
crystals

Article

Thermal Stability of Epitaxial Graphene Electrodes
for Conductive Polymer Nanofiber Devices

Kyung Ho Kim 1,*, Samuel Lara-Avila 1,2, Hans He 1, Hojin Kang 3, Yung Woo Park 4,*,
Rositsa Yakimova 5 and Sergey Kubatkin 1

1 Department of Microtechnology and Nanoscience, Chalmers University of Technology,
Gothenburg SE412-96, Sweden; samuel.lara@chalmers.se (S.L.-A.); hanshe@chalmers.se (H.H.);
sergey.kubatkin@chalmers.se (S.K.)

2 National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK
3 Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea;

hkang@phya.snu.ac.kr
4 Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
5 Department of Physics, Chemistry and Biology, Linkoping University, Linkoping SE581-83, Sweden;

roy@ifm.liu.se
* Correspondence: kyungh@chalmers.se (K.H.K.); ywpark@snu.ac.kr (Y.W.P.);

Tel.: +46-31-772-5475 (K.H.K.); +82-2-880-6607 (Y.W.P.)

Academic Editor: Helmut Cölfen
Received: 21 November 2017; Accepted: 11 December 2017; Published: 14 December 2017

Abstract: We used large area, monolayer graphene epitaxially grown on SiC (0001) as contact
electrodes for polymer nanofiber devices. Our fabrication process, which avoids polymer resist
residues on the graphene surface, results in graphene-polyaniline nanofiber devices with Ohmic
contacts and electrical conductivity comparable to that of Au-nanofiber devices. We further checked
the thermal stability of the graphene contacts to polyaniline devices by annealing up to T = 800 ◦C,
the temperature at which polyaniline nanofibers are carbonized but the graphene electrode remains
intact. The thermal stability and Ohmic contact of polymer nanofibers are demonstrated here,
which together with the chemical stability and atomic flatness of graphene, make epitaxial graphene
on SiC an attractive contact material for future all-carbon electronic devices.

Keywords: graphene; graphene electrodes; epitaxial graphene on SiC; polymer nanofibers;
polyaniline nanofibers; carbonization; organic electronics; carbon electronics

1. Introduction

Conductive polymers are promising platforms for the next generation of carbon-based electronics.
With these organic materials, the variety of devices that have already been developed span a wide
range of applications that include flexible field–effect transistors [1], actuators [2], sensors [3],
and nano-optoelectronic devices [4]. For conductive polymers, efficient injection and extraction
of charges between the contact electrode and the active channel is often complicated due to the
incompatibility between organic channels and inorganic contacts [5,6]. In this sense, carbon-based
contacts [5], and particularly graphene, are appealing solutions to interface organic polymers to
the outer world and materialize the vision of all-carbon electronics [5,7]. As an electrical contact,
graphene offers numerous properties that complement the versatility of electronic polymers, including
high electron mobility [8–11], thermal conductivity [12], optical transparency [13,14], tunability
of work function [15], and chemical/thermal stability. Furthermore, in combination with metals,
graphene could be also used as an interfacial layer to engineer the charge transfer between metal
contacts and other carbon-based systems [16]. More generally, graphene as an electrical contact has
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been proven to be a superior solution in various electronics applications from organic field effect
transistors [17–23], organic solar cells [24], organic light emitting diodes [25] to nanoelectromechanical
infrared detectors [26], and electrophysiology and neuroimaging [27,28]. In addition to electronics,
biosensors [29] and biomedical applications such as point-of-care testing devices [30] use graphene to
improve analytical performances.

In practice, additional requirements that have to be met by graphene contact technologies include
scalability, reproducibility (e.g., clean surface), and robustness against chemical and thermal treatments
during device fabrication. Graphene grown by chemical vapor deposition (CVD) [16–19,25–28,31]
and from reduced graphene oxide [24] are somewhat suitable for scalability. CVD graphene has to
be transferred to an insulating substrate and the transfer process is prone to leave resist residues and
to result in discontinuous graphene layers (i.e., voids) over large scales. An alternative technology is
epitaxial graphene grown on the Si face of silicon carbide substrates (G/SiC), which has drawn less
attention for contact technology due to the relative higher cost of materials. Nonetheless, as-grown
G/SiC is also scalable [32], being a continuous single crystal with its size limited only by the SiC
substrate size [33]. Additionally, G/SiC is atomically flat and clean implying that atomically clean
interfaces can be readily achieved on this material. Since the SiC substrate is electrically insulating,
there is no need to transfer (i.e., contaminate) the graphene layer. The main source of contamination
for G/SiC is the microfabrication process that involves organic polymer resists. However, polymer
residues can be avoided by using shadow masks or metal masks directly deposited on graphene during
fabrication [34–37]. Alternatively, resist residues and other common contaminants of the surface can
be removed using scalable methods such as high temperature annealing [38].

