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Abstract
Transportation of goods is a very important task in today’s world where trucks have
a central role. The level of emissions allowed for vehicles are regulated by law. Over
time these levels are decreased which call for a continuous technology development
regarding the efficiency for the after treatment system. One of the species that
is strictly regulated is NOx which today is measured with a sensor in the after
treatment system. This NOx sensor have several limitations and the purpose of this
thesis is to design an observer that improves the estimation of the NOx flow in the
after treatment system rather than only use the NOx sensor reading.

Five different observers have been developed, a fraction estimator, a delayed
Kalman filter, an unknown input observer, an steady state unknown input observer,
and an extended state vector observer. It was shown that all five observers have
quicker transient behaviour than the sensor. The delayed Kalman filter had the
absolute highest computational effort. The unknown input observer had the best
overall performance on all tested engines in terms of MSE.

The steady state unknown input observer was also implemented and tested in
TargetLink at Volvo. This decision was based on that when taking both accuracy
and calculation time in to consideration was this the best observer. Therefore the
steady state unknown input observer is the observer which the authors suggest Volvo
should use to improve the engine out NOx estimation.

Keywords: Diesel engine, NOx, semiphysical model, radial basis model, stepwise
linear regression, delayed Kalman filter, unknown input observer, extended state
vector.
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1
Introduction

Transportation of goods have since the beginning of the civilization been an impor-
tant task where the transportation vehicle have been of large importance. In modern
times, trucks have been extensively used as transportation vehicles and most of them
are powered by diesel engines [1]. Diesel engines produces, among other things, both
carbon monoxide (CO), different kinds of nitrogen oxides (NOx), and soot [2]. These
emissions are harmful for both humans [3] and the environment [4], and are therefore
constrained by legislations for example in EU [5]. These regulations are continuously
getting more and more strict which increases the requirements on the truck manu-
facturers [6]. The EU regulation of these emissions are named Euro I-VI (Euro 1-6)
and are shown in Figure 1.1 where it can be seen that the regulations are getting
tighter for each generation of legislation [7, 8, 9, 10, 11].

Euro II

Euro III

Euro IVEuro V

Euro VI

NOx emissions [g/kWh]

C
O

em
is
si
o
n
s
[g
/
k
W

h
]

8753.520.4

1.5

2.1

4

4.5
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Figure 1.1: The allowed emissions of CO and NOx from Euro I to VI.

To remove most of the NOx gases an engine after treatment system (EATS) is
used. EATS uses a selective catalyst reduction (SCR) to reduce the tail pipe NOx

emissions. The SCR makes a chemical reaction such that most of the NOx gases
are removed but it requires that portions of urea are added to these gases [12]. This
process is described further in Section 1.1.2.

In the SCR, the urea dosing is crucial since underdosing can result in worse
performance and increased emitted NOx [13]. If, on the other hand, the amount of
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urea is overdosed there is a risk that ammonia (NH3) slips through the SCR [14],
which is also harmful for both humans and the environment [15]. It should therefore
be kept low.

To be able to dose the correct amount of urea to the NOx gases, the system must
have knowledge about the current NOx flow. The common practice to estimate NOx

flow in the truck industry is by having a NOx sensor that measures the amount of
NOx flow before the EATS. However, sensors of this kind have several issues where
sensor delay is one of the most severe. By designing an observer that takes the
sensor delay into account, and combines this with other real time estimates of the
NOx flow, a potentially better estimation of the NOx flow before the EATS can be
made. This would result in an improved control of the urea injection and hopefully
lead to an improved control of the tail pipe NOx, which is beneficial for both the
truck manufacturer and the general public.

1.1 Background

In this section the background of the thesis will be presented. This includes the
definitions of engine out NOx and system out NOx. It will also describe the exhaust
system, the existing sensor in the trucks and the existing NOx flow models at Volvo
Trucks (henceforth called Volvo).

1.1.1 Definition of Engine Out NOx and System Out NOx

There are two types of NOx flows that will be discussed in this thesis, engine out
(EO) NOx , and system out (SO) NOx. The difference between these are that the EO
NOx is the NOx that is coming directly out from the engine and will be processed in
the EATS. The SO NOx on the other hand is the NOx coming out from the vehicle
and is released into the environment.

1.1.2 Reduction of NOx in the Exhaust System Using SCR

Urea is stored in a tank that is located on the trucks. The urea is mixed with the
exhaust gases from the engine and through hydrolysis [16] the urea is decomposed
into NH3. After this, the gases are transported through the SCR. Here NOx and
NH3 are transformed to N2, H2O, NOx , and NH3. There is still NOx present in the
exhaust gases but the amount of it have been decreased by approximately 95-99.9%.
The method of using the SCR to reduce NOx in the exhaust system in the trucks is
shown in Figure 1.2. Notice that this figure only shows the output generated from
the NOx and not other gases.
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Figure 1.2: A system overview of how the amount of EO NOx in the exhaust gases
are reduced using urea in a selective catalytic reduction (SCR) process. This figure
only shows what happens with the NOx in the system and not any other gases.

1.1.3 NOx Sensor in the Exhaust System
Today the method used for estimating the EO NOx flow is to use readings from the
NOx sensor which measures the EO NOx in ppm. It has several limitations, where
sensor delay, offset in sensor data, and degeneration are some of them. One of the
most severe issues is the sensor delay, where the sensor is delayed d samples. This
problem is illustrated in Figure 1.3.

d

NOx-flow

Sensor value

Figure 1.3: Visualization of the sensor delay problem where d is the delay.

Since the sensor reading is used for controlling the amount of urea, the system
will always add the amount of urea that was needed d samples ago. This is okay if
the system is operating in steady-state, i.e. the engine is running on constant speed
and load but the performance will be drastically reduced if the system is changing
quickly. Today the implementation of using the NOx sensor is the standard solution
in the industry and is considered to be “good-enough”, but in the future, with more
strict regulations of SO NOx, this approach may be insufficient. It is therefore
necessary to improve the NOx flow estimation to get a better control of the SO
NOx.

1.1.4 Existing Models of the Engine Out NOx

Today two models exist that are used at Volvo to estimate the EO NOx for simulation
purposes. One model is empirically constructed by radial basis functions, and the
other one is a semiphysical model [17]. Semiphysical means that the model is partly
built on physical equations and partly by empirical values.
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Both models give the EO flow of NOx in g/s and they can potentially give better
estimation accuracy in some situations compared to the NOx sensor. Especially in
transient phases the models are outperforming the sensor due to the sensor delay.
The models are shown in Figure 1.4. The inputs to the models are very similar and
some examples of inputs to the models are; engine speed, torque, and air flow.

Model with
Radial basis
functions

Semiphysical

model

&

Engine Speed

Engine Torque

Air flow

NOx [g/s]

b
b
b

Figure 1.4: Existing models for the EO NOx.

The difference between the two models are that the one with radial basis func-
tions is implemented both in MatLab© and the electrical control unit (ECU) while
the semiphysical model is only implemented in MatLab©. The models use similar
inputs but must be treated separately regardless.

The radial basis model uses several stationary points of “normal” NOx values
for given situations to estimate the EO NOx. It then interpolates between these
values to make an estimation of the EO NOx. The semiphysical model contains
partly mathematical expressions and partly fix values. These fix values correspond
to “normal values” and should be good in most of the driving scenarios.

1.1.5 Diesel Engine System Description

In Figure 1.5 an overview of a six cylinder diesel engine with exhaust gas recirculation
(EGR) is shown. EGR is a process which recirculate some of the EO gas to the intake
in order to reduce the SO NOx.
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Figure 1.5: Overview of a diesel engine with six cylinders and EGR, the cut shows
the injection pipe. The blue arrows mean that the gases are cold and the red ones
means that the gases are warm.

There are two major types of engines that will be used in this thesis, one is an
engine with extended SCR (eSCR) and the other one is a turbo compound (TC)
engine. The difference between these are that the TC engine have an additional
turbo after the turbine that have a mechanically connected crank shaft to recover
exhaust waste energy. In addition to the extra turbo the TC engines also cool the
EGR gases.

The engine is equipped with different sensors apart from the NOx sensor. Some
of these sensors are measuring:

• Rail pressure, PR, which is the pressure in the pipe containing fuel for the
cylinders.

• Boost temperature, TB, which is the temperature of the compressed gases in
the cylinders.

• Engine speed, ωEng, which is the speed of the engine in revolutions per minute
(rpm).

• Engine torque, τEng, which is the estimated torque from the engine.

• Air fuel ratio, AFR, which is the ratio of air and fuel in the cylinder charge.

• EGR-valve position, αEGR, is the angle measuring how big part of the valve
that is open to let gases recirculate.

There are also values calculated internally in the NOx flow models in order to
estimate the EO NOx, here called “correction factors”. Some of these are:

• Cylinder temperature corrections Ccorr and Ccyl where Ccorr is from the semi-
physical model and Ccyl is from the radial basis model.
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• Engine speed and torque correction, Cωτ , from the radial basis model. It
changes the EO NOx based on current value of ωEng and τEng.

1.2 Purpose
The main purpose of the thesis is to design an EO NOx estimation observer that
does not have as large delay in EO NOx estimation as today. The observer should
primarily have a better dynamic behaviour and needs to remove and compensate
for the sensor delay to achieve a quicker system. After that the static behaviour is
going to be investigated which is the secondary purpose of the thesis and is also of
high importance for the overall performance. An observer will be implemented in
TargetLink in order to simulate a virtual control unit and a motor model.

If the estimation of EO NOx is done with reduced delay and more accurate than
today, the dosing of urea can be done more precisely. This can lead to a lower
amount of SO NOx and less consumption of urea in the trucks.

1.3 Objective
The objective of this thesis is to combine the NOx flow models and the existing
sensor and investigate if this will result in less SO NOx in an engine test cell at
Volvo. The research questions in this thesis are:

• Which models are preferable in which situations?

• How should the quality of the estimation of the NOx flow be analyzed?

• How should the models be weighted to utilize their respective benefits?

• Under what circumstances are the sensor better than the models?

• How should a sensor with delay be implemented in combination with the real
time models to give as good estimation as possible?

• Which technique is most suitable for this task?

1.4 Scope
The scope of this thesis is to design an observer for the EO NOx that improve
the accuracy compared to the presently used system. The observer should then be
implemented in TargetLink.

During the project it is assumed that the EO NOx measurements from the Horiba
system are the true values. The Horiba system is a measurement system that are
used in the engine test cells to get accurate measurements of NOx as the conditions
are well known. There are always errors in measurement systems but the Horiba
system give the most accurate measurements that are at hand. So in the lack of
ground truth data the Horiba measurements are assumed to be the true data.
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Three different types of engines are considered when designing the observers.
These engines are 480 hp eSCR, 540 hp eSCR and a 500 hp TC engine. These will
henceforth be called low hp engine, high hp engine, and TC engine.
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2
Theory

In this chapter, theory regarding the different areas of this thesis will be presented.
These areas are stepwise linear regression, Cooks distance, linear Kalman filter,
linear Kalman filtering with delayed measurements and an unknown input observer.

2.1 Stepwise Linear Regression
Stepwise linear regression is a method for estimating models from data. A linear
regression model can be described as

m = c0 + c1p1 + ...+ cNpN (2.1)

where m is the model, c are coefficients, p are predictor variables and N is the
number of predictor variables. A predictor variable can be either a single input to
the model or combinations of several inputs. Inputs to the model are the different
types of data available in the dataset used for training the linear regression model.

The stepwise linear regression algorithm recursively adds and removes predictor
variables from an initial linear or generalized linear model and determines if the
addition or removal improves the model. The linear regression algorithm often
makes this evaluation by a series of F-tests or T-tests. An F-test is a statistical
test with an F-distribution under the null hypothesis and a T-test is a statistical
test that is used to make inferences about the coefficients. When the model, m, is
no longer improved by adding or removing of predictor variables, the method will
terminate and a final model is achieved.

2.1.1 Forward Regression and Backward Regression
There are two types of stepwise regressions, forward and backward. Forward regres-
sion adds predictor variables to an initial model, and backward regression removes
predictor variables from an initial model.

In a forward regression step a predictor variable, pn, is not included in the re-
gression model, m, but is going to be evaluated if it should be included in m. pn
will be evaluated using the null hypothesis

H0 : cn = 0 (2.2)

where H0 is the null hypothesis and cn is the coefficient multiplied with pn if pn is
added to m. H0 in (2.2) implies that pn should not be included in m, because if pn
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is multiplied with zero, the information in pn will not be used. If there are enough
statistical evidence to reject H0, pn is added to m, otherwise H0 is correct and pn is
discarded.

