Role of phase synchronisation in turbulence
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The role of the phase dynamics in turbulence is investigated. As a demonstration of the importance of the
phase dynamics, a simplified system is used, namely the one-dimensional Burgers equation, which is evolved
numerically. The system is forced via a known external force, with two components that are added into the
evolution equations of the amplitudes and the phase of the Fourier modes, separately. In this way, we are able to
control the impact of the force on the dynamics of the phases. In the absence of the direct forcing in the phase
equation, it is observed that the phases are not stochastic as assumed in the Random Phase Approximation
(RPA) models, and in contrast, the non-linear couplings result in intermittent locking of the phases to +m/2.
The impact of the force, applied purely on the phases, is to increase the occurrence of the phase locking events in
which the phases of the modes in a wide k range are now locked to /2, leading to a change in the dynamics
of both phases and amplitudes, with a significant localization of the real space flow structures.

I. INTRODUCTION

In electrically neutral fluids or in plasma flows the pres-
ence of nonlinear interactions can lead to the development of
turbulence. In general, turbulence is characterized by ener-
getic couplings between different scales of a flow. However, in
the context of turbulence driven transport, such as the case of
magnetically confined plasmas [} 2] or the diffusion of cos-
mic rays [3]], typical flow structures are identified by dominant
modes and the global turbulent state is approximated by a su-
perposition of linear contributions (waves in general). These
theoretical studies consider the amplitudes of the fluctuating
quantities, but disregard the dynamics of the phases by using
the so-called random-phase approximation (RPA) for which
the existence of a Chirikov-like criterion for the onset of wave
stochasticity [4 5] is assumed. In this approximation one as-
sumes that the dynamical amplitudes have a slow variation
compared to the rapid change of the phases, which are con-
sidered to be distributed uniformly over a 27 interval [} 2]].

The RPA approach is widely used in turbulence transport
theory since it has a clear intuitive picture. While it has not
been rigorously formulated, there have been attempts in this
direction [6]. Its underlying assumption of stochasticity for
the phases of Fourier modes in a nonlinearly interacting waves
cannot be justified since the phases as well as the amplitudes
evolve due to nonlinear interactions that act on the same time
scales. Thus, stochastization of phases and amplitudes, if any,
occur on the same time scale, see further discussion in Refs.
(6, [7].

The correlation of phases due to the existence of nonlin-
ear interactions determines how the spectral energy density,
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information contained in the amplitude of the Fourier modes,
is distributed in real space. This is linked to the intermittent
nature of turbulence. Ignoring the phase synchronization, or
phase locking between scales, neglects the impact made by
coherent structures [8]. Phase dynamics play the crucial role
in the self-organization and the formation of coherent struc-
tures, as was shown in Ref. [9] for plasma turbulence. The
self-organization phenomena is not limited to turbulence, al-
beit the interest of this work, and is common in other dynami-
cal systems, notable examples being: biological clocks, phys-
iological organisms and chemical reactors [[10H19]].

In this work, we investigate the role of phase dynamics on
turbulent flows. For this analysis, we chose a simple system
described by the Burgers equation with an known external
force. The prescribed force allows us to control its individ-
ual impact on the norm and the phases of the system. In the
presence of a force that leaves the phases unaffected, we ob-
serve that the phases are not randomized as assumed in the
RPA models, and in contrast, the non-linear couplings result
in intermittent locking of the phases to -7 /2. Employing this
force to inject the same power in the system, we can affects the
structures developed by the flow through a phase force. Due
to the co-evolving and interacting amplitudes and phases, a
forcing interacting purely on the phases increases the number
of phase locking events, during which the phases are locked
to £7/2. In contrast to the stochastically driven oscillator
models studied previously [20]] the present phase force may be
thought of as a strongly coherent force that ultimately change
the dynamics of both phases and amplitudes.

In the following we will present the details of our model
and the results of the numerical simulations, aiming to eluci-
date on a series of questions: In which way does a pure phase
force affect the structures of the flow? As the dynamics of
turbulence is affected and the phase correlations change, how
are the spectral energy transfers affected and finally, does a
phase force impede or tend to enhance the validity of the RPA
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approximation?

