
Report from GI-Dagstuhl Seminar 16394

Software Performance Engineering in the DevOps World
Edited by
Andre van Hoorn1, Pooyan Jamshidi2,
Philipp Leitner3, and Ingo Weber4

1 University of Stuttgart, DE
2 Imperial College London, GB
3 University of Zurich, CH
4 Data61, CSIRO, AU

Abstract
This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 “Software
Performance Engineering in the DevOps World”.

Seminar September 25–30, 2016 — http://www.dagstuhl.de/16394

1 Executive Summary

Andre van Hoorn (University of Stuttgart, DE)
Pooyan Jamshidi (Imperial College London, GB)
Philipp Leitner (University of Zurich, CH)
Ingo Weber (Data61, CSIRO, AU)

License Creative Commons BY 3.0 Unported license
© Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, and Ingo Weber

The seminar addressed the problem of performance-aware DevOps. Both, DevOps and
performance engineering have been growing trends over the past one to two years, in no small
part due to the rise in importance of identifying performance anomalies in the operations
(Ops) of cloud and big data systems and feeding these back to the development (Dev).
However, so far, the research community has treated software engineering, performance
engineering, and cloud computing mostly as individual research areas. We aimed to identify
cross-community collaboration, and to set the path for long-lasting collaborations towards
performance-aware DevOps.

The main goal of the seminar was to bring together young researchers (PhD students
in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i)
software engineering, (ii) performance engineering, and (iii) cloud computing and big data
to present their current research projects, to exchange experience and expertise, to discuss
research challenges, and to develop ideas for future collaborations.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

ar
X

iv
:1

70
9.

08
95

1v
1

 [
cs

.P
F]

 2
6

Se
p

20
17

http://www.dagstuhl.de/16394
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

2 16394 — Software Performance Engineering in the DevOps World

2 Table of Contents

Executive Summary
Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, and Ingo Weber 1

Overview of Talks
Performance Engineering for DevOps Using Survivability Modeling of High Avail-
ability Systems (Keynote)
Alberto Avritzer . 5
DevOps—How a Fortune 500 Company Translates Theory in Reality (Keynote)
Oliver Beck . 5
Performance Regression Analysis in the DevOps World
Cor-Paul Bezemer . 5
Exploiting with Integrity—Mining User Data to Improve Software Engineering in
the Light of Information Ethics
Markus Borg . 6
Can We Make Performance Visible to Developers?
Lubomir Bulej . 7
Dealing with Uncertainty in Developer Targeted Analytics
Jürgen Cito . 8
Transforming Operations for the Cloud
Georgiana Copil . 9
Challenges in Architectural Modeling for Performance-aware DevOps
Robert Heinrich . 10
Efficient Resilience Benchmarking of Microservice Architectures
André van Hoorn . 10
Benchmarking Quality of Performance Evaluation in the DevOps World
Vojtěch Horký . 11
Machine Learning Meets DevOps
Pooyan Jamshidi . 12
Evaluating the Effectiveness of Different Load Testing Analysis Techniques
Zhen Ming (Jack) Jiang . 13
How I Learned to Stop Worrying and Love Capacity Shortages
Cristian Klein . 13
Performance Modeling Challenges while Modernizing Existing Software towards
Microservices
Holger Knoche . 14
The Importance of Data Science for DevOps and Continuous Delivery
Philipp Leitner . 15
Industrial-grade DevOps: DevOps in the Digitalized Industrial World
Fei Li . 15

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 3

The Challenges and Benefits of Synthesizing and Theorizing the DevOps Phe-
nomenon in Software Engineering
Lucy Ellen Lwakatare . 16
Releasing High-performance Software More Rapidly with Lower Costs using Con-
tinuous Test Optimization
Dusica Marijan . 17
Joining Adaptation and Evolution Control Loops to Manage Performance in a
DevOps Setting
Claus Pahl . 17
Performance Engineering in Fog Computing — An Overview
Stefan Schulte . 18
Improving the Performance of Database-centric Applications through DevOps
Weiyi Shang . 19
SPE Meets DevOps: Best Friends or Consensual Enemies?
Catia Trubiani . 20
Performance-aware DevOps Through Declarative Performance Engineering
Jürgen Walter . 20
Monitoring DevOps Processes and Experimental Process Improvement
Ingo Weber . 21
Performance of Continuous Delivery Pipelines
Johannes Wettinger . 22
Towards Application-aware Cloud Provisioning for Enterprise Applications
Felix Willnecker . 23

Working Groups
Performance Engineering Challenges for Microservices
Robert Heinrich, Andre van Hoorn, Holger Knoche, Fei Li, Ellen Lwakatare, Claus
Pahl, Stefan Schulte, Johannes Wettinger . 24
Performance Test Prioritization
Georgiana Copil, Philipp Leitner, Ingo Weber, Felix Willnecker 26
Uncertainty in a Performance-Aware DevOps Context
Markus Borg, Jürgen Cito, Pooyan Jamshidi, Zhen Ming (Jack) Jiang, and Catia
Trubiani . 28
How Can We Facilitate Feedback from Operations to Development?
Markus Borg, Jürgen Cito, Fei Li, Lucy Ellen Lwakatare, Johannes Wettinger . . . 29
Performance Engineering for Blockchain-based Applications
Philipp Leitner, Stefan Schulte, Ingo Weber . 31
Implications of DevOps and Self-Adaptivity
Georgiana Copil, Pooyan Jamshidi, Cristian Klein, Claus Pahl 33
A Systematic Process for Performance Antipattern Detection and Resolution in
DevOps based on Operational Data and Load Testing
Alberto Avritzer, André van Hoorn, Catia Trubiani, Holger Knoche 35

16394

4 16394 — Software Performance Engineering in the DevOps World

Models@DevOps
Robert Heinrich, Jürgen Walter, Felix Willnecker 35
Performance Testing with a Limited Budget
Cor-Paul Bezemer, Lubomír Bulej, Vojtěch Horký, Zhen Ming ‘Jack’ Jiang, Dusica
Marijan, Weiyi ‘Ian’ Shang . 38

Participants . 43

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 5

3 Overview of Talks

3.1 Performance Engineering for DevOps Using Survivability Modeling
of High Availability Systems (Keynote)

Alberto Avritzer (Sonatype, USA, aavritzer@sonatype.com)

License Creative Commons BY 3.0 Unported license
© Alberto Avritzer

As our society evolves, more and more aspects of our daily life depend on large-scale
infrastructures such as computer infrastructures, rails and road networks, gas networks,
water networks, power networks, and telecommunication networks, including the Internet,
wired and wireless telephony. Critical infrastructures are everywhere and they are becoming
increasingly more interconnected and interdependent. As networks become smarter, they rely
more heavily on information and communication technologies, also known as ICT. For this
reasons, a failure in the ICT network can cause problems in different critical infrastructures.
As another example, a failure in the power network can cause disruptions in a number of
different networks. We present a Nexus Sonatype based DevOps approach for continuous
performance improvement of high-availability systems that is composed of several important
components: i) large repositories representing the customer environment, ii) automated
analysis of performance tests, iii) JMeter load testing scripts and associated data.

We present high-availability models of critical infrastructures and we connect our DevOps
continuous performance improvement process with our approach to the system availability
assessment, e.g., through reduced failure recovery times.

3.2 DevOps—How a Fortune 500 Company Translates Theory in
Reality (Keynote)

Oliver Beck (SAP, Germany, oliver.beck@sap.com)

License Creative Commons BY 3.0 Unported license
© Ingo Weber

In this talk, Oliver Beck presented SAP’s approach to managing DevOps at scale, and how
they address practical challenges of changing culture in a large, well-established organization.
Oliver Beck is a Vice President at SAP, where he is responsible for global DevOps initiatives,
among others. (Text written by Ingo Weber)

3.3 Performance Regression Analysis in the DevOps World
Cor-Paul Bezemer (Queen’s University, Canada, cpbezemer@gmail.com)

License Creative Commons BY 3.0 Unported license
© Cor-Paul Bezemer

A performance regression occurs when an application update unintendedly slows down the
application. For example, the CPU usage or execution time of a task increases considerably
after deploying an update. The goal of performance regression analysis (PRA) is to detect
such performance regressions and analyze what causes them.

16394

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

6 16394 — Software Performance Engineering in the DevOps World

Most approaches for PRA follow a similar process to detect and analyze performance
regressions. For every application update, a performance test is executed while the per-
formance of the application is monitored. Then, the performance of that version of the
application is compared with the performance of the previous version, and analyzed if there
are significant differences.

One problem of the process above is that the performance test must be executed several
times to reduce variation in the monitored data. Especially in the DevOps world, where
the deployment rate of applications is often considerably higher than in the “traditional”
software world, the repeated execution of performance tests for each application update poses
severe operational challenges.

In my presentation, I will give an overview of the approaches that we study to overcome
these challenges and make PRA feasible in the DevOps setting.

3.4 Exploiting with Integrity—Mining User Data to Improve Software
Engineering in the Light of Information Ethics

Markus Borg (RISE SICS AB, Lund, Sweden, Markus.Borg@ri.se)

License Creative Commons BY 3.0 Unported license
© Markus Borg

Software-intensive products developed in market-driven contexts must quickly respond to
requirements from users. Also, delivering software that meets the users’ expectations of
quality is fundamental. Contemporary approaches to tackle the “need for speed” include
agile and lean software development [26], and more recently development with a strong
focus on data from operations has gained attention through DevOps [56]. There is often a
considerable gap between development and operations, but bridging the two activities has
the potential to support both responsiveness to market expectations and software evolution
in general.

Previously, we have directed considerable research effort toward closing another gap
in software engineering, namely between requirements engineering (RE) and testing [10].
Aligning RE and testing, the “two ends” of traditional software development projects, is
critical to ensure efficient development of high-quality software—such alignment is important
also in iterative development contexts. Among other solution proposals, we have explored
supporting RE and testing alignment by a data-driven approach, i.e., identifying connections
between resolved issue reports and requirements and test cases [13]. By applying machine
learning in the footprints of previous issue resolution activities, we provided recommendations
of which requirements would be affected during software evolution, and which test cases
should be executed to verify the changes.

Now we turn our attention away from issue reports and instead target user data from
operations. Our new research direction is still related to recommendation systems highlighting
requirements and test cases. However, instead of supporting changes during issue resolution,
we plan to predict user needs. In particular, we aim at supporting: i) RE by prioritizing
features, and ii) regression testing by improving test case selection. Our approach to tackle
this challenge is to continuously mine usage and project data, i.e., data external and internal
to the projects. We aim at developing a demonstrator using a mobile platform made available
by an industry partner — a company already specializing in distributed data collection. The

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 7

envisioned data collection includes: position data, data transfer, CPU workload, and logged
user actions.

While there will be technical challenges involved in the research, such as generating
actionable recommendations from large amounts of user data, we believe the challenges
could be overcome during the project. We should be able to develop a demonstrator that
continually feeds data mined from operations directly to a recommendation system for RE
and testing activities. On the other hand, another important consideration surfaces: should
we do it? Mining rich user data threatens the privacy of the users, which over time could
undermine the users’ trust. How much privacy are users willing to give up to improve RE
and testing? How does it vary depending on how the data is going to be used? To properly
address these issues, we collaborate with socio-legal researchers specializing in studies on
trust in the digital society [24]. By combining technical and socio-legal aspects, we hope to
bring valuable contributions to DevOps research.

3.5 Can We Make Performance Visible to Developers?
Lubomir Bulej (Charles University Prague, Czech Republic, lubomir.bulej@d3s.mff.cuni.cz)

License Creative Commons BY 3.0 Unported license
© Lubomir Bulej

The phrase “Premature optimization is the root of all evil.” has become a common wisdom
and a best practice in software development. Randal Hyde even argues [39] that the phrase
has become an excuse for not caring about performance at all, under the assumption that
performance is a mere optimization, and that we can always go back and optimize the
problematic code.

In his 1974 article for ACM Computing Surveys [52], Donald Knuth actually wrote: “We
should forget about small efficiencies, say 97 % of the time: premature optimization is the
root of all evil. Yet we should not pass up our opportunities in that critical 3 %.” In the
same paper, Knuth also wrote: “In established engineering disciplines, 12 % performance
improvement, easily obtained, is never considered marginal, so why would so many people in
computer science pronounce it insignificant?” Apparently, good engineering practice is to
understand the system performance and not give it up through sloppiness. Yet in computer
science, or software development in general, we have been often doing exactly that—because
of the Moore’s law, spending human time to make programs fast was more expensive than
buying faster hardware every other year.

However, the scale and complexity of software systems has increased to a point where
performance is not a local issue anymore. If we consider the critical 3 % that Knuth mentioned
in his paper—in contemporary systems, those 3 % may be a lot of code spread throughout the
whole software stack that no single person can completely understand anymore. Performance
has become deeply ingrained in the software architecture and design, and fixing a performance
problem often requires making design changes at different levels of abstraction.

One problem with performance is that is largely invisible to developers, and what is
invisible is difficult to manage. In the past, this was also true for software quality, but it has
changed when testing became a best practice in modern software development. Testing is
not a silver bullet, but it makes certain aspects of quality immediately visible to developers
(who dislike failing tests). Moreover, incorporating testing into software development exerts
pressure on making code testable, which improves low-level software design. It also makes

16394

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

8 16394 — Software Performance Engineering in the DevOps World

refactoring safe (rather than feared), which allows developers to evolve software design to
match the actual requirements. In the end—besides the testing itself which tells us that a
certain feature works as expected—software testing has improved software quality in many
other ways by making quality visible.

Dealing with software performance is difficult. While performance can be (with cer-
tain difficulties) measured reasonably well (a necessary condition to making it visible and
manageable), it is also difficult to interpret. Performance measurements cannot be easily
interpreted in a binary fashion and the measurements we reason about have to correspond
to a workload that is relevant. While we can think of ways to construct performance tests
(similar, but not quite like functional unit tests) that can be evaluated automatically, it is
the relevance of these tests that matters, which is where the DevOps culture could help.
If the Devs can find (through Ops) what is relevant to performance, then they can write
relevant performance tests, and thus make performance visible in the software development
(and possibly continuous deployment) process. Can we help make performance visible?

3.6 Dealing with Uncertainty in Developer Targeted Analytics
Jürgen Cito (University of Zurich, Switzerland, cito@ifi.uzh.ch)

License Creative Commons BY 3.0 Unported license
© Jürgen Cito

Runtime information of deployed software has been used by business and operations units to
make informed decisions under the term “analytics”. However, decisions made by software
engineers in the course of evolving software have, for the most part, been based on personal
belief and gut-feeling [20]. This could be attributed to software development being, for the
longest time, viewed as an activity that is detached from the notion of operating software in a
production environment. In recent years, this view has been challenged by the emergence of
the DevOps movement, which aims to promote cross-functional capabilities of development
and operations activities within teams. This shift in mindset requires analytics tools that
specifically target software developers. We investigate how to support developers in their
decision-making process by incorporating runtime information in source code (“Developer
Targeted Analytics”) [21]. In this approach, we also provide live feedback in IDEs by inferring
the impact of code changes on software performance. However, no prediction is perfect. Every
inference model comes with a level of uncertainty. To make integrated runtime feedback a
proper basis for decision-making, we need methods to properly quantify uncertainty and
consequently communicate it to software developers. In this seminar, I want to discuss
sources of variation in software performance (e.g., cloud instance variability [55]) and possible
ways to model uncertainty. Further, I want to review different ways to communicate runtime
feedback through visualizations.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 9

3.7 Transforming Operations for the Cloud
Georgiana Copil (TU Vienna, Austria, e.copil@dsg.tuwien.ac.at)

License Creative Commons BY 3.0 Unported license
© Georgiana Copil

In a culture where development and operations merge, sustained by new computing models
such as cloud computing and management automation technologies, the operations processes
need to evolve. Although extensive work is performed addressing the perspective of the cloud
provider [40], IT service management, and particularly operation management, is disregarded
for the cloud customer side.

