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Abstract We consider multiscale modeling of fracturing
solids undergoing strain localization, whereby Statistical
Volume Elements (SVEs) are used to compute the homoge-
nized macroscopic stresses and the eXtended Finite Element
Method (XFEM) is used to represent macroscale displace-
ment discontinuities. These discontinuities are imposed on
the localized SVEs in a smeared sense, whereby the smear-
ing width is related to the SVE size and the orientation of
the macroscopic discontinuity. This smearing width rela-
tion, which is derived within the setting of Variationally
Consistent Homogenization (VCH), prevents pathological
dependence of the solution on the SVE size. The SVE size
insensitivity is further improved by adopting the recently
proposed localization alignedweakly periodic boundary con-
ditions. Advantages of the proposedmethod are that it allows
multiscale modeling of localized fracture without restrictive
assumptions on the SVE size and without the need to explic-
itly track a localized region in the SVE.

Keywords Multiscale modeling · Computational homoge-
nization · Localization · XFEM · Weakly periodic boundary
conditions

1 Introduction

Multiscale modeling of fracturing solids is a challenging
topic that has been the subject of considerable research
efforts, cf. the reviews in [1,2]. A frequently used approach
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is to perform numerical simulations on Statistical Volume
Elements (SVEs),1 whereby a fundamental challenge is that
the SVE looses its representative character upon localiza-
tion. This loss of representativeness leads, for standard first
order computational homogenization, to pathological depen-
dence of the numerical results on the macroscale mesh size
and the SVE size. These problems have been addressed in
the literature using several different schemes. A homoge-
nization scheme that employs discrete cracks on both scales
was proposed by Verhoosel et al. [5], where a homogenized
traction-separation law is derived, assuming elastic material
behavior prior to crack nucleation. An alternative scheme
that assumes a weak discontinuity on the microscale was
proposed by Coenen et al. [6]. Souza and Allen [7] instead
considered visco-elastic materials, and developed a homoge-
nized traction-separation law using interface elements on the
microscale and XFEM on the macroscale. Methods employ-
ing XFEM were also proposed by Belytschko et al. [8] and
Bosco et al. [9], whereas element embedded discontinuities
were employed by Toro et al. [10].

The problem with pathological SVE size dependence can
be addressed by separating the bulk deformation and the
discontinuous deformation in a suitable way, thereby allow-
ing incorporation of a length scale related to the fracture
zone. Souza and Allen [7] compute the bulk and interface
response from different SVEs, imposing only the discontin-
uous part of the strain on the localized SVE. Belytschko et
al. [8] instead introduce a perforated unit cell, and separate
the bulk deformation from the discontinuity by exclud-

1 In the literature, both Representative Volume Element (RVE), Statisti-
cal Volume Element (SVE) andMicrostructural Volume Element [3] are
used to denote a sample of the microstructure. To stress the fact that a
sample of finite size will, in general, not be truly representative, we pre-
fer the notion Statistical Volume Element (SVE), cf. Ostoja-Starzewski
[4].
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ing unstable subdomains. This method allows simulations
involving macroscale localization, but requires that the SVE
size is approximately equal to the macroscale element size.
A scheme that allows wider scale separation was proposed
in [3,6,9], where the effective microscale discontinuity is
identified by means of image analysis techniques in order to
separate the bulk and discontinuity parts of the deformation.
In [11], the effective discontinuity was instead identified by
monitoring the damage evolution in the SVE. Even though
these schemes have successfully addressed several diffi-
culties associated to multiscale localization, we note that
previous work tends to focus on approaches where the topol-
ogyof themicroscale discontinuity is explicitly identified and
tracked dynamically in different ways [3,6,8–11]. Therefore,
a simpler but more versatile approach, that does not require
dynamic tracking of the microscale discontinuity, would be
very valuable.

Regarding the choice of suitable boundary conditions
(BCs) on the SVE, it is well known that both Dirichlet,
strong periodic and Neumann BCs are inaccurate if local-
ization occurs in the SVE. In fact, these BCs are inaccurate
also during the early stages of crack propagation, i.e. prior
to localization, if cracks intersect the SVE boundary, see e.g.
the comparison between differentBCs in [12]. Remedies pro-
posed in the literature are tomix Dirichlet and Neumann BCs
on different parts of the SVE boundary [8], to use Percolation
Path Aligned BCs on strong form [3,6], or to use localization
aligned periodic BCs on weak form [13].

In the present work, we choose to use localization aligned
weakly periodic BCs on the SVE and adopt the concept of
Variationally Consistent Homogenization (VCH) to develop
a multiscale method that is computationally efficient when
the macroscale deformation localizes in a narrow band. We
allow for the use of any suitable fracture model (XFEM,
interface elements, embedded discontinuities, nonlocal con-
tinuum damage) on the microscale, but we consider strong
discontinuities on the macroscale, and impose these discon-
tinuities on the SVE in a smeared sense, thereby avoiding the
need to explicitly identify and track a localization region in
theSVE.More precisely, the homogenized response obtained
from the SVEs in the damaged zone provides an (implicit)
cohesive zone law, relating the macro discontinuity to the
effective macro traction computed from the SVE response.
Using a smeared macro-to-micro discontinuity transition to
impose the macro discontinuity on the SVE, the macro dis-
continuity is thereby implicitly driven by the microscale
response.

