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Abstract

This thesis explores a categorical model of type theory, namely, categories with fami-
lies who provide a model for a basic framework of dependent type theory. The notion
of a category with families is formalized as a generalized algebraic theory with extra
structure with the purpose of modelling different lambda calculi. The work revolves
around implementing in the Agda proof assistant categories with families at three
levels: (i) untyped, (ii) simply typed, and (iii) dependently typed calculi. The formal-
ization primarily consists of constructing initial objects in the category of categories
with families and isomorphisms between them. The work investigates each notion
from its core and proceeds by adding extra structure. Complete formalizations of
untyped and simply typed categories with families are presented along with an in-
complete picture for dependent types.
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1
Introduction

Martin-Löf type theory, also known as intuitionistic type theory, is a formal system
which provides an alternative option to set theory for laying out the philosophical
foundations of mathematics, specifically from the side of mathematical construc-
tivism. An important distinction between set theory and type theory is that the
former is built on top of predicate logic, whereas type theory is not. To elaborate
further, this theory is based on intuitionistic logic and in particular, it internalizes
the Brouwer–Heyting–Kolmogorov (BHK) interpretation of intuitionistic logic. In
contrast to classical logic, an intuitionist would deny the validity of the laws of ex-
cluded middle and double negation elimination, which implies that proofs by con-
tradiction are not permissible. Moreover, the theory heavily relies on the Curry-
Howard isomorphism (propositions-as-types principle), which in short demonstrates
a direct connection between computer programs and mathematical proofs [1]. This
correspondence was also extended to category theory that brought cartesian closed
categories as a part of a three way isomorphism.

The theory can be thought of as a typed functional programming language since
it extends the simply typed 𝜆-calculus with dependent types. A noteworthy property
is that all definable functions are total and always terminate. Martin-Löf type theory
is quite expressive and notably suited for program construction because it allows
the expression of both specifications and programs. Additionally, the verification of
program correctness is also possible in the very same formalism [1].

Furthermore, by utilizing the language of category theory, one can talk about
models of type theory. And considering the fact that categorical and type theoretical
notions have been shown to be related by Lawvere, a plethora of such models has
been constructed over the years. Hence, type theories have numerous categorical
models worthy of attention. For example, the simply typed lambda calculus is the
internal language of cartesian closed categories. This thesis, on the other hand, is
concerned with a different model; one that provides a fundamental framework for
dependent type theories, namely, categories with families (cwfs) introduced by Dyb-
jer [2]. It is a concept similar to Cartmell’s categories with attributes [2] (they are in
fact equivalent [3]), albeit cwfs are overtly closer to the syntax of dependent types,
which is advantageous. It revolves around the idea of objects corresponding to con-
texts and morphisms to substitutions, i.e., the assignment of terms to free variables in
a context. A cwf is a model of dependent type theory [4] and cwfs can be formalized
as a generalized algebraic theory providing clear syntax [2]. This presentation is an
algebraic formulation of type theory and some may consider it more canonical [5].

There are in fact different versions of cwfs that model more basic theories such
as the untyped and simply typed 𝜆-calculus, called unityped cwfs (ucwfs) and simply
typed cwfs (scwfs), respectively. These notions can be extended with extra structure
like lambda abstractions and application to make them a model of the respective 𝜆-
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1. Introduction Page 2

calculus.
The work in this thesis is concerned with a formalization of different cwfs in

Agda. In more detail, we consider the category of cwfs and define what it means to
be a object in this category. Subsequently, we construct two cwfs, one with explicit
and one with implicit substitutions. The motivation of the project is the construction
of various initial cwfs and isomorphisms between them. The presentation of each
cwf is expressed as a generalized algebraic theory.

The report is therefore divided into three sections for each cwf we discuss. First,
we implement ucwfs using scope safe terms. Second, we implement two different
versions of scwfs, one based on raw syntax supplemented with an external typing
relation and one with intrinsically typed terms. Finally, we implement some parts of
the full cwfs and dependent types with Π types and a universe à la Russell.

Aim

Theaim of this thesis is to formalize unityped, simply typed, and some parts of the full
cwfs in the proof assistant Agda. For each case, we construct objects in the respective
category and construct an isomorphism between them. Practically, this means that
a calculus based on the generalized algebraic theory of cwfs has to be implemented,
where all operators and laws are explicitly defined as part of the language. The sec-
ond cwf is more traditional with substitutions implemented as meta-level operations
(implicit).

The formalization steps for each cwf are roughly the following:

1. Define the notion of a cwf as a record.

2. Construct an initial cwf with explicit substitutions.

3. Construct a second initial cwf with implicit substitutions.

4. Demonstrate an isomorphism between 2 and 3.

Furthermore, there are a number of available options concerning the way one
can formalize these concepts, particularly when types are added. For instance, for
simple types, the immediate choice is whether to start with raw syntax and add typ-
ing relations or directly implement typed terms. For this reason, both versions are
covered for the simply typed cwfs as this exercise is insightful in its own right. Alas,
for dependent type theory and full cwfs, it is not clear how to formalize intrinsically
typed terms, but relevant work on that front has been done by Chapman [6].

2



2
Baground

2.1 Related work

This project has some significance for the foundations of type theory. In particular,
the use of a proof assistant to implement various related notions to cement the valid-
ity of certain results has attracted interest recently. Relevant work includes the study
of categorical structures used to model type theories, e.g., by Ahrens, Lumsdain, and
Voevodsky [7]; that work is also formalized in the Coq theorem prover.

The definition of cwfs as a generalized algebraic theory from Internal Typeeory
[2] is the basis of our formalizations. This formulation is modified accordingly to
attain all cwf versions that are implemented in this project. The complete cwfs as a
model of dependent type theory are discussed by Castellan, Clairambault, and Dybjer
[4] extensively; there dependent type theory is constructed as the initial cwf with
extra structure.

Furthermore, the pure untyped 𝜆-calculus is formalized as presented in Inductive
Families [8]. It uses scope safe lambda terms and nameless variables represented by
de Bruijn indices. Lastly, several supporting tools for the Agda implementation of
the simply typed 𝜆-calculus are based on a formalization of nbe by G. Allais [9].

2.2 Agda

The proofs and definitions of this thesis are formalized in the Agda language [10].
Agda is a dependently-typed functional programming language based on intuition-
istic type theory. It has inductive families and mixfix operators and unicode support.
Agda allows users not only to implement, but express and prove properties about
their programs. Proofs are written in a functional style similar to Haskell. Moreover,
it has numerous libraries readily available such as the Agda standard library which
is used throughout our implementation.

2.3 Categories with Families

2.3.1 CwFs Definition

Categories with families are models for a basic framework of dependent types. Their
structure resembles closely the standard syntax of dependent types, while providing
a clear categorical description [8]. As is the case with other categorical models of
type theories, we want to define a category with contexts and substitutions as the

3



2. Background Page 4

objects and morphisms and to view terms and types as families over contexts. Next,
we describe the definition of CwFs as defined in Internal Type eory.

Let Fam be the category of families of sets where objects are families of sets
(𝐵(𝑥))𝑥∈𝐴. A morphism in Fam from an object (𝐵(𝑥))𝑥∈𝐴 to (𝐵′(𝑥′))𝑥′∈𝐴′ is a pair
of (i) a function 𝑓 ∶ 𝐴 → 𝐴′ and (ii) a family of functions 𝑔(𝑥) ∶ 𝐵(𝑥) → 𝐵′(𝑓 (𝑥))
indexed by 𝑥 ∈ 𝐴.

Definition 2.1. (Category with families) A cwf has four components.

• A base category 𝐶 where objects are called contexts and morphisms substi-
tutions. The identity map is called id ∶ Γ → Γ and composition of maps
𝛾 ∶ Δ → Γ and 𝛿 ∶ Θ → Δ is denoted as 𝛾 ∘ 𝛿 ∶ Θ → Γ, where Γ, Δ, Θ ∈ 𝐶 .

• A functor T ∶ 𝐶𝑜𝑝 → Fam . Intuitively, T(Γ) is the set of terms indexed by
their type. A functor Ty(Γ) that defines the set of types in context Γ, where
Ty ∶ 𝐶𝑜𝑝 → Set . This describes how substitutions act on types. Moreover,
for each 𝐴 ∈ Ty(Γ), there is the set of terms: Tm(Γ, 𝐴) of type 𝐴. Another
notation for the terms is Γ ⊢ 𝐴. Thus, T is given by T(Γ) = (Γ ⊢ 𝐴)(𝐴∈Ty(Γ)).
As a result, for any morphism 𝛾 of 𝐶 , T(𝛾) interprets substitution both for
terms and types.

• A terminal object ♢ of 𝐶 , the empty context. For each context Γ, there exists
a unique morphism !Γ ∶ Γ → ♢.

• Context comprehension; if we have a context Γ and a type over Γ, i.e., 𝐴 ∈
Ty(Γ), we can form a contextΓ, 𝐴 such that there exists amorphism 𝑝 ∶ Γ, 𝐴 →
Γ the projection morphism, a term 𝑞 ∈ Γ, 𝐴 ⊢ 𝐴 [𝑝]. Moreover, 𝑝 and 𝑞 are the
first and second projections respectively and so the universal property is that:
for any object Δ in 𝐶 , morphism 𝛾 ∶ Δ → Γ and term 𝛼 ∈ Δ ⊢ 𝐴 [𝛾], there is
a unique morphism 𝜃 = ⟨ 𝛾, 𝛼 ⟩ ∶ Δ → Γ, 𝐴 such that 𝑝 ∘ 𝜃 = 𝛾 and 𝑞 [𝜃] = 𝛼.

Furthermore, it is important to explain what a cwf morphism is. A cwf can be
denoted by a pair (𝐶, 𝑇 ) by a base category 𝐶 and a functor 𝑇 as defined above.
Consequently, a cwf morphism with domain (𝐶, 𝑇 ) and codomain (𝐶′, 𝑇 ′) is a pair
(𝐹 , 𝜂) where 𝐹 ∶ 𝐶 → 𝐶′ is a functor and 𝜂 ∶ 𝑇 → 𝑇 ′𝐹 is a natural transformation
such that terminal object and context comprehension are preserved strictly.

This definition refers to a strict cwf morphism, in contrast to a weaker version
called pseudo cwf morphism in which cwf-structure is preserved only up to isomor-
phism.

2.3.2 Generalized Algebraic eory of CwFs

Categories with families can be formalized as a generalized algebraic theory (GAT)
and the GAT generated is a basic framework for dependent types. This a purely equa-
tional approach where sorts, judgements forms and operator symbols correspond to
inference rules in a variable free formulation of a calculus with explicit substitutions
for dependent type theory [4].

The idea of a generalized algebraic theory, introduced by Cartmell [11], refers
to the generalization of an algebraic theory of many sorts in a way that does not
restrict sorts to being constant types, i.e., to be interpreted as sets as they are in a
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Page 5 2. Background

regular algebraic theory. Hence, in a GAT, sorts can be variable types, thus they are
interpreted as families of sets. The advantage of having variable types is that it suits
theories of structures that are often found in category theory [11].

The sort and operator symbols are presented through their typing rules and in-
dices are omitted for readability.

Rules for the base category

Ctx Sort
Δ Γ ∶ Ctx

Δ → Γ Sort
Θ Δ Γ ∶ Ctx 𝛾 ∶ Δ → Γ 𝛿 ∶ Θ → Δ

𝛾 ∘ 𝛿 ∶ Θ → Γ
Γ ∶ Ctx

idΓ ∶ Γ → Γ

(𝛾 ∘ 𝛿) ∘ 𝜃 = 𝛾 ∘ (𝛿 ∘ 𝜃)
id ∘ 𝛾 = 𝛾
𝛾 ∘ id = 𝛾

Rules for the functor

Γ ∶ Ctx
Ty(Γ) Sort

Γ ∶ Ctx 𝐴 ∶ Ty(Γ)
Γ ⊢ 𝐴 Sort

Δ Γ ∶ Ctx 𝐴 ∶ Ty(Γ) 𝛾 ∶ Δ → Γ
𝐴 [𝛾] ∶ Ty(Δ)

Δ Γ ∶ Ctx 𝐴 ∶ Ty(Γ) 𝛼 ∶ Γ ⊢ 𝐴 𝛾 ∶ Δ → Γ
𝛼 [𝛾] ∶ Δ ⊢ 𝐴 [𝛾]

𝐴 [𝛾 ∘ 𝛿] = 𝐴 [𝛾] [𝛿]
𝐴 [id ] = 𝐴

𝛼 [𝛾 ∘ 𝛿] = 𝛼 [𝛾] [𝛿]
𝛼 [id ] = 𝛼

Rules for the terminal object

♢ ∶ Ctx

Γ ∶ Ctx
⟨⟩Γ ∶ Γ → ♢

⟨⟩ ∘ 𝛾 = ⟨⟩
id♢ = ⟨⟩

5



2. Background Page 6

Rules for context comprehension

Γ ∶ Ctx 𝐴 ∶ Ty(Γ)
Γ, 𝐴 ∶ Ctx

Δ Γ ∶ Ctx 𝐴 ∶ Ty(Γ) 𝛾 ∶ Δ → Γ 𝛼 ∶ Δ ⊢ 𝐴 [𝛾]
⟨𝛾, 𝛼⟩ ∶ Δ → Γ, 𝐴

Γ ∶ Ctx 𝐴 ∶ Ty(Γ)
𝑝 ∶ Γ, 𝐴 → Γ

Γ ∶ Ctx 𝐴 ∶ Ty(Γ)
𝑞 ∶ Γ, 𝐴 ⊢ 𝐴 [𝑝]

𝑝 ∘ ⟨𝛾, 𝛼⟩ = 𝛾
𝑞 [⟨𝛾, 𝛼⟩] = 𝛼
⟨𝛿, 𝛼⟩ ∘ 𝛾 = ⟨𝛿 ∘ 𝛾, 𝛼 [𝛾]⟩

idΓ,𝐴 = ⟨𝑝Γ,𝐴, 𝑞Γ,𝐴⟩

This concludes the generalized algebraic theory of cwfs. Equality reasoning is
handled in the metalanguage and hence there are no sort symbols for equality judge-
ments or operators for equality rules.

As one can see, cwfs provide only the most minimal structure for interpreting
dependent type theories and there is no additional structure that allows one to talk
about type formers [5]. However, we can extend the definition if we consider the de-
pendent function space and a universe. This is accomplished by adding introduction
and elimination rules for our new type constructors and the appropriate equations
they should satisfy. In other words, a cwf supports Π types and a universe (ala Rus-
sell) if the following rules and laws are satisfied.

Rules for dependent function types

Γ ∶ Ctx 𝐴 ∶ Ty(Γ) 𝐵 ∶ Ty(Γ, 𝐴)
Π(𝐴, 𝐵) ∶ Ty(Γ)

Γ ∶ Ctx 𝐴 ∶ Ty(Γ) 𝐵 ∶ Ty(Γ, 𝐴) 𝑡 ∶ Γ, 𝐴 ⊢ 𝐵
𝜆(𝑡) ∶ Γ ⊢ Π(𝐴, 𝐵)

Γ ∶ Ctx 𝐴 ∶ Ty(Γ) 𝐵 ∶ Ty(Γ, 𝐴) 𝑓 ∶ Γ ⊢ Π(𝐴, 𝐵) 𝑡 ∶ Γ ⊢ 𝐴
app(𝑓 , 𝑡) ∶ Γ ⊢ 𝐵 [⟨idΓ, 𝑡⟩]

Π(𝐴, 𝐵) [𝛾] = Π(𝐴 [𝛾], 𝐵 [⟨𝛾 ∘ 𝑝, 𝑞⟩])
𝜆(𝑡) [𝛾] = 𝜆(𝑡 [⟨𝛾 ∘ 𝑝, 𝑞⟩])

app(𝑓 , 𝑡) [𝛾] = app(𝑓 [𝛾], 𝑡 [𝛾])
app(𝜆(𝑡), 𝑢) = 𝑡 [⟨idΓ, 𝑢⟩]

𝜆(app(𝑡 [𝑝]), 𝑞) = 𝑡

6



Page 7 2. Background

Rules for universe

Γ ∶ Ctx
𝑈 ∶ Ty(Γ)

Γ ∶ Ctx 𝐴 ∶ Γ ⊢ 𝑈
𝐴 ∶ Ty(Γ)

𝑈 [𝛾] = 𝑈

In a similar fashion, one can add Σ types, identity types, or 𝑁1 by expressing their
typing rule in the GAT and defining the equations they must satisfy.

7



2. Background Page 8

8



3
Unityped CwFs

The work starts by considering a cwf with only one type, a special case of the full
cwfs that we call unityped cwfs (ucwfs). It is model of a theory of 𝑛-place functions.
Cwfs model dependent type theories, but they can be modified by stripping type in-
formation away. This results in a model of 𝑛-place functions that involve substitution
and compositions of functions.

This chapter beginswith a formalization of the notions of ucwfs. Considering that
we aim to construct different ucwfs, we need a common framework to talk about
these objects and their properties. The following sections present the three main
notions we are interested in, namely:

1. Pure ucwf.

2. 𝜆-ucwf.

3. 𝜆-𝛽𝜂-ucwf.

Then, we continue by constructing two ucwfs for each item in the above list.
One with explicit substitutions that arises from translating the generalized algebraic
theory of cwfs into combinators. And one with implicit substitutions and concrete
variables. That amounts to a total of six different ucwfs. At each step, we build
morphisms between them and prove that they are isomorphic. Moving from one
ucwf to another is done by adding extra structure on the previous.

3.1 Ucwf Notions

In this section we present only the abstract notions of ucwfs we are interested in.
A ucwf can be implemented in different ways, but the underlying structure must be
clearly defined before one can build specific ucwfs.

3.1.1 Pure Ucwfs

Based on the formulation of cwfs as a generalized algebraic theory presented in In-
ternal Type eory [2] and summarized in the preceding chapter, one can take the
special case of a single type. Subsequently, one sees that the core ucwf is a model of
𝑛-place functions that includes operations of substitution and composition of such
functions. Places refer to independent inputs; for example, a binary function is 2-
place. As in any GAT, it incorporates sort symbols, operator symbols, and equations
between well-formed terms. Contexts and thus the objects of the base category be-
come natural numbers with the terminal object being zero. In addition, since there is

9



3. Unityped CwFs Page 10

no type information, some constructs of the complete cwfs are no longer necessary.
Terms are a type family indexed by just a natural number. The rules for a ucwf are
formalized as a record in Agda. Remark: for simplicity, the universe level of the
record is not polymorphic, so the record is in Set1 and the relations are in level zero.
So the relations are merely instances of ∀ {A ∶ Set} → (a1 a2 ∶ A) → Set0.

record Ucwf ∶ Set1 where
field

– Objects of the base category are natural numbers

– Terms and substitutions
Tm ∶ Nat → Set
Sub ∶ Nat → Nat → Set

– Equality relations of terms and substitutions
_≈_ ∶ ∀ {n} → Rel (Tm n) lzero
_≋_ ∶ ∀ {m n} → Rel (Sub m n) lzero

IsEquivT ∶ ∀ {n} → IsEquivalence (_≈_ {n})
IsEquivS ∶ ∀ {m n} → IsEquivalence (_≋_ {m} {n})

– identity substitution
id ∶ ∀ {n} → Sub n n

– composition
_∘_ ∶ ∀ {m n k} → Sub n k → Sub m n → Sub m k

– explicit substitution
_[_] ∶ ∀ {m n} → Tm n → Sub m n → Tm m

– empty substitution
<> ∶ ∀ {m} → Sub m 0

– substitution extension
<_, _> ∶ ∀ {m n} → Sub m n → Tm m → Sub m (suc n)

– projection or weakening substitution
p ∶ ∀ {n} → Sub (suc n) n

– last variable
q ∶ ∀ {n} → Tm (suc n)

In our considered formulation, contexts are assigned to the set of natural numbers
beforehand. Therefore, Sub m n represents a length n substitution of terms with at
most m free variables where m n ∶ Nat. Naturally then, terms are indexed by the
maximum number of free variables they may hold.

This description refers to a pure ucwf; so lambda abstractions and application
are not present yet. It is a minimal theory for 𝑛-place functions. This notion allows

10



Page 11 3. Unityped CwFs

variable-free formulations of ucwfs. Variables can be built by applying the substitu-
tion operation on the projection substitution p, successively. For example, one can
built the 𝑛th de Bruijn variable by performing this operation: q [ pn ], where pn is
the composition of 𝑛 projection substitutions, p ∘ … ∘ p. This is the weakening op-
eration, but on variables it corresponds to applying the successor function on the
index. This is because q represents the variable with de Bruijn index zero. Further,
the identity substitution id is a neutral element in composition and in substitution.
It represents a sequence of variable indices ranging from 0 to 𝑛 − 1. The theory also
provides composition of substitutions and a substitution operation. A cons-like op-
eration for extending a substitution is also found (it is a cons but with the element
on the right side). Lastly, we have an empty substitution <>, which is also a left
absorbing element under composition.

Moreover, the two equivalence relations in the record, one on Tm and one on
Sub are required since there is no mention of equality in the GAT. Further, we do not
wish to restrict ourselves to propositional or some other notion of equality.

Continuing, the ucwf axioms can be expressed in the same record too using the
relations as follows.

– zero length id is the empty substitution
id0 ∶ id {0} ≋ <>

– <> is a a left zero for composition
<>Lzero ∶ ∀ {m n} (ts ∶ Sub m n) → <> ∘ ts ≋ <>

– extended identity is the projection with the last variable
idExt ∶ ∀ {n} → id {suc n} ≋ < p , q >

– category of substitutions
idL ∶ ∀ {m n} (ts ∶ Sub m n) → id ∘ ts ≋ ts
idR ∶ ∀ {m n} (ts ∶ Sub m n) → ts ∘ id ≋ ts
assoc ∶ ∀ {m n k i} (ts ∶ Sub n k) (us ∶ Sub m n) (vs ∶ Sub i m) →

(ts ∘ us) ∘ vs ≋ ts ∘ (us ∘ vs)

– substituting with id is neutral
subId ∶ ∀ {n} (t ∶ Tm n) → t [ id ] ≈ t

– p is the first projection
pCons ∶ ∀ {n k} (ts ∶ Sub n k) t → p ∘ < ts , t > ≋ ts

– q is the second projection
qCons ∶ ∀ {m n} (ts ∶ Sub n m) t → q [ < ts , t > ] ≈ t

– substituting with a composition
subComp ∶ ∀ {m n k} (ts ∶ Sub m n) (us ∶ Sub k m) t →

t [ ts ∘ us ] ≈ t [ ts ] [ us ]

– composing with an extended substitution
compExt ∶ ∀ {m n} (ts ∶ Sub n m) (us ∶ Sub m n) t →

11
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< ts , t > ∘ us ≋ < ts ∘ us , t [ us ] >

– congruence rules for operators
cong−<, > ∶ ∀ {m n} {ts us ∶ Sub m n} {t u} →

t ≈ u →
ts ≋ us →
< ts , t > ≋ < us , u >

cong−sub ∶ ∀ {m n} {ts us ∶ Sub m n} {t u} →
t ≈ u →
ts ≋ us →
t [ ts ] ≈ u [ us ]

cong−∘ ∶ ∀ {m n k} {ts vs ∶ Sub n k} {us zs ∶ Sub m n} →
ts ≋ vs →
us ≋ zs →
ts ∘ us ≋ vs ∘ zs

This completes the record of a pure ucwf; any instantiation of this record has to
provide the two main sorts, the corresponding relations in which one reasons about
them, the constructors, and proofs of the laws. This record describes what it means
to be a ucwf in the category of ucwfs.

3.1.2 𝜆-Ucwfs
Utilizing the pure ucwf record defined earlier, we can add extra structure for 𝜆 ab-
stractions and function application. In order for a ucwf to support lambdas and ap-
plication we have to add the constructors and laws that must be satisfied. A new
Agda record captures this notion.

record Lambda−ucwf ∶ Set1
field

ucwf ∶ Ucwf
open Ucwf ucwf public
field

– λ abstraction and application
lam ∶ ∀ {n} → Tm (suc n) → Tm n
app ∶ ∀ {n} → Tm n → Tm n → Tm n

– equations for substituting under app and lam
subApp ∶ ∀ {n m} (ts ∶ Sub m n) t u →

app (t [ ts ]) (u [ ts ]) ≈ (app t u) [ ts ]

subLam ∶ ∀ {n m} (ts ∶ Sub m n) t →
lam t [ ts ] ≈ lam (t [ < ts ∘ p , q > ])

cong−lam ∶ ∀ {n} {t u ∶ Tm (suc n)} →

12
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t ≈ u →
lam t ≈ lam u

cong−app ∶ ∀ {n} {t u t′ u′ ∶ Tm n} →
t ≈ t′ →
u ≈ u′ →
app t u ≈ app t′ u′

Note the new rules for substituting a term of application and lambda. This occurs
because substitution is defined by its conversion laws, so stability under substitution
is necessary. Another addition is two congruence rules for the new operators.