Well established standards like ITIL [3], BSI ISO 20000 [41], and FitSM [42] are currently
used for IT service management. However, these standards need to be adapted or completely
re-designed to accommodate disruptive trends in technology, as emphasized by Forsgren et al.
[29] and Fuggetta et al. [30]. A plethora of configuration management and automation tools
(e.g., Chef, Puppet, Ansible, Brooklin, Vagrant, or rSYBL [22]) are being created for providing
support both in development and operation. In companies using cloud services for developing
their products, some organization roles will have to change, or be replaced by automated tools.
For instance, procurement engineers might need to work with configuration management
engineers in order to keep track with the costs that depend on system’s configuration, or might
simply be discarded from the organization chart. Although change is needed in processes
and service management organizational charts, tools should be adapted as well in order to
integrate better within the organization. For instance, controllers could notify the responsible
operation engineers or managers [23], with the correct content and frequency, on abnormal
behavior, or on detected incidents. VRealize and AppDynamics provide role-based alerting,
and so-called “Virtual War Rooms” for enhancing Dev & Ops collaboration. Although these
are a promising start, further investigation is necessary for understanding how operation-time
events of various types (e.g., changes, faults, or incidents) can be automatically classified, and
used for predicting such events, and analyzing root causes, and providing tighter connection
with the developers or operators involved in these aspects.

The next challenging aspect is the decoupled ownership of operations management,
and especially of incident management, due to the decoupled ownership of cloud services,
and systems using these services [2]. As stated before, systems using cloud services would
need an adapted IT Service management processes, and integrate information coming from
cloud providers into these processes. However, the reduced control over data [86, 85],
absence of standard format and logs [85], multi-tenancy [86], make this integration very
challenging. Better operation management possibilities on the cloud customer side, which
includes information related to cloud services operation, can reduce the trust concerns and
increase the adoption of cloud technologies.

16394

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

10 16394 — Software Performance Engineering in the DevOps World

3.8 Challenges in Architectural Modeling for Performance-aware
DevOps

Robert Heinrich (Karlsruhe Institute of Technology, Germany, robert.heinrich@kit.edu)

License Creative Commons BY 3.0 Unported license
© Robert Heinrich

Building software applications by composing cloud services promises many benefits such as
flexibility and scalability. However, it leads to major challenges like increased complexity,
fragility and changes during operations that cannot be foreseen in development phase.
Cloud-based applications change rapidly and thus require increased communication and
collaboration between software developers and operators as well as strong integration of
building, evolving and adaptation activities.

While previous research focused on automated system adaptation, increased complexity,
heterogeneity and limited observability, makes evident that we need to allow operators
(humans) to engage in the adaptation process. Architectural models such as those of the
Palladio approach [68] are a foundation for involving humans and conducting analysis,
e.g., for performance and privacy. During operations the system often drifts away from
its development models. Run-time models are kept in-sync with the underlying system.
However, typical run-time models are close to an implementation level of abstraction which
impedes understandability for humans.

DevOps practices enable software developers and operators to work more closely [7].
The software application architecture is a central artifact for developers and operators.
New architectural styles such as microservices are proclaimed to satisfy requirements like
scalability, deployability and continuous delivery. By merely introducing new architectural
styles, however, current problems in the collaboration and communication among stakeholders
of the development and operations phases are not solved. Existing architectural models
used in the development phase differ from those used in the operation phase in terms of
purpose (finding appropriate design vs. reflecting current system configurations), abstraction
(component-based vs. close to implementation level) and content (static vs. dynamic). These
differences result in limited reuse of development models during operations and limited
phase-spanning consideration of the software architecture.

We are developing the iObserve approach to address architectural challenges in
performance-aware DevOps. iObserve provides a megamodel [33] to bridge the divergent
levels of abstraction in architectural models used in development and operations. We employ
descriptive and prescriptive architectural run-time models for realizing the MAPE loop.
Including dynamic content, like in-memory objects and their communications, will help
operators to observe and adapt the application when anomalies exceed automated planning
routines [34].

3.9 Efficient Resilience Benchmarking of Microservice Architectures
André van Hoorn (University of Stuttgart, Germany, van.hoorn@informatik.uni-stuttgart.de)

License Creative Commons BY 3.0 Unported license
© André van Hoorn

The microservice architectural style [63] is gaining more and more prevalence in industrial
practice when constructing complex, distributed systems. One of its guiding principles is

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 11

design for failure, which means that a microservice is able to cope with failures of other
microservices and its surrounding software/hardware infrastructure. This is achieved by
employing architectural patterns such as circuit breaker and bulkhead [64].

Resilience benchmarking [74] aims to assess failure tolerance mechanisms—for instance, via
fault injection [61]. Meanwhile, resilience benchmarking is not only conducted in development
and staging environments, but also during a system’s production use [53]—for instance, via
Netflix’s Simian Army [62]. Existing resilience benchmarks for microservice architectures are
ad-hoc and based on randomly injected faults.

In this talk, I will sketch the vision for efficient resilience benchmarking of microservice
architectures. Resilience vulnerabilities shall be detected more efficiently, i.e., faster and with
fewer resources, by incorporating architectural knowledge as well as knowledge about the
relationship between performance/capacity/stability (anti) patterns and suitable injections.
The idea builds on existing works on model-based and measurement-based dependability
evaluation of component-based software systems.

3.10 Benchmarking Quality of Performance Evaluation in the DevOps
World

Vojtěch Horký (Charles University Prague, Czech Republic, vojtech.horky@d3s.mff.cuni.cz)

License Creative Commons BY 3.0 Unported license
© Vojtěch Horký

Performance in the DevOps world today typically revolves around the issue of collecting
performance data from running applications and analyzing them (by the dev-and-ops) to
detect performance anomalies. But are we able to say what is the ratio of detected and
undetected issues, i.e., how reliable are the tools we use?

The nature of continuous delivery complicates answering this. The software is updated
too often—we are not able to collect enough information before a new version is introduced
and we do not care that much about regressions in a week-old version. So how about writing
a benchmark emulating the production of a DevOps-driven application? The benchmark
would allow us to evaluate quality of tools and approaches we use.

The benchmark provides the baseline truth and we can quantify how many issues went
undetected. Ranking the issues (e.g., how critical a problem is) gives even more information
about the precision of the tested approach.
We can (at least partially) evaluate the solution without touching the production envi-
ronment (the agility of DevOps suggests that we try the tools directly but that may not
be always possible).
Having a benchmark would allow a comparison of different approaches that is otherwise
virtually impossible because of the variances between the systems under test.

The benchmark can test the solution from three different angles. As a database of mea-
surements of various software components in different versions it evaluates how well are we
able to detect anomalies. Also the benchmark could emulate a volatile environment where
new versions of different components are loaded over time—a score indicates whether the
measurement framework survives in such environment and how precise results it provides.
Model-based approaches can be used here as well. And finally such emulation could also
be used for testing the continuous delivery infrastructure and related processes—effectively
benchmarking quality assurance processes.

16394

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

12 16394 — Software Performance Engineering in the DevOps World

The current status is somewhere at the level of “collecting ideas for implementation”. The
emulated application shall be component-based with a well-defined architecture; a good start
might be the CoCoME [67] or PNMR [15]. We would then need to create several versions
differing at various levels and add some kind of self-measurement infrastructure. Then we
can quantify how well the tested solution adapts to the changes and how precise data it
produces [38]. Collecting data for the database of measurements is the easier step—the
difficult one is establishing the base truth: what were the actual regressions. Around the
database we would then create a harness where individual solutions could be plugged-in
and run on different data sets. Looking forward to see whether this might be interesting for
someone else as well.

3.11 Machine Learning Meets DevOps
Pooyan Jamshidi (Imperial College London, United Kingdom, p.jamshidi@imperial.ac.uk)

License Creative Commons BY 3.0 Unported license
© Pooyan Jamshidi

Today’s mandate for faster business innovation, faster response to changes in the market,
and faster development of new products demand a new paradigm for software development.
DevOps is a set of practices that aim to decrease the time between changing a system in
Development, and transferring the change to the Operation environment, and exploiting the
Operation data back in the Development [7]. DevOps practices are typically relying on large
amount of data coming from Operation. The amount of data depends on the architectural style
[5], the underlying development technologies and deployment infrastructure. For instance,
big data distributed systems consist of an extensible execution engine (e.g., MapReduce),
pluggable distributed storage engines (e.g., Apache Cassandra), and a range of data sources
(e.g., Apache Kafka). Each of these produce a considerable amount of data regularly in each
fraction of second.

However, in order to make effective decisions in Development, e.g., architectural refactoring
in order to make the system architecture sustainable [66] during its lifetime, there has to be
efficient processing of such large amount of data in place in order to process the operational
data. In this situation where data streams are increasingly large-scale, dynamical and
heterogeneous, mathematical and algorithmic creativity are required to bring statistical
methodology to bear. Statistical machine learning merges statistics with the computational
sciences. Statistical machine learning can fill the gap between operation and development
with some more efficient analytical techniques. The data efficient techniques can provide
more deep knowledge and can uncover the underlying patterns in the operational data in
order to detect anomalies in the operation or detect performance anti-patterns [9]. This
knowledge can be very practical if detected ontime in order to refactor the development
artifacts including code, architecture and deployment [16].

In this talk, I present our recent work on configuration tuning of big data software,
where I primarily applied Bayesian Optimization and Gaussian Processes, a data efficient
statistical machine learning method, in order to quickly find optimum configurations [43].
I also talk about transfer learning to exploit complimentary and cheap information (e.g.,
past measurements regarding early version of the system) to enable learning accurate models
quickly and with considerably less cost [47, 46].

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 13

3.12 Evaluating the Effectiveness of Different Load Testing Analysis
Techniques

Zhen Ming (Jack) Jiang (York University, Toronto, Canada, zmjiang@cse.yorku.ca)

License Creative Commons BY 3.0 Unported license
© Zhen Ming (Jack) Jiang

Large-scale software systems like Amazon and eBay must be load tested to ensure they can
handle hundreds and millions of current requests in the field. Load testing usually lasts for
a few hours or even days and generates large volumes of system behavior data (execution
logs and counters). This data must be properly analyzed to check whether there are any
performance problems in a load test. However, the sheer size of the data prevents effective
manual analysis. In addition, unlike functional tests, there is usually no test oracle associated
with a load test. To cope with these challenges, there have been many analysis techniques
proposed to automatically detect problems in a load test by comparing the behavior of the
current test against previous test(s). Unfortunately, none of these techniques compare their
performance against each other.

In this talk, I describe our work on the empirical evaluation of the effectiveness of different
test analysis techniques [31]. We have evaluated a total of 23 test analysis techniques using
load testing data from three open source systems. Based on our experiments, we have found
that all the test analysis techniques can effectively build performance models using data
from both buggy or non-buggy tests and flag the performance deviations between them. It
is more cost-effective to compare the current test against two recent previous test(s), while
using testing data collected under longer sampling intervals (≥ 180 seconds). Among all the
test analysis techniques, Control Chart, Descriptive Statistics and Regression Tree yield the
best performance. Our evaluation framework and findings can be very useful for load testing
practitioners and researchers. To encourage further research on this topic, we have made our
testing data publicity available to download.

3.13 How I Learned to Stop Worrying and Love Capacity Shortages
Cristian Klein (Umea University, Sweden, cklein@cs.umu.se)

License Creative Commons BY 3.0 Unported license
© Cristian Klein

My research focuses on engineering cloud applications so as to maintain responsiveness despite
infrastructure capacity shortages. This has several benefits. First, the risk of user experience
degradation is reduced when the application observes a sudden increase in popularity. Second,
it allows the infrastructure to operate at higher utilization, which helps reduce costs. The
main idea is to mark certain code of the application as optional and selectively deactivate its
execution, as required to maintain a target response time. The problem can be decomposed
into two questions: What code to deactivate and when to deactivate such code?

To answer the “what” question, we proposed a methodology to retrofit admission control
into existing cloud applications [17]. The first step is to model the user behavior based
on production logs in a manner that is both realistic, but also flexible enough to test
various “what-if” scenarios. Next, the model can be used to generate an amplified workload,
identify bottlenecks and add circuit breakers around such bottlenecks, as directed by business
objectives. Several iterations can be performed to add multiple circuit breakers, until the

16394

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

14 16394 — Software Performance Engineering in the DevOps World

resilience of the application is judged to be sufficient. We evaluated the methodology against
a production cloud application, featuring a large code base.

To answer the “when” question, we proposed “brownout” a software engineering method-
ology to decide when to disable optional content, such as recommendations or comments.
We used control-theory to design a controller that measures application response time and
adjusts the probability of serving optional content, as required to maintain a given target
response time [49, 25]. While brownout itself is rather uninstrusive to the developer, the
application’s struggle with capacity shortage can no longer be observed by measuring utiliza-
tion or response time, hence brownout-unaware components around the application may take
errornous decisions. To tackle this issue, we proposed a brownout-aware load-balancer [72]
and admission controller [50].

Our techniques allow software engineers to deprioritize performance-related non-functional
requirements, such as scalability, and reduce time-to-market. This is important in the context
of lean thinking, which advocates the creation of minimum viable products to discover
customer requirements.

3.14 Performance Modeling Challenges while Modernizing Existing
Software towards Microservices

Holger Knoche (Christian-Albrechts-Universität zu Kiel, Germany, hkn@informatik.uni-
kiel.de)

License Creative Commons BY 3.0 Unported license
© Holger Knoche

In order to fully realize the promises of DevOps, namely the fast and continuous deliv-
ery of high-quality software, an appropriate software architecture is required. Currently,
Microservices are considered the premier software architecture for this purpose [7]. As a
consequence, many companies consider the introduction of Microservices to their existing
software by implementing new features as Microservices or replacing existing functionality by
Microservices. Further information on this topic can be found in [5, 63]. Due to their highly
distributed nature, Microservices introduce several new challenges for both development and
operations. Developers now have to cope with potential performance degradation due to
remote invocations, the possibility of partial failure, and the loss of ACID transactionality
[51]. From an operations point of view, deploying, running, and monitoring a large number
of service instances pose the greatest challenge. To address the development challenges
described above, performance simulations are a promising option. As the mentioned effects
are largely determined by the service design, the use of design-time models such as the
Palladio Component Model [8] presents itself. The operational challenge is addressed by a
group of tools which facilitate the deployment and operation of highly distributed applica-
tions, the most prominent being Kubernetes [1] and Mesos [37]. These tools automatically
deploy services to a pool of nodes based on given constraints, and dynamically adjust the
deployment should it become necessary (e.g., due to node failure). Unfortunately, however,
current design-time performance models lack an appropriate abstraction for such dynamic,
self-adaptive deployments. What adds further difficulty is the fact that in migration contexts,
both “traditional” applications and Microservices interact with each other, and the perfor-
mance impact of this interaction is of particular importance. Therefore, a formalism capable
of modeling and simulating both worlds in an appropriate way is required. In my talk, I am

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 15

going to further illustrate the performance challenges of migrating towards Microservices
using examples from industrial practice. Furthermore, I will give a brief presentation of
Mesos as an example of a modern deployment platform, and point out the performance
modeling challenges that arise from such platforms.