The remainder of the paper is organized as follows: The
strong and weak forms of the single scale model problem
under consideration are established in Sect. 2, followed by
the derivation of the two-scale formulation in Sect. 3, a few
illustrative examples in Sect. 4, and some concluding remarks
in Sect. 5.

nint

Γ−
int

Γ+
int

Ω

Γext

Fig. 1 Specimen with internal boundaries representing cracks in the
material

2 Model problem

In this section, we will establish the fully resolved problem,
i.e., the single scale problem prior to introduction of compu-
tational homogenization. To this end, let us consider a solid
domain Ω with external boundary Γext and internal surfaces
Γint representing cracks in the material as indicated in Fig. 1.
The internal boundaries Γint have a predefined normal nint
and consist of two-sided surfaces, as also indicated in Fig. 1.
The external boundary consists of a partΓext,D withDirichlet
boundary conditions and a partΓext,N withNeumann bound-
ary conditions, so that the boundary of Ω is decomposed as
∂Ω = Γext,D ∪ Γext,N ∪ Γint . Letting superscripts + and −
denote quantities on the positive side and the negative side of
the internal boundaries Γint , respectively, we define the nor-

mal as nint
def= nint−. Since the cracks represented by Γint

may branch and intersect, nint is not necessarily continuous
along a chosen part of Γint .

Considering small strains and quasistatic loading, and
neglecting the body force, the strong form of the equilibrium
equations is given by

− σ ·∇ = 0 in Ω,

t+ + t− = 0 on Γint ,

t
def= σ · n = t̂ on Γext,N ,

u = û on Γext,D,

(1)

where σ = σ {ε} is the Cauchy stress, ε = ([u ⊗ ∇]sym) is
the strain,∇ is the gradient operator, n is a unit normal vector,
t̂ is a prescribed traction and û is a prescribed displacement.
The traction on the internal boundaries Γint is described by a
cohesive zone law specifying t+ = −t− = t

{
�u�

}
in terms

of the jump �u�
def= u+ − u− over the crack faces. Note

that in the constitutive relations for the stress-strain relation
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σ = σ {ε} and the traction-separation law t = t
{
�u�

}
, the

dependence of σ and t on internal variables has been omitted
for brevity. Even though body forces have been neglected in
Eq. (1), such forces can be included without fundamental
difficulty.

The (displacement based, single field) weak solution cor-
responding to Eq. (1) is obtained by finding u ∈ U such
that

a(u, δu) − b
(
t
{
�u�

}
, δu

) = l(δu) ∀δu ∈ U
0,

U =
{
v : v ∈

[
H

1(Ω)
]d

, v = û on Γext,D

}
,

U
0 =

{
v : v ∈

[
H

1(Ω)
]d

, v = 0 on Γext,D

}
,

(2)

where d is the number of spatial dimensions in the problem,
t
{
�u�

}
denotes the traction obtained from the cohesive zone

constitutive law, and where

a(u, δu)
def=

∫

Ω

σ : [δu ⊗ ∇] dΩ, (3)

b
(
t
{
�u�

}
, δu

) def=
∫

Γint

t
{
�u�

} · �δu� d Γ, (4)

l(δu)
def=

∫

Γext,N

t̂ · δu d Γ. (5)

Regarding the regularity requirements in U and U
0,

H
1(Ω) denotes the space of square integrable functions with

square integrable derivatives, and we recall that Ω is the
“perforated” solid domain.

We remark that Eq. (2) represents the fully resolved prob-
lem in the sense that computational homogenization has not
yet been introduced. In the next section, we will consider
the situation that the fully resolved problem is intractable
due to vast separation of length scales and derive a two-scale
formulation of this equation.

3 A two-scale formulation including macroscopic
localization

3.1 Preliminaries

In this section, we aim to construct a two-scale model of the
problem given by Eq. (2), where Γint defines a large set of
microcracks. On the macroscopic level, we consider the con-
tinuous2 bulk domain Ω̄ = Ω ∪ Γint , where microscopic
cracks are not explicitly resolved. To account for macro-
scopic strain localization, we split the macroscopic domain
according to Ω̄ = Ω̄r ∪ Ω̄d , where Ω̄r denotes the regular

2 Here, Ω̄ denotes the homogeneous counterpart of Ω , not containing
internal boundaries.

Γ̄d

Ω̄

Ω̄r

Ω̄d

Γext

Ω

Γ
Γint

Γ̄d,
n

ld

Fig. 2 Macroscopic domain Ω̄ divided into a part Ω̄d containing an
effective macroscopic discontinuity surface Γ̄d , and a part Ω̄r that is
free frommacroscopic discontinuities. Thewidth ld of the discontinuity
region Ω̄d is also shown

part of the continuous bulk domain Ω̄ where the microc-
racks are separated and the effective (macroscale) response
shows no localization. In the discontinuity region Ω̄d , on the
other hand, we assume that microcracks have coalesced into
macrocracks3 causing a macroscale localization. We assume
that the localization zone Ω̄d is narrow, whereby Ω̄d can be
described accurately by the effective discontinuity surface
Γ̄d and a width ld , cf. Fig. 2.

3.2 Variationally consistent homogenization for
continua with macroscopic localization

To derive a two-scale model, we adopt the procedure of
Variationally Consistent Homogenization (VCH), whichwas
introduced by Larsson and Runesson [14] in the context of
adaptive scale bridging, and later applied to transient heat
flow in [15] and to microfracturing solids in [12]. The key
ingredient in the present work, which is an extension of [12],
is the introduction of macroscopic localization.