3.1.3 𝜆-𝛽𝜂-Ucwfs
Finally, as a last extension of ucwf notions, we can add beta and eta rules as extra
structure and hence create a 𝜆-𝛽𝜂 ucwf. Now this is model of 𝜆-calculus up to beta
and eta and a more interesting notion. The extension is done simply by expressing
the beta and eta laws as axioms.

record Lambda−βη−ucwf ∶ Set1
field

lambda−ucwf ∶ Lambda−ucwf
open Lambda−ucwf lambda−ucwf public
field

– beta and eta equalities
β ∶ ∀ {n} {t ∶ Tm (suc n)} {u} → app (lam t) u ≈ t [ < id , u > ]
η ∶ ∀ {n} {t ∶ Tm n} → lam (app (t [ p ]) q) ≈ t

This is a significantly more interesting ucwf with extra structure than the previous
one that contained only the term language of the 𝜆-calculus. However for imple-
mentation purposes, it was useful to first construct our proofs at the 𝜆-ucwf level
and then add the beta-eta laws at the end, although this intermediate step can be
skipped.

3.2 Term Models of Ucwfs

In this section we begin constructing ucwfs; first, without extra structure, that is, we
provide implementations for theories of 𝑛-place functions in accordance to the record
of a pure ucwf. These are to be instances of ucwf. Hence, we implement two term
models, one with explicit substitutions that uses ucwf combinators and one with
implicit substitutions (meta-level operations). After building these two calculi, we
show that they are ucwfs and proceed to construct ucwf morphisms between them
to finally show the isomorphism.

3.2.1 Ucwf with Explicit Substitutions

Thefirst ucwfwe consider is one using ucwf combinators. Inmore detail, we translate
the Ucwf record to a straighforward implementation of a variable-free calculus of

13
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explicit substitutions. We want this to be a ucwf trivially, so the definitions should
match the fields of the record precisely. Thus, we implement a term model for a ucwf
by (i) two mutually recursive data types that represent terms and substitutions and
(ii) two inductive relations whose constructors are introduction rules for each ucwf
axiom.

data Tm ∶ Nat → Set
data Sub ∶ Nat → Nat → Set

data Tm where
q ∶ ∀ {n} → Tm (suc n)
_[_] ∶ ∀ {m n} → Tm n → Sub m n → Tm m

data Sub where
id ∶ ∀ {m} → Sub m m
_∘_ ∶ ∀ {m n k} → Sub n k → Sub m n → Sub m k
<> ∶ ∀ {m} → Sub m zero
<_, _> ∶ ∀ {m n} → Sub m n → Tm m → Sub m (suc n)
p ∶ ∀ {n} → Sub (suc n) n

data _≈_ ∶ ∀ {n} → Tm n → Tm n → Set
data _≋_ ∶ ∀ {n m} → Sub n m → Sub n m → Set

This language can be easily instantiated as a ucwf since the fields match exactly the
definitions here and the laws are explicit and thus there is no need to prove anything.
The relations of equality encapsulate all laws of the Ucwf record and so they add
nothing new apart from symmetry and transitivity as they need to be equivalence
relations. The equations are omitted but available in listing A.1 of the appendix.

In this calculus, variables are constructed using q (variable with de Bruijn index
zero) and the projection substitution p. The projection substitution represents a se-
quence of variable indices ranging from 1 to 𝑛 and since substituting q drops the
substitution and keeps the last variable, every variable can be represented using ex-
plicit substitution. For example, q [ p ] [ p ] is the variable with index two, since we
substitute with p twice.

The two accompanying equalities on terms and substitutions are equivalence re-
lations by construction (reflexivity is derived). Therefore, Tm and Sub are setoid
families and we formalize them as such in Agda. This will allow us to use Agda’s
equational reasoning packages from the standard library later for proving proposi-
tions about them. Here are the instances.

ref l≈ ∶ ∀ {n} {u ∶ Tm n} → u ≈ u
refl≈ = trans≈ (sym≈ (subId _)) (subId _)

ref l≋ ∶ ∀ {n m} {h ∶ Sub m n} → h ≋ h
refl≋ = trans≋ (sym≋ (idL _)) (idL _)

≈equiv ∶ ∀ {n} → IsEquivalence (_≈_ {n})
≈equiv = record

14
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{ ref l = ref l≈
; sym = sym≈
; trans = trans≈ }

TmSetoid ∶ ∀ {n} → Setoid _ _
TmSetoid {n} = record

{ Carrier = Tm n
; _≈_ = _≈_
; isEquivalence = ≈equiv }

≋equiv ∶ ∀ {n m} → IsEquivalence (_≋_ {n} {m})
≋equiv = record

{ ref l = ref l≋
; sym = sym≋
; trans = trans≋ }

SubSetoid ∶ ∀ {n m} → Setoid _ _
SubSetoid {n} {m} = record

{ Carrier = Sub m n
; _≈_ = _≋_
; isEquivalence = ≋equiv }

These data types form the most straightforward ucwf one can construct. And by
following the cw’s GAT formalization, the result is a kind of variable-free calculus
of explicit substitutions with a set of conversion laws expressed equationally.

This ucwf instance should be initial in the category of ucwfs. While the project
was not concerned with proving this result, it might be easier to see how this is initial
given its construction.

In order to provide an example of how one can use this calculus to prove some-
thing, we show that there exists a unique substitution from any natural number to
zero. In other words, any morphism with co-domain zero should be convertible to
the empty morphism.

ter−arrow ∶ ∀ {n} (ts ∶ Sub n 0) → ts ≋ <>
ter−arrow ts = begin

ts ≈⟨ sym≋ (idL ts) ⟩
id {0} ∘ ts ≈⟨ cong−∘ id0 ref l≋ ⟩
<> ∘ ts ≈⟨ <>Lzero ts ⟩
<> ∎
where open EqR (SubSetoid {0} {_})

3.2.2 Ucwf with Implicit Substitutions

As mentioned earlier, a pure ucwf is a model 𝑛-place function theories. This idea can
be implemented using a data type with variables using de Bruijn indices, so we have
nameless terms. These variables are also indexed by a natural number. The variable
index is of type Fin n, that is, a number 𝑖 ∈ ℕ such that 0 ≤ 𝑖 < 𝑛. We refer to these
terms as well-scoped or scope safe. Scope safe terms have some advantages when

15



3. Unityped CwFs Page 16

it comes to the implementation of some operations like substitution. For example,
weakening a term extends its index, so the type contains valuable information using
this framework.

data Tm (n ∶ Nat) ∶ Set where
var ∶ (i ∶ Fin n) → Tm n

q ∶ ∀ {n} → Tm (1 + n)
q = var zero

Given these terms, we would like to construct a ucwf in accordance to the record
shown before. We can see that we have defined q which is a part of the ucwf theory.
Moreover, we also need substitutions. They are implemented as vectors of specific
length containing variables (using the standard library). Below, we present ucwf
operators for this concrete implementation where they are non-explicit, but rather
meta level operations.

• An empty substitution is the empty vector [].

• Extending a substitution is effectively the cons function for vectors, but the
syntax is slightly changed to mirror ucwf style.

• Identity substitution, id; a sequence of variable indices from 0 to 𝑛 − 1.

• Projection substitution, p; a sequence of variable indices from 1 to 𝑛.

• Composition of substitutions, σ1 ∘ σ2; which means substituting all terms of
σ1 in σ2.

• Substitution operation, _[_]; on variables, it corresponds to performing a lookup.

Sub ∶ Nat → Nat → Set
Sub m n = Vec (Tm m) n

_, _ ∶ ∀ {n m} → Sub m n → Tm m → Sub m (1 + n)
σ , t = t ∷ σ

id ∶ ∀ {n} → Sub n n
id = tabulate var

p ∶ ∀ {n} → Sub (1 + n) n
p = tabulate (var F.∘ suc)

_∘_ ∶ ∀ {m n k} → Sub m n → Sub k m → Sub k n
σ1 ∘ σ2 = map (_[ σ2 ]) σ1

_[_] ∶ ∀ {m n} → Tm n → Sub m n → Tm m
var i [ σ ] = lookup i σ

16
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In defining these operations, we make heavy use of the standard library’s functions
on vectors. We show the type of tabulate from the standard library.

tabulate ∶ ∀ {n a} {A ∶ Set a} → (Fin n → A) → Vec A n

Also, composition of regular functions is distinguished by referring to it with a named
import, F.

The type signatures hopefully start to resemble the fields of a ucwf; we notice that
themain sorts and operators have been defined; Sub andTm and the other operations
above with the same names.

Subsequently, one can show that this theory of functions fulfils the ucwf axioms
by proving them for these concrete definitions. This is the last piece of completing
the construction of a ucwf. Next, we present a series of lemmas that prove the ucwf
generalized algebraic theory’s laws for our variables and substitutions. We consider
propositional equality as the underlying relations for both terms and substitutions
for now.

Lemma 3.1. id {1 + n} ≡ (p , q)

Proof. Reflexivity. Recall that p is a sequence of indices ⟨1, … , 𝑛⟩ and q is the zeroth
index. And the waywe have defined these vectors make the expression definitionally
equal.

idExt ∶ ∀ {n} → id {1 + n} ≡ (p , q)
idExt = ref l

Lemma 3.2. t [ id ] ≡ t

Proof. Induction on t and a lookup property on id. This property reduces to verifying
that looking up in id with some 𝑖, results in var i.

subId ∶ ∀ {n} (t ∶ Tm n) → t [ id ] ≡ t
subId (var i) = lookup−id i

Lemma 3.3. t [ ρ ∘ σ ] ≡ t [ ρ ] [ σ ]

Proof. Induction on t and side induction on ρ in the variable case.

subComp ∶ ∀ {m n k} (t ∶ Tm n) (ρ ∶ Sub m n) (σ ∶ Sub k m) →
t [ ρ ∘ σ ] ≡ t [ ρ ] [ σ ]

subComp (var ()) [] σ
subComp (var zero) (x ∷ ρ) σ = refl
subComp (var (suc i)) (x ∷ ρ) σ = subComp (var i) ρ σ

Lemma 3.4. id {0} ≡ []

Proof. Reflexivity. A vector of length 0 is always the empty vector.

17
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id0 ∶ id {0} ≡ []
id0 = refl

Lemma 3.5. [] ∘ ρ ≡ []

Proof. Reflexivity. Composition was defined by mapping substitution on the left ar-
gument, thus mapping on the empty vector results in [].

[]Lzero ∶ ∀ {m n} (ρ ∶ Sub m n) → [] ∘ ρ ≡ []
[]Lzero _ = refl

Lemma 3.6. p ∘ (σ , t) ≡ σ

Proof. By properties relating p to lookup and map.

map−lookup−↑ ∶ ∀ {n m} (ts ∶ Sub m (1 + n)) →
map (flip lookup ts) (tabulate suc) ≡ tail ts

map−lookup−↑ (t ∷ ts) = begin
map (f lip lookup (t ∷ ts)) (tabulate suc)

≡⟨ sym $ tabulate−∘ (f lip lookup (t ∷ ts)) suc ⟩
tabulate (f lip lookup ts)

≡⟨ tabulate∘lookup ts ⟩
ts

∎

p∘−lookup ∶ ∀ {m n} (ts ∶ Sub m (1 + n)) →
p {n} ∘ ts ≡ map (f lip lookup ts) (tabulate suc)

p∘−lookup ts = let pFin = tabulate suc in begin
map (_[ ts ]) (tabulate (var F.∘ suc))

≡⟨ cong (map (_[ ts ])) (tabulate−∘ var suc) ⟩
map (_[ ts ]) (map var pFin)

≡⟨⟩
(map (_[ ts ]) F.∘ map (var)) pFin

≡⟨ sym $ map−∘ (_[ ts ]) (var) pFin ⟩
map (λ i → (var i) [ ts ]) pFin

≡⟨⟩
map (f lip lookup ts) pFin

∎

pCons ∶ ∀ {n k} (σ ∶ Sub n k) t → p ∘ (σ , t) ≡ σ
pCons σ t = trans (p∘−lookup (σ , t)) (map−lookup−↑ (σ , t))

The expression p ∘ (σ , t) is transformed to mapping a lookup on the sequence of
⟨1, … , 𝑛⟩, which should then drop the first element since the lookup begins from the
index 1.

Lemma 3.7. (σ ∘ γ) ∘ δ ≡ σ ∘ (γ ∘ δ)

18
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Proof. This follows by a simple induction if we know that t [ ρ ∘ σ ] ≡ t [ ρ ] [ σ ].

assoc ∶ ∀ {m n k j} (σ ∶ Sub m n) (γ ∶ Sub k m) (δ ∶ Sub j k) →
(σ ∘ γ) ∘ δ ≡ σ ∘ (γ ∘ δ)

assoc [] γ δ = refl
assoc (t ∷ σ) γ δ = sym $ begin

(σ , t) ∘ (γ ∘ δ) ≡⟨⟩
σ ∘ (γ ∘ δ) , t [ γ ∘ δ ] ≡⟨ cong (λ x → _ , x) (subComp t γ δ) ⟩
σ ∘ (γ ∘ δ) , t [ γ ] [ δ ] ≡⟨ sym (cong (_, t [ γ ] [ δ ]) (assoc σ γ δ)) ⟩
(σ ∘ γ) ∘ δ , t [ γ ] [ δ ] ∎
where open P.≡−Reasoning

Lemma 3.8. q [ σ , t ] ≡ t

Proof. Reflexivity. This reduces to looking up zero in the vector, thus, the first ele-
ment is picked.

qCons ∶ ∀ {m n} (σ ∶ Sub m n) t → q [ σ , t ] ≡ t
qCons _ _ = refl

Lemma 3.9. (σ , t) ∘ γ ≡ (σ ∘ γ) , t [ γ ]

Proof. Reflexivity; this is how composition is defined.

compExt ∶ ∀ {m n} (σ ∶ Sub n m) (γ ∶ Sub m n) t →
(σ , t) ∘ γ ≡ (σ ∘ γ) , t [ γ ]

compExt _ _ _ = refl

Lemma 3.10. id ∘ σ ≡ σ

Proof. Induction on σ.

idL ∶ ∀ {m n} (σ ∶ Sub m n) → id ∘ σ ≡ σ
idL [] = ref l
idL {n = suc n} (x ∷ σ) = begin

id {1 + n} ∘ (σ , x) ≡⟨⟩
(p , q) ∘ (σ , x) ≡⟨⟩
p ∘ (σ , x) , x ≡⟨ cong (_, x) (pCons σ x) ⟩
σ , x ∎

Lemma 3.11. σ ∘ id ≡ σ

Proof. Induction on σ.

idR ∶ ∀ {m n} (σ ∶ Sub m n) → σ ∘ id ≡ σ
idR [] = ref l
idR (t ∷ σ) rewrite subId t | idR σ = refl
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The congruence rule proofs are trivial and thus omitted. Propositional equality is
obviously an equivalence relation thus fulfilling all ucwf requirements. As a result,
we now have a second ucwf with variables and substitutions as meta operations.

3.2.3 Isomorphism of Ucwfs

This section presents a proof that the two ucwfs defined earlier are isomorphic. By
viewing both of these constructs as objects in the category of ucwfs, one can de-
fine ucwf morphisms between them. Morphisms are functions that map terms and
substitutions from one data type to the other. Once the morphisms are defined, we
can show the isomorphism by proving that the functions are inverses of each other,
which is one method to demonstrate a bijection.

Earlier it was mentioned that the ucwf with explicit substitutions should be initial
in the category of ucwfs; therefore, by showing it is isomorphic to the other one
shows that the latter is also initial. This would

First, we discuss the formal definition of a ucwf morphism. It consists of two
maps between the terms of substitutions of the involved ucwfs. Also, it comes with a
set of laws that ucwf structure should be preserved strictly. We formalize this notion
with a record.

record Ucwf−Morphism ∶ Set1 where
field

src ∶ Ucwf
trg ∶ Ucwf

open Ucwf src
open Ucwf trg

– renamings are hidden
field

– maps from terms and substitutions
⟦_⟧ ∶ ∀ {n} → TmS n → TmT n
⟦_⟧′ ∶ ∀ {m n} → SubS m n → SubT m n

– Ucwf structure is preserved
id−preserved ∶ ∀ {n} → ⟦ idS {n} ⟧′ ≋T idT

q−preserved ∶ ∀ {n} → ⟦ qS {n} ⟧ ≈T qT

p−preserved ∶ ∀ {n} → ⟦ pS {n} ⟧′ ≋T pT

∘−preserved ∶ ∀ {m n k} (σ1 ∶ SubS k n) (σ2 ∶ SubS m k)
→ ⟦ σ1 ∘S σ2 ⟧′ ≋T ⟦ σ1 ⟧′ ∘T ⟦ σ2 ⟧′

<>−preserved ∶ ∀ {m} → ⟦ <>S {m} ⟧′ ≋T <>T

<, >−preserved ∶ ∀ {m n} (t ∶ TmS m) (σ ∶ SubS m n)
→ ⟦ < σ , t >S ⟧′ ≋T < ⟦ σ ⟧′ , ⟦ t ⟧ >T

sub−preserved ∶ ∀ {m n} (t ∶ TmS n) (σ ∶ SubS m n)
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→ ⟦ t [ σ ]S ⟧ ≈T ⟦ t ⟧ [ ⟦ σ ⟧′ ]T

The fields have been renamed with suffixes to distinguish them. Source ucwf has an
S and target ucwf a T.

Now we construct ucwf morphisms for our specific ucwfs. Several notational
changes include the following: terms of the ucwf combinator language are renamed
as Tm−cwf , while variable terms are called Tm−λ. Furthermore, to avoid name
clashing, operation names on the scoped variables’ side have a lambda as a suffix,
e.g. p is now p−λ. A ucwf morphism is a map that preserves ucwf structure entirely,
so every operation like composition, and substitution has to be preserved when using
these maps.

– Bijections for terms
⟦_⟧ ∶ ∀ {n} → Tm−λ n → Tm−cwf n
⟪_⟫ ∶ ∀ {n} → Tm−cwf n → Tm−λ n

– Bijections for substitutions
⟪_⟫′ ∶ ∀ {m n} → Sub−cwf m n → Sub−λ m n
⟦_⟧′ ∶ ∀ {m n} → Sub−λ m n → Sub−cwf m n

varCwf ∶ ∀ {n} (i ∶ Fin n) → Tm−cwf n
varCwf zero = q
varCwf (suc i) = varCwf i [ p ]

⟦ var i ⟧ = varCwf i

⟦ [] ⟧′ = <>
⟦ t ∷ ts ⟧′ = < ⟦ ts ⟧′ , ⟦ t ⟧ >

– Ucwf morphism by definition
⟪ q ⟫ = q−λ
⟪ t [ us ] ⟫ = ⟪ t ⟫ [ ⟪ us ⟫′ ]λ

⟪ id ⟫′ = id−λ
⟪ ts ∘ us ⟫′ = ⟪ ts ⟫′ ∘λ ⟪ us ⟫′

⟪ p ⟫′ = p−λ
⟪ <> ⟫′ = []
⟪ < ts , t > ⟫′ = ⟪ ts ⟫′ , ⟪ t ⟫

Variables on the Tm−cwf side are constructed by substituting q to compositions
of the projection substitution p. Intuitively, by composing projection substitutions,
one increases the variable indices. It starts with the sequence ⟨1, … , 𝑛⟩ and upon
lifting once, it becomes ⟨2, … , 𝑛 + 1⟩. And since q picks the head of the substitution,
q [ p ] is the variable with index 1. Moreover, the remaining explicit constructors are
mapped to the meta-level operations described in section 3.2.2. We also observe that
functions from the ucwf with explicit substitutions are mutually recursive.

It would be particularly nice if we had a formal notion of the whole category of
ucwfs; however, it is not formalized in this thesis and, in fact, such a task has its own
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challenges.
Next, the proof part is presented. To begin with, two integral properties are nec-

essary. The ucwf morphism with Tm−λ as source needs to satisfy preservation of
ucwf structure. The two following properties prove that substitution and composi-
tion are preserved.

Lemma 3.12. ⟦ t [ σ ]λ ⟧ ≈ ⟦ t ⟧ [ ⟦ σ ⟧′ ]

Proof. Induction on t and σ.

[]−preserv ∶ ∀ {m n} t (σ ∶ Sub−λ m n) → ⟦ t [ σ ]λ ⟧ ≈ ⟦ t ⟧ [ ⟦ σ ⟧′ ]
[]−preserv (var zero) (x ∷ σ) = sym≈ (qCons ⟦ σ ⟧′ ⟦ x ⟧)
[]−preserv (var (suc ι)) (x ∷ σ) = sym≈ $ begin

⟦ var ι ⟧ [ p ] [ < ⟦ σ ⟧′ , ⟦ x ⟧ > ]
≈⟨ sym≈ (subComp p < ⟦ σ ⟧′ , ⟦ x ⟧ > ⟦ var ι ⟧) ⟩

⟦ var ι ⟧ [ p ∘ < ⟦ σ ⟧′ , ⟦ x ⟧ > ]
≈⟨ (cong−sub ref l≈ (pCons ⟦ σ ⟧′ ⟦ x ⟧)) ⟩

⟦ var ι ⟧ [ ⟦ σ ⟧′ ]
≈⟨ sym≈ ([]−preserv (var ι) σ) ⟩

⟦ lookup ι σ ⟧
∎

where open EqR (TmSetoid {_})

Some basic equational reasoning using the ucwf axiomatization is required upon
applying the inductive hypothesis.

Lemma 3.13. ⟦ σ ∘λ γ ⟧′ ≋ ⟦ σ ⟧′ ∘ ⟦ γ ⟧′

Proof. Induction on σ.

∘−preserv ∶ ∀ {m n k} (σ ∶ Sub−λ n k) (γ ∶ Sub−λ m n) →
⟦ σ ∘λ γ ⟧′ ≋ ⟦ σ ⟧′ ∘ ⟦ γ ⟧′

∘−preserv [] γ = sym≋ (<>Lzero ⟦ γ ⟧′)
∘−preserv (t ∷ σ) γ = begin

< ⟦ σ ∘λ γ ⟧′ , ⟦ t [ γ ]λ ⟧ >
≈⟨ cong−<, > refl≈ (∘−preserv σ γ) ⟩

< ⟦ σ ⟧′ ∘ ⟦ γ ⟧′ , ⟦ t [ γ ]λ ⟧ >
≈⟨ cong−<, > ([]−preserv t γ) ref l≋ ⟩

< ⟦ σ ⟧′ ∘ ⟦ γ ⟧′ , ⟦ t ⟧ [ ⟦ γ ⟧′ ] >
≈⟨ sym≋ (compExt ⟦ σ ⟧′ ⟦ γ ⟧′ ⟦ t ⟧) ⟩

< ⟦ σ ⟧′ , ⟦ t ⟧ > ∘ ⟦ γ ⟧′

∎
where open EqR (SubSetoid {_} {_})

More preservation properties are needed but they are proven simultaneously with
the inverse lemmas after.

Subsequently, we continue with the inverse properties; they are shown as two
pairs: terms and substitutions.
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tm−λ⇒cwf ∶ ∀ {n} (t ∶ Tm−λ n) → t ≡ ⟪ ⟦ t ⟧ ⟫

sub−λ⇒cwf ∶ ∀ {m n} (ρ ∶ Sub−λ m n) → ρ ≡ ⟪ ⟦ ρ ⟧′ ⟫′

tm−cwf⇒λ ∶ ∀ {n} (t ∶ Tm−cwf n) → t ≈ ⟦ ⟪ t ⟫ ⟧

sub−cwf⇒λ ∶ ∀ {m n} (γ ∶ Sub−cwf m n) → γ ≋ ⟦ ⟪ γ ⟫′ ⟧′

The first proof is a simple induction on the term which can only be a variable
and then induction on the index of the variable. Additionally, we use a property that
states a lookup in the projection substitution returns the successor, var (suc i). The
substitution extension is just an application of the hypotheses.

Lemma 3.14. t ≡ ⟪ ⟦ t ⟧ ⟫ and ρ ≡ ⟪ ⟦ ρ ⟧′ ⟫′.

