e.

(B.1)

Note that instead of writing out any symbol (+, -, ×, etc.) for the composition law we
simply put two elements next to each other. The set could be �nite or in�nite and it could
be discrete or continuous.

If g1g2 = g2g1 the group is called Abelian. One example of an Abelian group is the
integers, which is a discrete group under addition. The identity element is zero, and the
inverse of any element is minus the element. It is easily seen that this satis�es all the
axioms of group theory.

The class of groups that we are most interested in here are the so called Lie groups.
They are characterised by the fact that they are di�erentiable manifolds. Lie groups can
be either �nite- or in�nite-dimensional. The classical examples that we will study are
SO(n), SU(n) and Sp(n).

A subgroup of G is a subset of the elements in G satisfying the group axioms on their
own. Note that a group G will always contain at least two subgroups, namely the identity
element, and the group itself. If H is a subgroup of G we can construct a right or left
coset by taking an element in G not in H and compose this element from the right or left
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with the whole of H. Two cosets are then either disjoint or identical as sets. A normal
subgroup is de�ned as satisfying xHx−1 = H for all x ∈ G. This is the same as saying
that the right and left cosets constructed from H are the same. If G does not contain any
normal subgroups (except the trivial ones {e} and {G}) it is said to be simple.

A representation of a group is de�ned as a set of matrices satisfying the multiplication
laws of the group, i.e. ab = c =⇒ Γ(a)Γ(b) = Γ(c), for a, b, c ∈ G and Γ(a) being the
matrix representing the element a. The representation is said to be isomorphic to the
group if it is one-to-one, or homomorphic if many-to-one. Note that a representation is
only de�ned up to a similarity transformation since, if Γi → Γ′i = S−1ΓiS, for all Γi, and
Det(S) 6= 0, we have

Γ′iΓ
′
j = S−1ΓiSS

−1ΓjS = S−1ΓiΓjS = (ΓiΓj)
′, (B.2)

so Γi and Γ′i are equivalent representations. Note also that if Γ(1) and Γ(2) are two represen-

tations of a group, then so is Γ̃i =

(
Γ

(1)
i 0

0 Γ
(2)
i

)
. However, since Γ̃ is block diagonal, it is

said to be a reducible representation. On the contrary, if there are no similarity transforma-
tions taking Γ into block diagonal form, then Γ is said to be an irreducible representation,
or irrep for short.

B.2 The symmetric group and Young tableaux

There is a very important family of groups called the symmetric groups, Sn. These are the
groups of all permutations of n objects. This group has several important applications, for
example when we discuss wavefunctions for several particles in quantum mechanics. Con-
sider a system of n identical particles, speci�ed by their coordinates xn. The wavefunction
must then have certain symmetry properties under permutations of these coordinates, i.e.,
be in an irreducible representation of Sn. We denote an object in Sn permuting particles
xi and xj by (ij). This acts on the wavefunction by

(ij)ψ(x1, x2, . . . , xi, . . . , xj , . . . , xn) = ψ(x1, x2, . . . , xj , . . . , xi, . . . , xn). (B.3)

We can take the example of S2 to further illustrate how this works. The group S2 has two
elements, the identity e and the permutation (12). It also has two irreps, corresponding to
a symmetric or an anti-symmetric function. These are e = (12) = 1 and e = 1, (12) = −1.
The unit element can therefore be decomposed as

e =
1

2
(e+ (12)) +

1

2
(e− (12)), (B.4)

and this decomposes the wavefunction into two parts, corresponding to the symmetric and
the anti-symmetric part (this is the same as we do with any tensor when we split it into
symmetric and anti-symmetric parts). If we consider the wavefunction to have the form
ψ(x1, x2) = φ(x1)φ(x2), we get

ψ → 1

2
(φ1(x1)φ2(x2) + φ1(x2)φ2(x1))︸ ︷︷ ︸

symmetric

+
1

2
(φ1(x1)φ2(x2)− φ1(x2)φ2(x1))︸ ︷︷ ︸

anti-symmetric

. (B.5)

This can be represented by the notion of Young tableaux. We let each function φi be
represented by a box, �, and each particle location, xi, by the number i. When we place
several boxes together the rule is that horisontal boxes are symmetric and vertical boxes
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are anti-symmetric. The resulting diagrams must not grow vertically in the left-to-right
direction, or horisontally in the top-to-bottom direction. This means, for example, that

is not allowed but is. Dimensions of the irreps are then found by counting the
number of ways one can place the numbers 1, . . . , n into the n boxes so that they increase

both horisontally and vertically. In S2 we only have 1 2 , and
1
2
, so that we have two

one-dimensional irreps.

When instead going to S3 we can construct so called hooked diagrams of the form
1 2
3

.

However, here we have the possibility of placing the numbers in another order, namely,
1 3
2

. This indicates that there is a two-dimensional irrep under S3. Note that S3 also has

the irreps 1 2 3 and
1
2
3
, so that in total we have three di�erent irreps, two of dimension

one and one of dimension two.
The counting of all possible ways to place the numbers in boxes gets rather complicated

when going to higher Sn's. But, as always in group theory, there is a nice trick. This is the
so called hook formula. It works like this: In each box you place a number corresponding
to how many boxes are to the right of your box plus how many boxes are directly below

your box, and add the number one for your box. For the hooked diagram of S3 we get
3 1
1

.

The hook formula is then to take n!, for Sn, divided by the product of all the numbers you
have �lled in. For S3 we thus get 3!

3 = 2, which we already saw before.
Now, to �nd the corresponding wavefunction of a given diagram we need to introduce

Young operators. We once again use S3 as an example. The diagram gives us the
operator corresponding to the symmetric case

RS ≡ e+ (12) + (13) + . . . , (B.6)

where all terms have a plus sign. If we instead take the diagram we �nd the anti-

symmetric operator
RA ≡ e− (12) + (13)− . . . , (B.7)

where even permutations have a plus sign and odd ones have a minus sign. For the hooked
diagrams we need to de�ne two operators corresponding to the symmetries of the �rst row

and the �rst column. For
1 2
3

we get

P ≡ e+ (12), top row,

Q ≡ e− (13), �rst column.
(B.8)

We then construct the Young operator as

Y ≡ QP = e+ (12)− (13)− (123). (B.9)

The diagram
1 3
2

instead gives us

Y ′ = e− (12) + (13)− (132). (B.10)

We can now decompose the unit element as

e =
1

6
RS +

1

6
RA +

1

3
Y +

1

3
Y ′ =⇒ ψ → ψ + ψ + (ψ + ψ′ ). (B.11)

This is very useful when searching for decompositions of wavefunctions or more general
tensors.
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There is another useful formula connected to the Young tableaux. This counts the
number of ways we can place numbers that are strictly increasing in the vertical direction
but only weakly increasing in the horisontal direction. For example, this could count the
degrees of freedom of a tensor having the symmetry properties implied by the tableaux-
structure in its indices. For a tensor in n dimensions we place an imagined n in the �rst
box, and then n + 1 in the next horisontal box and so on. When going down one line we
place an n − 1 in the �rst box, and then step up as we go to the right as before. The
multiplication of all these numbers is then the numerator of a quotient that will give us
the degrees of freedom. The denominator is the same as in the hook formula above, i.e.
the product of all the numbers corresponding to how many boxes are to the left and below
each box.

An example is certainly in order. Take a rank six tensor in six dimensions, with
symmetry properties implied by , i.e., it could perhaps be written T[ab][cd](ef), where
a, b, . . . , f = 1, 2, . . . , 6. We start with the numerator, we place a six in the �rst box, then
a seven, an eight and �nally a nine. In the next line we have �ve and six. This means that
the numerator is 6 · 7 · 8 · 9 · 5 · 6. To �nd the denominator we �ll in the numbers as before,

this gives us
5 4 2 1
2 1

. The tensor thus has

N =
6 · 7 · 8 · 9 · 5 · 6

5 · 4 · 2 · 2
= 3 · 7 · 9 · 6 = 1134 degrees of freedom. (B.12)

This is a very neat trick to count the degrees of freedom. One can also connect this to the
dimension of a speci�c irrep of the Lie algebras, especially to Ar.

B.3 Lie groups

As previously mentioned, the Lie groups are a class of groups that are also di�erentiable
manifolds. They are usually realised as matrix groups, and there are three classical in�nite
families, and �ve exceptional groups. The Lie groups appear frequently in physics appli-
cations, the most canonical example perhaps being the generators of angular momentum
in quantum mechanics.

The most general matrix group is the general linear group, GL(n,F), which is the
group of all matrices with non-zero determinant, de�ned over some number �eld F, e.g.
the real numbers. We can put some restraints on this group. For instance, if we demand
that the matrices have unit determinant we get the special linear groups, SL(n,F).

The classical Lie groups are subgroups of GL with the constraints that they leave some
matrix, G, invariant. We get three cases

R ∈ O(n), G = 1 =⇒ RGRT = G,

U ∈ U(n), G = 1 =⇒ UGU † = G,

M ∈ Sp(n), G =

(
0 1

−1 0

)
=⇒ MGMT = G.

(B.13)

We usually combine these with the constraint of unit determinant, and denote the cor-
responding groups as SO(n), SU(n) and Sp(n). We can also have di�erent signatures
in these groups, this is denoted by for example SO(p, q) which means that it leaves a
Minkowski-like metric, with signature (p, q), invariant, as for example the Lorentz group
SO(1, 3) which leaves the ordinary four-dimensional Minkowski metric invariant.

It is often a troublesome task to prove whether or not two Lie groups are isomorphic.
We �rst must check that they are topologically the same and then see if they obey the
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same multiplication table. One simpler way of analysing the groups is to �rst linearise
them. For example, if we have A ∈ SL(2,R) we can write this as

A(a, b, c) =

(
1 + a b

c 1+bc
1+a

)
. (B.14)

The multiplication of two such elements will give us complicated non-linear relations. If
we instead linearise A near the identity element (here the unit matrix) we get

A(δa, δb, δc) =

(
1 + δa δb

δc 1+δbδc
1+δa

)
≈
(

1 0
0 1

)
+

(
δa δb
δc −δa

)
+O(δ2)

=

(
1 0
0 1

)
+ δa

(
1 0
0 −1

)
+ δb

(
0 1
0 0

)
+ δc

(
0 0
1 0

)
≡ 1+ δaT1 + δbT2 + δcT3,

(B.15)

where Ti are called the (in�nitesimal) generators of SL(2,R). The analysis of the linearised
group elements introduces us to the subject of Lie algebras.

B.4 Lie algebra

If a system has a certain symmetry generated by some object Ta, according to the above
de�nition of the generators, the corresponding Lie algebra is de�ned by the relation

[T a, T b] = fabcT
c, (B.16)

where fabc are called the structure constants of the algebra, and [·, ·] is called the Lie
bracket. The bracket satis�es [A,B] = −[B,A], and is usually realised as a commutator.
The algebra must also satisfy the Jacobi identity

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0, (B.17)

or expressed in the structure constants

fade f
bc
d + f bde f

ca
d + f cde f

ab
d = 0. (B.18)

Due to the anti-symmetry of the Lie bracket an Abelian algebra has [T a, T b] = 0.
The Lie algebra is by de�nition a vector space, with the Lie bracket taking the rôle of

the multiplication. The generators can therefore be seen as basis elements in the tangent
space of the group around the identity element. We can then write an arbitrary group
element, g, close to the identity element as g = 1+ θaT

a. Performing this transformation
several consecutive times results in an exponential mapping of the algebra to the group,
i.e. we get an arbitrary element of the group as g = eθaT

a
. This exponential mapping does

not always work perfectly (but in the cases we are interested in it does). It is, however,
very useful. For instance, it tells us that for Abelian groups we have eAeB = eA+B so that
(eA)−1 = e−A. For SO(n) we have that an element satis�es RT = R−1, and since R = eA

this means that AT = −A. We also see that the constraints of unit determinant implies
that TrA = 0, since 1 = Det(eA) = eTrA =⇒ TrA = 0.

There is a special representation of any Lie algebra called the adjoint representation.
This is the representation of the algebra on itself. We can thus write the generators of the
adjoint representation as

(T a)bc = −fabc . (B.19)
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The matrices of the adjoint representation have the same dimension as the Lie algebra.
To every Lie group there exist an associated Lie algebra, and we will denote this by

lower case letters, so that for example the Lie algebra of the group SO(n) is denoted so(n)
(in the main text we will, however, not always make this extinction, but instead let the
context tell us whether we mean the group or the algebra). As we saw above so(n) is the
set of all anti-symmetric, real n×n matrices. Note that two Lie groups can have the same
algebra but still be di�erent as groups, we then say that they are locally isomorphic. We
are now ready to classify all �nite-dimensional simple Lie algebras.

B.5 Cartan classi�cation

In this section we study the complex versions of sl(2,R), i.e. the algebra spanned by all
complex linear combinations of the basis elements. Doing this will lead us to a classi�cation
of all the �nite-dimensional Lie algebras. This was �rst done by Cartan and is therefore
called the Cartan classi�cation. We will do it rather quickly and skip many details, so
the unfamiliar but interested reader should really look up a more detailed derivation, we
recommend looking in Fuchs & Schweigert [48].

The idea is to start from the sl(2) algebra, given by

[H1, E1
±] = ±2E1

±,

[E1
+, E

1
−] = H1.

(B.20)

All quantum physicists out there can compare this with the algebra of angular momentum
in QM (there we usually denote E± as J± and H is most often taken as the z-component of
the spin operator, Jz). To get a new quantum number that can be measured simultaneously
with the one from H1, we introduce another set of sl(2) generators, such that

[H1, H2] = 0,

[H2, E2
±] = ±2E2

±,

[E2
+, E

2
−] = H2.

(B.21)

The commuting generators, H i, are called the Cartan generators, and the Ei± are called
step-operators. The Cartan generators span a subalgebra, called the Cartan subalgebra,
and all states are labeled by two integers, the eigenvalues of H1 and H2. This means that
the weights of the states are two-dimensional quantities.

We now have some options. One possibility is that all the mixed brackets could be
zero, this would however indicate that we only have a direct sum of two sl(2) algebras, and
that is not a simple algebra. So to get something truly new we need to allow for non-zero
commutators. We thus de�ne

[H i, Ej±] ≡ ±AjiEj±, (B.22)

where Aij is called the Cartan matrix.
We also need to study the brackets [E1

±, E
2
±] and [E1

±, E
2
∓]. By acting with H i on these,

i.e. taking [H i, [E1
±, E

2
±]] and [H i, [E1

±, E
2
∓]], we see that both of these brackets will give

possible new elements (step-operators with �xed weights) in the algebra (this is a good
exercise for the interested reader). It is, however, possible to de�ne one of them to be zero
in order to �nd the smallest possible new algebra, so we set [E1

±, E
2
∓] = 0. This will now

allow us to decide the complete Cartan matrix by evaluating the di�erent commutators of
all the step-operators. We soon �nd

Aij =

(
2 −1
−1 2

)
, (B.23)
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which is the Cartan matrix for sl(3,R).
The rows of the Cartan matrix, corresponding to the eigenvalues of each Cartan gen-

erator acting on the step-operators, are called roots of the algebra, denoted αi. For every
root α the corresponding step-operators, Eα±, generates an sl(2) subalgebra. The real vec-
tor space spanned by the roots is called the root space of the algebra, and the dual vector
space is called the weight space.

We de�ne the positive roots to be the ones where the �rst non-zero entry in a certain
basis is positive, and the simple roots are those positive roots that can not be written as a
sum of some other positive roots. All roots can be expressed as linear combinations of the
set of simple roots, with all coe�cients having the same sign.

Now, in order to do this more generally we start by choosing a maximal set of commut-
ing linearly independent elements among the semisimple elements of g. We denote these
as H i, and we should then have

[H i, Hj ] = 0, for i, j = 1, 2, . . . , r. (B.24)

The subalgebra spanned by theH i's is called the Cartan subalgebra of g, and we will denote
it by g0. Note that a semisimple Lie algebra can have many di�erent Cartan subalgebras,
but they are all related. They all also have the same dimension r, called the rank of the
Lie algebra. The rank gives us the maximal number of quantum numbers available to label
states of a system with symmetry algebra g.

The Lie algebra g is spanned by all elements, y, satisfying

[h, y] = αy(h)y, for h ∈ g0, (B.25)

where αy is the root of the Lie algebra corresponding to the element y [48]. This also
means that we can decompose g in a direct sum of vector spaces gα = {y ∈ g|[h, y] =
α(h)x, ∀h ∈ g0} as

g =
⊕
α

gα = g0 ⊕
⊕
α 6=0

gα. (B.26)

This is called the root space decomposition of g relative to g0. We can thus have a basis
constructed entirely from H i and elements Eα satisfying

[H i, Eα] = αiEα. (B.27)

This is the Cartan-Weyl basis. As we said earlier we will call the vector αi for a root of g.
The set of non-zero root vectors is denoted ∆ and the set of positive roots is denoted ∆+.
Lastly, we denote the set of simple roots by Π. The number of simple roots is equal to the
rank of the algebra. We can now write the Cartan-Weyl basis as

BCW = {H i|i = 1, . . . , r} ∪ {Eα|α ∈ ∆}. (B.28)

Earlier we saw that also the brackets [Eα, Eβ] could be non-zero. Using the action of the
Cartan generators on this bracket one �nds [48]

[Eα, Eβ] = Nα,βE
α+β, if α+ β ∈ ∆,

[Eα, Eβ] = gijα
jH i, for α+ β = 0,

[Eα, Eβ] = 0, otherwise.

(B.29)

Here we introduced some metric denoted gij that is dual to the so called Killing form,
de�ned by

κij ≡ f ikl f
jl
k . (B.30)
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If we denote the simple roots as α(i) the Cartan matrix can be de�ned as

Aij ≡ 2
(α(i), α(j))

(α(j), α(j))
, (B.31)

where (α(i), α(j)) is the inner product of the two roots, de�ned by the metric gij . We can
also de�ne the coroot of α as

α̌ ≡ 2α

(α, α)
, (B.32)

which turns the equation for the Cartan matrix into

Aij = (α(i), α̌(j)). (B.33)

We will once again refer to the duals of the roots as the weights and denote them λ, so
that

λiα
j = δji , (B.34)

in particular, we call the weights dual to the simple coroots for the fundamental weights,
λ(i). One can then use the fundamental weights as the basis of the weight space, this basis
is usually refered to as the Dynkin basis. We call the Dynkin basis components of a weight
for the Dynkin labels, these can be used to label an irreducible representation as we will
see in a while.

