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Abstract

Kinetic models in life science combine mathematics and biology to answer questions
from areas such as cell biology, physiology, biotechnology, and drug development. The
idea of kinetic models is to represent a biological system by a number of biochemical
reactions together with mathematical expressions for the reaction kinetics, i.e., how
fast the reactions occur. This defines a set of mass balance differential equations for
the modeled biochemical variables, whose solution determines the variables’ temporal
dynamics. Good kinetic models describe, predict, and enable understanding of
biological systems, and provide answers to questions which are otherwise technically
challenging, unethical, or expensive to obtain directly from experiments.

This thesis investigates the workflow for building and using kinetic models. Briefly,
the model question determines a suitable mathematical framework for the mass
balance equations, prior knowledge informs selection of relevant reactions and kinetics,
and unknown parameters are estimated from experimental data. A validated model
is used for simulation and analysis, which is interpreted to gain biological insights.
Three kinetic models were created to illustrate the workflow. First, a model

of the antiplatelet drug ticagrelor and the investigational antidote MEDI2452 was
developed for the mouse. The model unraveled the biological mechanisms of the
pharmacokinetic interaction and predicted free ticagrelor plasma concentration,
thereby contributing to the pharmaceutical development of MEDI2452. Second,
a model of the Kv1.5 potassium ion channel was integrated within an existing
electrophysiological model of a canine atrial cell. The effect of Kv1.5 block on
the action potential was simulated, which improved understanding of blocking
mechanisms and enabled assessing pharmacological treatment of atrial fibrillation.
Third, a nonlinear mixed effects (NLME) model, with population-level distributions
of kinetic parameters, was successfully used to describe cell-to-cell variability of the
yeast transcription factor Mig1. This model demonstrated the innovative idea of
applying NLME modeling to single cell data.
Two studies of kinetic model-building methods are also presented. First, a novel

parameter estimation algorithm for NLME models is explained. It computes exact
gradients using sensitivity equations, and represents a substantial advancement over
its predecessor. Second, a modeling framework is proposed that combines stochastic
differential equations with NLME modeling. This promising framework extends the
current scope of NLME models by considering uncertainty in the model dynamics.

Keywords: kinetic models; pharmacokinetics; ticagrelor; atrial fibrillation; Kv1.5;
cell-to-cell variability; Mig1; NLME modeling; parameter estimation; FOCE
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CHAPTER 1

Introduction

This chapter gives a short introduction to what kinetic models are and how they are
used in life science. It includes a brief description of the idea of modeling in general
and of mathematical and kinetic models in particular, and points out some of the
similarities and differences among kinetic models. These ideas lead up to the aims of
the thesis, which are stated at the end of the chapter together with an outline of
how they are addressed in the appended papers.

Following this introduction, a brief background on selected mathematical topics
is given in Chapter 2. Then, results and discussions are presented in Chapter 3.
Finally, additional discussions and conclusions are given in Chapter 4.

1.1 Kinetic Models in Life Science
Kinetic models are found across all the life sciences. They are used both in basic
research, such as cell biology (Klipp et al. 2005; Ramsey et al. 2006) and physiology
(Karaaslan et al. 2005; Silber et al. 2007), and in applied fields, like biotechnology
(Stephanopoulos et al. 1998; Wiechert and Noack 2011) and drug development
(Gabrielsson and Weiner 2016; Gennemark et al. 2017). Just like other types of
mathematical models, kinetic models can be used to describe, understand, and predict
how biological systems of interacting components function and behave (Kitano 2002;
Riel 2006; Motta and Pappalardo 2013). Biological systems of interest in life science
can be anything from a collection of molecules to a cell, a multicellular organ or
organism, or even a population or ecosystem. Due to features such as a high degree
of connectivity, strong feedbacks and regulations, and the presence of nonlinear
interactions, the behaviors of these systems and their corresponding models tend to
be highly complex (J Nielsen 2017), even for apparently simple systems consisting of
just a couple of components (Tyson et al. 2003).

3
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Kinetic models are primarily built from mass balance equations that involve
different reactions and their kinetics, i.e., how fast the reactions proceed. This makes
kinetic modeling especially suitable for the study of dynamic processes. The mass
balances are usually defined by a set of time-dependent first-order ordinary differential
equations (ODEs), which means that these models are essentially equivalent to what
control engineering refers to as state-space representations. The reactions in kinetic
models are often synonymous with well-defined biochemical reactions, e.g., enzymatic
conversions of metabolites. They may however equally well describe processes on
a higher level of organization, such as the rate of cellular proliferation, or changes
of more abstract entities like transitions between healthy and diseased states of an
individual. The notion of a reaction should therefore be interpreted in its broadest
sense. The number of mass balance equations and reactions can differ a lot between
models but are typically in the range of a few up to a hundred. These models are
normally implemented and solved numerically using computers (Mendes and Kell
1998).

Given the high flexibility of what can be represented by kinetic mass balance
equations and these equations’ inherent ability of accounting for change, it is not
surprising to learn that kinetic modeling is used for a wide range of topics involving
dynamic processes such as adaptive bacterial metabolism (Kotte et al. 2010), aging of
yeast (Erjavec et al. 2008), the development of diabetes (Topp et al. 2000), therapies
for tumor growth inhibition (Cardilin et al. 2017a), and vaccination strategies for
epidemics (Shulgin et al. 1998), just to name a few. The scope of kinetic models is
as diverse as the field of life science itself.

1.2 The Idea of Modeling
Modeling is frequently driven by the desire to solve a certain problem or finding the
answer to one or more specific questions. Typically, real world problems or questions
involve complicated systems and the solutions and answers are not easily obtained.
The universal idea of modeling is to create a simplification or abstraction of the
system under study. By doing so, one can imagine the question being transferred
from the real world into the model world.1 Once posed in the model world the
question will, hopefully, appear more comprehensible as the problem is stripped of
irrelevant and confusing complexity, leaving only the essential core of the matter left.
The answer can now be worked out more easily and subsequently be formulated in
relevant terms of the real world context. This idea is depicted in Fig. 1.1 (which
incidentally happens to be a model in itself).

Mathematical models are a special type of models. They express the abstractions
of the model world quantitatively using different kinds of equations and mathematical
statements (Wolkenhauer 2014; Torres and Santos 2015; Helmlinger et al. 2017;
J Nielsen 2017). This is a powerful approach since (i) it allows a precise and

1Sometimes the model world involves different kind of physical models that are part of the
real world, e.g., the use of cultured cells or animal models. The behaviors of those models are
not necessarily less complex as such, but they may nevertheless be considered simplifications for
experimental and ethical reasons.
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Real world Model world

b

c

a

d

1

3

2

Figure 1.1: The idea of modeling. Starting with a question in the real world (a), the process
of creating a model (1) moves the question into the model world (b), where it
more easily can be answered (2). When the question has been answered in the
model world (c), the answer must be translated back (3) to the real world (d) in
a meaningful way.

unambiguous definition of the model; and (ii) the modeler can make use of a large
volume of already existing results from the mathematical and statistical disciplines
to support the modeling process. It is also a difficult approach because things that
would have only vaguely been expressed in a verbal model must now instead be
made much more concrete and quantitative. Mathematical models, properly defined,
leave no wiggle room for alternative interpretations as far as their mathematical
meaning is concerned. This stringency requires the modeler to carefully weigh
different considerations when deciding how to define the model. Challenging as this
may be, the fact that mathematical modeling forces this process of critical thinking
to take place may be one of its strongest merits (Wolkenhauer 2014).
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For kinetic models in life science, step 1 of Fig. 1.1 is usually the hardest. It
involves most of the assumptions and decisions that eventually determines whether
the modeling effort will be fruitful or not. For example, it involves understanding
what the essential components of the system under study are, choosing an appropriate
mathematical framework and defining the model equations, and deciding what type
of data that should be collected in order to facilitate the modeling. Many of these
activities requires the modeler to collaborate with non-modeler experts, and probably
also requires the modeler to at least acquire some basic level of knowledge in the
relevant field. Step 2 is typically quite straightforward for kinetic models, although
it may occasionally involve extensive computational power. It does normally not rely
on the interaction with non-modelers. Depending on the purpose of the modeling,
it may involve tasks like optimization (Alvarez-Vasquez et al. 2000), derivation
of mathematical relations (Cardilin et al. 2017a), explorative simulation of what-
if-scenarios (Bajpai and Reuss 1980), or inspecting the estimate of one or more
important parameter values (Pfeffer et al. 2011). These activities are sometimes
referred to as in silico experiments. Step 3 again involves collaborations with the non-
modeler experts to interpret the findings and to critically challenge the conclusions
of the modeling. It may also trigger additional questions that lead to another round
of modeling.

1.3 Similarities and Differences of Kinetic Models
Two ideas are central to all kinetic models. The first is to define the rate of change
of one or more state variables due to some reactions, i.e., a set of mass balance
equations. The second is to mathematically define the kinetic rate expressions (or
rate laws) of these reactions. The rate expressions may depend on the state variables,
on a set of kinetic parameters, and on external time-varying entities. The model
state variables and the reactions thus have a mutual and dynamic dependence on
one another; the state variables, i.e., the reactants, are changing according to the
magnitude of the reaction rates, which in turn are determined by the magnitude of
the reactants (and any potential effectors). Apart from this common foundation,
kinetic models in life science are actually a quite heterogenous group of models. They
differ with respect to the type and abstraction-level of the systems they describe, as
well as with respect to the mathematical framework being used.

1.3.1 Biological Systems
The type of systems and processes described by kinetic models are very different,
ranging for instance from the kinetics of enzymes and pathways at the subcellular
level (Rizzi et al. 1997), to the whole-body pharmacokinetics (PK) of drugs (Boger
et al. 2016), and the kinetics of animal populations (Lotka 1925; Volterra 1926).
As a consequence of the multiplicity among kinetic models, the state variables may
represent anything from specific metabolites, to aggregated pools of related molecular
species, the cell membrane electrical potential, net body weight, or population sizes.
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Occasionally, a subset of the state variables does not even have a clear interpretation—
they have just been introduced for making the model better at fitting some observed
phenomena. The same diversity is found in the spectrum of reaction kinetics.
Some models are built around authentic and mechanistic representations of multi-
step reactions by considering a detailed account of all elementary reactions or by
mechanistically derived approximations like the Michaelis-Menten kinetics (Michaelis
and Menten 1913; Chen et al. 2010), while the kinetics of other models is described
by so-called empirical or phenomenological models (Monod 1942; Menezes et al. 1994;
Gabrielsson and Weiner 2016), or by generic expressions with some mathematically
or biophysically favorable properties (Heijnen 2005; Liebermeister et al. 2010).2

1.3.2 Mathematical Frameworks

There are several different types of mathematical frameworks that can be used to
formulate the mass balance equations and the kinetic rate expressions. Kinetic
models are almost always operating in continuous time, but examples of discrete-
time models implemented by means of difference equations exist (Petersson et
al. 2010). Many models are spatially dependent, most commonly by considering
different discrete compartments (Hammarlund-Udenaes et al. 2008), but there are also
many examples of continuous temporal-spatial descriptions using partial differential
equations of the reaction-diffusion type (Kholodenko 2006), or even more complex
methods like the Euler-Lagrange approach for single cells in turbulent flows of stirred
bioreactors (Lapin et al. 2004). Another distinction can be made between models with
deterministic kinetics and models with stochastic kinetics (Ullah and Wolkenhauer
2010). The stochastic models can be further separated into those that consider
discrete stochastic events (Gonze et al. 2008) and those that consider continuous
stochastic processes (Hasty et al. 2000). Kinetic models also differ with respect
to what their parameters mean and how they are defined mathematically. The
most common type of model is still based on a single fixed set of parameter values
but different kind of more ambitious approaches that recognize the importance of
parameter uncertainty are gaining ground (Chakrabarti et al. 2013). This includes
the branch of formal Bayesian methods that aim at determining the whole posterior
probability of the parameter values (Saa and LK Nielsen 2016). Yet other approaches
look at the inter-individual parameter variability by defining a probability distribution
of the parameter values at the population level, a modeling paradigm referred to as
nonlinear mixed effects (NLME) modeling (Lindstrom and Bates 1990; Kuhn and
Lavielle 2005) or hierarchical Bayesian modeling (Huang et al. 2006). Moreover,
different mathematical frameworks are sometimes combined to form new ones, such
as the cross-fertilization of NLME modeling with kinetics described by stochastic
differential equations (SDEs) (Tornøe et al. 2004).

