Proceedings of the IASS Annual Symposium 2017
“Interfaces: architecture.engineering.science”

25 - 28th September 2017, Hamburg, Germany
Annette Bogle, Manfred Grohmann (eds.)

Brick patterns on shells using geodesic coordinates

Emil ADIELS", Mats ANDER 2, Chris J K WILLIAMS®

* Department of Architecture, Chalmers University of Technology
Gothenburg, Sweden
emiladiels @ gmail.com

4 Department of Applied Mechanics, Chalmers University of Technology
b Department of Architecture, Chalmers University of Technology

Abstract

We present two separate strategies for generating brick patterns on free form shells and vaults using
geodesic coordinates. The brickwork is specified by a surface on which there is a geodesic coordinate
system satisfying the condition for a constant distance between bed joints. The first strategy integrates
the generation of the geodesic coordinates in a form finding procedure derived from the geometrical
and mechanical properties of a shell. The geometric and structural equations are solved using dynamic
relaxation. The second strategy can be applied on an arbitrary surface separating the form finding and
brick pattern generation enabling adaption to different constraints in the design process.

Key words: differential geometry, brick patterns, shells, brickwork, form finding, geodesic coordinates

1. Introduction

Any discussion of brickwork must include the influence of the
format and shape of the brick, and this particularly applies to
brick shells and vaults. The field of geometry and brickwork
is historically not as well known or documented as the related
topic of stereotomy, that is the 3 dimensional cutting of stones,
where the literature goes back to the 16™ century in the work
by Philibert de I’Orme [3]. The problem of tessellating a free
form surface with a single element type is generally very dif-
ficult, if not taking the production method into account. Im-

portantly, the geometry of brickwork is never exact. Tradi- Bricks || I:]
tional bricks have an overall shape of a cuboid, but can be both I C]\
curved and twisted, and can when needed be easily modified : l: .

| |

E]

|

with a bricklayer’s hammer or a scutch hammer, and possibly
a chisel or bolster. The flexible joints, the mortar, make the
structure able to tolerate the deviance of the bricks and adapt
to the global geometry. This means that the craftsmen tradi-
tionally had influence on the final solution but also that there
exists a resilience in the mathematical formulation.

Figure 1: Geodesic coordinates on a surface
guarantees and equal spacing of the coordi-

nate curves making it suitable as basis for
Old handbook drawings of patterns on vaults are often limited brick patterns on free form shells.

to the bed joints as in figure 2. The most important geometrical

constraint is therefore that the distance between the bed joints is constant. This property can be found
in a geodesic coordinate system comprising geodesics on a surface and their orthogonal trajectories (see
section 3) which guarantees a constant length between coordinate curves on the surface. This would
enable the placing of bricks in between the coordinate curves of such system, illustrated in figure 1.

We shall present two strategies to generate the geodesic coordinate pattern on a shell:

Copyright © 2017 by (name(s) of the author(s) as listed above)
Published by the International Association for Shell and Spatial Structures (IASS) with permission.

Proceedings of the IASS Annual Symposium 2017
Interfaces: architecture.engineering.science

1. Combined form finding and pattern generation using dynamic relaxation as described in section 4.

2. Generation of patterns on an arbitrary shell from a designer specified curve and thereby separating
form and pattern as described in section 5.

2. The geometrical and structural properties of shells

The form finding of shell structures involves the specification
of the geometry of a shell in static equilibrium subject to geo-
metric constraints. The best known example is the equal mesh
or Chebyshev net used by Frei Otto for projects such as the
Munich Olympic Stadium and the Mannheim Multihalle [5].
In an alternative technique Block and Ochsendorf [2] define
the form found state of stress in a shell using Thrust Network
Analysis.

The geometry of the coordinate curves on a surface is specified
by the components of the metric tensor a;1, aj2 = a2 and az»,
using the notation in Green and Zerna [4], also known as co-
efficients of the first fundamental form, E, F' and G, using the
notation in Struik [7]. The state of membrane stress in a shell
is specified by the components of the membrane stress tensor, Figure 2: A drawing of a saucer dome

n'!, n'?> = n?! and n??, again using the notation in Green and showing various on how to place the brick
Zerna [4]. pattern. Typically these brick patterns are

.) . limited to the lines of the bed joints and not
Thus we have 6 quantities to determine, but only 3 equations eyery single brick, from Paulsson [6].

of equilibrium. We therefore need 3 more equations and in the
case of the equal mesh net they are

aj] = app = constant (D)
n'?=0. (2)

Equation (2) ensures that the state of stress corresponds to forces along the lines of the mesh.

