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Abstract The Internet of Things (IoT) leads to an ever-
growingpresenceof ubiquitous networked computingdevices
in public, business, and private spaces. These devices do not
simply act as sensors, but feature computational, storage,
and networking resources. Being located at the edge of the
network, these resources can be exploited to execute IoT
applications in a distributed manner. This concept is known
as fog computing. While the theoretical foundations of fog
computing are already established, there is a lack of resource
provisioning approaches to enable the exploitation of fog-
based computational resources. To resolve this shortcoming,
we present a conceptual fog computing framework. Then,
wemodel the service placement problem for IoT applications
over fog resources as an optimization problem, which explic-
itly considers the heterogeneity of applications and resources
in terms of Quality of Service attributes. Finally, we propose
a genetic algorithm as a problem resolution heuristic and
show, through experiments, that the service execution can
achieve a reduction of network communication delays when
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the genetic algorithm is used, and a better utilization of fog
resources when the exact optimization method is applied.
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1 Introduction

Due to the wide adoption of virtualization and cloud tech-
nologies, companies and end users nowadays are able to lease
computational resources on-demand [2]. As a second major
technology trend, the advent of the Internet of Things (IoT)
leads to an ever-growing presence of networked comput-
ing devices in public, business, and private spaces. These
devices sense the environment, perform computations, and
enact operations byworking autonomously or by cooperating
with other devices, being often enriched with Internet con-
nectivity [3]. Furthermore, IoT devices can expose (for free
or under incentives) their computing and storage capabilities.

Together, the proliferation of cloud and IoT technologies
enables small-scale and large-scale smart environments and
systems for various domains, such as smart healthcare, smart
cities, smart energy grids, or smart factories [5]. However,
from a technological point of view, the decentralized nature
of the IoT does not match the rather centralized structure
of the cloud. Today, IoT data are mostly produced in a dis-
tributed way, sent to a centralized cloud for processing, and
then delivered to the distributed stakeholders or other dis-
tributed IoT devices, often located close to the initial data
sources [5]. This centralized processing approach results
in high communication delays and low data transfer rates
between IoT devices as well as the IoT devices and potential
users [4].
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The support of decentralized processing of data on IoT
devices in combination with the benefits of cloud technolo-
gies and virtualization has been identified as a promising
approach to reduce communication overheads and data trans-
fer times in the IoT [4,24]. To realize decentralized data
processing, it is necessary tomove parts of the computational
and storage resources needed to process IoT data closer to
data sources and service consumers (i.e., end users or data
sinks) [10]. The underlying conceptual approach, i.e., the
virtualization of IoT devices and the subsequent usage of the
virtualized resources to process data, is known as fog or edge
computing [4]. The community has not yet converged against
crisp definitions of these terms [13]. In the following, we use
the term fog computing for simplicity.

Fog computing mirrors the basic structure of the IoT,
where a multitude of heterogeneous, networked devices
cooperate [3,10]. Fog cells, i.e., single IoT devices coordi-
nating a group of other IoT devices and providing virtualized
resources, are located close to the edge of the network. These
cells allow to execute IoT services to process data in close
vicinity to the data sources and data sinks, instead of involv-
ing the cloud. This leads to lower communication delays, as
well as to a better utilization of already available computa-
tional, storage, and networking resources in the fog. Potential
use cases for fog computing include typical IoT scenarios,
e.g., data prefiltering inBigData scenarios [8], preprocessing
of data streams from sensor nodes [19], or data processing
in smart systems [26]. In many application areas, fog com-
puting is used in combination with cloud computing, which
can overcome the limited resource availability in the fogwith
resources acquirable on-demand.

While the basic idea and theoretical foundations of fog
computing are already established [4,10], there is still a lack
of concrete solutions on resource provisioning. Apart from
the question of how to virtualize the resources offered by
IoT devices, another major barrier for the uptake of fog com-
puting is the question of how to distribute IoT services on
available fog resources.

Hence, in this paper, we describe a conceptual framework
for resource provisioning and service placement in the fog.
For this, we apply the concept of fog colonies. Fog colonies
are micro-data centers made up from an arbitrary number
of fog cells. As in a cloud data center, within a fog colony,
services and data can be distributed and shared between the
single cells. The operational purpose of fog colonies is the
cooperative execution of IoT applications, which are com-
posed of a sequence of services, e.g., as a distributed data flow
(DDF) [16]. Thus, fog colonies aim tomove from centralized
cloud-based processing to a decentralized processing net-
work that includes networked IoT devices and allows cloud
offloading and multi-cloud deployment.

Based on this concept of fog colonies, we are able to
orchestrate fog cells and to provide a suitable service place-

ment approach, i.e., a solution on how to place services on
virtualized resources in a fog landscape. For this, we for-
malize an optimization problem that aims to adhere to the
deadlines on deployment and execution time of applications
and to maximize the utilization of existing resources in the
fog. To solve the proposed optimization problem, we apply
different approaches, namely the exact optimization method
and its approximation through a greedy first fit heuristic and a
genetic algorithm. Also, we compare the results to a classical
approach that neglects fog resources and runs all services in a
centralized cloud. The goal of the evaluation is to identify the
best approach to solve the proposed optimization problem in
terms of resulting Quality of Service (QoS) (i.e., application
response times), QoS violations (i.e., application deadline
violations), and cost.

This paper extends our previouswork [30] (i) by providing
a motivational scenario based on the application of fog com-
puting for Cyber-Physical Systems (CPS), (ii) by adding a
formal model of the fog landscape and IoT applications to be
executed in that landscape, (iii) by providing a formal defini-
tion of the Fog Service Placement Problem (FSPP), and (iv)
by implementing heuristics to solve the FSPP. With respect
to [30], we have also replaced the simulation environment in
favor of iFogSim [17].

The remainder of this paper is organized as follows: After
motivating our work in Sect. 2, we describe the architecture
of our conceptual fog computing framework in Sect. 3. Next,
in Sect. 4,we formulate the envisioned optimization problem.
We solve the problem by various methods and evaluate the
results in Sect. 5. Afterwards, we discuss the state-of-the-art
work in the area of the fog computing frameworks, resource
provisioning and service placement in Sect. 6. Finally, we
conclude the paper in Sect. 7.

2 Motivational scenario

To motivate our work, we use a scenario from the Euro-
pean H2020 Factories of the Future project Cloud-based
Rapid Elastic Manufacturing (CREMA) [27,28]. The goal
of the CREMA project is to realize Cloud Manufacturing,
which is a paradigm to achieve the objectives of the Indus-
trial Internet (also known as Industry 4.0) based on principles
from cloud computing, Business Process Management, and
the IoT [34]. Mapping these principles to the manufacturing
domain allows a high level of flexibility and interoperability
by integrating single distributed steps of manufacturing pro-
cesses from different organizations as if the complete process
was carried out on the same shop floor.

Various support systems for manufacturing, e.g., Enter-
prise Resource Planning or Manufacturing Execution Sys-
tems, are integrated in Cloud Manufacturing processes.
In addition, IoT technologies like CPS, smart objects, or
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Fig. 1 Implementing cloud manufacturing with fog computing

sensor networks emit vast amounts of data in manufactur-
ing scenarios. This data is consumed by distributed Cloud
Manufacturing stakeholders. So far, cloud computing has
been named as the primary enabler of Cloud Manufac-
turing with regard to the provisioning of computational
resources [34,36]. However, manufacturers tend to create
private clouds to process and store data within their own
premises [15,22].