In this paper, we demonstrate the suitability of G/SiC as an electrical contact for polymer nanofibers,
a low dimensional carbon system. We patterned a large area of G/SiC using a metal protection mask to
ensure that the G/SiC surface is free of resist residues that degrade the nanofiber/graphene interface.
For the organic channel, polyaniline (PANI) nanofibers were contacted on G/SiC and we found that
the quality of contact is comparable to that of Au electrodes. We further checked the thermal stability
of the device by annealing it at 800 ◦C under argon flow and upon annealing, we found that the
graphene electrodes remained operational and the PANI nanofibers were carbonized as confirmed by
current-voltage (I-V) characterization and Raman spectroscopy.

2. Results and Discussion

2.1. Characterization of Graphene Electrodes

The as-grown G/SiC, characterized by the express optical microscopy method [39], is homogeneous
monolayer graphene with about 10–15% bilayer domain inclusions [32]. Figure 1 is the schematic
illustration of the fabrication process of the G/SiC electrode (see Methods), where the key step is the
deposition of an aluminum protection layer on the as-grown material. This Al layer is removed in the
last fabrication process, and its role is to prevent graphene from directly contacting organic resist that
degrades the graphene-nanofiber interface. Together with G/SiC electrodes, we have fabricated Hall
bars to enable the electrical characterization of the graphene layer. Hall measurement of the G/SiC
shows that the electron mobility is of the order of ~1000 cm2/Vs and the electron carrier density is
~4 × 1012 cm−2 at 300 K. The high electron concentration is consistent with the charge transfer from
the surface donor state of SiC to G/SiC reported previously [40,41].

Figure 2a is the optical microscope image of a graphene electrode pattern with a length (width) of
10 µm (1 µm). The G/SiC pattern is discernable from SiC and we found a few inclusions of bilayer
(BL) domains (seen as darker stripes) in the monolayer (ML) G/SiC. Figure 2b is the I-V characteristics
of the graphene lead before and after annealing. Both of the I-V of each lead are linear and the adjacent
leads are electrically insulating before and after annealing. The decrease of resistance in G/SiC leads
after annealing can be attributed to either desorption of species from the graphene surface or by
a modified contact resistance between Au and G/SiC after the thermal annealing step [42]. Statistics
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on the resistivity of G/SiC leads before annealing show that the average resistivity of 11 leads is
~11 kΩ/square. In more detail, the average two probe resistivity of 7 G/SiC leads of width 1 µm
(length 10 µm or 20 µm) was 13 kΩ/square and that of 4 G/SiC leads with width 2 µm (length 100 µm)
was 8 kΩ/square. The higher resistivity of 1 µm width G/SiC can be attributed to the roughness of
edges and charge inhomogeneity arising from bilayer domains [43], which presumably has a greater
impact on the narrower G/SiC leads.Crystals 2017, 7, 378  3 of 11 
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characteristics of the G/SiC lead marked by arrows in (a) before and after annealing at T = 800 °C. The 
adjacent leads are insulated before and after annealing and the resistance of the G/SiC lead decreased 
after the T = 800 °C annealing. 