3.15 The Importance of Data Science for DevOps and Continuous
Delivery

Philipp Leitner (University of Zurich, Switzerland, leitner@ifi.uzh.ch)

License Creative Commons BY 3.0 Unported license
© Philipp Leitner

Academic research in software engineering (SE) is at a pivotal point. With the advent of
DevOps, the SE research community needs to expand and augment its traditional topics (e.g.,
requirements elicitation, software architecture, formal specification, or testing), to include
new runtime-related challenges. These include, but are not limited to, cloud computing,
continuous delivery and deployment (CD), edge computing and the Internet of Things, or
the Facebook-style “move fast” development philosophy that emphasizes the importance of
quick delivery over strenuously verified correctness.

One implication of this new “runtime focus” is that SE can, and will, become more
data-driven. Today, however, data science in SE is still the domain of dedicated specialists
more than part of day-to-day development. Developers still struggle to make systematic
use of the deluge of data available through Application Performance Monitoring tools [20],
rollout decisions in continuous deployment and live testing are based on intuition rather
than collected empirical evidence [70], and software performance engineering techniques are
still not widely found in industrial practice [54]. We argue that one reason for this is that
performance monitoring and analysis tools are currently not “developer-targeted”. Their
results and visualizations are not actionable for developers, and they do not provide robust
value without expert knowledge in statistics and data science.

In my talk, I will focus on three DevOps-related SE topics and how they relate to data
science. Firstly, I will (briefly) introduce our work on Feedback-Driven Development (FDD),
a concept that aims to make runtime performance data more useful for software developers
[70]. Secondly, I will discuss the importance and challenges of data science for Continuous
Delivery, Continuous Deployment, and live testing. In this segment, I will focus on the
trade-off between release velocity and confidence [70]. Finally, I will discuss the challenge
of cost-aware operation of applications on top of public IaaS clouds. I will present recent
results in this domain [55], and discuss problems and challenges.

3.16 Industrial-grade DevOps: DevOps in the Digitalized Industrial
World

Fei Li (Siemens AG, Austria, lifei@siemens.com)

License Creative Commons BY 3.0 Unported license
© Fei Li

Industrial systems, such as factory automation, infrastructure management, utility manage-
ment, require highly reliable and near real-time solutions. The lifespan of such systems is long,

16394

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

16 16394 — Software Performance Engineering in the DevOps World

and traditionally, during their lifetime the focus of software development and operation is to
ensure high reliability and performance, and to continuously comply with various regulations.
Therefore, new versions are released on a yearly basis or even less frequently, and whole-sale
update has to be carried out for each release. Correspondingly, monolithic architecture is
dominant among industrial software.

However, the recent digitalization movement in industrial systems presents significant
challenges to the traditional way of industrial software delivery. In a digitalized industrial
world, flexibility and time to market are the key to ensure business success, while at the same
time the requirements on software quality cannot be compromised. The current development
methodology, software architecture and tools cannot support such demands in a digitalized
industrial world.

To this end, the concept of Industrial-grade DevOps has been proposed by the Corporate
Technology department of Siemens to address the challenges of software delivery in the
digitalized world. The vision of industrial-grade DevOps is to “move from monolithic
products with long release cycles and wholesale updates to componentized products with
continuous feature release and evolution in run.”

In this scope, the following key research topics will be investigated.

1. Microservice architecture in industrial systems. The key is to ensure software quality
while continuously evolving the microservice architecture. In particular, we focus on five
software qualities:

Availability—Throughout continuous updates of independent microservices
Roll-backability—To roll back software and physical systems to earlier states in case
of update failure
Resilience—In case single or even multiple microservices fail, the system as a whole
should not fail
Security—To secure information as well as physical assets
Changeability—To understand the impact of individual changes of independent changes

2. Knowledge-drive architectural decision making methods. Development and operational
knowledge is the cornerstone to make optimal decisions in the fast evolving DevOps
environments.

Extracting operational routines, workflows and data structures as patterns and docu-
ment them like architectural patterns
Building knowledge base that associates development and operational activities with
software qualities.
Use operational patterns to address requirements from Ops
React to quality problems by using the result of operational data analysis

3.17 The Challenges and Benefits of Synthesizing and Theorizing the
DevOps Phenomenon in Software Engineering

Lucy Ellen Lwakatare (University of Oulu, Finland, Lucy.Lwakatare@oulu.fi)

License Creative Commons BY 3.0 Unported license
© Lucy Ellen Lwakatare

Software-intensive companies constantly try to improve their software development process
for better software quality and a faster time to market. The continuous delivery paradigm

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 17

represents a more recent mainstream software development practice that is predominant in
the web domain and has a huge potential in its adoption in other domains [48, 56].

DevOps—collaboration between development and operations activities—is necessary for
adopting and enabling continuous delivery and deployment. However, the state-of-art on the
DevOps phenomenon is driven by industry, and has very limited contributions in research
[57]. This is evident in the article on a systematic mapping study of continuous deployment
that has also shown that the research is lagging behind in systematizing knowledge and in
validating many of the claims advocated in continuous deployment and DevOp practices [69].

Using a multi-vocal “grey” literature review and case study approaches in software
engineering, a more focused study on the DevOps phenomenon is conducted with the aim of
synthesizing, systematizing and providing evidence of DevOps practices [58]. The findings
show that, even though it is possible to abstract the wide and diverse set of practices
advocated by DevOps into useful patterns that can be adopted by other companies seeking to
implement DevOps, from the research respective it remains challenging to generate theories.

3.18 Releasing High-performance Software More Rapidly with Lower
Costs using Continuous Test Optimization

Dusica Marijan (Simula, Norway, dusica@simula.no)

License Creative Commons BY 3.0 Unported license
© Dusica Marijan

Organizations that follow DevOps practice often benefit from improved efficiency, more reliable
releases, higher product quality, or better user experience. However, successfully implementing
DevOps entails a number of challenges. One such challenge includes implementing an
automated and cost-effective continuous testing, as a prime driver for DevOps. We analyze
this challenge in the context of testing industrial communication systems. In this context,
any supporting technique/tool has to integrate within CI/CD workflows, enable automation,
and support collaboration between development and QA. In our work, we are interested
in techniques for reaching a high degree of test automation and optimization for a given
production environment, to enable faster deployments and more frequent releases of features
and bug fixes, ultimately enabling rapid releases of products. We analyze how can historical
data, usage profiles, sampling-based techniques, and other techniques within and outside
of a production environment be efficiently used to collect performance metrics, recognize
patterns and performance bottlenecks, in order to parameterize optimization algorithms for
improved and more cost-effective testing.

3.19 Joining Adaptation and Evolution Control Loops to Manage
Performance in a DevOps Setting

Claus Pahl (Free University of Bozen-Bolzano, Italy, claus.pahl@unibz.it)

License Creative Commons BY 3.0 Unported license
© Claus Pahl

An important problem is how to organise and manage the different performance engineering
tasks within a DevOps setting. The core of the proposal here is a process model combining

16394

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

18 16394 — Software Performance Engineering in the DevOps World

an adaptation and evolution loop of systems change, which is an extension of the ADEPS
model [79] that joins two feedback loops over time. It consists of two intertwined change
spirals, drawn out over time: An evolution helix reflecting long-term changes, usually with
clear reference back into a development stage An adaptation helix reflecting short-term
changes, usually dynamically in systems in an automated fashion. This change process model
is governed by goal continuity as the key principle: in dynamic systems, performance goals
need to be validated and maintained continuously. However, goal continuity is challenged
by uncertainties arising from stakeholders, platform and information incompleteness and
inaccuracy. Goal continuity is enabled through feedback that links Operations back into
Development concerns if required. Tools and mechanisms that enact this are (i) controllers
of dynamic adaptation in the Operations domain (e.g., through platform adaptation) and (ii)
experiments and prototyping in continuous evolution in the Development domain (e.g., as
part of refactoring and re-architecting activities)

Both are critical for the enablement of performance engineering. In some way, a MAPE-K
loop is in place for both feedback loops, one in an autonomous setting, the other in a more
human controlled form. What is needed is a uniform model framework to manage both.

Our objective should be to share the same mechanisms of monitoring, analysis and decision
making consistently for both cycles. What a controller does for autonomic computing needs
to be provided by managed experiments, prototypes and recommenders for an evolutionary
scenario. A joint formal, methodological and technical basis shall be the aim to support
both with the same rigour. We found for instance an abstraction of problem situations in
terms of patterns to be beneficial [44, 45]. The proposal is therefore to identify a set of
common performance management models, which can build on these patterns. The wider
context of this model, i.e., what drives the DevOps process, also needs to be understood
better. Technical and economic sustainability is the aim of Continuous Development and
Operations [28]. A software system is sustainable if it is resilient to emerging uncertainty.
Cost and performance are intertwined.

Cloud computing shall be selected as a specific case that highlights the relevance of
performance engineering in a service-oriented architecture that is constrained by the service-
level agreements between solution service provider and consumer.

3.20 Performance Engineering in Fog Computing — An Overview
Stefan Schulte (TU Wien, Austria, s.schulte@infosys.tuwien.ac.at)

License Creative Commons BY 3.0 Unported license
© Stefan Schulte

First coined by Cisco [12], the term fog computing describes the usage of well-known principles
from cloud computing at the edge of the network, most importantly the virtualization of
resources provided by networked devices. By applying fog computing, it is possible to lease
and release networked devices as virtualized assets in an on-demand, utility-like fashion and
to enable rapid elasticity through scaling these leased assets up and down, if necessary. Also,
fog devices may be orchestrated in order to cooperatively process data [71]. Fog computing
partially resembles ideas of mobile computing, however it does focuses on Internet of Things
(IoT) entities like sensor nodes, smart objects, or cyber-physical systems. Apart from the
term fog computing, edge computing is also frequently used to describe this approach.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 19

One main motivation for the advent of fog computing is its alignment with the basic
structure of the IoT: Within the IoT, a plethora of technologically heterogeneous, connected
devices are interacting with each other [4]. While IoT devices are highly (geo-)distributed,
cloud resources are actually provided in quite a centralized way. This is not surprising, since
the success of cloud computing can be attributed (amongst other reasons) to the economies
of scale achieved in centralized, very large data centers. In contrast, fog resources are located
at or nearby the edge of the network and thus in the vicinity of IoT devices. By exploiting
already available resources, it is possible to do computational tasks “on-site”, i.e., close to
the data sources and/or sinks, instead of executing these tasks in the cloud. For instance,
preprocessing in data stream scenarios or data prefiltering in Big Data scenarios may be
done in the fog instead of the cloud. Actually, decreased latency is one major reason for the
usage of fog-based computational resources [12], therefore fog computing is both an enabler
and beneficiary of performance engineering.

Since fog computing is still a very recent research topic, there are (to the best of our
knowledge) no dedicated approaches for performance engineering in the fog. In fact, there are
not even DevOps approaches for fog-based applications yet. This talk will therefore present
open questions in the field, discussing also the differences between fog and cloud computing
and why there is a need for specific performance engineering in the fog. In addition, some
first ideas towards solving these questions will be presented.

For this, we will introduce the notion of glocal living applications (GLAs), which are
fog- and cloud-native applications by design. By applying container technologies, GLAs are
isolated, portable applications, which can be hosted on any virtualized infrastructure. GLAs
are able to move freely within and between data centers, both in the cloud and in the fog,
e.g., by acquiring computing resources from a different cloud service or cloud region closer
to the customer, or by offloading computational tasks from the fog to the cloud and vice
versa, through migrating application code via the mobile code paradigm. This allows GLAs
to minimize latency and enables region-specific service customization.

3.21 Improving the Performance of Database-centric Applications
through DevOps

Weiyi Shang (Concordia University, Canada, shang@encs.concordia.ca)

License Creative Commons BY 3.0 Unported license
© Weiyi Shang

There is a growing gap between the software development and operation, especially for
database-centric applications. Software developers of database-centric applications typically
leverage Object-Relational Mapping frameworks such as Hibernate to ease the access of
database, and caching frameworks to optimize the performance of database access. However,
the use of such framework brings extra challenges, such as performance overhead. Developers
may not understand the field performance impact of executing the source code due to the
use of the complex Object-Relational Mapping frameworks. On the other hand, developers
often configure the caching framework based on their own experiences and gut feelings. A
suboptimal configuration can cause even worse performance than without leveraging any
caching framework.

The introduction of DevOps bridges the gap between software development and operation
and brings developers the rich field information, such as actual impact of source code

16394

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

20 16394 — Software Performance Engineering in the DevOps World

execution in the field and the usage of the system by real users. With the field information,
we propose techniques that can improve the performance of database-centric applications. In
particular, one technique leverages the field data from end users to optimize the configuration
of caching frameworks [19]. Instead of configuring based on developers’ experiences, by
leveraging the field information from software operation, developers can optimize the caching
framework configuration by knowing the data-access patterns of database tables. Significant
performance improvements are shown by evaluating the above technique with open source
software and with our industrial partners in practice.

3.22 SPE Meets DevOps: Best Friends or Consensual Enemies?
Catia Trubiani (Gran Sasso Science Institute, Italy, catia.trubiani@gssi.infn.it)

License Creative Commons BY 3.0 Unported license
© Catia Trubiani

DevOps is a novel trend that aims at bridging the gap between development and operations,
while providing the control of deployment and application runtime in the hands of developers.
When applied in the context of software performance engineering, it raises new challenges
related to which performance data should be carried back-and-forth between runtime and
design-time and which feedback should be provided to developers to support them in the
diagnosis of performance results. There is an obvious trade-off in the performance evaluation
of early model abstractions where detected problems are cheaper to fix but the amount
of information is limited, and late performance monitoring on running artifacts, where
the results are more accurate but several constraints have been added on the structural,
behavioral, and deployment aspects of a software system. The goal of this talk is to point
out the research challenges in this domain thus to understand at which extent the meeting
between SPE and DevOps leads to make them “best friends” by exploiting some synergy or
“consensual enemies” by discovering some incompatibility.

3.23 Performance-aware DevOps Through Declarative Performance
Engineering

Jürgen Walter (Julius Maximilians Universität Würzburg, Germany, juergen.walter@uni-
wuerzburg.de)

License Creative Commons BY 3.0 Unported license
© Jürgen Walter

Performance is of particular relevance to software system design, operation, and evolution
because it has a major impact on key business indicators. Over the past decades, various
methods, techniques, and tools for modeling and evaluating performance properties of
software systems have been proposed covering the entire software life cycle [16]. However, the
application of performance engineering approaches to solve a given user concern is still rather
challenging and requires expert knowledge and experience. There are no recipes on how to
select, configure, and execute suitable methods, tools, and techniques allowing to address the
user concerns. The application of performance engineering approaches is challenging even in
classical slow and heavy-weight processes with long-term release cycles. DevOps automates
the process of software delivery and infrastructure changes. This results in short-term build

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 21

and release cycles. Consequently, there is a more frequent need for performance evaluation.
Reinforced by faster developments cycles, software and system engineering requires an easy,
holistic integration and automation of performance engineering techniques. Declarative
Performance Engineering (DPE) [76] aims to reach this decoupling of the description of the
user concerns to be solved (performance questions and goals) from the task of selecting and
applying a specific solution approach. The strict separation of “what” versus “how” enables
the development of different techniques and algorithms to automatically select and apply
a suitable approach for a given scenario. The goal is to hide complexity from the user by
allowing users to express their concerns and goals without requiring any knowledge about
performance engineering techniques. Realizing the DPE vision my research includes amongst
others

performance concern language design
reference architecture for automated deduction of concerns
tool decision support and capability model
automated performance model learning

3.24 Monitoring DevOps Processes and Experimental Process
Improvement

Ingo Weber (Data61, CSIRO, Australia, Ingo.Weber@data61.csiro.au)

License Creative Commons BY 3.0 Unported license
© Ingo Weber

For the last 4 years, my team has been working in the DevOps space, and the lack of readily
available material on this topic motivated us to write our DevOps book [7]. In the first
part of my talk I summarized the key points from the book. The second part of my talk
focused on two topics of our DevOps research that are relevant for performance engineering,
specifically (i) correlation of DevOps process event occurrence with changes in metrics, and
(ii) applying DevOps methods to process improvement and measuring outcomes.