In a backward regression step the predictor variable, pn, is on the other hand
already included in m and reevaluated. In this case the null hypothesis is the same
as in the forward step and shown in (2.2). If there are enough statistical evidence
to reject H0, pn stays in m, otherwise H0 is correct and it is removed from m.

2.1.2 Overfitting in System Identification
Stepwise linear regression is a method that can be used for system identification, and
a general problem in linear regression is overfitting. This is a problem that is due to
that the trained model is too specific for the training data and trained “too much”
on the training data. It might get very good performance on the training data but
when exposed to new data the performance is bad. This problem is illustrated in
Figure 2.1.
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Figure 2.1: Example of when a trained model have achieved an appropriate fit to
data and when it have problem with overfitting.

In Figure 2.1 the model is trying to follow the dots with the dashed line. First
the model fits the data very well and can reach each dot exactly. But if this model
would be exposed to new data, it would probably perform poorly. In the second
case the model is not fitted exactly to the data but is more generalized and would
probably perform better on new data.

2.1.3 Performance Measures for Linear Regression Models
A measure of how well a regression model performs is the mean squared error (MSE).
This is calculated by

MSE = 1
n

n∑
i=1

(x(i)− x̂(i))2 (2.3)

where x is the true value and x̂ is the estimated value. This measure of error will
punish samples which are far away from the real value due to the square of the error.

Another way to measure the quality of a regression model is the normalized root
mean square error (NRMSE). This is a measure of how good the regression model is
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in comparison to the trivial solution. The trivial solution in this case is a constant
value equal to the mean of true values. The NRMSE is calculated with

NRMSE = 1−
∑n
i=1 (x(i)− x̂(i))2∑n
i=1 (x(i)− x̄)2 (2.4)

where x are the true value, x̂ the estimated value and x̄ the mean of the true values.
The value of NRMSE is

−∞ ≤ NRMSE ≤ 1 (2.5)
where −∞ indicates that the fit of the model is bad, 0 if the model is equally good
as the trivial solution, and 1 indicates that the model is a perfect fit.

2.1.4 Cooks Distance for Analyzing Regression Model Data
Cooks distance is a measure in regression analysis to decide the influence of data
and is a combination of leverage and the residual for each training sample. Leverage
is a measure of how much a training sample is affecting the model and residual is the
error between the model value and the training data. This means that if the Cooks
distance is high, the training sample is both far from the fitted model and has a
large impact on the model. This is a bad training sample which should be removed
from the dataset used for training the model. It is mathematically described as

Di =
∑n
j=1

(
ŷj − ŷj(i)

)2

p ·MSE , (2.6)

where yj is the fitted value for the model, yj(i) is the fitted value for the model
without the measurement observed in i, p is the number of coefficients and the MSE
is the mean squared error of the regression model. An example of Cooks distance is
shown in Figure 2.2.
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Figure 2.2: Example of Cooks Distance, one point is way higher than the others
(between sample 2500 and 3000) and should be removed when training a model.

The procedure of using Cooks Distance for regression models can be formulated
as:
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1. Train a model on all training samples

2. Analyze the developed model by finding training samples with large Cooks
distance

3. Remove the found training samples from the dataset

4. Train a new model based on the dataset with removed training samples

2.2 State Estimation with Kalman Filtering
The Kalman filter is an observer that estimates states in a dynamical system based
on noisy measurements. This can be useful when, for example, estimating position
and velocity of an object. The linear Kalman filter is applicable on linear systems
on the state-space form

xk+1 = Ak+1xk +Bk+1uk+1 + qk+1

yk = Ckxk +Dkuk + rk
(2.7)

at the discrete time k + 1 and where q and r are Gaussian distributed independent
noises,

q ∼ N (µq, Q) r ∼ N (µr, R). (2.8)

The equation describing xk+1 in (2.7) is called a state-transition equation and the
equation describing yk is called the measurement equation. In the state-transition
equation, A is the state transition matrix that describes how the states changes
for each time step and B is the control input model. C in the measurement equa-
tion is the measurement transition equation which describes how the measurements
from each source relates to each state. D specify how the control input affects the
measurement signal.

The estimated state of a Kalman filter is described as a Gaussian distribution
with mean x̂k+1|k+1 and covariance Pk+1|k+1. This normal distribution is recursively
calculated by the linear Kalman filter algorithm which is done in two distinct steps;
the prediction step and the update step. In the prediction step the calculations

x̂k+1|k = Ak+1x̂k|k +Bk+1uk+1

Pk+1|k = Ak+1Pk|kA
T
k+1 +Qk+1

(2.9)

are executed. Here is a prediction of the state mean, x̂k+1, and covariance, Pk+1
done based on the information at time k. The second step of the linear Kalman
filter is to make an update to this prediction based on information received from the
measurement at time k + 1. The update step is done by first calculating

Kk+1 = Pk+1|kC
T
k+1S

−1
k+1

Vk+1 = yk+1 − Ck+1x̂k+1|k

Sk+1 = Ck+1Pk+1|kC
T
k+1 +Rk+1

(2.10)

12



and then doing the actual update according to

x̂k+1|k+1 = x̂k+1|k +Kk+1Vk+1

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1K
T
k+1

(2.11)

where Kk+1 is the Kalman gain, Vk+1 the innovation and Sk+1 the innovation co-
variance. The Kalman gain describes how much of the innovation that will be used
when estimating the state based on the new measurements at time k + 1 and the
innovation captures how much the prediction differs from the measurement.

that is used to determine how much of the innovation that will be used when
estimating the state.

2.3 Kalman FilteringWith Delayed Measurements
If a measurement delay is present in the system it is not optimal to fuse the mea-
surement value received at time k with non delayed values at time k. An extended
approach of the method described in section 2.2 is instead preferable where the delay
of the delayed measurements are taken into consideration.

Let s denote the time where the delayed measurement was taken, and k denote
the time when the measurement was received. Let this delayed measurement be
denoted as y∗k. The measurement have then been delayed d samples. This can be
described as

k = s+ d (2.12)

and this delay is shown in Figure 2.3.

s k

d

t

s+ 1 ... k − 1

x̂s+1

...

x̂s x̂k−1 x̂k

y∗k

Figure 2.3: Timeline over when the delayed measurement y∗k was taken at time s
and when it was received at time k.

One approach for handling this delay is to continuously run a Kalman filter
as described in Section 2.2 without the delayed measurement until time k when
a delayed measurement from time s is received. If the system contains a total of
N sources of information, including the delayed sensor, only N − 1 of them are
used until time k. These measurements are denoted as yk. Here the measurement
equation

yk =
[
Ck
]
xk + rk (2.13)

will be used, where Ck are measurement equations for yk.
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When the delayed measurement y∗k are received at time k the state x̂s is re-
estimated using both yk and y∗k. This will lead to the measurement equation

ys =
[
Cs
C∗s

]
xs + r∗s (2.14)

where C∗s describes the time delayed measurement and r∗s describes the measurement
noise for all sources. Similarly to the linear Kalman filter without measurement
delay, the measurement are Gaussian noises and distributed as

r ∼ N (µr, R) r∗ ∼ N (µr∗ , R∗). (2.15)

After estimating x̂s, x̂s+1:k are reestimated using ys+1:k with the measurement model
(2.13), updating the values based on the new information from the delayed sensor.

The steps in the delayed Kalman filter (DKF) can be summarized as:

1. Run Kalman filter without the delayed sensor until delay sensor values, y∗k, are
received at time k

2. Recalculate x̂s with both ys and y∗k

3. Recalculate x̂s+1:k with ys+1:k as before

4. Run Kalman using yk until next delayed sensor value arrives

For this method to work, the delay must be known for each delayed measurement.
Otherwise there is no information where s is located in time and no reestimation
can be done.

2.4 Unknown Input Observer
The unknown input observer (UIO) is a method where a linear Kalman filter can
be used in the presence of unknown inputs to the system. The idea is based on
adding an extra state variable per unknown input. The extra state will be used to
estimate the unknown input. Instead of having the unknown state as an input to
the system, integrated white noise is added. The integrator transforms the white
noise to a random walk which will be used to model the unknown input. Figure 2.4
shows the system with an unknown input and Figure 2.5 shows the system with the
noise added instead of the unknown input.

Noise

Unknown input
Model

Known input
Output

Figure 2.4: A system with an unknown input.
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Figure 2.5: A system where an unknown input is modeled as integrated white
noise.

The addition of an extra state will effect the state space model of the system.
Let a state space model be described as

xk+1 = Akxk +Bkuk

yk = Ckxk +Dkuk.
(2.16)

Now let the input vector, u, be split in to a known and an unknown input vector, v
and d. This will expand (2.16) to

xk+1 = Akxk +Bv
kvk +Bd

kdk

yk = Ckxk +Dv
kvk +Dd

kdk
(2.17)

where now Bv and Dv only contains the known input equations and Bd and Dd the
unknown inputs. Now let the state xd that correspond to the unknown inputs be
added. The expressions for xd are

xdk+1 = Adxdk

dk = Cd
kx

d
k.

(2.18)

This will make (2.17)

xk+1 = Akxk +Bv
kvk +Bd

kC
d
kx

d
k

yk = Ckxk +Dv
kvk +Dd

kC
d
kx

d
k.

(2.19)

This can now in combination with (2.18) be expressed on matrix form as
[
xk+1
xdk+1

]
=
[
Ak Bd

kC
d
k

0 Adk

]
·
[
xk
xdk

]
+
[
Bv
k

0

]
vk

yk =
[
Ck Dd

kC
d
k

]
·
[
xk
xdk

]
+
[
Dv
k

0

]
vk

(2.20)

which is the augmented state space model for unknown inputs. By using the aug-
mented state space model an UIO can now be created by designing a linear Kalman
filter from that model.
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2.5 Steady State Kalman Filters
The Kalman filter recursively finds a Kalman filter gain, K, that is used to determine
how much of the innovation that will be used when estimating the state. K converge
if the current system is time-invariant and R is a constant matrix, or converges to
a constant matrix. The converged K, further on called K̄, can be used instead
of recursively determine K for each time step when estimating the states. This is
cheaper in a computational aspect and might give as good results as the recursive
solution to the Kalman filter. Note that the first estimations wont be optimal with
this approach. Due to that K̄ is known on beforehand, the Kalman filter equations
will be simplified to

x̂k+1|k = Ax̂k|k

Vk+1 = yk+1 − Ckx̂k+1|k
(2.21)

and
x̂k+1|k+1 = x̂k+1|k + K̄Vk+1. (2.22)
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3
Methods

In this chapter the different techniques used in the thesis will be described. First
are models describing when the two NOx flow models are accurate or not going to
be concluded. To achieve this, variables that affect this accuracy must be found and
then these variables are used in a stepwise linear regression problem. When models
describing the accuracy of the two NOx flow models are concluded this information
can be used in different observer strategies to weigh the information from the two
NOx flow models.

First in this chapter important terms will be defined, then the preprocessing
of data used for linear regression will be presented, thereafter the identification of
important variables for both models will be presented, and then the sensor fusion
and observer strategies will be shown.

3.1 Identification of Significant Variables
One crucial part of the thesis is to conclude when to trust either one of the NOx

flow models, the sensor, or a combination of these. To do this, information about
when the respective NOx model are accurate or not is important. The information
about model accuracy are here described by two functions, ESP for the semiphysical
model and ERB for the empirical radial basis model. Each model also have unique
calibrations based on different engine hardware, low hp eSCR, high hp eSCR, and
500 hp TC. In total there are six different accuracy functions named

Elow
SP Ehigh

SP ETC
SP Elow

RB Ehigh
RB ETC

RB . (3.1)

The low and the high hp engines have the same system description but there are
differences in for example the turbine specifications.

The accuracy function, E, is based on how far the NOx flow model value is
from the Horiba measurement. Horiba measurements are measured in the engine
test cells and are considered to be the true NOx values. If the difference between
model value and Horiba is high the accuracy E will be low, and when the difference
between Horiba and model is low, the accuracy E will be high. The magnitude of
the difference between any model and Horiba are denoted with D and is calculated
as

D = |M −HN | (3.2)
where HN is the Horiba and M is any model. From this, the accuracy function is
calculated as

E = 1
D
. (3.3)
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The difference, D, is shown in Figure 3.1
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Figure 3.1: Difference in EO NOx between a model, M , and Horiba, HN , denoted
as D.