With the advent of fog computing, it is possible to go
one step further using IoT resources instead of private
cloud-based resources for some tasks in manufacturing pro-
cesses. To realize fog computing in Cloud Manufacturing,
the resources of IoT devices available at the shop floor (e.g.,
smart objects, sensor nodes, CPS, gateways) need to be vir-
tualized and subsequently integrated into a fog landscape.
Based on these virtualized resources, it is possible to deploy
services belonging to manufacturing processes in the fog.

As an example, we consider a monitoring process that
runs several services aiming to collect machine and software
component data and monitor communications among multi-
ple sources, customers, and equipment. Taking into account
the amount of transferred data and the cost of the cloud, the
according services from the process are placed on the compu-
tational resources in the available infrastructure of the shop
floor (see Fig. 1). Thus, the major computationally inten-
sive part of the considered process is located close to the
data sources. The outcome of the monitoring process is then
sent to the management system of the shop floor, which, in
fact, can be located both on the local infrastructure and in
the cloud. This approach facilitates the usage of IoT-based
computational resources, eases the control andmonitoring of
online manufacturing devices, allows dynamic reconfigura-
tions of the software infrastructure, and reduces the cost of
using cloud resources [25]. However, to realize this setting,
efficient strategies for defining the placement of manufactur-
ing services in the fog are needed.

It should be noted that the example provided in this section
is illustrative only. Fog computing is a promising approach in
a number of IoT scenarios (e.g., in smart city, smart mobility,
or smart grid scenarios), where a large volume of data needs

to be processed, and the decentralized computation can be
helpful to improve application performance and to relieve
the network stress. Therefore, fog computing is well suited to
achieve the overall objectives of such ‘smart systems’, i.e., to
connect and process data from distributed data sources while
using already existing computational resources, decreasing
processing latency, and offeringmeans to process data on-site
in a privacy-aware manner.

3 Conceptual fog computing framework

In this section, we present the architecture of the fog com-
puting framework depicted in Fig. 2. The framework enables
the enactment of IoT services in an arbitrary fog landscape.
This allows to optimize resource provisioning and service
placement in the fog, as discussed in Sect. 4.

Following the basic structure of fog computing as pre-
sented in [4,10], we allow for resource provisioning and
service placement in both the cloud and fog. To achieve this, a
cloud-fog control middleware is introduced, which controls
all fog cells. IoT applications have to be executable with-
out any involvement of the cloud to reduce communication
delays and cost. Hence, another level of control is necessary,
which needs to run exclusively in the fog. For this, we intro-
duce fog orchestration control nodes, which are a specific
kind of fog cells. A fog orchestration control node manages
a number of fog cells or other control nodes connected to it.
We call such structures fog colonies. In our conceptual frame-
work, we support a hierarchy of fog colonies with a head
element in the cloud, i.e., the cloud-fog control middleware.
The further layers of the hierarchy are the fog orchestration
control nodes, the fog cells, and finally the IoT devices at the
very bottom of the hierarchy (see Fig. 2).

In the following, we use the notion of IoT applications for
tasks which need to be accomplished using computational
resources provided by the cloud or by the fog. The details on
what is an IoT application are given in Sect. 4.1.2. IoT appli-
cations are composed of a set of services to be executed. This
generic definition of applications allows to model different

Fig. 2 Fog computing framework overview
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kinds of IoT applications, e.g., data stream processing appli-
cations, MapReduce jobs, distributed data store services, and
the processes presented in Sect. 2. In the following subsec-
tions, we will present the top-level components of the fog
computing framework in more detail.

3.1 Cloud-fog control middleware

The cloud-fog control middleware is a central unit that man-
ages the execution of applications in the cloud, and supports
the underlying fog landscape. The middleware performs
cloud resource provisioning and placement for services that
are not delay-sensitive or cannot be executed in the fog,
e.g., resource-intensive Big Data analysis. If necessary, the
middleware performs global optimization of underlying fog
colonies by restructuring them. For this, the cloud-fog control
middleware is supplemented by both the means to con-
trol the cloud and the means to manage the underlying fog
colonies. Such control is performed continuously or on-
demand, depending on system events, e.g., if new fog devices
appear which can be used to deploy fog cells, or to recover
after faults of fog cells. Importantly, the cloud-fog control
middleware can overrule fog orchestration control nodes in
fog colonies, but the latter may also act autonomously in the
case that no middleware is available.

3.2 Fog cells

Fog cells are software components running on IoT devices.
They serve as access points allowing to control and mon-
itor the underlying IoT devices, e.g., sensor and actuator
nodes. They may interact with an arbitrary number of other
IoT devices. However, in practice, the number of devices to
be controlled by a fog cell is limited by its computational
resources.

Each fog cell consists of the following components (see
Fig. 3). The listener receives requests for service place-
ment from the fog orchestration control node. The moni-

Fig. 3 Fog cell and fog orchestration control node architecture

tor observes service executions in the compute unit. The
database stores data about received requests, the current
system state of the fog cell, i.e., available resources, and
monitoring data. The fog action control performs actions
according to the service placement plan produced by the fog
orchestration control node, e.g., to deploy and start a partic-
ular service (see Sect. 3.3). The compute unit provides the
actual computational resources for the deployment and exe-
cution of services.

Fog cells expose REST APIs for data transfer and control
actions. The Data API allows basic CRUD operations over
the data stored within a fog cell, and the Deploy API allows
performing control actions for services running in the fog
cell, i.e., instantiating, starting, stopping, and deleting ser-
vices [4]. To become a member of a fog colony, a fog cell
needs to use the Data and Deploy APIs of the corresponding
fog orchestration control node, and at the same time expose
its own Data and Deploy APIs for other fog cells.

3.3 Fog orchestration control nodes

Themain task of a fog orchestration control node is to support
a fog colony. Each fog colony features exactly one head fog
orchestration control node which is a powerful fog cell with
extended functionality for executing services and managing
the resources offered by subordinated fog cells. Opposed to
fog cells, fog orchestration control nodes can receive requests
for execution of IoT applications from users. Additionally,
the control node is able to propagate requests for service
placement to the cloud-fog control middleware or to other
fog colonies (via their fog orchestration control nodes), when
services cannot be handled by the current fog colony. For
this, a service placement mechanism is necessary to identify
how services can be delegated in the entire fog landscape.
Fog orchestration control nodes (i) perform infrastructural
changes in the fog colony, (ii) analyze resource utilization
within the colony, (iii) calculate a service placement plan to
allocate resources for services, and (iv) monitor fog cells.
An approach to optimize service placement is described in
Sect. 4.

On the left-hand side of Fig. 3, the extensions needed for
fog orchestration control nodes are depicted. The reasoner
component produces a service placement plan that deter-
mineswhere each service of requested IoT applications needs
to be deployed. The reasoner also gets information about the
system state from the adjacent fog cells, i.e., available fog
colony resources, controls the connected fog cells, and plans
infrastructural changes in the fog colony, if necessary. If the
considered fog colony does not provide sufficient resources
or further processing is needed, such requests are separated
and propagated to other fog colonies by the propagation com-
ponent via the fog orchestration control node. The watchdog
receives up-to-date information about the utilization of the
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connected fog cells. It observes monitoring data from the
database and compares that data to the expected QoS levels,
i.e., measures the consumption of computational resources
in the fog colony as well as QoS parameters, e.g., the execu-
tion time. This information influences the decision-making
in the reasoner, i.e., if any expected QoS level is exceeded,
the notification is sent to the reasoner to replan the service
placement. The service registry hosts service implementa-
tions and enables the fog action control to search for services
and to deploy them on the fog cell compute units. The service
registry is located in the storage unit of control nodes, since
storing service implementations is resource-consuming. In
addition to the fog cell’s functionality, the listener is extended
to receive requests for application execution. These requests
can be newly submitted to the listener of the fog orchestra-
tion control node, or propagated from another fog colony
in the fog landscape. The database stores the service
placement plan produced by the reasoner. The fog action
control performs the service placement according to the
plan.