2Although Michaelis-Menten kinetics and Monod kinetics are equivalent from a mathematical
point of view, the former is a mechanistically derived approximation from the underlying elementary
kinetics while the latter is an empirically established rate law.
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1.4 The Aim of This Thesis
This thesis addresses the use of kinetic models in life science. Although these models
can appear to be very different on the surface, there is, at least to some degree, a
common workflow and a shared set of mathematical and statistical modeling methods
that unify the kinetic modeling approach. The aim is to

A1 identify and describe the different steps in the workflow for building and
using a kinetic model,

A2 apply the kinetic modeling approach to address some relevant questions
within life science, and

A3 contribute to the development of new methods for building kinetic models.

The thesis contains six papers, which roughly speaking addresses the three aims in
the following way:

Paper A is a review of kinetic modeling in biotechnology. In addition to
providing many examples of applied modeling, it describes the workflow
for kinetic modeling in detail, thereby addressing A1.

Paper B presents a kinetic model of the interaction between the drug
ticagrelor and its antidote MEDI2452. This modeling application from
pharmacokinetics addresses A2, and to some extent A1.

Paper C investigates the impact on the action potential of blocking the
ion channel Kv1.5, using a kinetic model. This modeling application from
electrophysiology addresses A2, and to some extent A1.

Paper D shows how a kinetic model can quantify cell-to-cell variability of
transient glucose sensing in yeast. This modeling application from microbial
signal transduction addresses A2, and to some extent A1 and A3.

Paper E develops a parameter estimation algorithm for NLME models
based on sensitivity equations. This method contribution addresses A3,
and to some extent A1.

Paper F explores a modeling approach based on combining NLME mod-
eling with SDEs. This method contribution addresses A3, and to some
extent A1 and A2.



CHAPTER 2

Mathematical Background

This chapter gives a brief mathematical background to the contributions of this thesis.
First, the mathematical notation for a standard kinetic model is introduced. Second,
it is showed how this model can be expanded to a NLME model in order to account
for inter-individual parameter variability in populations of individuals. Third, the
expansion of a standard kinetic model to a model based on SDEs is outlined. Finally,
inter-individual parameter variability is combined with stochastic kinetics to form
the SDE-NLME framework.

2.1 The Standard Kinetic Model
The dominating mathematical framework for kinetic models in life sciences is a set
of first-order time-dependent ODEs. It is used to formulate a set of mass balance
equations

dx(t)
dt

= Sr(t), (2.1)

where t is the independent time variable, x(t) is an m-dimensional vector of time-
dependent state variables, S is an m × n-dimensional stoichiometric matrix, and
r(t) is an n-dimensional vector of time-dependent reaction rates. The reaction
rates are further defined to be dependent on x(t), a set of parameters θ, and on a
time-dependent input function u(t),

r(t) = r(x(t),θ,u(t)). (2.2)

The input function is used to represent known and varying quantities such as
an experimental protocol for the application of some stimuli to the system. The
stoichiometric matrix and the reaction definitions are usually not written out explicitly.

9



10 2.2. Nonlinear Mixed Effects Models for Populations

It is instead more common to see the complete right hand side lumped together into
a function f , i.e., the mass balance equations are written as

dx(t)
dt

= f(x(t),θ,u(t)). (2.3)

The differential equations always have a set of accompanying initial conditions

x(t0) = x0(θ), (2.4)

which may depend on the parameters.
To model observations of the system under study, i.e., experimental measure-

ments, a set of observation equations are also required. These equations combine a
deterministic function h of the model state variables, the parameters, and the input
function, with a vector of stochastic observation errors et, to describe a vector of
discrete-time observations at time t,

yt = h(x(t),θ,u(t)) + et. (2.5)

It is standard practice to let the errors et be normally distributed with zero mean
and covariance matrix Σ = Σ(x(t),θ,u(t)). Observations made at different time
points are furthermore assumed to be independent with respect to the stochastic
error.

In addition to the differential equations and the observation equations, auxiliary
variables are sometimes introduced to simplify the model formulation or to make
it more intuitive. An example of this is the frequently applied approach of initially
formulating mass balance equations in terms of time-dependent amounts, e.g., a(t),
but then replace the amount variable with the product of the corresponding concen-
tration c(t) and a volume parameter V , a(t) = c(t)V . The auxiliary concentration
variable can then be used to more conveniently define some of the reaction rates, e.g.,
inter-compartment transport reactions which depend on concentration differences.
It can also simplify the observation equations since most experimental methods
measure concentrations rather than amounts. However, it is important to note here
that balance equations in terms of concentrations can in general not be set up for
multi-compartment models since concentrations are not conserved quantities (which
explains the notion of “mass” in mass balance equations). If concentrations are
desired as model state variables they have to be introduced afterwards by a change
of variables, as in the example above.

2.2 Nonlinear Mixed Effects Models for Populations
The standard kinetic model considers the stochastic variable in the observation
equation as the only source of variability in experimental data. As an additional
source of data variability, NLME models introduce variability in the model parameters
(Lindstrom and Bates 1990; Kuhn and Lavielle 2005). This is done by changing
the meaning of model parameters from constants to stochastic variables such that
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different instances of the model have different realizations of the parameter values.
The point of having different instances with respect to the parameter values is to
create unique models for all individuals in a population, but still use the same model
equations for every individual. At the population level, the realization of these
stochastic parameters can be assumed to follow a parametric probability distribution.
The choice of this distribution and its parameter values is now also part of the
model definition. This approach of expanding the model with an additional layer for
the statistics of the individual parameters is sometimes referred to as hierarchical
modeling. It is important to note that the inter-individual parameter variability is a
one-off realization that affects all observations for an individual. Thus, in contrast to
the observation errors et which are independent both between and within individuals,
variability of the parameter values contributes to correlated observations within
individuals.

It is common to subdivide parameters of NLME models into constant fixed effects
that are the same for all individuals, and stochastic random effects that are different
between individuals, hence the term mixed effects models. By combining fixed and
random effects, a set of composite parameters for the ith individual may be written

ϕi = ϕ(θ,ηi), (2.6)

where ϕ can be any nonlinear function, θ are the fixed effect parameters similar to
those of the standard kinietic model, and ηi are the random effect parameters for the
ith individual. The individual parameters ϕi are used in the same way as θ are used
in the standard kinetic model. The random effects are furthermore defined to be
normally distributed with zero mean and covariance matrix Ω. However, the function
ϕ enables the transformation of the normal distribution into other distributions.
Both fixed effect parameters and random effect parameters, once realized, can be
viewed from either the frequentist’s perspective, i.e., they are deterministic but
unknown, or from the Bayesian perspective, as probability distributions. In the latter
case, the model is often referred to as a hierarchical Bayesian model (Huang et al.
2006).

2.3 Models with Stochastic Dynamics
Another way of introducing additional variability to the standard kinetic model is
to consider randomness in the dynamics of the state variables. This can be done
by expanding the ODEs to SDEs by adding a stochastic term to the right-hand
side (Jazwinski 1970). Written on differential form, the model becomes

dx = f(x(t),θ,u(t))dt +Gdw, (2.7)

where the function f defines the deterministic part of the dynamics like previously,
G is a weight matrix of dimension m× q, and dw is a q-dimensional vector of Wiener
increments (independent, zero mean, and variance dt). If G is chosen to be the
stoichiometric matrix S, possibly scaled by some diagonal matrix, the randomness
of the dynamics become completely associated with the reactions in an additive way.
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It is then the kinetics of the individual reactions that are stochastic, rather than
the net dynamics of the state variables. This furthermore ensures that the model
equations still preserve the balances of, e.g., mass or charge.

The solution to the SDEs can be seen either as a particular realization of a
stochastic process, or in a probabilistic sense in which the dynamics of a probability
distribution for the state variables is described by a deterministic partial differential
equation known as the Fokker-Planck or Kolmogorov forward equation (Jazwinski
1970). In either case, since particular realizations of the Wiener increments affects
all future states of the model, SDE-based models lead to correlated observations
within particular model realizations.

2.4 Nonlinear Mixed Effects Models with Stochastic
Dynamics

The standard kinetic model can simultaneously be expanded with both inter-
individual parameter variability and stochastic dynamics, as described separately
above. This results in an SDE-NLME framework (Tornøe et al. 2004). Here,
three sources of data variability are taken into account at the same time, namely
(i) the intra-individual variability due to randomness in the observations; (ii) the
inter-individual variability due to parameter variability; and (iii) the intra-individual
variability due to uncertainty in the dynamics.



CHAPTER 3

Results and Discussion

This chapter summarizes and discusses the results of the appended papers. First,
a short summary of all papers is given in the form of a table. Then, one section is
devoted to each of the papers. The primary objective of this chapter is not to repeat
the contents of the papers, but rather to lift some selected topics and to offer new
perspectives based on the thesis aims.

3.1 Short Summary of the Appended Papers
A short summary of the appended papers is given in Table 1. This table provides an
overview of the key aspects both within and across the papers of this thesis—all in
one spread.

3.2 The Workflow for Kinetic Modeling
Paper A reviews the use of kinetic models in metabolic engineering and industrial
biotechnology. Although the scope of the review is narrower than the scope of this
thesis, the same modeling principles are generally applicable for most life science
research areas involving kinetic models. As such, the review may be valuable to a
larger audience.

The core of Paper A consists of a detailed account of the workflow for how kinetic
models are set up. The steps of the workflow, and how they are interrelated, are
depicted in Fig. 3.1. This is a similar illustration to that in Fig. 1 in Paper A, but
provides more detail regarding the role of experimental data and the iterative aspects
of the workflow. The process underlying the construction of most kinetic models in
life science can be understood from this workflow, including the contributions in this
thesis. A brief explanation of these steps now follows.