The problem that will be solved in this section is that D is not available in the
truck for any of the engine types. Horiba measurements are only available in the
test cells and therefore D cannot be used directly. The solution to this is to build
functions that are as similar to D as possible, named D̂. D̂ will be calculated by
setting up a stepwise linear regression problem that will be solved in MatLab©. D̂
will in this case correspond to the model m described in Section 2.1. With the two
different NOx flow models and the three different engine types there are six different
functions

D̂low
SP D̂high

SP D̂TC
SP D̂low

RB D̂high
RB D̂TC

RB (3.4)
that will be estimated. E will then be based on D̂ instead of D and be approximated
with

E ≈ 1
D̂
. (3.5)

To do this, the variables that influence D are going to be found. These variables
are then going to be used in a linear regression problem to construct D̂.

When comparing separate variables with model accuracy it is important to know
that these separate variables alone never will represent the whole error. The system
is very complex and there exists no variable that on its own can explain it as a
whole.

The following sections will first describe the preprocessing of the data and then
the process of designing the functions in (3.4).

3.1.1 Data Preprocessing

When identifying D̂, data representing normal truck driving is important. The
used datasets contain values from cycles representing driving on highway and inner
city driving. This data is acquired in the engine test cells where these cycles were
simulated. The reason for the different types of driving is that the observer should
work everywhere and not only for a certain type of drive cycle. The datasets contains
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for example values from one of the NOx flow models, engine speed, torque, readings
from the NOx sensor and much more. Such datasets are used for all three engines.

There are several preprocessing steps that are necessary to apply on the used
datasets to use them for identifying D̂. These steps are:

1. Low pass filter the model values

2. Shift the Horiba measurements

3. Crop the datasets to remove idle parts

4. Split the data into training datasets and validation datasets

The first part of the preprocessing is to make the model values as similar to
the Horiba measurements as possible. The model values have an issue with high
frequency ripple and therefore a low pass filter is applied to the model output. The
low pass filter applied have the order of 6 and the time constant 10. The result from
this filtering is shown in Figure 3.2. After filtering the ripple is removed and the
model values have similar smoothness as the Horiba measurements.
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Figure 3.2: Filtered and unfiltered values from one of the models in comparison
to the Horiba measurements.

The second part of the preprocessing is to time shift the Horiba measurements.
Compared to the data from the models the Horiba measurements are shifted. The
Horiba measurements are calculated through a system to get an exact result and the
calculation takes time, therefore it needs to be shifted to line up with the models
to be able to correctly evaluate the models. This is done by hand for each dataset
to get it as accurate as possible. However it is still not exactly precise because
the delay is varying through the cycle. The delay are varying between one to five
samples trough out the dataset. This is a small variation but will still effect the
performance.

In Figure 3.3 and 3.4 a comparison between a filtered and shifted dataset and a
non filtered and non shifted dataset is shown.
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Figure 3.3: Dataset before filtering and shifting. The blue line is the Horiba
measurement and the orange is the NOx flow estimated by one of the NOx flow
models.

1.15 1.16 1.17 1.18 1.19 1.2 1.21 1.22 1.23 1.24 1.25 1.26 1.27
·104

0

500

1,000

1,500

Time [s]

N
O
x
flo

w
[p
pm

]

Filtered and Shifted Dataset

Filtered Model
Shifted Horiba

Figure 3.4: Dataset after filtering and shifting. The goal here is that the two
signals should have as similar characteristics as possible. The blue line is the Horiba
measurement and the orange is the NOx flow estimated by one of the NOx flow
models.

As shown in Figure 3.3 and 3.4 the filtering and shifting need to be done in order
to get the two signals to align in time and have similar smoothness. This is very
important later when an observer will be designed.

The main goal of this thesis is to create an observer that have better transient
behavior than the NOx sensor. The behavior of D̂ will influence the behaviour of
the final observer. The datasets used in the thesis have parts where the engine is
idle driving. This can be seen in Figure 3.5 where the idle driving is occurring when
the engine speed is around 500 rpm for long periods of time.
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Figure 3.5: The engine speed over a whole dataset. Note here that the idle parts
of the dataset, where the engine speed is around 500 rpm, will get a disproportional
impact while calculating D̂ as the transient behaviour is prioritized.

The idle parts should in some extent be reduced to a much smaller length than
what is represented in the datasets. The reason for this is that the idle parts will
influence D̂ in a disproportional way. They will force D̂ to adjust to the idle parts
more and potentially lose accuracy in the transient parts. Since the main goal of
the thesis is to make the system perform well in transients these parts should be
reduced or even removed. This is shown in Figure 3.6 where the idle parts from
Figure 3.5 are removed.
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Figure 3.6: The engine speed over a whole dataset where idle parts have been
removed.

The resulting error between the two NOx flow models and the Horiba measure-
ments after shifting, filtering, and cropping the data are shown for low hp eSCR in
Figure 3.7. However, it is not the absolute value of the errors that are shown here
as the difference between the NOx flow models and the Horiba measurements can
be both positive and negative. The non-absolute valued errors are hence called D̄
instead.
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Figure 3.7: The error for the low hp eSCR engine for both the semiphysical and
radial basis models where σ is the standard deviation and µ is the mean.

The reason for the spike around zero in Figure 3.7 is due to that the model values
correctly shows zero NOx flow when the Horiba measurements does the same. This
means that the model is predicting the correct value which leads to no error. The
small hump at 175 is due to that when the NOx flow is stationary, D̄low

RB is often
overestimating the NOx flow with approximately 175 ppm for this engine model.

The resulting error between the two NOx flow models and the Horiba after
shifting, filtering and cropping the data are shown for high hp eSCR in Figure 3.8.
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Figure 3.8: The error for the high hp eSCR engine for both the semiphysical and
radial basis models where σ is the standard deviation and µ is the mean.

In Figure 3.8 D̄high
SP has a good distribution. It could preferably have a smaller

standard deviation but that behaviour is a side effect of the model bias and variance.
D̄high
RB on the other hand have a large peak at approximately −130. The reason for

this is that D̄high
RB often underestimates the NOx flow but not in all points.
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The resulting error between the two NOx flow models and the Horiba after
shifting, filtering and cropping the data are shown for TC in Figure 3.9.
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Figure 3.9: The error for the TC engine for both the semiphysical and radial basis
models where σ is the standard deviation and µ is the mean.

In Figure 3.9 D̄TC
RB somewhat follow a left-shifted normal distribution. This

indicates that the model continuously underestimates the NOx flow values. This
behaviour is also seen for D̄TC

SP but here the standard deviation is much wider. It
is known that MSP was not developed for handling TC engines. Due to this, the
performance of D̄TC

SP on this engine is therefore not as good as for the low hp or high
hp eSCR engines. MSP is often overestimating the NOx flow and this creates the
right skewed form of D̄TC

SP in Figure 3.9.
The results from Figure 3.7-3.9 are shown in Table 3.1.

Table 3.1: Standard deviations and mean values for the two NOx flow models in
comparison to the corresponding Horiba measurement for all engines.

Engine Models
Low High TC

D̄SP
µSP 36.00 -25.79 -223.55
3σSP 262.43 457.31 566.46

D̄RB
µRB -9.28 -68.72 -75.43
3σRB 291.00 367.75 391.30

From Table 3.1 it can be seen that values for three standard deviations are high
based on that they are measured as NOx flow in ppm. For a normal distribution
∼ 99.7% of all points are included inside the span defined by

µ− 3σ ≤ X ≤ µ+ 3σ (3.6)

where µ is the mean of the distribution and σ is the standard deviation. Table 3.1
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can be further expressed as the expressions

−226.43 ≤ D̄low
SP ≤ 298.43 − 300.26 ≤ D̄low

RB ≤ 281.70
−483.09 ≤ D̄high

SP ≤ 431.52 − 436, 47 ≤ D̄high
RB ≤ 299.02

−790.01 ≤ D̄TC
SP ≤ 342.91 − 466.73 ≤ D̄TC

RB ≤ 315.87.
(3.7)

The ideal case is that σ = 0 and µ = 0. This would mean that the model value is
equal to the Horiba measurement all the time but this is, as seen in (3.7) not the
case.

The performance of D for the two NOx models will influence all upcoming steps
and set an upper limit of how good the future developed system can be. For exam-
ple if DTC

SP have bad performance D̂TC
SP will also have bad performance because its

purpose is to be as similar to DTC
SP as possible. This will affect the observer that

will use D̂TC
SP and the performance of it will be bad. If the performance for DTC

SP is
improved the final result could be improved as well.

Later in the process a regression problem to find D̂ is going to be done. The
regression is done on one dataset per engine-model combination and consist of ap-
proximately 100 000 samples in each. These datasets are all split in two parts where
80% were used for training and 20% were used for validation. This split is visualized
in Figure 3.10. The reason for this is that the validation of the function performance
should be evaluated on data not used in the optimization to avoid overfitting.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·104

0

500

1,000

1,500

2,000

Time [s]

N
O
x
flo

w
[p
pm

]

Horiba Measurements Split into Training and Validation Data

Training Data
Validation Data

Figure 3.10: Horiba measurements that have been splitted into a training and
validation dataset.

Now the preprocessing of the data is done and it is ready to be used in a future
regression problem. First, variables that have any kind of relation with D must be
determined and this is going to be done in the two upcoming sections.

3.1.2 Semiphysical Model
In this section the semiphysical model will be investigated. A function that describes
the accuracy of the model as accurate as possible will be developed. Only the low
hp eSCR will be presented in this section, i.e., D̂low

SP which from here on is refereed
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to as D̂SP . The reason for this is that the other engines have similar behaviour as
the low hp eSCR and the same reasoning are applied to the other engines.

In the two upcoming sections different variables will be investigated to see if
there is any relation to DSP . When the variables that effect DSP have been found
these can be used to find D̂SP through stepwise linear regression.

One feature of the semiphysical model that will be exploited is that it is con-
structed for different reference points for some of the inputs. For example, engine
speed have an “usual” speed which the model is constructed around. An offset from
the reference points should be an indicator of the performance of the model where a
high offset would mean a high error in DSP . Some of the variables with high offset
are therefore used when constructing D̂SP as they most likely affect the performance.

The two first variables, ωEng and PR, are both constructed for stationary values.
These two variables are here used as percentage offsets from their stationary values.
These stationary values are here denoted as ω̃Eng and P̃R. In Figure 3.11 the fraction
between the measured values and the reference values are shown.
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Figure 3.11: Comparison of the percentage offset for ωEng and PR and the differ-
ence between the Horiba values and estimated values from the semiphysical model.

As seen in Figure 3.11, DSP is higher and more noisy when the offset is further
away from the reference point at 1 on the left y-axis for both ωEng and PR. This is
the reason for including them in D̂SP .

Another variable that is not related to a reference point but still contain useful
information about DSP is the cylinder wall temperature correction factor, Ccorr.
This is a variable that is internally used in the semiphysical model and have an
inverse relation to the model error DSP . This relation is shown in Figure 3.12.
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Figure 3.12: Comparison of 1/Ccorr and the difference between the Horiba values
and estimated values from the semiphysical model.

It can be seen in Figure 3.12 that the inverse of Ccorr somewhat follows the same
behaviour as DSP . This indicates that information about DSP is present in Ccorr
and should therefore be taken into consideration when calculating D̂SP as well.

Another variable that can be seen to have a relation withDSP is the air fuel ratio,
AFR. The AFR does not have a relation that is dependent on a reference point
either but it has a property which is useful when creating D̂SP . The comparison
between DSP and the AFR is shown in Figure 3.13.
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Figure 3.13: Comparison of AFR and the difference between the Horiba values
and estimated values from the semiphysical model.

It can be seen in Figure 3.13 that DSP goes towards zero when AFR goes to its
saturation value as described in Section 1.1.5. In practice this means that when no
fuel is injected there is no engine out NOx and therefore there will be no difference
in DSP .

When adding AFR to the regression model it was, due to the saturation, set to
be 200−AFR. The reason for this is that the desired dynamic from it was that DSP

was low when AFR equals 200. In these cases it is desirable to cancel out terms to
get as low value as possible and therefore should 200− AFR be added.
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The torque, τEng, was also found to affect DSP . The comparison between them
is shown in Figure 3.14.
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Figure 3.14: Comparison of τEng and the difference between the Horiba values and
estimated values from the semiphysical model.