It should be noted that an alternative approach would be a
decentralized orchestration of fog cells in a fog colony, i.e.,
without a centralized control node.While this leads to higher
fault tolerance, it also involves extensive coordination and
voting between the involved fog cells. Therefore, we opt for
a more centralized approach in this work. However, we still
foresee that another fog cell becomes the fog orchestration
control node in a fog colony, if necessary, e.g., in case the
original fog orchestration control node fails.

4 Service placement in the fog

As discussed in Sect. 3, it is necessary to provide the fog
orchestration control node of each fog colony as well as the
cloud-fog control middleware with means to analyze sub-
mitted requests for IoT application executions and place
according services onto specific virtualized resources. For
this, the fog orchestration control node needs a complete
overview of the system state of its fog colony and data
about neighbor colonies. With this system state as input,
the reasoner is able to compute a service placement plan
and to send requests for service placement to particular fog
resources. As stated in Sect. 3.3, we assume that each fog
colony is autonomous, i.e., the cloud-fog control middle-
ware is only involved if a fog colony needs additional cloud
resources.

As in the field of cloud resource optimization, mani-
fold goals for resource provisioning and optimal service
placement are possible, e.g., time, cost, or energy efficiency
optimization [1,24,31]. In the following, the goal of service
placement optimization is tomaximize the utilization of a fog
landscape and to adhere to the QoS expectations of applica-

tions, i.e., deadlines on the application execution time. First,
this means that the computational resources offered by fog
cells have to be utilized as much as possible. Second, the
data needed and sourced within a particular fog colony have
to be handled by that particular colony, if possible. If the fog
colony is overloaded, another fog colony in the fog landscape
has to be utilized, e.g., the closest neighbor colony. If the uti-
lization of the closest neighbor colony for requested service
placements results in violations of deadlines of applications,
then the corresponding services have to be deployed in the
cloud.

Together, these goals form the foundation for an opti-
mization problem, as will be presented in the upcoming
subsections. Based on the solutions to this optimization prob-
lem, the fog orchestration control node either instantiates
services on particular fog cells, or propagates requests for
specific service execution to the closest neighbor colony or
to the cloud. We refer to this problem as the Fog Service
Placement Problem (FSPP). In addition to the optimization
problem presented in Sect. 4.2, we design and implement a
genetic algorithm (GA) as a heuristic approach to solve this
problem.

4.1 System model

In order to formulate the FSPP, we define a model of the
resources in a fog landscape in Sect. 4.1.1 and a model of
IoT applications to be executed in the fog in Sect. 4.1.2.
Afterwards, we formulate the FSPP in Sect. 4.2. In Table 1,
we outline the notation used in the FSPP.

4.1.1 Fog landscape

The basic entity in a fog landscape is a fog colony. Each
fog colony consists of ‘thin’ IoT devices which do not pos-
sess any computational power, i.e., sensors and actuators,
and ‘fat’ IoT devices which possess computational power
and can be virtualized, i.e., fog cells and fog orchestration
control nodes. A fog orchestration control node F represents
the head of a colony and oversees the service placement and
execution. F controls subordinate fog cells, which are identi-
fied as the set Res(F). Fog cells f j ∈ Res(F) are equipped
with sensors and actuators. All the communication in the fog
colony is performed through the fog orchestration control
node. The communication link between the fog orchestra-
tion control node and a particular fog cell f j is identified
by a non-negligible delay d j . The CPU utilization of the fog
orchestration control node and fog cells is indicated by UF

and U f j , respectively. Analogously, MF and M f j refer to
the RAM capacities of the fog orchestration control node F
and a fog cell f j , and SF and S f j refer to storage capacities
of F and f j , respectively.
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Table 1 FSPP notation

Notation Definition

Time t Current time

τ Interval between two rounds of the FSPP (in s)

Fog
Landscape

R Cloud

F Fog orchestration control node of the fog colony

N Closest neighbor fog orchestration control node

Res(F) Fog cells in the fog colony

UF CPU capacity of F

MF RAM capacity of F

SF Storage capacity of F

f j Fog cell in a fog colony

U f j CPU capacity of f j

M f j RAM capacity of f j

S f j Storage capacity of f j

d f j Link delay between F and f j

d R Link delay between F and R

dN Link delay between F and N

Applications A Set of applications to be executed

Ak Application

DAk Application deadline

wAk Deployment time of an application

mAk Makespan of an application

rAk Response time of an application

ai Service in an application

Uai CPU demand of a service

Mai RAM demand of a service

Sai Storage demand of a service

mai Makespan of a service

Resai (F) All fog cells able to host a service ai

For each fog colony, we consider a neighborhood of fog
colonies and identify the most efficient neighbor colony. For
the purpose of the FSPP, the criterion for that is to find the
closest neighbor colony by comparing communication link
delays between the fog orchestration control node F and con-
trol nodes of all other neighbor colonies.We indicate N as the
fog orchestration control node of the closest neighbor colony.
The communication link between F and N is characterized
by a non-negligible delay dN .

A cloud-fog middleware is responsible for the utilization
of resources of the cloud R; hence, it represents a commu-
nication bridge between fog colonies (by means of their fog
orchestration control nodes) and the cloud. Even though the
fog colonies are assumed to be autonomous, the cloud-fog
control middleware can overrule fog orchestration control
nodes if needed, e.g., in the case of a failure or fog colony
overload. The communication link between F and R is char-
acterized by a non-negligible delay dR .

4.1.2 IoT applications and services

The fog colony controlled by F receivesm requests for appli-
cation executions. Let A be a set of m IoT applications to
be executed. The IoT application follows the DDF deploy-
ment model [16]. Each Ak ∈ A contains a set of services,
where each service ai ∈ Ak has to be placed on a virtu-
alized (cloud or fog) computational resource. The modeled
applications require that each composing service has to be
deployed before the application can start its execution, i.e.,
before data starts flowing between services. The application
response time rAk is a sum of (i) the overall makespan dura-
tion mAk and (ii) the overall deployment time wAk of the
application. The overall makespan duration of the applica-
tion mAk results from the communication delays among fog
devices and from the makespan duration of each application
service ai ∈ Ak . The makespan duration mai of a service ai
is the time interval between starting and finishing the execu-
tion of ai . The overall deployment time of the application is
wAk , and it depends on the current deployment time wt

Ak
of

the application and the additional time that occurs when any
service in the application is propagated to the closest neigh-
bor colony. The current deployment time indicates the time
elapsed since the request for execution of the application,
e.g., when any service from this application was propagated
from a neighbor colony, this time is stored inwt

Ak
. The details

about the response time estimation are provided in Sect. 4.2.
We assume the deployment time of application wAk already
accounts for all themanagement operations which define and
enact service placement. Each application possesses a dead-
line for deployment and execution DAk defined by users of
the application. Each service ai is defined by its demands of
CPU Uai , RAM Mai , and storage Sai , and by a service type.
The service type indicates that a service ai has to be placed
on specific kinds of virtualized resources in the fog land-
scape. Without loss of generality, we consider three different
service types, namely sensing, processing, and actuating ser-
vices. There is no need to introduce notation for service types,
as they are accounted for in the system model (see variables
in Sect. 4.2).