Correlating metrics with DevOps process events

The Process-Oriented Dependability (POD) framework has been developed to deal with
failures of application operations, since they are one of the main causes of system-wide outages
in cloud environments. This particularly applies to DevOps operations, such as backup,
redeployment, upgrade, customized scaling, and migration that are exposed to frequent
interference from other concurrent operations, configuration changes, and resources failure.
However, previous practices failed to provide a reliable assurance of correct execution for
these kinds of operations. In this work, we devised an approach to address this problem that
adopts a regression-based analysis technique to find the correlation between an operation’s
activity logs and the operation activity’s effect on cloud resources. The correlation model is
then used to derive assertion specifications, which can be used for runtime verification of
running operations and their impact on resources. The research has been published [27].

Experimental process improvement

Software systems that support Business Process Management are in widespread use. They
play an important role in facilitating process automation and process improvement. Yet,

16394

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

22 16394 — Software Performance Engineering in the DevOps World

there is hardly any insight into whether the implementation of a supposedly improved process
model leads to an actual improvement in the process. The research problem this work
addresses is: how can we determine if a new variant of a process model is an improvement
over a previous variant, with respect to relevant measures? To this end, we suggest to
build on recent software engineering concepts from the DevOps movement, as well as adopt
learnings from performance engineering for measurements and analysis. On this basis, we
want to develop novel techniques that provide the infrastructure for assessing in how far a
specific business process change leads to an improvement. A vision paper on this topic has
been published [77].

3.25 Performance of Continuous Delivery Pipelines
Johannes Wettinger (University of Stuttgart, Germany, mail@jowettinger.de)

License Creative Commons BY 3.0 Unported license
© Johannes Wettinger

During the last 3–4 years, my research activities focused on diverse challenges concerning
DevOps and continuous delivery. I was diving into these topics as part of my works and efforts
as a PhD candidate at the Institute of Architecture of Application Systems (IAAS) at the
University of Stuttgart. The motivation for these research topics is obvious: especially users,
customers, and other stakeholders in the fields of Cloud services, Web applications, mobile
apps, and the Internet of things expect quick responses to changing demands and occurring
issues. Consequently, shortening the time to make new releases available becomes a critical
competitive advantage. In addition, tight feedback loops involving users and customers
based on continuous delivery ensure to build the “right” software, which eventually improves
customer satisfaction, shortens time to market, and reduces costs.

Independent of the chosen approach to establish continuous delivery by tackling cultural
and organizational issues, a high degree of technical automation is required. This is typi-
cally achieved by implementing an automated continuous delivery pipeline (also known as
deployment pipeline), covering all required steps such as retrieving code from a repository,
building packaged binaries, running tests, and deployment to production. Such an automated
and integrated delivery pipeline improves software quality, e.g., by avoiding the deployment
of changes that did not pass all tests. Moreover, the high degree of automation typically
leads to significant cost reduction because the automated delivery process replaces most
of the manual, time-consuming, and error-prone steps. Establishing a continuous delivery
pipeline means implementing an individually tailored automation system, which considers
the entire delivery process. Furthermore, a separate pipeline has to be established for each
independently deployable unit, e.g., a monolith or microservice. As a result, a potentially
large and growing number of individual pipelines have to be established. Therefore, my
research focuses on dynamically and systematically establishing such continuous delivery
pipelines.

The key building blocks of a continuous delivery pipeline are diverse application environ-
ments such as a development environment, test environment, and production environment. A
specific goal is to provide discovery, consolidation, utilization, and orchestration approaches
to choose and combine the most appropriate solutions and implementations (cloud services,
infrastructure resources, deployment scripts, etc.) to establish a particular environment,
which depends on individual requirements: a development environment typically aims to be

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 23

lightweight with minimum overhead, e.g., hosting the entire application stack on a single
virtual machine, whereas a production environment has to be highly available and elastic,
e.g., comprising a cluster of virtual servers.

Considering performance engineering in the DevOps world, diverse performance aspects of
applications are investigated, for example, in the form of an automated performance testing
stage as part of a continuous delivery pipeline. However, beside the actually delivered appli-
cation, its associated continuous delivery pipeline comprising diverse stages and application
environments represents a software system on its own. That system is not static but must
evolve to deliver new iterations of an evolving application. If, for instance, new kinds of
components or technologies are added to the application stack, at least some of the involved
application environments need to be updated. Consequently, performance engineering in the
DevOps world is not limited to evolving applications, but also needs to be considered when
maintaining continuous delivery pipelines as separately evolving software systems. Beside
reliability, a key performance aspect of such pipelines is their speed, i.e., the time it takes
from committing a change to the code repository until it is fully tested, packaged, and ready
to be put into production. This is the foundation for providing fast and immediate feedback
loops to continuously improve the delivered application.

Technically, different approaches can be applied to improve a pipeline’s performance. For
example, the execution of tests can be split, so that an initial test stage only runs tests that
are fast, while following test stages run tests that take longer; this accelerates feedback loops
and saves resources by failing as fast as possible. Moreover, binary artifacts such as container
images should only be built once and then stored in artifact repositories such as a Docker
container registry to be reused in following stages of the pipeline. Another optimization
approach could be to consolidate application environments, e.g., to run the build and unit test
stages in the same environment. While this helps to lower resource consumption, the degree
of isolation is reduced. As a result, this approach cannot be applied if isolation is key (e.g.,
performance testing vs. production). Another performance aspect is the provisioning time of
underlying application environments, e.g., the time it takes to make the unit test environment
available to run the unit tests based on it. This could potentially be optimized by reusing
environments instead of completely provisioning them for each pipeline run. Performance
metrics must be defined for each pipeline, e.g., to measure and record speed and resource
consumption of pipelines. This also helps to identify performance regressions of pipelines.
Further approaches to optimize the performance of continuous delivery pipelines may be
identified and discussed as part of these research efforts. An initial goal is to come up with
a set of patterns and best practices that can be applied to improve the performance of
continuous delivery pipelines.

3.26 Towards Application-aware Cloud Provisioning for Enterprise
Applications

Felix Willnecker (fortiss, Germany, willnecker@fortiss.org)

License Creative Commons BY 3.0 Unported license
© Felix Willnecker

Enterprise applications are typically implemented as distributed systems composed of several
independent components or services [80]. Modern development paradigms allow to develop
such applications using elastic infrastructure as deployment targets. These enterprise ap-

16394

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

24 16394 — Software Performance Engineering in the DevOps World

plications are designed to scale-out if load peaks occur [14]. Load peaks are balanced by
spawning new virtual servers or containers in an elastic infrastructure [3]. Current strategies
are reactive and thus spawn new instances late and often keep this instances for hours after
the load peak occurred [36]. In such cases, the infrastructure is over-provisioned for most
of the time. Over-provisioned deployments can cause unnecessary costs, as infrastructure
providers such as Amazon Web Services (AWS) offer their services based on uptime, load
and/or traffic. Better deployment strategies can decrease the runtime costs of enterprise
applications by re-using already provisioned server instances or selecting server instances
that fit the current demand.

Elastic cloud infrastructures automatically scale deployments based on the load and
eliminate the need for sophisticated deployment topologies [14]. The infrastructures leverage
the effect of virtualization and over-commit their hardware. Thus, they create more virtual
servers as available hardware would allow. However, the benefits of this over-commitment
are solely taken by the infrastructure providers, especially when the virtual servers are poorly
utilized. Moreover, if one virtualized server’s resources exceed, another instance spawns
which increase the costs. Resources of other virtual servers of the same enterprise application
are usually not considered to contain load peaks and reduce total runtime costs.

We propose an application-aware cloud provisioning based on a model based deployment
topology optimizer [80]. We introduced a deployment topology optimizer, which selects
an optimized topology for a fixed workload. The optimizer takes available and unused
resources as well as costs and performance into account. In combination with workload
prediction and performance models, this optimizer can reorganize distributed enterprise
applications based on expected load and already provisioned infrastructure. Thus, reducing
the number of instances, which reduces costs and shares the savings of virtual servers in
elastic infrastructures with the operator of the enterprise applications.

4 Working Groups

4.1 Performance Engineering Challenges for Microservices
Robert Heinrich (Karlsruhe Institute of Technology, Germany)
Andé van Hoorn (University of Stuttgart, Germany)
Holger Knoche (Christian-Albrechts-Universität zu Kiel, Germany)
Fei Li (Siemens Corporate Technology, Austria)
Lucy Ellen Lwakatare (University of Oulu, Finland)
Claus Pahl (Free University of Bozen-Bolzano, Italy)
Stefan Schulte (TU Vienna, Austria)
Johannes Wettinger (University of Stuttgart, Germany)

License Creative Commons BY 3.0 Unported license
© Robert Heinrich, Andre van Hoorn, Holger Knoche, Fei Li, Ellen Lwakatare, Claus Pahl, Stefan
Schulte, Johannes Wettinger

4.1.1 Discussed Problems

Microservices are an emerging architectural style, complementing approaches like DevOps
and continuous delivery in terms of software architecture. To some degree microservices
resemble concepts and technologies from other established styles—particularly, service-

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 25

oriented architectures (SOA). The goal of this breakout group was to discuss challenges and
possible approaches in performance engineering for microservices.

We started by identifying differences between microservices and SOAs to see what
architectural characteristics stop us from just reusing existing performance engineering
concepts. Identified differences include i) the technology and protocol stack (e.g., heavy-
weight middleware vs. light-weight REST-based communication), ii) the purpose (e.g.,
integration of systems vs. system decomposition), and iii) deployment models and scalability.

Testing, monitoring, and modeling were identified and discussed as primary research areas
in performance engineering for microservices. In practice, additional challenges are imposed
when existing legacy applications are migrated into a microservice architecture. However,
this topic was excluded from the discussion.

4.1.2 Possible Approaches

The core results from the discussion about performance testing, monitoring, and modeling
for microservices were:

Testing. Early-stage testing for microservices follows common software engineering
practices. More comprehensive testing (e.g., integration/system tests) is compensated or
replaced by fine-grained monitoring of production environments. Performance testing gets
simplified in the first place, i.e., the performance of each microservice (typically deployed
as a single container) can be measured and monitored in isolation. The continuous delivery
practice (e.g., multiple deployments per day) does not allow time-consuming performance
testing of the entire application before each single deployment. Once a microservice is
put into operation and used, the monitored performance data (e.g., using established
application performance monitoring (APM) approaches) can in turn be utilized to devise
and improve performance regression testing.
Monitoring. State-of-the-art APM tools support the collection of various measures of
the entire system stack. In microservice architectures, basically the same techniques for
data collection can be used as in traditional architectures. A technical instrumentation
challenge is imposed by the microservice characteristic of polyglot technology stacks,
particularly involving the use of emerging programming paradigms and languages (e.g.,
Scala). In microservice architectures, additional measures are of interest in order to
monitor specific architectural patterns at runtime. Examples include the state of resilience
mechanisms, such as circuit breakers. In microservice architectures, it becomes difficult
to determine a normal behavior used for anomaly detection. The reason is that due
to the frequent changes (updates of microservices, scaling actions, virtualization) no
“steady-state” exists. Existing techniques may raise many false alarms.
Modeling. Component-based performance modeling and prediction can be seen as the
starting point from which techniques for microservices can be reused. Application-level
modeling used to be the focus in traditional component-based performance modeling.
Good results could have been obtained by abstracting from the middleware. An example
here is work in the Palladio context.
Another perspective is the platform/infrastructure level. Microservice platforms turn
out to be more complex and the behaviour of the platform is an influencing factor in
the overall setting. Thus, the need emerges to explicitly represent the platform with its
different layers (e.g., physical machines, VM, Docker, cluster) on which the application is
placed. Creating models by hand is not an option anymore due to, firstly, the inherent
complexity of the platform and, secondly, due to the frequent changes in the environment.

16394

26 16394 — Software Performance Engineering in the DevOps World

To learn the model in an environment that is bound to change becomes a challenge.
Machine learning and model extraction techniques need to be studied to find a solution
for the determination and updating of complex, changing models. Work in the context of
models@runtime can provide input here. These models can feed into a closed adaptation
loop where for instance auto-scaling techniques are applied. Performance models need
to guide monitoring data analysis and decision making (MAPE loop). Controllers must
cope with the elasticity rules. New processing policies must be specified.

4.1.3 Conclusions

Despite the obvious importance of a sufficient level of performance, there is still a lack
of performance engineering approaches explicitly taking into account the particularities of
microservices. So far, performance engineering for microservices has not gained attraction
in the relevant communities and the identified challenges impose a number of interesting
research questions and directions. Meanwhile, the results of the breakout group have been
summarized in a workshop contribution [35].

4.2 Performance Test Prioritization
Georgiana Copil (TU Vienna, Austria)
Philipp Leitner (University of Zurich, Switzerland)
Ingo Weber (Data61, CSIRO, Australia)
Felix Willnecker (fortiss, Germany)

License Creative Commons BY 3.0 Unported license
© Georgiana Copil, Philipp Leitner, Ingo Weber, Felix Willnecker

4.2.1 Discussed Problems

Performance testing is currently not integrated into the Continuous Delivery pipeline. This
is mainly on account of the multitude of performance tests that need to be executed
on a high number of system states, resulting in a vast amount of testing configurations.
Several approaches, such as BlazeMeter1, LoadImpact2, or RadView3 offer PaaS solutions
for performance testing under production-like configurations, with possibilities to integrate
them into normal continuous delivery pipelines (e.g., BlazeMeter Jenkins plugin).

However, the cost and time needed for executing performance tests can be prohibitive,
leading to these tests being absent from most continuous delivery pipelines. Figure 1 shows
the defining dimensions influencing runtime performance, which characterize the System
Under Test: (i) the code that is being tested, (ii) the workload, (iii) the test data, and (iv) the
configuration. The latter includes all software system and hardware related configurations,
defining the environment in which the system under test will be running.

4.2.2 Possible Approach

In the breakout group, we have identified test case prioritization as a promising approach
to deal with these issues: prioritizing which of the performance tests need to be run in

1 https://www.blazemeter.com
2 https://loadimpact.com
3 http://www.radview.com

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://www.blazemeter.com
 https://loadimpact.com
http://www.radview.com

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 27

Figure 1 Factors of influence for performance testing.

order to determine most important regressions, and excluding tests that determine the
same performance regression. Executing the performance tests covering the most important
performance regressions can lead to improved testing time and reduced cost, or can support
software developers with limited time or limited budget in discovering possible performance
regressions.