However we cannot use an equal mesh net for brickwork because we need a constant spacing between
bed joints as shown in figure 1. If

arjan — (apn)?
ar

= constant 3)

then there is a constant distance between the curves 62 = constant. Green and Zerna [4] use 6' and 62
for the surface coordinates instead of the u and v which are often used in books which do not use the
tensor notation, such as Struik [7].

We can arbitrarily specify that the coordinate curves are orthogonal so that

ajy> = constant (4)
ajp = 0. (5)

Thus we now have 2 equations and we require one more. If we stipulate that the principal stresses are
perpendicular to the bed and head joints we have

n'2 =0. (6)

Proceedings of the IASS Annual Symposium 2017
Interfaces: architecture.engineering.science

There is no absolute requirement that the principal stresses are perpendicular to the bed and head joints
in brickwork, but we have to specify some condition on stress in order to have a system of equations that
we can solve. The obvious advantage of the principal stresses being perpendicular to the bed and head
joints is that there is no possibility of sliding along the bed joints.

The only difference between equations (1) and (2) and equations (4), (5) and (6) is that in the former we
have a;, = constant, whereas in the latter we have a;, = 0. However, we shall see that this change does

make the numerical solution more difficult.

3. Geodesic coordinates

In this section we shall demonstrate the well known properties
of a geodesic coordinate system using the notation from Green
and Zerna [4], although they do not cover this topic. From
equations (4) and (5) we have,

dar 0 day
0="Fg1 = g1 (32-2) =282 57 0
dain J da; Jday
0=362 = ggr @) = gz mFar 55 @
and therefore since
da; dr Oa ©
002 001062 06!
we have 5
a

This last equation means that the geodesic curvature of the
curves 0! = constant is zero, or in other words the curves
0! = constant are geodesics on the surface. The shortest dis-
tance between two points on a surface is a geodesic and it is
a nice application of the calculus variations to show that this
is consistent with the definition of zero geodesic curvature, al-

- geodesics
'V
XX 0'= constant
2
\\
XX <
S ONXN
X

0%= constant

Figure 3: Geodesic coordinates, redrawn
from Striuk [7]. The orthogonal trajecto-
ries intersect the geodesics at a right angle
and equal length.

though it is intuitive in the sense that a string stretched across a smooth surface will slide sideways giving

the minimum length and zero geodesic curvature.

Coordinates which satisfy (4) and (5), and therefore also (10) are known as geodesic coordinates. Gauss’s
Theorema Egregium is particularly elegant in geodesic coordinates. Introducing the coefficients of the

second fundamental form, by, b1y = b1 and by»,

aaz
W = bya;z
832 1 8a11
= b
201~ 2a;, 902 M1 TP
so that
d%a
aeiagr ™ = b2

1 3(111 1 86111

. 8 1 86111 + 1 _

N 392 26111 392 an 26111 892 2 392
92 o

) Van — (b1)* = ﬁvan — (b12)*.

dayy

J 1
~ 002 (2,@1 262

(b12)

(962)?

Proceedings of the IASS Annual Symposium 2017
Interfaces: architecture.engineering.science

Figure 4: Plan and elevations of a brick shell supported on two edges at ground level and free along the other two.
Geodesic lines are shown in black

R
WA

W
R

N
RN

\

AR
R
)

\
AAN

W
A

N

\
R
\

\
)
N
N
W
\\\\\\\\\\\
NN

.

R

R

\

s

\,
RN
NN
\\\‘\\
NN
N

gesseey o

w\\s\\\\\\\\\
WAL
TN
‘W

W

RN
R

\
W

IR
\

RN

AN
3

i
X

AMANAY

R
3
SRR

TR

i
&

AR
is
X

RN
HRRMIIIR
SRR

AR
(AR
i
RS
388
S

R
R

isieiess
Saaerereased
S

e

i
i

YpSiisiEIaen

neaassassass
ISR

Figure 5: View showing brick pattern

Therefore)
g - bubxn— (b12)” 1 0% /ai

ajax — ((Z]z)z _a22\/all (892)2

(1)
or
1 9°w
w ds?
where w is the spacing between geodesics and s is the distance measured along a geodesic. K is the

K= (12)

Proceedings of the IASS Annual Symposium 2017
Interfaces: architecture.engineering.science

Gaussian curvature, that is the product of the two principal curvatures. On a developable surface, such
as a plane or a cylinder, K = 0 so that Cartesian coordinates and polar coordinates are special cases of
geodesic coordinates.