4.2 Optimization problem

Based on the introduced entities of the fog landscape and IoT
applications, we define the FSPP. The FSPP aims to perform
an optimal placement of services on resources in a fog land-
scape. The solution of the FSPP is a service placement plan
that contains mapping decisions which place each service
either on fog cells or on the fog orchestration control node,
and propagation decisions, which propagate the placement
requests to the closest neighbor colony or to the cloud. The
fog orchestration control node periodically solves the FSPP,
every τ time units, to compute the placement of applications
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requested for execution. When requests are submitted to the
fog colony, their placement is postponed to the next closest
optimization round of the FSPP, indicated by its start time t .
When all the application services are correctly assigned, the
application can start its execution.

Problem variables First, we define the decision variables
which form a service placement plan. The binary variables

x f j
ai and x Fai denote whether service ai has to be placed
on a fog cell f j or on the fog orchestration control node
F , respectively. The binary variables xNai and x Rai indicate
whether service ai has to be propagated to the closest neigh-
bor colony, indicated by N , or to the cloud R, respectively.
For each service ai , we consider a set of fog cells Resai (F),
with Resai (F) ⊆ Res(F), which can host and execute ai .
This definition allows to easily account for the compatibility
between the service type (i.e., sensing, processing, and actu-
ating services) and the allocated resource. In other words, all
the fog cells in Resai (F) are ready to execute the service ai .

Goal function The objective of the FSPP is to maximize
the number of service placements to fog resources (rather
than to cloud ones), while satisfying the requirements of each
application, as in (1).

max
A∑

Ak

⎛

⎝P(Ak) ·
Ak∑

ai

⎛

⎝
Resai (F)∑

f j

x f j
ai + x Fai + xNai

⎞

⎠

⎞

⎠ (1)

Propagating any service to the cloud or to the closest
neighbor colony introduces communication and deploy-
ment delays, which can be detrimental when the application
response time is approaching the deadline. Therefore, the
application requests for placement are prioritized using the
coefficient P(Ak) defined in (2). P(Ak) depends on the dis-
tance between the application deadline DAk and its (already
passed) deployment time in t , denoted as wt

Ak
. The latter

accounts for the time waited by the application before it is
correctly assigned to the computational resources. The key
idea is to first grant fog resources to the applications that have
spent a high waiting time for deployment, with respect to the
application deadline (which cannot be violated, as specified
in the following constraints).

P(Ak) = 1

DAk − wt
Ak

(2)

Constraints First, CPU, RAM, and storage demands of
services placed on certain fog resources must not exceed the
available resources of those devices, as defined in (3) and (4).
The equations allow also to consider a percentage of system
resources γ ∈ [0, 1] that should be preserved free on each
fog cell (e.g., to allow for its operational maintenance).

A∑

Ak

Ak∑

ai

Cai x
f j
ai ≤γC f j , ∀ f j ∈ Resai (F), C={U, M, S}

(3)

A∑

Ak

Ak∑

ai

Cai x
F
ai ≤ γCF , C = {U, M, S} (4)

Second, it has to be ensured that the response time rAk of
each application does not violate the deadline DAk of that
application, as defined in (5).

rAk ≤ DAk , ∀Ak ∈ A (5)

The application response time rAk is calculated as the sum
of the overall makespan duration of the application mAk and
its deployment time wAk , according to (6).

rAk = mAk + wAk (6)

The makespan durationmAk accounts for the time needed
to execute all the application services (in the fog landscape
or in the cloud), together with the time needed to per-
form communications among services (which traverse the
fog orchestration control nodes). Therefore, the application
makespan duration mAk is a sum of communication link
delays in each case of placement of a service on a particu-
lar virtualized resource multiplied by an according decision
variable as in (7). The factors d(ai , f j ), d(ai , F), d(ai , R),
and d(ai , N ) represent the makespan duration of a service
ai when it is executed on the fog cell f j , the control node
F , the cloud R, and the closest neighbor colony N , respec-
tively. These factors are formalized in (8)–(11). Details on
how the estimation of the response time is performed can be
seen further in Example 1.

mAk =
Ak∑

ai

⎛

⎝
Resai (F)∑

f j

d(ai , f j )x f j
ai + d(ai , F)x Fai +

+ d(ai , R)x Rai + d(ai , N )xNai

⎞

⎠ (7)

d(ai , f j ) = d f j + mai (8)

d(ai , F) = mai (9)

d(ai , R) = 2dR + mai (10)

d(ai , N ) = 2dN + mai (11)

The application deployment time wAk considers the time
elapsed before each service is correctly placed on the com-
putational resources (either fog or cloud). Specifically, wAk

accounts for the already passed plus the additional expected
deployment time that appears if any service ai ∈ Ak is
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propagated to the closest neighbor colony. To account for
this additional deployment time, we rely on the auxiliary
variable yAk . Let yAk = 1 if at least one service in Ak is
propagated to the closest neighbor for colony, yAk = 0 oth-
erwise.We formalize the application deployment timewAk as
follows:

wAk = wt
Ak

+ τ yAk + T
t
wN

yAk (12)

The second and third terms provide a contribution only if
yAk = 1. Specifically, τ yAk models that, by propagating
any service to the closest neighbor colony, the application
deployment is postponed to at least τ time units, whereas
T
t
wN

yAk models the additional deployment time spent in
the closest neighbor colony before the application execu-
tion. Indeed, the closest neighbor colony can decide to place
the service as soon as possible or to further postpone its
execution by propagating the request to its related neigh-
bor colony. To calculate the expected deployment time in
the closest neighbor colony T

t
wN

requires to view forward in
time, which is not feasible in practice. Therefore, we estimate
T
t
wN

relying on historical data. T
t
wN

is obtained as the mov-
ing average of parameter α on the latest sampled deployment
time T t−τ

wN
per each service propagated to the closest neighbor

colony:

T
t
wN

= αT t−τ
wN

+ (1 − α)T
t−τ

wN
(13)

where α ∈ [0, 1] represents the discounting factor of the
moving average, T t−τ

wN
is the recorded deployment time of

the service forwarded to N at time t − τ , and T
t−τ

wN
is

the expected average deployment time in N as estimated
in t − τ .

Provided that |Ak | is the cardinality of Ak , this variable
yAk is modeled by means of the equations (14) and (15) as a
logical OR among the placement variables xNai with ai ∈ Ak .
It has to be noted that yAk does not consider the case when
a service is propagated to the cloud, where the service is
deployed immediately, without waiting for the optimization
procedure as in the closest neighbor fog colony.

yAk ≤
Ak∑

ai

x Nai , ∀Ak ∈ A (14)

yAk ≥
∑Ak

ai x Nai
|Ak | , ∀Ak ∈ A (15)

Finally, we define that each service ai can be placed or
propagated on exactly one computational resource, i.e., fog

Fig. 4 Example of service placement

cell f j , fog orchestration control node F , the closest neigh-
bor control node N , or to the cloud R:

Resai (F)∑

f j

(
x f j
ai

)
+ x Fai + xNai + x Rai = 1 ,

∀ai ∈ Ak , ∀Ak ∈ A (16)

Example 1 To clarify the calculation of the response time of
an application, we provide an example for an application A1

that consists of four services A1 = {a1, a2, a3, a4} and is dis-
tributed between two fog colonies. Let the assignments to the
fog devices be as follows: Service a1 is placed on f 1, a2 is
placed on F , a3 is propagated to the closest neighbor colony
N , and a4 is placed on f 2 (Fig. 4). In this example,we assume
that the application had no previous deployment time, so that
wt

A1
= 0, and in the closest neighbor colony with the control

node N the average deployment time is TwN (t). The response
time rA1 is calculated according to (6)–(11) as shown in (17).
To be able to calculate estimations of according factors of
data transfers between services in an application, as neces-
sary for (8)–(11), we use the notion of triangular inequality
in the network [9], which helps to find an approximate dis-
tance and according delay between two network locations,
which is assumed to be bigger than the direct delay between
two locations (see Fig. 4).