Proof. Induction on t.

tm−λ⇒cwf (var zero) = ref l
tm−λ⇒cwf (var (suc i))

rewrite sym $ lookup−p i = cong (_[ p−λ ]λ) (tm−λ⇒cwf (var i))

sub−λ⇒cwf [] = ref l
sub−λ⇒cwf (x ∷ ρ) = cong2 _, _ (sub−λ⇒cwf ρ) (tm−λ⇒cwf x)

The first inverse is thus completed.
On the other side, the q case is trivial; for the substitution case, we have two

inductive hypotheses since the proofs are mutually recursive. Lastly, we use lemma
3.12, this allows us to avoid performing further pattern matching on the substitution
and hence do extensive equational reasoning for each case.

The cases wherewe extend a substitution are proved by simply applying hypothe-
ses to the operands. The composition case utilizes lemma 3.13 and the identity case
is an induction on the length as well. The projection case is somewhat more difficult
and is discussed after. Next, we show the top level proofs.

Lemma 3.15. t ≈ ⟦ ⟪ t ⟫ ⟧ and γ ≋ ⟦ ⟪ γ ⟫′ ⟧′.

Proof. Induction on ρ and γ.

tm−cwf⇒λ q = refl≈
tm−cwf⇒λ (t [ us ]) = sym≈ $ begin

⟦ ⟪ t ⟫ [ ⟪ us ⟫′ ]λ ⟧ ≈⟨ []−preserv ⟪ t ⟫ ⟪ us ⟫′ ⟩
⟦ ⟪ t ⟫ ⟧ [ ⟦ ⟪ us ⟫′ ⟧′ ] ≈⟨ sym≈ (cong−sub (tm−cwf⇒λ t) ref l≋) ⟩
t [ ⟦ ⟪ us ⟫′ ⟧′ ] ≈⟨ sym≈ (cong−sub ref l≈ (sub−cwf⇒λ us)) ⟩
t [ us ] ∎
where open EqR (TmSetoid {_})

sub−cwf⇒λ (id {zero}) = id0
sub−cwf⇒λ (id {suc m}) = begin
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id {1 + m} ≈⟨ idExt ⟩
< p , q > ≈⟨ cong−<, > refl≈ (sub−cwf⇒λ p) ⟩
< ⟦ p−λ ⟧′ , q > ∎
where open EqR (SubSetoid {_} {_})

sub−cwf⇒λ (γ ∘ δ) = sym≋ $ begin
⟦ ⟪ γ ⟫′ ∘λ ⟪ δ ⟫′ ⟧′ ≈⟨ ⟦⟧−∘−dist ⟪ γ ⟫′ ⟪ δ ⟫′ ⟩
⟦ ⟪ γ ⟫′ ⟧′ ∘ ⟦ ⟪ δ ⟫′ ⟧′ ≈⟨ sym≋ (cong−∘ (sub−cwf⇒λ γ) ref l≋) ⟩
γ ∘ ⟦ ⟪ δ ⟫′ ⟧′ ≈⟨ sym≋ (cong−∘ ref l≋ (sub−cwf⇒λ δ)) ⟩
γ ∘ δ ∎
where open EqR (SubSetoid {_} {_})

sub−cwf⇒λ p = p−inverse
sub−cwf⇒λ <> = refl≋
sub−cwf⇒λ < γ , x > = cong−<, > (tm−cwf⇒λ x) (sub−cwf⇒λ γ)

The function p−inversemust show that p ≋ ⟦ p−λ ⟧′, i.e., that projection is preserved.
This is proved in two steps; first, it is shown that p is convertible to its normalized
form. By normalized form, we mean the actual sequence of successive weakenings
on the zeroth variable q. This form is built by sequences of Fin elements so we can
iterate weakening to attain the form of p we need.

data Fins ∶ Nat → Nat → Set where
<> ∶ ∀ {m} → Fins m 0
<_, _> ∶ ∀ {m n} → Fins m n → Fin m → Fins m (suc n)

varCwf ∶ ∀ {n} (i ∶ Fin n) → Tm−cwf n
varCwf zero = q
varCwf (suc i) = varCwf i [ p ]

vars ∶ ∀ {n m} (is ∶ Fins m n) → Sub−cwf m n
vars <> = <>
vars < is , i > = < vars is , varCwf i >

pNorm ∶ ∀ n → Sub−cwf (suc n) n
pNorm n = vars (pFins n)

Here, pFins refers to the sequence of Fins ⟨1, … , 𝑛⟩; it is the projection substitution
for indices. Now we can show that p is convertible to this sequence. The translation
function constructs the equivalent of variables in Tm−cwf by invoking varCwf , thus
this lemma is essential. It is an induction on the length, but we need significant dull
reasoning with the sequences of Fins behind the scenes.
Lemma 3.16. p ≋ pNorm n
Proof. Induction on n.

p≋pNorm ∶ ∀ n → p ≋ pNorm n
p≋pNorm zero = ter−arrow (p {0})
p≋pNorm (suc n) = begin

p
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≈⟨ surj−<, > p ⟩
< p ∘ p , q [ p ] >

≈⟨ cong−<, > refl≈ (cong−∘ (p≋pNorm n) (ref l≋)) ⟩
< vars (mapFins (tab F.id) suc) ∘ p , q [ p ] >

≈⟨ cong−<, > refl≈ (var−lemma (mapFins (tab F.id) suc)) ⟩
< vars (mapFins (mapFins (tab F.id) suc) suc) , q [ p ] >

≈⟨ cong−<, > refl≈ help ⟩
< vars (mapFins (tab suc) suc) , q [ p ] >

∎
where open EqR (SubSetoid {_} {_})

Because different versions of p were used, the second step of that proof was to show
that all definitions used are the same this last bit is omitted as it involves tedious
calculations with vectors.

Consequently, the functions are inverses of each other and hence we have an
isomorphism of ucwfs.

3.3 Term Models of 𝜆-Ucwfs
In this section, we add extra structure to our two ucwfs to allow the formation of
lambda abstractions and applications. These are considered different objects in a
different category altogether but the work done in the previous section is kept for
the most part.

In fact, only proofs using induction have to be extended to account for new ele-
ments in the set of terms.

3.3.1 𝜆-Ucwf with Explicit Substitutions
The construction of a 𝜆-ucwf with ucwf combinators is done by extending the Tm
data type and adding introduction rules for the laws. The substitutions remain the
same and we acquire a 𝜆-ucwf by definition that should be initial in the category of
𝜆-ucwfs.

data Tm where
q ∶ ∀ {n} → Tm (suc n)
_[_] ∶ ∀ {m n} → Tm n → Sub m n → Tm m
lam ∶ ∀ {n} → Tm (suc n) → Tm n
app ∶ ∀ {n} → Tm n → Tm n → Tm n

data _≈_ where
subApp ∶ ∀ {n m} (ts ∶ Sub m n) t u →

app (t [ ts ]) (u [ ts ]) ≈ app t u [ ts ]
subLam ∶ ∀ {n m} (ts ∶ Sub m n) t →

lam t [ ts ] ≈ lam (t [ ⇑ ts ])
…
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Overall, this formulation bears resemblance to the 𝜆𝜎 calculus (Abadi et al) [12].
Substitution is an explicit operation within the calculus and one uses these algebraic
operators to perform the necessarymanipulations. Almost all operators can be found
in the 𝜎 system. For instance, the projection substitution p, is alternatively called shift
and is symbolized by an upwards arrow ↑. However, the core system 𝜎 does not have
every rule of a ucwf; for example, id is not a right identity in 𝜎, but the similarity is
interesting nonetheless.

3.3.2 𝜆-Ucwf with Implicit Substitutions
Regarding the ucwf with traditional variables, we can add the new constructors
which gives us the term language of the 𝜆-calculus. Terms are indexed by the maxi-
mum number of free variables theymay contain. So theTm type is extended with the
appropriate constructors. An infix dot notation is used for application and a slashed
lambda for abstractions.

data Tm (n ∶ Nat) ∶ Set where
var ∶ (i ∶ Fin n) → Tm n
_·_ ∶ (t u ∶ Tm n) → Tm n
ƛ ∶ (t ∶ Tm (1 + n)) → Tm n

We proceed by defining the new substitution operation. Now we have to deal
with lambda and apply. The concept of renaming is required for this task. Renamings
(Ren) are merely sequences of elements of Fin type; they are substitutions for scoped
variables. The renaming operation is used to weaken a term.

Ren ∶ Nat → Nat → Set
Ren m n = Vec (Fin m) n

lif t−ren ∶ ∀ {m n} → Ren m n → Ren (1 + m) (1 + n)
lif t−ren = λ ρ → zero ∷ map suc ρ

ren ∶ ∀ {n m} → Tm n → Ren m n → Tm m
ren (var i) ρ = var (lookup i ρ)
ren (ƛ t) ρ = ƛ (ren t (lif t−ren ρ))
ren (t · u) ρ = (ren t ρ) · (ren u ρ)

weaken ∶ ∀ {m} → Tm m → Tm (1 + m)
weaken = flip ren (tabulate suc)

↑_ ∶ ∀ {m n} → Sub m n → Sub (1 + m) (1 + n)
↑_ = (_, q) F.∘ map weaken

_[_] ∶ ∀ {m n} → Tm n → Sub m n → Tm m
var i [ σ ] = lookup i σ
ƛ t [ σ ] = ƛ (t [ ↑ σ ])
(t · u) [ σ ] = t [ σ ] · u [ σ ]
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The operations of renaming and substitution have overt similarities and they are
connected. The interesting case is ƛ, where we have to weaken and extend the sub-
stitution to account for the binder. Further, weakening a term t is renaming the free
variables in the Fin sequence ⟨1, … , 𝑛⟩.

Afterwards, we have to prove that this term model is a 𝜆-ucwf. We keep the
proofs for pure ucwfs and extend two lemmas.

Lemma 3.17. t [ id ] ≡ t
Proof. By induction on t.

subId ∶ ∀ {n} (t ∶ Tm n) → t [ id ] ≡ t
subId (var i) = lookup−id i
subId (t · u) = cong2 _·_ (subId t) (subId u)
subId (ƛ t) = cong ƛ $ begin

t [ ↑ id ] ≡⟨ cong (t [_] F.∘ (_, q)) (sym p=p′) ⟩
t [ p , q ] ≡⟨⟩
t [ id ] ≡⟨ subId t ⟩
t ∎
where open P.≡−Reasoning

Lemma 3.18. t [ ρ ∘ σ ] ≡ t [ ρ ] [ σ ]
Proof. Induction on t and mutual induction on ρ in the variable case.

subComp ∶ ∀ {m n k} (t ∶ Tm n) (ρ ∶ Sub m n) (σ ∶ Sub k m) →
t [ ρ ∘ σ ] ≡ t [ ρ ] [ σ ]

subComp (var ()) [] σ
subComp (var zero) (x ∷ ρ) σ = refl
subComp (var (suc i)) (x ∷ ρ) σ = subComp (var i) ρ σ
subComp (t · u) ρ σ = cong2 _·_ (subComp t ρ σ) (subComp u ρ σ)
subComp (ƛ t) ρ σ = cong ƛ $ begin

t [ ↑ (ρ ∘ σ) ] ≡⟨ cong (t [_]) (↑−dist ρ σ) ⟩
t [ ↑ ρ ∘ ↑ σ ] ≡⟨ subComp t (↑ ρ) (↑ σ) ⟩
t [ ↑ ρ ] [ ↑ σ ] ∎
where open P.≡−Reasoning

The key property for the λ case is that ↑ distributes over composition; the proof of
↑−dist is in listing A.2. As a result, we constructed another 𝜆-ucwf with the usual
lambda terms.

3.3.3 Isomorphism of 𝜆-Ucwfs
The extension for the isomorphism proof is quite simple. The new translation func-
tions for the two new cases have a nice recursive structure that results in the proofs
being simple applications of the hypotheses. Only cases of 𝜆 abstractions and ap-
plication are presented here to avoid repetition. A 𝜆-ucwf morphism is a ucwf mor-
phism where application and lambda structure are preserved as well. The functions
we define are 𝜆-ucwf morphism by definition.
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Definition 3.1. 𝜆-ucwf morphisms.

⟦_⟧ ∶ ∀ {n} → Tm−λ n → Tm−cwf n
⟪_⟫ ∶ ∀ {n} → Tm−cwf n → Tm−λ n

⟦ ƛ t ⟧ = lam ⟦ t ⟧
⟦ t · u ⟧ = app ⟦ t ⟧ ⟦ u ⟧

⟪ lam t ⟫ = ƛ ⟪ t ⟫
⟪ app t u ⟫ = ⟪ t ⟫ · ⟪ u ⟫

And the extensions of lemma 3.14.

tm−λ⇒cwf (ƛ t) = cong ƛ (tm−λ⇒cwf t)
tm−λ⇒cwf (t · u) = cong2 (_·_) (tm−λ⇒cwf t) (tm−λ⇒cwf u)

tm−cwf⇒λ (lam t) = cong−lam (tm−cwf⇒λ t)
tm−cwf⇒λ (app t u) = cong−app (tm−cwf⇒λ t) (tm−cwf⇒λ u)

Finally, the fact that substitution is preserved by the map needs additional cases
lemma (3.12).

[]−preserv ∶ ∀ {m n} t (σ ∶ Sub−λ m n) → ⟦ t [ σ ]λ ⟧ ≈ ⟦ t ⟧ [ ⟦ σ ⟧′ ]
[]−preserv (t · u) σ = begin

app ⟦ t [ σ ]λ ⟧ ⟦ u [ σ ]λ ⟧
≈⟨ cong−app ([]−preserv t σ) ref l≈ ⟩

app (⟦ t ⟧ [ ⟦ σ ⟧′ ]) (⟦ u [ σ ]λ ⟧)
≈⟨ cong−app ref l≈ ([]−preserv u σ) ⟩

app (⟦ t ⟧ [ ⟦ σ ⟧′ ]) (⟦ u ⟧ [ ⟦ σ ⟧′ ])
≈⟨ subApp ⟦ σ ⟧′ ⟦ t ⟧ ⟦ u ⟧ ⟩

app ⟦ t ⟧ ⟦ u ⟧ [ ⟦ σ ⟧′ ]
∎

where open EqR (TmSetoid {_})
[]−preserv (ƛ t) σ = begin

lam ⟦ t [ ↑ σ ]λ ⟧
≈⟨ cong−lam $ []−preserv t (↑ σ) ⟩

lam (⟦ t ⟧ [ < ⟦ map weaken−λ σ ⟧′ , q > ])
≈⟨ cong−lam $ cong−sub ref l≈ help ⟩

lam (⟦ t ⟧ [ < ⟦ σ ∘λ p−λ ⟧′ , q > ])
≈⟨ cong−lam $ cong−sub ref l≈

(cong−<, > refl≈ (∘−preserv σ p−λ)) ⟩
lam (⟦ t ⟧ [ < ⟦ σ ⟧′ ∘ ⟦ p−λ ⟧′ , q > ])

≈⟨ cong−lam $ cong−sub ref l≈
(cong−<, > refl≈ (cong−∘ ref l≋ (sym≋ $ p−λ≈⟦p⟧))) ⟩

lam (⟦ t ⟧ [ < ⟦ σ ⟧′ ∘ p , q > ])
≈⟨ sym≈ (subLam ⟦ σ ⟧′ ⟦ t ⟧) ⟩

lam ⟦ t ⟧ [ ⟦ σ ⟧′ ]
∎

where open EqR (TmSetoid {_})
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help ∶ < ⟦ map weaken−λ σ ⟧′ , q > ≋ < ⟦ σ ∘λ p−λ ⟧′ , q >
help rewrite sym (mapWk−∘p σ) = refl≋

These modifications are sufficient to extend the isomorphism to our 𝜆-ucwfs.

3.4 Term Models of 𝜆-𝛽𝜂-Ucwfs
Finally, we take the notion of 𝜆-𝛽𝜂-ucwfs that models untyped 𝜆-calculus with beta
and eta and construct two such objects, morphisms, and isomorphism as before. This
is an undoubtedly more interesting result.

Recall that the notion of 𝜆-𝛽𝜂-ucwf is just a 𝜆-Ucwf with beta and eta equalities.
Therefore our variable-free calculus of explicit substitutions needs no changes apart
from adding these beta laws in the equality relation of terms.

data _≈_ where
…
β ∶ ∀ {n} {t ∶ Tm (suc n)} {u} → app (lam t) u ≈ t [ < id , u > ]
η ∶ ∀ {n} {t ∶ Tm n} → lam (app (t [ p ]) q) ≈ t

And so by adding these equations to the relation, the 𝜆-ucwf becomes a 𝜆-𝛽𝜂-ucwf
directly. Again, this object should be initial in the category of 𝜆-𝛽𝜂-ucwfs.

On the other hand, the calculus with ordinary lambda terms requires significant
changes. To begin with, we need a relation that describes beta-eta convertibility for
lambda terms. Hitherto, we were using propositional equality but this is changed
now. Next, we formalize the relation for beta-eta.

data _~βη_ {n} ∶ (_ _ ∶ Tm n) → Set where

– variables with the same index are convertible
varcong ∶ ∀ i → var i ~βη var i

– congruence for application
apcong ∶ ∀ {t u t′ u′} →

t ~βη t′ →
u ~βη u′ →
t · u ~βη t′ · u′

– the ξ rule
ξ ∶ ∀ {t u} → t ~βη u → ƛ t ~βη ƛ u

– beta and eta equalities
β ∶ ∀ {t u} → ƛ t · u ~βη t [ id , u ]
η ∶ ∀ {t} → ƛ (weaken t · q) ~βη t

sym~βη ∶ ∀ {t1 t2} → t1 ~βη t2 → t2 ~βη t1
trans~βη ∶ ∀ {t1 t2 t3} → t1 ~βη t2 → t2 ~βη t3 → t1 ~βη t3

data _≈βη_ {m} ∶ ∀ {n} (_ _ ∶ Sub m n) → Set where
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– empty substitutions are convertible
⋄ ∶ ∀ {ρ ρ′ ∶ Sub m 0} → ρ ≈βη ρ′

– if terms and substitutions are convertible, so is cons
ext ∶ ∀ {n} {t u ∶ Tm m} {ρ ρ′ ∶ Sub m n} →

t ~βη u → ρ ≈βη ρ′ →
(ρ , t) ≈βη (ρ′ , u)

Reflexivity is then derived.

ref l~βη ∶ ∀ {n} {t ∶ Tm n} → t ~βη t
ref l~βη = trans~βη (sym~βη (η _)) (η _)

ref l≈βη ∶ ∀ {m n} {ρ ∶ Sub m n} → ρ ≈βη ρ
ref l≈βη {ρ = []} = ⋄
ref l≈βη {ρ = _ ∷ _} = ext ref l~βη ref l≈βη

Naturally, every property has to be proven at the level of this relation instead of
propositional equality. However, given the preceding work that contains all require
proofs for propositional equality, it is convenient to use them to lift a proof to this
new relation.

≡−to~βη ∶ ∀ {n} {t u ∶ Tm n} → t ≡ u → t ~βη u
≡−to~βη ref l = ref l~βη

≡−to−≈βη ∶ ∀ {m n} {ρ σ ∶ Sub m n} → ρ ≡ σ → ρ ≈βη σ
≡−to−≈βη ref l = ref l≈βη

This means that all the properties, ucwf axioms, and inverse lemmas can be proven
by a call to the equivalent propositional equality proof. There is, however, some extra
work in proving the congruence rules; these proofs can be found in listing A.3.

The morphisms for these objects are no different than before, but the underlying
equalities have changed. By the same token, we can extend the isomorphism proof
by using the propositional equality proofs for the 𝜆-ucwfs.
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4
Simply Typed CwFs

This chapter transitions to simply typed cwfs (scwfs). Scwf is a model of a theory of
typed functions. Firstly, we formalize the notions of scwfs similarly to how we did
for ucwfs. The three notions are again:

1. Pure scwfs

2. 𝜆-scwfs.

3. 𝜆-𝛽𝜂-scwfs.

Following the same structure, we construct two instances for each notion. We
have the variable free calculus of explicit substitutions that uses scwf combinators
and a more traditional implementation with implicit substitutions. The former is
always a scwf by construction. At each stage we build scwf morphisms and an iso-
morphism.

Generally, there are two main options of formalizing simply typed terms; one
way is to implement typed terms that represent typing derivations of untyped terms.
An example signature in Agda could be this: data Tm (Γ ∶ Ctx) ∶ Ty → Set, where
Ctx and Ty represent context and type implementations. The constructors for this
set construct typed terms. We refer to these as intrinsically typed terms.

On the other hand, one can start with untyped raw terms and add a typing rela-
tion that gives types to terms. For example, data _⊢_∈_ (Γ ∶ Ctx) ∶ Raw → Ty →
Set, where Raw is the set of untyped terms (Raw could be the terms of chapter 3).
This approach is called extrinsic for the obvious antithesis with the former version.

Considering all this, we start by formalizing intrinsic scwfs and adding extra
structure as usual for lambdas and applications and concluding with beta and eta.
This follows an identical pattern and structure to the untyped work. In this chapter
there is extra content because we also formalize extrinsic scwfs based on the un-
typed terms of chapter 3. Overall, three different isomorphisms between three forms
of scwfs will be shown in this chapter. Consider the following figure that depicts the
landscape in which we operate in.

Figure 4.1: Scwf variations explored.
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Figure 4.1 shows different possibilities one can explore. On the left column we have
scwfs that are implemented as calculi of explicit substitutions, whereas on the right
we have traditional versions with substitutions formalized as meta-level operations.

First, the connection depicted by the blue arrow in the diagram is investigated.
This formalization is performed again on three levels, starting from pure and adding
extra structure. Then, wemove to extrinsic scwfs (black arrow) and finally we discuss
extrinsic and intrinsic scwfs, both defined by calculi of explicit substitutions.

4.1 Scwf Notions

4.1.1 Pure Scwfs

The intrinsic way to build a scwf that models typed functions is based on the gen-
eralized algebraic theory of cwfs. The new features include a set of contexts and
types. Moreover, substitutions are indexed by two contexts and terms are indexed
by context and type. This notion is formalized as an Agda record.

record Scwf ∶ Set1 where
field

– types, contexts, terms, and substitutions
Ty ∶ Set
Ctx ∶ Set
Tm ∶ Ctx → Ty → Set
Sub ∶ Ctx → Ctx → Set

– equality of terms and substitutions
_≈_ ∶ ∀ {Γ α} → Rel (Tm Γ α) lzero
_≋_ ∶ ∀ {Γ Δ} → Rel (Sub Γ Δ) lzero

IsEquivT ∶ ∀ {Γ α} → IsEquivalence (_≈_ {Γ} {α})
IsEquivS ∶ ∀ {Γ Δ} → IsEquivalence (_≋_ {Γ} {Δ})

– empty context (terminal object)
⋄ ∶ Ctx

– context extension
_∙_ ∶ Ctx → Ty → Ctx

– last variable and explicit substitution
q ∶ ∀ {Γ α} → Tm (Γ ∙ α) α
_[_] ∶ ∀ {Γ Δ α} → Tm Γ α → Sub Δ Γ → Tm Δ α

– morphisms of the base category
id ∶ ∀ {Γ} → Sub Γ Γ
_∘_ ∶ ∀ {Γ Δ Θ} → Sub Γ Θ → Sub Δ Γ → Sub Δ Θ
<> ∶ ∀ {Γ} → Sub Γ ⋄
<_, _> ∶ ∀ {Γ Δ α} → Sub Γ Δ → Tm Γ α → Sub Γ (Δ ∙ α)
p ∶ ∀ {Γ α} → Sub (Γ ∙ α) Γ
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Two new sets, one for types and one for contexts have been added, along with
the empty context ⋄ and context extension that adds a type. The empty context is
the terminal object of the base category and now we explicitly present a context
extension operator while in our untyped development it was the successor function.

Maintaining type information does not affect much the description. Contexts
are going to be actual lists of types. The field q refers to the last variable (or last
assumption) and variables are constructed by weakening q. A substitution from a
context Γ to Δ means that in environment Γ, we have a substitution where terms are
typed in Δ.

We continue by adding scwf axioms in the record as fields.