There is a unique root, called the highest root, θ, for any simple algebra g such that

(θ, θ) ≥ (α, α) ∀α ∈ ∆. (B.35)

Now, in order to classify all simple �nite-dimensional Lie algebras it simpli�es things
a lot if we also �x the constants in Eq.(B.29). This leads us to the Chevalley-Serre basis,
de�ned by the relations [48]

[H i, Hj ] = 0,

[H i, Ej±] = ±AjiEj±,
[Ei+, E

j
−] = δijH

j ,

(adEi±)1−AjiEj± = 0,

(B.36)

where (adEi±)1−AjiEj± means that we act on Ej± 1 − Aji times with the Lie bracket,

e.g. (adEi±)2Ej± = [Ei±, [E
i
±, E

j
±]] and so on. The relations of Eq.(B.36) completely, and

uniquely, characterises the Lie algebra g. From the use of this basis and the de�nition, we
can �nd that the Cartan matrix satisfy

Aii = 2, ∀i,
Aij = 0 =⇒ Aji = 0, for i 6= j,

Aij ∈ {0,−1,−2,−3} for i 6= j,

Det(A) > 0,

(B.37)

and through these relations we �nd all simple �nite-dimensional Lie algebras [48]. There
are four in�nite families, Ar, Br, Cr and Dr (where r denotes the rank of the algebra),
called the classical Lie algebras, and �ve exceptional algebras, E6, E7, E8, F4 and G2. One
can �nd that Ar is isomorphic to su(r + 1), Br to so(2r + 1), Cr to sp(r) and Dr to
so(2r). Table VI of Fuchs & Schweigert lists the complete Cartan matrices of all simple
�nite-dimensional Lie algebras [48].
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The simplest way of representing all Lie algebras is through their Dynkin diagrams.
The idea is to associate every simple root with a node in the diagram. Every pair of simple
roots are then connected by max{|Aij |, |Aji|} lines. If two roots are of di�erent length
we draw an arrow pointing towards the shorter root. The Dynkin diagrams of the �nite
dimensional classical Lie algebras are

Ar : ,

Br : ,

Cr : ,

Dr : ,

(B.38)

and of the �ve exceptional algebras

E6 : ,

E7 : ,

E8 : ,

F4 : ,

G2 : .

(B.39)

Algebras where all roots are of equal length is called simply laced. These are easy to spot
when analysing the diagrams, since they are the ones with only single lines between every
pair of nodes, i.e., Ar, Dr, E6, E7 and E8.

It is also possible to add a node corresponding to minus the highest root, i.e. −θ, of
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the algebra. This will generate the so called extended Dynkin diagrams. These are

Ar : ,

Br : ,

Cr : ,

Dr : ,

E6 : ,

E7 : ,

E8 : ,

F4 : ,

G2 : ,

(B.40)

The extended diagrams are also the diagrams of the a�ne Lie algebras, which has Det(A) =
0. We will, however, not discuss these algebras here.

B.6 Representations of Lie algebras

A speci�c representation is constructed by �rst choosing the basis vectors of the represen-
tation space to be simultaneous eigenvectors of the Cartan generators, H i. These basis
vectors are denoted as |λi〉, so that

H i|λi〉 = λi|λi〉, (B.41)

where λi are the components of the weight vector λ = (λ1, . . . , λr). We will henceforth,
somewhat misleading, refer also to these components as weights. Note that in the adjoint
representation, these are the roots. There is an important theorem in representation theory
which states that for a given irreducible representation, the highest weight, denoted |Λ〉,
is non-degenerate and �xes the representation uniquely [48]. The highest weight state
satis�es

Eα|Λ〉 = 0, ∀α ∈ ∆+. (B.42)

The highest weight can be expanded in the weights, λi, as

Λ =
∑
i

liλi, (B.43)

where the li are some expansion coe�cients. Another way to specify an irreducible rep-
resentation is by their Dynkin labels, as mentioned before. These are an ordered set of
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numbers, (n1, n2, . . . , nr), de�ned by

ni ≡ 2(Λ, αi)

(αi, αi)
= (Λ, α̌i). (B.44)

The roots may also be expressed in the weights. In this thesis we will only need to
concern ourselves with the families Br, Cr and Dr. The results are found in Wybourne
[49]

Br : {λp,±λp ± λq}r1, (B.45)

Cr : {±2λp,±λp ± λq}r1, (B.46)

Dr : {±λp ± λq}r1, (B.47)

where the ranges of p and q are given at the end of the curly braces. The corresponding
positive roots are found by setting the �rst entry in every root to be positive. Using this
together with the expansion of the highest weight we can �nd formulas for the expansion
coe�cents, li, in terms of the Dynkin labels for all algebras. For these we �nd [48]

Br : lk =

r−1∑
i=k

ni +
nr

2
,

Cr : lk =
r∑
i=k

ni,

Dr : lk =

{∑r−2
i=k n

i + nr−1+nr

2 for k = 1, 2, . . . , r − 1,
nr−1−nr

2 for k = r
.

(B.48)

If we express the weights in terms of the roots we can use the Cartan matrix to �nd
the inner product of the weights. For Br, Cr and Dr we have

(λi, λj) = Kδij , (B.49)

where K are constants di�ering between each family of algebras. These are [49]

Br : K =
1

2(2r − 1)
,

Cr : K =
1

4(r + 1)
,

Dr : K =
1

4(r − 1)
.

(B.50)

We will later normalise these to one in all cases so that the weights form an orthonormal
basis,

(λi, λj) = δij . (B.51)

B.7 Eigenvalues of the quadratic Casimir

The quadratic Casimir operator is de�ned by

CR ≡ κabT aT b, (B.52)

where κab is the inverse of the Killing form.
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One important property of the Casimir operators is that they commute with all the
generators of the algebra, i.e., [CR, T

a] = 0, ∀ T a. Schur's lemma then tells us that, if
we are in an irreducible representation of the algebra, the quadratic Casimir must be a
multiple of the identity operator [48]. We thus write

CR = κabR
aRb = cR1, (B.53)

where cR is a constant that only depends on the representation R.
In the Cartan-Weyl basis we can write the quadratic Casimir in terms of H i and Eα

as [48]

CR =
r∑
j=1

κijH
iHj +

∑
α∈∆+

(EαE−α + E−αEα). (B.54)

This can then be rewritten using the de�nition of the highest weight state

CR|Λ〉 = (Λ,Λ)|Λ〉+
∑
α∈∆+

(EαE−α + E−αEα)|Λ〉

= (Λ,Λ)|Λ〉+
∑
α∈∆+

[Eα, E−α]|Λ〉

= (Λ,Λ)|Λ〉+
∑
α∈∆+

(α,Λ)|Λ〉 = cR|Λ〉.

(B.55)

Our goal is to express these eigenvalues in the Dynkin labels. It is helpful to de�ne the
Weyl vector, δ, as

δ ≡ 1

2

∑
α∈∆+

α, (B.56)

i.e. as half the sum of all the positive roots. Using this in the expression for the eigenvalues
above we get

cR|Λ〉 = (Λ,Λ + 2δ)|Λ〉. (B.57)

The Weyl vector can also be expanded in the weights as

δ =
∑
i

δiλi. (B.58)

Solving for δi in the di�erent algebras we �nd [49]

Br : δi = r − i+
1

2
,

Cr : δi = r − i+ 1,

Dr : δi = r − i.

(B.59)

By using the expansions of both Λ and δ in the weights we can now �nd an expression
for the eigenvalues of the quadratic Casimir expressed solely in the expansion coe�cients
li, which in turn can be expressed in the Dynkin labels according to Eq.(B.48). First we
write

cR = (Λ,Λ + 2δ) =

∑
i

liλi,
∑
j

(lj + 2δj)λj

 =
∑
i,j

li(lj + 2δj)(λi, λj). (B.60)
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Now, using the results of Eq.(B.45) and (B.59) we �nd

Br : cR =
1

2(2r − 1)

r∑
i=1

li(li + 2r − 2i+ 1),

Cr : cR =
1

4(r + 1)

r∑
i=1

li(li + 2r − 2i+ 2),

Dr : cR =
1

4(r − 1)

r∑
i=1

li(li + 2r − 2i).

(B.61)

Finally, we use Eq.(B.48) to �nd our sought formulas [40]

Br : cR =
1

2(2r − 1)

r∑
i=1

r−1∑
j=i

nj +
nr

2

(r−1∑
k=i

nk +
nr

2
+ 2r − 2i+ 1

) ,
Cr : cR =

1

4(r + 1)

r∑
i=1

 r∑
j=i

nj

(
r∑
k=i

nk + 2r − 2i+ 2

) ,

Dr : cR =
1

4(r − 1)

{
r−1∑
i=1

r−2∑
j=i

nj +
nr−1 + nr

2

(r−2∑
k=i

nk +
nr−1 + nr

2
+ 2r − 2i

)
+

(nr−1 − nr)2

4

}
.

(B.62)
These are the main results of this section. In particular, we can evaluate these in the
algebras we are interested in, namely sp(2), so(3), so(5), so(7) and so(8). This gives us
the following results

sp(2) : cR =
1

12
[n1(n1 + 4) + 2n2(n2 + 3) + 2n1n2] ,

so(3) : cR =
1

2

[n1(n1 + 2)]

4
,

so(5) : cR =
1

6

[
n1(n1 + 3) +

n2

2
(n2 + 4) + n1n2

]
,

so(7) : cR =
1

10

[
n1(n1 + 5) + 2n2(n2 + 4) +

3n3

4
(n3 + 6) + 2n1n2 + 2n2n3 + n1n3

]
,

so(8) : cR =
1

12

[
n1(n1 + 6) + 2n2(n2 + 5) + n3(n3 + 6) + n4 (n4 + 6)

+ 2n1n2 + n1n3 + n1n4 + 2n2n3 + 2n2n4 + n3n4

]
.

(B.63)
From this we can also see that sp(2) ∼ so(5) if we only exchange n1 ↔ n2. As mentioned
above we will later normalise according to K = 1 for all algebras, so that one simply drops
the prefactors in the above formulas. Next we will derive a formula for the dimension of
an irreducible representation as a function of its Dynkin labels.

B.8 Dimension of irreducible representations

If ϕ is a unitary irreducible representation of a compact semi-simple Lie group, charac-
terised by its highest weight state, Λ, then the dimension of ϕ is given by the famous Weyl
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formula [49]

Dim(ϕ) =
∏
α∈∆+

(Λ + δ, α)

(δ, α)
. (B.64)

We use the results from the previous sections, namely the di�erent expansions in the
weight vectors, to rewrite this. For Br we �nd

Dim(ϕ) =
∏
α∈∆+

(Λ + δ, α)

(δ, α)
=
∏
α∈∆+

∑
i(l

i + δi)(λi, α)∑
j δ

j(λj , α)
. (B.65)

The denominator can be evaluated as

∏
α∈∆+

∑
j

δj(λj , α) =

(∏
p

∑
i

δi(λi, λp)

)∏
q,r

∑
j

δj(λj , λq + λr)

(∏
s,t

∑
k

δk(λk, λs − λt)

)
,

(B.66)
where the expressions for the positive roots in terms of the weights in Eq.(B.45) has been
used. Using now that (λi, λj) = Kδij we get

K3

(∏
p

δp

)(∏
q,r

(δq + δr)

)(∏
s,t

(δs − δt)

)
. (B.67)

De�ning mi ≡ li + δi we evaluate the numerator in the same way and �nd

∏
α∈∆+

∑
i

mi(λi, α) = K3

(∏
p

mp

)(∏
q,r

(mq +mr)

)(∏
s,t

(ms −mt)

)
. (B.68)

Combining the two gives us our result

Dim(ϕ) =

(∏
p

mp

δp

)(∏
q,r

mq +mr

δq + δr

)(∏
s,t

ms −mt

δs − δt

)
. (B.69)

Doing the same thing for Cr and Dr we �nd that Cr gives us the same expression while
Dr has

Dim(ϕ) =
∏
p,q

(
mp −mq

δp − δq

)(
mp +mq

δp + δq

)
. (B.70)

We can now use the results of Eq.(B.48) and (B.59) to write this in terms of the Dynkin
labels. The results are [40]

Br : Dim(ϕ) =

(∏
p

∑r−1
i=p n

i + nr

2 + r − p+ 1
2

r − p+ 1
2

)(∏
p,q

∑r−1
i=p n

i +
∑r−1

j=q n
j + nr + 2r + 1− p− q

2r + 1− p− q

)

×

(∏
p,q

∑r−1
i=p n

i −
∑r−1

j=q n
j − p+ q

−p+ q

)
(B.71)

Cr : Dim(ϕ) =

(∏
p

∑r
i=p n

i + r − p+ 1

r − p+ 1

)(∏
p,q

∑r
i=p n

i +
∑r

j=q n
j + 2r + 2− p− q

2r + 2− p− q

)

×

(∏
p,q

∑r
i=p n

i −
∑r

j=q n
j − p+ q

−p+ q

)
(B.72)
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Dr : Dim(ϕ) =

(∏
p,q

∑r−2
i=p n

i + nr−1±nr
2 +

∑r−2
j=q n

j + nr−1±nr
2 + 2r − p− q

2r − p− q

)

×

(∏
p,q

∑r−2
i=p n

i + nr−1±nr
2 −

∑r−2
j=q n

j − nr−1±nr
2 − p+ q

−p+ q

)
,

(B.73)

where the ± is + if p, q = 1, . . . , r− 1 and − if p, q = r. For the algebras we are interested
in we especially �nd

sp(2) : Dim(ϕ) =
1

6
(n1 + 1)(n2 + 1)(n1 + n2 + 2)(n1 + 2n2 + 3),

so(5) : Dim(ϕ) =
1

6
(n1 + 1)(n2 + 1)(n1 + n2 + 2)(2n1 + 1n2 + 3),

(B.74)

note that these, once again, change into each other under the interchange of n1 ↔ n2. For
so(7) we get

Dim(ϕ) =
1

720
(n1 + 1)(n2 + 1)(n3 + 1)(n1 + n2 + 2)(n2 + n3 + 2)(2n2 + n3 + 3)

× (n1 + n2 + n3 + 3)(n1 + 2n2 + n3 + 4)(2n1 + 2n2 + n3 + 5),
(B.75)

and for so(8)

Dim(ϕ) =
1

4320
(n1 + 1)(n2 + 1)(n3 + 1)(n4 + 1)(n1 + n2 + 2)(n2 + n3 + 2)(n2 + n4 + 2)

× (n1 + n2 + n3 + 3)(n1 + n2 + n4 + 3)(n2 + n3 + n4 + 3)

× (n1 + n2 + n3 + n4 + 4)(n1 + 2n2 + n3 + n4 + 5).
(B.76)

These formulas will be helpful when considering the particle representations appearing in
the supergravity theory compacti�ed on di�erent manifolds.

B.9 Decomposition of groups

Given an algebra g with a subalgebra h, h ⊂ g, (we will refer to g as the ambient algebra
in this context) we can usually embed h in g, so that irreducible representations of g
break up into several irreducible representations of h. These decompositions are called
branching rules. These rules tell us how a state in the original system, with g symmetry,
gets organised into states labeled by some h symmetry. This can be written as

Λ 7→
⊕
M∈P+

bΛMM, (B.77)

where Λ is an irrep of g, M an irrep of h, P+ is the set of highest weights for irreducible
representations, and bΛM are called the branching coe�cients. These coe�cients gives
the multiplicity of M under the decomposition of Λ. A speci�c branching can also be
characterised by a projection matrix. If we for example have an irrep of su(3) given by(
n1 n2

)
, and a corresponding projection matrix, P, for how an irrep of su(2) is embedded

in su(3), then we get the branching rules by writing

P
(
n1

n2

)
=
(
P1 P2

)(n1

n2

)
= (P1n1 + P2n2) = (nsu(2)). (B.78)
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There is also a useful rule stating that, if

Λ 7→
⊕
M∈P+

bΛMM, and Ξ 7→
⊕

Π∈P+

bΞΠΠ, (B.79)

then
Λ⊗ Ξ 7→

⊕
M,Π

bΛMbΞΠM ⊗Π. (B.80)

One can classify the di�erent embeddings according to the properties of the smaller
algebra under the decomposition. We will most often concern ourselves with the case where
h is a maximal subalgebra of g. This means that there are no intermediate steps in the
embedding, i.e., we can not write h ↪→ l ↪→ g, for some other algebra l ⊂ g. The rules
for non-maximal subalgebras follow directly by applying the embedding of the maximal
subalgebras in steps.

If all step-operators of h are also step-operators of g we call h for a regular subalgebra
of g, otherwise we call it a special subalgebra.

There is a very simple prescription for �nding all regular maximal subalgebras of an
algebra. You start from the Dynkin diagram of the ambient algebra and add a node
corresponding to minus the highest root. This will yield the so called extended Dynkin
diagrams of g, see Eq.(B.40). One then simply removes any node corresponding to some
simple root, and receives the Dynkin diagram of a regular maximal subalgebra. Note that if
g = Ar one needs to discard two roots in order to �nd a proper maximal regular subalgebra,
since the removal of one node only gives back the original diagram. There are also a few
exceptions (�ve to be exact) when working with the exceptional algebras (sounds almost
obvious when you write it out like this), resulting in non-maximal subalgebras [48]. This
trick does not work for the special subalgebras. There we instead use that if g is simple,
then any n-dimensional representation of g gives us an embedding of g into sl(n) [48]. If
the corresponding representation space is selfconjugate and symplectic we can embed it in
sp(n), and if it is selfconjugate and orthogonal we can embed it in so(n). Both of these
embeddings are special and (except for a few cases) maximal. If g is not simple one can use
the matrix representation to look for the embeddings. This is done in [48]. The exceptional
algebras must be done on a case-by-case basis while the classical Lie algebras gives some
more general results.
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C

An introduction to supersymmetry

Johannes Aspman and Adrian Padellaro

This appendix was written together with Adrian Padellaroa in a joint e�ort to gain the
necessary background knowledge needed for our separate master's projects. The text serves
as an introduction to the subject of supersymmetry. This is intended for the average
master's level student of theoretical physics unfamiliar with the subject, and therefore
includes a lot of explicit calculations, often more than has been found anywhere else.
Since this appendix is written with the intent of being somewhat self-contained there will
perhaps be some overlap with the rest of the thesis, this may also lead to some contrasts
in conventions, but we will always try and note the di�erences.