It can be seen in Figure 3.14 that DSP tends to go higher every time that τEng
gets a higher value. τEng is therefore also good to use when estimating D̂SP .

The last variable that was visually found to have an impact on DSP is the EGR
valve angle, αEGR. This is a valve that controls the EGR flow with αEGR which is
a percentage value where 100 means that the valve is fully opened and 0 is fully
closed. The relation between the position of αEGR and DSP is shown in Figure 3.15.
The sign of αEGR in Figure 3.15 is changed to easier see the relation.
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Figure 3.15: Comparison of αEGR and the difference between the Horiba values
and estimated values from the semiphysical model. The position is sign changed to
easier see the relation.

Similar to Ccorr, the valve position have somewhat the same behaviour as DSP

and should be used when concluding D̂SP .
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In addition to the variables that have been found to have a connection to DSP ,
other variables are also added to the model such as the inverse of an already added
variable and the boost temperature TB. The added variables are

• T̃B − TB

• 1/(T̃B − TB)

• P̃R/PR

The boost temperature, TB, is dependent on a reference value in the semiphysical
model. This variable is in the model dependent on the reference temperature, T̃B,
and the variable are therefore set to T̃B−TB. No graphical relation can be found for
the boost temperature but it provides a positive impact on making D̂SP as similar
to DSP as possible. The same goes for P̃R/PR and 1/(T̃B − TB). The reason to
why these variables were considered are because the product between variables can
have a relation as well, meaning that the variable itself does not necessary provide
a positive impact.

Hundreds of variables are measured and calculated in the ECU and they might
affect DSP more or less. However, the ones used for D̂SP have connection to MSP

in one way or another and the other ones from the ECU were never considered.

3.1.3 Radial Basis Empirical Model

The second model used in this thesis uses radial basis functions and are empirically
developed. Another difference from the semiphysical model is that this model does
not depend on such reference points. Instead, every estimation from the model is
calculated from a set of stationary points that describes the behaviour of the NOx

flow as good as possible.
In the same way as for the semiphysical model, only the function for low hp

eSCR engine is going to be presented in this section, i.e. D̂low
RB . The reason for this

is once again that the same behaviour is seen for all engines and the same reasoning
is applied on them.

The first variable that is used for the empirical model is PR, i.e. the rail pressure.
The relation between PR and DRB is shown in Figure 3.16.
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Figure 3.16: Comparison of PR and the difference between the Horiba values and
estimated values from the empirical model.

In Figure 3.16 a relation between the error and PR can be seen. PR tends to have
the same behaviour as DRB, when DRB is high is PR high as well. This is enough
information to include PR when making D̂RB.

For the radial basis model the cylinder wall temperature correction factor, Ccorr,
is considered as well. Just as for the semiphysical model, it is inverted in this context.
The relation between 1/Ccorr and DRB is shown in Figure 3.17.
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Figure 3.17: Comparison of 1/Ccorr and the difference between the Horiba values
and estimated values from the empirical model.

It can be seen in Figure 3.17 that when 1/Ccorr is high DRB is high as well. This
is an indicator that there is a relation between the variables and therefore 1/Ccorr
should be included when calculating D̂RB.

The EGR valve angle, αEGR, is considered for the radial basis model too. Just
as for the semiphysical model αEGR is sign changed when searching for the relation
between it and DRB. This is shown in Figure 3.18.
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Figure 3.18: Comparison of αEGR and the difference between the Horiba values
and estimated values from the empirical model.

As seen in Figure 3.18 DRB tends to be higher when αEGR is close to zero. This
is enough information to include αEGR when calculating D̂RB.

The air fuel ratio, AFR is included for the radial basis model as well as for the
semiphysical model. The same arguments is valid here as for the semiphysical model
where the AFR saturates at its max and at that point DRB is low.
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Figure 3.19: Comparison of AFR and the difference between the Horiba values
and estimated values from the empirical model.

In Figure 3.19 it can be seen that there is information in the AFR that affects the
performance of DRB. Therefore, AFR should be included when calculating D̂RB. In
the same way as for the semiphysical case the AFR is here added to the regression
as 200− AFR to capture the behaviour that DRB is low when the AFR saturates.

Another variable that is shown to have a relation to DRB is the torque from the
engine, τEng. The relation between these two is shown in Figure 3.20.
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Figure 3.20: Comparison of τEng and the difference between the Horiba values and
estimated values from the empirical model.

It can be seen in Figure 3.20 that when τEng increases in amplitude DRB is
increasing as well. The percentage they increase do not match but there is still
information that can be useful when constructing D̂RB.

The final variable that is used for D̂RB is the speed and torque correction variable,
Cωτ . The relation between Cωτ and DRB is shown in Figure 3.21.
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Figure 3.21: Comparison of Cωτ and the difference between the Horiba values and
estimated values from the empirical model.

In Figure 3.21 a relation between the error and can Cωτ be seen. Also here the
behaviour between Cωτ and DRB is similar and is therefore included in D̂RB as well.

In addition to the variables that have been found to have a relation to DRB,
there are also other variables added to the model such as the inverse of an already
existing variable and the boost temperature TB. The added variables are

• 1/PR

• TB

• 1/TB
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These variables were proven to have a positive impact on making D̂RB as similar to
DRB as possible.

For the boost temperature TB no graphical relation can be found but it provides
a positive impact on making D̂RB as similar to DRB as possible. The same goes for
1/PR and 1/TB.

Just like the semiphysical model many more variables than the ones used are
available but they were never considered.

3.1.4 Equation for Model Accuracy Estimation

The goal of the function D̂ is to be as close to D as possible in terms of engine
out NOx. The creation of D̂ is done using stepwiselm in MatLab© which creates a
linear regression model using both forward and backward stepwise regression. For
this method different types of inputs to D̂ were tested based on the observations
done in section 3.1.2 and 3.1.3 to get D̂ to represent D as good as possible. The
final set of inputs that were used for D̂low

SP was

τEng
ωEng/ω̃Eng
(T̃B − TB)

1/(T̃B − TB)
PR/P̃R
P̃R/PR
1/Ccorr
αEGR

(200− AFR)


(3.8)

and for D̂low
RB 

τEng
TB

1/TB
PR

1/PR
1/Ccorr
αEGR

(200− AFR)
Cωτ


. (3.9)

The inputs for all other engines are shown in Appendix A.1.1. These inputs were
then used in stepwiselm to get the first version of D̂low

SP and D̂low
RB . The stepwise

regression model calculated a model which uses both the inputs as well as combi-
nations of them to build D̂low

SP and D̂low
RB . The number of predictor variables in D̂low

SP

and D̂low
RB will therefore most likely exceed the number of inputs to the model.

After this first set of D̂low
SP and D̂low

RB , the models were analyzed to improve the
performance. This was done by recursively remove those coefficients with the the
highest p-value, i.e the ones that have the weakest evidence for rejecting the null
hypothesis. This was done to reduce the computational effort of the models. In
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Figure 3.22 the calculation time it takes for D̂low
SP to predict an estimate is shown.

Here only the method for D̂low
SP is going to be presented but the exact same reasoning

is applied on the other combinations of models and engines.
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Figure 3.22: The relation between amount of samples in the model and the compu-
tational time it takes to predict a sample for D̂low

SP . In 0 no coefficients are removed
from D̂low

SP and at 43 all coefficients except for the constant term are removed.

It can be seen in Figure 3.22 that the computational time per predicted sample
relates linearly to the amount of coefficients in the model. It is therefore wanted
to have as few coefficients as possible in the model. The small humps are probably
there because of other running tasks on the computer.

To be able to determine how many and which coefficients to remove in the model
MSE, NRMSE, and R2 are measured for different amount of removed coefficients.
R2 is a measurement between 0 and 1 of how good the model can predict data
where a high number is preferable. The outcome for NRMSE and R2 applied on
validation data are shown in Figure 3.23. The reason why MSE is not shown is that
it follows the inverted behaviour of NRMSE and therefore it is sufficient to only
analyze NRMSE.
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Figure 3.23: R2 and NRMSE values for different amount of coefficients removed
from D̂low

SP . At 0 no coefficients are removed from D̂low
SP and at 43 all coefficients

except for the constant term are removed.
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From Figure 3.23 a trade-off between speed and performance can be done by
choosing how many variables to remove. The curves are in the beginning quite flat
and removal of these variables with highest p-statistic will not effect the performance
much. But if one choose to remove approximately 35 coefficients in this case the
performance will be effected negatively but the calculation time will at the same
time improve by decreasing the number of coefficients. For this case the amount of
removed coefficients was chosen to be six. This number was chosen because the first
decline in R2 was spotted there and a decrease in performance is not wanted.

The method of removing coefficients with the the highest p-value can also be
done by changing the acceptance level of the p-value in stepwiselm and the retrain
the models. But due to that the performance of the models was considered to be
good enough, and the training process is very slow, were the models not retrained
but instead edited. If the models were retrained, a slight performance improvement
in comparison to the edited models are expected. But as mentioned was already the
performance considered to be good enough.

To get the final equation for D̂low
SP and D̂low

RB the Cooks distance for all training
samples was also analyzed as described in Section 2.1.4. Here outliers were removed
and a more accurate model was achieved.

The final equations for D̂low
SP and D̂low

RB are shown in Appendix A.1.2.

3.2 Sensor Fusion
Sensor fusion is the process when different sources of information are combined to
make a prediction with less uncertainty than the separate measurements individu-
ally. The used sources for this thesis are the sensor and five observer estimations
from five different methods that will be described in the following sections. Those
five are; FE, DKF, UIO, SSUIO and ESV. No specific engine model is going to be
mentioned because the exact reasoning and method presented here is applicable on
all engines.

3.2.1 State Observation Using Fraction Estimator
A first estimation of the current NOx flow, NOest

x , can be done using ESP and ERB
in a so called fraction estimator (FE). Depending on the magnitude of ESP and ERB
they can separately be chosen to utilize fractions of the estimated NOx values from
the two NOx flow models. To do this, ESP and ERB are first normalized to better
be able to compare them. This is done by dividing ESP and ERB separately with
ESP + ERB. Then a combined estimation using MSP and MRB can be calculated
with

NOest
x = ESPMSP + ERBMRB

ESP + ERB
. (3.10)

One signal that is used to extend equation (3.10) for an even better estimation
is the cylinder wall temperature correction factor, Ccorr. Ccorr has a value between
1, when it is in steady state, and between 0 and 1 when the system is in a transient
phase. Since the NOx sensor is assumed to be accurate in steady state, and less
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accurate when the NOx flow have transient behaviour, Ccorr is a good signal to
use. The correction is done in a multiplicative manner and in steady state the
temperature is multiplied with 1 because no correction is needed. However its value
never reaches 0 and therefore a slack γ is added to get a better balance of the
weighting between the sensor and the combined estimation NOest

x . The values of
the slack variables for the three different engines are seen in Appendix A.2.1. The
sensor and NOest

x are then fused together with Ccorr to provide an as good estimate
as possible. How this is done is illustrated in Figure 3.24.

MSP

MRB

S

NOx,est

NOxFusing with
Ccorr

ESPMSP+ERBMRB

ESP+ERB

Figure 3.24: Description of how the estimation of engine out NOx is done using
the two models and the sensor. The model values are first weighted, corresponding
to how accurate they are, and then the combined model estimation, NOest

x , is fused
with the sensor value using Ccorr.

From Figure 3.24 with equation (3.10) a first observer can be formulated as

NOx = (1− Ccorr + γ)
(
ESPMSP + ERBMRB

ESP + ERB

)
+ (Ccorr − γ)S. (3.11)

A problem with this approach is that the NOx estimation can become unstable
if ESP or ERB are negative. In reality ESP and ERB are always positive but this
information is not known by the regression models even if all the training data are
strictly larger than zero. The operating points where the models return negative
number occurs when the true values of ESP or ERB are small. Therefore these values
are saturated to a small value, which in this case is set to 10 to prevent the unstable
behaviour. This saturation is also used in the upcoming observers where (3.10) is
used.

Another approach of handling the negative values of ESP or ERB could be to
use |ESP | or |ERB|. The cases when ESP or ERB become negative was when the
true values were close to zero. The negative values was in this points a small spike
below zero. If the absolute value was applied on this signal would a positive spike
be appearing rather than zero which is the true value. ESP or ERB was then set to
a small value instead of using the absolute value because this should be closer to
the true value.