2.2. Characterization of Graphene-Nanofiber Devices before and after Thermal Annealing Step 

In order to assess the quality of graphene as a contact for polymer nanofibers, we chose 
polyaniline (PANI) as the conductive channel medium. PANI nanofibers have a unique acid/base 
doping/dedoping chemistry that is reversibly switchable from the doped state to the dedoped state 

Figure 1. The schematic illustration of the fabrication process of the G/SiC electrode: (a) As-grown
epitaxial graphene on SiC (G/SiC); (b) An aluminum protection layer was first deposited on G/SiC,
and this was followed by electron beam lithography (EBL) and successive graphene etching in oxygen
plasma; (c) Resist is removed with organic solvents; (d) A second EBL step for defining global Ti/Au
contacts (e) Al removal by wet etching; (f) Deposition of Ti/Au global contacts on G/SiC electrodes
and lift-off in organic solvents.
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Figure 2. Thermal stability of graphene electrodes. (a) The optical microscope image of the G/SiC
electrode with width (length) 1 µm (10 µm). Scale bar: 10 µm; (b) The linear current-voltage (I-V)
characteristics of the G/SiC lead marked by arrows in (a) before and after annealing at T = 800 ◦C.
The adjacent leads are insulated before and after annealing and the resistance of the G/SiC lead
decreased after the T = 800 ◦C annealing.

2.2. Characterization of Graphene-Nanofiber Devices before and after Thermal Annealing Step

In order to assess the quality of graphene as a contact for polymer nanofibers, we chose
polyaniline (PANI) as the conductive channel medium. PANI nanofibers have a unique acid/base
doping/dedoping chemistry that is reversibly switchable from the doped state to the dedoped
state by exposure to hydrochloric acid and ammonia [44–46]. Together with the enhanced surface
to volume ratio in nanofiber morphology, PANI nanofibers are also promising for gas sensing
applications [1,47,48]. Besides, the carbonization of polymers by pyrolysis [49–58] shows potential
for applications such as a fuel cell [53] and catalyst [56,57], and PANI produces nitrogen containing
conducting carbons after pyrolysis [52–58]. On the as-fabricated G/SiC electrode, a suspension of
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solution containing PANI nanofibers were dispersed (see Method) and we observed that fibers readily
form an Ohmic contact to graphene electrodes. Furthermore, the thermal stability of epitaxial graphene
electrodes allows thermal processes at elevated temperatures to be carried out. Indeed, we annealed
the device up to T = 800 ◦C and found that the contact between graphene and fibers remain Ohmic.
We performed the thermal annealing cycle under continuous argon flow to prevent oxidation of
organic species. This method allowed us to investigate not only the thermal stability of the PANI
nanofiber-G/SiC devices but also to explore the electron transport properties of carbonized polymer
nanofibers in general [59]. Figure 3a,b show the AFM topography of PANI nanofibers contacted
on G/SiC electrodes before and after T = 800 ◦C annealing, respectively. Upon high temperature
annealing, the G/SiC electrode remains intact and most of the PANI nanofibers were preserved as
shown in Figure 3b. Comparison of Figure 3a,b at the same area before and after annealing, shows that
the overall shape of the nanofibers is retained; however, both the width and the height of PANI
nanofibers are significantly reduced to about 50% after annealing (Figure 3c). This is consistent with
previous reports that PANI undergoes dehydrogenation and cross-linking of adjacent chains upon
high temperature pyrolysis, and that the weight of polyacetylene (PA) films/fibers [49–51] and PANI
films/tubes [52–58] is reduced after pyrolysis while retaining the fibril morphology. I-V characteristics
of the PANI nanofibers on G/SiC electrodes before annealing show that the adjacent G/SiC leads
are electrically connected due to the PANI nanofibers contacting the two adjacent G/SiC electrodes.
The device shows linear and symmetric I-V characteristics of PANI nanofibers on G/SiC before and
after annealing, with the resistance increased about 10 times upon annealing. The symmetric and
linear I-V is consistent with previous reports regarding annealed PANI nanofibers at 800 ◦C [59].
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Figure 3. Characterization of graphene-nanofiber devices before and after the thermal annealing step.
(a) Atomic force microscopy (AFM) topography image of G/SiC electrodes contacting polyaniline
(PANI) nanofibers, where graphene leads are indicated by G.; (b) AFM topography image of (a) after
thermal annealing at T = 800 ◦C. The graphene leads remain intact and morphology of PANI nanofibers
are preserved. Scale bar: 2 µm; (c); The reduction in size of PANI nanofibers after annealing is compared
in the AFM height profile of the region indicated by blue lines in (a,b). Both the width (320 nm to
190 nm) and height (65 nm to 28 nm) are reduced after annealing; (d) I-V characteristics of the adjacent
graphene electrodes before and after annealing. Between the two electrodes in which I-V was measured,
three PANI nanofibers are contacted in total (Device G4, see Figure S7). After annealing, the resistance
typically increases to 10 times.