The �rst section gives a short motivation to why supersymmetry is interesting. We
then introduce the simplest possible supersymmetric theory, the Wess-Zumino model. In
Sections C.3 and C.4 we discuss representation theory for supersymmetry and SO(N)
respectively. After this we introduce two other formalisms more suitable when interactions
are included, namely the notions of super�elds and superspace, Section C.6 then shows
how we can express the coordinate transformations in superspace in a manifestly covariant
way. In the last two sections we construct two supersymmetric theories of great importance,
super-Yang-Mills in ten dimensions and supergravity in eleven dimensions.

C.1 Introduction and motivation � Why SUSY?

Supersymmetry, or SUSY for short, is a symmetry between fermions and bosons. It relates
every boson to a fermion superpartner, and vice versa. The partner of the known bosons
are named after the boson with the added su�x -ino, for example the photon has as its
partner the photino, and so on. The partner of the fermions get a pre�x s (for scalar,
or super, depending on who you are asking), so we have the selectron, the sneutrino, the
squark and so on.

In this appendix we will introduce some of the most important aspects of supersymme-
try. We will also show how one can incorporate these ideas into supersymmetric theories,
such as super-Yang-Mills and supergravity. But �rst we will try to motivate why it is
important, or at least interesting, to study supersymmetry. There are of course a lot of
reasons, and we will only mention the ones we �nd most signi�cant. Although supersym-
metry is interesting for both mathematicians and physicists we will focus mostly on the
physical applications.

There are three fundamental constants of physics. The speed of light, c, Planck's
constant, ~, and Newton's constant, G. From these one can create the Planck units, which

aGothenburg Univeristy, guspadad@student.gu.se
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should then set the natural scale for fundamental interactions. We get [15]

lP =

√
~G
c3
≈ 1.62× 10−35m, (C.1)

tP =
lP
c

=

√
~G
c5
≈ 5.39× 10−44s, (C.2)

mP =

√
~c
G
≈ 1.22× 1019GeV/c2. (C.3)

In the standard model particles acquire their mass by interacting with the Higgs �eld [52].
The renormalisation of the Higgs interactions gives a large contribution to the mass of the
Higgs boson, and this leads to the conclusion that the mass of the Higgs boson should be
the greatest mass scale available. However, in 2012 the Higgs boson was experimentally
found to have a mass of only around 125GeV/c2, [53], much lighter than the Planck mass.
This discrepancy between the Higgs mass and the Planck mass is called the hierarchy
problem of the electroweak scale.

In supersymmetry the hierarchy problem is solved since the superpartners cancel the
Planck scale quantum corrections. This is because there is a relative sign present when
doing calculations involving fermion loops as opposed to boson loops in quantum �eld
theory, and imposing supersymmetry forces the two loop corrections to exactly cancel each
other out [52].

One may note in this context that there is another vastly di�erent scale in Nature,
namely the neutrino mass scale, which happens, for unknown reasons, to be very close to
the dark energy scale, deduced from the observed value of the cosmological constant, Λ.
This is brie�y discussed in Chapter 3.

The way in which supersymmetry cancels UV divergences in loop correction calcula-
tions has made it possible to construct more �nite quantum �elds theories, or at least it
has been shown that they are �nite up to higher order correction than before. It also
led to the formulation of certain non-renormalisation theorems giving some insight into
whether a theory is renormalisable or not. For instance, one theorem states that as long
as supersymmetry is broken a particle who is massless at tree level will still be massless at
any �nite order of perturbation theory [54].

One theorem also states that if the classical potential vanishes at some point in �eld
space, the e�ective potential will vanish at that point to all �nite orders of perturbation
[54].

Another aspect of supersymmetry that involves the standard model is the question of
the uni�cation of the three gauge coupling constants which set the scales of three of the
fundamental forces, the electromagnetic, the strong and the weak force. These coupling
constants are energy dependent and some decades ago, before more precise measurements
had been done, they seemed to be able to meet at a certain energy scale. For many years
people tried to �nd a way to unify these forces into one at this scale. Later on when the
measurements became more precise it was found that they would not actually meet at one
point but instead cross each other at di�erent energies [52].

But, if one includes supersymmetry and the extra superparticles the energy dependence
of the coupling constants gets modi�ed. It has been found that this leads to the existence
of a unique point where all three coupling constants meet, making it possible to unify the
three forces into one single gauge group [52].

The two superpartners of supersymmerty should be of equal mass, but we have not
found any superpartners to the known particles at these mass scales. This means that,
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if supersymmetry is a true symmetry of nature, it must be spontaneously broken in our
present Universe.

We consider a single conserved supercharge, which is a spinor, Qα. As we will see later,
the superalgebra is given by [54]

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ. (C.4)

This means that the Hamiltonian
H = |Q|2. (C.5)

It follows that if supersymmetry is not broken, i.e., that the Qα annihilate the vacuum,
the energy of the vacuum is zero. Since of course

H|0〉 = |Q|2|0〉 = 0. (C.6)

However, if supersymmetry is spontaneously broken, i.e. Qα|0〉 = α|0〉 6= 0, we �nd

〈0|H|0〉 = 〈0||Q|2|0〉 = α2 > 0. (C.7)

So the energy of the vacuum is positive [54].
As discussed in this thesis the Weak Gravity Conjecture of Ooguri & Vafa, [11], has

been shown to imply that non-supersymmetric AdS vacua are unstable.
This could mean that our present Universe possibly is in an unstable state, and should

then be moving towards a state where it will have supersymmetry. It could of course be
in a local minimum of the potential, but due to quantum tunneling it should still be able
to escape and move towards a supersymmetric global ground state.

Lastly, one should also mention that our leading candidate for a theory unifying all the
fundamental forces of Nature, string/M-theory, in its present formulation, needs supersym-
metry on the world sheet to work [15]. So supersymmetry seems to be a deep fundamental
symmetry of Nature.

These are just a few of the reasons why one should study supersymmetry, and hopefully
you have been motivated to keep reading this text.

C.2 The Wess-Zumino model

To introduce supersymmetry we start by studying one of the simplest models, called the
Wess-Zumino model. This was the �rst example of a four-dimensional interacting super-
symmetric model, introduced by Julius Wess and Bruno Zumino in 1974 [55]. This will
involve a lot of explicit calculations and manipulations, but since this is something that
you encounter all the time in supersymmetry, we will go through it in detail in this section
to familiarise ourselves with the framework.

Consider a �eld theory consisting of one complex scalar �eld and one Dirac spinor �eld.
For simplicity we can split the complex scalar �eld into

φ =
1√
2

(A+ iB), (C.8)

where now both A and B are real scalar �elds. We thus have the kinetic Lagrangian

L0 = −1

2
∂aA∂

aA− 1

2
∂aB∂

aB +
i

2
ψ̄γa∂aψ, (C.9)
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where we employ the convention that latin indices belong to ordinary spacetime, while greek
indices will be used for spinors. This Lagrangian is invariant under the supersymmetry
transformations de�ned by

δA = −iε̄ψ,
δB = −ε̄γ5ψ,

δψ = γa∂a(A− iγ5B)ε,

δψ̄ = −ε̄∂a(A− iγ5B)γa,

(C.10)

where ε is an anti-commuting (Grassmann) parameter called the supersymmetry parameter
[54]. These transformations will be derived later when we talk about superspace, but for
now we simply state them and check that the given Lagrangian really is invariant under
them. We also see that these transforms fermions into bosons and bosons into fermions,
which is exactly what supersymmetry represents.

If we transform the Lagrangian accordingly we get

δL0 = −∂aδA∂aA− ∂aδB∂aB +
i

2
δψ̄γa∂aψ +

i

2
ψ̄γa∂aδψ

= δA�A+ δB�B +
i

2
δψ̄γa∂aψ +

i

2
ψ̄γa∂aδψ

= −iε̄ψ�A− ε̄γ5ψ�B − i

2
ε̄∂a(A− iγ5B)γaγb∂bψ +

i

2
ψ̄γa∂aγ

b∂b(A− iγ5B)ε,

(C.11)
where we used partial integration in the second step and plugged in the given transforma-
tions in the last step. We now use that γaγb = ηab + γab and that γab is anti-symmetric
in a and b while ∂a∂b is symmetric, which means that we can drop terms where these two
multiply each other. This gives us

δL0 = −iε̄ψ�A−ε̄γ5ψ�B− i
2
ε̄∂a(A−iγ5B)∂aψ−

i

2
ε̄∂a(A−iγ5B)γab∂bψ+

i

2
ψ̄�(A−iγ5B)ε.

(C.12)
Then we perform partial integration, again dropping the γab term because of symmetry
considerations, leading to

δL = i�A(−ε̄ψ +
1

2
ε̄ψ +

1

2
ψ̄ε) + �B(−ε̄γ5ψ +

1

2
ε̄γ5ψ +

1

2
ψ̄γ5ε). (C.13)

Now, for the Lagrangian to be invariant under supersymmetry we want this to vanish, and
we see that this requires

ψ̄ε = ε̄ψ,

ψ̄γ5ε = ε̄γ5ψ,
(C.14)

but this is exactly the demands on a Majorana spinor since we then have [54]

ψ̄ = ψTC, CT = −C, (C.15)

which implies that we can do a Majorana �ip

ψ̄ε = ψTCε = −εTCTψ = εTCψ = ε̄ψ, (C.16)

and similarly for ψ̄γ5ε since Cαβ and (γ5C)αβ are both anti-symmetric (Section C.4 will
discuss this in more detail). This means that if we take the spinor �eld to be Majorana
the Lagrangian will be invariant under the supersymmetry given by (C.10).

Now we want to �nd the algebra of the supersymmetry transformations. We start by
introducing two di�erent transformations δ1 and δ2 and then check how the commutator
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of these act on the di�erent �elds. Starting with the scalars, e.g. A (the case for B is
equivalent), we have[

δ1, δ2

]
A = δ1(−iε̄2ψ)− δ2(−iε̄1ψ) = −iε̄2(δ1ψ) + iε̄1(δ2ψ)

= −iε̄2(γa∂a(A− iγ5B)ε1) + iε̄1(γa∂a(A− iγ5B)ε2).
(C.17)

As above, we can do a Majorana �ip which tells us that

ε̄1γ
aε2 = −ε̄2γ

aε1,

ε̄1γ
aγ5ε2 = ε̄2γ

aγ5ε1.
(C.18)

Plugging this into the expression above we can see that the B-terms will cancel and the
A-terms will add, so in the end we have

[δ1, δ2]A = −2iε̄2γ
aε1∂aA. (C.19)

We now de�ne
δ ≡ −iε̄Q = −iε̄αQα = −iεαQα = +iεαQ̄

α. (C.20)

Using this in the above expression for the commutator we get

(δ1δ2 − δ2δ1)A = (−i)2(ε̄α1 ε̄
β
2 ){Qα, Qβ}A = −2iε̄α2 ε1β(γa) β

α ∂aA, (C.21)

but
− ε̄α1 ε̄

β
2Qβ = ε̄α2 ε̄

β
1Qβ = −ε̄α2 ε1βQ̄

β, (C.22)

so we must have
{Qα, Q̄β}A = −2i(γa) β

α ∂aA. (C.23)

Using the Weyl notation with dotted indices, which will become crucial in the later dis-
cussions on superspace and supergravity, this can be written as [54]

{Qα, Q̄β̇}A = −2iσa
αβ̇
∂aA. (C.24)

Now we want to redo this for the spinor �eld, ψ, but �rst we will have a short Fierz
interlude. Fierzing is a way of expanding a spinor bilinear form in the gamma basis, i.e.,
for a bilinear of two spinors ψχ we write

ψαχβ = x0Cαβψ̄χ+ x1γ
a
αβψ̄γaχ+ . . . , (C.25)

for some coe�cients xi [52]. To �nd these xi's we simply check term by term

Cαβψαχβ = ψ̄χ = x0C
αβCαβψ̄χ = −4x0ψ̄χ =⇒ x0 = −1

4
, (C.26)

(γb)
αβψαχβ = ψ̄γbχ = x1γ

αβ
b γaαβψ̄γaχ = 4δabx1ψ̄γaχ =⇒ x1 =

1

4
. (C.27)

(γbc)
αβψαχβ = ψ̄γbcχ = x2Tr(γbcγ

ad)ψ̄γadχ = −8x2δ
ad
bc ψ̄γadχ =⇒ x2 = −1

8
, (C.28)

(γbγ
5)αβψαχβ = ψ̄γbγ

5χ = x3(γbγ
5)αβ(γaγ5)αβψ̄γaγ5χ = −x3Tr(γbγ

5γaγ5)ψ̄γaγ5χ

= 4δabx3ψ̄γaγ5χ =⇒ x3 =
1

4
,

(C.29)

(γ5)αβψαχβ = ψ̄γ5χ = x4(−Trγ5γ5)ψ̄γ5χ = −4x4ψ̄γ
5χ =⇒ x4 = −1

4
, (C.30)
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So this means that we have

ψαχβ = −1

4
Cαβψ̄χ+

1

4
(γa)αβψ̄γaχ−

1

8
(γab)αβψ̄γabχ+

1

4
(γaγ5)αβψ̄γaγ5χ−

1

4
(γ5)αβψ̄γ

5χ.

(C.31)
This will very soon be needed when we now go on to study the commutation of the
transformations acting on the spinor[
δ1, δ2

]
ψα = δ1(γa∂a(A− iγ5B)ε2)α − (1↔ 2) = (γa∂a(−i(ε̄ψ) + iγ5(ε̄γ5ψ))ε2)α − (1↔ 2)

= −i(ε̄1∂aψ(γaε2)α − ε̄1γ
5∂aψ(γaγ5ε2)α)− (1↔ 2).

(C.32)
We see that we can use

ε
(α
2 ε

β)
1 =

1

4
(γa)αβ ε̄2γaε1 −

1

8
(γab)αβ ε̄2γabε1 (C.33)

from the Fierz identity to rewrite this. We begin with the �rst term

ε̄1∂aψ(γaε2)α − ε̄2∂aψ(γaε1)α = ε1β∂aψ
β(γa)γαε2γ − ε2β∂aψ

β(γa)γαε1γ = −2ε1(βε2γ)∂aψ
β(γa)γα

= −1

2
ε̄1γ

bε2(γb)βγ∂aψ
β(γa)γα +

1

4
ε̄1γ

bcε2(γbc)βγ∂aψ
β(γa)γα

= −1

2
ε̄1γ

bε2(γaγb∂aψ)α +
1

4
ε̄1γ

bcε2(γaγbc∂aψ)α,

(C.34)
where we have plugged in the result of Eq.(C.33) in the third step.

The second term is

−ε̄1γ
5∂aψ(γaγ5ε2)α − (1↔ 2) = −ε1β(γ5∂aψ)β(γaγ5) γ

α ε2γ − (1↔ 2)

= 2ε1(βε2γ)(γ
5∂aψ)β(γaγ5) γ

α .
(C.35)

The Fierz identity of Eq.(C.33) can be used again, and gives us

1

2
ε̄1γ

bε2(γb)βγ(γ5∂aψ)β(γaγ5) γ
α −

1

4
ε̄1γ

bcε2(γbc)βγ(γ5∂aψ)β(γaγ5) γ
α

=
1

2
ε̄1γ

bε2(γaγ5γbγ
5∂aψ)α −

1

4
ε̄1γ

bcε2(γaγ5γbcγ
5∂aψ)α.

(C.36)

We can move the γ5's next to each other, picking up a sign in the �rst term but not in the
second one. The γ5's then square to one. Adding these results together we have[

δ1, δ2

]
ψα = −i

(
− 1

2
ε̄1γ

bε2(γaγb∂aψ)α +
1

4
ε̄1γ

bcε2(γaγbc∂aψ)α

− 1

2
ε̄1γ

bε2(γaγb∂aψ)α −
1

4
ε̄1γ

bcε2(γaγbc∂aψ)α

)
= iε̄1γ

bε2(γaγb∂aψ)α = 2iε̄1γ
aε2∂aψα − iε̄1γ

bε2γbγ
a∂aψα

= −2iε̄2γ
aε1∂aψα + iε̄2γ

bε1γbγ
a∂aψα.

(C.37)

The �rst term is just what we got for the scalar �elds in Eq. (C.19), while we recognise
the Dirac equation in the end of the second term. This means that we have found our
supersymmetry algebra, but only on-shell. Could this problem be solved?

How about interactions? There may be mass and potential terms that we have not
included yet. However, we have seen that it is a rather cumbersome calculation to add
terms and then check if we still have supersymmetry. Is there an easier way to do it?
This together with the problem of only being on-shell for the algebra is solved when we
introduce the concept of superspace in Section C.5.
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C.3 Representation theory for D=4 supersymmetry

The Wess-Zumino model contains three �elds related by supersymmetry transformations.
It is one example of a supermultiplet. We are interested in exploring other possible com-
binations of �elds which can form a supersymmetric Lagrangian. In group theoretical
language we are looking for (irreducible) representations of the supersymmetry algebra. In
general we can have more than one supersymmetry, leading to larger multiplets.

The supersymmetry algebra is [54]

{Qiα, Q̄β̇j} = 2σa
αβ̇
Paδ

i
j , (C.38)

where the indices i, j, . . . run from 1, . . . ,N , for N di�erent supersymmetry generators.
In this section we will construct irreducible representations of this algebra for one-particle
states where, because P 2 = −m2 is a Casimir operator, all particle states have equal mass
[54]. The massive as well as the massless case will be studied.

If we consider the massive case we can boost to the rest frame, where Pa = (−m, 0, 0, 0).
Recalling that σa =

(
σ0, σ1, σ2, σ3

)
=
(
−1, σi

)
(note that this convention di�ers from the

rest of the thesis), where σi are the Pauli matrices, we have

σaPa = −mσ0 =

(
m 0
0 m

)
. (C.39)

The algebra in the rest frame becomes

{Qiα, Q̄βj} = 2

(
m 0
0 m

)
αβ

δij = 2mδαβδ
i
j . (C.40)

Note that we have discarded the dotted indices. Boosting to the rest frame corresponds
to a partial gauge �xing, for which the remaining transformations that keep the gauge
choice invariant is called the Little group [54]. In our case the Little group is SO(3),
rotations of the space components of Pa. But both representations transform identically
under the Little group and therefore dotted and undotted indices correspond to the same
representation.