4. Numerical implementation of equilibrium combined with geodesic coordinates

Figures 4 and 5 show the results of the numerical implementation. The algorithm ensures that
1. The black lines in figure 4 are geodesics,
2. the spacing of the red lines along the black lines is constant and

3. the shell is in equilibrium under a uniform vertical load per unit plan area with the principal stresses
parallel to the coordinate curves.

The structure is modelled by a system of pin ended members that are all in compression under downwards
vertical load. The equations are solved using dynamic relaxation and rather than writing out many lines
of equations or pseudocode, we consider it better to include the entire code so that readers can run the
code for themselves if they so wish. The reason for this is that the code contains a number of features
which we found were necessary for stability, but are difficult to explain in their entirety. For example the
variable ‘loadIncrementFactor’ is there to ensure that the load does not vary too quickly as the spacing
between geodesics changes. We also found that the relaxation factors for the different equations have to
be ‘tuned’ so that the algorithm converges. Because the structure is in compression it is unstable with
negative force densities or tension coefficients. This means that in the dynamic relaxation the nodes are
moved in the opposite direction to the out of balance force, which is equivalent to having a negative
mass.

The program is written in the Processing language www.processing.org which is based on Java, but
the code would be essentially the same in C++ or C# for inclusion in some other graphic environment
such as OpenGL or Grasshopper.

5. Geodesic coordinates on arbitrary free form shells

There are infinite number of ways of constructing a geodesic coordinate system on a smooth surface [7].
This suggests that one can separate the form finding and pattern generation to allow freedom to design
a brick pattern on an arbitrary surface. By generating the geodesics orthogonal to an arbitrary surface
curve, i.e. becoming the first orthogonal trajectory, it should be easy to generate the rest of orthogonal
trajectories by measuring equal lengths along the geodesics. Our method for generating geodesics are
based on a series of circles, having equal radius R, with its centre on the surface contained with the normal
plane of its centre. Each row of overlapping circles are connected in such a way that they intersect the
surface creating a locus of equally spaced points describing a geodesic, see figure 7. Since all points are
contained within the normal planes the curvature only contains a normal component, i.e. the geodesic
curvature is zero. The initial orthogonal trajectory is arbitrary and therefore this strategy allows to specify
the direction of the brick pattern but also to make several local patterns combined into a global pattern.
For a pattern to be successful the geodesics must not cross, which we can only guess in advance, and
therefore it might even be necessary to divide a surface into several patches each with its own pattern.
Our method was implemented and applied to different surfaces and is shown in figure 6. The script was
developed in C# using the Rhinocommon SDK [1] to solve surface and curve intersections.

6. Conclusions

We have developed two different strategies for generating brick patterns which satisfies the requirement
for a constant spacing between the bed joints, each having their own quality in the design. The first is

|

I

|

2222

Proceedings of the IASS Annual Symposium 2017
Interfaces: architecture.engineering.science

Circles generating

Orthogonal
trajectories

geodesics

Starting curve

Figure 7: The generation of the geodesic coordinates is based on a initial curve from which geodesics are generated
at an right angle. A series of circles with its centre on the surface, contained in the normal plane in its centre point,
intersects the surface generating a locus of points describing the geodesics. Since the points on the geodesics are
contained within a normal planes the geodesic curvature is zero.

derived from desired geometrical and structural properties making form, structural action and pattern
integrated. This avoids sliding along the head joints but it also tells a unique design story. The second
strategy disconnect the form and pattern making it easy to apply unique patterns based on visual appeal,
structural or production benefits. It can be a tool for enabling conversations and cooperation between
different professions in a design process.

We have not discussed the spacing of the head joints and in figure 5 the length of the bricks is shown to
vary as the spacing between the geodesics varies. However it is more likely that constant length bricks
would be used so that the head joints would not coincide with the geodesics.