As the first step of VCH, we introduce the decomposition
U = U

M ⊕U
s and consider a split of the solution into macro

and micro parts according to u = uM+us , where uM ∈ U
M

describes smooth (average) parts of the solution and us ∈ U
s

are the microscale fluctuations. Assuming the same split for
any function in U

0, we can state the original problem in Eq.
(2) as the macro problem

a
(
u, δuM

)
− b

(
t
{
�u�

}
, δuM

)
= l

(
δuM

)
∀δuM ∈ U

M,0, (6)

and the micro problem

a
(
u, δus

) − b
(
t
{
�u�

}
, δus

) = l
(
δus

) ∀δus ∈ U
s,0, (7)

3 In fact, any situation where microscale effects (not necessarily micro-
cracks) cause macroscale localization can be considered.
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where we recall that a(•, •), b(•, •) and l(•) were defined in
Eqs. (3), (4) and (5), respectively. So far, we note that Eqs. (6)
and (7) pertain to the Variational MultiScale method (VMS)
introduced by Hughes et al. [16].

The second step of VCH is to restate the integrals in Eq.
(6) using running averages in order to obtain a homogenized
problem. To this end, we consider the split of the domain
Ω̄ = Ω̄r ∪ Ω̄d as discussed in Sect. 3.1 and, for the regular
domain Ω̄r , we introduce the approximation

∫

Ω̄r

f dΩ +
∫

Γint∩Ω̄r

g d Γ ≈
∫

Ω̄r

f� dΩ,

f�
def= 1

|Ω�|
[∫

Ω�
f dΩ +

∫

Γint∩Ω�
g d Γ

]
,

(8)

where Ω� denotes a Statistical Volume Element (SVE), for-
mally unique for any point in Ω̄ .

Remark Note that, if we split the entire domain into adjacent
SVEs so that Ω̄r = ∪iΩ�,i , and assume the SVE integral
f� to be piecewise constant in eachΩ�,i , the approximation
in Eq. (8) becomes an identity.

For the discontinuity region Ω̄d , we state the integrals
based on the interface Γ̄d according to

∫

Ω̄d

f dΩ +
∫

Γ +
int∩Ω̄d

g d Γ ≈
∫

Ω̄d

f� dΩ ≈
∫

Γ̄d

ld f� d Γ,

(9)

where the last approximation is based on the assumption of
a narrow region Ω̄d , and where f�, that was defined in Eq.
(8), is now evaluated in a point on Γ̄d .

In the presence of localization, it is clear that the quantity
f� in Eq. (9) will not be representative if evaluated on an
arbitrarily sized SVE Ω�. To overcome this issue, we con-
sider Ω̄d entirely populated by SVEs through the (narrow)
width ld ,4 cf. Fig. 2. Defining an effective discontinuity sur-
face Γ̄d,� as the plane through the center of the SVE parallel
to Γ̄d , we then obtain the geometric relation

ld = |Ω�|
∣∣Γ̄d,�

∣∣ . (10)

With this choice, it becomes evident that the homogenization
in Eq. (9) is a homogenization on Γ̄d , whereas the direction
perpendicular to Γ̄d is fully resolved.We also note that, since
ld depends only on the SVE size and the orientation of the
effective discontinuity Γ̄d , ld is independent of the loading
direction.

4 In other words, we choose ld such that it matches the size of Ω�,
whereby the direction perpendicular to Γ̄d is fully resolved.

Finally, in order to derive the homogenized problem, pro-
longation conditions need to be specified.More precisely, the
macroscale part uM of the resolved solution insideΩ� needs
to be expressed in terms of the homogenized solution field ū.
To this end, we shall adopt different strategies for Ω̄r and Ω̄d .
We start off with introducing the homogenized displacement

ansatz ū ∈ Ū which is smooth on Ω̂
def= Ω̄r ∪ Ω̄d \ Γ̄d but

may be discontinuous across Γ̄d . For SVEs pertaining to the
regular subdomain Ω̄r , we use the ansatz from conventional
first order homogenization,

uM = ε[ū]|x̄ · [x − x̄] inside Ω�(x̄), ∀x̄ ∈ Ω̄r , (11)

where Ω�(x̄) is the SVE centered around x̄.
For SVEs located on Γ̄d , we adopt a smeared approach,

whereby the average strain insideΩ� is expressed as the sum
of the average bulk strain and the strain contribution from
the displacement jump smeared over ld . Hence, we state the
macroscale displacement field as

uM = ε̄d |x̄ · [x − x̄] inside Ω�(x̄), ∀x̄ ∈ Γ̄d . (12)

Here, we define the effective strain on Γ̄d as

ε̄d
def= ε̄0 + 1

2ld

(
�ū� ⊗ n + n ⊗ �ū�

)
, (13)

where we introduced the bulk strain on Γ̄d as5

ε̄0
def= 1

ld

(∫ s=0−

s=−ld/2
ε[ū](x̄ + sn) ds

+
∫ s=ld/2

s=0+
ε[ū](x̄ + sn) ds

)

(14)

and where n is the normal of Γ̄d at x̄. It is easily verified that
the integration of Eq. (12) gives displacement compatibility
between ū and uM on the boundary of Ω̄d . For the numerical
implementation, we further introduce the approximation

ε̄0[ū](x̄) ≈ 1

2

(
ε[ū]+ + ε[ū]−

)
, (15)

where the average of the strains

ε[ū]± def= lim
s→0

ε[ū](x̄ ± sn) (16)

replaces the integral expressions.
Using the integral transformations in Eqs. (8) and (9),

together with the prolongation expressions in Eqs. (11) and

5 Note that the integral expression does not contain the sharp disconti-
nuity Γ̄d , where ε[ū] would be unbounded.
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(12), we may now restate Eq. (6) as the macroscale problem
of finding ū ∈ Ū such that