13
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Table 3.1: Short summary of papers.

Paper A Paper B Paper C

Title Kinetic models in indus-
trial biotechnology —
Improving cell factory
performance.

Unraveling the pharma-
cokinetic interaction of
ticagrelor andMEDI2452
(ticagrelor antidote) by
mathematical modeling.

Modeling the effect of
Kv1.5 block on the
canine action potential.

Background Kinetic models guide
genetic engineering and
support the design of
bioprocesses.

MEDI2452 is an anti-
dote for the platelet
aggregation inhibitor
ticagrelor.

Prolonging the action
potential duration may
prevent atrial fibrilla-
tion.

Objective Describe the workflow
for kinetic modeling and
review methods and
applications.

Understand interaction
between ticagrelor and
MEDI2452.

Investigate impact of
Kv1.5 potassium ion
channel block on the
atrial action potential.

Method Review literature and
perform survey in the
modeling-community.

Derive a joint pharma-
cokinetic model of drug
and antidote in the
mouse.

Integrate mechanistic
Markov-model of open-
channel Kv1.5 block
with existing model of
the canine atrial action
potential.

Results Detailed account of
how kinetic models are
built and applied within
biotechnology.

Model explains counter-
intuitive experimental
results and predicts free
ticagrelor concentration
following MEDI2452
treatment.

Model predicts action
potential dynamics in
the presence of Kv1.5-
targeting drugs.

Limitations Industry use of kinetic
modeling is not always
disclosed in scientific
publications.

Model does not account
for population variabil-
ity.

Model studies electro-
physiology at the cell
level, but fibrillation is
occurring at the organ
level.

Impact Fills literature gap by
summarizing theory and
applications in a single
document.

Model has been used to
design and interpret a
new study in the pig.

First model to link
the detailed kinetics of
Kv1.5 block with cell-
level variables like the
action potential duration.
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Table 3.1: Short summary of papers. (continued)

Paper D Paper E Paper F

Title A nonlinear mixed effects
approach for modeling
the cell-to-cell variabil-
ity of Mig1 dynamics in
yeast.

Using sensitivity equations
for computing gradients
of the FOCE and FOCEI
approximations to the
population likelihood.

Mixed effects modeling
using stochastic differ-
ential equations: Illus-
trated by pharmacoki-
netic data of Nicotinic
acid in obese Zucker rats.

Background Populations of isogenic
cells display cell-to-cell
variability, but kinetic
models seldom address
this.

Parameter estimation in
NLME models can be
slow and unstable.

Models with uncertain
kinetics may compen-
sate for incomplete
and/or incorrect model
structures.

Objective Characterize cell-to-cell
variability of the tran-
sient re-localization of
the yeast transcription
factor Mig1.

Improve the speed and
robustness of the FOCE
and FOCEI parameter
estimation methods.

Demonstrate a kinetic
modeling framework
that can handle both
population variability
and uncertain kinetics.

Method Combine the nonlinear
mixed effects modeling
framework with single
cell time series data.

Compute gradients of
the FOCE(I) likelihood
using sensitivity equa-
tions instead of finite
differences.

Apply the SDE-NLME
modeling framework to
both synthetic data and
pharmacokinetic data of
nicotinic acid in obese
Zucker rats.

Results Model describes Mig1
dynamics and predicts
population distributions
of the response time,
amplitude, and duration.

Algorithm computes nu-
merically robust gradi-
ents and gives consider-
able speed-up compared
to existing methods.

Framework allows the
identification of parame-
ter variability, uncertain
kinetics, and measure-
ment errors, and also
reduce estimate bias.

Limitations The phenomenological
character of the model
limits biological inter-
pretations and conclu-
sions.

Requires symbolic differ-
entiation capability, and
uses a likelihood approx-
imation.

Synthetic data were
generated with the SDE-
NLME model used for
re-estimation, and not
with a different ODE-
NLME model.

Impact One of the first applica-
tions of nonlinear mixed
effects models to single
cell data.

Algorithm has been in-
corporated in indus-
try standard commercial
software.

SDE-NLME modeling is
a promising approach
that may become the
next generation of pop-
ulation models.
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Question Modeling starts with a question, as argued in Section 1.2.1 The question
defines the modeling task and will influence all subsequent steps of the modeling
workflow. Occasionally, the question may already from the beginning be phrased as
a specific hypothesis, otherwise this happens (indirectly) when the model is formed.

Model structure The model structure can be viewed as the combination of a so-
called network structure and the kinetic rate expressions. The network structure or
network topology is the “wiring diagram” of the model. It can sometimes be translated
more or less directly from the pathway or interaction diagrams that biologists
frequently use. The network structure defines which reactions that are taking
place, including any reaction modulators, but does not give any further quantitative
information about the reactions. This is instead determined by specification of the
kinetic rate expressions which act as sub-models for each reaction. Together with
the network structure they form a complete model by means of a set of mass balance
equations. The model structure also involves a decision about what mathematical
framework that should be used to represent the balance equations (see Chapter 1
and 2 for the most common examples).

Parameter values Kinetic models differ with respect to the philosophy of how
values of model parameters are being determined. Parameter values are sometimes
determined from a priori knowledge, obtained for instance from a literature review
or from experiments designed to measure a specific parameter directly. A competing
approach for parameter determination is based on estimation using experimental data
from the system under study. This works by simultaneously trying to tune the model
parameters such that the model behavior matches the experimental observations
as closely as possible. It may be necessary to adjust the complexity of the model
structure to ensure that parameter values can be estimated properly.

Experimental design and data The choice of model structure and the estimation
of parameter values are coupled with the design and generation of new experimental
data within the scope of the modeling project. Determination of the experimental
protocol can be considered as an integrated part of modeling and may involve
activities such as identifiability analysis and optimal design.

Validation When a model structure and parameter values have been proposed it
is common to perform some kind of model validation to increase confidence in the
model. This can be done in several ways, ranging from sanity checks and consistency
checks with prior knowledge, to comparison with newly generated data from the
system under study. A failure of this step should lead to a reconsideration of the
model structure and the parameter values.

Model usage and answer The final part of the modeling consists of using the
model to obtain an answer to the question that initiated the modeling. It may
involve various types of analysis and predictive simulations— sometimes referred to
as in silico experiments—as well as an educated interpretation of the results in the
context of the model question.

1This step was referred to as “model purpose” in Paper A, but had the same meaning.
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Question

Model 
structure

Experimental 
design

Parameter 
values

Data

Validation

Model 
usage

Answer

ModelingPrior knowledge New experiments

Figure 3.1: The workflow for kinetic modeling. Boxes represent different steps of the
modeling workflow and arrows indicate the influence of one step on the other.
Starting with a question, a model structure is defined and parameter values
are determined. This is usually coupled with the design and generation of new
experimental data. The quality of the model is often assured through some
kind of validation before it is used to, for instance, perform some simulations
that contribute towards answering the question. All steps are influenced by prior
knowledge, and the order in which they are traversed is typically characterized by
an iterative cycling.
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The workflow in Fig. 3.1 is rarely performed in a linear manner from question to
answer. It is rather a highly iterative process that involves repeated cycling through
various steps (Riel 2006). The exact path will be unique for each modeling effort
and cannot be predicted beforehand. The iterative signature of the workflow can
even go beyond the original question, as the resulting answer may trigger entirely
new questions. Also, what can be considered prior knowledge changes over time as
science moves forward and new data become available. It is therefore natural to see
models as temporary; some models will require slight alterations while others become
obsolete or evolve into something different when new information is presented.

The kinetic models reviewed in Paper A span a wide range of biological questions
and mathematical frameworks. Yet, the way that they have been set up is mostly
well explained by the workflow in Fig. 3.1. The fact that many of the reviewed
modeling projects involved generation of new data also clearly demonstrates a key
point of Fig. 3.1, namely that mathematical modeling is closely related to the work of
experimentalists (Klipp et al. 2005; Marucci et al. 2011; Bowden et al. 2014; Pehrsson
et al. 2017).

3.3 Pharmacokinetics of Drug-Antidote Interaction

Ticagrelor is an antiplatelet drug (Van Giezen et al. 2009) approved for the treatment
of acute coronary syndrome (Wallentin et al. 2009) and for long-term preventive
use in patients with prior myocardial infarction (Bonaca et al. 2015). Antiplatelet
therapies reduce the risk of blood clots, but at the same time also increase the
risk of bleeding (Wallentin et al. 2009). Unlike several other antiplatelet medicines,
ticagrelor binds reversibly to its target receptor (Van Giezen et al. 2009) which
provides an opportunity for developing a specific antidote that reverses the effect
of ticagrelor. Such an antidote would be a valuable treatment option for a patient
on ticagrelor in the event of a major bleeding. The ticagrelor-neutralizing antibody
fragment, MEDI2452, is currently in a preclinical development program (Buchanan
et al. 2015; Pehrsson et al. 2017). If successful, MEDI2452 would be the first antidote
for an antiplatelet drug.

Paper B presents a kinetic model of the drug-antidote interaction of ticagrelor and
MEDI2452. This modeling work exemplifies most, if not all, aspects of the kinetic
modeling workflow previously described and illustrated in Fig. 3.1. The question
driving the modeling effort was to understand the PK interaction between ticagrelor
and MEDI2452 in the mouse. In particular, a model was desired that could predict
the time course of free ticagrelor resulting from different administration schemes for
the drug and the antidote.

To form the model structure it was important to identify all biochemical species,
reactions, and compartments that could be considered to be relevant for the drug-
antidote interaction. The resulting model network structure is shown in Fig. 3.2.
Based on this, kinetic mass balance equations were set up for all biochemical species.
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Figure 3.2: Ticagrelor-MEDI2452 pharmacokinetic model. Reactions assumed to equi-
librate instantaneously are indicated by double arrows. Input to the system
(ticagrelor and MEDI2452) are shown as dashed arrows. The rapid equilibriums
of free and protein-bound ticagrelor and ticagrelor active metabolite (TAM) are
depicted by encapsulated entities. The fractions of free ticagrelor and TAM within
these entities are determined by the parameter f . The total contents of free and
protein-bound ticagrelor and TAM in the plasma compartment (V ) are cleared at
the rate Cl, and ticagrelor is additionally being metabolized to TAM at the rate
Clmet . The total content of the encapsulated ticagrelor entity may furthermore
distribute instantaneously to one peripheral compartment (V1), and more slowly,
with the intercompartmental clearance Cld, to another (V2). Free ticagrelor and
TAM in the plasma compartment can reversibly bind to free MEDI2452 with the
rate kon , forming complexes with dissociation constant Kd. Both the complexes
and free MEDI2452 are cleared at the rate Clf .