rA1 = d f 1 + ma1 + ma2 + dN + ma3 +
+ dN + d f 2 + ma4 + TwN (t) + τ (17)

Domain definition The domain definition for the FSPP
decision variables results from (18)–(22):

x f j
ai ∈ {0, 1}, ∀ai ∈ Ak , ∀Ak ∈ A, ∀ f j ∈ Resai (F) (18)

x Fai ∈ {0, 1}, ∀ai ∈ Ak , ∀Ak ∈ A (19)

x Rai ∈ {0, 1}, ∀ai ∈ Ak , ∀Ak ∈ A (20)

xNai ∈ {0, 1}, ∀ai ∈ Ak , ∀Ak ∈ A (21)

yAk ∈ {0, 1}, ∀Ak ∈ A (22)
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4.3 Genetic algorithm

In general, the service placement problem has been shown
to be NP-complete [21]. Hence, we present a heuristic to
solve the FSPP. The choice to design and implement a GA
to solve the FSPP was based on the popularity of GAs in
solving service composition problems in cloud-based envi-
ronments [35]. The main advantage of GAs is that they allow
to investigate a large search space and provide a viable qual-
itative solution in polynomial time [38,39].

As the name implies, GAs intend to mimic evolutionary
processes [33]. One iteration of a GA implies the application
of three genetic operators in one generation, i.e., selection,
crossover, and mutation. A generation consists of a popula-
tion of individuals, where each individual is represented by
its own chromosome. Each chromosome consists of genes.
The selection operator considers the population of individu-
als in the current generation and chooses the best individuals
to let them reproduce and have an offspring, i.e., new individ-
uals, which form the next generation. The selection operator
assesses the fitness function of the chromosome of each indi-
vidual. The fitness function shows the level of ‘health’ of a
chromosome, and is calculated based on a goal function and
the constraints of an optimization problem. After a certain
percentage of individuals in a population has been chosen for
reproduction, the crossover operator starts swapping genes
of chromosomes of chosen individuals to create an offspring.
The elite of each generation, i.e., the individuals with the best
fitness values, go to the next generation unaltered. The muta-
tion operator performs a mutation of a certain number of
individuals from the new offspring to support the diversity
of generations, i.e., the mutation changes a random number
of genes in the chromosome of an individual. Consequently,
an old generation is evolving into a new generation with a
population filled by both the unaltered elite and offspring.
The algorithm repeats this process until a certain stopping
condition is fulfilled. As stopping condition, various criteria
may be used, e.g., the number of generations, the moment
when the fitness function has no improvement with regard to
a certain tolerance value, or a specific moment in time. In the
following, we describe the concrete implementation of the
GA to solve the FSPP.

Chromosome representation In our implementation, the
chromosome encoding is a vector, which represents a ser-
vice placement plan, i.e., a solution to the FSPP. The length
of the chromosome is the total number of services from all
applications, which were requested for execution at time t ,
i.e.,

∑A
Ak

|Ak |. Therefore, each service can be easily identi-
fied by the position of the according gene in the chromosome.
Each gene in a chromosome denotes a certain placement of a
service on a specific fog resource. A gene is an integer value
corresponding to the unique identifier of the computational
resource (i.e., fog cell, fog orchestration control node, the

Fig. 5 Chromosome representation

4 5 54 1 3 ... ... 1 6

Fig. 6 Chromosome contents

closest neighbor colony, or the cloud). A position of a gene
in a chromosome along with its integer value represents the
service placement on the resource (see Fig. 5). Such chro-
mosome encoding ensures the placement of all services.

Apart from encoding the placement, an estimated system
state can be derived from the information in the chromo-
some (Fig. 6). This information includes the used CPU,
RAM, and storage capacities of fog resources (both fog cells
and fog orchestrator control nodes), and according response
times of applications, which will be obtained if the service
placement according to the considered chromosome repre-
sentation is enacted. The estimated system state is calculated
based on the genes of the chromosome. This calculation is
performed whenever the chromosome is created, i.e., also
after crossovers and mutations.

Fitness functionThefitness function for each chromosome
is calculated based on the principle of encouragement if the
chromosome fulfills the constraints of the FSPP, and of pun-
ishment in the other case [37]. We consider three types of
constraints: (i) a set of constraints Ψ on capacities of CPU,
RAM and storage resources, (ii) a set Γ of implicit binary
constraints derived from the model’s goal function, i.e., con-
formance to service types, indications whether services are
placed on the fog resources, and (iii) a set of constraints
Υ causing the ‘death’ of chromosomes, specifically, service
type violations and deadline violations. To calculate the fit-
ness function of a chromosome c, we have to account for
these three types of constraints.
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First, we consider whether the constraints ∀βp ∈ Ψ are
satisfied (i.e., if βp(c)≤0) or not satisfied (i.e., if βp(c) > 0),
as in (23):

δβp(c) =
{
0, if βp(c) ≤ 0

1, if βp(c) > 0
(23)

Similarly, δβγ (c) denotes whether the constraints from Γ are
satisfied (βγ (c) = 0), or not (βγ (c) = 1). Regarding the Υ

constraints, the penalty distance from the satisfaction of Υ

constraints for c is defined in (24), where βυ denotes a con-
straint, and δβυ(c) indicates whether a constraint was violated
in the current chromosome c, i.e., δβυ(c) = 1.

D(c) =
∑

βυ∈Υ

δβυ(c) (24)

Provided thatωβp(c) is a weight factor of constraint βp ∈ Ψ ,
ωβγ (c) is a weight factor of constraint βγ ∈ Γ , and ωp is
the penalty weight factor for the Υ constraints, the fitness
function is calculated according to (25):

F(c) =
∑

βp∈Ψ

ωβp (1 − 2δβp(c)) +

+
∑

βγ ∈Γ

ωβγ (1 − 2δβγ (c)) − ωpD(c) (25)

If constraintsβp orβγ are satisfied in the considered chromo-
some c, then δβp(c) and δβγ (c) become 0, and the according
values within the first and the second terms are added to
the fitness function. When the constraints are not satisfied,
δβp(c) and δβγ (c) become 1, and the according values result-
ing from the first and second terms are subtracted from the
fitness function. The third term ensures penalty ωpD(c) for
having D(c) other than 0, where the penalty factor ωp has to
be big enough to ensure that the worst chromosomes do not
participate in breeding individuals of next generations in the
GA.

Genetic operators As for the parameters of the GA
operators, we use the 80%-uniform crossover, tournament
selection, random gene mutation with 2% mutation rate,
elitism rate of 20%, and a population size of 1000 individ-
uals, which were set based on pre-experiments where these
parameters were varied. The uniform crossover was chosen
because genes are integer values. 80% of selected individuals
perform crossovers. To combine genes from parent chromo-
somes, a fixed mixing ratio is used, e.g., a ratio value of 0.5
means that 50% of genes come from each parent. As for
the tournament selection, each of the two chromosomes is
selected based on the tournament with a certain arity. This
is done by drawing a number of random chromosomes (here
the arity is 2) without replacement from the population and

then selecting the fittest chromosome among them. The 2%
randomgenemutationmeans random genes in chromosomes
mutate with the probability of 2%.

Stopping condition The stopping condition of the GA is
activated when the fitness function achieves a tolerance value
of ε = 10−4, which is the average relative change in the fit-
ness value over generations. During each run of the GA, the
fitness function increases because less penalties are applied to
the individuals. Therefore, the stopping condition performs
only when the fitness function of the fittest individual in the
generation is a positive value, i.e., when there are no ‘death’
penalties applied to the individual. Additionally, we include
an auxiliary stopping conditionwith amaximum limit of gen-
erations achieved to eliminate unproductive time-consuming
search.