– category of substitutions
idL ∶ ∀ {Γ Δ} (γ ∶ Sub Δ Γ) → id ∘ γ ≋ γ
idR ∶ ∀ {Γ Δ} (γ ∶ Sub Γ Δ) → γ ∘ id ≋ γ
assoc ∶ ∀ {Γ Δ Θ Λ} (γ ∶ Sub Δ Θ) (δ ∶ Sub Γ Δ) (ζ ∶ Sub Λ Γ) →

(γ ∘ δ) ∘ ζ ≋ γ ∘ (δ ∘ ζ)

– rules for the functor
subId ∶ ∀ {Γ α} (t ∶ Tm Γ α) → t [ id ] ≈ t
subComp ∶ ∀ {Γ Δ Θ α} (t ∶ Tm Δ α) (γ ∶ Sub Γ Δ) (δ ∶ Sub Θ Γ) →

t [ γ ∘ δ ] ≈ t [ γ ] [ δ ]

– rules for the terminal object
id0 ∶ id {⋄} ≋ <>
<>Lzero ∶ ∀ {Γ Δ} (γ ∶ Sub Γ Δ) → <> ∘ γ ≋ <>

– rules for context comprehension
pCons ∶ ∀ {Δ Θ α} (t ∶ Tm Δ α) (γ ∶ Sub Δ Θ) → p ∘ < γ , t > ≋ γ
qCons ∶ ∀ {Γ Δ α} (t ∶ Tm Γ α) (γ ∶ Sub Γ Δ) → q [ < γ , t > ] ≈ t
idExt ∶ ∀ {Γ α} → id {Γ ∙ α} ≋ < p , q >
compExt ∶ ∀ {Γ Δ α} (t ∶ Tm Δ α) (γ ∶ Sub Δ Γ) (δ ∶ Sub Γ Δ) →

< γ , t > ∘ δ ≋ < γ ∘ δ , t [ δ ] >

– congruence closure
cong−sub ∶ ∀ {Γ Δ α} {t t′ ∶ Tm Γ α} {γ γ′ ∶ Sub Δ Γ} →

t ≈ t′ →
γ ≋ γ′ →
t [ γ ] ≈ t′ [ γ′ ]

cong−<, > ∶ ∀ {Γ Δ α} {t t′ ∶ Tm Γ α} {γ γ′ ∶ Sub Γ Δ} →
t ≈ t′ →
γ ≋ γ′ →
< γ , t > ≋ < γ′ , t′ >

cong−∘ ∶ ∀ {Γ Δ Θ} {γ δ ∶ Sub Δ Θ} {γ′ δ′ ∶ Sub Γ Δ} →
γ ≋ δ →
γ′ ≋ δ′ →
γ ∘ γ′ ≋ δ ∘ δ′
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The equations carry type information, but other than that, there is no change in
comparison to the ucwf equations.

4.1.2 𝜆-Scwfs
We add extra structure to the notion of scwf to accommodate lambda abstractions
and function application. This yields a new notion of 𝜆-scwfs that contains the term
language of simply typed 𝜆-calculus.

record Lambda−scwf ∶ Set1 where
field

scwf ∶ Scwf
open Scwf scwf public
field

– Function type
_‵→_ ∶ Ty → Ty → Ty

– λ abstractions and application
lam ∶ ∀ {Γ α β} → Tm (Γ ∙ α) β → Tm Γ (α ‵→ β)
app ∶ ∀ {Γ α β} → Tm Γ (α ‵→ β) → Tm Γ α → Tm Γ β

– substituting under lam and app
subApp ∶ ∀ {Γ Δ α β} (t ∶ Tm Γ (α ‵→ β)) (u ∶ Tm Γ α) (γ ∶ Sub Δ Γ) →

app (t [ γ ]) (u [ γ ]) ≈ (app t u) [ γ ]
subLam ∶ ∀ {Γ Δ α β} (t ∶ Tm (Γ ∙ α) β) (γ ∶ Sub Δ Γ) →

lam t [ γ ] ≈ lam (t [ < γ ∘ p , q > ])

– congruence rules
cong−lam ∶ ∀ {Γ α β} {t t′ ∶ Tm (Γ ∙ α) β} →

t ≈ t′ →
lam t ≈ lam t′

cong−app ∶ ∀ {Γ α β} {t t′ ∶ Tm Γ (α ‵→ β)} {u u′} →
t ≈ t′ →
u ≈ u′ →
app t u ≈ app t′ u′

The equations expressing stability under substitution are also included, plus congru-
ence closure.

4.1.3 𝜆-𝛽𝜂-Scwfs
The final extension is the notion of 𝜆-𝛽𝜂-scwfs. This construct builds on the two
previous by adding beta and eta equalities as laws. Again formalized as a record

record Lambda−βη−scwf ∶ Set1 where
field

lambda−scwf ∶ Lambda−scwf
open Lambda−scwf lambda−scwf public
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field
– beta and eta equalities
β ∶ ∀ {Γ α β} {t ∶ Tm (Γ ∙ α) β} {u} → app (lam t) u ≈ t [ < id , u > ]
η ∶ ∀ {Γ α β} {t ∶ Tm Γ (α ‵→ β)} → lam (app (t [ p ]) q) ≈ t

This notion scwf with extra structure is a model of simply typed 𝜆-calculus that is
presented with beta and eta.

4.1.4 Extrinsic Scwfs

The notion of extrinsic scwf is another way of describing a scwf in general. Extrinsic
formulations start with raw syntax and add external typing relations that provide
types to terms. The developments of chapter 3 used untyped terms who can act as
raw syntax for an extrinsic scwf. This notion can be formalized as a record too; the
differences will becomes apparent.

record Scwf ∶ Set1 where
field

ucwf ∶ Ucwf
open Ucwf.Ucwf ucwf
field

– Types
Ty ∶ Set

– Contexts
Ctx ∶ Nat → Set
ε ∶ Ctx 0
_∙_ ∶ ∀ {n} → Ctx n → Ty → Ctx (suc n)

– typing relation - terms
_⊢_∈_ ∶ ∀ {n} (Γ ∶ Ctx n) (t ∶ RTm n) (α ∶ Ty) → Set

– typing relation - substitutions
_▹_⊢_ ∶ ∀ {m n} (Γ ∶ Ctx n) (Δ ∶ Ctx m) (ρ ∶ RSub n m) → Set

– sigma pairs of raw with typing rule

– identitiy
id−ty ∶ ∀ {n} {Γ ∶ Ctx n} → Σ (RSub n n) (Γ ▹ Γ ⊢_)

– composition
∘−ty ∶ ∀ {m n k} {Γ ∶ Ctx n} {Δ ∶ Ctx m} {Θ ∶ Ctx k}

→ Σ (RSub n k) (Γ ▹ Θ ⊢_)
→ Σ (RSub m n) (Δ ▹ Γ ⊢_)
→ Σ (RSub m k) (Δ ▹ Θ ⊢_)

– last variable
q−ty ∶ ∀ {n} {Γ ∶ Ctx n} {α} → Σ (RTm (suc n)) (Γ ∙ α ⊢_∈ α)
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– projection substitution
p−ty ∶ ∀ {n} {Γ ∶ Ctx n} {α} → Σ (RSub (suc n) n) (Γ ∙ α ▹ Γ ⊢_)

– empty substitution
<>−ty ∶ ∀ {n} {Γ ∶ Ctx n} → Σ (RSub n 0) (Γ ▹ ε ⊢_)

– extend substitution
<, >−ty ∶ ∀ {m n} {Γ ∶ Ctx n} {Δ ∶ Ctx m} {α}

→ Σ (RSub m n) (Δ ▹ Γ ⊢_)
→ Σ (RTm m) (Δ ⊢_∈ α)
→ Σ (RSub m (suc n)) (Δ ▹ Γ ∙ α ⊢_)

– substitution operation
sub−ty ∶ ∀ {m n} {Γ ∶ Ctx n} {Δ ∶ Ctx m} {α}

→ Σ (RTm n) (Γ ⊢_∈ α)
→ Σ (RSub m n) (Δ ▹ Γ ⊢_)
→ Σ (RTm m) (Δ ⊢_∈ α)

Note how we use a ucwf to define a scwf. This means that equality and generally
conversion is at the raw level. In this extrinsic formulation we want to capture scope
safe terms, so contexts are also indexed by a natural number. We also see two sets
of typing rules: one for terms and one for substitutions. Consequently, to formulate
that we need the cwf operators to be well-typed we have to present a raw term or
substitution with its respective typing rule. For this reason we use sigma pairs; this
means that a well-typed term is the raw term paired up with its typing rule.

This is the only extrinsic notion we show in this section, if we want extra struc-
ture, we merely have to add the corresponding ucwf and add sigma pairs for lambda
and application along with a function type.

4.2 Term Models of Scwfs

4.2.1 Scwf with Explicit Substitutions

Having defined the abstract notion of intrinsic scwf as a record, we move on to scwf
construction. A straightforward scwf with explicit substitutions is implemented as a
data type where all operators and laws are explicit in accordance to the record. First,
assume some set for types and define contexts as lists of types.

postulate Ty ∶ Set

data Ctx ∶ Set where
ε ∶ Ctx
_∙_ ∶ Ctx→ Ty → Ctx

data Tm ∶ Ctx → Ty → Set
data Sub ∶ Ctx → Ctx → Set
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After, two mutually recursive data types representing terms and substitutions.

data Tm where
q ∶ ∀ {Γ α} → Tm (Γ ∙ α) α
_[_] ∶ ∀ {Γ Δ α} → Tm Γ α → Sub Δ Γ → Tm Δ α

data Sub where
id ∶ ∀ {Γ} → Sub Γ Γ
_∘_ ∶ ∀ {Γ Δ Θ} → Sub Γ Θ → Sub Δ Γ → Sub Δ Θ
<> ∶ ∀ {Γ} → Sub Γ ε
<_, _> ∶ ∀ {Γ Δ α} → Sub Γ Δ → Tm Γ α → Sub Γ (Δ ∙ α)
p ∶ ∀ {Γ α} → Sub (Γ ∙ α) Γ

data _≈_ ∶ ∀ {Γ α} (t1 t2 ∶ Tm Γ α) → Set
data _≋_ ∶ ∀ {Γ Δ} (γ1 γ2 ∶ Sub Γ Δ) → Set

These two relations include all the laws of theScwf record defined earlier as introduc-
tion rules, the congruence rules, plus symmetry and transitivity to get an equivalence
relation. The equations are omitted but available in listing A.4 of the appendix. This
is a scwf by definition and should be initial in the category of scwfs.

4.2.2 Scwf with Implicit Substitutions

A second intrinsic scwf is constructed with concrete variables. The formulation we
chose uses contexts as inductive lists of types accompaniedwith relations of inclusion
and membership. The variables are to be membership witnesses in the context they
are typed in. Regarding equality, propositional equality is considered for now.

data Ctxt (A ∶ Set) ∶ Set where
ε ∶ Ctxt A
_∙_ ∶ Ctxt A → A → Ctxt A

data _⊆_ {A ∶ Set} ∶ Ctxt A → Ctxt A → Set where
base ∶ ε ⊆ ε
step ∶ ∀ {Γ Δ ∶ Ctxt A} {α} (φ ∶ Γ ⊆ Δ) → Γ ⊆ (Δ ∙ α)
pop! ∶ ∀ {Γ Δ ∶ Ctxt A} {α} (ψ ∶ Γ ⊆ Δ) → (Γ ∙ α) ⊆ (Δ ∙ α)

Contexts are polymorphic and we define a set Ctx which instantiates a context with
Ty. The set of types is postulated. Moreover, we show the relation for membership
that represents variables.

data _∈_ {A ∶ Set} (α ∶ A) ∶ Ctxt A → Set where
here ∶ {Γ ∶ Ctxt A} → α ∈ Γ ∙ α
there ∶ {Γ ∶ Ctxt A} {α′ ∶ A} → α ∈ Γ → α ∈ Γ ∙ α′

Subsequently, we implement a data type for terms that consists only of variables.

data Tm (Γ ∶ Ctx) ∶ Ty → Set where
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var ∶ ∀ {α} (v ∶ α ∈ Γ) → Tm Γ α

weaken ∶ ∀ {α} {Γ Δ ∶ Ctx} (φ ∶ Γ ⊆ Δ) (t ∶ Tm Γ α) → Tm Δ α
weaken φ (var ∈Γ) = var (wk−ctx φ ∈Γ)

where wk−ctx ∶ ∀ {β ∶ Ty} {Γ Δ} → Γ ⊆ Δ → β ∈ Γ → β ∈ Δ
wk−ctx ⊆Δ v = sub−in ⊆Δ v

q ∶ ∀ {Γ α} → Tm (Γ ∙ α) α
q = var here

Here, sub−in is a general proof that if some element is in a subset, then it is also in
the superset. The scwf operator q is a proof that the type is at the top of the context.

Moving to well-typed substitutions, they are defined sequences of terms typed
in some context; we use the standard library’s product type to implement them by
recursion on the second context. WewriteSub Δ Γ to note a substitutionwhere terms
are typed in Δ. Further, operators like the identity id and projection p are defined
by recursion using weakening. Regarding the substitution operation, a lookup like
function based on a membership witness is needed.

Sub ∶ (Δ Γ ∶ Ctx) → Set
Sub Δ ε = ⊤
Sub Δ (Γ ∙ t) = Sub Δ Γ × Tm Δ t

– weakening a substitution applies weaken to each term
wk−sub ∶ ({Δ} {Θ} Γ ∶ Ctx) (φ ∶ Δ ⊆ Θ) (ρ ∶ Sub Δ Γ) → Sub Θ Γ
wk−sub ε φ ρ = tt
wk−sub (Γ ∙ x) φ (ρ , t) = wk−sub Γ φ ρ , weaken φ t

– projection substitution
p ∶ ∀ {Γ α} → Sub (Γ ∙ α) Γ
p {Γ} = wk−sub Γ ⊆−∙ id

– identity substitution
id ∶ ∀ {Γ} → Sub Γ Γ
id {ε} = tt
id {Γ ∙ α} = p , q

– lookup for typed substitutions
tkVar ∶ ∀ {Γ Δ α} (v ∶ α ∈ Γ) (ρ ∶ Sub Δ Γ) → Tm Δ α
tkVar here (ρ , t) = t
tkVar (there v) (ρ , t) = tkVar v ρ

– substitution operation
_[_] ∶ ∀ {Γ Δ α} → Tm Γ α → Sub Δ Γ → Tm Δ α
var v [ ρ ] = tkVar v ρ

– composition of substitutions
_∘_ ∶ ∀ {Γ Δ Θ} → Sub Γ Θ → Sub Δ Γ → Sub Δ Θ
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_∘_ {Θ = ε} ρ σ = tt
_∘_ {Θ = Θ ∙ α} (ρ , t) σ = ρ ∘ σ , t [ σ ]

Where ⊆−∙ refers to a proof that Γ ⊆ (Γ ∙ α), for any Γ.
These operations correspond to scwf operators presented in the Scwf record. Sub

is implemented as a product; this means that extending a substitution is done using
the pair constructor for products _, _. Moreover, the empty substitution is tt, the
single element of top (unit). This is because when the environment of a substitution
is empty, we return top ⊤, the singleton set.

The next step consists of proving the scwf laws using the operations just defined
to finish the construction of a second intrinsic scwf.

Lemma 4.1. id {Γ ∙ α} ≡ (p , q)

Proof. Reflexivity.

idExt ∶ ∀ {Γ α} → id {Γ ∙ α} ≡ (p , q)
idExt = ref l

Lemma 4.2. t [ id ] ≡ t

Proof. Lookup properties on id and weakened id.

tkVar−wk−id ∶ ∀ {Γ Δ α} (v ∶ α ∈ Γ) (φ ∶ Γ ⊆ Δ) →
tkVar v (wk−sub Γ φ id) ≡ var (sub−in φ v)

tkVar−wk−id {ε} () _
tkVar−wk−id {Γ ∙ x} here φ = refl
tkVar−wk−id {Γ ∙ x} (there v) φ = begin (

tkVar v (wk−sub Γ φ p)
≡⟨ cong (tkVar v) (▹−wk−2 Γ ⊆−∙ φ id) ⟩

tkVar v (wk−sub Γ (⊆−trans ⊆−∙ φ) id)
≡⟨ tkVar−wk−id v (⊆−trans ⊆−∙ φ) ⟩

var (sub−in (⊆−trans ⊆−∙ φ) v)
≡⟨ cong var (sub−in−step φ v) ⟩

var (sub−in φ (there v)) ∎)

tkVar−id ∶ ∀ {Γ α} (v ∶ α ∈ Γ) → tkVar v id ≡ var v
tkVar−id here = ref l
tkVar−id {Γ = Γ ∙ x} (there v) =

trans (tkVar−wk−id v ⊆−∙)
(cong (var F.∘ there) (sub−in−refl v))

subId ∶ ∀ {Γ α} (t ∶ Tm Γ α) → t [ id ] ≡ t
subId (var v) = tkVar−id v

Lemma 4.3. t [ γ ∘ δ ] ≡ t [ γ ] [ δ ]

Proof. Induction on t and mutual induction on γ in the variable case.
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subComp ∶ ∀ {Γ Δ Θ α} (t ∶ Tm Γ α) (γ ∶ Sub Δ Γ) (δ ∶ Sub Θ Δ) →
t [ γ ∘ δ ] ≡ t [ γ ] [ δ ]

subComp (var here) γ δ = refl
subComp (var (there v)) (γ , u) δ = subComp (var v) γ δ

Lemma 4.4. id0 ∶ id {ε} ≡ tt

Proof. Reflexivity.

id0 ∶ id {ε} ≡ tt
id0 = refl

Lemma 4.5. tt ∘ ρ ≡ tt

Proof. Reflexivity.

tt−lzero ∶ ∀ {Γ Δ} (ρ ∶ Sub Γ Δ) → tt ∘ ρ ≡ tt
tt−lzero _ = refl

Lemma 4.6. p ∘ (γ , t) ≡ γ

Proof. Mutually with lemma 4.10 and a general property: if a pair is composed with
any weakened substitution, the last variable is forgotten.

pCons ∶ ∀ {Δ Θ α} (t ∶ Tm Δ α) (γ ∶ Sub Δ Θ) → p ∘ (γ , t) ≡ γ
pCons {Θ = Θ} t = trans (∘−step Θ id _ t) F.∘ idL

Lemma 4.7. (γ ∘ δ) ∘ ζ ≡ γ ∘ (δ ∘ ζ)

Proof. Induction on γ.

assoc ∶ ∀ {Γ Δ Θ Λ} (γ ∶ Sub Δ Θ) (δ ∶ Sub Γ Δ) (ζ ∶ Sub Λ Γ) →
(γ ∘ δ) ∘ ζ ≡ γ ∘ (δ ∘ ζ)

assoc {Θ = ε} tt δ ζ = ref l
assoc {Θ = Θ ∙ _} (γ , t) δ ζ =

trans (cong ((γ ∘ δ) ∘ ζ , _) (sym (subComp t δ ζ)))
(cong (_, t [ δ ∘ ζ ]) (assoc γ δ ζ))

Lemma 4.8. q [ ρ , t ] ≡ t

Proof. Reflexivity.

qCons ∶ ∀ {Γ Δ α} (t ∶ Tm Γ α) (ρ ∶ Sub Γ Δ) → q [ ρ , t ] ≡ t
qCons t ρ = refl

Lemma 4.9. (γ , t) ∘ δ ≡ (γ ∘ δ , (t [ δ ]))
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Proof. Reflexivity.

compExt ∶ ∀ {Γ Δ} {α ∶ Ty} (t ∶ Tm Δ α) (γ ∶ Sub Δ Γ) (δ ∶ Sub Γ Δ) →
(γ , t) ∘ δ ≡ (γ ∘ δ , (t [ δ ]))

compExt = λ _ _ _ → refl

Lemma 4.10. id ∘ ρ ≡ ρ

Proof. Induction on ρ. Mutually proven with lemma 4.6

idL ∶ ∀ {Γ Δ} (ρ ∶ Sub Δ Γ) → id ∘ ρ ≡ ρ
idL {ε} tt = ref l
idL {Γ ∙ α} (ρ , t) = cong (_, t) (pCons t ρ)

Lemma 4.11. ρ ∘ id ≡ ρ

Proof. Induction on ρ.

idR ∶ ∀ {Γ Δ} (ρ ∶ Sub Γ Δ) → ρ ∘ id ≡ ρ
idR {Δ = ε} tt = ref l
idR {Δ = Δ ∙ x} (ρ , t) =

trans (cong (_, t [ id ]) (idR ρ))
(cong (ρ , _) (subId t))

Conclusively, we showed that these variables as membership proofs with typed sub-
stitutions form an intrinsic scwf.

4.2.3 Isomorphism of Scwfs

Hitherto, we have defined two intrinsically typed scwfs. The calculus of explicit
substitutions and the traditional one with variables as membership proofs. Now we
proceed to define scwf morphisms between these objects for the isomorphism.

A scwf morphism is a map that preserves structure for all scwf operators strictly.
We will not present a formalization of a scwf morphism, but the structure preserva-
tion properties are as they were shown for ucwf morphisms but with type informa-
tion. Moreover, in our implementation, both scwfs used the same sets of contexts
and types for brevity. Technically, it would have been more appropriate to define
different sets for contexts and types and then have maps between them as well, but
these sets would be isomorphic by definition anyway.

Definition 4.1. Scwf morphisms

varCwf ∶ ∀ {Γ α} (φ ∶ α ∈ Γ) → Tm−cwf Γ α
varCwf here = q
varCwf (there φ) = varCwf φ [ p ]

⟦_⟧ ∶ ∀ {Γ α} → Tm−λ Γ α → Tm−cwf Γ α
⟪_⟫ ∶ ∀ {Γ α} → Tm−cwf Γ α → Tm−λ Γ α

41



4. Simply Typed CwFs Page 42

⟪_⟫′ ∶ ∀ {Γ Δ} → Sub−cwf Δ Γ → Sub−λ Δ Γ
⟦_⟧′ ∶ ∀ {Γ Δ} → Sub−λ Δ Γ → Sub−cwf Δ Γ

⟦ var v ⟧ = varCwf v

⟪ q ⟫ = q−λ
⟪ t [ ρ ] ⟫ = ⟪ t ⟫ [ ⟪ ρ ⟫′ ]λ

⟦_⟧′ {ε} _ = <>
⟦_⟧′ {Γ ∙ α} (ρ , t) = < ⟦ ρ ⟧′ , ⟦ t ⟧ >

⟪ <> ⟫′ = tt
⟪ id ⟫′ = id−λ
⟪ p ⟫′ = p−λ
⟪ γ ∘ γ′ ⟫′ = ⟪ γ ⟫′ ∘λ ⟪ γ′ ⟫′

⟪ < γ , t > ⟫′ = ⟪ γ ⟫′ , ⟪ t ⟫

As one can see, keeping type information does not affect thesemaps, the structure
is identical to the unityped version. Agda’s syntax highlighting also help in noticing
how numerous inductive constructors in green are mapped to meta operations that
are functions in blue.

The equivalent lemmas of 3.12 and 3.13 which are similarly vital are in listing A.5
of the appendix. Maps preserving structure for substitution and composition.