∫

Ω̄r

σ̄ {ε̄} : δε̄ dΩ +
∫

Γ̄d

ld σ̄ {ε̄d} : δε̄d d Γ

=
∫

Γext,N

t̂ · δū d Γ ∀δū ∈ Ū
0, (17)

where ε̄
def= [ū ⊗ ∇]sym and the effective macroscale stress

σ̄ is obtained from the microscale solution according to

σ̄
def= 1

|Ω�|
∫

Ω�
σ dΩ. (18)

3.3 Operational format of integral expressions

Solving the macroscale problem as given by Eq. (17)
requires evaluation of an integral over Ω̄r . This evaluation is
inconvenient from a computational perspective, because the
finite element mesh will not match Ω̄r . In order to restate∫
Ω̄r

• dΩ , we recall that Ω̂ = Ω̄r ∪ Ω̄d \ Γ̄d and use
the definition

∫
Ω̄r

• dΩ = ∫
Ω̂

• dΩ − ∫
Ω̂d

• dΩ , where

Ω̂d
def= Ω̄d\Γ̄d is the discontinuity region excluding the sharp

discontinuity surface. Then, we may employ the approxima-
tion

∫

Ω̂d

σ̄ {ε̄} : δε̄ dΩ ≈
∫

Γ̄d

ld σ̄ {ε̄0} : δε̄0 d Γ, (19)

where the discontinuity is removed from the argument (i.e.
ε̄0 and δε̄0) to account for the fact that Ω̂d does not contain
Γ̄d itself. Finally, we obtain

∫

Ω̄r

σ̄ {ε̄} : δε̄ dΩ +
∫

Γ̄d

ld σ̄ {ε̄d} : δε̄d d Γ ≈
∫

Ω̂

σ̄ {ε̄} : δε̄ dΩ +
∫

Γ̄d

ld(σ̄ {ε̄d} − σ̄ {ε̄0}) : δε̄0 d Γ

+
∫

Γ̄d

σ̄ {ε̄d} : (
�δū� ⊗ n

)sym d Γ, (20)

where we also used that δε̄d = δε̄0 + 1
ld

(
�δū� ⊗ n

)sym .

Inserting the result from Eq. (20) in Eq. (17), the macroscale
problem is then to find ū ∈ Ū such that

ā(ū, δū) = l(δū) ∀δū ∈ Ū
0, (21)

where

ā(ū, δū) =
∫

Ω̂

σ̄ {ε[ū]} : ε[δū] dΩ

︸ ︷︷ ︸
def= I1

+
∫

Γ̄d

ld(σ̄ {ε̄d} − σ̄ {ε̄0[ū]}) : ε̄0[δū] d Γ

︸ ︷︷ ︸
def= I2

+
∫

Γ̄d

σ̄ {ε̄d} : (
�δū� ⊗ n

)sym d Γ

︸ ︷︷ ︸
def= I3

. (22)

We note that I1 represents the contribution from the effec-
tive bulk response, and that I3 represents a contribution of
cohesive zone type (homogenized from a damaging SVE)
since

σ̄ {ε̄d} : (
�δū� ⊗ n

)sym =
{
t̄d

def= −σ̄ {ε̄d} · n
}
=− t̄d · �δū�.

(23)

Note, however, that the cohesive traction t̄d depends also on

the bulk strain because σ̄ {ε̄d} = σ̄
{
ε̄0 + 1

ld

[
�u� ⊗ n

]sym}
.

Furthermore, we remark that the novel term I2 is scaled by
ld , and therefore will be negligible for sufficiently small ld .

To ensure energy consistency between the micro- and
macroscales, the Hill–Mandel condition needs to be fulfilled.
Following Larsson et al. [20] it is clear that a Hill–Mandel
condition on the form

σ̄ {ε̄d} : δε̄d

= 1

|Ω�|

(∫

Ω�
σ {ε} : δε dΩ−

∫

Γ�,int

t
{
�u�

} · �δu� d Γ

)

(24)

is met. Utilizing the relation ε̄d = ε̄0 + 1
ld

(
�ū� ⊗ n

)sym , we
conclude that

σ̄ {ε̄d} : δε̄0 − 1

ld
t̄d · �δū�

= 1

|Ω�|

(∫

Ω�
σ {ε} : δε dΩ−

∫

Γ�,int

t
{
�u�

} · �δu� d Γ

)

,

(25)

which is the relevant Hill–Mandel condition for an SVE on
Γ̄d .