We verified the integrity of the devices, including the graphene contacts, after the thermal
annealing step by Raman spectroscopy and found that PANI fibers undergo carbonization but graphene
remains essentially intact. Figure 4 shows the Raman spectroscopy (λ = 638 nm) measured on bundles of
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PANI nanofibers (Figure 4a) and of G/SiC (Figure 4b) before and after annealing. We found substantial
changes in the PANI nanofiber after annealing. In the pristine form, the Raman spectra of PANI
nanofibers show complex peaks that indicates PANI nanofibers. Raman spectroscopy on the annealed
PANI nanofiber bundles shows that the PANI nanofibers become amorphous carbon nanofibers as
confirmed by the broad D (1353 cm−1) and G bands (1590 cm−1) of graphite (Figure 4b) [49–59].
In contrast, the G/SiC remained intact after annealing as shown in Figure 4b. Figure 4b displays the
Raman spectra of the pristine, annealed G/SiC, and the etched SiC region as a reference. The Raman
spectra on G/SiC includes contributions both from the bulk SiC substrate and the so-called buffer
layer. Therefore, correcting the Raman spectra of G/SiC by subtracting the spectrum of SiC substrate
may introduce artifacts due to the contribution of the substrate [60]. The presence of G and 2D peaks
before and after annealing means that the G/SiC remains intact after annealing [60,61]. The thermal
stability of graphene is comparable to that of oxides such as Sr2RuO4 (stable at 900 ◦C) [62] and olivine
(stable at 500 ◦C) electrodes [63].
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deposited on a Si/SiO2 (300 nm) substrate and a PANI nanofiber contacted on Au electrodes. The 
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range from 0.5–5 S/cm and 50–110 nm, respectively. Figure 5b compares the conductivity of PANI 
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Figure 4. Raman spectroscopy before and after annealing (a) Raman spectroscopy on a bundle of PANI
nanofibers before and after 800 ◦C annealing. After annealing, the complex peaks in PANI nanofibers
turned to two broad peaks marked by D and G bands. The intensity of PANI is normalized with
respect to the maximum value of D band in annealed PANI nanofibers; (b) Raman spectroscopy of the
pristine graphene, annealed graphene and SiC. Dotted boxes indicate the vicinity of D, G, and 2D peaks.
The intensity is normalized by the highest peak of Raman spectra measured on the SiC substrate.

2.3. Comparison of Graphene with Gold as a Contact for PANI Nanofibers

We benchmarked graphene as a contact for polymer nanofibers against gold, which is the
standard contact metal for these materials. Figure 5a shows the AFM topography of a Ti/Au
electrode deposited on a Si/SiO2 (300 nm) substrate and a PANI nanofiber contacted on Au electrodes.
The conductivity and height of PANI nanofibers measured on both G/SiC and Au electrodes of this
study range from 0.5–5 S/cm and 50–110 nm, respectively. Figure 5b compares the conductivity of
PANI nanofibers on graphene electrodes (G1–G4) (see Methods and Figures S5–S7) to that on Au
electrodes (Au1–Au6) (see Methods and Figures S1–S4). The conductivity of PANI nanofibers on
G/SiC electrodes (0.5–2.3 S/cm) was slightly lower than that on Au (1.2–5 S/cm); however, this is
comparable with the conductivity of PANI nanofibers measured on Au electrodes reported in the
literature [64].
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of PANI nanofibers contacted on Au electrodes (Au4, Figure S2). The contact of a PANI nanofiber
contacted by Au electrodes is indicated by a dotted box; (b) Conductivity of PANI nanofibers measured
on both Au (Au1–Au6, Figures S1–S4) and graphene electrodes (G1–G4, Figures S5–S7). The blue (red)
shaded region is the conductivity of PANI nanofibers (annealed PANI nanofibers at 800 ◦C) measured
on Au electrodes in Ref [64] (Ti/Au bottom contact electrode in Ref. [59]).