3.2.2 State Observation Using Linear Kalman Filter With
Delayed Measurements

When designing an observer, a state space model is first implemented. For this
observer, the system is represented as a random walk model where the state vector,
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x, is just one state; the current NOx flow. The reason for this is that there is no
memory in the observed state. The current NOx flow is only dependent on the
current operating point and not on the earlier NOx values. Therefore there is no
reason to extend the system model to a constant velocity or a constant acceleration
model. Following this the state space system is formulated as

xk+1 = xk + qk

yk = Ckxk + rk
(3.12)

at time k and where q and r are the independent Gaussian noises

qk ∼ N (0, 1) rk ∼ N (0, Rk). (3.13)

In the same way as C will change size depending on number of inputs the covariance
matrix R will do that as well. R is used when the sensor value is not available and R∗
is used when the sensor value is available as described in equation (2.13) and (2.14).
There will be no control inputs to the model and because of that B and D from
equation (2.7) are zero and removed from the equation.

The linear Kalman filter with delayed measurements will be using the random
walk model, but with the method described in Section 2.3 instead. In this strategy
all sources of information are fused in one estimator simultaneously. This strategy
is shown in Figure 3.25.

Delayed Kalman

Filter

MSP

MRB

S

NOx

Figure 3.25: Fusion of information using one estimator where the models and the
sensor are fused together simultaneously.

For this observer the measurement noise covariances are defined as

Rk =
[
a ·D2

SP,k 0
0 b ·D2

RB,k

]
R∗k =

a ·D
2
SP,k 0 0

0 b ·D2
RB,k 0

0 0 c · FS,k

 (3.14)

DSP,k and DRB,k are squared due to that they are the expected value of the error
and not the variance of the error. FS,k is the error function for the sensor that is
tuned to match the error functions for the models. It is set to

FS,k = 1
Ccorr

. (3.15)

a, b and c are tuning variables that are tuned to achieve as good fit to validation data
as possible. The reason for that a and b are the same in Rk and R∗k is because these
reflect the relation between the accuracy of the models. This accuracy relationship
should be the same independent of the presence of a sensor in the measurement
equation.
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As earlier stated, Ccorr is a good measurement of steady state behaviour which
means that it is also a good estimation for the sensor covariance as the uncertainty
will be higher with a lower value of Ccorr. However, it does not have the same
magnitude as DRB,k and DSP,k and needs to be tuned accordingly by tuning c.

The reason for having the tuning parameters a and b and not use DRB,k and
DSP,k directly is that the models are not perfect. They are both trained on data
that have uncertainty and this will decrease the performance of the models. By
tuning the parameters a and b the impact of bad models can be decreased because
the uncertainty of the models will be captured in a and b.

When the Kalman filter is updating x̂s with information from the sensor in time
k, the measurement model in (3.12) is extended to

ys =

1
1
1

xs + r∗k (3.16)

but as mentioned it will use
yk =

[
1
1

]
xk + rk (3.17)

in all other calculation steps.

3.2.3 State Observation Using an Unknown Input Observer
In this section an UIO as explained in Section 2.4 in combination with parts from
the FE is developed. The strategy of this observer is shown in Figure 3.26.

MSP

MRB

S

NOx,est

NOx

ξESPMSP+ψERBMRB

ξESP+ψERB

Unknown Input
Observer

Figure 3.26: Description of how the estimation of engine out NOx is done using
the two models and the sensor. A first estimation is done with the FE and then it
is fused with the sensor value using an unknown input observer.

The model values that are used in the UIO are the fused estimates from MSP

and MRB. This is done in the same manner as in (3.10) and only a single estimate
NOest

x from the models is used. In the same way as a, b and c were implemented for
tuning of the DKF, ξ and ψ are here introduced to further capture the difference
between the model performance. These tuning parameters extends (3.10) to

NOest
x = ξ(ESPMSP ) + ψ(ERBMRB)

ξESP + ψERB
. (3.18)
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These new values will then be fused with the sensor values in the UIO, as shown
in Figure 3.26. One major reason for this is to enable the possibility to have a steady
state solution to the UIO. It is possible to do a steady state solution to the Kalman
filter if ERB,k and ESP,k are excluded in the Kalman filter calculations and instead
used for fusing model values. By doing these two things, the pros with ERB,k and
ESP,k are kept and at the same time is a steady state Kalman filter possible.

The representation of the delayed sensor is an important aspect of this observer.
The sensor dynamics will here be modeled as

H∗(s) = 1
τs+ 1 , (3.19)

in other words, a low pass filter where τ is the time constant and s is the Laplace
variable. A low pass filter is a simple way to model the sensor delay and that is the
reason for the usage here. This can be rewritten as

H∗(s) =
1
τ

s+ 1
τ

. (3.20)

For the filter to be applicable in this thesis a corresponding discrete time filter
must be calculated. The pole of H∗(s) is s = − 1

τ
and the discrete filter should

have the same pole placement. This implies that the discrete system should have a
pole in z = e−

Ts
τ where Ts is the sampling rate. This means that the discrete filter

transfer function is
H(z) = G

z − e−Tsτ
(3.21)

where G is still to be concluded. To determine G the low frequency behaviour of
both H(s) and H(z) are analyzed. They are both transformed to the frequency
domain and becomes

H∗(jω) =
1
τ

jω + 1
τ

H(jω) = G

ejω − e−Tsτ
.

(3.22)

This makes

limω→0 H
∗(jω) = 1

limω→0 H(jω) = G

1−e−Ts
τ

}
=⇒ 1 = G

1− e−Tsτ
⇐⇒ G = 1− e−Tsτ (3.23)

The final discrete time low pass filter is then formulated as

H(z) = 1− e−Tsτ
z − e−Tsτ

. (3.24)

For the UIO a state space model with unknown inputs needs to be created. For
each unknown input an extra state is added and a system description of this is seen
in Figure 3.27.
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Figure 3.27: System description of the unknown input observer.

There are three states in the system where x1 is the true NOx flow, x2 is the
delayed sensor value without noise and x3 is the bias of the models. Both x1 and x3
are driven by white process noises w1 and w2 that are integrated. This will change
them to random walk models that are used to model the unknown input which in
this case are the true state and the true model values without bias and noise. n1
and n2 are sensor noise and model noise respectively.

The state space model for the UIO can now be formulated as

xk+1 =

x1
x2
x3


k+1

=

 1 0 0
1− e−Tsτ e−

Ts
τ 0

0 0 1

xk +

1 0
0 0
0 1

 · [w1
w2

]

yk =
[
yS
yM

]
=
[
0 1 0
1 0 1

]
xk +

[
1 0
0 1

]
·
[
n1
n2

] (3.25)

where x1 will be the tracked state.

3.2.4 Steady State Solution of a Unknown Input Observer
Only one of the developed observers will be implemented in TargetLink and this
will be the UIO described in Section 3.2.3. The reason for this is that the UIO have
been seen to have good performance in comparison to the other observers and is not
computational demanding. The metrics behind this decision is shown in Chapter 4.
It is once again a trade off between speed and performance that have to be done.
The observer needs to be feasible in the Volvo software and therefore the steady state
solution of the UIO (SSUIO) is wanted. The steady state solution is computationally
cheaper than the iterative solution to the filter. Let the value of the steady state
Kalman gain be K̄. This value will now be used instead of the iterative solution.

3.2.5 State Observation Using an Extended State Vector
The final observer strategy is to extend the state vector (ESV) to include delayed
states from k to s. An argument for this is that the delayed sensor measurement
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can observe a state directly and the current state will be affected by it through the
system dynamics. After the expansion, the state vector expanded to

Xk =



xk
xk−1
...

xs+1
xs

 (3.26)

where the delayed sensor value is measured in time s. The state space, using this
state vector is

Xk+1 = AXk + qk+1

yk = CXk + rk.
(3.27)

In the same way as for the UIO the Kalman filter used is an ordinary Kalman filter
and the system description is instead the feature investigated here.

The strategy of this observer is shown in Figure 3.28.
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NOx,est

NOx

ξESPMSP+ψERBMRB

ξESP+ψERB

Extended State
Vector

Figure 3.28: Description of how the estimation of engine out NOx is done using
the two models and the sensor. A first estimation is done with the FE and then it is
fused with the sensor value using an extended state vector description in a Kalman
filter.

Following the description in Figure 3.28 only two measurements are going to be
used in the Kalman filter, the combined model value and the sensor measurement.
A and C in (3.27) can now be formulated as

A =



0 1 0 0 0
0 0 1 0 . . . 0
0 0 0 1 0

... . . . ...
0 0 0 0 . . . 1
0 0 0 0 . . . 0


C =

[
1 0 . . . 0
0 0 . . . 1

]
. (3.28)

The noise q is tuned as an increasing diagonal with the highest value in the bottom
right element. This is due to that the uncertainty should increase for each step back
in time.

The noise covariance R in r is constructed as

R =
[

d
Ccorr

· a 0
0 b

]
(3.29)
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where d is the delay, a and b are tuning variables. Ccorr is used to weigh the sensor
more or less depending on if the system is in steady state or not. The uncertainty
of the sensor should also be increased when the delay is increased and that is why
d is included as well.
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4
Results

In this chapter the results of the thesis are presented. First all six functions (three
engine types times two NOx flow models) are evaluated against their respectively
true NOx flow. After that the results from the sensor fusion are presented, first with
a developed fraction estimator, then with Kalman filters with delayed measurements,
then with the unknown input observer both for iterative and steady state Kalman
gain and lastly the Kalman filter with extended state vector.

All results are evaluated and compared to the validation data of the datasets
and it have been executed on a laptop with Intel i7 processor in Matlab© 2015.

4.1 Evaluation of the Estimated Difference Be-
tween Models and Horiba

In this section the performance of both D̂SP and D̂RB will be shown for all engines.
The evaluation will be in terms of MSE in comparison toDSP andDRB and NRMSE.
The combined performance of the models will then be presented where the amount
of times the correct model was chosen are shown.

4.1.1 Evaluation of the Semiphysical Model
As mentioned in Section 3.1.1 cropping of non representative data might be good
when finding the MSE over datasets. Therefore three crop sizes were tested. One
for 100 % of the idle driving remaining, one for ∼ 20 % remaining and one for 0 %
remaining idle driving. How the MSE is changed based on how much of the non
representative data that is cropped is seen in Table 4.1 for all three engines.

Table 4.1: MSE for different amounts of cropping and engines for D̂SP , measured
in [ppm2].

D̂low
SP D̂high

SP D̂TC
SP

100% 2218 7447 5006
20% 2332 6241 5574
0% 2340 6144 5617

Even though the MSE was decreased for 100% for two out of three engines the
one with 0% will be used. This is because it do not compensate for the fact that the
model is trained on idle behaviour. The reason why it does not increase or decrease
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for all three engines is because the idle behaviour was caught very well for D̂low
SP and

D̂TC
SP while there was a constant offset in the idle parts between D̂high

SP and Dhigh
SP .

This makes the MSE higher than for the other two where the offset did not exist.
The following three Figures 4.1-4.3 compares the calculated function D̂SP with

DSP for each engine model. In Figure 4.1 the comparison between D̂low
SP and Dlow

SP is
shown.
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Figure 4.1: Comparison between D̂low
SP and Dlow

SP . D̂low
SP manages to describe the

behaviour of Dlow
SP rather well. They have the same characteristics in both amplitude

and in transients.

In Figure 4.2 the comparison between D̂high
SP and Dhigh

SP is shown.
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Figure 4.2: Comparison between D̂high
SP and Dhigh

SP . D̂high
SP manages to describe the

behaviour of Dhigh
SP well. They have the same characteristics in both amplitude and

in transients.

In Figure 4.3 the comparison between D̂TC
SP and DTC

SP is shown.
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Figure 4.3: Comparison between D̂TC
SP and DTC

SP . D̂TC
SP manages to describe the

behaviour of DTC
SP rather well. They have the same characteristics in both amplitude

and in transients.

As seen in Figure 4.1-4.3 the calculated functions for D̂SP manages to mimic DSP

rather well based on the complexity the system have for all three engine models.
The same characteristics are seen both for amplitude and in transients.

The MSE against DSP and how far on average D̂SP deviates from DSP are
measured for the developed models. These metrics are shown in Table 4.2.