The core idea of this work is to determine which of a number of microbenchmarks are
indicative of true runtime performance of an application. After obtaining that knowledge,
we can use it for prioritization of performance microbenchmarks to make the most of a given
time budget for performance testing, as well as for utilizing the performance measurements
obtained as a side effect of regular unit testing for performance regression testing.

Figure 2 Overview of the proposed machine learning based performance test prioritization
approach.

The means by which we plan to obtain this information is machine learning or statistical
techniques such as correlation, as shown in Figure 2. Specifically, we plan to use these
approaches to determine which differences of performance in microbenchmarks from one

16394

28 16394 — Software Performance Engineering in the DevOps World

version of the software to the next are indicative of actual performance differences between
these versions.

4.2.3 Conclusions

We plan to use machine learning and statistical correlation analysis to identify particularly
“promising” performance tests to quickly execute as part of a Continuous Delivery pipeline for
fast performance feedback. We hope that this work will lead not only to useful methods for
microbenchmark evaluation, but also to immediately useful tools that can be integrated into
CI/CD pipelines (e.g., Jenkins plugins). Finally, we expect to improve our understanding of
how to write “expressive” microbenchmarks in the first place.

4.3 Uncertainty in a Performance-Aware DevOps Context
Markus Borg (RISE SICS AB, Lund, Sweden)
Jürgen Cito (University of Zurich, Switzerland)
Pooyan Jamshidi (Imperial College London, United Kingdom)
Zhen Ming (Jack) Jiang (York University, Toronto, Canada)
Catia Trubiani (Gran Sasso Science Institute, Italy)

License Creative Commons BY 3.0 Unported license
© Markus Borg, Jürgen Cito, Pooyan Jamshidi, Zhen Ming (Jack) Jiang, and Catia Trubiani

Uncertainty is a very relevant challenge to performance-aware DevOps. Performance mea-
surements and predictions are essential in DevOps solutions to the extent that many different
tools rely on the performance measurements and predictions [16]. Various techniques to
evaluate the performance properties of software systems in early stages of development exist,
e.g., based on architectural models enriched by performance-relevant information. However,
in early stages, various parameters of the systems are uncertain, e.g., regarding implementa-
tion details and environment in which the software systems are deployed. This imposes a
challenge on early performance prediction. In the software performance domain, uncertainties
concern, for example, the usage profile (including workload intensity, navigational profiles,
and input data), resource demand characteristics of software services, and properties of the
deployment and execution environment (including hardware) on which the software will be
deployed.

In the break out group, we discussed the uncertainty challenges in the context of De-
vOps and we based our general definition of uncertainty as [75]: “any deviation from the
unachievable ideal of completely deterministic knowledge of the relevant system”. Such
deviations can lead to an overall “lack of confidence” in the obtained predictions based
on the monitoring data that they might be “incomplete, blurred, inaccurate, unreliable,
inconclusive, or potentially false”. To make informed decisions, DevOps teams need to be
aware of uncertainties in the whole DevOps life-cycle to be able to interpret data, models, and
results accordingly. We have identified sources of uncertainty in a typical performance-aware
DevOps scenario.

4.3.1 Discussed Problems

Goal of this break out group was to identify the sources of uncertainty due to the application
of DevOps in the performance evaluation of software systems. In fact, there is an obvious

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 29

trade-off in the performance evaluation of early model abstractions where the amount of
information is limited, and late performance monitoring on running artifacts where the
results are more accurate but some constraints have been added. We were discussing our
experiences on case studies showing different sources of uncertainty that span on multiple
characteristics, such as the structural, behavioural, and deployment aspects of a software
system and it emerged that performance results are heavily affected by these aspects.

4.3.2 Possible Approaches

To make informed decisions, DevOps teams need to be aware of uncertainties in the whole
DevOps life-cycle to be able to interpret data, models, and results accordingly. To provide
support in this direction, possible approaches have to: (i) identify sources of uncertainty in a
typical performance-aware DevOps scenario; (ii) elaborate how these uncertainties manifest in
input data, design models and operational results; (iii) make suggestions as how to interpret
knowledge (i.e., input data, design models and operational results) given these sources of
uncertainty. In this way it is possible to figure out the performance trend of the system
exposed to such uncertainties.

4.3.3 Conclusions

Our conclusions were that it is relevant to bring the sources of uncertainty up-front in the
performance-aware DevOps process to support developers in the interpretation of performance
evaluation results. Indeed, more research is needed in this direction; we plan to investigate
this topic further to investigate how the explicit specification of uncertainties benefit the
performance analysis process.

4.4 How Can We Facilitate Feedback from Operations to
Development?

Markus Borg (RISE SICS AB, Lund, Sweden)
Jürgen Cito (University of Zurich, Switzerland)
Fei Li (Siemens Corporate Technology, Austria)
Lucy Ellen Lwakatare (University of Oulu, Finland)
Johannes Wettinger (University of Stuttgart, Germany)

License Creative Commons BY 3.0 Unported license
© Markus Borg, Jürgen Cito, Fei Li, Lucy Ellen Lwakatare, Johannes Wettinger

4.4.1 Discussed Problems

Feedback from operations is important to drive informed decisions especially in modern
software development approaches of fast release cycles. When software is operated in
production, it produces a plethora of data that ranges from log messages emitted by the
developer from within the code to performance metrics observed by monitoring tools. All
this data gathered at runtime serves as valuable feedback to various stakeholders to improve
the software itself and the process overall. However, there are some challenges organizations
face when attempting to facilitate proper feedback channels between operations and the rest
of the software development life-cycle. Some of these challenges include: organizational size,
nature of business, presentation of feedback and other technical challenges. We discussed
these challenges in more detail and looked at possible solutions.

16394

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

30 16394 — Software Performance Engineering in the DevOps World

4.4.2 Possible Approaches

Software Developers/
DevOps Engineers

Heuristics

Features &
Project Plan

Product/Project Manager

write program &
infrastructure code

Deployment

Multiple, geographically
distributed Sites

on-premise (client side)

private/public cloud

Usage in
production
generates

runtime data
(Feedback) Feedback

Governance

[Client-side]
DevOps/Operations

implement and enforce
governance rules

Runtime data is
filtered and controlled

for privacy reasons

Feedback from operations as a basis for decision-making

Figure 3 Feedback process involving multiple stakeholders and organization boundaries.

Figure 3 illustrates a generic feedback process that attempts to abstract the process of
retrieving feedback from operations across different organizational boundaries. We derived
the process from informally discussing industrial use cases to ensure that the process covers
concerns and needs of different company structures.

Taking this generalized feedback process as a basis for discussion, we formulate the
following considerations:

Role of Deployment for Feedback. The feedback process is initially kicked-off with
deployment of software to make it available to end-users. Deployment can range from
an automated, continuous delivery/deployment process to releasing a software unit that
requires more complex (often manual) processes to roll out. In the former case, it
stays within a company’s own organizational boundaries (public/private cloud or data
center). Product development together with DevOps/operations engineers from the same
organization are responsible for the operability. In the latter case, it is delivered through
consultants/solution architects as on-premise software. The complexity to enable a proper
feedback process thus depends on the complexity of the deployment pipeline.
Feedback Governance. There needs to be control over which kind of operations feedback is
available to which kind of stakeholder. This kind of governance should explicitly provide
high-level rules on how data is handled either in organizations or as a cross-organizational
concern. These rules are then implemented and enforced by the DevOps/operations
engineers by filtering and controlling runtime data. The consequence of this part of the
process is that privacy is being enforced and product development only has access to
data that exhibits no threat of violations or non-compliance.
Closing the Feedback Loop: Decision-making in Development. Eventually, once operations
data passes through governance it becomes valuable feedback to stakeholders in product
development. Figure 3 illustrates two broad examples of stakeholders benefiting from
runtime feedback. Product/project managers can now use runtime feedback to better
plan their features and optimize their project plan. Software developers and DevOps
engineers have a full picture of how users experience their software (e.g., performance
metrics, usage counters) and can tweak program and infrastructure code to improve
the overall experience. Here, the feedback loop starts again with deploying changes to
software that were informed by better decisions through runtime feedback.

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 31

4.4.3 Conclusions

Runtime aspects of software observed and collected as metrics and events can provide
valueable feedback in the development cycle of software. We discussed different considerations
of establishing a feedback process that depends on the complexity of the existing deployment
structures and requires its own feedback governance to be established (especially in larger
organizations). We plan to further investigate industrial case studies to identify the challenges
when establishing such a feedback process.

4.5 Performance Engineering for Blockchain-based Applications
Philipp Leitner (University of Zurich, Switzerland)
Stefan Schulte (TU Vienna, Austria)
Ingo Weber (Data61, CSIRO, Australia)

License Creative Commons BY 3.0 Unported license
© Philipp Leitner, Stefan Schulte, Ingo Weber

4.5.1 Discussed Problems

Blockchain is often named as a way to realize trust between anonymous parties without the
need of a trusted third party. Instead, trust is established as an emergent property of the
blockchain technology, i.e., a distributed ledger which stores transactions in a permanent and
indisputable way [73]. Blockchains are not maintained by a single organization, but hosted
and enacted in a peer-to-peer manner. Blockchains can be used in arbitrary applications
in order to provide provenance of data, e.g., about business transactions. For instance,
blockchains have been applied in order to execute business processes as smart contracts [78],
thus documenting the process execution in a blockchain and using smart contract features to
ensure that the participants in the collaborative process do not deviate from the agreed-upon
process model.

Within this breakout group, our goal was to identify performance engineering issues for
blockchain-based applications and to think about respective solution approaches. Indeed,
there has only been limited discussion on how the usage of blockchain technologies influences
application design [83]. A particular aspect that has not been discussed in detail are timing
issues. New blocks in blockchains are usually issued with a particular time distance between
two blocks, i.e., the so-called interblock time. For instance, in the Bitcoin blockchain [60],
the median interblock time is set to 10 minutes; in the Ethereum blockchain [82], it is set to
about 13 seconds. Furthermore, there is a lot of variance: individual interblock times for
Bitcoin can easily exceed an entire hour. Applications which want to apply the blockchain
need to cope with this and accept it as given.

In the following subsection, we discuss how these timing issues as well multi-step transac-
tions lead to (performance) uncertainty in blockchain-based applications. Afterwards, we
propose how to overcome these issues.

4.5.2 Possible Approaches

Performance Uncertainty. A core performance challenge in blockchain-based applications
is caused by the peer-to-peer nature of the network, as well as the cryptographic properties

16394

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

32 16394 — Software Performance Engineering in the DevOps World

of the different blockchain protocols. Concretely, we have discussed two sources of
performance variability and therefore uncertainty in our breakout group:

Uncertainty with regards to the interblock time. While protocols such as Ethereum
aim to normalize this time to a well-defined value in the median, substantial outliers
exist. For instance, for Bitcoin, in a 10-minute interval the next block is found with
a probability of 63%, but roughly 5% of the interblock times are above 30 minutes4.
Ethereum suffers from similar variance. As can be seen, interblock times are uncertain,
and may vary to a very large extent [84].
Uncertainty with regards to the confirmation of a block. A transaction being part
of a single block does not guarantee that the transaction will remain part of the
chain. The transaction may still “fall off” if the blockchain decides that the block the
transaction is part of becomes deprecated, because of a fork of the chain. However,
the more follow-up blocks (also called confirmation blocks) have been added to the
blockchain after the transaction has been added, the more unlikely this becomes. In
consequence, the probability of a transaction actually being and staying part of a
blockchain increases with time.

In order to overcome the issues arising because of performance uncertainty, it is first
necessary to empirically examine the blockchain’s behavior. This requires observing the
blockchain networks and to statistically model interblock times as well as the likelihood
and frequency of forks. Once this has been done, the likelihood of forks can be modeled
using the means of Markov chains, or, assuming that the probability remains constant, as
a simple conditional probability. A first short paper in this direction has been published
after the seminar [84].
Uncertainty in Multi-Step Transactions. Uncertainty may also arise from applications
which include multi-step transactions. If we assume transactions to not only be simple
one-shot interactions with the blockchain, but rather multi-step (business) processes [59],
uncertainties become even more problematic. For instance, in a business process, process
state transitions are triggered by events. Each event can be stored in a blockchain.
However, due to the uncertainties mentioned above, a process participant may be required
to wait until an event has n confirmation blocks on the blockchain before she considers an
event to “have happened for sure”. This leads to considerable delays in state transition
times if every transition needs to be delayed until enough time has passed and confirmation
blocks have been accumulated to reach sufficient certainty.
Alternatively, a process participant may decide that she “accepts” a state transition
after a shorter period of time in order to speed up the process, for instance because she
can observe the effects of the change in the physical world, or because the specific state
transition is not crucial to her.
However, this leads to interesting challenges, both from a business process modeling and
execution perspective:

From a modeling perspective, it raises the question how a process participant would
model what level of certainty she requires for each transition.
From an execution perspective, the blockchain-based engine needs to be aware of the
possibility that it is “wrong” about the current state of the process for any given
instance. Note that this may have domino effects, as participants may have already
taken follow-up actions based on previous state information that may not be valid
anymore after an update. A blockchain-based process modeling language and engine

4 Source: https://en.bitcoin.it/wiki/Confirmation

https://en.bitcoin.it/wiki/Confirmation

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 33

should have means to specify and execute suitable compensations for such cases, which
bring the process back into a consistent state.

4.5.3 Conclusions

To the best of our knowledge, despite the rapidly increasing application of blockchain
technology by the research community and industry, performance engineering considerations
around the use of blockchains in application design and development have not gained much
attention yet.

As concrete follow-up steps of the discussions within the breakout group, we will carry
out the needed empirical studies and take the results from these studies into account in
order to devise uncertainty-aware, blockchain-based applications and suitable performance
engineering approaches.

4.6 Implications of DevOps and Self-Adaptivity
Georgiana Copil (TU Vienna, Austria)
Pooyan Jamshidi (Imperial College London, United Kingdom)
Cristian Klein (Umea University, Sweden)
Claus Pahl (Free University of Bozen-Bolzano, Italy)

License Creative Commons BY 3.0 Unported license
© Georgiana Copil, Pooyan Jamshidi, Cristian Klein, Claus Pahl

4.6.1 Discussed Problems

Self-adaptivity is a software engineering concept aiming to reduce runtime uncertainty at
design time by designing the application to adapt to runtime changes. For example, the
uncertainty in the number of users accessing a particular application can be reduced by
designing the application with auto-scaling capabilities. At runtime, the application will
adapt to the actual number of users, by acquiring and releasing computing capacity, usually
presented as virtual machine instances, or enabling/disabling optional features of the system.

We discussed two possible relationships between self-adaptivity and DevOps: (a) adding
DevOps to a self-adaptive application (DevOps4SA) and (b) adding self-adaptivity to a
DevOps pipeline (SADevOps). For both topics, we discussed motivation, challenges and
opportunities.

4.6.2 DevOps4SA

Using DevOps for delivering a self-adaptive application is motivated by bringing the benefits
of evolving both the application and its controller in a reliable manner. However, this would
also bring more challenges. First, there would be more sources of uncertainty, bugs and
regressions, which could come from the application, the controller or the interaction between
the two. Second, controllers and applications are often tightly coupled. Hence evolving both
of them would be challenging. Finally, due to the frequent nature of deployments in the
DevOps culture, the controller would have shorter learning periods between consecutive
changes to the application. Indeed, new code added to the application could invalidate the
model learned by the controller. The model learning can be done in an incremental fashion.