As an example, the equation for ticagrelor in the plasma, TicaV (t), was defined as

V × TicaV ′(t) =
+ TicaInput(t)
− Cl fast × (TicaV (t) − TicaV1(t))
− Cld × (TicaV (t) − TicaV2(t))
− Clmet × TicaV (t)
− Cl × TicaV (t)
− V × kon(f × TicaV (t) × FabV (t) − Kd × FabTicaV (t))

(3.1)

where TicaInput(t) is the administration of ticagrelor, TicaV1(t) and TicaV2(t) are
ticagrelor concentrations in the two other compartments, FabV (t) and FabTicaV (t)
are the plasma concentrations of MEDI2452 and ticagrelor-bound MEDI2452, V is
the plasma volume, Cl fast , Cld, Clmet , and Cl are kinetic clearance parameters, kon
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is a second-order association rate constant, f is the unbound fraction of ticagrelor,
and Kd is the affinity of MEDI2452 for ticagrelor. The terms of the right-hand side
of this equation describes, in order, external administration of ticagrelor, the inter-
compartment clearance of ticagrelor to and from V1 and V2, the specific metabolism
of ticagrelor to its active metabolite, the clearance of ticagrelor, and the ticagrelor-
MEDI2452 complex-formation. The mass balance equations in Paper B were initially
formulated in terms of state variables for amounts, before concentrations were
introduced as state variables according to the explanation in Section 2.1.

Before the model shown in Fig. 3.2 could be set up, two independent PK models
of separately administered ticagrelor and MEDI2452 were created as an intermediate
step. The combined PK model for ticagrelor and MED2452 was then formed by
merging these models. Parameters of the combined model were determined using
prior information from the literature and from parameter estimation using time
series data from experiments of separately administrated ticagrelor or MEDI2452.
This illustrates how the model structure was identified iteratively, which is very
common as argued previously. Moreover, during the modeling project, new data were
generated and used for validation and subsequent refinement of the model, adding
further to the iterative aspect of the workflow.

The model was used to answer the initiating question in different ways. First of all,
the model could explain the mechanism behind why total ticagrelor and free ticagrelor
in plasma show opposite response after administration of MEDI2452. It was also
shown how the predicted time-dependent concentration of free ticagrelor could drive
the pharmacodynamic (PD) response of platelet aggregation. Finally, an interesting
prediction was made about how free ticagrelor is being measured. According to
the model, an in vivo blood sample may be far from equilibrium with respect to
the complex-formation between ticagrelor and MEDI2452, but the equilibrium will
eventually be reached in vitro before the bioanalysis is complete. This requires a
special observation model for the equilibrium concentration of free ticagrelor. By
comparing the model of in vivo free ticagrelor with the special observation model
of the measured in vitro free ticagrelor, it was concluded the measurements may
severely underestimate the actual free concentration of ticagrelor (see Fig. 3.3). The
exact extent of this effect depends on the experimental protocol and varies over time,
but underestimation of free concentrations by roughly an order of magnitude may
occur for time periods of up to an hour.

During the modeling process it became apparent that potential recycling of
ticagrelor from the cleared ticagrelor-MEDI2452 complex might be important for
the behavior of the model. Thus, in line with the reasoning in Section 1.2, a new
question arose as a consequence of the critical thinking that is forced to take place
during modeling. The question of potential recycling was approached by modifying
the model structure to account for various levels of recycling and then examining the
feasibility of those alternative models. The result of this analysis favored a scenario
where no significant recycling occurs, and where ticagrelor bound to MEDI2452 is
eliminated as a complex via the urine.

When the model was complete and Paper B had been published, the mouse PK
model was translated to the pig and used to support the evaluation of MEDI2452’s



Chapter 3. Results and Discussion 21

Time (min)

0 20 40 60 80 100

C
o

n
c
e

n
tr

a
ti
o

n
 (

n
M

)

10-4

10-3

10-2

10-1

100

101

102

103

104

105

Figure 3.3: The observation model. Comparison of key model state variables and the
corresponding observation model for Study design 3: free ticagrelor (red solid line)
versus observed free ticagrelor (red dashed line) in plasma, free TAM (green solid
line) versus observed free TAM (green dashed line) in plasma, and free MEDI2452
(blue solid line) versus observed free MEDI2452 (blue dashed line) in plasma. For
further details, see Paper B.

ability to restore hemostasis in a pig animal-model of major bleeding (Pehrsson et al.
2017). This pig PK model was used to design the experiments and interpret the data
presented in the main paper (Pehrsson et al. 2017). The details of the pig PK model
are explained in the supplementary material (Pehrsson et al. 2017). Furthermore, the
pig study measured the urine concentrations of ticagrelor, which can be used as a test
of the mouse model prediction that ticagrelor is not recycled. After administration
of only ticagrelor, the concentration of ticagrelor in the urine was just above the
lower level of quantification. However, when both ticagrelor and MEDI2452 was
administered, ticagrelor concentration in the urine was roughly a thousand times
greater. It was intriguing to see that the pig PK model predicted these observations
in a good way (Pehrsson et al. 2017). This provides further validation to the basic
principles of both the mouse and pig PK models.

The data used for the drug-antidote interaction model of Paper B was collected
from many different animals and displayed a clear inter-individual variability. Still,
a standard kinetic model was used and the parameters were estimated according to
the so-called naïve-pooled approach (Ette and Williams 2004). Expanding the PK
interaction model from a standard kinetic model to a NLME model, as explained in
Section 2.2, would therefore be a possible direction for future work. Accounting for
inter-individual variability would most likely be essential to make the model clinically
relevant, if translated to a human setting in the future.
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3.4 Effect of Kv1.5 Blockers on the Canine Atrial Action
Potential

Atrial fibrillation (AF) is a common form of heart arrhythmia that is characterized by
a fast and unorganized beating of the upper chambers (Nattel 2002). It is associated
with an increased risk of death and an increased risk of cardiovascular and renal
disease (Odutayo et al. 2016). AF is a complex electrophysiological process that
spans over multiple scales of space, time, and biological organization. At the tissue-
or organ-level, AF manifests itself as self-sustained propagation of spiraling and
circling electrical waves. It is a collective behavior of a large number of atrial cells
that emerges from the single cell level where brief electrical impulses that change
the cellular membrane potential are transmitted from one cell to another. These
impulses are known as action potentials (APs) and in addition to their role as carriers
of information between cells, they couple electrical activity with the mechanical
contraction of cells that ultimately makes the heart beating. The AP, in turn, has a
highly complex dependency on several ionic currents that flow across the cellular
membrane. Many of these currents are mediated by voltage-gated ion channels that
can open and close on a millisecond time scale depending on the current state of the
membrane potential. Thus, one aspect of understanding AF is to understand the
dynamic relation between the properties of the atrial AP and the underlying ion
channel currents.

An important characteristic of the AP is the so-called refractory period, the period
during which the cell cannot be stimulated to fire another AP. The duration of the
refractory period puts a lower limit on the tissue length-scale of a possible re-entrant
circuit. In this way, a short refractory period increases the risk for sustained re-entry
propagation of APs, which is believed to be a main mechanism behind AF. Many
pharmacological treatment strategies for AF therefore aim to increase the duration
of the refractory period by using drugs that block ion channels responsible for the
repolarizing potassium currents (Dobrev et al. 2012). This includes the repolarizing
current carried by the voltage-gated potassium ion channel Kv1.5 (Wettwer and
Terlau 2014). This ion channel is of particular interest since it is only expressed in
the atrium and a specific Kv1.5 blocker could thereby possibly avoid the undesired
prolongation of the refractory period in ventricular cells.

The study of the AP using mathematical modeling has a long history and has
been made famous through the pioneering work of Hodgkin and Huxley, who already
in 1952 used a kinetic model based on ODEs to explain the AP generation in the
giant squid axon (Hodgkin and Huxley 1952). Since that, many AP models have been
developed for different kind of excitable cells (Noble et al. 2012; Glynn et al. 2014;
Heijman et al. 2016). Due to the use of animal models this includes mathematical
models tailored for specific species, such as the Ramirez-Nattel-Courtemanche (RNC)
model of the canine atrial AP (Ramirez et al. 2000).

Paper C uses a kinetic model to investigate the effect on the canine atrial AP
when drugs with different properties are used to block the Kv1.5 channel. An example
of this is shown in Fig. 3.4. In particular, the action potential duration (APD) is
studied. The APD is closely related to the duration of the refractory period, and
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Figure 3.4: Model of the action potential in the presence of a hypothetical drug. The
action potential (A) and the and IKurd current carried by Kv1.5 (B) are shown
for a remodeled PM-cell stimulated at 1Hz. Insets show magnification of the
traces during the spike. Bold traces correspond to no drug, solid traces to drug
concentrations of 1, 2, 3, 5, 8, and 13 µM, respectively, and dashed traces to
21 µM. The APD90 level is shown as a horizontal dashed line in (A). For further
details, see Paper C.

it is used as a marker for assessing the impact of pharmacological treatment of AF.
The modeling starts off from the well-established RNC model of the canine atrial
AP (Ramirez et al. 2000). Then, the part of the model describing the IKurd current
through the Kv1.5 ion channels is replaced by a mechanistic Markov-type model
that allows the precise action of a blocking drug to be incorporated (Rudy and Silva
2006). Specifically, the new Kv1.5 model describes a selective open-channel block,
the mechanism by which most Kv1.5 blockers are believed to operate (Dobrev et al.
2012). The RNC-integrated Markov model of Kv1.5 offers a possibility to explore the
impact on the AP resulting from Kv1.5 blocking drugs with kinetic parameters and
electrical properties of different types. Using in silico experiments like the one shown
in Fig. 3.4, both actual compounds and a large range of hypothetical drugs with
different properties could be evaluated. The corresponding systematic exploration of
drug parameters in living cells in the wet lab would have required a huge amount of
experimental work, if even at all possible.

Model simulations suggested that the APD increased with both the effective rate
of receptor binding (product of drug concentration and rate of association to the
open state) and with the rate of drug-receptor complex dissociation. Compared
to a naïve model with state-independent block, differences in prolongation of the
APD were large, suggesting that it is crucial to choose a model that matches the
actual blocking mechanism. It was also found that open-channel block produce a
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reverse use-dependence, i.e., that the increase in APD becomes smaller for higher
frequencies of AP stimulation. Furthermore, the Kv1.5 model was modified beyond
the straightforward mechanism of open-state block to account for uncharged drugs
that display a voltage-dependent recovery from block. To the author’s knowledge,
this is the first Kv1.5 model capable of capturing this behavior. This extended
version of the model was subsequently used to analyze two actual compounds that
display such characteristics (Lagrutta et al. 2006). The results of that analysis were
in line with previous experimental work (Lagrutta et al. 2006), thereby providing
some confidence with respect to the validity of the model.

The Kv1.5 model in Paper C is a good example of how model structure complexity
of an initial model can be reduced by imposing some assumptions. The Kv1.5 ion
channel is composed of four identical subunits that can transition between a closed
and an open conformation. If all four subunits of the channel are in the open
conformation, a pore is formed between the intra- and extracellular spaces that
selectively let potassium ions flow through. An initial model considers all 24 = 16
possible configurations of the subunits within a channel and keeps track of the
reactions that transforms one configuration into another, see Fig. 3.5A. If it now
is assumed that subunit transition kinetics are independent of the state of other
subunits within a channel (Fig. 3.5B), several configurations become equivalent and
a much simpler model structure with only 6 states can be used instead (Fig. 3.5C).
If a state-dependent block of the channel had not been considered, the model could
have been reduced further to only describe the two possible states of each subunit.
This would have been enough since the state of the subunits within a channel are
always independent. Such a model is essentially a Hogdkin-Huxley model with a
single gating variable and a gating variable exponent equal to 4 (Rudy and Silva
2006). However, state-dependent block introduces dependencies between the states
of the subunits within a channel, and the model used in Paper C becomes necessary.