Table 4.2: Metrics describing the performance of D̂SP .

D̂low
SP D̂high

SP D̂TC
SP

MSE [ppm2] 2456 3398 8607
Average Deviation [ppm] 27.0 37.4 64.7
Average Deviation [%] 19.2 24.4 42.4

From Table 4.2 it is seen that the metrics for D̂TC
SP are highest and this is also

confirmed from Figure 4.1 - 4.3 where the y-axis for 4.3 has a higher amplitude than
the other two which leads to a higher MSE and average deviation.

4.1.2 Evaluation of the Radial Basis Model
The data was cropped for the radial basis model as well as for the semiphysical
model. Also here the same three crop sizes were tested. The resulting MSE for each
engine model and how much data removed are seen in Table 4.3.

Table 4.3: MSE for different amounts of cropping and engines for D̂RB, measured
in [ppm2].

D̂low
RB D̂high

RB D̂TC
RB

100% 1944 2402 4321
20% 1909 2197 4389
0% 1856 2160 4418
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As seen in Table 4.3 the MSE is decreased when all of the idle driving is removed
for two out of three engines and therefore it is excluded from the datasets when
training the best D̂RB as well.

The following three Figures 4.4-4.6 compares the calculated function D̂RB with
DRB for each engine model. In Figure 4.4 the comparison between D̂low

RB and Dlow
RB

is shown.
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Figure 4.4: Comparison between D̂low
RB and Dlow

RB . D̂low
RB manages to describe the

behaviour of Dlow
RB rather well. They have the same characteristics in both amplitude

and in transients.

In Figure 4.5 the comparison between D̂low
RB and Dlow

RB is shown.
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Figure 4.5: Comparison between D̂high
RB and Dhigh

RB . D̂high
RB manages to describe the

behaviour ofDhigh
RB rather well. They have the same characteristics in both amplitude

and in transients.

In Figure 4.6 the comparison between D̂TC
RB and DTC

RB is shown.
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Figure 4.6: Comparison between D̂TC
RB and DTC

RB. D̂TC
RB manages to describe the

behaviour of DTC
RB rather well. They have the same characteristics in both amplitude

and in transients.

As seen in Figure 4.4-4.6 the calculated functions for D̂RB manages to mimicDRB

rather well based on the complexity the system have for all three engine models.
The same characteristics are seen both for amplitude and in transients.

The metrics collected for these developed models are both the MSE against DRB

and how far on average D̂RB deviates from DRB. This data is shown in Table 4.4.

Table 4.4: Metrics describing the performance of D̂RB.

D̂low
RB D̂high

RB D̂TC
RB

MSE [ppm2] 2149 2052 8461
Average Deviation [ppm] 24.9 25.0 56.8
Average Deviation [%] 16.5 16.9 36.9

From Table 4.4 it is seen that the metrics for D̂TC
RB are highest and this is also

confirmed from Figure 4.4 - 4.6 where the y-axis for Table 4.4 has a lower amplitude
than the other two and D̂high

RB follows Dhigh
RB more precise than how D̂TC

RB follows DTC
RB.

This leads to a higher MSE and average deviation.

4.1.3 Evaluation of the Developed Models Using Normal-
ized Root Mean Squares

To further evaluate the performance of the models the NRMSE can be used. The
corresponding NRMSE for each model is shown in Table 4.5.
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Table 4.5: The NRMSE for all engine models and both developed models. The
values are all over 0 and this indicates that the developed models are better than
the trivial solution.

NRMSE
D̂SP D̂RB

Low hp 0.2189 0.3326
High hp 0.3566 0.4679
TC 0.5795 0.2908

The values in Table 4.5 shows that all models are better than the trivial solution,
a constant line fitted to the mean of the true values. They are not a perfect fit but
that was expected due to that the inputs to the models do not perfectly match D,
as seen in Section 3.1.2 and 3.1.3. The result was considered to be good enough to
use in the upcoming observers because all NRMSE values was larger than zero. The
reason to why the NRMSE for the semiphysical model on TC is higher than the
other two is because of that DSP performs poorly and have a high difference. This
means that even if D̂SP performs averagely it will be better than the mean of DSP

and the NRMSE will be closer to one than to zero.

4.1.4 Evaluation of the Combined Performance of the De-
veloped Models

Two evaluation methods are used when evaluating the combined performance of
D̂SP and D̂RB for respective engine. One is by comparing D with D̂ to see how
often the right model is chosen to represent the difference. The second method is
to evaluate how often the correct model was weighted most in those cases where it
matters the most, i.e. where D̂SP or D̂RB have high values.

The cooperation between the two models developed for each engine is very im-
portant. In some cases one of the models could be inaccurate and in that case the
observers should rely more on the other model. When to listen to which NOx flow
model can be described with

ζ = DSP −DRB. (4.1)

When ζ is larger than 0 DSP is larger than DRB, which means that the semiphysical
model differ more from the Horiba measurements than the radial basis model. In
that case it is desirable to take the radial basis model more into account in the
observer. The same behaviour of ζ is desirable when the estimated models D̂SP and
D̂RB are used according to

ζ̂ = D̂SP − D̂RB. (4.2)

A metric for the performance of D̂SP and D̂RB can then be described as the function
when ζ and ζ̂ suggest to listen to the same model the most. This condition can be
described by

sign (ζ) = sign
(
ζ̂
)
. (4.3)
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In Figure 4.7 ζ and ζ̂ are shown respectively for the low hp eSCR engine. The
goal is to make the two signals as similar as possible and at least on the same side
of the dashed red line.
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Figure 4.7: Comparison of the choice of model that ζ̂low and ζlow indicate. The
goal is to make the two signals as similar as possible and at least on the same side
of the dashed red line. If they are on different sides the ζ̂low and ζlow are suggesting
different models.

It can be seen in Figure 4.7 that ζ̂low is following ζlow well. One of the most
important things here is that they are located on the same side of the dashed red
line. If they are on different sides ζ̂low and ζlow are suggesting to listen to different
models.

In Figure 4.8 ζ and ζ̂ are shown respectively for the high hp eSCR engine.
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Figure 4.8: Comparison of the choice of model that the developed ζ̂high and ζhigh
indicates.

It can be seen in Figure 4.8 that ζ̂high is following ζhigh well. They are located
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on the same side of the dashed red line most of the time and have the same charac-
teristics but ζ̂high does not quite reach the peaks of ζhigh.

In Figure 4.9 ζ and ζ̂ are shown respectively for the 500 hp TC engine. Note that
the values are almost always over zero here which means that DRB is estimating the
NOx flow better for this engine model.

850 900 950 1,000 1,050 1,100 1,150

−500

0

500

Time [s]M
ea
su
re

of
W

hi
ch

M
od

el
to

Tr
us
t

Comparison of ζ̂TC and ζTC

ζ̂TC
ζTC

Figure 4.9: Comparison of the choice of model that the developed ζ̂TC and ζTC
indicate.

It can be seen in Figure 4.9 that ζ̂TC is following ζTC well. They are located on the
same side of the dashed red line most of the time and have the same characteristics
expect for on a few of the peaks.

In Table 4.6 is the percentage of how often ζ̂ and ζ wants to listen to the same
model, described by (4.3), for respective engine.

Table 4.6: Percentage of how ζ̂ and ζ wants to listen to the same NOx flow model
for each engine model.

low hp high hp TC
Accuracy 93.59% 84.56% 94.94%

The TC data can here be a bit misleading because one model is clearly better
than the other. In Figure 4.9 both ζTC and ζ̂TC most of the time are positive which
means that DTC

SP is larger than DTC
RB. This means that the precision of MSP is lower

than MRB for the most part. Even with bad D̂TC
SP and D̂TC

RB that suggest to pick
MRB in all points will a good percentage for TC be achieved when one model has
much less accuracy than the other. This is not a problem here though because the
performance can be validated through Figure 4.3 and Figure 4.6 where D̂TC seems
to follow well.

The most crucial part of the cooperation between ζ̂ and ζ are that they are on
the same side for large values of ζ. These points are where one of the NOx flow
models is much better than the other because the subtraction in (4.2) results in a
large value. To illustrate this a lower limit of ζ is implemented. All values in ζ
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that are lower then the limit are removed and not included in the calculations. The
calculations describes how many times ζ̂ is on the same side of 0 as ζ and fulfills the
condition in (4.3). This can be expressed by an extension of the criterion (4.3) to

sign (ζ) = sign
(
ζ̂
)
∧ ζ > lower limit. (4.4)

The lower limit in (4.4) was then slided from 0 to 1100 and for each new lower limit
more points were removed. The result from increasing the lower limit for ζ and the
three engines are shown in Figure 4.10.
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Figure 4.10: Amount of time ζ̂ and ζ have chosen to listen to the same NOx

flow model for different lower limits. The desirable behaviour here is that the lines
converge to 100 %, preferably as quickly as possible. This means that the correct
model was chosen when it was most important.

For low limits the choice of model is not crucial. If ζ is small an inaccurate choice
will not have a large impact on the performance. For high limits the choice is very
important. In these points one model is clearly better than the other and wrong
choice here could lead to large decrease in performance.

The reason why it starts low and then increase is that it is hard to predict which
model to listen to when ζ is small. ζ̂ must be very accurate to catch this behavior.

The different engine models do here have different lengths in Figure 4.10. The
reason for this is that if the model is good, then the D value will be small because
the model will be accurate. It will then not have any values left when the lower limit
is approaching high values. The line will then be shorter than for models which have
large values in D. It can then be seen in the figure that high hp and TC have larger
values, which means that the models are performing better on low hp than high hp
and TC.

4.2 Sensor Fusion Performance with Different Es-
timators

Earlier in the thesis five different estimators have been presented. These are:
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1. FE

2. DKF

3. UIO

4. SSUIO

5. ESV

The performance of these observers will in this section first be presented separately
and then compared against each other. Only the results for the low hp engine are
going to be shown in this section. The corresponding results for the high hp and
TC engine are shown in Appendix A.2.7.

4.2.1 Performance of Fraction Estimator
In this section the performance of the fraction estimator described in Section 3.2.1
will be presented. The estimated NOx flow from this observer, NOx sensor values,
and Horiba measurements for eSCR low hp are shown in Figure 4.11.
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Figure 4.11: Sequence from the validation dataset of eSCR low hp that shows
that FE behaves like the Horiba measurements well. It has the same amplitude and
keeps up in the transient parts. The content in the dashed square is shown in the
plot in the left corner. Here it can be seen that the transient behaviour is better for
the FE than for the sensor.

It can be seen in Figure 4.11 that the estimator is behaving like the Horiba
measurements quite well. They have both the same characteristics and about the
same amplitude. The left corner of Figure 4.11 shows the content from the dashed
square. It can be seen that FE have better transient behaviour then the NOx sensor.
FE responses to both a positive and negative step faster than the NOx sensor and
this behaviour was consistent through out the dataset.
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The performance of the FE is evaluated for both MSE and calculation time
per sample for all engine models. This evaluation is shown in Table 4.7. It is the
fraction between the MSE for the FE and the sensor who are presented and not
the pure MSE. The reason for this is that the important performance in this part is
the observer MSE in relation to the sensor MSE and not the actual MSE value of
the observer. It is wanted to have as low MSE quota as possible but less than one
implies that an improvement from the sensor is achieved.

Table 4.7: Metrics for the fraction estimator performance.

low hp high hp TC
MSE (FE/Sensor) 0.31469 0.56405 0.55190
Calculation Time per Sample [ms] 0.23033 0.41810 0.12326

4.2.2 Performance of Delayed Linear Kalman Filter
In this section the performance of the linear Kalman filter with delayed measure-
ments, described in Section 3.2.2, is presented. The delay that were used when
calculating the delayed Kalman filter was 15 samples which correspond to 1.5 sec-
onds. As described earlier, this filter must be tuned and the values that have been
concluded for a, b and c are shown in Table A.1 in Appendix A.2.2.

The estimated NOx flow from this observer, NOx sensor values, and Horiba
measurements for eSCR low hp are shown in Figure 4.12.
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Figure 4.12: Sequence from the validation dataset of eSCR low hp which shows
that DKF follows the Horiba measurements well. It have the same amplitude and
keeps up in the transient parts. The contents in the dashed square are shown in the
plot in the left corner. Here it can be seen that the transient behaviour is better for
the DKF than for the sensor.