[]−preserv ∶ ∀ {Γ Δ α} (t ∶ Tm−λ Γ α) (ρ ∶ Sub−λ Δ Γ) →
⟦ t [ ρ ]λ ⟧ ≈ ⟦ t ⟧ [ ⟦ ρ ⟧′ ]

∘−preserv ∶ ∀ {Γ Δ Θ} (ρ ∶ Sub−λ Δ Θ) (σ ∶ Sub−λ Γ Δ) →
⟦ ρ ∘λ σ ⟧′ ≋ ⟦ ρ ⟧′ ∘ ⟦ σ ⟧′

Next, we provide the top level inverse lemma signatures.

sub−cwf⇒λ ∶ ∀ {Γ Δ} (γ ∶ Sub−cwf Γ Δ) → ⟦ ⟪ γ ⟫′ ⟧′ ≋ γ

tm−λ⇒cwf ∶ ∀ {Γ α} (t ∶ Tm−λ Γ α) → ⟪ ⟦ t ⟧ ⟫ ≡ t

tm−cwf⇒λ ∶ ∀ {Γ α} (t ∶ Tm−cwf Γ α) → ⟦ ⟪ t ⟫ ⟧ ≈ t

sub−λ⇒cwf ∶ ∀ {Γ Δ} (γ ∶ Sub−λ Γ Δ) → ⟪ ⟦ γ ⟧′ ⟫′ ≡ γ

They are proven in similar fashion, the key difference is that supporting properties in
this case are related to reasoning with contexts, inclusion, and membership; whereas
in the untyped case, it was mostly vector reasoning. Moreover, it was occasionally
necessary to provide some implicit argument to Agda to assist with some unsolved
constraint, along with pattern matching on an appropriate implicit context for per-
forming induction.
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Lemma 4.12. ⟪ ⟦ t ⟧ ⟫ ≡ t and ⟪ ⟦ γ ⟧′ ⟫′ ≡ γ
Proof. Induction on t.

tm−λ⇒cwf (var here) = ref l
tm−λ⇒cwf {α = α} (var (there v)) = begin

⟪ ⟦ var v ⟧ ⟫ [ p−λ ]λ
≡⟨ cong (_[ p−λ ]λ) (tm−λ⇒cwf (var v)) ⟩

var v [ p−λ ]λ
≡⟨ sub−p (var v) ⟩

weaken−λ ⊆−∙ (var v)
≡⟨⟩

var (there (sub−in ⊆−refl v))
≡⟨ cong (var F.∘ there) (sub−in−refl v) ⟩

var (there v)
∎

where open P.≡−Reasoning

sub−λ⇒cwf {Δ = ε} tt = ref l
sub−λ⇒cwf {Δ = Δ ∙ x} (γ , t) = cong2 _, _ (sub−λ⇒cwf γ) (tm−λ⇒cwf t)

Lemma 4.13. ⟦ ⟪ t ⟫ ⟧ ≈ t and ⟦ ⟪ γ ⟫′ ⟧′ ≋ γ.
Proof. Induction on γ.

tm−cwf⇒λ q = refl≈
tm−cwf⇒λ (t [ γ ]) = begin

⟦ ⟪ t ⟫ [ ⟪ γ ⟫′ ]λ ⟧
≈⟨ []−preserv ⟪ t ⟫ ⟪ γ ⟫′ ⟩

⟦ ⟪ t ⟫ ⟧ [ ⟦ ⟪ γ ⟫′ ⟧′ ]
≈⟨ cong−sub (tm−cwf⇒λ t) ref l≋ ⟩

t [ ⟦ ⟪ γ ⟫′ ⟧′ ]
≈⟨ cong−sub ref l≈ (sub−cwf⇒λ γ) ⟩

t [ γ ]
∎

where open EqR (TmSetoid {_})
sub−cwf⇒λ <> = refl≋
sub−cwf⇒λ (id {ε}) = sym≋ id0
sub−cwf⇒λ (id {Γ ∙ α}) = sym≋ $ begin

id
≈⟨ idExt ⟩

< p , q >
≈⟨ cong−<, > refl≈ (sym≋ (sub−cwf⇒λ p)) ⟩

< ⟦ p−λ ⟧′ , q >
∎

where open EqR (SubSetoid {_} {_})
sub−cwf⇒λ p =p−inverse
sub−cwf⇒λ (γ ∘ γ′) = begin

⟦ ⟪ γ ⟫′ ∘λ ⟪ γ′ ⟫′ ⟧′
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≈⟨ ⟦⟧−∘−dist ⟪ γ ⟫′ ⟪ γ′ ⟫′ ⟩
⟦ ⟪ γ ⟫′ ⟧′ ∘ ⟦ ⟪ γ′ ⟫′ ⟧′

≈⟨ cong−∘ (sub−cwf⇒λ γ) ref l≋ ⟩
γ ∘ ⟦ ⟪ γ′ ⟫′ ⟧′

≈⟨ cong−∘ ref l≋ (sub−cwf⇒λ γ′) ⟩
γ ∘ γ′

∎
where open EqR (SubSetoid {_} {_})

sub−cwf⇒λ < γ , t > = cong−<, > (tm−cwf⇒λ t) (sub−cwf⇒λ γ)

The projection (p−inverse) case has a very similar structure to the one presented
for unityped cwfs. There, we used sequences of Fins to construct the normalized p.
Using this idea here for simple types, we need sequences of witness proofs that a
type is in a given context. The complete proof is in listing A.6.

4.3 Term Models of 𝜆-Scwfs

4.3.1 𝜆-Scwf with Explicit Substitutions
To obtain a 𝜆-scwf for our variable free formulation with scwf combinators, we add
a function type, two constructors, and the laws for substitution stability. Sub is not
altered.

data Ty ∶ Set where
♭ ∶ Ty
_⇒_ ∶ (α β ∶ Ty) → Ty

data Tm ∶ Ctx → Ty → Set
data Sub ∶ Ctx → Ctx → Set

data Tm where
q ∶ ∀ {Γ α} → Tm (Γ ∙ α) α
_[_] ∶ ∀ {Γ Δ α} → Tm Γ α → Sub Δ Γ → Tm Δ α
lam ∶ ∀ {Γ α β} → Tm (Γ ∙ α) β → Tm Γ (α ⇒ β)
app ∶ ∀ {Γ α β} → Tm Γ (α ⇒ β) → Tm Γ α → Tm Γ β

data _≈_ ∶ ∀ {Γ α} (t1 t2 ∶ Tm Γ α) → Set where
subApp ∶ ∀ {Γ Δ α β} (t ∶ Tm Γ (α ⇒ β)) (u ∶ Tm Γ α) (γ ∶ Sub Δ Γ) →

app (t [ γ ]) (u [ γ ]) ≈ app t u [ γ ]
subLam ∶ ∀ {Γ Δ α β} (t ∶ Tm (Γ ∙ α) β) (γ ∶ Sub Δ Γ) →

lam t [ γ ] ≈ lam (t [ < γ ∘ p , q > ])
…

It is intended for this object to be a 𝜆-scwf by definition, ergo, these new laws are
added as introduction rules in the equality relation.
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4.3.2 𝜆-Scwf with Implicit Substitutions
Having typed variables as membership witnesses in contexts already, we add the
same constructors here as well. This gives us the term language of simply typed
lambda calculus.

data Ty ∶ Set where
♭ ∶ Ty
_⇒_ ∶ (α β ∶ Ty) → Ty

Having a function type allows us to define lambda terms.

data Tm (Γ ∶ Ctx) ∶ Ty → Set where
var ∶ ∀ {α} (v ∶ α ∈ Γ) → Tm Γ α
_·_ ∶ ∀ {α β} → Tm Γ (α ⇒ β) → Tm Γ α → Tm Γ β
ƛ ∶ ∀ {α β} → Tm (Γ ∙ α) β → Tm Γ (α ⇒ β)

weaken ∶ ∀ {α} {Γ Δ ∶ Ctx} (φ ∶ Γ ⊆ Δ) (t ∶ Tm Γ α) → Tm Δ α
weaken φ (var v) = var (sub−in φ v)
weaken φ (t · u) = weaken φ t · weaken φ u
weaken φ (ƛ t) = ƛ (weaken (pop! φ) t)

The substitution operation which depends on weakening now covers the new Tm
constructors. The λ case is interesting where the substitution ρ is weakened and
extended because a lambda abstraction has a binder.

_[_] ∶ ∀ {Γ Δ α} → Tm Γ α → Sub Δ Γ → Tm Δ α
var v [ ρ ] = tkVar v ρ
ƛ t [ ρ ] = ƛ (t [ wk−sub _ ⊆−∙ ρ , var here ])
(t · u) [ ρ ] = t [ ρ ] · u [ ρ ]

The other scwf operations remain the same as shown in the previous section.
In order to demonstrate that this is a 𝜆-scwf, we extend the proofs where there

was an induction on terms: (i) substituting in id does not affect terms and (ii) asso-
ciativity of substitution.

Lemma 4.14. t [ id ] ≡ t
Proof. By induction on t.

subId ∶ ∀ {Γ α} (t ∶ Tm Γ α) → t [ id ] ≡ t
subId (var v) = tkVar−id v
subId (t · u) = cong2 _·_ (subId t) (subId u)
subId (ƛ t) = cong ƛ (subId t)

Lemma 4.15. t [ γ ∘ δ ] ≡ t [ γ ] [ δ ]
Proof. Induction on t and side induction on γ in the variable case.

↑_ ∶ ∀ {Γ Δ α} → Sub Δ Γ → Sub (Δ ∙ α) (Γ ∙ α)
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↑_ σ = wk−sub _ ⊆−∙ σ , q

subComp ∶ ∀ {Γ Δ Θ α} (t ∶ Tm Γ α) (γ ∶ Sub Δ Γ) (δ ∶ Sub Θ Δ) →
t [ γ ∘ δ ] ≡ t [ γ ] [ δ ]

subComp (var here) γ δ = refl
subComp (var (there v)) (γ , _) δ = subComp (var v) γ δ
subComp (t · u) γ δ = cong2 _·_ (subComp t γ δ) (subComp u γ δ)
subComp {Γ} {Δ} (ƛ t) γ δ = sym $ cong ƛ $ begin

t [ ↑ γ ] [ ↑ δ ]
≡⟨ sym $ subComp t (↑ γ) (↑ δ) ⟩

t [ proj1 (↑ γ) ∘ (↑ δ) , q ]
≡⟨ cong (t [_] F.∘ (_, q)) $

begin
proj1 (↑ γ) ∘ (↑ δ) ≡⟨ ∘−step Γ γ (proj1 (↑ δ)) q ⟩
γ ∘ proj1 (↑ δ) ≡⟨ wk−∘ Γ ⊆−∙ γ δ ⟩
proj1 (↑ (γ ∘ δ)) ∎ ⟩

t [ ↑ (γ ∘ δ) ] ∎

All properties from our scwf with implicit substitutions are kept.

4.3.3 Isomorphism of 𝜆-Scwfs
With the intention to extend the isomorphism to 𝜆-scwf, the morphisms have to
be extended to account for new elements. Fortunately, they preserve lambda and
application structure by definition.

⟦_⟧ ∶ ∀ {Γ α} → Tm−λ Γ α → Tm−cwf Γ α
⟪_⟫ ∶ ∀ {Γ α} → Tm−cwf Γ α → Tm−λ Γ α

⟦ var v ⟧ = varCwf v
⟦ t · u ⟧ = app ⟦ t ⟧ ⟦ u ⟧
⟦ ƛ t ⟧ = lam ⟦ t ⟧

⟪ q ⟫ = q−λ
⟪ t [ ρ ] ⟫ = ⟪ t ⟫ [ ⟪ ρ ⟫′ ]λ
⟪ lam t ⟫ = ƛ ⟪ t ⟫
⟪ app t u ⟫ = ⟪ t ⟫ · ⟪ u ⟫

Thestructure is obviously preservedwhen a𝜆 abstraction or an application ismapped
from one scwf to the other. Therefore, the inverse proofs follow directly from the
inductive hypotheses.

tm−λ⇒cwf (t · u) = cong2 _·_ (tm−λ⇒cwf t) (tm−λ⇒cwf u)
tm−λ⇒cwf (ƛ t) = cong ƛ (tm−λ⇒cwf t)

tm−cwf⇒λ (lam t) = cong−lam (tm−cwf⇒λ t)
tm−cwf⇒λ (app t u) = cong−app (tm−cwf⇒λ t) (tm−cwf⇒λ u)

46



Page 47 4. Simply Typed CwFs

This concludes the isomorphism between the two 𝜆-scwfs.

4.4 Term Models of 𝜆-𝛽𝜂-Scwfs
Both 𝜆-𝛽𝜂-scwfs will be presented here as the extensions are minor and be explained
succinctly. Regarding the 𝜆-𝛽𝜂 scwf with explicit substitutions, the two equations
are added as laws in the equality relation for terms like so.

data _≈_ where
…
β ∶ ∀ {Γ α β} {t ∶ Tm (Γ ∙ α) β} {u} → app (lam t) u ≈ t [ < id , u > ]
η ∶ ∀ {Γ α β} {t ∶ Tm Γ (α ⇒ β)} → lam (app (t [ p ]) q) ≈ t

As a result the 𝜆-scwf becomes a 𝜆-𝛽𝜂-scwf directly.
On the other hand, for the implicit substitutions more work is needed. First, a

relation that defines beta-eta convertibility is necessary. This axiomatization simply
typed 𝜆-calculus up to beta-eta is formalized. We also need a relation for substitu-
tions.

data _~βη_ {Γ} ∶ ∀ {α} (_ _ ∶ Tm Γ α) → Set where

– variable reflexivity
varcong ∶ ∀ {α} (v ∶ α ∈ Γ) → var v ~βη var v

– congruence for application
apcong ∶ ∀ {α β} {t t′ ∶ Tm Γ (α ⇒ β)} {u u′} →

t ~βη t′ →
u ~βη u′ →
(t · u) ~βη (t′ · u)

– the ξ rule
ξ ∶ ∀ {α β} {t t′ ∶ Tm (Γ ∙ α) β} → t ~βη t′ → ƛ t ~βη ƛ t′

– beta and eta equalities
β ∶ ∀ {α β} (t ∶ Tm (Γ ∙ α) β) u → ƛ t · u ~βη (t [ id , u ])
η ∶ ∀ {α β} {t ∶ Tm Γ (α ⇒ β)} → ƛ ((t [ p ]) · q) ~βη t

sym~βη ∶ ∀ {α} {t1 t2 ∶ Tm Γ α} → t1 ~βη t2 → t2 ~βη t1
trans~βη ∶ ∀ {α} {t1 t2 t3 ∶ Tm Γ α} →

t1 ~βη t2 → t2 ~βη t3 → t1 ~βη t3

data _≈βη_ {Δ} ∶ ∀ {Γ} (_ _ ∶ Sub Δ Γ) → Set where

– empty substitutions are convertible
⋄ ∶ {γ γ′ ∶ Sub Δ ε} → γ ≈βη γ′

– if terms and substitutions are convertible, so is cons
ext ∶ ∀ {Γ α} {t u ∶ Tm Δ α} {γ γ′ ∶ Sub Δ Γ} →
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t ~βη u → γ ≈βη γ′ →
(γ , t) ≈βη (γ′ , u)

Reflexivity is then derived like so.

ref l~βη ∶ ∀ {Γ α} {t ∶ Tm Γ α} → t ~βη t
ref l~βη {t = t} = trans~βη (sym~βη (β (var here) t)) (β (var here) t)

ref l≈βη ∶ ∀ {Γ Δ} {ρ ∶ Sub Γ Δ} → ρ ≈βη ρ
ref l≈βη {Δ = ε} = ⋄
refl≈βη {Δ = Δ ∙ x} = ext ref l~βη ref l≈βη

Naturally, every property shown before has to be proven at the level of this rela-
tion instead of propositional equality. However, the preceding work contains all the
proofs as elements of propositional equality. Hence, it is easy to lift those proofs to
beta-eta convertible by pattern matching on the proof which gives us ref l.

≡−to~βη ∶ ∀ {Γ α} {t u ∶ Tm Γ α} → t ≡ u → t ~βη u
≡−to~βη ref l = ref l~βη

≡−to−≈βη ∶ ∀ {Γ Δ} {ρ σ ∶ Sub Γ Δ} → ρ ≡ σ → ρ ≈βη σ
≡−to−≈βη ref l = ref l≈βη

By the same token, all properties and inverse lemmas based on this relation can be
proven by a call to the equivalent proof of propositional equality. Congruence rules
can be found in listing A.7.

This presentation is identical to the ucwfs with beta and eta. There are no new
morphisms, we merely have to express all properties using the new relations.

4.5 Extrinsic Scwfs

Diverging somewhat from the methodology followed hitherto, a version of scwfs
based on raw well-scoped terms with external typing relations is also formalized.
We use the two calculi of chapter 3 as the raw basis and add typing rules. This ex-
tension involves an implementation of explicit typing rules for the scwf with explicit
substitutions. While the scwf with meta-level operations requires a number of proofs
that verify the preservation of types for scwf operations. In other words, all typing
rules of the explicit scwf have to be proven. We are basing the result on proofs at the
raw level of chapter 3.

The raw terms presented in chapter 3 are reused for this endeavor, so we pro-
ceed directly with the implementation of the first extrinsic scwf. In this section, we
consider 𝜆-scwfs directly.

The raw grammar of terms and substitutions is recapitulated.

data RTm ∶ Nat → Set
data RSub ∶ Nat → Nat → Set

data RTm where
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q ∶ ∀ {n} → RTm (suc n)
_[_] ∶ ∀ {m n} (t ∶ RTm n) (ρ ∶ RSub m n) → RTm m
app ∶ ∀ {n} (t u ∶ RTm n) → RTm n
lam ∶ ∀ {n} (t ∶ RTm (suc n)) → RTm n

data RSub where
<> ∶ ∀ {m} → RSub m zero
id ∶ ∀ {n} → RSub n n
p ∶ ∀ {n} → RSub (suc n) n
<_, _> ∶ ∀ {m n} → RSub m n → RTm m → RSub m (suc n)
_∘_ ∶ ∀ {m n k} → RSub n k → RSub m n → RSub m k

The additions include typing relations that come in two groups; one for providing
types to terms and one for providing environments to substitutions.

• data _⊢_∈_ ∶ ∀ {n} → Ctx n → RTm n → Ty → Set

• data _▹_⊢_ ∶ ∀ {m n} → Ctx m → Ctx n → RSub n m → Set

These two relations evidently interact, but there is a clear separation which is con-
venient. First, the typing rules for terms.

data _⊢_∈_ where
q∈ ∶ ∀ {n α} {Γ ∶ Ctx n} → Γ ∙ α ⊢ q ∈ α

sub∈ ∶ ∀ {m n} {Γ ∶ Ctx m} {Δ ∶ Ctx n} {α t ρ}
→ Γ ⊢ t ∈ α
→ Γ ▹ Δ ⊢ ρ
→ Δ ⊢ t [ ρ ] ∈ α

app∈ ∶ ∀ {n} {Γ ∶ Ctx n} {α β t u}
→ Γ ⊢ t ∈ (α ⇒ β)
→ Γ ⊢ u ∈ α
→ Γ ⊢ app t u ∈ β

lam∈ ∶ ∀ {n} {Γ ∶ Ctx n} {α β t}
→ Γ ∙ α ⊢ t ∈ β
→ Γ ⊢ lam t ∈ (α ⇒ β)

One writes Γ ⊢ t ∈ α to say that a term t has type α in the context Γ. We see one
typing rule associated with each term in the language. The last variable q is typed in
an extended context, the standard typing rules for app and lam and finally, the fact
that substituting a well-typed term preserves the type.

data _▹_⊢_ where
⊢<> ∶ ∀ {m} {Δ ∶ Ctx m} → ε ▹ Δ ⊢ <>

⊢id ∶ ∀ {n} {Γ ∶ Ctx n} → Γ ▹ Γ ⊢ id
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⊢p ∶ ∀ {n α} {Γ ∶ Ctx n} → Γ ▹ Γ ∙ α ⊢ p

⊢∘ ∶ ∀ {m n k} {Γ ∶ Ctx n} {Δ ∶ Ctx m} {Θ ∶ Ctx k}
{ρ ∶ RSub n k} {σ ∶ RSub m n}

→ Θ ▹ Γ ⊢ ρ
→ Γ ▹ Δ ⊢ σ
→ Θ ▹ Δ ⊢ ρ ∘ σ

⊢<, > ∶ ∀ {m n} {Γ ∶ Ctx n} {Δ ∶ Ctx m}
{t ∶ RTm m} {ρ ∶ RSub m n} {α}
→ Δ ⊢ t ∈ α
→ Γ ▹ Δ ⊢ ρ
→ Γ ∙ α ▹ Δ ⊢ < ρ , t >

Regarding well-typed substitutions, one needs a typing rule for each operator. One
writes Γ ▹ Δ ⊢ ρ to say that substitution ρ has environment Γ and that terms in ρ
are typed Δ.

The relations in which one reasons about equality remain at the raw level, so we
have untyped conversion; the rules can be found in listing A.1.

These raw terms and their typing rules represent a scwf implemented the extrin-
sic way. We could pair these using sigma pairs according to the extrinsic notion of
scwf.

This is in contrast to the formulation of the preceding two sections where we had
directly typed terms. In the case of simply typed 𝜆-calculus, the intrinsic way does
not present any problems and having an implementation language with dependent
types usually favors that method as opposed to this.

Afterwards, we can build a simply typed 𝜆-calculus based on our untyped gram-
mar with de Bruijn indices with the purpose of constructing a second scwf with
extra structure. Now we return to variables as indices and substitutions as vectors.
We start by recalling the grammar for raw lambda terms.

data Tm (n ∶ Nat) ∶ Set where
var ∶ (i ∶ Fin n) → Tm n
_·_ ∶ (t u ∶ Tm n) → Tm n
ƛ ∶ (t ∶ Tm (1 + n)) → Tm n

Substitutions as vectors have the definitions of section 3.2.2. In short, a substi-
tution Sub n m is a vector of length n that contains terms with at most m variables.
For example, id is a Sub n n and contains variables with indices 0 to 𝑛 − 1.

First, we define contexts as vectors too; this allows us to perform a lookup using
the variable index for the typing rule.

data Ty ∶ Set where
♭ ∶ Ty
_⇒_ ∶ Ty → Ty → Ty

Ctx ∶ Nat → Set
Ctx = Vec.Vec Ty
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_∙_ ∶ ∀ {n} (Γ ∶ Ctx n) (α ∶ Ty) → Ctx (suc n)
Γ ∙ α = α ∷ Γ

Subsequently, a typing relation that provides types to terms is added.

data _⊢_∈_ {n} (Γ ∶ Ctx n) ∶ Tm n → Ty → Set where
var ∶ ∀ {i} → Γ ⊢ var i ∈ lookup i Γ

ƛ ∶ ∀ {t α β}
→ Γ ∙ α ⊢ t ∈ β
→ Γ ⊢ ƛ t ∈ α ⇒ β

_·_ ∶ ∀ {t u σ τ}
→ Γ ⊢ t ∈ σ ⇒ τ
→ Γ ⊢ u ∈ σ
→ Γ ⊢ t · u ∈ τ

Variables are de Bruijn style, thus a lookup is performed in the context; the other two
rules are identical to the explicit scwf as expected. Naturally, there is no mention of
substitution here as it is a meta level operation, so one has to prove that substitution
preserves types after.

The relation for well-typed substitutions has two constructors, one describing
the empty environment and one for inserting a well-typed term into a substitution.
These are the tools one must use to prove the type preservation properties for the
remaining scwf operators like composition and projection.

data _▹_⊢_ {n} ∶ ∀ {m} → Ctx m → Ctx n → Sub n m → Set where
[] ∶ ∀ {Δ} → [] ▹ Δ ⊢ []

ext ∶ ∀ {m} {Γ ∶ Ctx m} {Δ σ t ρ}
→ Δ ⊢ t ∈ σ
→ Γ ▹ Δ ⊢ ρ
→ Γ ∙ σ ▹ Δ ⊢ ρ , t

Afterwards, the remaining typing rules have to proven for this calculus. What is
left is to show that identity, projection, composition and substitution preserve types.
Before we start presenting the aforementioned lemmas, we quickly mention some
fundamental supporting properties that were necessary in the proofs.

weaken−preserv ∶ ∀ {n Γ α β} {t ∶ Tm n}
→ Γ ⊢ t ∈ β
→ Γ ∙ α ⊢ weaken t ∈ β

map−weaken−preserv ∶ ∀ {m n Γ Δ α} {ρ ∶ Sub m n}
→ Γ ▹ Δ ⊢ ρ
→ Γ ▹ Δ ∙ α ⊢ Vec.map weaken ρ
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↑−preserv ∶ ∀ {m n Γ Δ α} {ρ ∶ Sub m n}
→ Γ ▹ Δ ⊢ ρ
→ Γ ∙ α ▹ Δ ∙ α ⊢ ↑ ρ

lookup−preserv ∶ ∀ {m n} {Γ ∶ Ctx m}
{Δ ∶ Ctx n} i {ρ}

→ Γ ▹ Δ ⊢ ρ
→ Δ ⊢ lookup i ρ ∈ lookup i Γ

The typing rules are next.

Lemma 4.16. Γ ▹ Γ ⊢ id

Proof. Induction on Γ.

id−preserv ∶ ∀ {n} {Γ ∶ Ctx n} → Γ ▹ Γ ⊢ id
id−preserv {Γ = []} = []
id−preserv {Γ = _ ∷ _} = ↑−preserv id−preserv

Lemma 4.17. Γ ▹ Γ ∙ α ⊢ p

Proof. Induction on Γ.

p−preserv ∶ ∀ {n α} {Γ ∶ Ctx n} → Γ ▹ Γ ∙ α ⊢ p
p−preserv {Γ = []} = []
p−preserv {Γ = _ ∷ Γ} = map−weaken−preserv $ ↑−preserv id−preserv

Lemma 4.18. Γ ⊢ t ∈ α → Γ ▹ Δ ⊢ ρ → Δ ⊢ t [ ρ ] ∈ α

Proof. Induction on the typing derivation of t .

subst−lemma ∶ ∀ {m n} {Γ ∶ Ctx m} {Δ ∶ Ctx n} {α t ρ}
→ Γ ⊢ t ∈ α
→ Γ ▹ Δ ⊢ ρ
→ Δ ⊢ t [ ρ ] ∈ α

subst−lemma (var {i}) ⊢ρ = lookup−preserv i ⊢ρ
subst−lemma (ƛ t) ⊢ρ = ƛ (subst−lemma t (↑−preserv ⊢ρ))
subst−lemma (t · u) ⊢ρ = subst−lemma t ⊢ρ · subst−lemma u ⊢ρ

Lemma 4.19. Θ ▹ Γ ⊢ ρ → Γ ▹ Δ ⊢ σ → Θ ▹ Δ ⊢ ρ ∘ σ

Proof. Induction on the typing derivation of ρ. Note the application of the previous
lemma in the inductive case.