Model reduction of the type described in Fig. 3.5 is a common approach in
modeling of ion channel kinetics and this part was therefore only mentioned in the
passing of the results section in Paper C. It nevertheless deserves attention since it

Figure 3.5: Model reduction of potassium ion channel model. (A) Illustration of all
possible ion channel configurations under the assumptions that each of the four
subunits are either in a closed or open conformation and that there is a single
drug-blocked state which is only reachable when all subunits are open, i.e., from
the fully open configuration. Each channel configuration is shown within a box with
black edges. Possible transitions between different configurations are indicated
with black lines. Within the boxes, closed subunits are shown as red disks, open
subunits as green disks, potassium ions as yellow disks, and drug molecules as
blue diamonds. The positioning of the red disks is done to highlight that the
closed conformation physically hinders the potassium ions from passing through
the channel. Ions can only pass when all subunits are open and when the channel
is not blocked by a drug. (B) An assumption is made that the transition rates
between the closed and open conformations of a subunit are independent of the
complete channel configuration. (C) Equivalent channel configurations are lumped
together, forming a reduced model. The equivalent configurations in (A) have the
same number of open/closed subunits and are vertically aligned with one another
and with the states of the reduced model.
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illustrates that model reduction is a central part of the kinetic modeling workflow and
that it is something that modelers do all the time in order to limit the complexity of
the model structure. It is perhaps especially important for modeling of ion channels
where the combination of multiple subunits and multiple states of each subunit
quickly can result in an explosion of possible ion channel configurations.

3.5 Cell-to-Cell Variability of Transient Glucose Sensing in
Yeast

The yeast Saccharomyces cerevisiae is a well-studied microorganism. Already in 1996
it became the first eukaryotic genome to be completely sequenced (Goffeau et al. 1996).
This yeast has been used in the production of food and beverages for a long time
and it is nowadays also serving as a so-called cell factory for industrial fermentations
(Hong and J Nielsen 2012). Last but not least, it is also an important model organism
for eukaryotes (Petranovic et al. 2010; Botstein and Fink 2011). Lately, there has
been an increasing awareness that yeasts and other microbes experience significant
cell-to-cell variability, even among isogenic populations cultured under homogenous
conditions. The variability concerns both static levels of mRNA, proteins, and other
molecules, as well as their temporal profiles (Lidstrom and Konopka 2010; Gustavsson
et al. 2012; Bendrioua et al. 2014; Durandau et al. 2015). These insights have largely
been driven by the emergence of new experimental technology allowing different
kinds of single cell measurements. As a result of the experimental development there
is now a need for an accompanying advance of mathematical methods for modeling
cell-to-cell variability.

Contributions to variability between cells can be separated into so-called intrinsic
and extrinsic noise. Intrinsic noise refers to biochemical reactions that are inherently
noisy or stochastic to their nature, for instance due to low copy-number effects.
Not only do such reactions play out differently in different cells, but they can also
be thought of as giving different outcome if realized repeatedly within the same
cell. Extrinsic noise can be understood as cell-specific differences in for instance cell
cycle stage or in enzyme concentrations. Extrinsic noise may affect a given reaction
differently in different cells, but can be considered stable within a cell, at least on
certain time scales. There is a lot of support to the consensus belief that extrinsic
noise is the dominating source of variability in many biological processes, see (Elowitz
et al. 2002; Raser and O’Shea 2004; Pedraza and Oudenaarden 2005; Colman-Lerner
et al. 2005; Kollmann et al. 2005; Hilfinger and Paulsson 2011; Gaudet et al. 2012)
and references within. Additional variability may furthermore arise from differences
in the external environment of cells, such as the heterogeneity of industrial-scale
bioreactors (Lapin et al. 2004). From a modeling perspective, intrinsic noise is
synonymous with a model defined by stochastic kinetics. Extrinsic noise may on the
other hand in many cases still be modeled by a standard deterministic kinetic model
at the single cell level, but different instances of the model—each with its own set
of parameter values—must be used for different cells. These single cell parameters
can then be assumed to originate from a random event that follows some probability
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distribution at the cell population level. From a model-identification perspective,
there is however a risk that the information content in each single cell data set is too
low compared to the complexity of a proposed model, a scenario which can make
estimation of single cell parameters and of the corresponding population distributions
problematic (Sheiner and Beal 1981; PM Wright 1998).

Under the premises described above, Paper D argues that NLME modeling can
be a suitable framework for studies of cell-to-cell variability. The advantage of the
NLME approach is that all single cell data are considered simultaneously rather than
on an isolated per-cell basis. This increases the possibility of correctly estimating
the population-level parameter distributions. Paper D then introduces cell-to-cell
variability of the yeast transcription repressor Mig1 as a case study where NLME
modeling may be applied. In short, the following dynamics of Mig1 is observed. When
extracellular glucose levels are lowered from a high to an intermediate level, nuclear
Mig1 temporarily re-localizes to the cytosol during a brief period. This pattern is
qualitatively present in all cells, but the quantitative details differ. As for many
signaling pathways the exact mechanisms controlling Mig1 dynamics are unfortunately
not yet fully understood, and therefore a simple phenomenological kinetic model was
set up to describe the observations. The population distribution of three parameters
was estimated with the algorithm presented in Paper E using time series data from
almost 200 single cells, collected from four different experiments (Experiment 1–4).
These data had previously been obtained from a Mig1-GFP expressing strain of S.
cerevisiae using an experimental setup that combined microfluidics, optical tweezers,
fluorescence microscopy, and image processing (Bendrioua et al. 2014).

Paper D demonstrates reasonable precision of the parameter estimates and show
a good fit of the model to the time series data at the single cell level. To complement
this perspective, Fig. 3.6A shows model simulations together with data at the
population level for Experiment 1. The simulated 10th, 50th, and 90th percentiles of
the nuclear Mig1 concentration according to the model are plotted together with all
data as well as the corresponding empirical percentiles. There is generally a good
agreement between model and data except for some underprediction of the lowest
percentile around 200 s after the extracellular glucose shift. Of the in total 741 data
points of Experiment 1, 57, 398, and 653 data points fall below the three simulated
percentiles, which correspond to percentages of 8, 54, and 88.

Estimation of the population distribution of parameter values was also done
according to the simpler standard two-stage (STS) approach (Ette and Williams
2004) in Paper D. This approach works by estimating parameters for each cell
independently, and then looking at the statistics of those estimates. Estimates
derived with the STS approach showed a much larger variability, which is a clear
indication of overestimation (Sheiner and Beal 1981). To further demonstrate
the difference between the NLME and STS approaches, Fig. 3.6B compare model
simulations together with data at the population level for Experiment 4. This time,
the simulated 10th, 50th, and 90th percentiles are shown for the NLME model
and for two variants of the STS model: one that is naïvely based on all single cell
parameter values and one that excludes suspected outliers. The details of these
approaches are stated in Paper D. The fit of the NLME model is acceptable, but
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Figure 3.6: Visual predictive check.
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Figure 3.6: Visual predictive check. (A) Model and data for Experiment 1, in which
extracellular glucose is shifted from 4% to 1.5% at time zero. Simulated 10th,
50th, and 90th percentiles of the nuclear Mig1 concentration are plotted as black
lines together with grey filling of the interval between the 10th and 90th percentiles.
Data are plotted as red dots, and the 10th, 50th, and 90th percentiles of the
data are plotted as red dashed lines. (B) Model and data for Experiment 4, in
which extracellular glucose is shifted from 4% to 0.5% at time zero. The plot is
constructed in the same way as (A), but with the addition of model simulations
using the STS approach excluding outliers (orange) and the naïve STS approach
(yellow).

still showing a bit of underestimation of the lowest percentile around 200 s, as well
as an underestimation of all percentiles at the last time point. Percentages of data
points falling below the three simulated percentiles were 6, 50, and 90. The STS
approach excluding outliers clearly shows a general overestimation of the cell-to-cell
variability of the population. This is particularly evident during the first 500 s of
the experiment. The naïve STS approach display even more overestimation. Taken
together, it can be concluded that the NLME approach should be preferred.

Paper D contributes new insights into the understanding of Mig1 signaling in
S. cerevisiae by providing a cell-to-cell variability perspective. This kind of modeling
is made possible by the access to single cell data (Bendrioua et al. 2014). However,
the biological interpretations and conclusions of the current work unfortunately
become limited by the use of a phenomenological model. A mechanistic model would
have been preferred but a mechanistic hypothesis that accommodates the observed
transient re-localization is still missing (García-Salcedo et al. 2014). Uncertainty of
the wiring scheme in microbial signaling pathways is common, and it is a general
problem for kinetic modeling (Schaber and Klipp 2011). Still, some biological
interpretations of the modeling results could be made. It was for instance speculated
that the transient pattern of Mig1 localization probably is already present in the
dynamics of an upstream signaling component. The protein kinase Snf1 was pointed
out as a particularly interesting candidate for carrying such a signal. With the
availability of novel experimental methods like synthetic kinase activity relocation
sensors (Durandau et al. 2015), the temporal phosphorylation pattern of Snf1 in live
single cells may therefore be a possible focus for a future study.

Another merit of this work is the general idea of applying NLME modeling to
single cell data. To the knowledge of the authors, Paper D represents the first journal
article demonstrating this idea.2 It will hopefully encourage other researchers to
continue along this direction. Indeed, it appears to be a timely topic—two other
articles investigating cell-to-cell variability using NLME modeling appeared shortly
after the publication of Paper D (Karlsson et al. 2015; Llamosi et al. 2016).

The model of Paper D mainly serves to describe and quantify the degree of
cell-to-cell variability in Mig1 signaling, but it does not provide an explanation
for why this variability is present. Often, it is argued that cell-to-cell variability
should be seen as a way of implementing multiple phenotypes from a single genotype,
thereby achieving a risk-spreading strategy with evolutionary benefits (Veening et al.

2See Paper D for more details and references to previous contributions to single cell modeling.
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2008; Lidstrom and Konopka 2010). It may also be interesting to speculate about
whether cell-to-cell variability presents a limitation or a possibility when it comes to
applied uses of, for instance, yeast, outside of its natural environment. As a model
organism, yeast cell-to-cell variability may be potentially deceiving since in the cell
being modeled, perhaps a human cell, cell-to-cell variability may play a different role.
In the context of cell factories, cell-to-cell variability may have undesirable effects
on the performance of a bioprocess (Delvigne et al. 2014), for instance if the total
production of a certain product is due to a smaller fraction of high producing cells
while most cells only consume resources (Lidstrom and Konopka 2010). On the other
hand, cell-to-cell variability may also be exploited to enhance the performance of a
cell factory (Xiao et al. 2016). Given the importance of yeasts and other microbes as
both model organisms and as cell factories, kinetic models of cell-to-cell variability
may therefore be expected to play a bigger role in the future.