II. THE SYSTEM OF INTEREST
A. The Burgers equation

The Burgers equation is a simplified mathematical model
for the motion of a viscous compressible flow [21}22]]. In one
dimension (x is the spatial coordinate), it reads

Ou(z, t) + u(z, t)Opu(x, t) = vOzul(x, t) + 6 f(z,t), (1)

where u is the fluctuating velocity field, v is the kinematic
viscosity, and 0 f (x, t) is a prescribed external force.

The Fourier representation (x — k) of the Burgers equa-
tion, together with the polar form of the complex fields, i.e.

u(k,t) = i (t)e®® )
5f(k,t) = fr(t)e'®® 3)

allows for a decomposition of the dynamics in terms of the
norms and the phases as

[’(/)k Zak (t) 1(9 (t)+04(t))

—_Z Hﬂ/Jp

k=p+q

—vkP (e fret® O @)

Hence, we obtain two coupled equations
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In the absence of an external force, the dynamics of the
phases and the norms are linked by the nonlinear terms (first
terms on the left hand side of eqs. [5]and [6]), while the viscous
term acts solely to damp the amplitude of the Fourier modes.
Here, the energy for a scale (denoted by the wavenumber k)
is defined as E(k,t) = 1|u(k,t)|*> = 1¢?. The subsequent
energy balance equation, obtained from multiplying Eq. (6)
by 1, shows that the energy transfer to a scale k, i.e.

T(kvt): Z p¢k¢p¢qSin(9p+9q+9k)7 @)

k=p+q

is maximum for sin(6,+6,+6;) = £1. For maximal energy
transfer and in the absence of forcing, the nonlinear contribu-
tion to the time variation of the phases (Eq.[) is zero and all
the phases will be locked (i.e. 3;0) = 0).

B. The prescribed force

Typically, the external force represents a mechanism to con-
trol the energy injection in the system and obtain an energetic
steady state. This is highly desirable in the study of dissipative
turbulent systems. Here, in a small wavenumber correspond-
ing to the large scales in the system, we choose an amplitude
force proportional to the velocity,
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which allows for the phases of the force to match the phases
of the flow for each mode, i.e. ¢, = 6. The number of
modes in the forcing range is denoted by N4 and the same
amount of energy is injected in each mode. In the steady state,
the energy injected by the force balances viscous dissipation
(ea ~ Y., 2vk*y3?). By construction, we see that §fa(k)
does not contribute to the evolution of the phases, i.e. the sin
function is zero in Eq. (5). This represents a good test-bed to
determine the emerging phase correlations solely due to the
nonlinear interactions.

To control the phases in a steady state, a general form of the
external force can be used,

5f (k,t) = 8falk,t) + 8 fp(k,t), ©)
where we take the phase force contribution as
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ofp(k,t) =

Thus, the 6 fp (k) contribution to the force does not affect the
amplitudes of the modes. Here, the § fp part to the overall
force is acting on the same prescribed wavenumber interval as
0fa (i.e. Np = N,) and ep represents a control parameter.
Note that the reality condition implies that f(k)* = f(—k).
Directly affecting the evolution of the phases, this force allows
to gauge the impact made on structure formation by collective
synchronization.

C. Numerical set-up

We solve the equations using a Runge-Kutta 4th order
scheme (RK4) with an adaptive time stepping length d¢ while
the sampling time step is At = 0.001. The numerical integra-
tion is performed in a periodic domain of length L = 27 using
N modes (i.e. k € [-N/2,N/2]) and the nonlinear term is
computed following a pseudo-spectral method with three-half
dealiasing method. In our analysis we use N = 2048 modes
and consider the initial value uy(0) = k=2 exp(ify), where
0}, are taken as random with equal probability between [0, 27].
In this study a weak level of Burgers’ turbulence is considered,
thus allowing for the chosen resolution to be sufficient for the
lessons drawn in this work.