We can now de�ne a set of operators

ai1 ≡
1√
2m

Qi1, a†1i ≡
1√
2m

Q̄1i,

ai2 ≡
1√
2m

Qi2, a†2i ≡
1√
2m

Q̄2i.

(C.41)

With this normalisation these operators ful�ll the algebra of creation and annihilation
operators as we are used to in quantum mechanics, i.e.

{aiα, a
j
β} = {a†αj , a

†
βj} = 0,

{aiα, a
†
βj} = δijδαβ.

(C.42)

The representations (all the one particle states) of such an algebra are usually constructed
from a vacuum. The vacuum |Ω〉 is de�ned by the condition

aiβ|Ω〉 = 0 ∀i, β. (C.43)

We can build all the states in the Hilbert space by acting with creation operators a†αi on
the vacuum. The creation operators change the magnetic quantum number (i.e. the Lz
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eigenvalue) of the states they act on by ±1/2. More speci�cally a†1i and a
†
2i raise, and lower

the quantum number, respectively. The 2N di�erent creation operators generate a total
of 22N states.

To analyse the complete spectrum of particles for any given N and vacuum with spin
S we will employ a group theoretical approach. By de�ning a new set of operators

Γl =
1√
2

[
al1 + a†1l

]
, l = 1, . . . ,N

ΓN+l =
1√
2

[
al2 + a†2l

]
,

Γ2N+l =
i√
2

[
al1 − a

†
1l

]
,

Γ3N+l =
i√
2

[
al2 − a

†
2l

]
(C.44)

and a new index r, t = 1, . . . , 4N these operators satisfy an SO(4N ) invariant algebra{
Γr,Γt

}
= δrt. (C.45)

This shows that our original algebra (C.42) spans a subset of SO(4N ) representations
(remember that we originally had 22N states but this algebra would generate 24N states)
[56].

However, physical states are characterised by their SU(2) representation (spin). These
are not manifest in the new algebra, instead we can de�ne a third set of operators

qlα = alα, l = 1, . . . ,N

qN+l
α =

∑
β

εαβa
†
βl

(C.46)

which satisfy [56] {
qlα, q

l
β

}
=
{
qN+l
α , qN+l

β

}
= 0{

qlα, q
N+m
β

}
= −εαβδlm{

qN+m
α , qlβ

}
= εαβδ

l
m.

(C.47)

These can be put in a more compact form by introducing indices p, q = 1, . . . , 2N and the
2N × 2N matrix

Λpq =

(
0 1

−1 0

)
pq

. (C.48)

With this notation the algebra becomes{
qpα, q

q
β

}
= −εαβΛpq. (C.49)

We have arrived at an algebra that is manifestly invariant under SU(2)×USp(2N ) which
is a subgroup of SO(4N ).

The fundamental multiplet (the multiplet constructed from an S = 0 vacuum) is given
by decomposing the 22N SO(4N ) states into SU(2)×USp(2N ) states. The decomposition
is given by [56]

22N → (N + 1, 1) + (N , 2N ) + · · ·+ (N + 1− k, [2N ]k) + · · ·+ (1, [2N ]N ). (C.50)
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The �rst label is the dimension of the SU(2) representation given by D = 2S + 1. The
second label is the dimension of the totally anti-symmetric traceless representation of
USp(2N ) with k indices, given by

[M ]k =
M . . . (M + 1− k)

k!
− M . . . (M + 3− k)

(k − 2)!
, k > 2

[M ]2 =
M . . . (M + 1− k)

k!
− 1.

We will demonstrate the method for N = 3. Starting from an S = 0 vacuum the
decomposition given by equation (C.50) is

(4, 1) + (3, 6) + (2, [6]2) + (1, [6]3) = (4, 1) + (3, 6) + (2, 14) + (1, 14).

If we gather the multiplet content in terms of spin in a table we have

S Multiplicity

0 14
1
2 14
1 6
3
2 1

The multiplet constructed from an S = 1/2 ground state is given by the S = 0 multiplet
using angular momentum addition. For example the fourteen S = 1/2 particles give rise to
fourteen S = 1 and S = 0 particles when combined with the ground state. The complete
decomposition is

0⊗ 1

2
=

1

2
,

1

2
⊗ 1

2
= 1⊕ 0,

1⊗ 1

2
=

3

2
⊕ 1

2
,

3

2
⊗ 1

2
= 2⊕ 1.

(C.51)

In total the S = 1/2 multiplet is

S Multiplicity

0 14
1
2 20
1 15
3
2 6
2 1

For the massless case there is no rest frame, so the best we can do is to pick a frame
where Pµ = (−E, 0, 0, E). In this frame the SUSY algebra is{

Qi, Q̄j
}

= 4Eδij .

After introducing the normalised operators, as for the massive case, the algebra becomes
the algebra of N creation and annihilation operators. The operators are ladder operators
of helicity rather than spin. Moreover we only have one type (for each supersymmetry)
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of creation operator. This means we only have one type of index to worry about when it
comes to anti-symmetrisation. We introduce a vacuum, this time it is a helicity eigenstate,

ai |Ωλ〉 = 0, ∀i,

where λ denotes the helicity. When constructing the Hilbert space we have N anti-
commuting operators that at most appear once, acting on the vacuum. Therefore we
have a total of 2N states. A state with m operators has helicity λ + m/2 and the multi-
plicity is the combinatorial factor

(N
m

)
. For example in the case of N = 8 starting from

λ = −2 we have the following state content [54]

Helicity Multiplicity

2 1
3/2 8
1 28
1/2 56
0 70
−1/2 56
−1 28
−3/2 8
−2 1.

The choice of N = 8 and λ = −2 was not arbitrary. It is the unique maximal SUSY
multiplet containing spin 2 but no higher spins. For larger N (or smaller λ) we would
get particles with spin higher than 2. We can also see that the number of bosonic and
fermionic states are equal, as required for supersymmetry.

The previous example is invariant under CPT, however most multiplets are not. To
build a quantum �eld theory with such a multiplet it is required that one adds a CPT
copy of the multiplet to the theory. For example, consider the case of N = 1 starting from
λ = 3/2. The multiplet is (3/2, 2) but CPT requires that we also have (−2,−3/2) states.

C.4 Majorana representation in SO(1, 3)

For the Wess-Zumino model it turned out that we needed our spinors to be Majorana
for the Lagrangian to be invariant under supersymmetry transformations. In this section
we will review the construction of a Majorana representation of gamma matrices in four
dimensions. We hope that this will make the transition to gamma matrices generalised to
higher dimensions easier.

Gamma matrices are a set of matrices γµ that satisfy the Cli�ord algebra

{γµ, γν} = 2ηµν where we have chosen ηµν = diag(−1, 1, 1, 1). (C.52)

If a set of matrices γµ satisfy the Cli�ord algebra then so will also the sets (γµ)T , −(γµ)T

and −(γµ)†. It is then known that these matrices are related by similarity transformations.
We de�ne matrices A, C+ and C− by

A−1γµA = −(γµ)† (C.53)

C−1
± γµC± = ±(γµ)T . (C.54)

We can also �nd a matrix γ5 with the properties
(
γ5
)2

= 1,
{
γ5, γµ

}
= 0 and

(
γ5
)†

= γ5.
Which is used to construct a projection matrix.
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If we pick one of the matrices C± we can form a basis for all 4× 4 matrices using γµ.
The basis is composed of the matrices

C

γµC

γ[µγν]C

γ[µγνγρ]C

γ5C.

If for example (γµC)T = −(γµC), it is sometimes said that γµ is anti-symmetric (or
symmetric if there is a plus sign). But this is just abuse of notation and what is really
considered is the matrix γµC. We expect a basis for 4×4 matrices to have 6 anti-symmetric
and 10 symmetric elements.

We will now go ahead and show a way to build a Majorana (real) representation of
gamma matrices via tensor products of Pauli matrices. We have four real 2x2 matrices at
our disposal: σ1, ε = iσ2, σ3 and 1. Let

γ0 = ε⊗ σ3 ⇒
(
γ0
)2

= −1

γ1 = σ1 ⊗ σ3 ⇒
(
γ1
)2

= 1

γ2 = σ3 ⊗ σ3 ⇒
(
γ2
)2

= 1

γ3 = 1⊗ σ1 ⇒
(
γ3
)2

= 1.

(C.55)

Since (A⊗B)(C⊗D) = AC⊗BD and we want all gamma matrices to anti-commute, the
trick is to make sure that the Pauli matrices pairwise (i.e. each slot in the tensor products)
anti-commute an odd number of times.

Now, from equations (C.53) and (C.54) we see that A = C− = γ0 in our representation
because the matrices γµ are real. Moreover CT− = −C− which we will see is important for
the construction of our basis. From equation (C.54) we could also �nd C+, a matrix that
commutes with γ1, γ2 and γ3 but anti-commutes with γ0. By trial and error one �nds
C+ = γ1γ2γ3, which just like C− is anti-symmetric.

In general a spinor is said to be Majorana if ψ̄ ≡ ψ†A = ψTC−. But in our representa-
tion A = C− and thus a spinor is Majorana in the Majorana representation if ψ = ψ∗. A
Majorana spinor has half the degrees of freedom compared to a Dirac spinor because we
have gone from two complex to two real degrees of freedom.b

There exists a second restriction one can put on Dirac spinors to reduce the degrees
of freedom due to the matrix γ5. These are called Weyl spinors, they can be constructed
from Dirac spinors using a projection

ψ± =
1± γ5

2
ψ. (C.56)

One may ask if it is possible for a spinor to be Majorana and Weyl at the same
time. Since Majorana spinors are real it would then be necessary for γ5 to be real as
well. We could try to form γ5 as γ5 = γ0γ1γ2γ3, which indeed would be real. But then(
γ5
)2

= −1 6= 1. The correct γ5 for SO(1, 3) is γ5 = iγ0γ1γ2γ3 which is not real. We can
therefore conclude that in four dimensions it is not possible for a spinor to be Majorana
and Weyl at the same time [54].

bNote that although a Dirac spinor has four components they are not independent if they are solutions
to the Dirac equation.
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We previously observed that the choice of C corresponded to two di�erent sets of basis.
The fact that they are di�erent and how they di�er is important for supersymmetry. In
particular we need to know the symmetry properties under transposition. Denote n anti-
symmetrised gammas by γ(n) ≡ γ[µ1 . . . γµn]. If we transpose γ(n)C± we get(

γ(n)C±

)T
= (−1)

n(n−1)
2 CT±

(
γT
)(n)

= (−1)(±)n(−1)
n(n−1)

2 γ(n)C± for n>0. (C.57)

It is useful to make a table for the two choices of C. The result is Table C.1. For super-
symmetry we need γµC to be symmetric and γ5C to be anti-symmetric, which corresponds
to the choice C = C−.

C = C+ C = C−
Symmetric Anti-symmetric Symmetric Anti-symmetric

C 1 1

γ(1)C 4 4

γ(2)C 6 6

γ(3)C 4 4

γ5C 1 1

Table C.1: Number of symmetric and anti-symmetric matrices in four dimensions. The numbers in each
cell show how many symmetric respectively anti-symmetric matrices you get from each class of matrices,
for the two choices of basis. Note that in both cases they add up to 10 symmetric and 6 anti-symmetric
matrices.

One could naively try to construct a basis using a symmetric C but then all symmetric
matrices would become anti-symmetric and vice versa. This would give us 6 symmetric
and 10 anti-symmetric matrices which can not constitute a basis. We will later see that
the symmetry properties of C are dimension dependent.

C.4.1 Real representation of SO(8)

For the spinor representation of SO(8) = SO(2 · 4) ≡ D4 we are looking for 24 = 16
dimensional matrices satisfying the Cli�ord algebra with Euclidean signature

{γµ, γν} = 2δµν . (C.58)

Thus for all matrices γµ we have (γµ)2 = 1. This will end up making it so that all matrices
are forced to be symmetric if we insist on keeping them real. In terms of tensor products
we have

γ1 = σ1 ⊗ 1⊗ 1⊗ 1
γ2 = ε⊗ σ3 ⊗ σ1 ⊗ ε
γ3 = ε⊗ σ3 ⊗ σ3 ⊗ ε
γ4 = ε⊗ σ3 ⊗ ε⊗ 1
γ5 = ε⊗ σ1 ⊗ ε⊗ σ1

γ6 = ε⊗ σ1 ⊗ ε⊗ σ3

γ7 = ε⊗ ε⊗ 1⊗ 1
γ8 = ε⊗ σ1 ⊗ 1⊗ ε,

(C.59)

and γ9 ≡ γ1γ2γ3γ4γ5γ6γ7γ8 = σ3 ⊗ 1 ⊗ 1 ⊗ 1. If we solve for C± we �nd C+ = 1 and
C− = γ9. This gives us Table C.2. The important observation here is that γ9 is in fact
real. Therefore we could impose reality (Majorana) and Weyl constraints simultaneously.
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C = C+ C = C−
Symmetric Anti-symmetric Symmetric Anti-symmetric

C 1 1

γ(1)C 8 8

γ(2)C 28 28

γ(3)C 56 56

γ(4)C 70 70

γ(5)C 56 56

γ(6)C 28 28

γ(7)C 8 8

γ9C 1 1

Table C.2: Number of symmetric and anti-symmetric matrices in eight dimensions. The numbers in each
cell show how many symmetric respectively anti-symmetric matrices you get from each class of matrices,
for the two choices of basis. For both choices of C we get a total of 136 symmetric and 120 anti-symmetric
matrices.

C.4.2 Real representation of SO(1, 9)

The spinor representation constructed from the Cli�ord algebra for SO(1, 9) has dimension

25 = 32 with one matrix satisfying
(
γ0
)2

= −1. The reason we �rst constructed the real
representation of SO(8) is that it is in fact simple to extend the construction to SO(1, 9).
Let γa be the eight matrices constructed previously for SO(8), then the eleven matrices
{Γa,Γ11} for SO(1, 9) are

Γ0 = ε⊗ 116

Γa = σ1 ⊗ γa for a = 1, . . . , 8

Γ11 = σ3 ⊗ 116

Γ9 = Γ0 . . .Γ8Γ11 = −σ1 ⊗ σ3 ⊗ 18.

(C.60)

This particular choice of Γ11 coincides with the usual projection matrix (which is real for
SO(1, 9)). C− = Γ0 and C+ = Γ1 . . .Γ9 = −σ3 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ ε both of which are anti-
symmetric. We see that spinors can be both Majorana and Weyl in 1 + 9 dimensions. It
is again useful to construct a table over the basis elements with their index structure and
symmetry that can be used in calculations, the results are found in Table C.3. For example
C− is o�-diagonal, composed of two 16-dimensional pieces (C−)αβ̇ and (C−)α̇β .
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C = C−
Symmetric Anti-symmetric

Cαβ̇ 1(
Γ(1)C

)
αβ

10(
Γ(2)C

)
αβ̇

45(
Γ(3)C

)
αβ

120(
Γ(4)C

)
αβ̇

210(
Γ(5)C

)
αβ

252(
Γ(6)C

)
αβ̇

210(
Γ(7)C

)
αβ

120(
Γ(8)C

)
αβ̇

45(
Γ(9)C

)
αβ

10(
Γ11C

)
αβ̇

1

Table C.3: Number of symmetric and anti-symmetric matrices in ten dimensions. The numbers in each
cell show how many symmetric respectively anti-symmetric matrices you get from each class of matrices,
and their index structure. An analogous table exists where dotted and undotted indices are exchanged.
The total number of matrices is 528 symmetric and 496 anti-symmetric, as expected for a basis of 32-
dimensional matrices.

C.4.3 Real representation of SO(1, 10)

We can follow a similar recipe to extend the SO(8) representation to SO(1, 10) which is
odd-dimensional. If we include γ9 we have nine anti-commuting matrices which we can
extend to eleven by following the same recipe as for SO(1, 9). The list of gamma matrices
in terms of tensor products is then

Γ0 = ε⊗ 116

Γa = σ1 ⊗ γa for a = 1, . . . , 9

Γ10 = σ3 ⊗ 116.

(C.61)

There is no projection matrix in odd dimensions. If we tried to construct one in the naive
way it would just be proportional to the identity matrix. In 1+10 dimensions we still have
C− = Γ0. When constructing the table of basis elements in odd dimensions we have to be
careful. Since we no longer have a projection matrix the second half of the table does not
constitute new basis elements (they are not linearly independent). The result is Table C.4.
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C = C−
Symmetric Anti-symmetric

Cαβ 1(
Γ(1)C

)
αβ

11(
Γ(2)C

)
αβ

55(
Γ(3)C

)
αβ

165(
Γ(4)C

)
αβ

330(
Γ(5)C

)
αβ

462

Table C.4: Number of symmetric and anti-symmetric matrices in eleven dimensions dimensions. The
numbers in each cell show how many symmetric respectively anti-symmetric matrices you get from each
class of matrices, and their index structure. The total number of matrices is 528 symmetric and 496
anti-symmetric, as expected for a basis of 32-dimensional matrices.

C.5 Super�elds in four dimensions

A super�eld is the extension of a regular �eld with bosonic coordinates to �elds with
fermionic or Grassmann coordinates. The new coordinates are ZA = (xa, θα, θ̄

α̇) with θα
and θ̄α̇ being anti-commuting Grassmann numbers. Coordinates are also parameters for a
group element [54]

G(x, θ, θ̄) = exp
{
i
(
−xaPa + θαQα + θ̄α̇Q̄

α̇
)}
. (C.62)

The action of G(0, ε, ε̄) on G(x, θ, θ̄) is a new group element with new parameters. We say
that multiplication of group elements induce motion (transformations) of the parameters
(coordinates). It is precisely this representation we are interested in, but of the generators.

In�nitesimal transformations of coordinates are associated with di�erential operators.
We will go ahead and implement the generators of supersymmetry as di�erential operators
with respect to super-coordinates. Although this is the initial idea behind what is called
superspace we must now turn it into a meaningful formalism.