3.6 Exact Gradients for Nonlinear Mixed Effects Models
Data collected from different individuals is encountered in both the preclinical and
clinical phases of drug development. NLME modeling has emerged as a de facto
standard of how these data are being analyzed and interpreted (Bonate 2011). NLME
models have also been used successfully in a number of other scientific fields apart
from pharmacology (Davidian and Giltinan 2003). Yet another example is the study
of yeast cell-to-cell variability presented in Paper D of this thesis.

One of the most challenging aspects of NLME modeling is the estimation of
model parameter values from experimental data, a task for which several computer
programs exists (Beal et al. 2017; Certara 2011–2017; Lavielle 2014a). Within the
maximum likelihood methods, which are dominating, two main approaches can be
distinguished: the classical methods based on the Laplacian approximation (Bauer
et al. 2007; Wang 2007), including the first-order conditional estimation (FOCE)
method; and the new generation of methods based on various Monte Carlo techniques
(Bauer et al. 2007; Leary et al. 2012; Lavielle 2014b). Although both approaches
involve approximations of the population likelihood, the Monte Carlo methods have
the advantage that the approximation can be made arbitrarily precise by increasing
the number of samples (Leary et al. 2012), whereas methods like FOCE always are
running the risk of producing more or less biased estimates. In practice, however,
FOCE often yield “good enough” results, and can be faster than the Monte Carlo
methods for some problems. Some Monte Carlo methods are also quite sensitive to
different method-parameters, and there can sometimes be ambiguities as to whether
the algorithm has converged or not. As a result of this, but also because of historical
popularity, FOCE and the closely related FOCEI are still among the most commonly
used methods for estimating parameter in NLME models.

Parameter estimation for NLME models with the FOCE approximation of the
population likelihood is normally done using a standard gradient-based Quasi-Newton
optimization method such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
(Nocedal and SJ Wright 1999). What makes this an extra challenging optimization
problem is the complexity of the objective function, which arises from the way that the
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FOCE method approximates the population likelihood. For every evaluation of the
FOCE likelihood, one new optimization problem has to be solved for each individual
that is part of the data set. In this way, the FOCE method leads to an optimization
problem with two nested layers. Paper E proposes a new way of performing NLME
parameter estimation based on the FOCE method. The main novelty lies in the
way that the gradient of the FOCE likelihood is computed. As explained above,
the gradient is critical for solving the maximum likelihood optimization problem.
Although the central ideas of this work are applicable to any kind of NLME model,
the advantage of the method is mainly expected to exert itself for models based on
ODEs.

The FOCE approximation and how its gradient can be computed are illustrated
in Fig. 3.7, and briefly explained in the following. The goal of all NLME maxi-
mum likelihood approaches is to find values of the fixed effect parameters θ that
maximize the population (log-)likelihood. As described in detail in Paper E, the
joint individual likelihoods (Fig. 3.7A) have to be marginalized in the random effect
dimension(s) to obtain their contributions to the population likelihood (Fig. 3.7B).
During optimization of the population likelihood with respect to the fixed effect
parameters θ, this marginalization is required for all individual likelihoods, and it
will be repeated many times for different values of θ. For a given θ, the FOCE
method approximates the population likelihood in the following way. First, the
random effect parameters η∗i that maximize the individual log-likelihoods li have
to be determined for each individual (Fig. 3.7C). This constitutes the inner level
nested optimization problem mentioned previously. Then, li is approximated with a
second-order Taylor expansion around η∗i (Fig. 3.7D), which allows a closed-form
solution to the marginalization of the individual joint likelihood. The gradient-based
optimization of the FOCE likelihood has traditionally relied on gradients computed
by a finite difference (FD) approximation (Fig. 3.7E). The main result of Paper E
is the derivation of how exact gradients can be computed (Fig. 3.7F). The details
of this approach are mathematically involved, but a key step is the computation of
the matrix dη∗i (θ)/dθ, i.e., the sensitivity of the point for the Taylor expansion with
respect to θ. This is achieved through an elaborate use of up to second-order state
variable sensitivity equations in both the fixed and random effect parameters.

The new algorithm in Paper E was shown to have two advantages over existing
versions: (i) it is faster; and (ii) it increases the precision and accuracy of the gradient.
The exact speed-up of the parameter estimation depends on the type and complexity
of the model, if exact gradients are considered for both levels of optimization, and
whether it is compared to forward or central FDs. In the most favorable scenario, the
time spent on estimation was reduced by a factor one hundred. As discussed in Paper
E, a realistic estimate of the speed improvement of the new algorithm compared to
previously existing FOCE implementations would perhaps rather be about three to
five times depending on the model, but it is hard to say with certainty. The use
of FDs for computing gradients may suffer from bias if the step size is too large,
or suffer from severe noise if it is too small. Both of these effects are undesirable
and may corrupt parameter estimation to various degrees. When using the exact
method based on sensitivity equations, both accuracy and precision of the gradient
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Figure 3.7: Approximating the population likelihood and its gradient.

was substantially improved.
The combination of challenging estimation scenarios that verge on practical

non-identifiability with the nested optimizations of the FOCE method sometimes
result in a lack of numerical robustness. This is manifested through convergence
failure and problems with computing standard errors or confidence intervals for
the parameter estimates (Bauer et al. 2007; Dartois et al. 2007; Chan et al. 2011;
Bertrand et al. 2011; Aoki et al. 2016; Liu and Wang 2016), issues which are most
apparent for complex models requiring numerical integration of ODEs. Part of the
problem with lack of robustness may be attributed to the use of FDs for gradient
computations. It therefore seems plausible that access to a gradient with higher
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Figure 3.7: Approximating the population likelihood and its gradient. (A) Illustration
of an individual joint log-likelihood, li, which is a function of both fixed effects, θ,
and random effects, ηi. For simplicity, these two types of parameters are illustrated
using only one dimension each. Different levels of the log-likelihood are shown
with alternating solid and transparent brown bands. (B) The contribution of each
li to the population (log)-likelihood is given by integrating out the random effect
dimension (strictly speaking, the marginalization is performed on the individual
likelihoods, not the log-likelihoods, but the cross-sections of the log-likelihood are
shown for illustrative purposes). Such cross-sectional slices of the log-likelihood
are shown in red for five different values of θ. These θ-values are shown as
dashed lines across the ηi dimension. (C) Given a value of θ, the first step of
the FOCE approximation of the population log-likelihood is to determine the ηi
that maximizes li, denoted η∗i in Paper E. The maxima for the different θ-values
of (B) are shown as dashed black vertical lines. (D) The second step of the
FOCE approximation is to perform a second-order Taylor expansion of li around
η∗i . The FOCE approximations of the li cross-sections are shown in yellow, on
top of the actual cross-sections which still are shown in red. (E) The traditional
way of computing gradients of the FOCE approximation of li is based on a FD
approximation in which li is evaluated at θ and at θ + ∆. (F) The method
presented in Paper E computes an exact gradient of the FOCE approximation of
li. A key step for doing this is the computation of dη∗i (θ)/dθ, i.e., the sensitivity
of the point for the Taylor expansion with respect to θ.

accuracy and precision should overcome this issue. However, it remains to be proven
that better accuracy and precision of gradients actually translate into increased
robustness of the parameter estimation problem as a whole.

The majority of the algorithm proposed in Paper E was recently implemented in
the 7.4 version of the computer program NONMEM. This program is probably the
most widely used software for NLME modeling in population PKPD. According to
the NONMEM developers, this has increased the speed of both parameter estimation
and of the so-called covariance step by up to 3–4 fold for ODE-based models (Beal
et al. 2017).

3.7 Nonlinear Mixed Effects Modeling with Stochastic
Dynamics

In Section 1.2 it was explained how models are simplifications of the real world. These
simplifications are a deliberate part of the modeling process. Since simplifications
means that some aspects of reality have been omitted, all models could be considered
to be more or less wrong. Modelers may furthermore base their models on incorrect
prior knowledge, or make unrealistic assumptions. In contrast to the deliberate
simplifications, this introduces undesirable discrepancies between model and reality.
Modelers, of course, do their best to avoid this, but model errors of this sort are
inevitable. Taken together, it is safe to conclude that models are never perfect
descriptions of the corresponding (biological) systems. It can also be concluded
that the degree to which a model undesirably deviates from a perfect description is
typically uncertain (if it was certain the modeler would be able to correct for it).

The dynamics of the standard kinetic model is completely deterministic. The only
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uncertain part lies in the equation for the observations. To reflect that not only the
observations are uncertain, but also the kinetics encoded in the differential equations,
additional uncertainty can be introduced. One approach is to formulate the kinetic
model in terms of SDEs instead of ODEs. This does not necessarily mean that the
kinetics are believed to be inherently stochastic, but rather that SDEs present a
feasible approach to model the uncertainty about which deterministic model is the
correct one.

Stochastic kinetics can replace deterministic kinetics in both the standard model
and in the NLME model. A summary of the original and the resulting mathematical
frameworks is shown in Fig. 3.8. Here, the frameworks are categorized according to
whether parameter hierarchies are present or not, and according to the use of either
deterministic or stochastic dynamics. This defines the four combinations that were
previously introduced in Chapter 2: (i) the standard kinetic model; (ii) the NLME
model; (iii) the SDE model; and (iv) the SDE-NLME model. The equations in Fig. 3.8
are arranged to emphasize the mathematical differences between the frameworks,
making it clear which equations are added, removed, or altered when transitioning
from one framework to another. For instance, the hierarchical parameterization
of the NLME frameworks means that both state variables and parameters become
individualized, as indicated by the index i. Fig. 3.8 also shows the distinction between
the parts of the model kinetics that are deterministic and stochastic, respectively.
As suggested in Fig. 3.8, the SDE-NLME framework can be seen either as expanding
an NLME population model by adding stochastic dynamics, or as a model with
stochastic dynamics that is expanded by adopting hierarchical population parameters.
Regardless, the end result is a model that distinguishes three sources of variability
or uncertainty for the observed data. These sources are variability in the parameters,
variability or uncertainty in the model kinetics, and variability originating from
making observations.