We also discussed opportunities brought by DevOps4SA. First, the DevOps pipeline could
be accelerated by reducing testing time, since uncertainties are compensated for at runtime.

16394

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

34 16394 — Software Performance Engineering in the DevOps World

Second, the controller could reuse the learned model from previously deployed version of the
application, hence not needing to relearn a model of the application from scratch.

4.6.3 SA4DevOps

One of the main ideas of DevOps is to use measurements from operations as feedback for
development. Making the DevOps pipeline self-adaptive would allow taking automated
low-level decisions, freeing up humans to deal with higher-level decision. The system would
be composed of two loops. The human-in-the-loop would focus on delivering value and deal
with long-term predictions, aiming to evolve requirements, design and implementation of the
application, as promoted by the BizDevOps concept. The controller-in-the-loop would focus
on dull and error-prone processes and deal with short-term predictions, aiming to evolve the
configuration. The Dev and Ops would essentially acts as supervisors for the self-adaptive
controller.

The discussion then naturally steered towards what kind of DevOps activities could be
taken over by self-adaptive loops:

Remap for Performance: A controller could identify hotspots during operation — for
example, two components that frequently feature high CPU utilization simultaneously —
and add anti-co-location constraints to be taken into account during the next deployment.
Remap for Resilience: Similarly to the example above, a controller could identify
hotspots that appeared after fault injection and add anti-co-location constraints.
Fault Injection: Based on the log of source code changes, a controller could inject faults
targeted at application components that have recently changed, since these are more
likely to be plagued by bugs.
Monitoring: Similarly to the example above, a controller could increase the monitoring
frequency of recently changed application components in order to get more information
at a certain time period.
Anomaly Detection: Taking as input source code changes and test results, a controller
could change alarm thresholds and whether to alert developer or operators. A recently
changed component is more likely to feature a bug within developer’s responsibility,
whereas a stable component is more likely to feature erroneous behaviour due to changes
in operations.
Tracing: Tracing large-scale distributed systems can be very expensive, therefore, tracing
is usually turned off or set to a low level of detail. Taking as input source code changes and
test results, a controller could enable tracing or increase the level of detail for application
components that recently changed.

Most of the above topics consider code change in the system as enviromental uncertainty
that requires an appropriate reaction from the down-the-line DevOps toolchain.

4.6.4 Conclusions

We found many promising research directions arising from the interaction between DevOps
and self-adaptivity. DevOps can enable co-evolution of controllers and the controlled system.
On the other hand, self-adaptivity can provide opportunities to automate manual and labor
intensive tasks in the DevOps pipeline.

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 35

4.7 A Systematic Process for Performance Antipattern Detection and
Resolution in DevOps based on Operational Data and Load Testing

Alberto Avritzer (Sonatype, USA)
André van Hoorn (University of Stuttgart, Germany)
Catia Trubiani (Gran Sasso Science Institute, Italy)
Holger Knoche (Christian-Albrechts-Universität zu Kiel, Germany)

License Creative Commons BY 3.0 Unported license
© Alberto Avritzer, André van Hoorn, Catia Trubiani, Holger Knoche

4.7.1 Discussed Problems

We discussed the problem of providing the performance assessment of complex software
systems since such systems are subject to many variabilities, such as workload fluctuation
and resource availability. The main issue is that such variabilities may introduce flaws that
affect the system quality and generate negative consequences, such as delays and failures.
Hence, it is necessary to put in place some methodologies that allow to recognize performance
flaws and generate software refactorings able to overcome such flaws.

4.7.2 Possible Approaches

We are investigating an approach based on load testing and profiling data, to identify
performance flaws and generate software refactorings to developers, thus to support them
in the interpretation of performance measurements. These activities are supported by
performance antipatterns that are well known to document common development mistakes
leading to performance flaws as well as their solutions. To this end, we are investigating a
real-world case study provided by an innovative company in the open-source domain.

4.7.3 Conclusions

We found that the analysis of load testing and profiling data is not trivial, and the domain
expert knowledge is fundamental to progress on such activity. The automation of software
refactorings is feasible up to a certain extent, there are some peculiarities that cannot be
handled by tools since they are not machine-processable due to their nature.

4.8 Models@DevOps
Robert Heinrich (Karlsruhe Institute of Technology, Germany)
Jürgen Walter (Julius Maximilians Universität Würzburg, Germany)
Felix Willnecker (fortiss, Germany)

License Creative Commons BY 3.0 Unported license
© Robert Heinrich, Jürgen Walter, Felix Willnecker

We see a culture clash of DevOps and traditional performance modelling (cf. Table 1). Perfor-
mance modeling in traditional Software Performance Engineering is characterized by manual
efforts for creating and parameterizing performance models during design time. Usually
there is no continuous performance analysis and design optimization. In contrast, DevOps
practices are characterized by short, fast automated release cycles, agile processes, short
feedback-loops and continuous executions of elaborated, automated, and staged test chains.
In dynamic systems, performance goals need to be validated and maintained continuously.

16394

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

36 16394 — Software Performance Engineering in the DevOps World

Table 1 Culture Clash Between MDSD and Modeling

MDSD DevOps

Create design-time model manually
No continuous performance analysis
No ongoing design optimization

Short/fast automated release cycles
Agile processes, short feedback-loops
Continuous execution of elaborated, auto-
mated, and staged test chain

Table 2 DevOps Challenges and Model Answers

Test execution time delays feedback. System
analysis only in real time possible

Models analysis instead of measurement-based
testing

Amount of monitoring data too complex for
human mind

automatic processing and aggregation neces-
sary. Model-based representation of system

Monitoring overhead (thus costs) high Use simulations instead of system monitoring

Common language between developers and op-
erators are missing

Specific views for operator and developer on
the same model

4.8.1 Discussed Problems

Due to differences the question comes up: “Do we still need performance models in an agile
DevOps world?” Models are not yet common industrial practice. However, there are open
DevOps challenges that can be addressed using performance models. Further, we see DevOps
as an enabler for performance models. The need is also driven by new application scenarios,
e.g., Internet of Tings (IOT) causes a huge number of different devices for which one cannot
built a complete test bed.

DevOps Challenges and Model-based Solution

The results of our discussion are presented in Table 2

4.8.2 Possible Approaches

Pipeline Integration of Performance Models

We discussed where models can be used in the DevOps Pipeline (cf. Figure 4).

Fully automated
Regression analysis
Runtime adaptation / self adaptation
Recovery models
Resilience analysis
Forecast-based decisions

Human in the loop
Design space exploration / Decision making
Performance models as simplified view on APM data

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 37

Parallel evaluation of multiple design alternatives

Performance models and prediction can be integrated to automate certain decisions but
also to assist developers, designers, architects or operators. Performance models can be
used to explore a design space by evaluating a number of design decisions by alternating
an extracted model and simulate the effects. Such simulations can be executed in parallel
and thus evaluate multiple system variations at the same time. Performance models are also
suitable for communication as they represent a simplified view on the system but are at the
same time based on detailed measurements. Such models can be used for fully automated
regression analysis. Integrated in a continuous delivery pipeline, such evaluations can be
conducted where classical performance tests take too long. The resilience and recovery
capabilities of a system model can be conducted and evaluate recent changes in regards
of fault tolerance of the system. Forecasts and analysis on these models and predictions
allow to improve self-adaption of systems and especially with forecasts to speed-up scaling
decisions. A resource shortage can be predicted before it occurs and replica systems can thus
be spawned and warmed up before the actual shortage occurs.

Figure 4 DevOps Pipeline.

4.8.3 Conclusions

DevOps as Door Opener for Performance Models

Hypothesis: DevOps is an enabler for Performance Modelling.
Especially continuous monitoring is an enabler for automatic performance model genera-
tion
Model extraction can be placed in the pipeline
Huge amounts of APM data available to use machine learning to significantly improve
models
New use cases and scenarios for performance models

Application performance monitoring/management software is nowadays integrated in a vast
amount of systems, especially in the DevOps context. This monitoring allows to ensure and
enforce software quality with regards to their Service Level Agreements (SLAs) even though
fast release cycles change the software quite often. The availability of such monitoring data
is an enabler for performance modelling as it allows to generate performance models from
these application specific traces. On the other hand, these models can be again applied to
the DevOps pipeline to replace and/or enhance performance evaluations that usually take
too long to execute in an automated delivery pipeline.

What Has to Change

Models did not yet arrive in the DevOps world. Heavy weight processes. In order to address
the challenge, we postulate things that have to change . . .

More automation
Automatically test validity of models
DevOps provides chance to learn application/changes

16394

38 16394 — Software Performance Engineering in the DevOps World

Accuracy tuning for extraction mechanisms
Different granularity levels (views + solving)
Focus on dynamic behavior instead of steady state
Models that are feasible for automated processing and comprehensible by humans
Partly model updates

4.9 Performance Testing with a Limited Budget
Cor-Paul Bezemer (Queen’s University, Canada)
Lubomír Bulej (Charles University, Czech Republic)
Vojtěch Horký (Charles University, Czech Republic)
Zhen Ming ‘Jack’ Jiang (York University, Canada)
Dusica Marijan (Simula, Norway)
Weiyi ‘Ian’ Shang (Concordia University, Canada)

License Creative Commons BY 3.0 Unported license
© Cor-Paul Bezemer, Lubomír Bulej, Vojtěch Horký, Zhen Ming ‘Jack’ Jiang, Dusica Marijan,
Weiyi ‘Ian’ Shang

In comparison to functional unit testing, performance testing is still not a widely adopted
software development practice. This is likely because there are considerably many barriers
that hinder adoption of performance testing. Measuring and comparing performance on
modern platforms is objectively difficult, and great attention must be paid to proper collection
and analysis of the results, especially when measuring time quantities with sub-millisecond
resolution. A performance unit test is not black and white (which makes it more difficult to
interpret), it usually takes much more time (which makes it unsuitable for quick testing),
and is more difficult to construct (developers need to know which features need to be tested
for performance and submit those to a realistic workload). In contrast, functional unit
tests are considerably easier to create and provide clear benefits that are now understood
by many. In addition to providing evidence that the software works as expected, they are
used to drive the design and enable design changes that are often necessary to suit the
everchanging requirements. While the understanding of measurement and analysis techniques
has improved over the last few years, some of the issues remain, and they are related to the
difficulty the developers have with interpreting performance test results, finding the right
features to test, and finding representative workloads. However, we expect this to change
as more and more teams adopt the DevOps culture, which brings together developers and
operators to ensure continuous delivery of high-quality code. We assume that increased
adoption of the DevOps culture will increase the demand for performance testing, and at
the same time provide developers with information from “Ops” that will guide performance
testing activities. This includes information that might have been previously lacking, such as
usage data for features, platforms, and configurations, as well as representative workloads,
without which developers were reluctant to invest effort into performance testing. Assuming
there is demand for performance tests and that we have access to information from “Ops” to
guide performance testing, the discussion in this group focused on our ability to conduct
performance testing in a timely manner.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 39

4.9.1 Discussed Problems

Performance testing takes a lot of time and often requires dedicated hardware resources.
Performance unit tests often measure time intervals in the order of milliseconds or below,
and if we want to automatically detect performance differences in the order of 10% or
smaller, we need to use sound statistical methods. This in turn requires steady-state samples
from multiple test runs, which also requires spending considerable time (with respect to
the duration of the measured operation) on system warm-up. If we focus on large-scale
performance or load tests to detect only critical and easy to detect performance regressions
(to avoid deploying broken software), we may not need as many samples and test runs, but
such tests take long time to setup and execute anyway (e.g., replaying a 24-hour long request
log). In addition to the number and type of performance tests, there are other dimensions
that greatly influence the amount of time needed for performance testing. These include
different hardware platforms and hardware configurations, multiple software platforms and
their configurations, and last, but not least, stream of changes to the software resulting in
new versions that need to be tested. Ideally, we want to fully test each version found in a
source code repository. However, just multiplying the number of tests, the required number
of test runs, the number of hardware platform configurations, and the number of software
platform configurations is bound to produce a number of test executions that we cannot
hope to fit into a limited time and cost budget. Therefore we need to schedule tests to make
the most of the available budget.

4.9.2 Possible Approaches

Selecting the right tests under given time or cost constraints is essentially a planning
problem, except that the cost and importance of tests is not completely static. Instead, it is
influenced by various inputs. We therefore need a test scheduler that can, for each software or
configuration change that may affect performance, maximize the chance to find performance
regressions under the given time and cost constraints using the following:

The available tests and their duration
Testing requests from developers
Testing guidance from operators
A history of results for a particular test

Figure 5 shows a coarse architecture of such a test scheduling system. The test scheduler
itself is only one of several components, and is intended to make decisions based on information
coming from multiple sources. The operators determine the resource budgets as well as
the general focus of testing, while developers may influence test selection or test priority in
response to actual needs. Besides the input from developers and operators, the activity of
the scheduler is triggered by incoming code/configuration changes, and the test selection
and prioritization takes into account previously collected information about tests. The latter
comes from a repository which is mainly updated by other processes based on test results.
The processes related to “test execution” and “regression detection” are assumed to be well
understood, and are not discussed here in detail—the role of these processes is to provide
the system with raw data from test execution and to detect performance regressions. The
other processes provide opportunity for optimization, and include prefiltering of changes,
test case prioritization, test case selection, and test case execution time. We now discuss
these processes in more depth.

16394

40 16394 — Software Performance Engineering in the DevOps World

Test
scheduler

Test
execution

Test
results

Equivalence
group

detection

Test cases
repository

Change
classification

Stream of
changes

Resource
budget

Divine
intervention

Warm-up
profile

Regression
detection

Ops

Usefulness
detection

Devs

Devs+Ops

Figure 5 Overview of the proposed architecture for a performance test scheduling system.

4.9.2.1 Change Classification

If we were to run the full battery of changes on each commit observed by the test scheduler,
the system would most likely fail to test the system for performance regressions in a timely
manner. It is therefore important to understand the nature of observed changes and adapt
the test selection to the “test worthiness” of a particular change. For example, changes in
source code that only contain formatting or comment changes should be ignored, as they are
not expected to change the performance of the resulting system.

A more complex change analysis may involve mapping of source code to nodes in a feature
model, which can be further annotated with information about tests covering a particular
feature (e.g., [18, 32]). This may allow the scheduler to only schedule tests related to a
particular feature or features that depend on it. There is a potentially significant body of
related work in the software engineering community, related to change impact analysis and
subsequent selection of unit tests (e.g., [65, 81]). However, these works are mostly concerned
with functional unit testing, while performance tends to be a cross-cutting concern, so it may
be more difficult to isolate the code the performance of which is supposed to be influenced by
a code change and map it to a particular performance test. Nevertheless, the classification of
changes for the purpose of test selection or prioritization is an important aspect of the system
that determines the general direction of performance testing, and will benefit from operator
(and possibly developer) input. We assume each test to have two kinds of priorities. The first
priority is long-term (or static), based on importance of certain features (based on information
from Ops) and the history of results of a particular test case (i.e., how often a particular
test case identified a performance regression). The second priority is short-term, based on
the results of change analysis, on requests from developers for executing a specific test case
(to accommodate their gut feelings), and on regression analysis results (so that a change
in which a regression was detected can be tested more thoroughly, including surrounding
changes in the project’s development history).