Regarding the implementation of the macro problem, we
choose to use the eXtended Finite Element Method (XFEM)
[17–19] for the numerical representation of Γ̄d . For the
numerical solution of Eq. (21), different sets of integration
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Macro discontinuity Γ̄d

Subtriangulation
Bulk integration point: σ̄{¯}
Interface integration point: σ̄{ d̄}
Interface integration point: σ̄{ 0̄}

Fig. 3 Numerical integration of ā(ū, δū) in enriched macroscale ele-
ments [see Eq. (22)]. σ̄ {ε̄} is computed in bulk integration points to
evaluate I1. The evaluation of I3 requires computation of σ̄ {ε̄d } in inte-
gration points on Γ̄d , whereas I2 requires computation of both σ̄ {ε̄0}
and σ̄ {ε̄d } on Γ̄d

points are needed for the evaluation of ā(ū, δū) in enriched
macroscale elements as shown in Fig. 3. More precisely, the
contribution from I1 in Eq. (22) is evaluated by computing
σ̄ {ε̄} in bulk integration points as shown in the figure. For the
contribution from I2 and I3, we employ two sets of integra-
tion points on Γ̄d as also shown in the figure. Here, one set
of integration points is used to evaluate σ̄ {ε̄d} and one set of
integration points is used to evaluate σ̄ {ε̄0}. We emphasize
that both σ̄ {ε̄}, σ̄ {ε̄d} and σ̄ {ε̄0} denote the homogenized
response of SVEs, where the effective strain imposed on the
SVE is ε̄, ε̄d and ε0, respectively.

For small SVE sizes,6 i.e. for small ld , we may consider
the following alternatives when solving Eq. (21):

– Alt. I: Eq. (21) is evaluated as it is,with all terms included:

ā(u, δu) =
∫

Ω̂

σ̄ {ε̄} : δε̄ dΩ

+
∫

Γ̄d

ld(σ̄ {ε̄d} − σ̄ {ε̄0}) : δε̄ d Γ

+
∫

Γ̄d

σ̄ {ε̄d} : (
�δū� ⊗ n

)sym d Γ, (26)

σ̄ {ε̄d} = σ̄

{
ε̄0 + 1

ld

(
�ū� ⊗ n

)}
. (27)

6 With small, we heremean that l� is small compared to themacroscale
dimensions. Note that the SVE size cannot be chosen arbitrarily small:
the SVE still needs to be sufficiently large to give a good statistical
representation of the microstructure.

– Alt. II: ld is assumed to be small, so that
∫
Γ̄d

ld
(σ̄ {ε̄d} − σ̄ {ε̄0}) : δε̄0 d Γ ≈ 0:

ā(u, δu) ≈
∫

Ω̂

σ̄ {ε̄} : δε̄ dΩ

+
∫

Γ̄d

σ̄ {ε̄d} : (
�δū� ⊗ n

)sym d Γ, (28)

σ̄ {ε̄d} = σ̄

{
ε̄0 + 1

ld

(
�ū� ⊗ n

)}
. (29)

– Alt. III: As Alt. II, but the bulk strain in the SVEs on Γ̄d

is neglected:

ā(u, δu) ≈
∫

Ω̂

σ̄ {ε̄} : δε̄ dΩ

+
∫

Γ̄d

σ̄ {ε̄d} : (
�δū� ⊗ n

)sym d Γ, (30)

σ̄ {ε̄d} ≈ σ̄

{
1

ld

(
�ū� ⊗ n

)}
. (31)

We remark that Alt. I and Alt. II require duplicated SVEs
in the Gauss points on Γ̄d , whereas single SVEs are suffi-
cient for Alt. III. Furthermore, we note that Alt. I and Alt.
III retain symmetry (if it exists for the original problem),
whereas Alt. II is inherently unsymmetric. The performance
of these approximations for different SVE sizeswill be exam-
ined in the numerical examples presented in Sect. 4.

3.4 Localization aligned weakly periodic boundary
conditions

To solve the microscale problem obtained from Eq. (7) on an
SVEΩ�, the macroscopic part of the displacement given by
Eq. (11) or Eq. (12) is imposed on the SVE boundary through
suitable BCs. In the present work, we will use weakly peri-
odic boundary conditions that are aligned to the direction of
the effective discontinuity in the SVE [13]. To this end, we
divide the SVE boundary into an image part Γ +

� and a mirror
part Γ −

� as shown in Fig. 4a. Furthermore, we introduce a
mapping ϕ per : Γ +

� → Γ −
� such that points on Γ +

� and Γ −
�

are associated to each other according to x− = ϕ per (x
+).

For SVEs pertaining to bulk response, i.e. for quadrature
points in Ω̂ , the mapping is typically performed along hor-
izontal and vertical lines between the surfaces of the square
SVE domain. However, for SVEs on the localization band
Γ̄d , the mapping is constructed such that the periodicity
directions are aligned with the direction of the effective dis-
continuity, cf. Fig. 4a. We also define the jump7 between a
point x+ on Γ +

� and the associated point x− = ϕ per (x
+) on

7 Note the difference between the jump �u�� over the SVE boundaries
and the jump �u� over the internal boundaries.
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pper(p)

q

per(q)

α

s

(a) (b)

Fig. 4 Statistical Volume Element (SVE) with boundary divided into image and mirror parts (a). An effective discontinuity passing through the
center of the SVE is also shown, together with the shifted mirror function. The corresponding stacking of SVEs is shown in (b)

Γ −
� as

�u��
def= uΓ +

�
− uΓ −

�
= u(x+) − u

(
ϕ per (x

+)
)
on Γ +

� .