References

[1] R. M. . Associates. Rhinocommon sdk. http://developer.rhino3d.com/api/RhinoCommon/,
2017. [Online; accessed 1-April-2017].

[2] P. Block and J. Ochsendorf. Thrust network analysis: A new methodology for three-dimensional
equilibrium. Journal of the International Association for Shell and Spatial Structures, 48:167-173,
2007.

[3] P. de L’'Orme. Le premier tome de I’ Architecture de Philibert de de I’Orme. chez Federic Morel,
1567. URL http://architectura.cesr.univ-tours.fr/traite/Images/Les1653Index.
asp.

[4] A. E. Green and W. Zerna. Theoretical elasticity. Oxford University Press and Dover, 2nd edition,
1968 and 1992.

[5] E.Happold and W. Liddell. Timber lattice roof for the Mannheim Bundesgartenschau. The Structural
Engineer, 53:99-135, 1975.

Proceedings of the IASS Annual Symposium 2017
Interfaces: architecture.engineering.science

[6] G. Paulsson. Hantverkets Bok: 4, Mureri. Lindfors bokférlag, 1936.

[7] D.J. Struik. Lectures on classical differential geometry. Addison - Wesley and Dover, 2nd edition,
1961 and 1988.

Appendix - Computer code listing

double [][][] coord, velocity , force, tangent, inPlaneNormal;
double [][] geodesicForceDen, geodesicForceDenRate;

double []1[] orthogonalForceDen , orthogonalForceDenRate;
double [][] stiffness , load;

int m, n, saveCycle;

double a, bedHeight, lengthSquared, loadFactor;

boolean start;

void setup ()

m= 60;

n = 120;

coord = new double[m + 1][n + 1][3];
velocity = new double[m + 1][n + 1][3];
force = new double[m + 1][n + 1][3];
tangent = new double[m + 1][n + 1][3];
inPlaneNormal = new double[m + 1][n + 1][3];
stiffness = new double[m + 1][n + 1];
load = new double[m + 1][n + 1];

new double[m + 1][n];
new double[m + 1][n];
new double[m][n + 1];
new double[m][n + 1];

geodesicForceDen
geodesicForceDenRate
orthogonalForceDen
orthogonalForceDenRate
fullScreen ();

a = 5000.0;

bedHeight = 0.25 % a / (double) n;
lengthSquared = bedHeight * bedHeight;

loadFactor = — 5.0 / (double) n;
for (int i = 0; i <=m; i ++)
{

for (int j = 0; j <=n; j ++)

double factorl
double factor2

(double)(i — m) / (double) n;
0.3 = (double)(2.0 %= j — n) / (double) (2 % n);
coord[i][j1[0] 0.3 % factorl = a;
coord[i][j1[1] (factor2 — 0.5 x (0.5 % factorl * factorl
+ 0.03 * Math.cos (1.5 = PI % factorl x (double) n / (double) m)) = factor2) * a;
coord[i][j1[2] = 0.2 % a * (double)(j * (n — j))
* (1.0 + 1.0 = factorl = factorl) / (double) (n * n);
for (int xyz = 0; xyz <= 2; xyz ++)velocity[i][j][xyz] = 0.0;

}
for (int i = 0; i <=m; i ++)

for (int j = 0; j <=n — 1; j ++)

{
geodesicForceDen[i][j] = — 3.0;
geodesicForceDenRate[i][j] = 0.0;
¥
for (int i = 0; i <=m — 1; i ++)

{

for (int j = 0; j <=n; j ++)
{

orthogonalForceDen[i][j] = 0.0;
orthogonalForceDenRate[i][j] = 0.0;

}
}
start = true;
saveCycle = 0;

void draw ()

for (int cycle = 0; cycle <= 1000; cycle++)

{
for (int i = 0; i <=m; i ++)
for (int j = 0; j <=n; j ++)

for (int xyz = 0; xyz <= 2; xyz ++)force[i][j]l[xyz] = 0.0;
stiffness[i][j] = 0.0;

for (int i = 0; i <=m; i ++)
{
for (int j = 0; j <=n; j ++)

i—1;
-1

int previous-i
int previous._j

if (previous_i 0)previous_i = 0;
= 0;
int next-i = i 1;