First we have to introduce the analogue of di�erentiation for Grassmann coordinates.
Two familiar but modi�ed properties are assumed

∂

∂θα
θβ = δ β

α , (C.63)

∂

∂θα

(
θβθγ

)
=

(
∂

∂θα
θβ
)
θγ − θβ

(
∂

∂θα
θγ
)
, (C.64)

and similarly for dotted indices. The second property is just the Leibniz rule with a minus
sign because ∂α is assumed to anti-commute with θα. Because

(
θαθβ

)∗
= θ̄β̇ θ̄α̇ we also

have (
∂

∂θα
θβ
)∗

= −
(

∂

∂θα

)∗
θ̄β̇ = δ β̇

α̇ ⇒ (∂α)∗ = −∂̄α̇. (C.65)

With these de�ning properties of Grassmann derivatives understood we can go ahead
and construct a coordinate representation of the supersymmetry generators as follows,

Qα =
∂

∂θα
− iσa

αβ̇
θ̄β̇∂a, (C.66)

Q̄α̇ = − ∂

∂θ̄α̇
+ iθβσaβα̇∂a. (C.67)
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However we still have to con�rm that these in fact do satisfy the supersymmetry algebra.

We will check the non-trivial anti-commutator
{
Qα, Q̄β̇

}
.{

Qα, Q̄β̇

}
= −

{
∂α, ∂̄β̇

}
︸ ︷︷ ︸

=0

+
{
∂α, iθ

γσa
γβ̇
∂a

}
+
{
iσaαγ̇ θ̄

γ̇∂a, ∂̄β̇

}
+
{
σaαγ̇ θ̄

γ̇∂a, θ
δσb
δβ̇
∂b

}

= 0 + iσa
αβ̇
∂a + iσa

αβ̇
∂a + σaαγ̇σ

b
δβ̇
∂a∂b

{
θ̄γ̇ , θδ

}
︸ ︷︷ ︸

=0

= 2iσa
αβ̇
∂a.

(C.68)
Therefore our representation is indeed a valid choice for the SUSY algebra.

We now turn to the �elds these generators act on, the super�elds, in particular scalar
super�elds. They can be written as power expansions in their Grassmann coordinates in
the following way

Φ(z) = φ(x) + θαψα(x) + θ̄α̇χ
α̇(x) +

1

2
θαθβbαβ(x) +

1

2
θ̄α̇θ̄β̇ b̃

α̇β̇(x) + θασa
αβ̇
θ̄β̇va

+
1

2
θαθβψ

′
αβγ̇ θ̄

γ̇ +
1

2
θαχ̄

′

αβ̇γ̇
θ̄β̇ θ̄γ̇ +

1

4
θγθδCγδα̇β̇ θ̄

α̇θ̄β̇.

(C.69)

That the expansion terminates is due to the anti-commuting properties of Grassmann
numbers. In four dimensions the indices α and α̇ take two values, therefore any term with
three θ or three θ̄ has the same Grassmann number at least twice. Grassmann numbers
square to zero and therefore the expansion terminates. In higher dimensions the expansion
will be longer, but will still terminate after a �nite number of terms.

As we will see in a moment this super�eld turns out to be a reducible representation
of SUSY. To see that we introduce a new set of operators

Dα =
∂

∂θα
+ iσa

αβ̇
θ̄β̇∂a,

D̄α̇ = − ∂

∂θ̄α̇
− iθβσaβα̇∂a,

(C.70)

which satisfy
{
Dα, D̄α̇

}
= −2iσa

αβ̇
∂a. But perhaps more importantly {D,Q} = 0 for all

combinations of indices on D and Q. Thus Dα and D̄α̇ are covariant derivatives with
respect to supersymmetric transformations. Now we can put constraints on the super�eld
with the use of covariant derivatives, which are invariant under supersymmetry, reducing
the degrees of freedom of the super�eld and therefore also the size of the representation.
Two possible choices are DαΦ = 0 or D̄α̇Φ = 0, a �eld that satis�es one of these constraints
is called a chiral super�eld. We will pick the latter and solve the constraint to �nd our
new �eld using a trick. The trick is to �nd a similarity transformation T such that

D̄α̇Φ −→ −∂̄α̇Φ̃ = −T−1∂̄α̇TΦ = 0. (C.71)

Then we can solve ∂α̇Φ̃ = 0 and transform back to Φ = T Φ̃. We start o� by �nding our
similarity transformation T satisfying

− T−1∂̄α̇T = D̄α̇ = −∂̄α̇ − iθβσaβα̇∂a, (C.72)

which has the formal solution T = eiθ
βσaβα̇θ̄

α̇∂a but should be thought of as the correspond-
ing power series (which will be �nite). We can go ahead and write out the expansion and
simplify

T = 1 + iθασa
αβ̇
θ̄β̇∂a −

1

2
θασa

αβ̇
θ̄β̇θδσbδγ̇ θ̄

γ̇∂a∂b = 1 + iθασa
αβ̇
θ̄β̇∂a +

1

4
θ2θ̄2�. (C.73)
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In the last step we used the following properties

θαθα ≡ θ2 = εαβθ
αθβ ⇒ −1

2
εαβθ2 = θαθβ,

θ̄α̇θ̄
α̇ ≡ θ̄2 = −εα̇β̇ θ̄

α̇θ̄β̇ ⇒ 1

2
εα̇β̇ θ̄2 = θα̇θβ̇,

(C.74)

and the trace of Pauli matrices

εαδεβ̇γ̇σa
αβ̇
σbδγ̇ = −2ηab.

Now that we have found a compact expression for T we are almost done. The solution to
∂α̇Φ̃ = 0 is

Φ̃ = φ(y) + θαψα(y) +
1

2
θαθβbαβ(y) ≡ φ(y) + θαψα(y) +

1

2
θ2F (y). (C.75)

All that is left to do is to go back to our old basis

Φ = T Φ̃ =

(
1 + iθασa

αβ̇
θ̄β̇∂a +

1

4
θ2θ̄2�

)(
φ+ θγψγ +

1

2
θ2F

′
)

= φ+ θγψγ +
1

2
θ2F

′
+ iθασa

αβ̇
θ̄β̇∂aφ+ iθασa

αβ̇
θ̄β̇∂aθ

γψγ +
1

4
θ2θ̄2�φ

= φ(x) + θαψα(x) + θ2F (x) + iθασa
αβ̇
θ̄β̇∂aφ(x)− i

2
θ2∂aψ

α(x)σa
αβ̇
θ̄β̇ +

1

4
θ2θ̄2�φ(x).

(C.76)
Note that a lot of terms dropped out because they had more than two Grassmann coordi-
nates in them.

C.5.1 Transformations in superspace

So far all that we have done is construct an irreducible super�eld. We have not yet seen
the utility of using the superspace formalism. It would be useful if we could �nd the SUSY
transformations for the �elds in our super�eld via the superspace formalism. We start by
noting that a transformation of the super�eld is generated by Qα and Q̄α̇ in the following
way

δεΦ =
(
εQ+ ε̄Q̄

)
Φ ≡

(
εαQα + ε̄α̇Q̄

α̇
)
Φ. (C.77)

If we want to examine the transformation of the �eld φ(x) we observe that

φ(x) = Φ(x, θ, θ̄)

∣∣∣∣
θ=θ̄=0

. (C.78)

Now it is straightforward to see that, from the de�nition of the generators and the covariant
derivatives, we have

δεφ = δεΦ

∣∣∣∣
θ=θ̄=0

≡
(
εQ+ ε̄Q̄

)
Φ

∣∣∣∣
0

=
(
εD + ε̄D̄

)
Φ

∣∣∣∣
0

= εDΦ

∣∣∣∣
0

. (C.79)

In the last step we used the fact that we are working with a chiral super�eld. Thus the
transformation for φ is δεφ = εαψα. We can keep doing this for all our �elds. For ψα we
have

δε(ψα) = δε (DαΦ)

∣∣∣∣
0

=
(
εQ+ ε̄Q̄

)
Dα Φ

∣∣∣∣
0

=
(
εD + ε̄D̄

)
Dα Φ

∣∣∣∣
0

=
(
εβDβDα − ε̄β̇

({
D̄β̇, Dα

}
−DαD̄β̇

))
Φ

∣∣∣∣
0

= εβDβDα Φ

∣∣∣∣
0

+ 2iε̄β̇σa
αβ̇
∂a Φ

∣∣∣∣
0

= 2εβεαβF + 2iσa
αβ̇
ε̄β̇∂aφ = 2εαF + 2iσa

αβ̇
ε̄β̇∂aφ.

(C.80)
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Note that we used the fact that

DβDα Φ

∣∣∣∣
0

= 2εαβF, (C.81)

which we can invert to get F in terms of Φ.

εαβDβDα Φ

∣∣∣∣
0

= 2εαβεαβF = −4F ⇒ F = −1

4
D2 Φ

∣∣∣∣
0

. (C.82)

With this result at hand we can �nd the transformation of F as well.

δεF =
(
εQ+ ε̄Q̄

)(−1

4
D2

)
Φ

∣∣∣∣
0

= {No terms with three θ} = −1

4
ε̄D̄D2 Φ

∣∣∣∣
0

= { Using that Φ is chiral } =
1

4
ε̄β̇
[
D̄β̇, D

αDα

]
Φ

∣∣∣∣
0

=
1

4
ε̄β̇
(
−
{
D̄β̇, Dα

}
Dα +DαD̄β̇D

α −Dα
{
Da, D̄β̇

}
+DαD̄β̇Dα

)
Φ

∣∣∣∣
0

= −1

2
ε̄β̇Dα

{
Dα, D̄β̇

}
Φ

∣∣∣∣
0

= iε̄β̇σa
αβ̇
∂aD

α Φ

∣∣∣∣
0

= iε̄β̇σa
αβ̇
∂aψ

α

= iεγ̇ ε
β̇γ̇σa

αβ̇
εαδ︸ ︷︷ ︸

σ̄aγ̇δ

∂aψδ = iε̄σ̄a∂aψ.

(C.83)

Interestingly δεF = 0 is the Dirac equation.

C.5.2 Actions in superspace

At the end of the day we want to be able to write down an action for our models. As
we will see it is relatively straightforward to write down a manifest supersymmetric ac-
tion in superspace. However, the �nal Lagrangian should not depend on the Grassmann
coordinates and therefore we need a method for integrating them out.

Integration is de�ned such that∫
dθα θβ = δαβ ,

∫
dθ̄α̇ θ̄β̇ = −δα̇

β̇
,∫

d2θ θ2 = 1,∫
d2θ̄ θ̄2 = 1,

(C.84)

which is consistent with having d2θ = −1
4 dθα dθβ εαβ . This we can check, but �rst we

need the following result ∫
dθα θβθγ = −2δα[βθγ]. (C.85)

Then we can go ahead and check the consistency of our choice∫
d2θ θ2 = −1

4
εαβ

∫
dθα dθβ θγθδε

γδ =
1

2
εαβε

γδ

∫
dθα δβ[γθδ] =

1

2
εαβε

γδδβ[γδ
α
δ] =

1

2
εαβε

βα = 1.

(C.86)
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Observe that integration acts just like di�erentiation for Grassmann coordinates. Therefore
we can instead think of it as such and explicitly write∫

dθα ≡ ∂

∂θα
= − Dα

∣∣∣∣
0

,∫
dθ̄α̇ ≡ − ∂

∂θ̄α̇
= + D̄α̇

∣∣∣∣
0

,∫
d2θ = −1

4
D2

∣∣∣∣
0

,∫
d2θ̄ = −1

4
D̄2

∣∣∣∣
0

.

(C.87)

Now we can write an action as

S ∼
∫

d4x d2θ d2θ̄Φ∗Φ, (C.88)

where DαΦ∗ = 0, then we start integrating. In the next calculation everything following
the �rst equality is evaluated at θ = θ̄ = 0 but it is not written out explicitly to reduce
clutter. ∫

d2θ d2θ̄Φ∗Φ =
1

16
D2D̄2Φ∗Φ =

1

16
εαβε

α̇β̇DαDβD̄α̇ D̄β̇Φ∗Φ︸ ︷︷ ︸
(D̄β̇Φ∗)Φ + 0

=
1

16
εαβε

α̇β̇DαDβ
(
D̄α̇D̄β̇Φ∗

)
Φ.

(C.89)

We can look at just the last part

DαDβ
(
D̄α̇D̄β̇Φ∗

)
Φ = Dα

(
DβD̄α̇D̄β̇Φ∗

)
︸ ︷︷ ︸[
Dβ, D̄α̇D̄β̇

]
Φ∗

Φ +Dα
(
D̄α̇D̄β̇Φ∗

)
DβΦ

= −4iDα
(
εβγσaγ[α̇D̄β̇]∂aΦ

∗Φ
)

+
(
DαD̄α̇D̄β̇Φ∗

)
DβΦ +

(
D̄α̇D̄β̇Φ∗

)
DαDβΦ

= −4i
(
Dαεβγσaγ[α̇D̄β̇]∂aΦ

∗
)

Φ− 8iε[α|γ|σaγ[α̇D̄β̇]∂aΦ
∗
(
Dβ]Φ

)
+
(
D̄α̇D̄β̇Φ∗

)
DαDβΦ

= −8εβγεαδσaγ[α̇σ
b
|δ|β̇]

(∂b∂aΦ
∗)Φ− 8iεαγσaγ[α̇∂|a|ψ̄β̇]ψ

β + 4εα̇β̇ε
αβF ∗F.

(C.90)
Going back to equation (C.89) we �nd

1

16
εαβε

α̇β̇DαDβ
(
D̄α̇D̄β̇Φ∗

)
Φ =

1

16

(
−8σaαα̇σ̄

bα̇α∂b∂aΦ
∗Φ− 8iψσa∂aψ̄ + 16F ∗F

)
=

1

16

(
16ηab∂b∂aΦ

∗Φ + 8i∂aψ̄σ̄
aψ + 16|F |2

)
= (�Φ∗)Φ +

i

2
∂aψ̄σ̄

aψ + |F |2 = −∂aφ∗∂aφ+
i

2
∂aψ̄σ̄

aψ + |F |2.
(C.91)

and so we have found our kinetic Lagrangian

Lkin = −∂aφ∗∂aφ+
i

2
∂aψ̄σ̄

aψ + |F |2. (C.92)

Now we can start adding interactions. It is useful to employ a dimensional counting
scheme. The super�eld Φ is a scalar �eld, as is evident from the �rst term in the expansion,
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and therefore it has mass dimension 1. The second term is θψ where ψα(x) is a spinor
which has mass dimension 3/2. To match the �rst term θα must have mass dimension
−1/2 and because

∫
d2θ θ2 is dimensionless the consistent thing to assign d2θ is dimension

1. It turns out that the unique non-zero combination which gives a dimensionless action
using

∫
d2θ d2θ̄ is Φ∗Φ, the kinetic term. However we can still construct actions using∫

d4x
(
d2θ + d2θ̄

)
with dimension −3. We write the interaction Lagrangian as

L =

∫
d2θ

(
λΦ +

1

2
mΦ2 +

1

3
gΦ3

)
+ c.c. (C.93)

Here λ, m and g are constants (dimension 2, 1 and 0 respectively). Then we start inte-
grating (note that the evaluated at θ = θ̄ = 0 notation is suppressed).

Lλ =

∫
d2θ λΦ + c.c. = −1

4
D2Φ + c.c. = λF + λ∗F ∗,

Lm =
1

2
m

∫
d2θ λΦ2 + c.c. = −1

4
m(DαΦ)(DαΦ)− 1

4
mΦD2Φ + c.c.

= −1

4
m(ψαψα − 4φF ) + c.c. = −m

4
ψ2 − m∗

4
ψ̄2 +mφF +m∗φ∗F ∗,

Lg = − g

12
D2Φ3 + c.c. = − g

12
Dα
(
3Φ2DαΦ

)
+ c.c. = −g

4

(
(DαΦ2)DαΦ + Φ2D2Φ

)
+ c.c.

= −g
4

(
2Φ(DαΦ)DαΦ + Φ2D2Φ

)
+ c.c. = −g

2
φψ2 + gφ2F − g∗

2
φ∗ψ̄2 + g∗(φ∗)2F ∗.

(C.94)
We see that there are no terms in the Lagrangian which has derivatives acting on the
�eld F . The �eld has no dynamics, its sole purpose is to make sure that the super�eld
Φ transforms properly under SUSY (in other words that we get a super�eld back after a
transformation). Thus, we can use the equation of motion for F (and analogously for F ∗),

F + λ∗ +m∗φ∗ + g∗(φ∗)2 = 0 (C.95)

to eliminate it from the Lagrangian. This would give us the on-shell Lagrangian

L(on−shell) =− λ
(
m∗φ∗ + g∗(φ∗)2

)
− m

4
ψ2 −mφ

(
λ∗ +m∗φ∗ + g∗(φ∗)2

)
− g

2
φψ2 − gφ2

(
m∗φ∗ + g∗(φ∗)2

)
+ c.c.

(C.96)

The terms linear in F are a sign of instability because a non-zero F will minimise the
potential. If F picks up a VEV 〈F 〉 the transformation of ψα becomes

δψα = 2εα 〈F 〉+ 2εαF + 2iσa
αβ̇
ε̄β̇∂aφ. (C.97)

We expect the ground state to have F (x) = ψα(x) = φ(x) = 0 but the supersymmetry
transformation takes ψα → 2εα 〈F 〉 which is non-zero. This means that our ground state
solution has spontaneously broken supersymmetry.

C.6 Di�erential forms in superspace

We have seen that supersymmetry transformations are equivalent to coordinate transfor-
mations in superspace. This means that, in order to be able to formulate a supersymmetric
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theory of gravity we would like to express these transformations in a manifestly covariant
way. This is done by introducing a framework for di�erential forms in superspace.

We can de�ne a new set of coordinates ZM ≡ (xm, θµ) in superspace, where M is a
super-index, m ordinary curved bosonic indices and µ fermionic Grassmann indices. We
will use M,N,P, . . . for curved indices and A,B,C, . . . for �at, where, e.g., A = (a, α).