3. Materials and Methods

3.1. Growth of Epitaxial Graphene on SiC

The graphene was purchased from Graphensic AB. The crystallographic orientation of the 4H-SiC
substrate is (0001) which provides large terraces and minimizes bilayer inclusions. The graphene
fabrication process includes standard two-step cleaning procedure including HF solution dipping prior
to loading into the growth reactor. The latter consists of a vertical radio frequency (RF) heated graphite
crucible placed in a quartz tube with a thermal insulation between their walls. Upon reaching base
vacuum in the range of 10−6 mbar, heating is performed until 2000 ◦C and this temperature is held for
5 min. After that the RF generator is switched off and the graphene wafer is cooled down to room
temperature. The wafer is subjected to microscopy examination to check the graphene morphology
and after that, to further processing steps.

3.2. Fabrication of Graphene and Au Electrodes

3.2.1. Fabrication of Graphene Electrodes

Graphene electrodes in Figure 2 and of devices G1–G4 were fabricated on the as-grown graphene
on the Si face of the 4H-SiC surface. For the first step, Al (20 nm) was deposited to avoid resist residue
and the standard electron beam lithography (EBL) using e-beam resist ARP-6200 (Allresist, Strausberg,
Germany) was performed on top of Al. After developing the e-beam resist, a MF-319 photodeveloper
(Dow Europe, Horgen, Switzerland) was used for the wet etch of Al underneath and the exposed
graphene was dry-etched using oxygen plasma (Figure 1b). After dissolving the remaining resist in
organic solvent mr-REM-400 (Micro resist Tech., Berlin, Germany) (Figure 1c), the second EBL was
employed for global Ti/Au (5/100 nm) contacts to the G/SiC leads for wire bonding. Before depositing
Ti/Au for the global contact, Al was wet-etched using MF-319 photodeveloper (Figure 1e) to ensure
contact between graphene and Ti/Au.

3.2.2. Fabrication of Gold Electrodes

Au electrodes in devices Au1–Au6 were fabricated by standard EBL using a poly
(methylmethacrylate) (PMMA) (MicroChem, Westborough, MA, USA) double layer mask on Si/SiO2

(300 nm) substrates. We used the same electrode design that was used for graphene electrodes
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and Ti/Au (5/50 nm) was evaporated on the patterned PMMA and lifted off in organic solvent
acetone. The thickness of Ti/Au (5/50 nm) was chosen to be comparable with the height of typical
PANI nanofibers.

3.3. Synthesis of Polyaniline Nanofibers and Contacting to Graphene and Au Electrodes

PANI nanofibers were synthesized using a known synthesis protocol [44–46]. 0.08 mmol of aniline
(Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 10 mL of 1 M HCl and a catalytic amount of
p-phenylenediamine (5 mg) (Sigma-Aldrich, St. Louis, MO, USA) in a minimal amount of methanol
was added into the aniline solution. 0.2 mmol of ammonium peroxidisulfate (Sigma-Aldrich, St. Louis,
MO, USA) was dissolved in 10 mL of 1 M HCl and the two prepared solutions were rapidly mixed for
10 s and left for one day. A droplet of the suspension of the PANI nanofibers doped by hydrochloric acid
was deposited on both the G/SiC and Au electrodes and blow-dried. Then we inspected these under
optical and atomic force microscope and selected those devices in which single fibers are contacted.
The probability of finding such devices is low, and we presented 6 devices in total (3 graphene contacts
and 3 gold contacts) and also presented 4 devices corresponding to three or four polymer nanofibers
(1 graphene contact and 3 gold contacts). The AFM and I-V curves of the nanofibers on graphene
(G1–G4) and on Au (Au1–Au6) are described in detail in the Supplementary Materials.

3.4. Electrical Characterization, Raman Spectroscopy and Carbonization

Electrical characterization of G/SiC electrodes, PANI nanofibers on G/SiC and Au electrodes,
and the annealed devices was carried out using the Semiconductor Characterization System (SCS)
parameter analyzer (Keithley Instruments, Solon, OH, USA) at room temperature under ambient
conditions in both two-terminal and four-terminal configurations. Raman spectroscopy measurement
was performed under ambient conditions using a Raman spectrometer equipped with a spot size ~1 µm
(λ = 638 nm) (Horiba Scientific, Longjumeau, France). The signal acquisition time was one minute and
averaged 5 times due to the relatively small signal of the graphene compared with the signal from the
SiC substrate. The annealing took place in a tube furnace at 800 ◦C for one hour under argon flow with
automated ramping rate of 1 ◦C/min in both heating and cooling steps.