<
if (previous_j < 0)previous_j
+

Proceedings of the IASS Annual Symposium 2017
Interfaces: architecture.engineering.science

int next_j = j + 1;
if (next.i > m)next_i

= m;
if (next_.j > n)next.j = n;
double scalarProduct = 0.0;
double magnitudeSq = 0.0;

for (int xyz = 0; xyz <= 2; Xyz ++)

{
tangent[i][j][xyz] = coord[i][next-j][xyz] — coord[i][previous_j][xyz];
magnitudeSq += tangent[i][j][xyz] * tangent[i][j][xyz];

double magnitude = Math.sqrt(magnitudeSq);
for (int xyz = 0; xyz <= 2; xyz ++)tangent[i][j][xyz] /= magnitude;
for (int xyz = 0; xyz <= 2; Xyz ++)
inPlaneNormal [i][j][xyz] = coord[next_-i][j][xyz] — coord[previous_i]J[j][xyz];
scalarProduct += inPlaneNormal[i][j][xyz] * tangent[i][j][xyz];
b
for (int xyz = 0; xyz <= 2; Xyz ++)
inPlaneNormal [i][j][xyz] —= tangent[i][j][xyz] = scalarProduct;
magnitudeSq = 0.0;
for (int xyz = 0; xyz <= 2; Xyz ++)
magnitudeSq += inPlaneNormal[i][j][xyz] * inPlaneNormal[i][j][xyz];
magnitude = Math.sqrt(magnitudeSq);
for (int xyz = 0; xyz <= 2; xyz ++)inPlaneNormal[i][j][xyz] /= magnitude;

double correctLoad = loadFactor % magnitude;
double loadIncrementFactor = 1.0e—6;// This is to stop the load fluctuating too quickly
if (start == true)load[i][j] = correctLoad;
else
load[i][j] = (1.0 — loadIncrementFactor) * load[i][j] + loadIncrementFactor % correctLoad;

if (i !'= 0 && i != m)force[i][j][2] += load[i][j];
else force[i][j][2] += 2.0 = load[i][j]:

}
if (start)start = false;
for (int i = 0; i <=m — 1; i ++)
{
for (int j = 15 j <=n — 1; j ++)
double scalarProduct = 0.0;
for (int xyz = 0; xyz <= 2; xyz ++)scalarProduct +=
(coord[i][j + 1][xyz] — 2.0 * coord[i][j]l[xyz] + coord[i][j — 1][xyz])
* inPlaneNormal [i][j1[xyz];
double carryOver = 0.9;
double change = — 0.0005 % scalarProduct;
orthogonalForceDenRate[i][j] = carryOver * orthogonalForceDenRate[i][j] + change;
orthogonalForceDen[i][j] += orthogonalForceDenRate[i][]j];
if (orthogonalForceDen[i][j] > 0.0)orthogonalForceDen[i][j] = 0.0;
if (i !'= 0)
{
orthogonalForceDenRate[i — 1][j] = carryOver * orthogonalForceDenRate[i — 1][j] — change;
orthogonalForceDen[i — 1][j] += orthogonalForceDenRate[i — 1][j];
if (orthogonalForceDen[i — 1][j] > 0.0)orthogonalForceDen[i — 1][j] = 0.0;
}
}

for (int i = 0; i <=m— 1; i ++)

for (int j = 1; j <=n — 1; j ++)

{
for (int xyz = 0; xyz <= 2; Xyz ++)
double delta = coord[i + 1][j][xyz] — coord[i][j]l[xyz];
double component = orthogonalForceDen[i][j] * delta;
force[i][j][xyz] += component;
if (i '=m-—1)
force[i + 1][j]l[xyz] —= component;
else
if (xyz != 0)force[i + 1][j][xyz] —= 2.0 * component;
stiffness[i][j] += orthogonalForceDen[i][]];
if (i !=m— 1)stiffness[i + 1][j] += orthogonalForceDen[i][]];
else stiffness[i + 1][j] += 2.0 * orthogonalForceDen[i][]];
}
for (int i = 0; i <=m; i ++)