In the next section, we evaluate our GA compared to the
exact optimization method and to a baseline, namely the
greedy first fit heuristics, and to the execution in the cloud.

5 Evaluation

Our evaluation aims to show the performance of various
approaches of solving the FSPP. To apply the different
approaches in a fog environment, we use the fog simula-
tion toolkit iFogSim [17] to simulate the fog landscape and
cloud resources.

5.1 Evaluation environment

While iFogSim features most of the entities necessary to
model a fog landscape as described in Sect. 3, some modifi-
cations of the entities were necessary. The Application class
is extended by the means to account for the deployment and
response times of an application, and the application dead-
line. The FogDevice class is extended to perform as a fog
orchestration control node. For that, the class was supple-
mented with the functionality to analyze the utilization of
resources in the underlying fog colony and to identify the
closest neighbor colony to propagate services to. To adhere
to the FSPP constraints, the functionality to calculate a mov-
ing average of deployment times of applications in the closest
neighbor colonywas implemented (as described in Sect. 4.2).

5.2 Evaluation scenarios

We solve the FSPP by a greedy first fit heuristic (called
the ‘First Fit’ scenario), which serves as a baseline for our
evaluation, the exact optimization method (see Sect. 4.2)
implemented by the means of the IBM CPLEX library1

1 https://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/.
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(called the ‘Optimization’ scenario), and the GA (called the
‘Genetic’ scenario) introduced in Sect. 4.3. If the fog land-
scape is not available at all, the execution is performed solely
in the cloud (called the ‘Cloud’ scenario).

In the First Fit scenario, a service placement plan is pro-
duced by searching a first fit fog resource [6,30]. Hence, a
list of all available fog devices in the fog landscape is sorted
by the communication link delays between each resource
and the fog orchestration control node, by available resource
capacities, and by the types of services. The placement of
services on fog resources is prioritized over the placement
in the cloud. The first fit algorithm iterates over each service
of each application in a cycle and checks if the current fog
device in the sorted list of fog devices satisfies the service and
application requirements. If the fog colony cannot host a ser-
vice, the service request is propagated to the closest neighbor
colony.

The Genetic scenario is based on the GA that is discussed
in Sect. 4.3.

The solution of the FSPP in the Optimization scenario is
computed by the exact optimization method implemented by
the means of the IBM CPLEX solver. To simplify the use of
this solver, the open source Java ILP library2 is applied.

In the Cloud scenario, all the services are placed on cloud
resources. This scenario aims to show the benefits of decen-
tralization in fog landscape.

5.3 Experimental setup

As setup for the evaluation, we consider five different appli-
cations following the motivational scenario, i.e., motion,
video, sound, temperature, and humidity processing applica-
tions in the manufacturing shop floor, and according sensors
and actuators. The IoT applications are simulated by the
means of iFogSim (iFogSim supports the DDF deployment
model [17]). The needs in resources for application services
are predefined to ensure that one computational device can-
not host a whole application and to show that the FSPP is
flexible and reacts on different input parameters. Service
makespan durations were set based on received average data
from pre-experiments run in iFogSim for specified services.
A summary of the experimental setup is shown in Tables 2
and 3.

We observe a service placement in one fog colony that
consists of ten fog cells connected to a fog orchestration con-
trol node. The communication link delays between the fog
orchestration control node and the cloud, the closest neighbor
colony, and fog cells are correspondingly 1, 0.5, and 0.3 s. In
reality, the communication link delays depend on the physi-
cal distance between resources.

2 https://sourceforge.net/projects/javailp/.

Table 2 Application resource demands

Service Uai (MIPS) Mai (MB) Sai (MB) mai (s)

Sense 50 30 10 0.90

Process1 200 10 30 0.10

Process2 200 20 30 0.10

Process3 100 30 30 0.25

Actuate 50 20 10 0.50

Table 3 Application details

Application DAk (s) wAk (s)

A1 120 60

A2 300 0

A3 300 60

A4 360 60

A5 240 0

In the closest neighbor colony, the expected deployment
time of applications is T

t
wN

= 3 min, and the sampled
deployment time in the previous round of FSPP period is
T t−τ

wN
= 2 min. Also, in the experiments, we additionally

vary these parameters to show their influence on the sys-
tem behavior. The CPU, RAM and storage resources in the
fog orchestration control node are 1000MIPS, 512MB, and
8GB accordingly. The respective resources of the fog cells
are 250MIPS, 256MB, and 4GB. In the experiments, CPU
capacities of fog resources are also varied to show their
influence on service placement. All three service types, i.e.,
sensing, processing, and actuating services, can be executed
in the fog colony and the cloud, whereas only processing ser-
vices can be propagated to the closest neighbor colony. The
processing cost in the cloud is $0.30 per billing time unit
(BTU), i.e., 1h, as in [30].

Finally, we use for the optimization model α = 0.5 to
update the expected deployment time in the closest neighbor
fog colony, i.e., T

t
wN

. In the Genetic scenario, we set the
weight factor ω =1 for all constraints [37], and the penalty
weight ωp is 1000, which are explained in Sect. 4.3.

5.4 Evaluation metrics

To show how a service placement plan allows to meet the
application deadlines, we observe the response times of
applications. A difference between the application deadline
and its response time DAk − rAk shows how far the response
time is from the respective deadline.

A service execution delay indicates how much time is
spent by a service in the network. This metric is calculated
by the means of the simulation environment depending on
the communication link delays between resources.
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Table 4 Scenario performance comparison

Scenario rAk (s) DAk − rAk (s) Placement (%) Cost

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 f j F N R ($)

Optimization 62.43 262.6 64.66 322.9 4.89 57.56 37.34 235.3 37.1 235.1 40 24 24 12 0.09

First fit 61.42 262.6 322.8 322.8 264.4 58.57 37.34 -22.87 37.11 -24.43 40 16 44 0 0.00

Cloud 60.00 0.001 60.00 60.00 0.001 59.99 299.9 239.9 299.9 239.9 0 0 0 100 4.81

Table 5 Genetic algorithm performance

Metrics A1 A2 A3 A4 A5 Average placement Cost

Resource (% of all services) ($)

rAk (s) 65.65 262.47 65.83 322.64 5.19 f j 28.8 (σ = 3.92)

(σ = 1.48) (σ = 0.27) (σ = 1.38) (σ = 0.25) (σ = 0.29) F 11.2 (σ = 1.60) 0.22

DAk − rAk (s) 54.34 37.52 234.16 37.35 234.80 N 24.0 (σ = 2.52) (σ = 0.02)

(σ = 1.48) (σ = 0.27) (σ = 1.38) (σ = 0.25) (σ = 0.29) R 36.0 (σ = 4.38)

The utilization of the fog (cloud) is calculated as a ratio
of the number of services placed on fog (cloud) resources to
the total number of services. This metric demonstrates the
usage of different resources.

In order to show how the model behaves in different
conditions, we analyze intrinsic relationships between the
service placement and different parameters (i.e., strict or
loose deadlines, overloaded or underloaded resources, aver-
age deployment time in the closest neighbor colony, time
between two subsequent optimization periods), which gives
insights into the system behavior.

Assuming ownership of the fog landscape, the cost of ser-
vice execution in the fog can be neglected. The cost of service
execution is calculated for the usage of cloud resources as a
product of the cost per processing in the cloud and time in
seconds of using cloud resources divided by the number of
seconds in 1BTU.