Next,we impose localization alignedweakly periodic bound-
ary conditions on the SVE by introducing an independent
discretization for the boundary traction tλ and requiring
�u�� = ε̄ · �x − x̄�� to hold in a weak sense on Γ +

� . The
SVE problem is then to find u ∈ U� and tλ ∈ T� such
that

a�(u, δu) − d�(tλ, δu) = 0 ∀δu ∈ U�,

− d�(δ tλ, u) = −d�(δ tλ, ε̄ · [x − x̄]) ∀δ tλ ∈ T�,

(32)

U� =
{
v : v ∈

[
H

1(Ω�)
]d

,

∫

Γ�
v d Γ = 0

}
, (33)

T� =
{
t : t ∈ [

L2
(
Γ +

�
)]d}

, (34)

where we introduced the expressions

a�(u, δu)
def= 1

|Ω�|
[∫

Ω�
σ : ε[δu] dΩ

−
∫

Γ�,int

t · �δu� d Γ

]

, (35)

d�(tλ, δu)
def= 1

|Ω�|
∫

Γ +
�
tλ · �δu�� d Γ, (36)

and where L2
(
Γ +

�
)
denotes the space of square integrable

functions on Γ +
� . See [13,20,21] for further details.

We remark that, on Γ̄d , the weakly periodic boundary
conditions are employed to impose the macroscopic strain
ε̄d = ε̄0 + 1

ld

(
�u� ⊗ n

)sym in a weak sense on the whole
SVE boundary. Hence, there is no need to explicitly identify

the location or width of the damaged zone in the SVE, only
the localization direction needs to be determined in order to
define the effective discontinuity normal direction n. Recall
that n also defines the periodicity alignment.

We also remark that ld cannot be chosen freely, it is related
to the SVE size |Ω�| according to Eq. (10). For the special
case of 2D and a square SVE, we may compute ld explicitly
as

ld = l� cosα, 0◦ ≤ α ≤ 45◦,
ld = l� sin α, 45◦ ≤ α ≤ 90◦,

(37)

where l� = √|Ω�| and α is the angle between the effective
discontinuity and the x-axis.

To summarize, we may compute the homogenized stress
σ̄ = σ̄ {ε̄} for a given ε̄ by solving Eq. (32) and employing
Eq. (18).

4 Numerical examples

4.1 Preliminaries

In this section, we demonstrate the performance of the pro-
posed method with a few numerical examples. To assess the
accuracy of the proposed method, we will present compar-
isons between fully resolved Direct Numerical Simulations
(DNS) and two-scale simulations (FE2). The open source
software package OOFEM [22,23] has been used for the
numerical implementation.

In Example 4.2, we present a comparison between Alt.
I, Alt. II and Alt. III described in Sect. 3. In Examples 4.3
and 4.4, we use Alt. I and demonstrate that the proposed
method accurately predicts homogenized stress-strain rela-
tions, provided that an appropriate kinematic ansatz is made
for the macroscale displacement field. Finally, an outlook is
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Fig. 5 Specimen with vertical
localization band (dashed line)
considered in Example 4.2

L

H

D

u(x)

Fig. 6 Deformed shape of the
specimen considered in
Example 4.2, magnified by a
factor of 100. The figure is
colored by the horizontal
displacement. (Color figure
online)

presented in Example 4.5, indicating the application of the
proposed method to cases where the macroscale localization
pattern is not known a-priori. Here, Alt. III is used to reduce
the computational cost.

4.2 Elastic specimen with vertical localization band

To investigate the SVE size dependence for different approx-
imations to Eq. (21), we consider the specimen shown
in Fig. 5. The specimen has length L = 10mm, height
H = 5mm, notch diameter D = 0.5mm and a thickness of
1mm. The bulk material is isotropic and linear elastic, with
Young’s modulus E = 210 × 103 MPa and Poisson’s ratio
ν = 0.3. Plane strain is assumed. The interface is modeled
by an isotropic elastic cohesive zone model with stiffness
k = 1.0 × 105 Nmm−3.

The left edge of the specimen is clamped and the right
edge is subjected to a prescribed displacement according to
ux = 0.01y/H, uy = 0, see Fig. 6.

The response of the specimen is computed in two ways: i)
with DNS and ii) with FE2 for the interface response. For the
DNS, we use a standard discretization with 6-node triangles
in the bulk and model the interface by means of XFEM using

the previously mentioned isotropic elastic interface law.8 For
the FE2, we also use 6-node triangles with isotropic lin-
ear elastic material model (i.e. no homogenization of bulk
response in this example) and an XFEM discretization of the
interface. However, the interface response is now computed
from SVEs in the cohesive zone Gauss points.

As output from the simulations, we choose to monitor
the normal traction along the cohesive interface (Fig. 7). The
normal tractions predicted with Alt. I and Alt. II are shown in
Fig. 7a, b, respectively. As can be seen, these approximations
both agree very well with the DNS solution. Alt. III, shown
in Fig. 7c, agrees very well with the DNS for the smallest
SVE, but large discrepancies occur for the largest SVE. This
is expected, because Alt. III neglects the bulk strain in the
SVE, and the bulk strain is more important for large SVEs.

In summary, all three approximations are accurate for
the smallest SVE (i.e. when strong scale separation holds),
whereas Alt. I and Alt. II perform better than Alt. III when
the SVE size approaches the size of the macroelements.

8 For this example, the discretization for the DNS is straightforward
(and cheaper than the FE2 in terms of computational cost). Therefore,
there is no benefit of using FE2 for this example from a computational
point of view. However, the example is interesting because it demon-
strates the SVE size dependence of the different approximations.
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Fig. 7 Normal traction along the interface for Example 4.2. a Alt. I, b Alt. II, c Alt. III

4.3 Plate with inclined effective discontinuity surface

To investigate how the orientation of the effective discontinu-
ity surface influences the macroscopic response, we consider
a square plate with a circular hole and a band of porous mate-
rial as shown in Fig. 8. The orientation of this softer band is
described by the angle α between the band and the x-axis.