Throughout the work, we consider that the force acts in a
small wavenumber interval (|k| € [3, 7]) and we take the same
energy injection level, i.e. €4 = 4 x 1073, The distinction



between the runs analyzed is given by the value of the ep pa-
rameter. In Fig.|l] we plot the energy spectra for these runs.
We recover the k™2 spectral slope in the inertial range, a fact
expected for Burgers turbulence. The fact that the system is
well resolved is seen by the values of the energy in the highest
modes (values that reach machine precision).

III. RESULTS
A. Localization of the flow structures in the real space

We know that the phases and their correlations are impor-
tant in the development of structures in the flow and are ulti-
mately responsible for the emergence of intermittency. How-
ever, how is the phase force employed here affecting the struc-
tures of our simple flow?

Fig. 2] shows the computed solution of the Burgers equa-
tion, i.e. u(x,t). Here, we have increased the strength of the
phase force ep in three steps, with equal time intervals, from
0to 2 x 103 and subsequently to 4 x 10~3 while maintaining
€4 = 4x1073 constant throughout the simulation. During the
time interval without the phase force i.e. t = 0 — 3 x 10? the
turbulent fluctuations are born, and dissipated homogeneously
in (x,t) space. By increasing ep to 2 x 1073, the propagat-
ing fluctuations are more and more localized in z as well as
follow a preferred direction (up-down). This trend is further
amplified as the € p is increased to 4 X 102, where we observe
that smaller flow structures rapidly disappear while one struc-
ture becomes dominant and propagates as one single traveling
wave.

B. Dynamic of the phases

To study the dynamic of the phases we have computed the
order parameter shown in Fig. [3|(top). An analytic expression
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FIG. 1. Typical energy spectra for the steady states. The k=2 spec-
tral slope is recovered, a fact expected for Burgers turbulence. Here
ea=4x10""

for the order parameter,
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was derived by Kuramoto that describes the quality of the syn-
chronization of the ensemble of phases with 0 < |Z| < 1,
where |Z| = 0 corresponds to a completely asynchronous
state, while |Z| = 1 corresponds to a totally synchronous
state. Here, to eliminate the numerical noise corresponding
to the highest modes (modes unexcited from a physical per-
spective), we have used a low pass filter with k. = 700 and,
for a better illustration of the differences, we have offset the
y-axis by 0.3. We observe that in the absence of the phase
force, the phases of the fluctuations are asynchronous with
the exception of a few occasions where the phases become
partially synchronized with peaks in |Z| of ~ 0.8. By ap-
plying the phase force, these occurrences become more fre-
quent, and from 3 significant events in the case with no forc-
ing phase, it increases to 11 and 14 significant events in the
cases where phase forcing was applied. Also the quality of
synchronization has increased strongly reaching peaks of the
order of |Z] ~ 1 in the last case.

The synchronization of the phases at these occurrences are
more clearly observed from the polar view representations of
the phases shown in Figs. In the absence of the phase
force, at a phase locking event no synchronization between
the phases of |k| € [1,20] modes is obvious, and the phases
of the |k| € [21,121] show synchronization to +7/2 with
equally divided numbers locked to 7/2 and —7/2. Here, we
find that the quality of the synchronization in the high-k range
of |k| € [121,700] is not as good. This is induced by the
dissipation since as the dissipation dampens the amplitudes,
it results in a reduction of the non-linear coupling strength,
i.e. ¥p1hy/1r, between the phases. Indeed this was tested and
we observed that by increasing v, the range of the stochastic
phases expands further into lower k region, whereas by de-
creasing v it will recede into higher k’s. Thus, the non-linear
interactions result in phase locking in the inertial range rather
than stochastization of the phases as is commonly assumed in
RPA based models. As seen in the two last panels of the polar
views in Fig. [3| a force applied exclusively to the phases fa-
cilitates phase synchronization allowing for further locking of
modes to 7/2 alone. In Ref [6], it is found that synchroniza-
tion of the phases in wave turbulence occurs over short time
intervals as is seen here.