5.5 Results and discussion

The aim of this evaluation is to observe the executions of ser-
vice placement plans provided by various approaches, i.e., in
the First Fit, Genetic, and Optimization scenarios. By apply-
ing service placement plans, we observe response times of
applications, deadline violations, the utilization of resources,
and the processing cost. Additionally, these results are com-
pared with the results of the Cloud scenario. An overview of
the results is shown in Table 4. A summary of the results of
the Genetic scenario is shown in Table 5. These results were
separated as the GA is a non-deterministic algorithm, which
required running multiple repetitions of the experiments to
achieve an average and deviation of the results.

Fig. 7 Response times of applications

5.5.1 Deadline violations and service delays

The First Fit scenario results in deadline violations for the
applications A3 and A5 by 22.87 and 24.43 s, respectively. In
the Genetic, Optimization, and Cloud scenarios, the service
placement solution does not violate deadlines; however, each
approach leads to different results in terms of fog resource
utilization and application response times (see Table 4). In
the First Fit scenario, the services are propagated to the
closest neighbor fog colony when the current colony is not
able to execute them because of resource constraints. The
cloud has the lowest priority in the desirable service place-
ment. Therefore, in the First Fit scenario processing services
are propagated to the closest neighbor colony. Because the
resources in the fog landscape are less powerful than cloud
resources, the spikes in Fig. 8 appear. Even though the
deadlines in the Genetic and Optimization scenarios are not
violated, the delays in single service executions on average
are smaller in the Genetic scenario compared to the Opti-
mization scenario.

The response times of applications and delays for single
service executions in the four scenarios are depicted in Figs. 7
and 8. In Fig. 7, theCloud scenario does not violate deadlines,
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Fig. 8 Service execution delays

Fig. 9 Impact of application deadlines on response times

and services are executed immediately after submission of
application requests because of the theoretically unlimited
resources of the cloud. However, in reality, the utilization
of cloud resources leads to higher execution cost and higher
communication delays due to the physical distance of the
cloud data center.

To show the impact of application parameters on response
times, we conduct another experiment which varies the
deadline parameter of application A4 (Fig. 9) and observes
response times of all applications. A4 was chosen for this
experiment as it has the biggest response time (see Tables 4
and 5). Given the parameters of the applications as shown
in Table 3, when the deadline is below 120s, the process-
ing services of A4 are assigned only to the fog orchestration
control node as this is the closest deadline among all appli-
cations. Above 120s and below 300s, the application A1 has
a closer deadline than A4, and therefore processing services
of A1 and one processing service of A4 are placed on the fog
orchestration control node, and the rest two processing ser-
vices of A4 are propagated to the cloud. Above 300s, A4 has
enough time to wait for the deployment, and therefore, some
services are propagated to the closest neighbor colony, and
both τ and T

t
wN

affect the response time of the application
A4.

5.5.2 Utilization of the fog landscape

In the First Fit scenario, all sensing and actuating services
are placed on the different fog cells in the fog colony, four
processing services are placed at the control node, and the
remaining 11 processing services are propagated to the clos-
est neighbor colony.

Fig. 10 Utilization of resources

Fig. 11 Impact of T
t
wN

on service placement

In the Genetic scenario, the sensing services of applica-
tions A1, A3, and A5 are placed on the fog cells, the actuating
services are placed either on the fog cells or in the cloud, and
the processing services are placed in the cloud. This service
placement plan includes 36% of placements in the cloud,
and the available resources of the fog colony are not used
optimally, i.e., the fog orchestration control node has enough
free resources to host more services. Many cloud placements
occur because in the fitness function of each of generated
chromosomes there is a considerably big penalty for dead-
line violations, but there are no penalties for not using the
full capacities of resources of the fog orchestration control
node or fog cells.

In the Optimization scenario, all ten sensing and actuating
services are placed on fog cells; however, the fog orches-
tration control node hosts more services, i.e., six services.
Another six services are propagated to the closest neighbor
colony, and three are executed in the cloud. Such service
placement utilizes fog resources to a higher degree, leading
to a reduced cloud utilization. The utilization of the fog land-
scape in different scenarios is summarized in Fig. 10.

To show how τ and T
t
wN

affect the utilization of the fog
landscape, we conduct separate experiments, calculate the
goal function, and observe service placement by varying τ

and T
t
wN

. As can be seen in Fig. 11, while T
t
wN

is small, the
closest neighbor fog colony performs the processing fast and
therefore allows the fog orchestration control node to assign
most of the services to the closest neighbor colony. Then,
T
t
wN

reaches a certain value when it starts to interfere with
deadlines of applications, and, therefore, there is a decrease
in the goal function as more services are propagated to the
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Fig. 12 Impact of resources of F on service placement

Fig. 13 Impact of application deadlines on the goal function

cloud. Also, when to increase T
t
wN

significantly, all the ser-
vices are propagated to the cloud, and the closest neighbor
colony is not sufficient any more to host any service. The
same considerations are valid for the τ parameter.

Regarding variations in the fog colony’s resources, the
number of services placed in the fog grows as well as the goal
function of the model when the capacity of the fog orchestra-
tion control node increases (see Fig. 12). In the considered
scenarios, increasing the capacity of the fog cells currently
does not change the goal function, because fog cells can only
host sensing and actuating services, and the number of these
services does not change.

The impact of variations of deadlines of applications on
the goal function is shown in Fig. 13. To receive these obser-
vations, the experiment was conducted five times. In each
experiment, the deadline of one application at a time has
been changed from 30s to 6min, while all other applications
remain unaltered. The results of the experiment show that
when the deadline is small, the services of the considered
application are placed by the fog orchestration control node
as they cannot be propagated to the closest neighbor colony,
because thatwouldmean adding a further deployment time of
τ plus T

t
wN

. When the relaxed deadline is in place, the dead-
line becomes higher than the deadlines of other applications,
i.e., starting from 3min, which prevents the services from
the considered application to be placed on the fog orchestra-
tion control node, and therefore they are propagated to the
cloud. The goal function value in this case is reduced accord-
ing to the coefficient 1

DAk−rAk
and due to the fact that less

services are placed in the fog. When the deadline becomes
more relaxed comparing to the parameters τ and T

t
wN

, i.e.,

starting from 5min, services are propagated to the closest
neighbor colony, and the goal function slightly increases, as
more services are hosted by the fog landscape. After that,
only reduction is observed due to the change of the 1

DAk−rAk
.

5.5.3 Cost of execution

The cost of service execution according to the Genetic sce-
nario is $0.22, because 9 out of 25 services are executed in
the cloud. In the Optimization scenario, the execution cost
constitutes 40% of the cost in the Genetic scenario, charging
$0.09 since only three services are propagated to the cloud.
The execution cost received in the Optimization and Genetic
scenarios is 2 and 4%, respectively, compared to the exe-
cution cost in the Cloud scenario. The results are shown in
Tables 4 and 5.

To sum up the most important observations of the evalua-
tion, the execution of the service placement plans produced in
the Genetic and Optimization scenarios do not violate dead-
lines of applications unlike the service placement plan of the
First Fit scenario. The cost of execution in the Optimization
scenario constitutes only 40% of the cost from the Genetic
scenario. Even though the GA solution leads to less delay if
observing single service executions, the exact optimization
method better utilizes the fog landscape resources.

6 Related work

As fog computing is still a recent research topic, there is a lack
of concrete solutions supporting this paradigm.Nevertheless,
there is some conceptual as well as fundamental work in
related areas, which needs to be discussed.