Paper F explores the use of SDE-NLME modeling for PK applications. It
combines the FOCE method for approximation of the population likelihood (Wang
2007) with the extended Kalman filter (EKF) for state variable estimation (Jazwinski
1970). This approach was pioneered by Henrik Madsen and coworkers for similar
applications, see for instance (Tornøe et al. 2004; Overgaard et al. 2005; Kristensen
et al. 2005) and references within Paper F. Two case studies were presented in
Paper F. First, an SDE-NLME one-compartment model with nonlinear elimination
and an absorption compartment was used to simulate synthetic PK data following
an oral bolus dose. The same model was subsequently used for re-estimation of
its parameters. Based on a simulation-estimation study comprising 100 data sets,
the three contributions to the total variability outlined above were shown to be
identifiable. Moreover, parameter estimates in the SDE-NLME model had lower bias
and higher precision compared to estimates from the corresponding ODE-NLME
model. These results are encouraging, but it is a limitation that the synthetic data
were generated with the exact same model that was used for re-estimation. It would
also have been interesting to see whether similar results could have been obtained
if the synthetic data were generated from a slightly different deterministic model.
Second, an SDE-NLME PK model describing intravenous infusion of nicotinic acid
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Figure 3.8: Mathematical modeling frameworks for kinetic models. The horizontal di-
mension of the illustration categorizes models based on whether parameters are
hierarchical or not, and the vertical dimension categorizes model dynamics into de-
terministic or stochastic. Each of the four boxes contains model equations for the
corresponding modeling framework. These equations are arranged to emphasize
the similarities and differences between the frameworks. Initial conditions have
been omitted for the sake of simplicity.

was applied to real data from obese Zucker rats. The SDE-NLME model gives
different parameter estimates compared to the corresponding ODE-NLME model.
For instance, a smaller value of the population variability in the upper capacity of
the clearance, Vm, was estimated with the SDE-NLME model, suggesting that the
ODE-NLME model may be overestimating the variability. This can however not be
verified since the true model is not known. The second case study also involved the
computation of a smoothed estimate of the observation distributions. This may be
particularly useful for driving a PD model in a sequential PKPD analysis.
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The SDE-NLME parameter estimation algorithm used in Paper F works in the
same way as the algorithm for ODE-NLME described in Paper E, but also includes
first- and second-order sensitivities of the EKF. The algorithm was implementated
in Mathematica (Wolfram Research, Inc. 2012) and uses symbolic computation to
derive the necessary sensitivity equations for each model. It was only later, in a
master’s thesis supervised by the author of this thesis (Ólafsdóttir 2016), that a
complete set of equations for the general case was derived and collected all in one
place. Additional benchmarking of the SDE-NLME estimation algorithm has also
recently been published (Ólafsdóttir et al. 2017).

The SDE-NLME modeling framework in Paper F may be used for other mod-
eling applications where population variability, uncertain dynamics, and uncertain
measurements need to be accommodated. One candidate area for the approach are
tumor growth models (Cardilin et al. 2017a; Cardilin et al. 2017b). The ability to
account for model imperfection may be extra useful here, since these models feature
exponential or near-exponential growth dynamics. The reason is that exponential
behavior tends to amplify any model errors, making tumor growth models particularly
sensitive. Kinetic models based on SDE-NLME may also be suitable for modeling
biological systems where reactions are best understood as truly stochastic. One such
application could be the simultaneous modeling of intrinsic and extrinsic noise of
the biochemistry at the single cell level, as discussed in Paper D. In this case, the
stochastic dynamics would not be used as a “modeling trick” to accommodate uncer-
tainty in how to formulate the reaction kinetics, but to actually represent (apparent)
randomness due to low copy-numbers, etc. Yet another application involves using
SDEs to regularize the likelihood function, so that local optimization methods have
a better chance of finding the global optimum. This has been demonstrated for a
non-hierarchical SDE model (Leander et al. 2014), but it is expected to work also in
an SDE-NLME setting.



CHAPTER 4

Discussion and Conclusions

The aim of this thesis was to identify and describe the different steps in the workflow
for building and using a kinetic model, apply the kinetic modeling approach to address
some relevant questions within life science, and to contribute to the development of
new methods for building kinetic models. Outlining the kinetic modeling process can
be seen as the general overarching aim, whereas the two other aims should provide
specific examples of methods and applications.

The workflow for kinetic modeling was identified and described in Paper A. The
main steps of this process are summarized in Fig. 3.1. Although the review in Paper
A was mainly underpinned by literature on kinetic modeling in biotechnology, the
identified workflow is still relevant for kinetic modeling in general.

Three new kinetic models were developed as part of this thesis. In addition to
serving as examples of the kinetic modeling workflow, these three models are valuable
contributions in their own right. Paper B presented a PK model of the drug-antidote
interaction between ticagrelor and MEDI2452. This model could explain counter-
intuitive experimental results and make predictions that contributed to the drug
development process. Paper C explored the impact of Kv1.5 potassium ion channel
block on the canine atrial AP using a model-based approach. The modeling created a
link between the kinetics of Kv1.5 ion channel block and the APD. Paper D proposed
a descriptive model of cell-to-cell variability of transient glucose sensing in yeast.
Even though biological conclusions of a mechanistic nature were limited, this work
nonetheless demonstrated the potential of NLME modeling for single cell data.

Development of useful kinetic models requires that appropriate model-building
methods are available. This thesis has contributed two studies on modeling methods.
Paper E presented a novel method for parameter estimation in NLME models. The
sensitivity-based exact gradients of this approach represent a substantial improvement
to the already established FOCE method. Paper F explained and illustrated a kinetic
modeling framework that combines SDEs with the NLME approach for population
modeling. This is a promising framework that extends the current scope of the
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population approach, but more examples of its application are required to fully assess
its merits.

4.1 Kinetic Models Fit Many Life Science Questions

The combination of mass balance equations and reaction kinetics makes the kinetic
modeling approach applicable to widely different questions throughout all of the life
sciences. In addition to examples from Chapter 1 and the many examples in Paper
A, this is also shown by the three models introduced in the thesis. These models
span different scales of biological organization and size: from the different molecular
states of ion channels in Paper C, to translocation of proteins at the organelle level
in Paper D, to the simplified whole-body description of the mouse in Paper B. The
models also cover very different time scales: from milliseconds in Paper C, to minutes
in Paper D, and hours in Paper B. The diversity is furthermore reflected in the
size of the models in terms of the number of equations and parameters, ranging
from a fairly small model in Paper D, to a medium-sized model in Paper B, and a
medium- to large-sized model in Paper C (here counting both the RNC model and
the integrated Kv1.5 model).

4.2 The Question Guides the Framework

A successful modeling effort requires a mathematical framework that is suitable for
the modeling question. As outlined in Chapter 1 and 2, and as shown in Fig. 3.8,
there are many different mathematical frameworks that can be adopted for the kinetic
modeling approach, and this is partly why it fits so many questions. For instance,
the main driver behind Paper D was the desire to characterize cell-to-cell variability.
Given the relatively sparse and noisy data, and the assumption of negligible intrinsic
noise, an NLME modeling approach was advocated. The comparative analysis in
Paper D, and the additional results presented in this thesis (Fig. 3.6), shows that the
choice of this framework was indeed required to avoid overestimating the variability.
Paper B, on the other hand, did not use a population approach even though data were
collected from different animals; the construction of an NLME model is much more
demanding compared to a naïve-pooled approach using a standard kinetic model,
and the advantage of capturing between-individual variability was not considered
sufficiently important given the modeling question. In Paper C, a kinetic model was
used to describe transitions between ion channel states. Since the purpose of the
model was to describe the whole pool of all Kv1.5 ion channels, the deterministic
standard model was sufficient. However, if the goal would have been to model the
transitions within a single ion channel, a stochastic model, such as a continuous-time
Markov chain model, would have been more appropriate.
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4.3 The Model Structure Is the Heart of the Model
The model structure should contain all relevant components of the modeled system,
such as compartments, biochemical molecules, and reactions. It is the heart of the
model, and both biological knowledge and modeling craftsmanship are required for
its design. As new insights are gathered during the modeling process, it should be
expected that the model structure has to be iteratively revised before taking on
its final shape. To complement the mathematical definition of the model structure
it is highly recommended to also provide a visual illustration, see for instance
Fig. 3.2. This will quickly convey an overview of the model and will facilitate the
communication of the model to others—both when forming the model and when
interpreting the findings.

4.3.1 Be Aware of Uncertainty
It is not unusual for prior knowledge of the modeled system to be limited or con-
tradictory. This leads to uncertainty about how to formulate the model structure
(Brown et al. 2004; Kuepfer et al. 2007; Schaber and Klipp 2011), a topic that is
underappreciated compared to uncertainty about parameter values. In some cases,
structural uncertainty can be rephrased as a parameter estimation problem (Chou
and Voit 2009; Srinath and Gunawan 2010). A similar scenario is exemplified in
Paper B, where uncertainty regarding ticagrelor recycling was expressed with a
parameter for the degree of recycling. This analysis was however limited to the
investigation of a few discrete values of the recycling parameter, and contained no
formal parameter estimation. In Paper F, a fundamentally different approach to
uncertainty about the model structure was proposed. This approach accepts that
errors in the model structure are inevitable, and instead focus on how to incorporate
this as uncertainty in the mass balance equations using SDEs. Paper F showed that
the total variability in data could be decomposed into inter-individual variability
in the parameters, variability or uncertainty in the model kinetics, and variability
originating from making observations. More applied examples of this modeling
framework are however needed to fully assess its capabilities, ideally focusing further
on its role in iteratively improving the deterministic part of models (Kristensen
et al. 2005; Matzuka et al. 2016). Nevertheless, SDE-NLME modeling is a promising
approach that could become the next generation of population modeling. If that
were to happen, it remains to be seen whether the core mathematics will be based
on conventional filters, like the EKF in Paper F, or on more general methods like
particle filters (Doucet et al. 2001).

4.3.2 Mechanistic Models Are Preferred
Mechanistic models seek to incorporate specific biochemical, biophysical, or physiolog-
ical knowledge, whereas phenomenological models settle for mathematical descriptions
of the data that do not have to “mean” anything. Many models contain a mixture of
both mechanistic and phenomenological components. The Kv1.5 model in Paper C
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is, relatively speaking, a very mechanistic kinetic model. The model state variables
have a clear connection to the molecular states of the ion channel, and the reactions
describing transitions between states are modeled with both temperature and voltage
dependencies in a biophysically rigorous way. In contrast, the model of Mig1 re-
localization in Paper D is a phenomenological model that was set up due to the lack
of a mechanistic hypothesis. This minimal model of perfect adaptation is only used
to quantify the variability of the observed data, rather than trying to describe some
molecular mechanism that is causing the observed phenomenon. The model of Paper
B lies somewhere in between, but leans more toward the mechanistic side; there are
molecular-level mechanistic interactions similar to the ideas of systems pharmacology
models (Graaf and Benson 2011), but also the classical PK compartments, which
can be seen as semi-mechanistic (Aarons 2005).1 Good phenomenological models
adequately describe data, and are predictive in an interpolating sense. This may be
sufficient for some modeling questions, but can be a significant limitation for others.
Phenomenological models do not usually provide any profound understanding of
the real world and cannot be expected to give reliable predictions beyond the data
that they are fitted to. Therefore, they are sometimes dismissed as simple “curve
fitting”. Mechanistic models set higher demands on prior knowledge, but carries
the potential for providing mechanism-based understanding, as well as a generally
increased confidence in predictions of extrapolation-type. These are strong arguments
in favor of mechanistic kinetic models. From the kinetic modeling examples in Paper
B, C, and D, and from the many models reviewed in Paper A, it can be concluded
that mechanistic models should in general be preferred over phenomenological models,
but only if supported by sufficient prior knowledge and available data.