C. Maximization of the energy transfers due to locking

When synchronized, the phases of all three cases shown
in the polar representation in Fig. [3| are /2 which yield
maximum energy transfer for all possible triads, k+p+¢q = 0
. Because of the wide locked range at the inertia/dissipative
scales i.e. mid-to high-k modes, the locking to 7/2 phase
(note that due to the reality condition u*(k) = wu(—k) the
phase of the negative wave numbers will be locked to —7/2,
not shown in the polar views) should allow for an enhanced
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FIG. 2. The solution of Burgers equation, u, as a function of = and ¢. Here €4 = 4 x 1073, The value of ep is increased in 3 steps denoted

by straight lines from 0 to 2 x 10~ and than to 4 x 107>,

removal of the inertia scale energies to the small dissipative
scales.

From the definition of the energy transfer, Eq. (7), we see
that in general the maximal transfer is obtained for | sin(6,+
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FIG. 3. (top) The order parameter |Z(t)| as function of time, and
polar views of the phases at three different time slices correspond-
ing to the highest peaks in |Z(t)| in each case. Here, as the mode
number, k, is increased, the colors are varied from darker to lighter
shades.

4+01)| = 1 and can be conceptually defined as

T (k,t) = Y pribpthy. (12)

k=p+q

As we increase the intensity of the phase force, the +7/2
locking events become more frequent and 7'(k) should tend
towards T™**(k, t) more often. To capture this tendency on a
simple curve we use the definition provided by Ref. for
the intensity of the nonlinear transfers and define the maximal
ratio as:

2 [T (k)|
2o [Tmax(k)|

Not only that M (t) tends towards unity during synchroniza-
tion events, it also allows us to gauge the intensity of the trans-
fers compared to the maximal allowed for the reminder of the
time. Figure [4] shows the values of M as function of time
for the three considered cases (from top to bottom the value
of ep is increased) during a time window around the locking
events shown in polar panels in Fig. 3] Here, also the values
of the order parameter |Z(t)| are illustrated for convenience.
As can be seen here, in the case of ep = 0 this ratio, the
ratio is around M ~ 0.5 and at the moment of strong phase
locking, as indicated by the peaks in | Z(t)|, it increases signif-
icantly to M ~ 0.85. Similarly, in the case of ep = 2 x 1073
and ep = 4 x 1073, the moments of phase locking coincides
with the increase in the ratio of transfers, M. In the case of
ep = 4 x 1073, an oscillatory behaviour is observed with an
average of M ~ 0.55 and peaks reaching M ~ 0.85. This in-
crease in the value of M occurs also at lower value of | Z(t)|,
where a few subpopulations of the phases are locked at differ-
ent values e.g. +7/2 and £, as shown in the polar represen-
tations in Fig. [}

M(t) = (13)

D. Maximization the energy flux towards small scales due to
locking

While the energy transfers are important, the energy fluxes
offer a better measurement of the energy passing from large



to small scales. The energy flux across a scale k is defined as
(o)

(k,t) = Y T(K,1), (14)
K=k

and it is positive for a cascade of energy from large to small
scales. Figure[6]shows the time average values of the flux nor-
malized to amplitude forcing strength, (|TI|) /€4, as function
of mode number k&, for the three considered cases. Here, the
last 2000 time steps of the simulations, where the steady state
conditions are reached, is used for the time averaging. An in-
crease in the values of the averaged flux for the k = [21 —120]
is observed as the strength of the phase force raised. This is
due to the phase force with results in the locked events to be-
come more frequent, as well as spread into a wider range of
k’s, both in lower-k where the forcing is active, and higher-
k where dissipation is stronger. Therefore, during the phase
locking events the removal of the large scale energies is fur-
ther increased and as the number of these events increases, the
overall energy of the system is reduced. Indeed, as is shown in
Fig. []] the total energy of the system is reduced as the phase
forcing is introduced. For the time interval where the ep is
raised to 4 x 1073, the energy oscillates as the wave propa-
gates through the system and finally converges to a finite but
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FIG. 4. (On the left y-axes) M (¢) as function of time for (a) ep = 0,
() ep = 2 x 1073, and (c) ep = 4 x 1072, (On the right y-axes)
the order parameter | Z(¢)| for the same time window is also shown.
Note, the range of the above sums are |k| € [21, 700].

lower level as compared to the time period without the phase
force. Thus, the observed increase in energy flux of Fig. [6]
confirms the enhancement in the transfer of the large scales
energy to small scales via phase locking.