The geometrical interpretation of superspace comes from studying the covariant deriva-
tives, as is done in both Maxwell and Yang-Mills theory, where the �eld strength ten-
sors are in both cases de�ned by [Dµ, Dν ]φ = iFµνφ, and in ordinary gravity where
[Dµ, Dν ]V σ ∼ R σ

µν ρV
ρ for the Riemann tensor, or if there is torsion (i.e. Γρµν 6= Γρνµ)

we have the Ricci identity

[Dµ, Dν ]V ρ = −R ρ
µν σV

σ − T σ
µν DσV

ρ. (C.98)

Earlier we also saw that in the supersymmetric case we have (in four dimensions)
{Da, D̄ȧ} = −2iσµaȧ∂µ. All these identities can be derived in superspace.

A simple superspace to use is in ten dimensions. We then have

ZM = (xm, θµ), (C.99)

where xm are 10 real bosonic coordinates and θµ are 16 real Grassmann coordinates (which
will become Majorana spinors when we express them in �at indices). There are two types
of derivatives

∂m ≡
∂

∂xm
, ∂µ ≡

∂

∂θµ
. (C.100)

The introduction of supervielbeins gives us a basis in the tangent plane as

E M
A (Z)∂M ≡ EA(Z), (C.101)

where Ea is a Lorentz vector and Eα a spinor [54]. Note that the ordering is important in
this expression.

In cotangent space we instead have the one-forms

dZM = (dxm, dθµ), (C.102)

and in �at coordinates [54]

EA(Z) ≡ dZME A
M (Z), EA = ( Ea︸︷︷︸

bos.

, Eα︸︷︷︸
ferm.

), (C.103)

where

E A
M (Z) =

(
E a
m E α

m

E a
µ E α

µ

)
. (C.104)

Here we see that the diagonal blocks are bosonic and the o�-diagonal ones fermionic.
Note that we do not have a super-Lorentz group, i.e., the Lorentz transformations in

the tangent plane are only bosonic [54]

(Ea, Eα)
L.T.−→ (EbL a

b , E
βL α

β ). (C.105)

A super-Lorentz group would have mixed the di�erent parts. This means that the super-
aspects of superspace only sits in the coordinate transformations.

Together with the frame �elds EA(Z) we also need a spin connection, which is a one-
form. We write

ω B
A = (ω b

a , ω
β

α ) = (ω b
a , ω

ab 1

4
(Γab)

β
α ), (C.106)
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which means that we only have one super�eld, ω b
Ma = (ω b

ma , ω
b

µa ).
The exterior product in superspace is de�ned by

dzM ∧ dzN = −(−)NMdzN ∧ dzM , (C.107)

where (−)m = (−1)0 and (−)µ = (−1)1 [54]. The wedge-sign will sometimes be dropped,
but all products of forms are done with this exterior product. This means that we can
introduce a general p-form as

(p)

A ≡ 1

p!
dzM1 ∧ dzM2 ∧ · · · ∧ dzMpAMp...M1 , (C.108)

where the ordering has been chosen so as to minimise the number of signs entering at later
stages. For example, we write a one-form as

A = dzMAM (z) = dxmAm(z) + dθµAµ(z). (C.109)

An exterior derivative is introduced by

d ≡ dzM∂M = dxm∂m + dθµ∂µ. (C.110)

This is de�ned to act through right action, which means that

d(
(p)

A ∧
(q)

B ) =
(p)

A ∧ d
(q)

B + (−1)qd
(p)

A ∧
(q)

B. (C.111)

It has all the usual properties of an exterior derivative, i.e. d(A+ B) = dA+ dB, dd = 0
and it maps a p-form to a (p+ 1)-form by

d
(p)

A =
1

p!
dzM1 ∧ · · · ∧ dzMpdAMp...M1 , (C.112)

since d(dz) = 0.
If we write all our equations in terms of di�erential forms and exterior derivatives they

will be manifestly covariant under general coordinate transformations. However, gauge
theories also transform covariantly under a local structure group. In Yang-Mills theory
this is a compact Lie group and in gravity theories this is the Lorentz group [54]. We
consider di�erential forms which span a representation (X) of this structure group

Aa → A′a = AbX a
b (z). (C.113)

This implies that the exterior derivative does not map a tensor to a tensor (this was why
we needed to introduce a connection earlier).

If we instead introduce a covariant derivative as

DAa = dAa +Abω a
b , (C.114)

or

D
(p)

A = dzM1 . . . dzMpdzN
∂

∂zN
AMp...M1(z) + dzM1 . . . dzMpdzNω r

N AMp...M1(z)iT r,

(C.115)
this maps a p-form into a (p+ 1)-form and a tensor into a tensor.
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We can construct one tensor from the exterior derivative and the connection, this is
the curvature (or �eld strength) tensor

R = dω + ω2. (C.116)

The general form for this is a Lie algebra valued two-form

R =
1

2
dzMdzNRMN =

1

2
dzMdzNR r

MN iT r, (C.117)

while in gravity one usually omit the iT r, and the algebra is then the Lorentz algebra.
For a general p-form super vector �eld, V A(z) we have

DV A = dV A + V Bω A
B , (C.118)

and the Ricci identity is found by applying the covariant derivative twice

DDV A = D(dV A + V Bω A
B ) = d2V A + d(V Bω A

B ) + (dV B)ω A
B + V Bω C

B ω A
C

= V Bdω A
B − dV Bω A

B + dV Bω A
B + V Bω C

B ω A
C

= V B(dω A
B + ω C

B ω A
C ) = V BR A

B .

(C.119)

Similarly, for a p-form VA(z)

DDVA =D
(
dVA − ω B

A VB(−1)p
)

=d2VA − d
(
ω B
A VB(−1)p

)
− (−1)p+1ω B

A dVB + ω C
A ω B

C VB(−1)p+1(−1)p

=− (−1)pω B
A dVB − (−1)p(−1)pdω B

A VB − (−1)p+1ω B
A dVB − ω C

A ω B
C VB

=− (dω B
A + ω C

A ω B
C )VB = −R B

A VB.
(C.120)

If we write this in �at indices we �nd

DDV A = D(EBDBV A) = EB(DDBV A) + (DEB︸ ︷︷ ︸
=TB

)DBV A

= EBECDCDBV A + TBDBV A

=⇒ EBEC DCDB︸ ︷︷ ︸
1
2

[DC ,DB}

V A = V DR A
D − TDDDV A = V D 1

2
EBECR A

CBD − 1

2
EBECT D

CB DDV A

=⇒ [DC ,DB}V A = (−)D(C+B)V DR A
CBD − T D

CB DDV A,
(C.121)

where we have introduced the torsion one-form as TA = dEA + EBω A
B , and the graded

commutator, [·, ·}, which is an anti-commutator if both arguments are fermionic, otherwise
a commutator.c

In the same way one can show [54]

[DC ,DB}VA = −R D
CBA VD − T D

CB DDVA. (C.122)

Now, higher derivatives will not give us new tensors or forms, since d2 = 0, but instead
we will get identities, more precisely the Bianchi identities. There are two types of Bianchi
identities. The �rst type is

DR = 0, (C.123)

cNote that if we had ordinary left action for the derivative we would have TA = dEA +EBω A
B , which

implies T A
MN = 2(∂[ME A

N ] +ω A
[N |B|E

B
M ] ). This has an extra relative sign compared to our expression.

The sign is eliminated if we let ω → −ω in superspace.
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which is easily seen from

DR = dR+Rω − ωR = d(dω + ω2) + (dω + ω2)ω − ω(dω + ω2)

= d2ω + ωdω − (dω)ω + (dω)ω − ωdω = 0.
(C.124)

The second type is of the form

DTA = EBR A
B , (C.125)

which follow from

DTA = dTA + TBω A
B = d(dEA + EBω A

B ) + (dEB + ECω B
C )ω A

B

= EBdω A
B + ECω B

C ω A
B = EBR A

B .
(C.126)

These will be used in the subsequent sections when we do super-Yang-Mills and super-
gravity.

C.7 Supersymmetric Yang-Mills in D=10

In this section we will study the theory of supersymmetric Yang-Mills in ten dimensions
with the goal of �nding the equations of motions and the supertransformations of the
�elds present in the theory. This is done as a preparation for studying supergravity in 11
dimensions, which follow roughly the same procedure, however, more complex.

We choose to do it in ten dimensions since this simpli�es a great deal of things. Al-
though one may feel that it is strange to work in ten or eleven dimensions it is quickly
found to be much more comfortable than the awkward four dimensions. Ten dimensional
super-Yang-Mills is also highly connected to superstring theories. Superstrings are in turn
connected to the theory of supergravity in eleven dimensions discussed in the next section.

In ten-dimensional super-Yang-Mills theory we have the superspace coordinates

zM = (xm, θµ), (C.127)

where m = 0, . . . , 9 are the ordinary, curved, spacetime coordinates and µ = 1, . . . , 16 are
the fermionic coordinates. The Yang-Mills �eld is now a super-1-form

A = dxmAm(x, θ) + dθµAµ(x, θ), (C.128)

but this implies that, using dimensions appropriate for four dimensions, Aµ has dimension
L−1/2. This is highly unphysical, and therefore we must hope for this �eld to vanish.

In �at coordinates this turns into

A = EAAA = EaAa + EαAα, (C.129)

where Aα is a 16-dimensional Majorana-Weyl spinor. We saw earlier that the Bianchi
identities are of the form DF = 0, so if we start from this we can write

DF = 0 =⇒ 1

2
D(EBEAFAB) = 0

=⇒ 1

2
EBEA D︸︷︷︸

ECDC

FAB +
1

2
EB(DEA︸ ︷︷ ︸

TA

)FAB −
1

2
(DEB︸ ︷︷ ︸
TB

)EAFAB = 0

=⇒ EC ∧ EB ∧ EADAFBC + EC ∧ EB ∧ EAT D
AB FDC + EB ∧ EA ∧ ECT D

AB FDC

= EC ∧ EB ∧ EA
(
DAFBC + T D

AB + (−1)BC(−1)ACT D
AB FDC

)
= 0

=⇒ 1

2
EC ∧ EB ∧ EA

(
D[AFBC} + T D

[AB F|D|C}

)
= 0.

(C.130)
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So the Bianchi identities for super-Yang-Mills read

D[AFBC} + T D
[AB F|D|C} = 0. (C.131)

C.7.1 Solving the Bianchi Identities

The title of this section might seem a bit strange, how can we solve an identity? It is after
all an identity so no new information should be available. However, we will �nd that some
constraints can be put on the �elds in the theory making it so that the Bianchi identities
no longer are identities. Instead they become equations that we can solve to �nd the actual
degrees of freedom in the new (constrained) theory.

We start by splitting the Bianchi identities into four di�erent cases (for the di�erent
combinations of the types of indices, α, β, γ or a, b, c). We also note that we only have
torsion in the fermionic indices, i.e. only T a

αβ is non-zero, and actually it can be put equal
to 2i(Γa)αβ . This is easily seen from Eq.(C.121) in the last section. This gives us

D[aFbc] = 0,

D[aFbγ} = 2D[aFb]γ +DγFab = 0,

D[aFβγ} + T D
[aβ F|D|γ} = DaFβγ + 2D(βFγ)a + 2i(Γb)βγFba = 0,

D(αFβγ) + T D
(αβ F|D|γ) = D(αFβγ) + 2i(Γa)(αβF|a|γ) = 0.

(C.132)

Now, since the components of FAB do not mix under Lorentz transformations (this is due
to the fact that the �at indices are not superindices) Fab, Fαβ and Faβ are independent
Lorentz tensors. This means that we can constrain one of them without losing any of
the Lorentz symmetry. So for instance we could put Fαβ = 0 without breaking Lorentz
invariance. This will however heavily a�ect the relations above and this will mean that
the Bianchi identities no longer are identities, and we can instead solve them to �nd new
information.

Plugging this constraint into the above equations we now have

D[aFbc] = 0,

2D[aFb]γ +DγFab = 0,

2D(βFγ)a + 2i(Γb)βγFba = 0,

(Γa)(αβF|a|γ) = 0.

(C.133)

The last equation could imply that Faβ = 0 but plugging this into the second or third
equation would then mean that the entire �eld FAB is either a constant or equal to zero,
and this would in turn mean that the whole theory is meaningless (trivial). So we hope
that this is not the case.

We start by trying to solve the last equation, and we do this by decomposing Faβ into
irreducible representations of SO(1, 9) by writing

Faβ = F̃aβ + (Γa)βγχ
γ , (C.134)

where F̃aβ is such that (Γa)αγF̃aγ = 0. Putting this into the last equation one �nds

(Γa)(αβF̃|a|γ) + (Γa)(αβ(Γa)γ)δχ
δ = 0. (C.135)

Now we are lucky, because there is a Fierz identity in ten dimensions that tells us

(Γa)(αβ(Γa)γ)δ = 0. (C.136)
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The proof is easily done by checking the expansion coe�cents for the symmetric matrices
in SO(1, 9). This means that the χδ term drops out without giving us any information.
On the other hand, we can multiply Eq.(C.135) with ΓaΓ(5) to �nd F̃aβ = 0. This implies
that we want χα to be non-zero, which in turn implies that Faβ = (Γa)βγχ

γ . Using this in
the other equations above, i.e., the second and third of Eq.(C.133), we get

DγFab + 2D[a(Γb])γδχ
δ = 0,

2D(β(Γa)γ)δχ
δ + 2i(Γb)βγFba = 0.

(C.137)

To explore this further we expand Dαχβ in gamma matrices. We only need to expand
in the ones with one dotted and one regular index in Table C.3, i.e.,

Dαχβ = δ β
α φ+ (Γab) β

α φab + (Γabcd) β
α φabcd. (C.138)

If we contract the second equation in Eq.(C.137) with (Γc)
βγ we �nd, on the left hand side

2(Γc)
βγD(β(Γa)γ)δχ

δ = 2(ΓcΓa)
β
δDβχ

δ = 2(Γca)
β
δDβχ

δ + 2ηcaDβχβ, (C.139)

with one symmetric and one anti-symmetric part. On the right hand side we get

2i(Γc)
βγ(Γb)βγFab = 2iTr

[
ΓcΓ

b
]
Fab = 32iFac. (C.140)

Now, since Fac is anti-symmetric, this tells us that

i) Dβχβ = 0,

ii) Fab =
i

16
(Γab)

α
βDαχβ.

(C.141)

We see that i) implies φ = 0 in the expansion of Dαχβ .
It is also necessary to contract with (Γa1a2...a5)βγ to see if we can say anything about

the other terms in the expansion. The right hand side will be identically zero since we will
have a trace over (Γ(5)Γ

b). This means that we have

0 = 2(Γa1...a5Γa)
β
δDβχ

δ = 2(Γa1...a5)βγ(Γa)γδ

[
(Γb1b2) δ

β φb1b2 + (Γc1...c4) δ
β φc1...c4

]
= 2Tr[Γb1b2ΓaΓ(5)]︸ ︷︷ ︸

=0

φb1b2 + 2Tr(Γc1...c4ΓaΓa1...a5)φc1...c4

= 2Tr[ηabΓ
c1...c4ΓbΓa1...a5 ]φc1...c4

= 2 · 16
(

5ηabδ
bc1c2c3c4
[a1a2a3a4a5]

)
φc1...c4 + ηabε

c1...c4b
a1...a5φc1...c4TrΓ

11

= 2 · 16 · 5ηa[a1φa2...a5] + ηabε
c1...c4b

a1...a5φc1...c4TrΓ
11.

(C.142)

Then setting a = a5 we see that φc1...c4 = 0, giving us Dαχβ = (Γb1b2) β
α φb1b2 .

Putting this into ii) in Eq.(C.141) we get

Fab =
i

16
(Γab)

α
β(Γcd) β

α φcd = − i

16
Tr(ΓabΓ

cd)︸ ︷︷ ︸
=−2·16δcdab

φcd = 2iδcdabφcd = 2iφab. (C.143)

This implies that φab = − i
2Fab, so that

Dαχβ = − i
2

(Γab) β
α Fab. (C.144)

111



112 APPENDIX C. AN INTRODUCTION TO SUPERSYMMETRY

Looking back at Eq.(C.137) we can now see that there are only two ordinary spacetime
�elds present in the theory, namely Fab(x) and χα(x). The �rst equation tells us that the
θ-expansion of Fab will have χ

α at �rst order in θ and the second equation tells us that it
will come back to Fab at the next order.

However, when we did Wess-Zumino earlier we saw that we needed auxiliary �elds to
make it supersymmetric o�-shell, but they are not present here. This means that we should
have some equations of motion hidden in Eq.(C.137).

If we write down Dirac's equation for χα

(/Dχ)α = (Γa)αβDaχβ = − 1

2i
{Dα,Dβ}χβ =

i

2
(DαDβ +DβDα)χβ

=
i

2
Dβ(− i

2
(Γab) β

α Fab) =
1

4
(Γab) β

α DβFab.
(C.145)

Using the second equation in Eq.(C.133) we can write this as

−1

2
(Γab) β

α D[aFb]β = −1

2
(Γab) β

α (DaFbβ −DbFaβ) = −1

2
(Γab) β

α (Da(Γb)βγχγ −Db(Γa)βγχγ)

= −1

2

(
Da(ΓabΓb)αγ)−Db(ΓabΓa)αγ

)
χγ = −1

2
(−18Da(Γa)αγχγ)

= 9(/Dχ)α.
(C.146)

But (/Dχ)α = 9(/Dχ)α must imply that (/Dχ)α = 0 which is just Dirac's equation in absence
of any sources.

If we instead take the �rst equation in Eq.(C.137) and contract it with Dβ(Γa)βγ we
get, for the �rst term

Dβ(Γa)βγDγFab =
1

2
(Γa)βγ{Dβ,Dγ}Fab = −i(Γa)βγ(Γc)βγDcFab = −16iDaFab, (C.147)

where we have used that (Γa)αβ is symmetric, and that {Dβ,Dγ} = −2i(Γc)βγDc. For the
next term we instead �nd

2Dβ(Γa)βγ(Γ[b)|γδ|Da]χ
δ = Dβ

(
(ΓaΓa)

β
δDbχ

δ − (ΓaΓb)
β
δDaχ

δ
)

= Dβ

10Dbχβ − 2Dbχβ + (Γb)
βγ (Γa)γδDaχδ︸ ︷︷ ︸

=( /Dχ)γ=0


= 8DβDbχβ = 8

(
[Dβ,Db] +DbDβ

)
χβ︸ ︷︷ ︸

=0

= 8
(
−(Γb)αβ{χα, χβ}

)
.