∘−preserv ∶ ∀ {m n k} {Γ ∶ Ctx n} {Δ ∶ Ctx m} {Θ ∶ Ctx k}
{ρ ∶ Sub n k} {σ ∶ Sub m n}

→ Θ ▹ Γ ⊢ ρ
→ Γ ▹ Δ ⊢ σ
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→ Θ ▹ Δ ⊢ ρ ∘ σ
∘−preserv [] _ = []
∘−preserv (ext x ⊢ρ) ⊢σ =

ext (subst−lemma x ⊢σ)
(∘−preserv ⊢ρ ⊢σ)

Consequently, we have shown that all typing rules of a 𝜆-scwf hold for these lambda
terms with de Bruijn variables. Thus it forms an extrinsic 𝜆-scwf. This also means
that the two 𝜆-scwfs are isomorphic since we have a proof already at the raw level.

Finally, to officially present this as an extrinsic 𝜆-scwf, the raw terms and substi-
tutions have to be placed as pairs with their typing rule; for this reason, dependent
sigma pairs are employed. Here are the pairs of composition, substitution, identity,
and projection.

∘−ty ∶ ∀ {m n k} {Γ ∶ Ctx n} {Δ ∶ Ctx m} {Θ ∶ Ctx k}
→ Σ (Sub n k) (Θ ▹ Γ ⊢_)
→ Σ (Sub m n) (Γ ▹ Δ ⊢_)
→ Σ (Sub m k) (Θ ▹ Δ ⊢_)

∘−ty (ρ Σ., ⊢ρ) (σ Σ., ⊢σ) = ρ ∘ σ Σ., ∘−preserv ⊢ρ ⊢σ

sub−ty ∶ ∀ {m n α} {Δ ∶ Ctx m} {Γ ∶ Ctx n}
→ Σ (Tm n) (Γ ⊢_∈ α)
→ Σ (Sub m n) (Γ ▹ Δ ⊢_)
→ Σ (Tm m) (Δ ⊢_∈ α)

sub−ty (t Σ., t∈) (ρ Σ., ⊢ρ) = t [ ρ ] Σ., subst−lemma t∈ ⊢ρ

id−ty ∶ ∀ {n} {Γ ∶ Ctx n} → Σ (Sub n n) (Γ ▹ Γ ⊢_)
id−ty = id′ Σ., id−preserv

p−ty ∶ ∀ {n α} {Γ ∶ Ctx n} → Σ (Sub (suc n) n) (Γ ▹ Γ ∙ α ⊢_)
p−ty = p Σ., p−preserv

The other operators such as the empty substitution, extending a substitution and so
on are provided by the typing relations defined earlier, so they equivalent pairs can
be formed as shown.

Conclusively, this demonstrates the extrinsic point of view of scwfs. We reflect
on this formulation in comparison to the intrinsic way previously shown by noting
some vital differences. The most substantial difference is that the extrinsic formu-
lation keeps untyped conversion and builds on-top of the work conducted for the
raw grammar. This allows one to utilize useful results without the need to prove
them again. On the other hand, performing the same proofs in an intrinsic formula-
tion does not add significant burdens or challenges; thus, carrying type information
around does not affect the reasoning, which was pleasant. In fact, the top level proofs
were identical to the untyped ones. For simply typed scwfs, both methods are quite
manageable; whereas for dependent types, the same cannot be said.
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4.5.1 Extrinsic and Intrinsic Scwfs

This subsection summarizes another important theorem in the simply typed world,
namely, that the intrinsic and extrinsic scwf with explicit substitutions are isomor-
phic. Thus far, the focal point of the thesis was the connection between explicit cwf
combinator languages and conventional lambda calculi with meta operations. For-
tunately, this is a much easier task since everything is explicitly defined beforehand
in the language.

Specifically, we use the raw calculus of explicit substitutions with the typing rela-
tions shown in the previous section and the intrinsic calculus of explicit substitutions
that have types built-in.

First, one has to define the translation functions between these scwf. They consist
of

• a map that takes a directly typed term and strips the type information away;

• a map that given a directly typed term returns the typing derivation using the
stripped term;

• and a map that takes a raw term and its typing rule and produces a directly
typed term.

Naturally, the equivalent translation functions between substitutions are necessary.
The raw terms and substitutions have an R as a prefix, while Tm and Sub represent
the intrinsically typed versions.

– Strips types from a typed term back to a raw term
strip ∶ ∀ {n} {Γ ∶ Ctx n} {α} → Tm Γ α → RTm n

– Strip for substitutions
strip▹ ∶ ∀ {m n} {Γ ∶ Ctx n} {Δ ∶ Ctx m} → Sub Δ Γ → RSub n m

– Given a typed term, returns an element of the typing relation on the raw term
typing ∶ ∀ {n} {Γ ∶ Ctx n} {α} (t ∶ Tm Γ α) → Γ ⊢ strip t ∈ α

– Typing for substitutions
typing▹ ∶ ∀ {m n} {Γ ∶ Ctx n} {Δ ∶ Ctx m}

(ρ ∶ Sub Δ Γ) → Δ ▹ Γ ⊢ strip▹ ρ

Further, one sees that using the extrinsic formulation, one needs two maps to
talk about raw terms and their typing derivations. And these two combined form the
dependent pairs, as shown earlier, but for this explicit language in this case. Lastly,
we need to join a raw term and its typing rule to produce a directly typed term.

– Raw term and typing rule give a directly typed term
join ∶ ∀ {n} {Γ ∶ Ctx n} {α} → Σ (RTm n) (Γ ⊢_∈ α) → Tm Γ α

– Join for substitutions
join▹ ∶ ∀ {m n} {Γ ∶ Ctx m} {Δ ∶ Ctx n}

→ Σ (RSub m n) (Δ ▹ Γ ⊢_) → Sub Δ Γ
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These maps are very straightforward to define and they have a nice recursive struc-
ture and preserve structure by definition. We show only maps for term.

strip q = q
strip (t [ ρ ]) = strip t [ strip▹ ρ ]
strip (app t u) = app (strip t) (strip u)
strip (lam t) = lam (strip t)

typing q = q∈
typing (t [ ρ ]) = sub∈ (typing t) (typing▹ ρ)
typing (app t u) = app∈ (typing t) (typing u)
typing (lam t) = lam∈ (typing t)

join (q , q∈) = q
join (t [ ρ ] , sub∈ t∈ ⊢ρ) = join (t , t∈) [ join▹ (ρ , ⊢ρ) ]
join (app t u , app∈ t∈ u∈) = app (join (t , t∈)) (join (u , u∈))
join (lam t , lam∈ t∈) = lam (join (t , t∈))

Subsequently, it is just as easy to prove that these are inverses of each other. We
need the following lemmas.

joinstrip▹ ∶ ∀ {m n} {Γ ∶ Ctx n} {Δ ∶ Ctx m} (ρ ∶ Sub Δ Γ) →
join▹ (strip▹ ρ , typing▹ ρ) ≋ ρ

joinstrip ∶ ∀ {n α} {Γ ∶ Ctx n} (t ∶ Tm Γ α) →
join (strip t , typing t) ≈ t

stripjoin▹ ∶ ∀ {m n} {Γ ∶ Ctx n} {Δ ∶ Ctx m} (ρ ∶ RSub n m)
(⊢ρ ∶ Δ ▹ Γ ⊢ ρ) → strip▹ (join▹ (ρ , ⊢ρ)) ≋′ ρ

stripjoin ∶ ∀ {n α} {Γ ∶ Ctx n} (t ∶ RTm n) (t∈ ∶ Γ ⊢ t ∈ α) →
strip (join (t , t∈)) ≈′ t

Equality is defined by the explicit relations that contain scwf laws as introduction
rules. Here the equalities ≈′ and ≋′ refer to the raw level relations for terms and
substitutions while the other non-primed refer to the intrinsically typed equations.

Lemma 4.20. join▹ (strip▹ ρ , typing▹ ρ) ≋ ρ and join (strip t , typing t) ≈ t
Proof. Induction on ρ and t and it follows trivially.
Lemma 4.21. strip▹ (join▹ (ρ , ⊢ρ)) ≋′ ρ and strip (join (t , t∈)) ≈′ t
Proof. Induction on ρ and t and their typing rules and it follows trivially.

Conclusively, all these different formulations we have seen for simple types, i.e., in-
trinsic scwf calculus with explicit substitutions, intrinsic scwf as simply typed 𝜆-
calculus with meta-level substitutions and the equivalent extrinsic versions are all
isomorphic.

As a summarizing note of the whole chapter, we describe the content and im-
plications. First, an implementation of intrinsically typed scwf, one with explicit

55



4. Simply Typed CwFs Page 56

constructors and one with implicit was formalized. A proof of the latter being a scwf
was implemented and subsequently, scwfmorphisms between these two objects were
defined and proven to be strict inverses.

Secondly, an alternativeway of implementing simple typeswas explored, namely,
keeping raw terms and adding typing relations on-top to provide types to terms and
substitutions. This kind of description was called extrinsic, since the types are not
directly built-in. Following this structure, it was necessary to define explicit typing
relations for the scwf, i.e., a typing rule for each scwf combinator. The final point
was to show that types are preserved for all scwf operators.

Lastly, a comparison of scwfs with explicit substitutions closed this chapter. It
described the same connection, but this time between intrinsic and extrinsic scwfs.
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ΠU-CwFs

In this chapter, a version of the full categories with families is formalized. This means
that we will be dealing with a dependently typed calculus which is what cwfs model
to begin with. The formulation will be extrinsically typed, since in a dependently
typed setting it is much easier.

Our language will consider a type former, namelyΠ and a universe of small types
à la Russel. This yields what will be referred to as a ΠU-Cwf. An extrinsic ΠU-Cwf
utilizes a raw grammarwith the appropriate typing rules and the subsequent sections
construct two such objects: one with explicit substitutions and cwf combinators and
a typical lambda calculus. For the latter, we employ scope safe terms with de Bruijn
indices. The notion is not formalized, so no Agda record that describes the compo-
nents of a ΠU-Cwf; instead we start constructing two objects directly.

5.1 ΠU-Cwf with Explicit Substitutions
To remain consistent with the order of concepts presented, we start with the formal-
ization of the object with explicit cwf combinators. As usual, it consists of a calculus
of explicit substitutions, but this time with Π types and 𝑈 as extra structure.

Before any typing rules are added, we will examine the new raw grammar since
there are significant additions. An important new feature is that terms and types are
collapsed under one set because types may now contain terms. It is effectively an
extension of the 𝜆-ucwf. Therefore, the updated raw syntax for the explicit object
will look as follows.

data Tm ∶ Nat → Set
data Sub ∶ Nat → Nat → Set

data Tm where
q ∶ ∀ {n} → Tm (1 + n)
_[_] ∶ ∀ {m n} → Tm n → Sub m n → Tm m
lam ∶ ∀ {n} → Tm (1 + n) → Tm n
app ∶ ∀ {n} → Tm n → Tm n → Tm n

– Π types and universe
Π ∶ ∀ {n} → Tm n → Tm (1 + n) → Tm n
U ∶ ∀ {n} → Tm n

data Sub where
id ∶ ∀ {n} → Sub n n
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_∘_ ∶ ∀ {m n k} → Sub n k → Sub m n → Sub m k
p ∶ ∀ {n} → Sub (1 + n) n
<> ∶ ∀ {m} → Sub m 0
<_, _> ∶ ∀ {m n} → Sub m n → Tm m → Sub m (1 + n)

There are two new constructors to create elements of Tm, i.e., Π and U. Substitutions
are the same as in every preceding chapter.

Naturally, we need to define equalities for these two data types. We show only
the new equations that express stability under substitution and a congruence on Π.

data _≈_ ∶ ∀ {n} (t t′ ∶ Tm n) → Set
data _≋_ ∶ ∀ {m n} (γ γ′ ∶ Sub m n) → Set

data _≈_ where
…
subΠ ∶ ∀ {n m} (γ ∶ Sub m n) A B →

(Π A B) [ γ ] ≈ Π (A [ γ ]) (B [ < γ ∘ p , q > ])
subU ∶ ∀ {n m} {γ ∶ Sub m n} → U [ γ ] ≈ U
cong−Π ∶ ∀ {n} {A A′ ∶ Tm n} {B B′} →

A ≈ A′ →
B ≈ B′ →
Π A B ≈ Π A′ B′

As we can see, conversion is at the untyped level between raw terms. An alter-
native formulation is to define explicit equality judgements along with the typing
judgements. That means that equality between raw terms would be expressed with
type information present.

Subsequently, we proceed to define the type system. First, contexts which just
contain terms.

data Ctx where
⋄ ∶ Ctx 0
_∙_ ∶ ∀ {n} → Ctx n → Tm n → Ctx (1 + n)

Next, we show the typing rules. In this theory there are four primary judgements
one makes. These are defined as mutually recursive data types in Agda where all
rules are constructors. Moreover, since this is the calculus of explicit substitutions,
each operator has its typing rule defined a priori. In the simply typed formulations,
there were two typing relations: one for giving types to terms and one for giving
environments to substitutions. In dependent type theories, we need to talk about
contexts being well-formed as well as types themselves. However, since terms and
types are under one set, both rules include solely contexts and terms, but there are
conceptual differences.

• data _⊢ ∶ ∀ {n} (Γ ∶ Ctx n) → Set ; well-formed contexts.

• data _⊢_ ∶ ∀ {n} (Γ ∶ Ctx n) (A ∶ Tm n) → Set ; well-formed types in a context.
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• data _⊢_∈_ ∶ ∀ {n} (Γ ∶ Ctx n) (t ∶ Tm n) (A ∶ Tm n) → Set ; well-formed
terms of some type.

• data _▹_⊢_ ∶ ∀ {m n} (Δ ∶ Ctx m) (Γ ∶ Ctx n) (γ ∶ Sub m n) → Set ; well-
formed substitutions in two contexts.

First, we give the typing rules for contexts.

data _⊢ where
c−emp ∶ ⋄ ⊢

c−ext ∶ ∀ {n} {Γ ∶ Ctx n} {A}
→ Γ ⊢
→ Γ ⊢ A
→ Γ ∙ A ⊢

Rules for well-formed types with the usual rules for a universe à la Russel.

data _⊢_ where
ty−U ∶ ∀ {n} {Γ ∶ Ctx n}

→ Γ ⊢
→ Γ ⊢ U

ty−∈U ∶ ∀ {n} {Γ ∶ Ctx n} {A}
→ Γ ⊢ A ∈ U
→ Γ ⊢ A

ty−sub ∶ ∀ {m n} {Δ ∶ Ctx m} {Γ ∶ Ctx n} {A γ}
→ Δ ⊢ A
→ Γ ▹ Δ ⊢ γ
→ Γ ⊢ A [ γ ]

ty−Π−F ∶ ∀ {n} {Γ ∶ Ctx n} {A B}
→ Γ ⊢ A
→ Γ ∙ A ⊢ B
→ Γ ⊢ Π A B

Now there is a substitution for types, albeit, it is the same operation since they are
in the same set.

The rules for terms having a type

data _⊢_∈_ where
tm−q ∶ ∀ {n} {Γ ∶ Ctx n} {A}

→ Γ ⊢ A
→ Γ ∙ A ⊢ q ∈ A [ p ]

tm−sub ∶ ∀ {m n} {Γ ∶ Ctx n} {Δ ∶ Ctx m}
{A t γ}
→ Δ ⊢ t ∈ A
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→ Γ ▹ Δ ⊢ γ
→ Γ ⊢ t [ γ ] ∈ A [ γ ]

tm−app ∶ ∀ {n} {Γ ∶ Ctx n} {f t A B}
→ Γ ⊢ A
→ Γ ∙ A ⊢ B
→ Γ ⊢ f ∈ Π A B
→ Γ ⊢ t ∈ A
→ Γ ⊢ app f t ∈ B [ < id , t > ]

tm−Π−I ∶ ∀ {n} {Γ ∶ Ctx n} {A B t}
→ Γ ⊢ A
→ Γ ∙ A ⊢ B
→ Γ ∙ A ⊢ t ∈ B
→ Γ ⊢ lam t ∈ Π A B

tm−conv ∶ ∀ {n} {Γ ∶ Ctx n} {t A A′}
→ Γ ⊢ A′

→ Γ ⊢ t ∈ A
→ A′ ≈ A
→ Γ ⊢ t ∈ A′

In the case of q, we see that the type has to be lifted, which is another example how
having scope safe terms prevent us from forgetting such things. In the last rule,
tm−conv, we see the use of the equality of between raw terms, so as previously
stated, there are no equality judgements in this calculus.

Lastly, we give the rules for well-formed substitutions.

data _▹_⊢_ where
⊢id ∶ ∀ {n} {Γ ∶ Ctx n}

→ Γ ⊢
→ Γ ▹ Γ ⊢ id

⊢∘ ∶ ∀ {m n k} {Γ ∶ Ctx n} {Δ ∶ Ctx m}
{Θ ∶ Ctx k} {γ1 γ2}
→ Γ ▹ Θ ⊢ γ1
→ Δ ▹ Γ ⊢ γ2
→ Δ ▹ Θ ⊢ γ1 ∘ γ2

⊢p ∶ ∀ {n} {Γ ∶ Ctx n} {A}
→ Γ ⊢ A
→ Γ ∙ A ▹ Γ ⊢ p

⊢<> ∶ ∀ {n} {Γ ∶ Ctx n}
→ Γ ⊢
→ Γ ▹ ⋄ ⊢ <>

⊢<, > ∶ ∀ {m n} {Γ ∶ Ctx n}
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{Δ ∶ Ctx m} {A t γ}
→ Γ ▹ Δ ⊢ γ
→ Δ ⊢ A
→ Γ ⊢ t ∈ A [ γ ]
→ Γ ▹ Δ ∙ A ⊢ < γ , t >

These rules are quite similar to the ones for simply typed scwfs, but with more as-
sumptions. For instance, the rule for id requires the context to be well-formed. This
notion did not exist in the simply typed world. By the same token, the rule for p
needs the type to be well-formed, but not the context explicitly since this can be de-
rived. Specifically, we use the minimum number of assumptions in order to derive
some fundamental laws for this calculus.

When a term t has type A in context Γ, it only makes sense if Γ is a well-formed
context and A is a correct type in Γ. Hence, the following admissible properties hold
for this calculus.

• ∀ {n} {Γ ∶ Ctx n} {A} → Γ ⊢ A → Γ ⊢

• ∀ {n} {Γ ∶ Ctx n} {A t} → Γ ⊢ t ∈ A → Γ ⊢

• ∀ {n} {Γ ∶ Ctx n} {A t} → Γ ⊢ t ∈ A → Γ ⊢ A

• ∀ {m n} {Γ ∶ Ctx n} {Δ ∶ Ctx m} {γ} → Δ ▹ Γ ⊢ γ → Γ ⊢ × Δ ⊢

These are proven mutually by induction on the derivation and by using only rules of
the calculus (proofs in listing A.8).

Overall, this description defines a ΠU-Cwf by construction. It is definitely not
clear-cut to say that this is the initial object in the category of ΠU-Cwfs, albeit it is a
candidate.

5.2 ΠU-Cwf with Implicit Substitutions
In this section we construct a dependently typed 𝜆-calculus with substitution as a
meta function. The goal is to construct another ΠU-Cwf starting with raw terms and
building a type system. This is essentially an extension of the unityped grammar that
should now also accommodate Π types and a universe. The terms are well-scoped,
that is, they are indexed by the maximum number of free variables they may contain.
Substitutions are vectors as shown in chapter 3. Practically, we have to redefine
operations that act differently depending on the given term. The raw substitutions,
for example, have the exact same formulation as chapter in 3. On the other hand, the
substitution operation and a few others that are defined by recursion on terms need
to handle Π and 𝑈 , but they are easy to define given the current framework.

Firstly, we show the new language with terms and types under one set.

data Tm (n ∶ Nat) ∶ Set where
var ∶ (i ∶ Fin n) → Tm n
ƛ ∶ Tm (suc n) → Tm n
_·_ ∶ Tm n → Tm n → Tm n
Π ∶ Tm n → Tm (suc n) → Tm n
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U ∶ Tm n

q ∶ ∀ {n} → Tm (suc n)
q = var zero

Afterwards, we need to define renaming and then substitution. Substitutions as vec-
tors use the definitions from section 3.2.1.

– Renamings (substitutions for variables)
Ren ∶ Nat → Nat → Set
Ren m n = Vec (Fin m) n

– Substitutions
Sub ∶ Nat → Nat → Set
Sub m n = Vec (Tm m) n

– Lifting a renaming
↑−ren ∶ ∀ {m n} → Ren m n → Ren (suc m) (suc n)
↑−ren ρ = zero ∷ map suc ρ

– Renaming operation
ren ∶ ∀ {m n} → Tm n → Ren m n → Tm m
ren (var i) ρ = var (lookup i ρ)
ren (ƛ t) ρ = ƛ (ren t (↑−ren ρ))
ren (t · u) ρ = (ren t ρ) · (ren u ρ)
ren (Π A B) ρ = Π (ren A ρ) (ren B (↑−ren ρ))
ren U _ = U

– Weakening a term
wk ∶ ∀ {n} → Tm n → Tm (suc n)
wk t = ren t (tabulate suc)

– Weakening a substitution
wk−sub ∶ ∀ {m n} → Sub m n → Sub (suc m) n
wk−sub = map wk

– Lifting and extending a substitution
↑_ ∶ ∀ {m n} (ρ ∶ Sub m n) → Sub (suc m) (suc n)
↑ ρ = wk−sub ρ , q

– Substitution
_[_] ∶ ∀ {m n} (t ∶ Tm n) (ρ ∶ Sub m n) → Tm m
var i [ ρ ] = lookup i ρ
(t · u) [ ρ ] = (t [ ρ ]) · (u [ ρ ])
ƛ t [ ρ ] = ƛ (t [ ↑ ρ ])
Π A B [ ρ ] = Π (A [ ρ ]) (B [ ↑ ρ ])
U [ _ ] = U
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As we can see, in the case of U, no computation takes place, whereas for Π there are
binders and therefore the substitution has to be extended and lifted.

Next, we quickly present two cwf laws that should hold for this extended gram-
mar. An advantage is that properties proven for the unityped cwfs can be reused
here.

1. Substituting in id returns the same term.

2. Associativity of substitution.

Lemma 5.1. t [ id ] ≡ t

Proof. Induction on t.

subId ∶ ∀ {n} (t ∶ Tm n) → t [ id ] ≡ t
subId (var i) = lookup−id i
subId (ƛ t) = cong ƛ (trans (cong (t [_]) lif t−idExt) (subId t))
subId (t · u) = cong2 _·_ (subId t) (subId u)
subId (Π A B) = cong2 Π (subId A) (trans (cong (B [_]) lif t−idExt) (subId B))
subId U = refl

Lemma 5.2. t [ ρ ∘ σ ] ≡ t [ ρ ] [ σ ]

Proof. Induction on t.

subComp ∶ ∀ {m n k} t (ρ ∶ Sub m n) (σ ∶ Sub k m)
→ t [ ρ ∘ σ ] ≡ t [ ρ ] [ σ ]

subComp U _ _ = refl
subComp (var zero) (x ∷ ρ) σ = refl
subComp (var (suc i)) (x ∷ ρ) σ = subComp (var i) ρ σ
subComp (ƛ t) ρ σ =

cong ƛ (trans (cong (t [_]) (↑−dist ρ σ)) (subComp t (↑ ρ) (↑ σ)))
subComp (t · u) ρ σ = cong2 _·_ (subComp t ρ σ) (subComp u ρ σ)
subComp (Π A B) ρ σ = begin

Π (A [ ρ ∘ σ ]) (B [ ↑ (ρ ∘ σ) ])
≡⟨ cong (λ x → Π x _) (subComp A ρ σ) ⟩

Π (A [ ρ ] [ σ ]) (B [ ↑ (ρ ∘ σ) ])
≡⟨ cong (λ x → Π _ x) (cong (B [_]) (↑−dist ρ σ)) ⟩

Π (A [ ρ ] [ σ ]) (B [ ↑ ρ ∘ ↑ σ ])
≡⟨ cong (λ x → Π _ x) (subComp B (↑ ρ) (↑ σ)) ⟩

Π (A [ ρ ] [ σ ]) (B [ ↑ ρ ] [ ↑ σ ])
∎

These are two cwf laws and we showed how these are extended to cover Π and U.
Considering the fact that we areworkingwith an extrinsically typed cwf, we need

an isomorphism between the cwf combinator calculus, first at the raw level. Thus it
is required to show this language satisfies the untyped axioms and then proceed to
extend the untyped morphisms and inverse proofs. The work conducted thus far has
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demonstrated a large portion of this isomorphism. The lemmas that are proven by
induction on Tm need two extra cases for type former and universe. They are merely
tedious calculations, so the isomorphism of section 3.3.3 is extended with the proofs
in appendix A.9.