4.9.2.2 Equivalence Group Detection

Ideally, software features will be covered by multiple targeted performance tests to ensure that
changes to the software do not cause performance regressions. However, in many scenarios
we envision using performance tests that are not targeted at a specific feature, and instead
exercise the system at a more coarse scale. Benchmarks from various benchmark suites
can often serve as performance tests, and may be used to track performance and detect

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 41

performance regressions in a software project. While coarse-grained tests (benchmarks) are
undoubtedly useful, their results for many changes may be correlated, suggesting that only
a subset of the tests may need to be executed. Tests that detect the same performance
anomalies should therefore be organized into equivalence groups, and the scheduler should
only select a subset of tests that covers all equivalence groups. To prevent selection bias, the
tests within an equivalence groups should be selected in a round-robin fashion. However, a
single test may be potentially a member of multiple equivalence groups, which requires a
two-level selection process to ensure that different permutations of tests across all equivalence
groups are used to avoid test starvation.

We also assume that the group membership may change over time, and will therefore
require periodic re-evaluation, with the period depending on a particular project. This
requires the equivalence group evaluation process to be automated as much as possible.

4.9.2.3 Test Utility Profiling

While no test that is part of the code base should be entirely avoided by the scheduler (if a
test is considered completely useless, it should be removed), the scheduler should attempt to
maximize the likelihood of finding performance regressions by scheduling tests with a history
of detecting performance regressions more often. To simplify the scheduler internals, we
assume that the information that determines the priority/weight of a particular test case
should be available to the scheduler from the test information repository. The long-term
weight/priority of a test should reflect its history of detecting performance regressions, and
we assume that it can be produced by an independent process that consumes the results of
the regression detection process.

If the global information about test history does not provide sufficient information for
test prioritization, it may be necessary to associate the history of test results with additional
information about the change that triggered the testing, such as code locations or feature
model nodes.

4.9.2.4 Test Warm-up Profiling

An obvious way to reduce testing time is to reduce the duration of test execution. However,
the challenge is to determine for how long a test needs to execute. Tests in which the
workloads take milliseconds or less to execute (benchmarks and microbenchmarks) typically
repeat the workload many times so that the measured duration of the operation can be
processed in a robust fashion using statistical methods. Prior to collecting the measurements,
a test harness typically performs a warm-up phase to get rid of various transients associated
with the start up of a system or an execution platform, such as the Java Virtual Machine.
This needs to be repeated multiple times by executing the workloads in newly spawned
processes to take into account changes in performance due to layout of code and data in
memory, and thus properly sample the observable variance in the measured data.

Often, the samples from different test runs contribute more information to the estimate
of the observable variance than the samples from a single execution. The warm-up phase of
a test run then becomes a significant overhead in test execution.

Each test can have a different warm-up period, depending on the activity it exercises and
potentially also on the software platform (stack) on top of which it executes. The warm-up
period is typically determined manually by analysis of data from a very long run, which
makes periodic re-evaluation due to changes in the underlying software stack costly.

16394

42 16394 — Software Performance Engineering in the DevOps World

A performance test scheduling would benefit from an automated process that would
perform warm-up profiling of test cases added to the system. Even if the initial warm-up
profiling took much longer than the typical duration of a test, the savings in subsequent
test executions could be substantial. One approach to such warm-up profiling could be
based on finding/identifying repetitive patterns in the collected test metrics over time. The
automated process would determine the necessary warm-up time and measurement time
so as to properly sample the observable variance within a single run. This is a non-trivial
challenge, because many benchmarks (or performance) do not exhibit a classic warm-up
behavior, and the collected metrics (most often iteration/response time) may oscillate even
in steady state [6, 11].

As mentioned earlier, complex long-running performance tests may focus on identifying
critical performance regressions in the order of 100% or more, typically by requiring that
the metric of interest is within certain bounds. Since the time scale and the range of such
bounds is usually significantly larger than what is common for small-scale tests, it may
not be necessary to execute complex long-running tests many times. However, due to the
nature of such performance tests, they will still take a long time to execute. The question is
then whether all the activity performed by the test is relevant for finding the performance
regression, or whether a representative subset would be sufficient. Finding this subset and
capturing it in a performance test is non-trivial and challenging, especially if it is to be
automated.

4.9.3 Conclusions

We assume that the adoption of a DevOps culture will provide both demand and useful
information for developers to engage in performance testing. To provide timely feedback
based on performance testing to developers, performance tests will have to be scheduled
to fit timing and cost constraints, while maximizing the likelihood of discovering a true
performance regression. This further relies on the ability to select and prioritize performance
tests based on analysis of software changes, utility profile of individual test cases, as well as
their membership in equivalence groups of tests producing correlated results. In addition,
approaches to determine test-specific warm-up profiles as well as identification of relevant
subset of real-world workloads should help in reducing execution times of individual tests,
because these are then greatly amplified by the need to test along many dimensions (code
changes, configuration changes, hardware platforms, multiple test runs), which leads to
testing time explosion. By finding solutions to these problems we should be able to provide
a test scheduler with the information necessary to make good scheduling decisions.

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 43

Participants

Alberto Avritzer, Sonatype,
USA

Oliver Beck, SAP, Germany
Cor-Paul Bezemer, Queen’s

University, Canada
Markus Borg, RISE SICS AB,

Sweden
Lubomír Bulej, Charles

University Prague, Czech
Republic

Jürgen Cito, University of
Zurich, Switzerland

Georgiana Copil, TU Vienna,
Austria

Robert Heinrich, Karlsruhe
Institute of Technology, Germany

Andre van Hoorn, University
of Stuttgart, Germany

Vojtěch Horký, Charles
University Prague, Czech
Republic

Pooyan Jamshidi, Imperial
College London, United Kingdom

Jack Jiang, York University,
Canada

Cristian Klein, Umea
University, Sweden

Holger Knoche,
Christian-Albrechts-Universität
zu Kiel, Germany

Philipp Leitner, University of
Zurich, Switzerland

Fei Li, Siemens Corporate
Technology, Austria

Lucy Ellen Lwakatare,
University of Oulu, Finland

Dusica Marijan, Simula,
Norway

Claus Pahl, Free University of
Bozen-Bolzano, Italy

Stefan Schulte, TU Vienna,
Austria

Weiyi Shang, Concordia
University, Canada

Catia Trubiani, Gran Sasso
Science Institute, Italy

Jürgen Walter, Julius
Maximilians Universität
Würzburg, Germany

Ingo Weber, Data61, CSIRO,
Australia

Johannes Wettinger,
University of Stuttgart, Germany

Felix Willnecker, fortiss,
Germany

16394

44 16394 — Software Performance Engineering in the DevOps World

References
1 Kubernetes: Production-grade container orchestration. https://kubernetes.io/.
2 Ahsan Arefin and Guofei Jiang. Cloudinsight: Shedding light on the cloud. In 30th IEEE

Symposium on Reliable Distributed Systems (SRDS 2011), pages 219–228, 2011.
3 Valerie Arraj. ITIL®: the basics, 2013.
4 Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey.

Computer Networks, 54(15):2787–2805, 2010.
5 Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices architecture

enables devops: Migration to a cloud-native architecture. IEEE Software, 33(3):42–52,
2016.

6 Edd Barrett, Carl Friedrich Bolz, Rebecca Killick, Vincent Knight, Sarah Mount, and Lau-
rence Tratt. Virtual machine warmup blows hot and cold. arXiv preprint arXiv:1602.00602,
2016.

7 Leonard J. Bass, Ingo M. Weber, and Liming Zhu. DevOps - A Software Architect’s Per-
spective. SEI series in software engineering. Addison-Wesley, 2015.

8 Steffen Becker, Heiko Koziolek, and Ralf H. Reussner. The Palladio component model for
model-driven performance prediction. Journal of Systems and Software, 82(1):3–22, 2009.

9 Marcello M Bersani, Francesco Marconi, Damian A Tamburri, Pooyan Jamshidi, and An-
drea Nodari. Continuous architecting of stream-based systems. In Proceedings of the 13th
Working IEEE/IFIP Conference on Software Architecture (WICSA 2016), pages 146–151.
IEEE, 2016.

10 Elizabeth Bjarnason, Per Runeson, Markus Borg, Michael Unterkalmsteiner, Emelie En-
gström, Björn Regnell, Giedre Sabaliauskaite, Annabella Loconsole, Tony Gorschek, and
Robert Feldt. Challenges and practices in aligning requirements with verification and val-
idation: A case study of six companies. Empirical Software Engineering, 19(6):1809–1855,
2014.

11 André B Bondi. Challenges with applying performance testing methods for systems de-
ployed on shared environments with indeterminate competing workloads: Position paper.
In Companion of ACM/SPEC on International Conference on Performance Engineering
(ICPE 2016), pages 41–44. ACM, 2016.

12 Flavio Bonomi, Rodolfo A. Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and
its role in the internet of things. In Proceedings of the first edition of the MCC workshop
on Mobile cloud computing (MCC@SIGCOMM 2012), pages 13–16, 2012.

13 Markus Borg. From Bugs to Decision Support—Leveraging Historical Issue Reports in
Software Evolution. PhD thesis, Lund University, 2015.

14 Paul Brebner. Is your cloud elastic enough?: Performance modelling the elasticity of
infrastructure as a service (IaaS) cloud applications. In Proceedings of the 3rd Joint
WOSP/SIPEW International Conference on Performance Engineering (ICPE’12), pages
263–266, 2012.

15 Andreas Brunnert, Alexandru Danciu, and Helmut Krcmar. Towards a performance model
management repository for component-based enterprise applications. In Proceedings of
the 6th ACM/SPEC International Conference on Performance Engineering (ICPE 2015),
pages 321–324, 2015.

16 Andreas Brunnert, Andre van Hoorn, Felix Willnecker, Alexandru Danciu, Wilhelm Has-
selbring, Christoph Heger, Nikolas Herbst, Pooyan Jamshidi, Reiner Jung, Joakim von
Kistowski, Anne Koziolek, Johannes Kroß, Simon Spinner, Christian Vögele, Jürgen Wal-
ter, and Alexander Wert. Performance-oriented DevOps: A research agenda. Technical Re-
port SPEC-RG-2015-01, SPEC Research Group — DevOps Performance Working Group,
Standard Performance Evaluation Corporation (SPEC), 2015.

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 45

17 Tanmay Chaudhry, Christoph Doblander, Anatol Dammer, Cristian Klein, and Hans-Arno
Jacobsen. Retrofitting admission control in an internet-scale application. Technical Report
16.17, Umeå University, Department of Computing Science, 2016.

18 Kunrong Chen and Václav Rajlich. Case study of feature location using dependence graph.
In Proceedings of the 8th International Workshop on Program Comprehension (IWPC 2000),
pages 241–247. IEEE, 2000.

19 Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed N. Nasser, and Parminder
Flora. Cacheoptimizer: helping developers configure caching frameworks for hibernate-
based database-centric web applications. In Proceedings of the 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (FSE 2016), pages 666–677,
2016.

20 Jürgen Cito, Philipp Leitner, Thomas Fritz, and Harald C. Gall. The making of cloud
applications: an empirical study on software development for the cloud. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015),
pages 393–403, 2015.

21 Jürgen Cito, Philipp Leitner, Harald C. Gall, Aryan Dadashi, Anne Keller, and Andreas
Roth. Runtime metric meets developer: building better cloud applications using feedback.
In Proceedings of the 2015 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! 2015), pages 14–27, 2015.

22 Georgiana Copil, Daniel Moldovan, Hong Linh Truong, and Schahram Dustdar. Multi-level
elasticity control of cloud services. In Proceedings of the 11th International Conference on
Service-Oriented Computing (ICSOC 2013), pages 429–436, 2013.

23 Georgiana Copil, Hong Linh Truong, and Schahram Dustdar. Supporting cloud service
operation management for elasticity. In Proceedings of the 13th International Conference
on Service-Oriented Computing (ICSOC 2015), pages 123–138, 2015.

24 Marcin De Kaminski, Måns Svensson, Stefan Larsson, Johanna Alkan Olsson, and Kari
Rönkkö. Studying norms and social change in a digital age: Identifying and understanding
a multidimensional gap problem, 2013.

25 David Desmeurs, Cristian Klein, Alessandro Vittorio Papadopoulos, and Johan Tordsson.
Event-driven application brownout: Reconciling high utilization and low tail response times.
In Proceedings of the 2015 International Conference on Cloud and Autonomic Computing
(ICCAC ’15), pages 1–12. IEEE Computer Society, 2015.

26 Torgeir Dingsøyr and Casper Lassenius. Emerging themes in agile software development:
Introduction to the special section on continuous value delivery. Information & Software
Technology, 77:56–60, 2016.

27 Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, and John C. Grundy. Experience
report: Anomaly detection of cloud application operations using log and cloud metric
correlation analysis. In Proceedings of the 26th IEEE International Symposium on Software
Reliability Engineering, (ISSRE 2015), pages 24–34, 2015.

28 Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering and beyond: trends
and challenges. In Proceedings of the 1st International Workshop on Rapid Continuous
Software Engineering (RCoSE 2014), pages 1–9, 2014.

29 Nicole Forsgren and Jez Humble. DevOps: Profiles in ITSM performance and contributing
factors. In Proceedings of the Western Decision Sciences Institute (WDSI), 2016.

30 Alfonso Fuggetta and Elisabetta Di Nitto. Software process. In Proceedings of the on Future
of Software Engineering (FOSE 2014), pages 1–12, 2014.

31 Ruoyu Gao, Zhen Ming Jiang, Cornel Barna, and Marin Litoiu. A framework to evaluate
the effectiveness of different load testing analysis techniques. In Proceedings of the 2016
IEEE International Conference on Software Testing, Verification and Validation (ICST
2016), pages 22–32, 2016.

16394

46 16394 — Software Performance Engineering in the DevOps World

32 Arnaud Gotlieb, Mats Carlsson, Dusica Marijan, and Alexandre Petillon. A new approach
to feature-based test suite reduction in software product line testing. In Proceedings of
the 11th International Conference on Software Engineering and Applications (ICSOFT-EA
2016). INSTICC Press, 2016.

33 Robert Heinrich. Architectural run-time models for performance and privacy analysis in
dynamic cloud applications. SIGMETRICS Performance Evaluation Review, 43(4):13–22,
2016.

34 Robert Heinrich, Reiner Jung, Christian Zirkelbach, Wilhelm Hasselbring, and Ralf Reuss-
ner. Software Architecture for Big Data and the Cloud, chapter An Architectural Model-
Based Approach to Quality-aware DevOps in Cloud Applications. Elsevier, 2017.

35 Robert Heinrich, André van Hoorn, Holger Knoche, Fei Li, Lucy Ellen Lwakatare, Claus
Pahl, Stefan Schulte, and Johannes Wettinger. Performance engineering for microservices:
Research challenges and directions. In Companion of the 8th ACM/SPEC International
Conference on Performance Engineering (ICPE ’17). ACM, 2017.

36 Nikolas Roman Herbst, Samuel Kounev, Andreas Weber, and Henning Groenda. BUNGEE:
an elasticity benchmark for self-adaptive iaas cloud environments. In Proceedings of the
10th IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2015), pages 46–56, 2015.

37 Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph,
Randy H. Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained resource
sharing in the data center. In Proceedings of the 8th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 2011), 2011.

38 Vojtech Horky, Jaroslav Kotrc, Peter Libic, and Petr Tuma. Analysis of overhead in dy-
namic java performance monitoring. In Proceedings of the 7th ACM/SPEC International
Conference on Performance Engineering (ICPE 2016), pages 275–286, 2016.