We consider an isotropic and linear elastic bulk material
in plane strain with Young’s modulus E = 210 × 103 MPa
and Poisson’s ratio ν = 0.3. The material is homogeneous,
except in the softer band,where small holes in thematerial are
present as shown in Figs. 9 and 10. The side length of the plate
is L = 100mm and the diameter of the macroscopic hole is
d = 60mm. The small holes in the soft band have a diameter
of 1mm, and the spacing between the small holes (center-
center distance) is 1.25mm. Three rows of small holes run
across the entire plate as shown in Figs. 9 and 10.

We solve the problem using both DNS and FE2 for dif-
ferent values of the angle α. DNS meshes for three different
angles are shown in Fig. 9. For theDNSmeshes, 3-node trian-
gles with a side length of 1mm are used, except in the region
surrounding the small holes, where a side length of 0.025mm

is used. For the FE2 simulations, 6-node triangleswith an ele-
ment side length of 5.0mm is used on themacroscale. For the
SVE meshes, 6-node triangles with a side length of 0.5mm
are used, except in the region surrounding the small holes,
where a side length of 0.1mm is used. Regarding the SVE
size, we choose l� = 20mm.

The left edge of the specimen is clamped, and a uniform
displacement of u0 = 0.01mm is applied in the x-direction
on the right edge. As output from the simulations, we choose
to monitor the reaction force in the x-direction.

The deformed shape of the structure, computed with DNS
forα = 60◦, is shown in Fig. 11. As can be seen, a substantial
amount of the deformation is localized to the soft band.This is
also reflected in the stress field shown in Fig. 12: the effective
stress is much higher around the holes than in the rest of the
structure.

The reaction force on the clamped edge, computed with
both DNS and FE2, is shown for different α in Fig. 13. The
agreement between theDNSandFE2 simulations is good, the
largest difference in reaction force between the DNS and the
FE2 simulations is 7% (for α = 45◦). The larger discrepancy
close to α = 45◦ is most likely due to the finite width of the
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u0

α

L

d

Fig. 8 Macroscale geometry considered in Example 4.3: a square plate
with hole. The plate is clamped at the left side and a uniform displace-
ment is imposed on the right side. The thick red stripe indicates the
location of the effective discontinuity surface Γ̄d . (Color figure online)

soft region.More precisely, theDNSwill capture the effect of
the finitewidth soft region overlapping the upper right corner,
whereas the FE2 macroscale representation of the soft region
is a strong discontinuity with zero (macroscale) thickness.
Despite the discrepancy around α = 45◦, we conclude that
the agreement is good for all values of α.

4.4 Nonlinear response of a plate with a softening region

To verify that the response during softening is insensitive to
the SVE size, we consider a platewith a softening region con-
taining a cohesive surface and holes as shown in Fig. 14. The

plate has side length L = 100mmand thickness 1mm (plane
strain is assumed). The cohesive band has holes with radius
1mm and center-center distance 4mm, and runs through the
center of the plate at an angle of α = 25◦ to the horizontal
axis.

The bulk material is linear elastic with Young’s modulus
E = 20.0 × 103 MPa and Poisson’s ratio ν = 0.2.

The cohesive interface is modeled by a standard bilin-
ear cohesive law. In this example, we consider monotonic
loading and thus disregard history effects in the cohesive
zone material, thereby employing an “elastic” cohesive law
with softening as indicated in Fig. 15. For the cohesive
zone material parameters, we choose the initial stiffness
as k = 1.0 × 105 Nmm−3, the peak stress as σ f n =
2.5 × 102 MPa and the fracture energy as GI = 2.0 ×
101 Nmm−3.

For the DNS, the bulk material is discretized with 6-node
triangles with a side length of 1mm, except close to the inter-
face,where the side length is 0.075mm.The cohesive surface
is modeled by interface elements. For the FE2 simulations,
XFEM is used on themacroscale, whereas interface elements
are used to represent the microscale discontinuity. Regarding
the bulk discretization, 6-node triangles with a side length of
1.25mm are used on the macroscale. For the microscale, we
use 6-node triangles with a side length of 0.36mm, except
close to the interface where the side length is reduced to
0.18mm. Two SVE sizes are considered: l� = 3.62mm and
l� = 7.24mm, cf. Fig. 16.

A prescribed displacement u0 as indicated in Fig. 14 is
added incrementally in 10 load steps. As output from the
simulations, we choose to monitor the reaction force for the
lower right support. The reaction force vs displacement curve
for the lower right support, computed with DNS and FE2,
is shown in Fig. 17. As can be seen, the FE2 solution is
insensitive to the SVE size and agrees very well with the
DNS solution.

Fig. 9 Meshes for fully resolved simulations (DNS) of the plate considered in Example 4.3. Meshes for three different orientations of the soft
band are shown. a α = 0◦, b α = 35◦, c α = 60◦
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Fig. 10 Meshes for two-scale
simulation of the plate
considered in Example 4.3:
macroscale mesh (left) and SVE
mesh (right) for α = 35◦

Fig. 11 Fully resolved simulation (DNS) of the plate considered in
Example 4.3. The figure shows the deformed shape of the plate magni-
fied by a factor of 500 for α = 60◦

4.5 Plate with localizing microcracks

In this example, we consider a plate with a circular hole and a
microstructure consisting of amatrix with circular inclusions
as shown in Fig. 18. The plate, which has length L = 50mm
and hole diameter D = 20mm, is clamped at the left edge.
The right edge is fixed in the horizontal direction and a uni-
form displacement is applied in the vertical direction.