(C.148)

Combining the two terms we get the Yang-Mills equations of motion with a source term

DaFab = − i
2

(Γb)αβ{χα, χβ}. (C.149)

O�-shell Yang-Mills with pure spinors

The constraint we put on FAB above gave us a set of equations only valid on-shell, i.e. we
did not �nd any auxiliary �elds. To �nd the o�-shell behaviour of the theory we should
instead try to �nd some lesser constraints to put on the component �elds. This turns out
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to be a rather complicated subject that demands the introduction of so called pure spinors.
We will not get into this here, but it has been proposed that instead of putting Fαβ = 0
we can set

Fαβ = (Γa)αβFa + (Γa1a2...a5)αβFa1a2...a5 , (C.150)

which may lead us to an o�-shell super-Yang-Mills theory [57].

C.7.2 Supertransformations and the Lagrangian

Now that we have investigated the Bianchi identities we want to �nd the supertransforma-
tions of the theory and see what kind of a supersymmetric Lagrangian we can build using
our �elds.

The supertransformations are δε χ
α
∣∣
θ=0
≡ −iε̄Q χα

∣∣
θ=0

, and at θ = 0 we can change
Q→ D, but we have to be careful, because D also contains gauge �elds. At θ = 0 we have
the transformation

δε χ
α

∣∣∣∣
θ=0

= −iε̄βDβ χα
∣∣∣∣
θ=0

+ iε̄(χαA+Aχα). (C.151)

The gauge �elds appearing here are something we want to get rid of. This means that we
should probably do a gauge transformation. Since we normally have

δΛχ
α = χαΛ− Λχα, (C.152)

we can see that choosing Λ = iε̄βAβ means that we can de�ne a supersymmetry transfor-
mation as

δs ≡ δε + δΛ =⇒ δsχ
α = −iε̄βDβχα =

1

2
ε̄β(Γab) α

β Fab. (C.153)

The transformation of Fab is instead given by

δsFab = −iε̄QFab + FabΛ− ΛFab = −iε̄αDαFab

= −iε̄α
(

2(Γ[a)|αβ|Db]χβ
)

= −2iε̄α(Γ[a)|αβ|Db]χβ.
(C.154)

Now, what Lagrangian can we build from our two available �elds that is invariant under
these SUSY-transformations? We have one �eld that satis�es the Dirac equation and one
that satis�es the Yang-Mills equation, so we should have two terms giving these equations.
Since both �elds are in the adjoint representation we should also have a trace over the
generators. This gives us the Lagrangian

L = −1

2
Tr
[
F abFab

]
± iTr

[
χα(/Dχ)α

]
. (C.155)

The sign of the Dirac term must be checked, because we have created the �eld from a
super�eld without knowing what it was going to turn out to be. The sign should be such
that the Yang-Mills equations of motion with a source is correct. To check this we vary
our Lagrangian with respect to the components Ara. We have

δL
δAra

= Tr
[
−δAF abFab ± iχα(Γa)αβi{δAa, χβ}

]
= Tr

[(
2DaFab ∓ (Γb){χα, χβ}

)
δAb

]
,

(C.156)
and we see that the minus sign on the Dirac term gives us the same sign as before for the
equations of motion. This means that our Lagrangian is

L = −Tr
[

1

2
F abFab + iχα(/Dχ)α

]
. (C.157)
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To see if this Lagrangian is invariant under the SUSY-transformation we simply vary it

δsL = −Tr
[
F abδsFab + iδsχ

α(/Dχ)α + iχα(/Dδsχ)α

]
. (C.158)

The trace makes it possible for us to do partial integration on one of the Dirac terms, and
when we move them around the minus sign from the partial integration will be cancelled
by the anti-commuting properties of χα, so we will get two equal terms that add up. Using
this and plugging in the supersymmetry transformations of the �elds we get

δsL = −Tr
[
−2iF abε̄α(Γa)αβDbχβ + 2ε̄βFab(Γ

ab) α
β (Γc)αγDcχγ

]
= Tr

[
2iF abε̄α(Γa)αβDbχβ − iε̄αFab(ΓabΓc)αβDcχβ

]
= Tr

[
2iF abε̄α(Γa)αβDbχβ − 2iF abε̄α(Γa)αβDbχβ

]
= 0.

(C.159)

So our Lagrangian is invariant under the SUSY-transformations. We will leave the super-
Yang-Mills theory here and move on to supergravitation in 11 dimensions. This will in
great deal follow the same procedure as in this section, but with an increased level of
complexity.

C.8 Supergravity in D=11

We have now reached the �nal supersymmetric theory to be discussed in this appendix,
eleven-dimensional supergravity. The outline of this section will in large part follow the
procedure of super-Yang-Mills. Starting with �nding the Bianchi identities, then impose
some constraints to be able to solve them and �nd the equations of motion. We will then
use these to construct a Lagrangian and �nd supersymmetry transformations (from the
supertranslations) that leave this Lagrangian invariant.

Since the procedure largely follows the last section we omit many of the calculations,
and instead simply mention the important steps.

Note that supergravity is synonymous with local supersymmetry. In fact, one cannot
have a local supersymmetry without gravity, since the superalgebra will contain local
translation parameters, i.e. di�eomorphisms, giving us general relativity [21].

There are two interesting coincidences when we consider eleven-dimensional theories.
Eleven dimensions is the highest dimension allowing supersymmetry, if we do not consider
higher spin theories, when compactifying to four dimensions [58]. Seven extra dimensions
is also the lowest number that can contain the SU(3)× SU(2)× U(1) gauge group of the
Standard model [58]. This seems to point at some deep relevance of eleven-dimensional
theories. In fact, our best known candidate for a theory of everything lives in exactly eleven
dimensions. This is M-theory, and its low energy limit is eleven-dimensional supergravity.

In eleven-dimensional supergravity we only have three spacetime �elds present. These
are the vielbein (or graviton), e a

m , the spinor (gravitino), ψm, and a three index �eld Bmnp
(similar to a Maxwell �eld) [6]. The corresponding �eld strengths are the curvature, R,
the spinor �eld strength, Smn ∼ ∂[aψb], and H = dB.

The curvature is a Lie algebra valued two form which we de�ne in superspace using
the connection as [54]

R B
A =

1

2
ECEDR B

DCA = dzMdzN∂Nω
B

MA + dzMω C
MA dzNω B

NC . (C.160)
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C.8.1 Bianchi identities

The three �elds of d = 11 supergravity obey the Bianchi identities

DTA = EBR A
B ,

DRAB = 0,

dH = 0.

(C.161)

The �rst two were derived in Section C.6, and the last one follow from the fact that
H ≡ dB, and d2B = 0.

There is a theorem by Dragon which states that, for d > 3 (d = 3 is di�erent due to the
so called Dragon window [59]), the curvature automatically solves the second equation if
the �rst equation is satis�ed [60]. So we need not analyse the second equation any further.

From the �rst equation we �nd

DTD = ECR D
C =⇒ D[AT

D
BC} + T E

[AB T D
|E|C} = R D

[ABC} , (C.162)

while the last equation tells us

0 = dH = d

(
1

4!
EDECEBEAHABCD

)
=

1

4!
ED . . . EADHABCD +

1

4!
EDECEB DEG︸ ︷︷ ︸

=TG

HGBCD + 3 more terms

=
1

4!
EDECEBEAEFD[FHABCD} +

1

4!

1

2
EDECEBEAEF (−1)AFT G

[AF H|G|BCD} + 3 more terms

=⇒ D[AHBCDE} + 2T F
[AB H|F |CDE} = 0.

(C.163)
So the Bianchi identities are now

D[AT
D

BC} + T E
[AB T D

|E|C} = R D
[ABC} , (C.164)

D[AHBCDE} + 2T F
[AB H|F |CDE} = 0. (C.165)

Next, we will investigate what constraints one can impose on the �elds of the theory.

C.8.2 The constraints

We start by studying the dimensions of the di�erent parts of T C
AB and HABCD. The rules

for counting the dimensions are that a spinor index sitting downstairs will contribute +1/2
(in dimensions of inverse length), while if it instead sits upstairs it will give −1/2. The
bosonic indices gives ±1 respectively. H(4) has dimension −3 and T dimension 0. This
gives us

dimension (L−1)

T γ
αβ 1/2

T c
αβ 0

T γ
αb 1

T c
αb 1/2

T γ
ab 3/2

T c
ab 1

dimension (L−1)

Hαβγδ −1

Haβγδ −1/2

Habγδ 0

Habcδ 1/2

Habcd 1

The available �eld strengths in the theory have dimensions
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dim (L−1)

Rabcd 2

Sab 3/2

Habcd 1

One can also have something with dimension zero, which can be put proportional to the
gamma matrices. This means that we put all components of T andH with other dimensions
to zero. The only surviving parts of T are T γ

αb , T γ
ab , T c

ab and T c
αβ which, because it's

dimension is zero, we normalise as 2i(Γc)αβ . Since the spin connection is undetermined up
to a tensor we can also make a choice to put T c

ab = 0.
For H we only have two surviving parts, namely Habcd and Habγδ, which as with the

corresponding T -part is put equal to 2i(Γab)γδ.
Plugging these constraints into the Bianchi identities of Eq.(C.164) we will get eight

equations from the �rst identity and seven from the last.
For example we can start with the (βγδ, a) equation. This gives us

D(βT
a

γδ) + T e
(βγ T a

|e|δ) + T ε
(βγ T a

|ε|δ) = R a
(βγδ) . (C.166)

Using that T γ
αβ = T c

aβ = 0, and DΓa = 0, we see that the left hand side is zero. The right
hand side has R a

(βγδ) , but this is identically zero since the two last indices on the Riemann
tensor are Lorentz indices, which do not mix fermionic and bosonic. So this equation only
tells us that 0 = 0. Doing similar manipulations on the other equations we end up with

(βγδ, a) 0 = 0

(βγδ, α) 2i(Γe)(βγT
α

|e|δ) = R α
(βγδ)

(βγd, a) 4iT ε
d(β (Γa)|ε|γ) = R a

βγd

(bγδ, α) D(γT
α

δ)b + i(Γe)γδT
α

eb = R α
b(γδ)

(βcd, a) i(Γa)αβT
α

cd = R a
β[cd]

(bcδ, α) DδT α
bc + 2D[bT

α
c]δ + 2T ε

δ[b T
α

|ε|c]
(bcd, a) 0 = R α

[bcd]

(bcd, α) D[bT
α

cd] + T ε
[bc T

α
|ε|d] = 0

(αβγδε) 0 = 0

(aβγδε) (Γa)(αβ(Γab)γδ) = 0

(abγδε) 0 = 0

(aβcδε) 0 = 0

(abcδε) (Γf )δεHfabc = 6T η
(ε[a (Γbc])|η|δ)

(abcdε) DεHabcd + 12iT η
[ab (Γbc])ηε = 0

(abcde) D[aHbcde] = 0

In 11 dimensions (Γa)(αβ(Γab)γδ) is identically zero. This is shown by contracting with

the symmetric gamma matrices. In fact, it su�ces to contract with Γ(1), Γ(2) and Γ(5) since
the contribution from the other symmetric matrices are given by the mirroring in Γ(11).

From dimensional and index structure arguments we can see that we can put

T γ
aβ = xHabcd(Γ

bcd) γ
β + yHa1a2a3a4(Γ a1a2a3a4

a ), (C.167)

with x and y being some constants. These can be solved for using the (βγδ, α) and
(βγd, a) equations of the left table and the (abcδε) equation of the right table (these are
the equations of dimension 1). One needs to follow the example of the Yang-Mills theory
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and contract with all symmetric gamma matrices. After a bit of manipulation one �nds
x = − 1

36 and y = − 1
288 .

The last torsion component, T γ
ab can be decomposed into irreducible parts (as we did

for one of the components of F in Yang-Mills)

T γ
ab = G γ

ab + 2G β
[a (Γb])

γ
β +Gβ(Γ) γ

β , (C.168)

with
G γ
ab (Γb) α

γ = G β
a (Γa) α

β = 0. (C.169)

This means that we have

TabΓ
b = GaΓbΓ

b −GbΓaΓb +GΓabΓ
b

= 11Ga −Gb(2δba − ΓbΓa) + 10GΓa

= 9Ga + 10GΓa,

(C.170)

TabΓ
ab = −TabΓbΓa = −9GaΓ

a − 10GΓaΓ
a = −110G, (C.171)

and

TabΓ
abc = Tab(Γ

abΓc − 2Γ[aηb]c) = 18Gc − 90GΓc. (C.172)

Using this in the equations of dimension 3/2, and again contracting with the symmetric
gamma matrices, we obtain conditions on G and Ga, namely that they are zero. It is also
seen that G γ

ab drops out. This is good, because G γ
ab is the spin 3/2 analogue of the Weyl

tensor in ordinary general relativity. If this did not drop out of Einstein's equations the
geometry would be �xed.

The constraints on G and Ga means that

TabΓ
a = 0, (C.173)

TabΓ
ab = 0, (C.174)

TabΓ
abc = 0. (C.175)

The last equation is the equation of motion for the spin 3/2 �eld (the gravitino), since the
Lagrangian is ∼ ψaΓ

abc∂bψc. Varying this we �nd ∂bψcΓ
abc = 0, and we can see from the

index structure that T γ
ab ∼ ∂[aψb].

From the equations of dimension 2 we �nd the equations of motion for R and H. These
are Einstein's equations for R,

Rab −
1

2
ηabR =

1

96
ηabH

2 − 1

12
Hac1c2c3H

c1c2c3
b , (C.176)

with H2 = HabcdH
abcd, and for H we get

DdHdabc = − 1

1152
ε

(4)(4̃)
abc H(4)H(4̃). (C.177)

Lastly, the dimension 5/2 equation does not give us any new information, it's simply
the Bianchi identity for the spin 3/2 �eld.

We have now solved the Bianchi identities, and found three equations of motion. Next
we go on to construct supersymmetry transformations of the �elds, and then write down
a Lagrangian that is invariant under these transformations.
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C.8.3 The supersymmetric transformations

In this section we will de�ne supergauge transformations and see how the di�erent �elds
transform under these. These transformations are then combined with Lorentz transforma-
tions in order to construct the sought supersymmetric transformations. This corresponds
to what we did in the Yang-Mills case where we combined the coordinate transformation
from superspace with the gauge transformation of the structure group of Yang-Mills, in
Eq.(C.153).

We use a parameter ξA to characterise an in�nitesimal change in coordinates. The
transformation of a tensor super�eld will then be [54]

δξV
A = −ξM∂MV A + V BL A

B = −ξBE M
B ∂MV

A + V BL A
B , (C.178)

where L A
B is the representation of the Lorentz group that corresponds to the tensor

structure of V . To make this covariant under Lorentz transformations it is necessary to
change the derivative to a covariant derivative,

DMV A = ∂MV
A + (−)MBV Bω A

MB , (C.179)

and we write DBV A = E M
B DMV A. This gives us

δξV
A = −ξBDBV A + V BξCω A

CB + V BL A
B . (C.180)

Since the connection is Lie algebra valued ξCω A
CB acts as a �eld-dependent Lorentz

transformation on V B. This means that one can put L A
B = −ξCω A

CB resulting in the
manifestly covariant (under Lorentz transformations)

δξV
A = −ξCDCV A, (C.181)

for any tensor �eld V A. In particular, since the vielbein generally transforms as

δE A
M = −ξL∂LE A

M − ∂MξLE A
L + E B

M L A
B

= −ξL
(
∂LE

A
M − (−)LM∂ME

A
L

)
− ∂MξA + E B

M L A
B

= −∂MξA − ξL
(
T A
LM − ω A

LM + (−)MLω A
ML

)
+ E B

M L A
B ,

(C.182)

and the connection combines with ∂Mξ
A to form a covariant derivative, the supergauge

transformation of the vielbein will be

δξE
A

M = −DMξA − ξBT A
BM . (C.183)

The connection generally transforms as

δω B
MA = −ξL∂Lω B

MA − ∂MξLω B
LA + ω C

MA L B
C − (−)M(A+C)L C

A ω B
MC − ∂ML B

A ,
(C.184)

which means that the supergauge transformation is

δξω
B

MA = −ξR B
CMA , (C.185)

using the de�nition of R B
MNA in Eq.(C.160).

When we did Yang-Mills we combined the supertransformation with a transformation
from the structure group. We do a similar thing here and write the supersymmetric
transformation of the vielbein as a supergauge transformation combined with an additional
Lorentz transformation

δE A
M = −DMξA − ξBT A

BM + E B
M L A

B . (C.186)
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Using the higher components of ξA, which enter in the derivatives, we can transform
the θ = 0 components of the vielbein, and it's inverse, into the forms

E A
M

∣∣∣
θ=0

=

(
e a
m (x) ψ α

m (x)
0 δ α

µ

)
, E M

A

∣∣∣
θ=0

=

(
e m
a (x) −ψ µ

a (x)
0 δ µ

α

)
. (C.187)

Note that we henceforth drop the θ = 0 and only write E A
M

∣∣∣.
The transformation of the connection can be written in the same way as a combination

of a supergauge transformation and a Lorentz one

δω B
MA = −ξCR B

CMA + ω C
MA L B

C − (−)M(A+C)L C
A ω B

MC − ∂ML B
A . (C.188)

Since the connection is Lie algebra valued we can gauge away ω AB
µ

∣∣∣ which means that

ω B
mA

∣∣∣(z) = ω B
mA (x),

ω B
µA

∣∣∣(z) = 0.
(C.189)

We can put the θ = 0 components of ξα to εα and the zero-components of ξa and LAB
to zero, while choosing higher components to preserve the gauge. This is in line with what
we want to do, since it is the ξα components that parameterise the local supersymmetry
transformations.

This implies that we must have

δE A
µ

∣∣∣ = 0. (C.190)

Using our results from before, regarding which torsion components are non-zero, we can
evaluate this as

δE A
µ

∣∣∣ =
(
−∂µ − ξbω a

µb − ξβT a
βµ + E b

µ L
a
b

) ∣∣∣
= −∂µξa

∣∣∣− εβ2i(Γa)βµ = 0

=⇒ ξa = −2i(Γa)βµε
βθµ.