It can be seen in Figure 4.12 that the DKF estimator is behaving like the Horiba
measurement well. They have both the same characteristics and about the same
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amplitude. The transient behaviour, shown in the zoomed in part in Figure 4.12,
is also better than the sensor where it responded to both a positive and negative
step faster then the NOx sensor and this behaviour was consistent throughout the
dataset.

The metrics of the observer performance for the different engine models are
shown in Table 4.8.

Table 4.8: Metrics for the delayed linear Kalman filter performance.

low hp high hp TC
MSE (DKF/Sensor) 0.30751 0.64489 0.71552
Calculation Time per Sample [ms] 6.1377 9.2503 4.3487

4.2.3 Performance of the Unknown Input Observer
In this section the performance of the unknown input observer, described in Sec-
tion 3.2.3, is presented. The tuning of the covariances in this filter that was found
to perform well for each engine is shown in Table A.3 in Appendix A.2.4 and were
used as

Q ∼ N (0, diag(σx)) R ∼ N (0, diag(σy)). (4.5)
The estimated NOx flow from this observer, NOx sensor values, and Horiba

measurements for eSCR low hp are shown in Figure 4.13.
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Figure 4.13: Sequence from the validation dataset of eSCR low hp which shows
that UIO follows the Horiba measurement well. It have the same amplitude and
keeps up in the transient parts. The contents in the dashed square are shown in the
plot in the left corner. Here it can be seen that the transient behaviour is better for
the UIO than for the sensor.

The methods for evaluating the UIO performance are the calculation time and
the fraction between observer MSE and sensor MSE. These metrics are shown in
Table 4.9 for all three engines.
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Table 4.9: Metrics for the UIO performance.

low hp high hp TC
MSE (UIO/Sensor) 0.34475 0.47945 0.40624
Calculation Time per Sample [ms] 0.31257 0.54464 0.19609

4.2.4 Performance of the Unknown Input Observer with
Steady State Kalman Gain

In this section the performance of the unknown input observer with steady state so-
lution from Section 3.2.4 is presented. The values which the Kalman gain converges
to are shown in equation (A.12) in Appendix A.2.5.

The reason for that the Kalman gain is close to just ones and zeros for K̄ low is
because of that the models themselves perform better than the sensor and for this
engine the model has chosen to almost exclude the sensor for the estimation. The
estimated NOx flow from this observer, NOx sensor and Horiba measurements for
eSCR low hp are shown in Figure 4.14.
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Figure 4.14: Sequence from the validation dataset of eSCR low hp which shows
that SSUIO follows the Horiba measurements well. It have the same amplitude and
keeps up in the transient parts. The contents in the dashed square are shown in the
plot in the left corner. Here it can be seen that the transient behaviour is better for
the SSUIO than for the sensor.

As seen in Figure 4.14 it behaves almost exactly as the UIO with iterative calcu-
lation of the Kalman gain. To further investigate the performance, calculation time
and the fraction between the observer MSE and sensor MSE are analyzed. The
results are shown in Table 4.10.
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Table 4.10: Metrics for the SSUIO performance.

low hp high hp TC
MSE (SSUIO/Sensor) 0.34459 0.49974 0.41685
Calculation Time per Sample [ms] 0.24107 0.44515 0.13603

4.2.5 Performance of the Extended State Vector Observer

In this section the performance of the Kalman filter with extended state vector
from Section 3.2.5 is presented. Here the covariances were set constant in order to
get the observer running and further tuning can be done to see if this observer is
comparable to the other ones. The estimated NOx flow from this observer, NOx

sensor and Horiba measurements for eSCR low hp are shown in Figure 4.15.
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Figure 4.15: Sequence from the validation dataset of eSCR low hp which shows
that ESV follows the Horiba measurements well. It have the same amplitude and
keeps up in the transient parts. The contents in the dashed square are shown in the
plot in the left corner. Here it can be seen that the transient behaviour is better for
the ESV than for the sensor.

To further investigate the performance, calculation time and the fraction between
the observer MSE and sensor MSE are analyzed. The results are shown in Table 4.11.

Table 4.11: Metrics for the ESV performance.

low hp high hp TC
MSE (SSUIO/Sensor) 0.29783 0.87144 0.77563
Calculation Time per Sample [ms] 0.29432 0.47777 0.18426
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4.2.6 Comparison of the Developed Estimator Performance
on each Engine Model

In this section the results from Section 4.2.1-4.2.2 will be compared for each engine
model. The low hp eSCR engine is shown in Table 4.12, the high hp eSCR in
Table 4.13 and the TC engine in Table 4.14.

Table 4.12: Comparison of metrics for all observers applied on the low hp eSCR
engine.

MSE Observer/Sensor Calculation Time Per Sample [ms]
FE 0.31469 0.23033
DKF 0.28460 6.1377
UIO 0.34475 0.31257
SSUIO 0.34459 0.24107
ESV 0.29783 0.29432

Table 4.13: Comparison of metrics for all observers applied on the high hp eSCR
engine.

MSE Observer/Sensor Calculation Time Per Sample [ms]
FE 0.56405 0.41810
DKF 0.64489 9.2503
UIO 0.47945 0.54464
SSUIO 0.49974 0.44515
ESV 0.87144 0.47777

Table 4.14: Comparison of metrics for all observers applied on the TC engine.

MSE Observer/Sensor Calculation Time Per Sample [ms]
FE 0.55190 0.12326
DKF 0.42371 4.3487
UIO 0.40624 0.19609
SSUIO 0.41685 0.13603
ESV 0.77563 0.18426

From Table 4.12-4.14 several patterns can be seen. The DKF clearly have the
largest computational time and the SSUIO have slightly higher MSE than the iter-
ative UIO. The calculation time decreased from UIO to the SSUIO. For low hp was
it decreased with 22%, 16% for high hp and with 26% for TC.
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5
Discussion

In this section the methods and results presented in this thesis will be discussed.
First different aspects of the developed models will be presented, followed by a
discussion about the developed observers and at last future work will be discussed.

5.1 Discussion of the Developed Models

In this section different aspects of the developed models will be discussed. This
includes inconsistent Horiba measurement delay and the model performance on the
TC engine.

5.1.1 Side Effect due to Inconsistent Horiba Measurement
Delay

The delay of the Horiba measurements are inconsistent and it is not possible to
perfectly shift it so it aligns with the other signals. This will give raise to different
artifacts in D̂ that are unwanted. In a positive step the Horiba measurements can
for example be behind the NOx flow models and this will give raise to a spike in D.
This spike is not present in the true system but when training D̂ these spikes will
be present. This will add uncertainty to the models and decrease their performance
because they are trained on non representative data.

5.1.2 Quality of Model performance on Turbo Compound
Engine

One issue in this thesis is that the performance of the NOx flow models on the TC
engine is not good. The semiphysical model is not optimized for TC engines and
is constantly underestimating the NOx flow values. The performance of the radial
basis model is not good either but not as bad as the semiphysical model. Because
the semiphysical model is not performing well it might be an idea to exclude it
from the observers as it is increasing the computational effort without bringing that
much value. This is a trade off between speed and accuracy and the choice will differ
depending on how good the semiphysical model performs.
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5.2 Discussion of the Developed Observers
In this section different aspects of the developed observers will be discussed. This
includes aspects of the delayed Kalman filter and exclusion of observers.

5.2.1 Steady State Solution to the Delayed Kalman Filter
If the methods that are developed in this thesis are going to be implemented on a
real ECU the computational power is an important factor. This implies that the
steady state solution of a Kalman filter is wanted, which means that the DKF in
the current execution is not possible to use in the ECU available today. In the DKF
R and R∗ are depending on dynamic functions. This implies that the Kalman gain,
in the most cases, will not converge and no steady state solution is possible.

The steady state Kalman gain for the low hp engine, shown in Table ?? Ap-
pendix A.2.5, seems to exclude the sensor measurements when estimating the NOx

flow. This is due to that the models are performing very good on the low hp engine.
This is not true for the high hp engine or the TC and in that case they are more
evenly weighted.

For all engines UIO is more accurate in terms of MSE than the SSUIO. This
might be a effect of that the Kalman gain is not optimal in the first samples of the
SSUIO. It will therefore have lower accuracy initially and increase the MSE of the
SSUIO. If, on the other hand, the iterative solution is used, the Kalman filter gain
is optimal from the start and this will improve the performance. Depending on how
off the Kalman filter gain is from optimal in the beginning the MSE will be affected
differently.

5.2.2 Drawbacks of the Delayed Kalman Filter
Using the DKF, many points are calculated several times due to the update of states
when a new measurement arrives. This will increase the calculation time per sample
and might not be feasible in systems where the calculation time is crucial, computing
power limited or when the sensor delay is large.

Another disadvantage of this method is that values must be stored to some ex-
tent. To be able to do the recalculation of x̂s+1:k, ys+1:k must be known. It must
therefore be stored in memory which in some cases are not possible. This disad-
vantage can be limited by setting a maximum delay that describes the maximum
amount of values from y that are saved. If the delay is from a time before the limit
it could then be discarded.

It is possible to use the same method for avoiding dynamic covariance matrices
in the DKF as used in the UIO. This method would fuse the model values before
using a combined measurement in the filter using equation (3.10). This will not
solve the problem with large computational time but a steady state solution will be
possible. The reason for that the computational time still will be a problem, even
if it will be slightly reduced with a steady state solution, is that the majority of the
calculation time comes from recalculating old estimates. The recalculations will still
be needed even if the steady state solution is used.
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5.2.3 Exclusion of Observers
It should be emphasized that no observers in this thesis should be excluded from
being implemented in the future. All observers are using D̂ that are based on training
data. If D̂ would be improved this can change which observer that is performing the
best in terms of accuracy. As seen in Section 3.1.1 the training data is not optimal.
This data might also affect the final accuracy of the observers.

5.3 Future Work
In this section potential future work will be presented. This includes improvements
of the developed models, dynamic time delay and merging of models.

5.3.1 Improvements of the Developed Models

There are some ways that D̂SP and D̂RB could potentially be improved. One thing
that could be tested is if the training and validation data would be split in an
another way. In the end of the used datasets are the engine speed often, more or
less, constant which can be seen in Figure 3.6. This behaviour will end up as a
majority of the data that are used for validation. This might not be a problem due
to that it is the transient behaviour of the NOx flow that is important. One can see
in Figure 3.10 that the NOx flow is still transient even though the engine speed is
somewhat stationary.

Another improvement that could have been done is to investigate more inputs
to D̂SP and D̂RB. There might be more signals that affect the models in a positive
way that are not included in the current models. A large portion of time have been
spent on finding the current parameters in the models and it is always possible to
spend more time and find more variables. This is encouraged to do in the future
due to the time restrictions of this thesis.

5.3.2 Dynamic Time Delay in Filters
An interesting next step for the DKF and UIO is the development of a dynamic
time delay. Now the delay was set to a fixed value of 1.5 seconds when evaluating
the observers. The delay of the sensor is not constant but it was put to a typical
delay of the sensor. The delay of the sensor can potentially be estimated using
the same methods that are used for finding D̂ in this thesis. This means, finding
signals that have correlation with the delay and then apply linear regression to find
a method that can predict the sensor delay. A more accurate delay can improve the
performance in the DKF and the UIO where they both assume that the delay given
is the true delay.

5.3.3 Possibility of One Model for All Engine Models

Initially in the project a single D̂ was developed for all three engine models. It turned
out that that engine models were so different from each other that the performance
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of the model was bad. It was inaccurate for some engines and accurate for others.
More investigation can be put into trying to develop a single model for all engine
types.