4. Conclusions

In conclusion, we used epitaxial graphene on SiC as Ohmic contacts to polymer nanofibers.
We showed that G/SiC-PANI devices exhibit a conductivity comparable to that of PANI nanofibers on
Au electrodes. Thermal annealing of the G/SiC-PANI nanofiber device showed that the device is intact
after 800 ◦C annealing and that the PANI nanofibers become amorphous carbons with reduced height
and width, making epitaxial graphene contacts promising for applications that require operation
at high temperature. While the thermal stability of G/SiC is comparable to that of other materials,
graphene offers additional properties such as chemical stability and atomic flatness that make it
an attractive platform as a substrate and contact material for future all-carbon devices.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4352/7/12/378/s1,
Figure S1: Device Au1–Au3 (a) Atomic force microscope topography of PANI contacted between Au contacts
1-2, 2-3, and 3-4 (Au1, Au2, Au3, respectively); (b) Current-Voltage characteristics of PANI nanofibers contacted
between contact 1-2 (Au1), 2-3 (Au2), 3-4 (Au3), and four-probe measurement; Figure S2: Device Au4 (a) Atomic
force microscope topography of PANI contacted between Au contacts 1-2 (Au4); (b) Current-Voltage characteristics
of the PANI nanofiber contacted between contacts 1-2 (Au4); Figure S3: Device Au5 (a) Atomic force microscope
topography of PANI contacted between Au contacts 1-2 (Au5); (b) Current-Voltage characteristics of the PANI
nanofiber contacted between contacts 1-2 (Au5); Figure S4: Device Au6 (a) Atomic force microscope topography
of PANI contacted between Au contacts 1-2 (Au6); (b) Current-Voltage characteristics of the PANI nanofibers
contacted between contacts 1-2 (Au1); Figure S5: Device G1 (a) AFM phase of PANI contacted between G/SiC
contacts 1-2 (G1). We checked that the electrodes (1) and (2) were electrically insulating before nanofiber deposition.
((2) and (3) were electrically shorted due to incomplete graphene etching as shown in the AFM phase image);
(b) Current-Voltage characteristics of the PANI nanofiber contacted between contacts 1-2 (G1) before and after
T = 800 ◦C annealing. In this device, the electrical resistance decreased after annealing; Figure S6: G2 (a) AFM
phase of PANI contacted G/SiC contact 1-2 (G2). We checked that the electrodes (1) and (2) were electrically
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insulating before nanofiber deposition. (b) Current-Voltage characteristics of the PANI nanofiber contacted
between contact 1-2 (G2) before T = 800 ◦C annealing. After annealing the nanofiber was cut and not conductive;
Figure S7: G3 and G4 AFM topography (a) and phase (b) of PANI contacted G/SiC on contact 1-2 (G3), 2-3 (G4),
and 3-4. The device shown in Figure 3 is G4 and among the three PANI nanofibers in G4, the nanofiber in
Figure 3 is in the middle of the electrode. We checked that the electrodes (1), (2), (3), and (4) were electrically
insulating each other before nanofiber deposition. (c) and (d) are the AFM topography and phase after T = 800 ◦C
annealing, respectively; (e) Current-Voltage characteristics of the PANI nanofiber contacted between contacts
1-2 (G3), 2-3 (G4), and 3-4 before T = 800 ◦C annealing. (f) Current-Voltage characteristics of the PANI nanofiber
contacted between contacts 1-2 (G3), 2-3 (G4), and 3-4 after T = 800 ◦C annealing. Scale bars in (a)–(d) are 10 um;
Table S1: Summary of PANI-Au devices (Au1–Au6) in height, source-drain distance, and conductivity; Table S2:
Summary of PANI-G/SiC devices (G1–G6) in height, source-drain distance and conductivity.
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