(C.191)

The transformation of the graviton can be found from

δe a
m = δE a

m

∣∣∣ = −Dmξa
∣∣∣− ξBT a

Bm

∣∣∣+ e B
m L a

B

∣∣∣ = −ξβT a
βm

∣∣∣, (C.192)

where
T a
βm = E C

m T a
βC = E γ

m T a
βγ = 2iψ γ

m (Γ)βγ . (C.193)

This gives us
δe a
m = −2iεβψ γ

m (Γa)βγ . (C.194)

Moving on to the gravitino we have

δψ α
m = δE α

m

∣∣∣ = −Dmξα
∣∣∣− ξβT α

βm

∣∣∣. (C.195)

We use results from before to write

T α
βm = E C

m T α
βC = E c

m T α
βc = e c

m

(
1

36
Hca1a2a3(Γa1a2a3) α

β +
1

288
Ha1...a4(Γ a1...a4

c )

)
.

(C.196)
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So that the transformation of the gravitino is

δψm = −Dmε(x)− εe c
m

(
− 1

36
δ[a4
c Γa1a2a3] +

1

288
Γ a1a2a3a4
c

)
Ha1a2a3a4

= −Dmε(x)− 1

288
εe c
m

(
Γ a1...a4
c + 8Γ[a1a2a3δa4]

c

)
Ha1...a4

≡ −D̃mε(x).

(C.197)

For the three index �eld BMNP the general transformation is given by [54]

δBMNP = −ξL∂LBMNP − 3∂[Mξ
LB|L|NP}

= −ξL
(
∂LBMNP − 3(−)LM∂[MB|L|NP ]

)
− 3(∂[Mξ

L)B|L|NP ].
(C.198)

The last term is pure gauge and the supersymmetric transformation will be

δξBMNP = −ξL
(
∂LBMNP − 3(−)LM∂[MB|L|NP ]

)
. (C.199)

For the physical �eld, Bmnp, this is just

4δBmnp = −εαHαmnp = −εαE D
p E C

n E B
m HαBCD = −3εαE [d

p E c
n E

β]
m Hαβcd

= −6iεαe d
[p e

c
n ψ

β
m] (Γcd)αβ = 6iεψ[mΓnp]

=⇒ δBmnp =
3

2
iεΓ[mnψp].

(C.200)

C.8.4 The Lagrangian

Now, we will rewrite the equations of motions in curved indices, since this is where the
physical �elds are. After doing this we simply write down a Lagrangian for these �elds
that gives the equations of motion and that is invariant under the supersymmetric trans-
formations found in the previous section.

However, when going over to curved indices we will �nd that both the equations of
motion and the transformations will be modi�ed.

The only non-zero components of HABCD are Habcd and Habγδ (as we saw earlier), and
this is of course also true when we go to curved indices. This means that we can write

Habcd = E M
a E N

b E P
c E Q

d HMNPQ = e m
a e n

b e
p
c e

q
d Hmnpq + e m

a e n
b ψ

ρ
c ψ

σ
d Hmnρσ

= e m
a e n

b e
p
c e

q
d

(
Hmnpq + ψ ρ

p ψ
σ
q Hmnρσ

)
= e m

a e n
b e

p
c e

q
d

(
Hmnpq + 2iψ ρ

p ψ
σ
q (Γmn)ρσ

)
.

(C.201)
One can use this to rewrite the equations of motion for H, Eq.(C.177). The left hand side
gives us

DdHdabc = E d
R DR

[
e q
d e

m
a e n

b e
p
c (Hqmnp + 2iψ ρ

n ψ σ
p (Γqm)ρσ)

]
= e d

r e
q
d e

m
a e n

b e
p
c Dr(Hqmnp + 2iψ ρ

n ψ σ
p (Γqm)ρσ)

= Dq
(
Hqmnp + 2iψ ρ

n ψ σ
p (Γqm)ρσ

)
.

(C.202)

The right hand side instead becomes

− 1

1152
ε m1...m8
mnp

(
Hm1...m4Hm5...m8 + 2iψm1ψm2Γm3m4Hm5...m8 + 2iHm1...m4ψm5ψm6Γm7m8

− 4ψm1ψm2Γm3m4ψm5ψm6Γm7m8

)
.

(C.203)
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We can put in some anti-symmetrisations and move around the gamma matrices to write

− 1

1152
ε m1...m8
mnp

(
Hm1...m4Hm5...m8 + 8iψ[m1

Γm2m3ψm4]Hm5...m8 + 8iHm1...m4ψ[m5
Γm6m7ψm8]

− 64ψ[m1
Γm2m3ψm4]ψ[m5

Γm6m7ψm8]

)
.

(C.204)
If we do the same with the left hand side and then de�ne H̃mnpq ≡ Hmnpq+8iψ[mΓnpψq]

we �nd the equations of motion looking as we are used to see them

DqH̃qmnp = − 1

1152
ε m1...m8
mnp H̃m1...m4H̃m5...m8 . (C.205)

We can do the same for the other �elds and get the other two equations of motion as

Rmn −
1

2
gmnR =

1

96
gmnH̃

2 − 1

12
H̃mp1p2p3H̃

p1p2p3
n ,

ΓmnpD̃nψp = 0,
(C.206)

where D̃m = Dm+ 1
288e

c
m

(
Γ a1...a4
c + 8Γ[a1a2a3δ

a4]
c

)
H̃a1a2a3a4 . It is important to note that

our de�nition of the spin connection has led us to an expression where the stress tensor
has a relative sign as opposed to say M. Du� et al. [4], this means, for example, that in
our convention AdS space will end up having a positive curvature scalar.

The transformations will also pick up an H̃, and we have

δe a
m = −2iε(x)Γaψm,

δψm = −D̃mε(x),

δBmnp =
3

2
iεΓ[mnψp],

(C.207)

From the available �elds we can now build a Lagrangian. One can again follow the same
procedure as in the Yang-Mills case. There we created a Lagrangian from the usual terms
involving the available �elds and then used the fact that the variation of the Lagrangian
should give us back the equations of motion to set the relative signs and possible constants.
The obvious way to start is with

L =
1

4
ee n
b e

m
a R ab

mn +
1

2
ψmΓmnpDnψp −

1

192
eHmnpqH

mnpq, (C.208)

But, when one starts to vary this one quickly notices that an extra term is needed to give
the equations for H. This term will be something like H ∧H ∧B.

The Lagrangian will turn out to be [4, 21, 6]

L =
1

4
ee n
b e

m
a R ab

mn +
1

2
ψmΓmnpDnψp −

1

192
eHmnpqH

mnpq

+
1

4 · (144)2
eεm1...m11Hm1...m4Hm5...m8Bm9...m11

− 3

4 · 144
e
(
ψmΓmnwxyzψn + 12ψwΓxyψz

)
(Hwxyz + H̃wxyz),

(C.209)

where the last terms comes from D̃ and H̃. This Lagrangian is invariant under the su-
persymmetry transformations found before and gives the equations of motion when varied
with respect to the �elds.

With this we end our discussion on supersymmetry and supergravity.
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D

Octonions

We here de�ne the octonions and discuss some of their properties. The octonions naturally
arise when we study the mass spectra of the squashed seven-sphere. It is therefore of
interest to understand what they are and how they work.

D.1 Basics

The octonions are the last of the normed division algebras, the others being the real
numbers, complex numbers and the quaternions, and are the generalisation of the complex
numbers to include seven imaginary units. The seven imaginary units are de�ned to satisfy
the multiplication rule

oaob = −δab + aabcoc, (D.1)

where aabc are the totally anti-symmetric octonionic structure constants de�ned by [61]

aabc = 1, for (abc) = 123, 246, 435, 367, 651, 572, 714. (D.2)

This can also be expressed by splitting the indices as a = (̂i, i, 7), where î = 1, 2, 3, and
i = 4, 5, 6. The non-zero parts are then

a7iĵ = −δij , aijk̂ = −εijk, aîĵk̂ = εijk. (D.3)

The complete eight dimensional division algebra is given by adding the real unit o0 = 1
to the set, and we denote the set of octonions as O. That there are only four normed
division algebras is a theorem due to Hurwitz [61]. Note that it is not true that R,C,H
and O are the only division algebras, it is actually rather easy to construct other types.
They are, however, the only normed division algebras [61].

A division algebra can be de�ned as an algebra where the operations of left and right
multiplication by any non-zero element can be inverted, and a normed division algebra is
a division algebra that is also a normed vector space.

As can be seen from the multiplication rule the octonions are not assocative, i.e.,
(oaob)oc 6= oa(oboc), but they are alternative. This means that the associater, de�ned by
[oaoboc] ≡ (oaob)oc − oa(oboc), is totally anti-symmetric. There is a theorem, connected to
Hurwitz', which states that R,C,H and O are the only alternative division algebras [61].

Using the multiplication laws of the octonions we can easily prove that, for example by
evaluating (oaob)ocδab,

aacdabcd = 6δab, (D.4)

and we directly see that we also have aabcaabc = 42.
We can de�ne the dual of aabc as

cabcd ≡
1

6
εabcdefgaefg, (D.5)
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where we used the totally anti-symmetric levi-civita symbol, de�ned by ε1234567 = +1.
From this and the above de�nition of aabc we can see that cabcd satis�es

cabcd = 1, for (abcd) = 4567, 3751, 6172, 5214, 7423, 1346, 2635, (D.6)

or
cijk7 = εijk, cîĵk7 = −εijk, cîĵkl = δijkl. (D.7)

Using this we also see that
aabeacde = 2δcdab − cabcd. (D.8)

In the next section we will discuss how one can relate the structure constants to the
seven-dimensional gamma matrices using the Killing spinor. After this is done we will be
able to derive further identities for contractions of a and c.

D.2 Octonions and the Killing spinor

We can also express the octonionic structure constants using the Killing spinor and the
gamma matrices in seven dimensions. As usual we use the convention that these seven,
anti-symmetric, matrices satisfy

γ1 · · · γ7 = i1 ⇐⇒ γa1...a7 = iεa1...a71. (D.9)

We write
aabc = −iη̄γabcη, (D.10)

where η is the Killing spinor and η̄η = 1. Now, from this we �nd that

cabcd ≡
1

6
εabcdefgaefg = − i

6
η̄εabcdefgγefgη = −1

6
η̄γabcdefgγefgη = η̄γabcdη. (D.11)

There is a very useful Fierz identity involving the Killing spinor. In seven dimensions
the symmetric gamma matrices are γa and γab. This means that ηγaη̄ = ηγabη̄ = 0. Using
this leads to the Fierz identity

ηη̄ =
1

8
η̄η +

1

48
γ(3)η̄γ(3)η. (D.12)

Adding this together with the same expression, but with η = γaη, we �nd that

γaηη̄γa + ηη̄ =
1

8
(η̄γaγaη + η̄η) +

1

48
γ(3)η̄

(
γaγ(3)γa + γ(3)

)
η = η̄η, (D.13)

or, re-expressed using the normalisation η̄η = 1,

γaηη̄γa = 1− ηη̄. (D.14)

This means that we have

aabeacde = −η̄γabeηη̄γcdeη = −η̄γabγeηη̄γeγcdη = −η̄γabγcdη

= −η̄
(
γabcd − 2δabcd

)
η = 2δabcd − cabcd.

(D.15)

So we see that this expression for the structure constants are in line with the one we had
before.
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There are other identities following from using the Fierz identity. Since we will need
them at di�erent places in the thesis, we derive them here. First o� we have

aadecdebc = −iη̄γadeηη̄γdebcη = iη̄γadγeηη̄γeγdbcη = iη̄γadγdbcη

= 6iη̄γ
[a

[dbδ
d]
c]η = iη̄

(
γadbδ

d
c + γacdδ

d
b + γabcδ

d
d − γdbcδad

)
η

= 4iη̄γabcη = −4aabc.

(D.16)

In the same way we �nd

cabcdadef = −iη̄γabcdηη̄γdefη = −iη̄γabcγefη = 6iη̄γ
[ab

[eδ
c]
f ]η

= −6a
[ab

[eδ
c]
f ] = −3(a[ab|e|δ

f
c] − a[ab|f |δ

e
c]).

(D.17)

The other identities that we will need are all derived in the same way, so we simply list
them here.

The identities for cabcd are

cabcdcdefg = aabcaefg + 9c
[ab

[efδ
c]
g] − 6δabcefg,

cabcdccdef = 8δabef − 2cabef ,

cabcdcbcde = −24δae,

cabcdcabcd = 168.

(D.18)

Contracting c with a gives us the two identities of Eqs. (D.16) and (D.17) as well as

cabcdaabc = 0. (D.19)

D.3 Octonions and G2

It may also be worth mentioning that the exceptional group G2, discussed at di�erent
places in the thesis, is highly connected to the octonions. It can be de�ned as the group of
automorphisms of the octonions [61]. In fact, all the exceptional Lie groups can be de�ned
using the octonions. The other four can be de�ned as the isometry groups of di�erent
projective planes. We can de�ne F4 as the isometry group of the octonionic projective
plane OP2, E6 of the bioctonionic projective plane (C⊗O)P2, E7 of the quateroctonioc
projective plane (H⊗O)P2 and E8 of the octooctonionic projective plane (O⊗O)P2 [61].

We can also relate the octonions to the so called G2 manifolds, the squashed sphere
being an example, discussed in Chapter 2. These are characterised by a real, covariantly
constant three-form, and this three-form can be chosen as the octonionic structure con-
stants. This is implied by the fact that the three-form can be expressed as

φabc = −iη̄γabcη, (D.20)

where η is the Killing spinor of the G2 manifold, see Chapter 2. This is of course exactly
the form we saw above for the structure constants of the octonions.
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Gamma matrices and SO(7)

In Appendix C we gave a general discussion on the gamma matrix representation of SO(n).
In this appendix we instead focus on SO(7) since this is the tangent space group of seven-
dimensional manifolds. We especially give a useful basis for the seven-dimensional gamma
matrices in terms of the octonionic structure constants. This is the basis used in Chapter
7. We will also list a couple of identities involving contractions of gamma matrices, these
are valid in all dimensions.

E.1 Gamma matrices in seven dimensions

In seven dimensions we only have one possibility of choosing the symmetry properties of
the gamma-basis. The properties are also re�ected around γ(3) so we only need to list
the properties up to γ(3). The gamma matrices of SO(7) are eight-dimensional and we
therefore want 28 anti-symmetric and 36 symmetric matrices. The only way of choosing
them is then

Symm. Anti-symm.

C1 1

Cγ(1) 7

Cγ(2) 21

Cγ(3) 35

Note that this was used already in Appendix D when deriving the Fierz identity for the
Killing spinors.

E.2 Our basis

One can use the octonionic structure constants of the previous chapter to construct a very
useful basis for the SO(7) gamma matrices. We de�ne [43]

(γa)
γ
β =

{
−iaabc for (β, γ) = (b, c),

−iδab for (β, γ) = (b, 8),
(E.1)

with a, b, c = 1, 2, . . . , 7. As we saw before, γa is anti-symmetric so that (β, γ) = (8, c)
must give us +iδac. Using the properties of the octonions one can easily check that these
matrices satis�es

γ1 · · · γ7 = i1, (E.2)

as we wish for them to do. From this we can also construct all the γ(n), we will however
only need γ(2), γ(3) and γ(4), so we skip the rest.

Starting with γ(2) we write

(γab)γδ = (γ[a)|γε|(γb])εδ = (γ[a)|γe|(γb])eδ + (γ[a)|γ8|(γb])8δ, (E.3)
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which means that [40]

(γab)c8 = (γ[a)|ce|(γb])e8 = (−ia[a|ce|)(−iδb]e) = −1

2
(aacb − abca) = aabc. (E.4)

As well as

(γab)cd = (γ[a)|ce|(γb])ed + (γ[a)|c8|(γb])8d = (−ia[a|ce|)(−iab]ed) + (−iδ[a|c|)(iδb]d)

= −1

2
(aaceabed − abceaaed) + δabcd =

1

2
(2δacbd − cacbd − 2δbcad + cbcad) + δabcd

= 2δabcd + cabcd,

(E.5)

where cabcd is the dual of aabc. Here we also used some of the contraction identities of the
octonions derived in Appendix D.

The other matrices are found in the same way. For γ(3) we have [40]

(γabc)
n

m = 6iδ
(m
[a a

n)
bc] − iδmnaabc,

(γabc)
8

m = icabcm,

(γabc)
8

8 = iaabc.

(E.6)

While γ(4) instead takes the form

(γabcd)
n

m = 8δ
(m
[a c

n)
bcd] + cabcdδmn,

(γabcd)
8

m = 4δm[aabcd],

(γabcd)
8

8 = cabcd.

(E.7)

A good control that one should do is to check whether these matrices are traceless. This
is directly seen by inspection of γ(1) and γ(2). For γ(3) the trace is given by

(γabc)
m

m + (γabc)
8

8 = 6iδm[aa
m

bc] − iδmmaabc + iaabc = 6iabca − 7iaabc + iaabc = 0. (E.8)

So it is in fact also traceless. The same holds for γ(4).

E.3 Contraction identities

Here we simply list a few useful identities involving contractions of gamma matrices rep-
resenting SO(n), for arbitrary dimension n. Many of these are used in various places of
the thesis. The identities can also be found in [4], but since they use the convention that
{γa, γb} = −2ηab, there are some sign di�erences between our lists.

γaγb = γab + δab, (E.9)

γabγc = γabc + 2γ[aδb]c, (E.10)

γabγcd = γabcd − 4δ
[a

[cγ
b]
d] − 2δab[cd], (E.11)

γabcγd = γabcd + 3γ[abδ
c]
d , (E.12)

γabγ
cde = γ cde

ab − 6γ
[cd

[a δ
e]
b] − 6γ[cδd[aδ

e]
b] , (E.13)

γabcγdef = γabcdef + 9γ
[ab

[deδ
c]
f ] + 18γ

[a
[dδ

bc]
ef ] − 6δabcdef , (E.14)

γ(n)γa = γ(n)a + nγ[b1...bn−1δbn]a, (E.15)

γa1...arb1...bsγbs...b1 =
(n− r)!

(n− r − s)!
γa1...ar (E.16)
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