5.3.4 Improvements of the Developed Observers
There is always a possibility to improve the observers by fine tune them even more.
The tuning process was done on the current observers until the performance was
considered to be good enough, or until the performance was unable to improve by
tuning. To further improve the observers are therefore the reader, or implementer,
encouraged to tune the observers more.
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6
Conclusion

In this thesis five different observers have been developed for estimating the EO
NOx flow. These are

• FE

• DKF

• UIO

• SSUIO

• ESV

The main goal of the observers was to have a better transient behaviour than the
sensor used today for NOx flow estimation. All five designed observers have faster,
that will say better, transient behaviour than the sensor. The observers differ in
both accuracy and computational effort which are the two metrics used in this thesis.
If the observers would be ranked by their performed MSE, the list would be:

1. UIO - 1.23044 total MSE

2. SSUIO - 1.26118 total MSE

3. DKF - 1.3532 total MSE

4. FE - 1.43064 total MSE

5. ESV - 1.9449 total MSE

In this list the MSE values for all engine model are added together for each observer.
The corresponding list for the calculation time is:

1. FE - 0.77169 ms total calculation time

2. SSUIO - 0.82225 ms total calculation time

3. ESV - 0.95635 ms total calculation time

4. UIO - 1.0533 ms total calculation time

5. DKF - 19.7367 ms total calculation time
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The observer which had the best accuracy over all three engines was the UIO.
However, as the calculation time has an important role the SSUIO was made the
best candidate as it have less computational effort and have still a good performance
in comparison to the other observers. These decisions led to that the SSUIO was
chosen to be implemented in TargetLink and the observer which the authors suggest
Volvo should use to improve the EO NOx estimation.
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A
Appendix

A.1 Model Details

A.1.1 Inputs to Models

The models have different inputs for D̂SP and D̂RB and they are also different for
the different engines.

For D̂high
SP and D̂high

RB the equations are


τEng
1/τEng

ωEng/ω̃Eng
1/ωEng

(T̃B − TB)
1/(T̃B − TB)
PR/P̃R
P̃R/PR
1/C2

corr

1/Ccorr
αEGR

(200− AFR)
AFR



(A.1)

and 

τEng
ωEng

1/ωEng
TB

1/TB
PR

1/PR
1/Ccorr
Ccorr
αEGR

(200− AFR)
Ccyl
Cωτ



. (A.2)
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For D̂TC
SP and D̂TC

RB the equations are



τEng
ωEng/ω̃Eng
(T̃B − TB)

1/(T̃B − TB)
PR/P̃R
P̃R/PR
1/Ccorr
αEGR

(200− AFR)


(A.3)

and


τEng
TB

1/TB
PR

1/PR
1/Ccorr
αEGR

(200− AFR)
Cωτ


. (A.4)

A.1.2 Equations from Linear Regression

The final equation for D̂high
SP and D̂high

RB was obtained as

1+x1 + x3 + x1x3 + x1x4 + x2x4 + x1 + x5 + x1x5 + x4x5 + x1x6

+x3x6 + x1 + x7 + x1x7 + x2 + x7 + x2x7 + x3 + x7 + x3x7 + x4x7

+x5 + x7 + x5x7 + x5 + x8 + x5x8 + x6x8 + x1x9 + x4x9 + x5x9

+x6x9 + x7x9 + x1 + x10 + x1x10 + x3 + x10 + x3x10 + x5

+x10 + x5x10 + x6x10 + x7 + x10 + x7x10 + x8 + x10 + x8x10

+x1 + x11 + x1x11 + x3 + x11 + x3x11 + x4x11 + x5 + x11

+x5x11 + x6x11 + x7 + x11 + x7x11 + x8 + x11 + x8x11

+x9x11 + x5 + x12 + x5x12 + x10 + x12 + x10x12 + x11

+x12 + x11x12 + x1x13 + x3x13 + x4x13 + x7x13

+x8x13 + x9x13 + x2
3 + x2

5 + x2
7 + x2

8 + x2
11 + x2

13

(A.5)

II



and
1+x1 + x2 + x1x2 + x1 + x3 + x1x3 + x1 + x4 + x1x4 + x2 + x4 + x2x4

+x3 + x4 + x3x4 + x1 + x5 + x1x5 + x2 + x5 + x2x5 + x1 + x6 + x1x6 + x3

+x6 + x3x6 + x5 + x6 + x5x6 + x1 + x7 + x1x7 + x4 + x7 + x4x7 + x1x8

+x2x8 + x4x8 + x6x8 + x1 + x9 + x1x9 + x2 + x9 + x2x9 + x4 + x9

+x4x9 + x6 + x9 + x6x9 + x1 + x10 + x1x10 + x2 + x10 + x2x10 + x3

+x10 + x3x10 + x6 + x10 + x6x10 + x7 + x10 + x7x10 + x8x10

+x9 + x10 + x9x10 + x1x11 + x3x11 + x6x11 + x7x11 + x8x11

+x10x11 + x1x12 + x2x12 + x3x12 + x6x12 + x7x12

+x8x12 + x9x12 + x10x12 + x11x12 + x1x13 + x4x13 + x6x13

+x8x13 + x9x13 + x10x13 + x11x13 + x12x13 + x2
1 + x2

2 + x2
4

+x2
6 + x2

9 + x2
10

(A.6)

where x1 − x13 are the corresponding elements from top to bottom of A.1 for D̂high
SP

and A.2 for D̂high
RB .

The final equation for D̂low
SP and D̂low

RB was obtained as

1+x1 + x2 + x1x2 + x2 + x4 + x2x4 + x2 + x5 + x2x5 + x3x5 + x1 + x6

+x1x6 + x4 + x6 + x4x6 + x1 + x7 + x1x7 + x2 + x7 + x2x7 + x3x7

+x4 + x7 + x4x7 + x5 + x7 + x5x7 + x6 + x7 + x6x7 + x1 + x8 + x1x8

+x2 + x8 + x2x8 + x3x8 + x4 + x8 + x4x8 + x5 + x8 + x5x8 + x7 + x8

+x7x8 + x1x9 + x2x9 + x3x9 + x4x9 + x5x9 + x8x9 + x2
1 + x2

2 + x2
3

+x2
4 + x2

5 + x2
6 + x2

7 + x2
8

(A.7)

and
1+x1x2 + x1 + x3 + x1x3 + x1 + x4 + x1x4 + x2x4 + x2x5 + x2x6

+x3 + x6 + x3x6 + x5x7 + x6x7 + x1 + x8 + x1x8 + x2x8 + x5 + x8

+x5x8 + x7x8 + x1 + x9 + x1x9 + x4 + x9 + x4x9 + x6 + x9 + x6x9 + x8

+x9 + x8x9 + x2
6 + x2

8 + x2
9

(A.8)

where x1 − x9 are the corresponding elements from top to bottom of ?? for D̂low
SP

and ?? for D̂low
RB .

The final equation for D̂TC
SP and D̂TC

RB was obtained as

1 + x1 + x6 + x1x2 + x1x7 + x1x8 + x1x9 + x8x9 + x2
1 + x2

6 + x2
7 + x2

9 (A.9)

and
1+x1 + x5 + x1x5 + x1x6 + x4x6 + x4x7 + x5 + x7 + x5x7

+ x6x7 + x1 + x8 + x1x8 + x3x8 + x6x8 + x4x9 + x6x9 + x8 + x9

+ x8x9 + x2
1 + x2

7 + x2
8 + x2

9

(A.10)

where x1 − x9 are the corresponding elements from top to bottom of A.3 for D̂TC
SP

and A.4 for D̂TC
RB.
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A.2 Observer Details

A.2.1 Slack Variables for FE

The used slack values for the FE are

γlow =0.84
γhigh =0.42
γTC =0.44.

(A.11)

A.2.2 Tuning Parameters of DKF

The parameters a, b and c used for tuning the DKF are shown in Table A.1.

Table A.1: The tuning variables a, b and c of DKF for all engine models.

a b c
low hp 0.0001 0.0001 150
high hp 0.01 0.005 20
TC 0.01 0.0001 1

A.2.3 Correction of Fraction Estimator for UIO

The correction factors used for the UIO are shown in Table A.2.

Table A.2: Correction values to FE for UIO

ξ ψ
low hp 1.06 0.94
high hp 0.96 1.04
TC 0.76 1.24

A.2.4 Noise Parameters for UIO

In the UIO noise parameters are necessary and the ones used in this thesis are shown
in Table A.3.

Table A.3: The covariances used in the UIO.

σx σy
low hp

[
89 0.00003

] [
4000 0.1

]
high hp

[
12 0.002

] [
0.06 9

]
TC

[
10 0.0001

] [
0.04 8

]
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A.2.5 Steady State Kalman Gain for the UIO
The converged Kalman filter gains used in this thesis are

K̄ low =

 0.0002 0.9989
0.0002 0.0001
−0.0002 0.0000



K̄high =

 1.4703 0.6382
0.4639 0.0089
−0.1323 0.0034



K̄TC =

 1.7027 0.6233
0.5012 0.0083
−0.0369 0.0010

 .

(A.12)

A.2.6 Tuning Parameters for the ESV
The used tuning parameters for the ESV is shown in Table A.4 and A.5.

start stop
low hp 0.1 10
high hp 0.1 10
TC 0.1 10

Table A.4: Tuning variables for the measurement noise covariance, Q, used in the
ESV for each engine. The values are distributed evenly on the diagonal with values
between the start and stop value.

a b
low hp 1 1
high hp 0.0001 20
TC 0.0001 10

Table A.5: Tuning variables for the measurement noise covariance, R, used in the
ESV for each engine.

A.2.7 Observer Result of High hp and TC Engine
In the result section only the low hp engine is shown. This section will therefore
show the corresponding results for the high hp and the TC engine.

A.2.7.1 High hp Engine Observers

The performance of all developed observers for the high hp engine are shown in
Figure A.1-A.4.
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Figure A.1: Sequence from the validation dataset of the high hp engine that
shows that FE follows the Horiba measurements well. It have the same amplitude
and keeps up in the transient parts. The contents in the dashed square are shown
in the plot in the left corner. Here it can be seen that the transient behaviour is
better for the FE than for the sensor.
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Figure A.2: Sequence from the validation dataset of the high hp engine that shows
that DKF follows the Horiba measurements well. It have the same amplitude and
keeps up in the transient parts. The contents in the dashed square are shown in the
plot in the left corner. Here it can be seen that the transient behaviour is better for
the DKF than for the sensor.
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Figure A.3: Sequence from the validation dataset of the high hp engine that shows
that UIO follows the Horiba measurements well. It have the same amplitude and
keeps up in the transient parts. The contents in the dashed square are shown in the
plot in the left corner. Here it can be seen that the transient behaviour is better for
the UIO than for the sensor.

5,900 6,900 7,900 8,900
0

500

1,000

1,500

Time [s]

N
O
x
[p
pm

]

Comparison of Horiba, NOx Sensor and SSUIO for 540 hp eSCR

Horiba
Sensor
SSUIO

Figure A.4: Sequence from the validation dataset of the high hp engine that shows
that SSUIO follows the Horiba measurements well. It have the same amplitude and
keeps up in the transient parts. The contents in the dashed square are shown in the
plot in the left corner. Here it can be seen that the transient behaviour is better for
the SSUIO than for the sensor.
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Figure A.5: Sequence from the validation dataset of the high hp engine that shows
that ESV follows the Horiba measurements well. It have the same amplitude and
keeps up in the transient parts. The contents in the dashed square are shown in the
plot in the left corner. Here it can be seen that the transient behaviour is better for
the ESV than for the sensor.

A.2.7.2 TC Engine Observers

The performance of all developed observers for the TC engine are shown in Fig-
ure A.6-A.9.
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Figure A.6: Sequence from the validation dataset of the TC engine that shows
that FE follows the Horiba measurements well. It have the same amplitude and
keeps up in the transient parts. The contents in the dashed square are shown in the
plot in the left corner. Here it can be seen that the transient behaviour is better for
the FE than for the sensor.
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Figure A.7: Sequence from the validation dataset of the TC engine that shows
that DKF follows the Horiba measurements well. It have the same amplitude and
keeps up in the transient parts. The contents in the dashed square are shown in the
plot in the left corner. Here it can be seen that the transient behaviour is better for
the DKF than for the sensor.
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Figure A.8: Sequence from the validation dataset of the TC engine that shows
that UIO follows the Horiba measurements well. It have the same amplitude and
keeps up in the transient parts. The contents in the dashed square are shown in the
plot in the left corner. Here it can be seen that the transient behaviour is better for
the UIO than for the sensor.
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Figure A.9: Sequence from the validation dataset of the TC engine that shows
that SSUIO follows the Horiba measurements well. It have the same amplitude and
keeps up in the transient parts. The contents in the dashed square are shown in the
plot in the left corner. Here it can be seen that the transient behaviour is better for
the SSUIO than for the sensor.
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Figure A.10: Sequence from the validation dataset of the TC engine that shows
that ESV follows the Horiba measurements well. It have the same amplitude and
keeps up in the transient parts. The contents in the dashed square are shown in the
plot in the left corner. Here it can be seen that the transient behaviour is better for
the ESV than for the sensor.
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