39 Randall Hyde. The fallacy of premature optimization. Ubiquity, 2009, 2009.
40 IBM. Integrated service management and cloud computing: More than just technology best

friends. http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=IAW03005USEN,
2010.

41 International Organization for Standardization. ISO/IEC 20000, 2011.
42 ITEMO IT Education Management Organisation e.V. FitSM: A a free standard for

lightweight ITSM. http://fitsm.itemo.org/.
43 Pooyan Jamshidi and Giuliano Casale. An uncertainty-aware approach to optimal config-

uration of stream processing systems. CoRR, abs/1606.06543, 2016.
44 Pooyan Jamshidi, Claus Pahl, Samuel Chinenyeze, and Xiaodong Liu. Cloud migration

patterns: A multi-cloud service architecture perspective. In Proceedings of the ICSOC
2014 Workshops — WESOA; SeMaPS, RMSOC, KASA, ISC, FOR-MOVES, CCSA and
Satellite Events, Revised Selected Papers, pages 6–19, 2014.

45 Pooyan Jamshidi, Amir Molzam Sharifloo, Claus Pahl, Hamid Arabnejad, Andreas Metzger,
and Giovani Estrada. Fuzzy self-learning controllers for elasticity management in dynamic
cloud architectures. In Proceedings of the 12th International ACM SIGSOFT Conference
on Quality of Software Architectures (QoSA 2016), pages 70–79, 2016.

46 Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay Patel, and
Yuvraj Agarwal. Transfer learning for performance modeling of configurable systems: An
exploratory analysis. In Proceedings of the International Conference on Automated Software
Engineering (ASE 2017). ACM, 2017.

47 Pooyan Jamshidi, Miguel Velez, Christian Kästner, Norbert Siegmund, and Prasad
Kawthekar. Transfer learning for improving model predictions in highly configurable soft-
ware. In Proceedings of the International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS 2017). IEEE, 2017.

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=IAW03005USEN

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 47

48 Teemu Karvonen, Lucy Ellen Lwakatare, Tanja Sauvola, Jan Bosch, Helena Holmström
Olsson, Pasi Kuvaja, and Markku Oivo. Hitting the target: Practices for moving toward
innovation experiment systems. In Proceedings of the 6th International Conference on
Software Business (ICSOB 2015), pages 117–131, 2015.

49 Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco Hernández-Rodriguez.
Brownout: building more robust cloud applications. In Proceedings of the 36th International
Conference on Software Engineering (ICSE ’14), pages 700–711, 2014.

50 Cristian Klein, Alessandro Vittorio Papadopoulos, Manfred Dellkrantz, Jonas Durango,
Martina Maggio, Karl-Erik Årzén, Francisco Hernández-Rodriguez, and Erik Elmroth. Im-
proving cloud service resilience using brownout-aware load-balancing. In Proceedings of the
33rd IEEE International Symposium on Reliable Distributed Systems (SRDS 2014), pages
31–40, 2014.

51 Holger Knoche. Sustaining runtime performance while incrementally modernizing transac-
tional monolithic software towards microservices. In Proceedings of the 7th ACM/SPEC
International Conference on Performance Engineering (ICPE 2016), pages 121–124, 2016.

52 Donald E. Knuth. Structured programming with go to statements. ACM Comput. Surv.,
6(4):261–301, 1974.

53 Kripa Krishnan. Weathering the unexpected. Commun. ACM, 55(11):48–52, 2012.
54 Philipp Leitner and Cor-Paul Bezemer. An exploratory study of the state of practice of per-

formance testing in java-based open source projects. In Proceedings of the 7th ACM/SPEC
International Conference on Performance Engineering (ICPE 2017), 2017.

55 Philipp Leitner and Jürgen Cito. Patterns in the chaos—A study of performance variation
and predictability in public IaaS clouds. ACM Trans. Internet Techn., 16(3):15, 2016.

56 Lucy Ellen Lwakatare, Teemu Karvonen, Tanja Sauvola, Pasi Kuvaja, Helena Holmström
Olsson, Jan Bosch, and Markku Oivo. Towards devops in the embedded systems domain:
Why is it so hard? In Proceedings of the 49th Hawaii International Conference on System
Sciences (HICSS 2016), pages 5437–5446, 2016.

57 Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. Dimensions of devops. In Proceed-
ings of the 16th International Conference on Agile Processes, in Software Engineering, and
Extreme Programming (XP 2015), pages 212–217, 2015.

58 Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. An exploratory study of devops:
Extending the dimensions of devops with practices. In Proceedings of the 11th International
Conference on Software Engineering Advances (ICSEA 2016), pages 91–99. IARIA, 2016.

59 Jan Mendling, Ingo Weber, Wil van der Aalst, Cristina Cabanillas, Florian Daniel, Søren
Debois, Claudio Di Ciccio, Marlon Dumas, Schahram Dustdar, Avigdor Gal, Luciano
Garcia-Banuelos, Guido Governatori, Richard Hull, Marcello La Rosa, Henrik Leopold,
Frank Leymann, Jan Recker, Manfred Reichert, Hajo A. Reijers, Stefanie Rinderle-Ma,
Andreas Rogge-Solti, Michael Rosemann, Stefan Schulte, Munindar P. Singh, Tijs Slaats,
Mark Staples, Barbara Weber, Matthias Weidlich, Mathias Weske, Xiwei Xu, and Liming
Zhu. Blockchains for Business Process Management – Challenges and Opportunities. arXiv
report 1704.03610, arXiv, 2017.

60 Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf, 2008.

61 Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. Assessing dependability
with software fault injection: A survey. ACM Comput. Surv., 48(3):44:1–44:55, 2016.

62 Netflix, Inc. Netflix simian army. https://github.com/Netflix/SimianArmy, 2016.
63 Sam Newman. Building Microservices—Designing Fine-Grained Systems. O’Reilly Media,

2015.
64 Michael Nygard. Release It!: Design and Deploy Production-Ready Software (Pragmatic

Programmers). Pragmatic Bookshelf, 2007.

16394

https://github.com/Netflix/SimianArmy

48 16394 — Software Performance Engineering in the DevOps World

65 Alessandro Orso, Taweesup Apiwattanapong, James Law, Gregg Rothermel, and Mary Jean
Harrold. An empirical comparison of dynamic impact analysis algorithms. In Proceedings
of the 26th International Conference on Software Engineering (ICSE 2004), pages 491–500.
IEEE Computer Society, 2004.

66 Claus Pahl, Pooyan Jamshidi, and Danny Weyns. Cloud architecture continuity: Change
models and change rules for sustainable cloud software architectures. Journal of Software:
Evolution and Process, 29(2), 2017.

67 Andreas Rausch, Ralf H. Reussner, Raffaela Mirandola, and Frantisek Plasil, editors. The
Common Component Modeling Example: Comparing Software Component Models, volume
5153 of Lecture Notes in Computer Science. Springer, 2008.

68 Ralf H Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Koziolek, Heiko Kozi-
olek, Max Kramer, and Klaus Krogmann. Modeling and Simulating Software Architectures:
The Palladio Approach. MIT Press, 2016.

69 Pilar Rodríguez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, Susanna Teppola, Tanja
Suomalainen, Juho Eskeli, Teemu Karvonen, Pasi Kuvaja, June M. Verner, and Markku
Oivo. Continuous deployment of software intensive products and services: A systematic
mapping study. Journal of Systems and Software, 123:263 – 291, 2017.

70 Gerald Schermann, Jürgen Cito, Philipp Leitner, Uwe Zdun, and Harald C. Gall. An
empirical study on principles and practices of continuous delivery and deployment. PeerJ
PrePrints, 4:e1889, 2016.

71 Olena Skarlat, Stefan Schulte, Michael Borkowski, and Philipp Leitner. Resource provision-
ing for IoT services in the fog. In Proceedings of the 9th IEEE International Conference on
Service-Oriented Computing and Applications (SOCA 2016), pages 32–39, 2016.

72 L. Tomás, C. Klein, J. Tordsson, and F. Hernández-Rodríguez. The straw that broke the
camel’s back: Safe cloud overbooking with application brownout. In Proeedings of the
2014 International Conference on Cloud and Autonomic Computing (ICCAC 2014), pages
151–160, 2014.

73 Florian Tschorsch and Björn Scheuermann. Bitcoin and Beyond: A Technical Survey on De-
centralized Digital Currencies. IEEE Communications Surveys and Tutorials, 18(3):2084–
2123, 2016.

74 Marco Vieira, Henrique Madeira, Kai Sachs, and Samuel Kounev. Resilience benchmarking.
In Resilience Assessment and Evaluation of Computing Systems, pages 283–301. Springer,
2012.

75 W.E. Walker, P. Harremoës, J. Rotmans, J.P. van der Sluijs, M.B.A. van Asselt, P. Janssen,
and M.P. Krayer von Krauss. Defining uncertainty: A conceptual basis for uncertainty
management in model-based decision support. Integrated Assessment, 4(1):5–17, 2003.

76 Jürgen Walter, André van Hoorn, Heiko Koziolek, Dusan Okanovic, and Samuel Kounev.
Asking "what?", automating the "how?": The vision of declarative performance engineering.
In Proceedings of the 7th ACM/SPEC International Conference on Performance Engineer-
ing (ICPE 2016), pages 91–94, 2016.

77 Ingo Weber and Jan Mendling. A vision of experimental process improvement. In Proceed-
ings of the 5th International Symposium on Data-driven Process Discovery and Analysis
(SIMPDA 2015), pages 127–130, 2015.

78 Ingo Weber, Xiwei Xu, Régis Riveret, Guido Governatori, Alexander Ponomarev, and Jan
Mendling. Untrusted Business Process Monitoring and Execution Using Blockchain. In
Proceedings of the 14th International Conference on Business Process Management, pages
329–347. Springer, 2016.

79 Danny Weyns, Mauro Caporuscio, Bahtijar Vogel, and Arianit Kurti. Design for sustain-
ability = runtime adaptation ∪ evolution. In Proceedings of the 2015 European Conference
on Software Architecture Workshops (ECSA 2015), pages 62:1–62:7, 2015.

Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, Ingo Weber 49

80 Felix Willnecker and Helmut Krcmar. Optimization of deployment topologies for distributed
enterprise applications. In Proceedings of the 12th International ACM SIGSOFT Confer-
ence on Quality of Software Architectures (QoSA 2016), pages 106–115, 2016.

81 Jan Wloka, Barbara G Ryder, and Frank Tip. Junitmx-a change-aware unit testing tool. In
Proceedings of the 31st International Conference on Software Engineering, pages 567–570.
IEEE Computer Society, 2009.

82 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger, 2014.
Ethereum Project Yellow Paper, EIP-150 Revision.

83 Xiwei Xu, Cesare Pautasso, Liming Zhu, Vincent Gramoli, Alexander Ponomarev, An Binh
Tran, and Shiping Chen. The blockchain as a software connector. In Proceedings of the 13th
Working IEEE/IFIP Conference on Software Architecture (WICSA 2016), pages 182–191,
2016.

84 Rajitha Yasaweerasinghelage, Mark Staples, and Ingo Weber. Predicting latency of
blockchain-based systems using architectural modelling and simulation. In Proceedings
of the International Conference on Software Architecture (ICSA 2017), 2017.

85 Shams Zawoad, Amit Kumar Dutta, and Ragib Hasan. Towards building forensics en-
abled cloud through secure logging-as-a-service. IEEE Trans. Dependable Sec. Comput.,
13(2):148–162, 2016.

86 Shams Zawoad and Ragib Hasan. Towards building proofs of past data possession in cloud
forensics. ASE Science Journal, 1(4):195–207, 2012.

16394

	Executive Summary Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, and Ingo Weber
	Table of Contents
	Overview of Talks
	Performance Engineering for DevOps Using Survivability Modeling of High Availability Systems (Keynote) Alberto Avritzer
	DevOps—How a Fortune 500 Company Translates Theory in Reality (Keynote) Oliver Beck
	Performance Regression Analysis in the DevOps World Cor-Paul Bezemer
	Exploiting with Integrity—Mining User Data to Improve Software Engineering in the Light of Information Ethics Markus Borg
	Can We Make Performance Visible to Developers? Lubomir Bulej
	Dealing with Uncertainty in Developer Targeted Analytics Jürgen Cito
	Transforming Operations for the Cloud Georgiana Copil
	Challenges in Architectural Modeling for Performance-aware DevOps Robert Heinrich
	Efficient Resilience Benchmarking of Microservice Architectures André van Hoorn
	Benchmarking Quality of Performance Evaluation in the DevOps World Vojtech Horký
	Machine Learning Meets DevOps Pooyan Jamshidi
	Evaluating the Effectiveness of Different Load Testing Analysis Techniques Zhen Ming (Jack) Jiang
	How I Learned to Stop Worrying and Love Capacity Shortages Cristian Klein
	Performance Modeling Challenges while Modernizing Existing Software towards Microservices Holger Knoche
	The Importance of Data Science for DevOps and Continuous Delivery Philipp Leitner
	Industrial-grade DevOps: DevOps in the Digitalized Industrial World Fei Li
	The Challenges and Benefits of Synthesizing and Theorizing the DevOps Phenomenon in Software Engineering Lucy Ellen Lwakatare
	Releasing High-performance Software More Rapidly with Lower Costs using Continuous Test Optimization Dusica Marijan
	Joining Adaptation and Evolution Control Loops to Manage Performance in a DevOps Setting Claus Pahl
	Performance Engineering in Fog Computing — An Overview Stefan Schulte
	Improving the Performance of Database-centric Applications through DevOps Weiyi Shang
	SPE Meets DevOps: Best Friends or Consensual Enemies? Catia Trubiani
	Performance-aware DevOps Through Declarative Performance Engineering Jürgen Walter
	Monitoring DevOps Processes and Experimental Process Improvement Ingo Weber
	Performance of Continuous Delivery Pipelines Johannes Wettinger
	Towards Application-aware Cloud Provisioning for Enterprise Applications Felix Willnecker

	Working Groups
	Performance Engineering Challenges for Microservices Robert Heinrich, Andre van Hoorn, Holger Knoche, Fei Li, Ellen Lwakatare, Claus Pahl, Stefan Schulte, Johannes Wettinger
	Performance Test Prioritization Georgiana Copil, Philipp Leitner, Ingo Weber, Felix Willnecker
	Uncertainty in a Performance-Aware DevOps Context Markus Borg, Jürgen Cito, Pooyan Jamshidi, Zhen Ming (Jack) Jiang, and Catia Trubiani
	How Can We Facilitate Feedback from Operations to Development? Markus Borg, Jürgen Cito, Fei Li, Lucy Ellen Lwakatare, Johannes Wettinger
	Performance Engineering for Blockchain-based Applications Philipp Leitner, Stefan Schulte, Ingo Weber
	Implications of DevOps and Self-Adaptivity Georgiana Copil, Pooyan Jamshidi, Cristian Klein, Claus Pahl
	A Systematic Process for Performance Antipattern Detection and Resolution in DevOps based on Operational Data and Load Testing Alberto Avritzer, André van Hoorn, Catia Trubiani, Holger Knoche
	Models@DevOps Robert Heinrich, Jürgen Walter, Felix Willnecker
	Performance Testing with a Limited Budget Cor-Paul Bezemer, Lubomír Bulej, Vojtech Horký, Zhen Ming `Jack' Jiang, Dusica Marijan, Weiyi `Ian' Shang

	Participants