First, there has been some work on fog computing archi-
tectures. In their seminal conceptual work on the topic,
Bonomi et al. introduce a layered model bridging the IoT
and the cloud [4]. The authors show that applications may
be placed in the cloud and in the fog, spanning potentially
different cloud providers. In addition, it is shown that a fog
computing framework has to encompass different communi-
cation links, i.e., with the cloud, within the fog, and with IoT
devices. Dastjerdi et al. [10] present a reference architecture
for fog computing which follows a very similar structure
if compared to the work by Bonomi et al. The reference
architecture implies serving IoT requests in the local fog
rather than involving the cloud. In the reference architec-
ture, central fog services are placed in a Software-Defined
Resource Management layer that provides a cloud-based
middleware. This prevents fog colonies from acting in an
autonomous way. Instead, fog cells are analyzed, orches-
trated, and monitored by the cloud-based middleware. Also,
fog resource provisioning and the offloading of computa-

123



SOCA (2017) 11:427–443 441

tional tasks from the fog to the cloud are achieved through
the middleware. In another discussion of basic fog features,
Vaquero et al. [31] consider different concepts to realize fog
architectures, including both centralized and decentralized,
i.e., peer-to-peer, approaches. In particular, the authors intro-
duce the notion of edge clouds, which are private fogs made
up from IoT devices, resembling our notion of fog colonies.

Having discussed conceptual architectures, it is necessary
to focus on service delivery models for fog computing. The
first model to be discussed is stream processing. It requires
the creation of a processing topology that includes IoT data
sources and operators. An IoT ecosystem for stream pro-
cessing called VISP is proposed in the work of Hochreiner et
al. [19]. In VISP, complex network topologies are analyzed,
and services are placed on resources according to QoS con-
straints. This work is an interesting example of a real-world
testbed which can be used for implementation of a fog com-
puting framework in the future. Giang et al. [16] introduce a
DDFprogrammingmodel, which is also the basic application
model applied within the work at hand. This model resem-
bles the stream processing approach and provides means to
create and execute IoT applications. In the work of Barnaghi
et al. [11], a structured IoT information model is proposed.
This model is based on semantic annotations and is divided
into (i) an entity model, which aims to establish basic physi-
cal entities and relationships in the IoT infrastructure, and
(ii) a resource model, which represents software artifacts
corresponding to those physical entities. The proposed IoT
information model can be used, e.g., for service associa-
tion discovery and monitoring, for reasoning upon semantic
annotations, and for decision-making processes. A different
service delivery model is Network Function Virtualization,
described in a survey by Han et al. [18]. This approach influ-
ences both the conceptual architecture of the fog computing
environment and the modeling of IoT applications. Virtual-
ized Network Functions (VNF) are virtual appliances which
can be placed onto physical resources. With regard to fog
computing, VNFs can be considered as containers with soft-
ware corresponding to fog orchestration control nodes, fog
cells, and cloud-fog control middleware, which were dis-
cussed in our paper. We assume that these VNFs are already
placed onto fog devices. In fact, in our work, we consider one
layer above VNFs, i.e., the placement of IoT applications on
top of VNFs.

The conceptual fog frameworks discussed above do not
take into account the concrete needs of resource provision-
ing and service placement in the fog. Instead, the focus is on
communication and task sharing between the different layers,
i.e., cloud, fog, and IoT. In fact, the number of resource pro-
visioning mechanisms specifically aiming at fog computing
is quite limited so far. Hong et al. present a programming
model including a simple resource provisioning strategy
which relies onworkload thresholds, i.e., if the utilization of a

particular fog cell exceeds a predefinedvalue, another fog cell
is leased [20]. Aazam and Huh present a more sophisticated
resource provisioning mechanism based on the prediction of
resource demands [1]. In this work, dynamic allocation of
resources is performed in advance during the design time
of the system. This approach is based on cost optimization,
and the resource allocation depends on the probability fluc-
tuations of the demand of the users, types of services, and
pricingmodels. In anotherwork ofVögler et al. [32], a policy-
based approach to optimize deployment topologies on the
edge devices is presented. This approach offers an elastic
application deployment by the means of defining a ‘hot pool’
of resources per each service of requested applications to
enable additional scaling. In our work, we also consider run-
time service placement optimization to account for dynamic
infrastructural changes in a fog landscape; however, we con-
centrate on more concrete formalization of a system model
and optimization problem.

Apart from fog-specific resource provisioning solutions,
resource provisioning and service placement are major
research challenges in the general field of cloud com-
puting [7,23,40]. While these approaches offer interesting
insights, there are certain differences between fog services
and cloud services. These differences prevent a direct adap-
tation of cloud resource provisioning solutions. First, the size
and type of cloud resources are very different from their coun-
terparts in fog computing. While cloud resources are usually
handled on the level of physical machines, virtual machines,
or containers, fog resources are usually not as powerful and
extensive. Second, fog colonies may be distributed in a rather
large area and heterogeneous network topology, while cloud
resources are usually placed in centralized data centers, mak-
ing it more important to take into account data transfer times
when developing solutions for resource allocation in the fog.
This is especially important since one particular reason to
use fog computing in IoT scenarios is the higher delay-
sensitivity of fog-based computation [4]. Hence, resource
provisioning approaches for the fog need to make sure that
this benefit is not foiled by extensive data transfer times and
cost.

Resource provisioning is also an important topic inMobile
Cloud Computing (MCC) [14], which integrates mobile
devices and cloud resources and offers solutions for offload-
ing tasks from mobile devices to the cloud [12]. However,
MCC is mostly based on a rather simple network topology
with direct communication between mobile devices and the
cloud. Neither groups of devices (as in fog colonies), nor
the different layers observed in fog computing are taken into
account in MCC. Therefore, again, the according resource
provisioning approaches offer interesting insights and ideas,
but cannot be directly ported to the field of fog computing.

Our former works [29,30] consider both the structure of
a fog landscape and service placement mechanisms. The
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paper at hand extends those contributions offering additional
service placement mechanisms (i.e., the genetic algorithm-
based heuristic) and evaluation experiments.

7 Conclusion

Fog computing aims to utilize available computational, stor-
age, and networking resources for the enactment of IoT
applications close to the edge of the network. Currently, the
uptake of fog computing is still at its very beginning, and
thus there is a lack of theoretical and practical foundations
for fog resource provisioning and service placement.

After having motivated our work with a scenario from
the field of Cloud Manufacturing, we discussed a conceptual
architecture for a fog computing framework and formal-
ized an optimization problem for service placement in the
fog, called the FSPP. We simulated the envisioned architec-
ture and solved the FSPP using several approaches, i.e., a
greedy first fit heuristic, a genetic algorithm, and an exact
optimization method. Also, we compared all the results with
the execution of the same experimental setup in the cloud.
Unlike the service placement plans produced by the greedy
first fit heuristic, the service placement plans of the genetic
algorithm and the exact optimization method do not violate
deadlines of applications. The optimizationmethod produces
a service placement plan which is more effective in utilizing
the fog landscape resources, leading to lower execution cost
when compared to the average service placement plan pro-
duced by the genetic algorithm (with the cost constituting
only 40% of the cost of service placement plans produced
by the genetic algorithm). The genetic algorithm produces
solutions which on average experience a lower deployment
delay by exploiting more cloud resources (on average 36%
of the services have been run in the cloud).

In our future work, we aim to implement a real-world
testbed based on the proposed conceptual fog computing
framework and to improve the system model for resource
provisioning in terms of cost of resources and reliability and
availability of services. The architecture can be enhanced by
fault tolerance mechanisms to account for mobility in the
fog landscape. Parallel heuristic algorithms should be inves-
tigated in order to find a viable substitution for the exact
optimization method, which may fail to solve the problem
on the Big Data scale. Another aspect of our future work is
the systematic observation of a fog landscape to obtain real-
world network data to evaluate the behavior of the service
placement approaches.
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