The matrix material is isotropic and linear elastic with
Young’s modulus Em = 210 × 103 MPa and Poisson’s ratio
νm = 0.3. The inclusions are also isotropic and linear elastic,
with Young’s modulus Ei = 10.0 × 103 MPa and Poisson’s

ratio νi = 0.3. The inclusions have diameter d = 0.5mm
and are randomly distributed in the plate. For the microscale
problem in the FE2 simulations and the DNS, cracks nucle-
ate if the highest principal stress exceeds 400MPa. Crack
propagation is modeled using the concept of material forces,
whereby the cracks propagate in the direction of the mate-
rial force when the magnitude of the material force exceeds
0.25N.On themacroscale, we consider two different meshes
as shown in Fig. 19. For the macroscale crack initiation, we
choose for simplicity9 to nucleate cracks when the highest
principal strain exceeds 1 × 103 in any integration point.
A macroscopic crack segment is thereby introduced in the
direction perpendicular to the corresponding principal strain
direction. Such macroscopic new segment is also allowed to
intersect already existing cracks on the macroscale. Existing
macroscale cracks propagate in the direction perpendicular
to the highest principal strain when the highest principal
strain in the integration point closest to the crack tip exceeds
1 × 10−4.

The resulting effective stress predictedwithDNS is shown
in Fig. 20, and the displacement field, computed with DNS
and FE2, is shown in Fig. 21. In the DNS, the propagat-
ing microcracks interact with the microstructure to form an
irregularly shaped macrocrack. The FE2 simulation does not
capture the small scale irregularities in the crack pattern on
the macroscale, but the overall crack pattern is in qualita-
tive agreement with the DNS. The reaction forces computed
with DNS and FE2 are shown in Fig. 22. Despite the crude
macroscale crack initiation criterion adopted in the present
example, the FE2 solution agrees fairly well with the DNS.

9 Amore rigorous approach would be to detect singularity of the acous-
tic tensor. However, a simple strain based criterion is computationally
convenient for the example considered here.
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Fig. 12 Fully resolved simulation (DNS) of the plate considered in Example 4.3. The figure shows the stress distribution (limited to 100mm).
a Overall stress distribution. b Stress distribution in the porous band
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Fig. 13 Plate with soft band considered in Example 4.3. Horizontal
reaction force versus angle of the soft band computed with DNS and
FE2

5 Conclusions

In the present work, we model fracturing solids undergo-
ing strain localization using a two-scale approach based on
Variationally Consistent Homogenization (VCH). We pro-
pose a continuous-discontinuous homogenization scheme,
where the eXtended Finite Element Method (XFEM) is
used to represent narrow macroscale localization bands. The
displacement discontinuities across the macroscopic discon-
tinuity surfaces are transferred to themicroscale in a smeared
sense, using a smearing width ld that is related to the orien-
tation of the effective discontinuity and the SVE size. Using
a correct smearing width turns out to be crucial for obtain-
ing accurate results without pathological dependence on the
SVE size.

u0

u0

α
L

Fig. 14 Plate containing a softening region with a cohesive surface
(red) and holes. (Example 4.4). (Color figure online)

Adopting the procedure of VCH and assuming that the
macroscale localization region is well approximated by a
strong discontinuity, we derive a two-scale scheme contain-
ing a conventional bulk term, a term of cohesive zone type
and a correction term. The latter term has negligible effect on
the accuracy if strong scale separation holds, but is indeed
needed to retain any (possible) symmetry of the problem.
A major benefit of the proposed scheme is that it does not
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Fig. 15 Schematic illustration of the cohesive zone model adopted in
Example 4.4

require dynamic tracking of an evolving damage region on
the microscale, and that it does not explicitly assume a par-
ticular constitutive behavior on the microscale.

In the numerical examples, we show that the proposed
scheme is insensitive to the SVE size if all terms obtained
in the derivation are included, and that approximations are
possible for sufficiently small SVE sizes l� (i.e. in the case
of strong scale separation). Furthermore, it is demonstrated
that the proposed scheme, in combination with localiza-
tion aligned weakly periodic BCs, is accurate for varying
crack orientations. We also illustrate the potential of the
proposed scheme with an FE2 simulation of a localizing
microstructure. In the last example presented, the potential
of the proposed method has been demonstrated using sim-
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Fig. 17 Reaction force versus displacement for the lower right support
(Example 4.4)

L

D

Fig. 18 Plate with hole considered in Example 4.5 (left). The plate has
amicrostructure consisting of a stiff matrixwith soft circular inclusions,
illustrated as red circles (right)

Fig. 16 SVEs considered in Example 4.4. The SVE sizes are l� = 3.62mm (left) and l� = 7.24mm (right)
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Fig. 19 Macro meshes considered in Example 4.5. aMesh 1: 177 elements. bMesh 2: 735 elements

Fig. 20 Effective stress computed with DNS (Example 4.5)
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Fig. 22 Reaction force versus displacement for a plate with coalescing
microcracks (Example 4.5)

Fig. 21 Displacement field computed with DNS (left) and FE2 (right) for Example 4.5
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plified models for crack initiation and propagation. Future
work therefore involvesmore accuratemodels formacroscale
crack propagation, i.e. a proper strategy for insertion and
propagation of (possible) macroscale discontinuities.

In summary, a multiscale modeling scheme that allows
microscopic and macroscopic localization is proposed. The
good performance of the proposed scheme is demonstrated
by several numerical examples.
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