Subsequently, we add a type system for this calculus. The difference between the
combinator one and this is that rules aboutmeta-level operations are not constructors
in the rules themselves, but they have to be proven afterwards. We start by defining
contexts.

data Ctx where
⋄ ∶ Ctx 0
_∙_ ∶ ∀ {n} → Ctx n → Tm n → Ctx (1 + n)

lookup−ct ∶ ∀ {n} (i ∶ Fin n) (Γ ∶ Ctx n) → Tm n
lookup−ct zero (Γ ∙ A) = wk A
lookup−ct (suc i) (Γ ∙ _) = wk $ lookup−ct i Γ

Contexts are the same set, but since our language uses de Bruijn indices, a lookup
function is necessary. Note how the term is weakened in the lookup.

Continuing, we have the same four judgements expressing that contexts, types,
terms, and substitutions are well-formed.

data _⊢ ∶ ∀ {n} (Γ ∶ Ctx n) → Set

data _⊢_ ∶ ∀ {n} (Γ ∶ Ctx n) (A ∶ Tm n) → Set

data _⊢_∈_ ∶ ∀ {n} (Γ ∶ Ctx n) (t ∶ Tm n) (A ∶ Tm n) → Set

data _▹_⊢_ ∶ ∀ {m n} (Δ ∶ Ctx m) (Γ ∶ Ctx n) (γ ∶ Sub m n) → Set

data _⊢ where
c−emp ∶ ⋄ ⊢

c−ext ∶ ∀ {n} {Γ ∶ Ctx n} {A}
→ Γ ⊢
→ Γ ⊢ A
→ Γ ∙ A ⊢

data _⊢_ where
ty−U ∶ ∀ {n} {Γ ∶ Ctx n}

→ Γ ⊢
→ Γ ⊢ U

ty−∈U ∶ ∀ {n} {Γ ∶ Ctx n} {A}
→ Γ ⊢
→ Γ ⊢ A ∈ U
→ Γ ⊢ A
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ty−Π−F ∶ ∀ {n} {Γ ∶ Ctx n} {A B}
→ Γ ⊢ A
→ Γ ∙ A ⊢ B
→ Γ ⊢ Π A B

data _⊢_∈_ where
tm−var ∶ ∀ {n} {i ∶ Fin n} {Γ ∶ Ctx n}

→ Γ ⊢
→ Γ ⊢ var i ∈ lookup−ct i Γ

tm−app ∶ ∀ {n} {Γ ∶ Ctx n} {f t A B}
→ Γ ⊢ A
→ Γ ∙ A ⊢ B
→ Γ ⊢ f ∈ Π A B
→ Γ ⊢ t ∈ A
→ Γ ⊢ f · t ∈ B [ id , t ]

tm−Π−I ∶ ∀ {n} {Γ ∶ Ctx n} {A B t}
→ Γ ⊢ A
→ Γ ∙ A ⊢ B
→ Γ ∙ A ⊢ t ∈ B
→ Γ ⊢ ƛ t ∈ Π A B

data _▹_⊢_ where
⊢<> ∶ ∀ {n} {Γ ∶ Ctx n}

→ Γ ⊢
→ Γ ▹ ⋄ ⊢ []

⊢<, > ∶ ∀ {m n} {Γ ∶ Ctx n} {Δ ∶ Ctx m} {A t γ}
→ Γ ▹ Δ ⊢ γ
→ Δ ⊢ A
→ Γ ⊢ t ∈ A [ γ ]
→ Γ ▹ Δ ∙ A ⊢ (γ , t)

We now have a specific rule for variables, as opposed to the variable-free calculus
and the rules for substitution of types and terms are missing. Moreover, the rules
for composition, projection, and identity are also not present. These are meta-level
operations so they have to be proven given this framework. Other than that, the
remaining rules are the same.

The formalization of the proofs of typing rules is not presented as it not com-
pleted yet; it is a work in progress at the moment. Alas, we conclude this chapter
with just the construction of the second object which should be a ΠU-Cwf. In more
detail, to prove that this term model with implicit substitutions is a ΠU-Cwf, the typ-
ing rules for the following operations have to preserved: substitution (for term and
type), identity, projection, and composition. Upon proving those, we also have an
isomorphism between these extrinsic ΠU-Cwfs because the raw level isomorphism
was extended to cover pi types and a universe.
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6
Conclusion

In summary, this thesis was primarily concerned with formalizing various formu-
lations of categories with families in the Agda proof assistant. The full categories
with families provide a model for a basic framework of dependent types, but we con-
sidered the unityped and simply typed cwfs as starting points. The implementation
consisted of first, defining different notions of cwfs and second, constructing two
instances, two term models for each. One instance was built using cwf combinators
and explicit substitutions. The intention with this first object was to make it a cwf
by construction. The objects using this formulation should be initial in the respec-
tive category, although a proof of initiality was not an objective of this thesis. The
second term model was implemented using implicit substitutions, that is, operations
formalized as meta-level functions. This was a more traditional approach where we
saw ordinary lambda calculi in their typical representation. Furthermore, cwf mor-
phisms between these instances were defined and an isomorphism was constructed
at each level. Thus, we constructed isomorphisms of initial objects, assuming initial-
ity of the term model with explicit substitutions.

A number of different notions and isomorphismswere discussed. In total we have
eight isomorphisms fully formalized.

• Three for ucwfs: ucwf, 𝜆-ucwf, and 𝜆-𝛽𝜂-ucwf.

• Three for intrinsic scwfs at the same three levels.

• One between extrinsic 𝜆-𝛽𝜂-scwfs.

• One between an extrinsic and intrinsic 𝜆-𝛽𝜂-scwf.

Ideally, we would have liked to have completed all typing rules for the ΠU-Cwf
term model of implicit substitutions to obtain an isomorphism for dependent types
too. Consequently, it now falls under future work. Moreover, a more formal ap-
proach to the categorical context surrounding cwfs would be an excellent addition
to our developments. In particular, we presented no formalization of the underlying
cwf categories and morphisms we discussed throughout the paper, so having these
notions formalized would, in some sense, unify everything in this thesis. Our notions
as records defined potential objects of a category formalization. Finally, a formalized
proof of initiality for the term models with explicit substitutions would also improve
the results presented in this thesis.
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A
Agda Code

This appendix contains listings of Agda code that are referenced in the report. It
contains only important parts of the formalization and supplements the content pre-
sented in the main body.

data _≈_ ∶ ∀ {n} → Tm n → Tm n → Set
data _≋_ ∶ ∀ {n m} → Sub n m → Sub n m → Set

data _≈_ where
subId ∶ ∀ {n} (t ∶ Tm n) → t [ id ] ≈ t
qCons ∶ ∀ {m n} (ts ∶ Sub n m) t → q [ < ts , t > ] ≈ t
subComp ∶ ∀ {m n k} (ts ∶ Sub k n) (us ∶ Sub m k) t

→ t [ ts ∘ us ] ≈ t [ ts ] [ us ]
cong−sub ∶ ∀ {m n} {t u ∶ Tm n} {ts us ∶ Sub m n}

→ t ≈ u → ts ≋ us → t [ ts ] ≈ u [ us ]
sym≈ ∶ ∀ {n} {u u′ ∶ Tm n} → u ≈ u′ → u′ ≈ u
trans≈ ∶ ∀ {m} {t u v ∶ Tm m} → t ≈ u → u ≈ v → t ≈ v

data _≋_ where
id0 ∶ id {0} ≋ <>
<>Lzero ∶ ∀ {m n} (ts ∶ Sub m n) → <> ∘ ts ≋ <>
idExt ∶ ∀ {n} → id {suc n} ≋ < p , q >
idL ∶ ∀ {m n} (ts ∶ Sub m n) → id ∘ ts ≋ ts
idR ∶ ∀ {m n} (ts ∶ Sub m n) → ts ∘ id ≋ ts
assoc ∶ ∀ {m n k p} (ts ∶ Sub n k) (us ∶ Sub m n) (vs ∶ Sub p m)

→ (ts ∘ us) ∘ vs ≋ ts ∘ (us ∘ vs)
pCons ∶ ∀ {m n} (us ∶ Sub m n) u → p ∘ < us , u > ≋ us
compExt ∶ ∀ {m n k} (ts ∶ Sub n k) (us ∶ Sub m n) t

→ < ts , t > ∘ us ≋ < ts ∘ us , t [ us ] >
cong−<, > ∶ ∀ {m n} {ts us ∶ Sub m n} {t u}

→ t ≈ u → ts ≋ us → < ts , t > ≋ < us , u >
cong−∘ ∶ ∀ {m n k} {ts vs ∶ Sub n k} {us zs ∶ Sub m n}

→ ts ≋ vs → us ≋ zs → ts ∘ us ≋ vs ∘ zs
sym≋ ∶ ∀ {m n} {h ∶ Sub m n} {t ∶ Sub m n} → h ≋ t → t ≋ h
trans≋ ∶ ∀ {m n} {h t v ∶ Sub m n} → h ≋ t → t ≋ v → h ≋ v

Listing A.1: Equalities for ucwf with explicit substitutions.

↑−dist ∶ ∀ {m n k} (ts ∶ Sub m n) (us ∶ Sub k m) → ↑ (ts ∘ us) ≡ (↑ ts) ∘ (↑ us)

I
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↑−dist ts us = begin
↑ (ts ∘ us)

≡⟨⟩
map (λ t → ren t pR) (map (_[ us ]) ts) , q

≡⟨ cong (_, q) (sym (map−∘ _ _ ts)) ⟩
map (λ t → ren (t [ us ]) pR) ts , q

≡⟨ cong (_, q) (map−cong (sym F.∘ ∘r−asso us pR) ts) ⟩
map (_[ us ∘r pR ]) ts , q

≡⟨ cong (_, q) (map−cong (λ x → cong (x [_]) (∘pR−↑ us)) ts) ⟩
map (_[ pR r∘ (↑ us) ]) ts , q

≡⟨ cong (_, q) (map−cong (r∘−asso _ _) ts) ⟩
map (_[ ↑ us ] F.∘ f lip ren pR) ts , q

≡⟨ cong (_, q) (map−∘ _ _ ts) ⟩
map (_[ ↑ us ]) (map (f lip ren pR) ts) , q

≡⟨⟩
map (_[ ↑ us ]) (↑ ts)

≡⟨⟩
(↑ ts) ∘ (↑ us)

∎

Listing A.2: Lifting and extending a substitution distributes over composition.

cong−ext ∶ ∀ {m n} {t t′ ∶ Tm n} {ρ ρ′ ∶ Sub n m} →
t ~βη t′ → ρ ≈βη ρ′ →
(ρ , t) ≈βη (ρ′ , t′)

cong−ext t~t′ ⋄ = ext t~t′ ⋄
cong−ext t~t′ (ext x ρ≈ρ′) = ext t~t′ (cong−ext x ρ≈ρ′)

lookup−sub ∶ ∀ {m n} {ρ ρ′ ∶ Sub m n} (i ∶ Fin n) →
ρ ≈βη ρ′ → lookup i ρ ~βη lookup i ρ′

lookup−sub () ⋄
lookup−sub zero (ext t~u _) = t~u
lookup−sub (suc i) (ext _ ρ≈ρ′) = lookup−sub i ρ≈ρ′

η−help ∶ ∀ {n m} (t ∶ Tm n) (ρ ∶ Sub m n) → weaken (t [ ρ ]) ≡ (weaken t) [ ↑ ρ ]
η−help t ρ = sym $ begin

weaken t [ ↑ ρ ]
≡⟨⟩

weaken t [ weaken−subst ρ , q ]
≡⟨ cong (λ x → weaken t [ x , q ]) (sym (mapWk−∘p ρ)) ⟩

weaken t [ ρ ∘ p , q ]
≡⟨ cong (_[ ρ ∘ p , q ]) (wk−[p] t) ⟩

t [ p ] [ ρ ∘ p , q ]
≡⟨ sym (subComp t p (ρ ∘ p , q)) ⟩

t [ p ∘ (ρ ∘ p , q) ]
≡⟨ cong (t [_]) (pCons (ρ ∘ p) q) ⟩

t [ ρ ∘ p ]
≡⟨ subComp t ρ p ⟩

II
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(t [ ρ ]) [ p ]
≡⟨ sym (wk−[p] (t [ ρ ])) ⟩

weaken (t [ ρ ])
∎ where open P.≡−Reasoning

β−help ∶ ∀ {m n} (t ∶ Tm (suc n)) u (ρ ∶ Sub m n) →
t [ ↑ ρ ] [ id , u [ ρ ] ] ≡ t [ id , u ] [ ρ ]

β−help t u ρ = begin
t [ ↑ ρ ] [ id , u [ ρ ] ]

≡⟨ sym (subComp t (↑ ρ) (id , u [ ρ ])) ⟩
t [ ↑ ρ ∘ (id , u [ ρ ]) ]

≡⟨⟩
t [ (weaken−subst ρ , q) ∘ (id , u [ ρ ]) ]

≡⟨ cong (λ x → t [ (x , q) ∘ (id , u [ ρ ]) ]) (sym (mapWk−∘p _)) ⟩
t [ (ρ ∘ p , q) ∘ (id , u [ ρ ]) ]

≡⟨⟩
t [ (ρ ∘ p) ∘ (id , u [ ρ ]) , u [ ρ ] ]

≡⟨ cong (λ x → t [ x , u [ ρ ] ]) (assoc ρ p _) ⟩
t [ ρ ∘ (p ∘ (id , u [ ρ ])) , u [ ρ ] ]

≡⟨ cong (λ x → t [ ρ ∘ x , u [ ρ ] ]) (pCons _ _) ⟩
t [ ρ ∘ id , u [ ρ ] ]

≡⟨ cong (λ x → t [ x , u [ ρ ] ]) (idR ρ) ⟩
t [ ρ , u [ ρ ] ]

≡⟨ cong (λ x → t [ x , u [ ρ ] ]) (sym (idL ρ)) ⟩
t [ id ∘ ρ , u [ ρ ] ]

≡⟨⟩
t [ (id , u) ∘ ρ ]

≡⟨ subComp t (id , u) ρ ⟩
t [ id , u ] [ ρ ]

∎ where open P.≡−Reasoning

congSub−t ∶ ∀ {m n} {t t′ ∶ Tm n} {ρ ∶ Sub m n}
→ t ~βη t′ → t [ ρ ] ~βη t′ [ ρ ]

congSub−t (varcong i) = ref l~βη
congSub−t (apcong t~t′ t~t″)

= apcong (congSub−t t~t′) (congSub−t t~t″)
congSub−t (ξ t~t′) = ξ (congSub−t t~t′)
congSub−t {ρ = ρ} (β t u)

rewrite sym $ β−help t u ρ = β (t [ ↑ ρ ]) (u [ ρ ])
congSub−t {ρ = ρ} (η a)

rewrite cong (ƛ F.∘ (_· q)) (sym (η−help a ρ)) = η (a [ ρ ])
congSub−t (sym~βη t~t′) = sym~βη (congSub−t t~t′)
congSub−t (trans~βη t~t′ t~t″)

= trans~βη (congSub−t t~t′) (congSub−t t~t″)

cong−∘≈1 ∶ ∀ {m n k} {σ σ′ ∶ Sub m n} {γ ∶ Sub k m}
→ σ ≈βη σ′ → σ ∘ γ ≈βη σ′ ∘ γ

cong−∘≈1 {σ = []} {[]} ⋄ = refl≈βη

III
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cong−∘≈1 {γ = γ} (ext t~u σ≈σ′)
= cong−ext (congSub−t {ρ = γ} t~u) (cong−∘≈1 σ≈σ′)

↑ρ−pr ∶ ∀ {m n} {γ δ ∶ Sub m n} → γ ≈βη δ → ↑ γ ≈βη ↑ δ
↑ρ−pr {γ = γ} {δ} γ≈δ

rewrite sym (mapWk−∘p γ)
| sym (mapWk−∘p δ) = cong−ext ref l~βη (cong−∘≈1 γ≈δ)

congSub−s ∶ ∀ {m n} {t ∶ Tm n} {ρ ρ′ ∶ Sub m n}
→ ρ ≈βη ρ′ → t [ ρ ] ~βη t [ ρ′ ]

congSub−s {ρ = []} {[]} ⋄ = refl~βη
congSub−s {t = var zero} (ext x ρ≈ρ′) = x
congSub−s {t = var (suc i)} (ext x ρ≈ρ′)

= congSub−s {t = var i} ρ≈ρ′

congSub−s {t = a · b} (ext x ρ≈ρ′) =
apcong (congSub−s {t = a} (ext x ρ≈ρ′))

(congSub−s {t = b} (ext x ρ≈ρ′))
congSub−s {t = ƛ b} (ext x ρ≈ρ′)

= ξ (congSub−s {t = b} (↑ρ−pr (ext x ρ≈ρ′)))

cong−[] ∶ ∀ {m n} {t t′ ∶ Tm n} {ρ ρ′ ∶ Sub m n} →
t ~βη t′ → ρ ≈βη ρ′ →
t [ ρ ] ~βη t′ [ ρ′ ]

cong−[] {t′ = t′} t~t′ ρ≈ρ′ =
trans~βη (congSub−t t~t′) (congSub−s {t = t′} ρ≈ρ′)

cong−∘≈ ∶ ∀ {m n k} {ρ σ ∶ Sub m n} {ρ′ σ′ ∶ Sub k m} →
ρ ≈βη σ → ρ′ ≈βη σ′ →
ρ ∘ ρ′ ≈βη σ ∘ σ′

cong−∘≈ ⋄ ρ′~σ′ = ⋄
cong−∘≈ (ext t ρ≈σ) ⋄ = ext (cong−[] t ⋄) (cong−∘≈ ρ≈σ ⋄)
cong−∘≈ (ext t ρ≈σ) (ext u ρ′≈σ′) =

ext (cong−[] t (ext u ρ′≈σ′)) (cong−∘≈ ρ≈σ (ext u ρ′≈σ′))

Listing A.3: Congruence rules for untyped beta-eta equality.

data _≈_ ∶ ∀ {Γ α} (t1 t2 ∶ Tm Γ α) → Set
data _≋_ ∶ ∀ {Γ Δ} (γ1 γ2 ∶ Sub Γ Δ) → Set

data _≈_ where
subId ∶ ∀ {Γ α} (t ∶ Tm Γ α) → t [ id ] ≈ t
qCons ∶ ∀ {Γ Δ α} (t ∶ Tm Γ α) (γ ∶ Sub Γ Δ) → q [ < γ , t > ] ≈ t
subComp ∶ ∀ {Γ Δ Θ α} (t ∶ Tm Δ α) (γ ∶ Sub Γ Δ) (δ ∶ Sub Θ Γ)

→ t [ γ ∘ δ ] ≈ t [ γ ] [ δ ]
cong−sub ∶ ∀ {Γ Δ α} {t t′ ∶ Tm Γ α} {γ γ′ ∶ Sub Δ Γ}

→ t ≈ t′ → γ ≋ γ′ → t [ γ ] ≈ t′ [ γ′ ]
sym≈ ∶ ∀ {Γ α} {t t′ ∶ Tm Γ α} → t ≈ t′ → t′ ≈ t
trans≈ ∶ ∀ {Γ α} {t t′ t″ ∶ Tm Γ α}

IV
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→ t ≈ t′ → t′ ≈ t″ → t ≈ t″

data _≋_ where
id0 ∶ id {ε} ≋ <>
<>Lzero ∶ ∀ {Γ Δ} (γ ∶ Sub Γ Δ) → <> ∘ γ ≋ <>
idExt ∶ ∀ {Γ α} → id {Γ ∙ α} ≋ < p , q >
idL ∶ ∀ {Γ Δ} (γ ∶ Sub Δ Γ) → id ∘ γ ≋ γ
idR ∶ ∀ {Γ Δ} (γ ∶ Sub Γ Δ) → γ ∘ id ≋ γ
assoc ∶ ∀ {Γ Δ Θ Λ} (γ ∶ Sub Δ Θ) (δ ∶ Sub Γ Δ) (ζ ∶ Sub Λ Γ)

→ (γ ∘ δ) ∘ ζ ≋ γ ∘ (δ ∘ ζ)
pCons ∶ ∀ {Δ Θ α} (t ∶ Tm Δ α) (γ ∶ Sub Δ Θ) → p ∘ < γ , t > ≋ γ
compExt ∶ ∀ {Γ Δ Θ α} (t ∶ Tm Δ α) (γ ∶ Sub Δ Θ) (δ ∶ Sub Γ Δ)

→ < γ , t > ∘ δ ≋ < γ ∘ δ , t [ δ ] >
cong−<, > ∶ ∀ {Γ Δ α} {t t′ ∶ Tm Γ α} {γ γ′ ∶ Sub Γ Δ}

→ t ≈ t′ → γ ≋ γ′ → < γ , t > ≋ < γ′ , t′ >
cong−∘ ∶ ∀ {Γ Δ Θ} {γ δ ∶ Sub Δ Θ} {γ′ δ′ ∶ Sub Γ Δ}

→ γ ≋ δ → γ′ ≋ δ′ → γ ∘ γ′ ≋ δ ∘ δ′

sym≋ ∶ ∀ {Γ Δ} {γ γ′ ∶ Sub Γ Δ} → γ ≋ γ′ → γ′ ≋ γ
trans≋ ∶ ∀ {Γ Δ} {γ γ′ γ″ ∶ Sub Γ Δ}

→ γ ≋ γ′ → γ′ ≋ γ″ → γ ≋ γ″

Listing A.4: Equations for scwf with explicit substitutions.