A maximal flux, II"™#*(k, t), can be defined as well by sim-
ply employing 7™ (k, t) in the definition above to obtain the
ratio of the flux to its maximal allowed as

2 [TI(K))|
2o M (k)|

Figure [3| shows the values of this ratio i.e. My(t), for the
three considered cases of Fig. El In all the cases, we observe
similar patterns in the value of My around the main locking
event where My grows from very small values of about ~
0.02 — 0.05 to ~ 0.3 — 0.6 with few oscillations around the
locking event. This behaviour suggests that there is a build
up towards the locking event which also lasts for some time
after the actual moment of locking. This build up manifest
itself as an increase in the energy flux passed through to the
small scales. By increasing the phase force, the time window
of the build up becomes shorter, however the pattern remains
the same.

M (t) = (15)

IV. CONCLUSION

The phase dynamic in a simple 1D model of Burgers turbu-
lence is examined. External forces which act independently
on the amplitudes and phases are introduced. By introducing
a special force which only affects the phases, we explored the
possibilities of artificially locking the phases.

In real space we observe that in the absence of the phase
force the turbulent flows are born, and dissipated homoge-
neously in (z,t) space. However, by increasing the phase
force, the propagating flows are more and more localized in

K = [21 - 120] K = [120 - 700]

k = [120 - 700]

K = [21 - 120]

FIG. 5. The polar views of the phases at the time slices correspond-
ing to the second highest peak in M (t) as seen in Fig. El (band c
panels respectively). Here, as the mode number, k, is increased, the
colors are varied from darker to lighter shades.
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FIG. 6. Time average values of the flux normalized to amplitude
forcing strength, {(|II|)/ea, as function of mode number &, (black
solid line) ep = 0, (red dashed-dotted line) ep = 2 x 1073, and
(blue dotted line) ep = 4 x 1073, The last 2000 time steps of the
simulations are used for the computation of the average.
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intermittent property of the observed phase locking.

Our results show an increase in the occurrence of the lock-
ing events by inclusion of the phase force, thus, further inval-
idating the RPA assumptions in the studied system.

As the locking increases through the effect of the phase
force, we observe a reduction in the total energy. This is
attributed to the fact that during the locking events the phases
lock to +7/2 which results in maximisation of the transfers,
T(k,t). The computed values of the energy flux II(k,¢),
confirms the increase in the energy flux passed from large
scales through to the small scales, as the phase force is
raised to higher levels allowing for more locking events to
take place. A build up of increased energy flux prior to the
moment of locking is observed which also lasts for some time
after the locking.
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FIG. 7. The total energy (3, Ex(t)) as a function of time ¢ with
€A = 4 % 10_3, and the ep was increased in 3 steps denoted by
straight lines (0, 2 x 1073, 4 x 1073).

x and eventually the smaller flows disappear and one struc-
ture becomes dominant and propagates as one single traveling
wave.

The observed phase dynamic shows significant departure
from the well known RPA assumptions, with phases locking
occasionally (but not in the dissipative high-k range). In the
well-known Kuramoto [19] non-linear system with two-body
interactions of limit cycle oscillators, it was shown that these
types of systems are prone to locking if the coupling strength
between the two-bodies has passed a threshold. However, the
dynamic of the three-body interactions between the phases in
the non-linear Burgers’ turbulence differs from this simplified
picture, and the phases lock intermittently and only in the low
to mid-k range. This is due to the k£ dependence of the cou-
pling strength in the non-linear term which reduces strongly
for high-k range due to the dampening effect of the dissipa-
tion which does not allow locking of the phases of the small
scales. In a locked event, therefore the evolution of the phases
(eq. B) is determined by the contributions of the small scales
to the non-linear sum and the forcing which results in an im-
mediate offsetting of the phases from the locked state and the
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FIG. 8. (On the left y-axes) M (t) as function of time for (a) ep =
0,(b)ep =2x 1072, and (c) ep = 4 x 1073, (On the right y-axes)
the order parameter | Z(t)| for the same time window is also shown.
Note, the range of the above sums are |k| € [21, 700].
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