{

for (int j = 0; j <=n — 1; j ++4)

double thisLengthSquared = 0.0;
for (int xyz = 0; xyz <= 2; Xyz ++)

double delta = coord[i][j + 1][xyz] — coord[i][j][xyz]:
thisLengthSquared += delta = delta;
geodesicForceDenRate[i][j] = 0.5 % geodesicForceDenRate[i][j]

— 0.001 % (thisLengthSquared — lengthSquared) / lengthSquared;
geodesicForceDen[i][j] += geodesicForceDenRate[i][]j];
double component = geodesicForceDen[i][j] = delta;
force[i][jl[xyz] += component;

Proceedings of the IASS Annual Symposium 2017
Interfaces: architecture.engineering.science

force[i][j + 1][xyz] —= component;

stiffness[i][j] += geodesicForceDen[i][]j];
stiffness[i][j + 1] += geodesicForceDen[i][]];
}
}
for (int i = 0; i <=m; i ++)
{

for (int j = 1; j <=n — 1; j +4)
for (int xyz = 0; xyz <= 2; Xyz ++)
if (i !=m || xyz != 0)

velocity [i][j]l[xyz] = 0.95 % velocity[i][j][xyz] + 0.2 % force[i][j][xyz] / stiffness[i][]];
coord[i][j][xyz] += velocity[i][j]l[xyz];
b
b
}
}

background (255, 255, 255);

scale (2.7 * (float)height / (float)a);
float leftRight = 0.2 % (float)a;
float elevDrop 36 x (float)a;
float planDrop 16 * (float)a;
float elevRight = 0.45 % (float)a;
strokeWeight (1);

translate (leftRight , planDrop);

stroke (255.0, 0.0, 0.0, 150.0);

for (int j = 0; j <=n; j ++)

= 0.
= 0.

for (int i = 0; i <=m — 1; i ++)

line ((float)coord[i][j][1l], (float)coord[i][
i

[0], (float)coord[i + 1][j
line ((float)coord[i][j][1], — (float)coord| !

il 1, (float)coord[i + 1][j1[0]);
1[j1[0], (float)coord[i + 1 [

101
[jI1[1], — (float)coord[i + L][j1[O0]):
}

stroke (0.0, 0.0, 0.0, 150.0);

for (int i = 0; i <=m; i ++)

for (int j = 0; j <=n — 1; j ++)

line ((float)coord[i][jI[1], (float)coord[i][j][0], (float)coord[i][j + 1][1], (float)coord[i][j + 11[0]);
if (i != m)
line ((float)coord[i][jI[1], — (float)coord[i][j]1[0], (float)coord[i][j + 1]1[1], — (float)coord[i][j + 11[0]);
}

}
translate (0.0, elevDrop — planDrop);
stroke (255.0, 0.0, 0.0, 150.0);
for (int j = 0; j <=n; j ++)

for (int i = 0; i <=m — 1; i ++)
line ((float)coord[i][j1[1], — (float)coord[i][j1[2]. (float)coord[i + 1][j]1[1], — (float)coord[i + 1][j]1[2]);

}
stroke (0.0, 0.0, 0.0, 150.0);
for (int i = 0; i <=m; i ++)

for (int j = 0; j <=n — 1; j ++)
line ((float)coord[i][jI[1], — (float)coord[i][j][2], (float)coord[i][j + 1]1[1], — (float)coord[i][j + 11[2]);
}

translate (elevRight — leftRight, planDrop — elevDrop);
stroke (255.0, 0.0, 0.0, 150.0);

for (int j = 0; j <=n; j ++)

{

for (int i = 0; i <=m — 1; i ++)

line(— (float)coord[i][j][2], (float)coord[i][j][0], — (float)coord[i + 1][

i j1021 (float)coord[i + 1][j
line(— (float)coord[i][j][2], — (float)coord[i][j][0], — (float)coord[i + 1][j]

) [l
[2], — (float)coord[i + 1]

}
stroke (0.0, 0.0, 0.0, 150.0);
for (int i = 0; i <=m; i ++)
{

for (int j = 0; j <=n — 1; j ++)

line(— (float)coord[i][j1[2], (float)coord[i][j][0], — (float)coord[i][j + 1]1[2], (float)coord[i][j + 1]1[0]);
if (i !=m)
line(— (float)coord[i][j1[2], — (float)coord[i][j][0], — (float)coord[i][j + 11[2], — (float)coord[i][j + 1][0]);

10