[]−preserv {ε} (var ()) tt
[]−preserv (var here) (ρ , t) = sym≈ (qCons ⟦ t ⟧ ⟦ ρ ⟧′)
[]−preserv (var (there ∈Γ)) (ρ , t) = begin

⟦ tkVar ∈Γ ρ ⟧
≈⟨ []−preserv (var ∈Γ) ρ ⟩

⟦ var ∈Γ ⟧ [ ⟦ ρ ⟧′ ]
≈⟨ cong−sub ref l≈ (sym≋ (pCons ⟦ t ⟧ ⟦ ρ ⟧′)) ⟩

⟦ var ∈Γ ⟧ [ p ∘ < ⟦ ρ ⟧′ , ⟦ t ⟧ > ]
≈⟨ subComp ⟦ var ∈Γ ⟧ p < ⟦ ρ ⟧′ , ⟦ t ⟧ > ⟩

⟦ var ∈Γ ⟧ [ p ] [ < ⟦ ρ ⟧′ , ⟦ t ⟧ > ]
∎

where open EqR (TmSetoid {_})

[]−preserv (t · u) ρ = begin
app ⟦ t [ ρ ]λ ⟧ ⟦ u [ ρ ]λ ⟧

≈⟨ cong−app ([]−preserv t ρ) ref l≈ ⟩
app (⟦ t ⟧ [ ⟦ ρ ⟧′ ]) ⟦ u [ ρ ]λ ⟧

≈⟨ cong−app ref l≈ ([]−preserv u ρ) ⟩
app (⟦ t ⟧ [ ⟦ ρ ⟧′ ]) (⟦ u ⟧ [ ⟦ ρ ⟧′ ])

≈⟨ subApp ⟦ t ⟧ ⟦ u ⟧ ⟦ ρ ⟧′ ⟩
app ⟦ t ⟧ ⟦ u ⟧ [ ⟦ ρ ⟧′ ]

∎
where open EqR (TmSetoid {_})

[]−preserv {Γ} (ƛ {α = α} t) ρ = begin

V



A. Agda Code Page VI

lam ⟦ t [ wk−sub Γ ⊆−∙ ρ , var here ]λ ⟧
≈⟨ cong−lam ([]−preserv t (wk−sub Γ ⊆−∙ ρ , var here)) ⟩

lam (⟦ t ⟧ [ < ⟦ wk−sub Γ ⊆−∙ ρ ⟧′ , q > ])
≈⟨ cong−lam (cong−sub ref l≈ (help)) ⟩

lam (⟦ t ⟧ [ < ⟦ ρ ∘λ p−λ ⟧′ , q > ])
≈⟨ cong−lam (cong−sub ref l≈

(cong−<, > refl≈ (⟦⟧−∘−distp ρ p−λ))) ⟩
lam (⟦ t ⟧ [ < ⟦ ρ ⟧′ ∘ ⟦ p−λ ⟧′ , q > ])

≈⟨ cong−lam (cong−sub ref l≈
(cong−<, > refl≈ (cong−∘ ref l≋ (sym≋ p~⟦p⟧)))) ⟩

lam (⟦ t ⟧ [ < ⟦ ρ ⟧′ ∘ p , q > ])
≈⟨ sym≈ (subLam ⟦ t ⟧ ⟦ ρ ⟧′) ⟩

lam ⟦ t ⟧ [ ⟦ ρ ⟧′ ]
∎

where open EqR (TmSetoid {_})
help ∶ < ⟦ wk−sub Γ (⊆−∙ {a = α}) ρ ⟧′ , q >

≋ < ⟦ ρ ∘λ p−λ ⟧′ , q >
help rewrite wk−sub−∘−p {Γ} {α = α} ρ = refl≋

⟦⟧−∘−dist {Θ = ε} tt σ = sym≋ (<>Lzero ⟦ σ ⟧′)
⟦⟧−∘−dist {Θ = Θ ∙ x} (ρ , t) σ = begin

< ⟦ ρ ∘λ σ ⟧′ , ⟦ t [ σ ]λ ⟧ >
≈⟨ cong−<, > refl≈ (⟦⟧−∘−dist ρ σ) ⟩

< ⟦ ρ ⟧′ ∘ ⟦ σ ⟧′ , ⟦ t [ σ ]λ ⟧ >
≈⟨ cong−<, > ([]−preserv t σ) ref l≋ ⟩

< ⟦ ρ ⟧′ ∘ ⟦ σ ⟧′ , ⟦ t ⟧ [ ⟦ σ ⟧′ ] >
≈⟨ sym≋ (compExt ⟦ t ⟧ ⟦ ρ ⟧′ ⟦ σ ⟧′) ⟩

< ⟦ ρ ⟧′ , ⟦ t ⟧ > ∘ ⟦ σ ⟧′

∎
where open EqR (SubSetoid {_} {_})

Listing A.5: Substitution and composition commute to other Scwf object.

vars ∶ ∀ {Γ Δ} → Δ ▸ Γ → Sub−cwf Δ Γ
vars {ε} tt = <>
vars {Γ ∙ x} (ρ , t) = < vars ρ , varCwf t >

▸−to−hom ∶ ∀ {Δ Γ} (f ∶ ∀ {α} → α ∈ Δ → Tm−cwf Δ α)
→ Δ ▸ Γ → Sub−cwf Δ Γ

▸−to−hom {Γ = ε} _ tt = <>
▸−to−hom {Γ = Γ ∙ x} f (ρ , t) = < ▸−to−hom f ρ , f t >

map≈mapcwf ∶ ∀ {Γ Δ} (ρ ∶ Δ ▸ Γ) →
⟦ ▸−to−▹ var ρ ⟧′ ≋ ▸−to−hom varCwf ρ

map≈mapcwf {ε} tt = ref l≋
map≈mapcwf {Γ ∙ x} (ρ , _) = cong−<, > refl≈ (map≈mapcwf ρ)

pCwf ∶ ∀ {Γ α} → Sub−cwf (Γ ∙ α) Γ

VI
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pCwf = ▸−to−hom varCwf pV

vars≈hom ∶ ∀ {Γ Δ} (ρ ∶ Δ ▸ Γ) → vars ρ ≋ ▸−to−hom varCwf ρ
vars≈hom {ε} tt = ref l≋
vars≈hom {Γ ∙ x} (ρ , t) = cong−<, > refl≈ (vars≈hom ρ)

var−lemma ∶ ∀ {Γ Δ α} (ρ ∶ Δ ▸ Γ) →
vars ρ ∘ (p {α = α}) ≋ vars (map−∈ there ρ)

var−lemma {ε} tt = <>Lzero p
var−lemma {Γ ∙ x} (ρ , t) = begin

< vars ρ , varCwf t > ∘ p
≈⟨ compExt (varCwf t) (vars ρ) p ⟩

< vars ρ ∘ p , varCwf t [ p ] >
≈⟨ cong−<, > refl≈ (var−lemma ρ) ⟩

< vars (map−∈ there ρ) , varCwf t [ p ] >
∎

where open EqR (SubSetoid {_} {_})

help ∶ ∀ {Γ x α} →
vars (map−∈ {α = x} (there) (map−∈ {α = α} (there) idV)) ≋
vars (map−∈ (there) (▸−weaken Γ (step ⊆−refl) idV))

help {Γ} {x} {α} rewrite mapwk {Γ} {α = x} {α} idV = refl≋

p≈vars ∶ ∀ {Γ α} → p {α = α} ≋ vars (pV {Γ} {α})
p≈vars {ε} = ter−arrow p
p≈vars {Γ ∙ x} {α} = let (ρ , t) = (pV {Γ ∙ x})

in begin
p

≈⟨ surj−<, > p ⟩
< p ∘ p , q [ p ] >

≈⟨ cong−<, > refl≈ (cong−∘ p≈vars ref l≋) ⟩
< vars pV ∘ p , q [ p ] >

≈⟨ cong−<, > refl≈ (var−lemma pV) ⟩
< vars (map−∈ there pV) , q [ p ] >

≈⟨ cong−<, > refl≈ help ⟩
< vars ρ , q [ p ] >

∎
where open EqR (SubSetoid {_} {_})

p−inverse {Γ} {α} =
trans≋ p≈vars (trans≋ (vars≈hom _)

(trans≋ (sym≋ (map≈mapcwf _)) g))
where g ∶ ⟦ ▸−to−▹ var (pV {Γ} {α}) ⟧′ ≋ ⟦ p−λ ⟧′

g rewrite pIsVarP {Γ} {α} = refl≋

Listing A.6: Projection is preserved from scwf morphisms.

cong−ext ∶ ∀ {Γ Δ α} {t t′ ∶ Tm Γ α} {ρ ρ′ ∶ Sub Γ Δ} →
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t ~βη t′ → ρ ≈βη ρ′ →
(ρ , t) ≈βη (ρ′ , t′)

cong−ext t~t′ ⋄ = ext t~t′ ⋄
cong−ext t~t′ (ext x ρ≈ρ′) = ext t~t′ (cong−ext x ρ≈ρ′)

β−help ∶ ∀ {Γ Δ α β} (t ∶ Tm (Γ ∙ α) β) u (γ ∶ Sub Δ Γ) →
t [ wk−sub _ ⊆−∙ γ , q ] [ id , u [ γ ] ] ≡ t [ id , u ] [ γ ]

β−help t u γ = begin
t [ wk−sub _ ⊆−∙ γ , q ] [ id , u [ γ ] ]

≡⟨ cong (λ x → t [ x , q ] [ id , u [ γ ] ])
(sym (wk−sub−∘−p γ)) ⟩

t [ γ ∘ p , q ] [ id , u [ γ ] ]
≡⟨ sym $ subComp t (γ ∘ p , q) (id , (u [ γ ])) ⟩

t [ (γ ∘ p , q) ∘ (id , u [ γ ]) ]
≡⟨⟩

t [ (γ ∘ p) ∘ (id , u [ γ ]) , u [ γ ] ]
≡⟨ cong (λ x → t [ x , u [ γ ] ]) (assoc γ _ _) ⟩

t [ γ ∘ (p ∘ (id , u [ γ ])) , u [ γ ] ]
≡⟨ cong (λ x → t [ γ ∘ x , u [ γ ] ])

(pCons (u [ γ ]) id) ⟩
t [ γ ∘ id , u [ γ ] ]

≡⟨ cong (λ x → t [ x , u [ γ ] ]) (idR γ) ⟩
t [ γ , u [ γ ] ]

≡⟨ cong (λ x → t [ x , u [ γ ] ]) (sym (idL γ)) ⟩
t [ id ∘ γ , u [ γ ] ]

≡⟨⟩
t [ (id , u ) ∘ γ ]

≡⟨ subComp t (id , u) γ ⟩
t [ id , u ] [ γ ]

∎
where open P.≡−Reasoning

η−help ∶ ∀ {Γ Δ α β} (t ∶ Tm Γ (α ⇒ β)) (γ ∶ Sub Δ Γ) → (t [ γ ])
[ p {α = α} ] ≡ t [ p ] [ wk−sub Γ ⊆−∙ γ , q ]

η−help t γ = sym $ begin
t [ p ] [ wk−sub _ ⊆−∙ γ , q ]

≡⟨ cong (λ x → t [ p ] [ x , q ]) (sym (wk−sub−∘−p γ)) ⟩
t [ p ] [ γ ∘ p , q ]

≡⟨ sym (subComp t _ (γ ∘ p , q)) ⟩
t [ p ∘ (γ ∘ p , q ) ]

≡⟨ cong (t [_]) (pCons q (γ ∘ p)) ⟩
t [ γ ∘ p ]

≡⟨ subComp t γ p ⟩
t [ γ ] [ p ]

∎
where open P.≡−Reasoning

congSub−t ∶ ∀ {Γ Δ α} {t t′ ∶ Tm Γ α} {ρ ∶ Sub Δ Γ}
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→ t ~βη t′ → t [ ρ ] ~βη t′ [ ρ ]
congSub−t (varcong v) = ref l~βη
congSub−t (apcong t~t′ t~t″) =

apcong (congSub−t t~t′) (congSub−t t~t″)
congSub−t (ξ t~t′) = ξ (congSub−t t~t′)
congSub−t {ρ = ρ} (β t u)

rewrite sym $ β−help t u ρ =
β (t [ wk−sub _ ⊆−∙ ρ , q ]) (u [ ρ ])

congSub−t {Γ} {Δ} {α = F ⇒ G} {ρ = ρ} (η a)
rewrite cong (λ x → ƛ (x · q)) (sym $ η−help a ρ) = η (a [ ρ ])

congSub−t (sym~βη t~t′) = sym~βη (congSub−t t~t′)
congSub−t (trans~βη t~t′ t~t″) =

trans~βη (congSub−t t~t′) (congSub−t t~t″)

cong−∘≈1 ∶ ∀ {Γ Δ Ξ} {σ σ′ ∶ Sub Δ Γ} {γ ∶ Sub Ξ Δ}
→ σ ≈βη σ′ → σ ∘ γ ≈βη σ′ ∘ γ

cong−∘≈1 {σ = tt} {tt} ⋄ = refl≈βη
cong−∘≈1 {γ = γ} (ext x σ≈σ′) =

cong−ext (congSub−t {ρ = γ} x) (cong−∘≈1 σ≈σ′)

↑−preserv ∶ ∀ {Γ Δ α} {γ δ ∶ Sub Γ Δ} → γ ≈βη δ
→ (wk−sub _ (⊆−∙ {a = α}) γ , q) ≈βη (wk−sub _ ⊆−∙ δ , q)

↑−preserv {α = α} {γ = γ} {δ} γ≈δ
rewrite sym $ (wk−sub−∘−p {α = α} γ)

| sym $ (wk−sub−∘−p {α = α} δ)
= cong−ext ref l~βη (cong−∘≈1 γ≈δ)

congSub−s ∶ ∀ {Γ Δ α} {t ∶ Tm Δ α} {ρ ρ′ ∶ Sub Γ Δ}
→ ρ ≈βη ρ′ → t [ ρ ] ~βη t [ ρ′ ]

congSub−s {ρ = tt} ⋄ = refl~βη
congSub−s {t = var here} (ext x ρ≈ρ′) = x
congSub−s {t = var (there v)} (ext x ρ≈ρ′) = congSub−s {t = var v} ρ≈ρ′

congSub−s {t = a · b} (ext x ρ≈ρ′) =
apcong (congSub−s {t = a} (ext x ρ≈ρ′)) (congSub−s {t = b} (ext x ρ≈ρ′))

congSub−s {t = ƛ b} (ext x ρ≈ρ′) =
ξ (congSub−s {t = b} (↑−preserv (ext x ρ≈ρ′)))

Listing A.7: Congruence rules for simply typed lambda calculus with beta and eta.

lemma−1 ∶ ∀ {n} {Γ ∶ Ctx n} {A} → Γ ⊢ A → Γ ⊢

lemma−2 ∶ ∀ {n} {Γ ∶ Ctx n} {A t} → Γ ⊢ t ∈ A → Γ ⊢ A

lemma−2B ∶ ∀ {n} {Γ ∶ Ctx n} {A t} → Γ ⊢ t ∈ A → Γ ⊢

lemma−3 ∶ ∀ {m n} {Γ ∶ Ctx n} {Δ ∶ Ctx m} {γ} → Δ ▹ Γ ⊢ γ → Γ ⊢ × Δ ⊢

lemma−3 (⊢id Γ⊢) = Γ⊢ , Γ⊢
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lemma−3 (⊢∘ ⊢γ1 ⊢γ2) = π1 (lemma−3 ⊢γ1) , π2 (lemma−3 ⊢γ2)
lemma−3 (⊢p ⊢A) = lemma−1 ⊢A , c−ext (lemma−1 ⊢A) ⊢A
lemma−3 (⊢<> Δ⊢) = c−emp , Δ⊢
lemma−3 (⊢<, > ⊢γ ⊢A _) = c−ext (lemma−1 ⊢A) ⊢A , π2 (lemma−3 ⊢γ)

lemma−1 (ty−U Γ⊢) = Γ⊢
lemma−1 (ty−∈U A∈U) = lemma−2B A∈U
lemma−1 (ty−Π−F ⊢A _) = lemma−1 ⊢A
lemma−1 (ty−sub _ ⊢γ) = π2 (lemma−3 ⊢γ)

lemma−2B (tm−q ⊢A) = c−ext (lemma−1 ⊢A) ⊢A
lemma−2B (tm−sub _ ⊢γ) = π2 (lemma−3 ⊢γ)
lemma−2B (tm−app _ _ _ t∈A) = lemma−2B t∈A
lemma−2B (tm−conv _ t∈A _) = lemma−2B t∈A
lemma−2B (tm−Π−I _ _ t∈A) with lemma−2B t∈A
... | c−ext Γ⊢ _ = Γ⊢

lemma−2 (tm−q ⊢A) = ty−sub ⊢A (⊢p ⊢A)
lemma−2 (tm−sub t∈A ⊢γ) = ty−sub (lemma−2 t∈A) ⊢γ
lemma−2 (tm−Π−I ⊢A ⊢B _) = ty−Π−F ⊢A ⊢B
lemma−2 (tm−app ⊢A ⊢B _ t∈A) =

let ⊢id = ⊢id (lemma−1 ⊢A)
in ty−sub ⊢B (⊢<, > ⊢id ⊢A

(tm−conv (ty−sub ⊢A ⊢id) t∈A (subId _)))
lemma−2 (tm−conv ⊢A′ _ _) = ⊢A′

Listing A.8: Inversion lemmas for Π𝑈 cwf calculus explicit substitutions.
An isomorphism between the raw languages of the two term models of ΠU-cwfs.
The proofs involving terms are shown since they have been solely extended.

⟦_⟧ ∶ ∀ {n} → Tm−λ n → Tm−cwf n
⟪_⟫ ∶ ∀ {n} → Tm−cwf n → Tm−λ n

⟦_⟧′ ∶ ∀ {m n} → Sub−λ m n → Sub−cwf m n
⟪_⟫′ ∶ ∀ {m n} → Sub−cwf m n → Sub−λ m n

– Variable representation in the variable free calculus
varCwf ∶ ∀ {n} (i ∶ Fin n) → Tm−cwf n
varCwf zero = q
varCwf (suc i) = varCwf i [ p ]

⟦ var i ⟧ = varCwf i
⟦ ƛ t ⟧ = lam ⟦ t ⟧
⟦ t · u ⟧ = app ⟦ t ⟧ ⟦ u ⟧
⟦ Π A B ⟧ = Π ⟦ A ⟧ ⟦ B ⟧
⟦ U ⟧ = U

⟪ q ⟫ = q−λ
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⟪ t [ γ ] ⟫ = ⟪ t ⟫ [ ⟪ γ ⟫′ ]λ
⟪ lam t ⟫ = ƛ ⟪ t ⟫
⟪ app t u ⟫ = ⟪ t ⟫ · ⟪ u ⟫
⟪ Π A B ⟫ = Π ⟪ A ⟫ ⟪ B ⟫
⟪ U ⟫ = U

⟦ [] ⟧′ = <>
⟦ t ∷ ρ ⟧′ = < ⟦ ρ ⟧′ , ⟦ t ⟧ >

⟪ id ⟫′ = id−λ
⟪ γ ∘ γ′ ⟫′ = ⟪ γ ⟫′ ∘λ ⟪ γ′ ⟫′

⟪ p ⟫′ = p−λ
⟪ <> ⟫′ = []
⟪ < γ , t > ⟫′ = ⟪ γ ⟫′ , ⟪ t ⟫

sub−comm ∶ ∀ {m n} (t ∶ Tm−λ n) (σ ∶ Sub−λ m n)
→ ⟦ t [ σ ]λ ⟧ ≈ ⟦ t ⟧ [ ⟦ σ ⟧′ ]

sub−comm (var zero) (t ∷ σ) = sym≈ (qCons ⟦ t ⟧ ⟦ σ ⟧′)
sub−comm (var (suc i)) (t ∷ σ) = begin

⟦ lookup i σ ⟧ ≈⟨ sub−comm (var i) σ ⟩
⟦ var i ⟧ [ ⟦ σ ⟧′ ] ≈⟨ cong−sub ref l≈ (pCons ⟦ t ⟧ ⟦ σ ⟧′) ⟩
⟦ var i ⟧ [ p ∘ < ⟦ σ ⟧′ , ⟦ t ⟧ > ] ≈⟨ subComp ⟦ var i ⟧ p < ⟦ σ ⟧′ , ⟦ t ⟧ > ⟩
⟦ var i ⟧ [ p ] [ < ⟦ σ ⟧′ , ⟦ t ⟧ > ] ∎
where open EqR (TmSetoid {_})

sub−comm (t · u) σ =
trans≈ (cong−app (sub−comm t σ) (sub−comm u σ))

(subApp ⟦ σ ⟧′ ⟦ t ⟧ ⟦ u ⟧)
sub−comm U _ = sym≈ subU
sub−comm (ƛ t) σ = begin

lam ⟦ t [ ↑ σ ]λ ⟧
≈⟨ cong−lam $ sub−comm t (↑ σ) ⟩

lam (⟦ t ⟧ [ < ⟦ wk−sub σ ⟧′ , q > ])
≈⟨ cong−lam $ cong−sub ref l≈ help ⟩

lam (⟦ t ⟧ [ < ⟦ σ ∘λ p−λ ⟧′ , q > ])
≈⟨ cong−lam $ cong−sub ref l≈

(cong−<, > refl≈ (⟦⟧−∘−dist σ p−λ)) ⟩
lam (⟦ t ⟧ [ < ⟦ σ ⟧′ ∘ ⟦ p−λ ⟧′ , q > ])

≈⟨ cong−lam $ cong−sub ref l≈
(cong−<, > refl≈ (cong−∘ ref l≋ (sym≋ p−inverse))) ⟩

lam (⟦ t ⟧ [ < ⟦ σ ⟧′ ∘ p , q > ])
≈⟨ sym≈ (subLam ⟦ t ⟧ ⟦ σ ⟧′) ⟩

lam ⟦ t ⟧ [ ⟦ σ ⟧′ ]
∎

where open EqR (TmSetoid {_})
help ∶ < ⟦ wk−sub σ ⟧′ , q >

≋ < ⟦ σ ∘λ p−λ ⟧′ , q >
help rewrite wkSub−∘−p σ = refl≋

sub−comm (Π A B) σ = begin
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Π ⟦ A [ σ ]λ ⟧ ⟦ B [ ↑ σ ]λ ⟧
≈⟨ cong−Π (sub−comm A σ) (sub−comm B (↑ σ)) ⟩

Π (⟦ A ⟧ [ ⟦ σ ⟧′ ]) (⟦ B ⟧ [ < ⟦ wk−sub σ ⟧′ , q > ])
≈⟨ cong−Π refl≈ help ⟩

Π (⟦ A ⟧ [ ⟦ σ ⟧′ ]) (⟦ B ⟧ [ < ⟦ σ ∘λ p−λ ⟧′ , q > ])
≈⟨ cong−Π refl≈ (cong−sub ref l≈

(cong−<, (⟦⟧−∘−dist σ p−λ))) ⟩
Π (⟦ A ⟧ [ ⟦ σ ⟧′ ]) (⟦ B ⟧ [ < ⟦ σ ⟧′ ∘ ⟦ p−λ ⟧′ , q > ])

≈⟨ cong−Π refl≈ (cong−sub ref l≈
(cong−<, (cong−∘2 (sym≋ p−inverse)))) ⟩

Π (⟦ A ⟧ [ ⟦ σ ⟧′ ]) (⟦ B ⟧ [ < ⟦ σ ⟧′ ∘ p , q > ])
≈⟨ sym≈ (subΠ ⟦ σ ⟧′ ⟦ A ⟧ ⟦ B ⟧) ⟩

Π ⟦ A ⟧ ⟦ B ⟧ [ ⟦ σ ⟧′ ]
∎

where open EqR (TmSetoid {_})
help ∶ ⟦ B ⟧ [ < ⟦ wk−sub σ ⟧′ , q > ]

≈ ⟦ B ⟧ [ < ⟦ σ ∘λ p−λ ⟧′ , q > ]
help rewrite wkSub−∘−p σ = refl≈

t−λ⇒cwf ∶ ∀ {n} (t ∶ Tm−λ n) → ⟪ ⟦ t ⟧ ⟫ ≡ t

t−cwf⇒λ ∶ ∀ {n} (t ∶ Tm−cwf n) → ⟦ ⟪ t ⟫ ⟧ ≈ t

t−λ⇒cwf (var zero) = ref l
t−λ⇒cwf (var (suc i))

rewrite sym (lookup−p i) = cong (_[ p−λ ]λ) (t−λ⇒cwf (var i))
t−λ⇒cwf (ƛ t) = cong ƛ (t−λ⇒cwf t)
t−λ⇒cwf (t · u) = cong2 _·_ (t−λ⇒cwf t) (t−λ⇒cwf u)
t−λ⇒cwf (Π A B) = cong2 Π (t−λ⇒cwf A) (t−λ⇒cwf B)
t−λ⇒cwf U = refl

t−cwf⇒λ q = refl≈
t−cwf⇒λ (t [ γ ]) =

trans≈ (sub−comm ⟪ t ⟫ ⟪ γ ⟫′)
(cong−sub (t−cwf⇒λ t) (s−cwf⇒λ γ))

t−cwf⇒λ (lam t) = cong−lam (t−cwf⇒λ t)
t−cwf⇒λ (app t u) = cong−app (t−cwf⇒λ t) (t−cwf⇒λ u)
t−cwf⇒λ (Π A B) = cong−Π (t−cwf⇒λ A) (t−cwf⇒λ B)
t−cwf⇒λ U = refl≈

Listing A.9: Raw isomorphism of well-scoped terms with Π and U.

XII


	Listings
	Introduction
	Background
	Related work
	Agda
	Categories with Families
	CwFs Definition
	Generalized Algebraic Theory of CwFs


	Unityped CwFs
	Ucwf Notions
	Pure Ucwfs
	λ-Ucwfs
	λ-βη-Ucwfs

	Term Models of Ucwfs
	Ucwf with Explicit Substitutions
	Ucwf with Implicit Substitutions
	Isomorphism of Ucwfs

	Term Models of λ-Ucwfs
	λ-Ucwf with Explicit Substitutions
	λ-Ucwf with Implicit Substitutions
	Isomorphism of λ-Ucwfs

	Term Models of λ-βη-Ucwfs

	Simply Typed CwFs
	Scwf Notions
	Pure Scwfs
	λ-Scwfs
	λ-βη-Scwfs
	Extrinsic Scwfs

	Term Models of Scwfs
	Scwf with Explicit Substitutions
	Scwf with Implicit Substitutions
	Isomorphism of Scwfs

	Term Models of λ-Scwfs
	λ-Scwf with Explicit Substitutions
	λ-Scwf with Implicit Substitutions
	Isomorphism of lambda-Scwfs

	Term Models of λ-βη-Scwfs
	Extrinsic Scwfs
	Extrinsic and Intrinsic Scwfs


	ΠU-CwFs
	ΠU-Cwf with Explicit Substitutions
	ΠU-Cwf with Implicit Substitutions

	Conclusion
	Agda Code