4.3.3 Avoid Unnecessary Complexity
The modeling approach to answering questions is to always look for opportunities
to simplify and reduce unnecessary complexity. For instance, Paper B utilized a
simplification from two- to one-compartment kinetics of MEDI2452, an approximation
that was found to be valid for the time scale of interest. In Paper C, assumptions on
the kinetics of ion channel subunits together with symmetry arguments resulted in
lumping of molecular states when the state variables of the kinetic model were defined
(see Fig. 3.5). Paper D involved a more technically driven model reduction, where
a change of variables was performed to avoid a structurally unidentifiable model
(Anguelova et al. 2012). What can be considered unnecessary complexity depends
on the context, and will differ both between specific models and between different
modeling paradigms. Kinetic models frequently have issues with determining both
model structure and parameter values, and convincing arguments for model reduction
are usually welcome. Often, “less is more” is applicable to kinetic models. This
can be compared to so-called genome-scale metabolic models (GEMs), which are
essentially stoichiometric models (i.e., steady state mass balance equations) that lack
kinetic rate expressions and kinetic parameters (Förster et al. 2003). Due to their
simpler structure, it is less complicated to build large models. In fact, for GEMs,

1Paper B also featured a simple PD model that was purely phenomenological.
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all known reactions of the cell are candidates to appear in the model, since more
reactions mean a more complete—and therefore typically better—model. This
comparison is not to say that large kinetic models cannot or should not be built, but
that when it is done, it must be done carefully and only if the modeling question
requires it.

4.4 Parameter Estimation Is a Critical Step
Determining values of the model parameters by collecting them from different external
sources (e.g., literature, databases) has certain limitations, as discussed in Paper A.
Parameter values should therefore ideally be estimated simultaneously from one or
more data sets that belong together. Such collective estimation was the predominant
approach in both the application- and method-oriented contributions to this thesis.
This requires a balance between the model complexity and the information content
of experimental data (Raue et al. 2011; Anguelova et al. 2012), a balance that tends
to be hard to achieve for complex kinetic models with lots of parameters. To avoid
the worst pitfalls, modelers should pay attention to identifiability analysis, model
reduction, and experimental design, as reviewed in Paper A. Adding further to the
problem of parameter estimation, it appears that many kinetic models are only
sensitive to a rather small subset of parameter combinations, which will prevent
precise estimates of many parameters when using collective fits (Brown et al. 2004;
Gutenkunst et al. 2007; Daniels et al. 2008). This problem is unlikely to be resolved
by direct parameter measurements, since the few sensitive combinations would require
an unreasonable high precision in such measurements (Gutenkunst et al. 2007). This
implies that modelers should critically think about whether high precision estimates
are really needed to answer the model question. As shown in (Brown et al. 2004),
there is not necessarily a conflict between precise predictions of model behavior
and highly unprecise estimates of some model parameters. To some extent, this
conclusion also applies to the parameter uncertainty analysis in Paper B. If high
precision estimates are still essential, this may be solved by further improving the
experimental design (Apgar et al. 2010; Nyberg et al. 2015).

Parameter estimation is often a difficult problem from a computational point of
view (Mendes and Kell 1998; Chou and Voit 2009; Raue et al. 2013). A particularly
challenging example is the maximum likelihood inference of parameters in NLME
models based on differential equations. This is partly due to the high cost of evaluating
the objective function, i.e., the population likelihood or an approximation thereof. If
a gradient-based optimization method is used where gradients are computed from
FDs, which has traditionally been common, this problem is amplified. The exact
gradient algorithm proposed in Paper E makes FDs obsolete and thereby represents
a significant advance of the FOCE method. The key step of this method may be
attributed to the insight on how to compute the sensitivity of the solution to the
inner level optimization problem with respect to the population-level fixed effect
parameters (see Fig. 3.7). The benchmarking in Paper E and internal comparisons in
the commercial software NONMEM (where the Paper E algorithm now is available
through the FAST option (Beal et al. 2017)) both demonstrated a substantial speed-up
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of the parameter estimation. As NLME modeling is a widely used approach with a
secure position in the realm of kinetic modeling frameworks, this is an important
achievement. The method of Paper E also yielded gradients with higher accuracy and
precision. Although it appears plausible that this should improve estimate precision
and algorithm robustness (Raue et al. 2013), further research remains to prove it.
It is also worthwhile to note that this method could be generalized to also handle
the estimation problem in SDE-NLME models (although this was not the focus of
Paper F). Because of the added computational burden in the SDE-NLME framework,
the speed-up from the exact-gradient method is perhaps even more valuable here.
Without diminishing the results of Paper E, it should also be pointed out that the
FOCE method as such is facing serious competition from the new generations of
NLME estimation methods that build on various kind of Monte Carlo approaches
(Bauer et al. 2007; Leary et al. 2012; Lavielle 2014b), and that these may become
the standard tools of the future.

4.5 In Silico Experiments Are the Reward

A remarkable strength of kinetic modeling—or rather of mathematical modeling
in general— is that in silico experiments can be performed once a model has been
setup. In contrast to real experiments in the wet lab, in silico experiments can be
performed more or less for free and without the fear of not being able to reproduce
the results. This is one of the rewards for going through all the trouble of setting up
a model. The three applied models introduced in this thesis all took advantage of in
silico experiments in one way or another: Paper B simulated free levels of ticagrelor
and investigated the impact of potential ticagrelor recycling during clearance of the
ticagrelor-MEDI2452 complex, Paper C used in silico experiments exhaustively to
characterize the dependence of the AP on kinetic parameters of real and hypothetical
drugs, and Paper D performed Monte Carlo simulations that mapped the parameter
variability of the yeast cell population to the behavior variability with respect to
signaling characteristics such as response time, amplitude, and duration. It was at
this stage of the kinetic modeling process, when the models were actually used for
answering questions, that interesting findings could be made.

4.6 Answering the Model Question

Based on the different in silico experiments performed with three models introduced
in this thesis, and on the identification of the models as such, some answers could be
provided to the questions that initiated the modeling. Here, the key findings and
conclusions are briefly stated.



Chapter 4. Discussion and Conclusions 43

4.6.1 Pharmacokinetics of Drug-Antidote Interaction
Paper B used a kinetic model to unravel the PK interaction between ticagrelor and
MEDI2452 in the mouse. Of the three models, this was probably the most successful
one in terms of answering both the original modeling question and additional ones that
appeared during the modeling process. The model predicted the plasma concentration
of free ticagrelor, it explained the behavior where free and total plasma ticagrelor
showed opposite response, and it suggested that ticagrelor is not likely to be recycled
when ticagrelor-bound MEDI2452 is eliminated in the kidneys. Furthermore, it
was shown that a special model for the equilibration of in vivo samples is essential
for distinguishing actual ticagrelor plasma concentration from measured ticagrelor
plasma concentration (Fig. 3.3). Looking beyond the particular drug-antidote pair
in this study, the modeling approach has great potential for similar scenarios.

4.6.2 Effect of Kv1.5 Blockers on the Canine Atrial Action Potential
Paper C studied the impact of Kv1.5 block on the canine atrial AP using kinetic
modeling. Detailed kinetic models of open-channel block were found to give large
differences in prolongation of the APD compared to a model with state-independent
block. These simulation results recommend against the common but naïve modeling
approach of simply decreasing the ion channel conductance, and instead advise mod-
elers to choose an ion channel model that matches the actual blocking mechanism.
It was also found that open-channel block produced a reverse use-dependence, i.e.,
that the increase in APD becomes smaller for higher frequencies of AP stimulation.
Thorough understanding of Kv1.5 blocking kinetics is clearly important in order to
accurately predict the AP following a pharmacological intervention (Fig. 3.4). How-
ever, to reach the even bigger goal of directly predicting the effects on AF, additional
model layers are needed that couple the cellular level AP to the electrophysiology at
the tissue or organ level.

4.6.3 Cell-to-Cell Variability of Transient Glucose Sensing in Yeast
Paper D applied NLME modeling to quantify the cell-to-cell variability of Mig1
signaling dynamics in yeast. Based on data from almost 200 cells, population dis-
tributions of parameters were estimated as well as parameter values for individual
cells. Simulations were used to compute the population distribution of signaling
characteristics like response time, amplitude, and duration. It was also suggested
that the single cell dynamics of Snf1 phosphorylation might be crucial for under-
standing cell-to-cell variability in Mig1 localization patterns. Unfortunately, the
phenomenological structure of the model severely limited conclusions regarding the
exact mechanisms. Future work on single cell analysis using NLME modeling should
therefore aim at using mechanistic kinetic models. Moreover, the comparison of
modeling frameworks demonstrated that NLME modeling may be essential for single
cell data. This is a valuable result in itself, since similar modeling scenarios are
expected to become common.
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4.7 A Brief Outlook

Parsimony has traditionally been a virtue of kinetic models in life science. This
is now changing with the holistic view of the systems-paradigms, e.g., systems
biology (Kitano 2002), systems medicine (Wolkenhauer et al. 2013), and systems
pharmacology (Graaf and Benson 2011), and with large-scale or multi-scale modeling
efforts in general (Hunter and Borg 2003; Holzhütter et al. 2012; Büchel et al. 2013).
For instance, the k-ecoli457 kinetic model of Escherichia coli metabolism contains
457 reactions and 337 metabolites, and is perhaps one of the first models to deserve
the epithet genome-scale kinetic model (Khodayari and Maranas 2016).2 The sheer
size of models like this pushes the limits of the technical aspects of model-building,
making identifiability analysis, experimental design, and parameter estimation very
challenging. But maybe even more important, many of these large-scale models
come with a different modeling philosophy. Like the previously discussed GEMs,
some of the models are constructed without a specific research question in mind.
They are instead intended to serve as multi-purpose models for answering a whole
range of questions that may arise in the future. Such kinetic platform models are
of interest to, for instance, biotechnology, where the metabolism of a few selected
microorganisms (platform cell factories) is repeatedly reengineered for the production
of different fuels and chemicals, and in drug development, where disease-scale models
are desired for evaluating different pharmacological targets. In terms of Fig. 1.1,
this amounts to taking the first step (moving into the model world), possibly on
somewhat vague premises, and then stopping there. Modeling effectively becomes a
way of organizing information by constructing a knowledge database in the model
world. Modeling communities are being built up around such projects and some
modelers may eventually become permanently preoccupied with the model world
they created.

When the visions and ambitions of kinetic models grow, it must not be forgotten
that mathematical models are primarily tools for answering questions, and the path
towards the answer is normally founded on the core idea of modeling: simplification
and reduction of unnecessary complexity. While some questions may indeed require
large models, it is also important to think about how to retain an appropriate level
of model structure complexity (Helmlinger et al. 2017; Ataman et al. 2017; Ribba
et al. 2017). Furthermore, the model size is just one of the model characteristics
contributing to the total complexity of a model. The total complexity that a model
can afford (given the prior knowledge and the access to experimental data) could in
some cases also be allocated to the use of a more demanding mathematical framework.
As shown in this thesis, the development of new frameworks and the tailoring of
existing ones to fit new problems has potential in several life science disciplines, and
may be just as important as merely increasing the model size.

2Both parameter estimation and evaluation of this model’s predictive capabilities were performed
using steady state metabolic flux data, and it is therefore unfair to compare its size directly with
other E. coli models that aim to capture dynamic aspects of metabolism (Chassagnole et al. 2002;
Kotte et al. 2010).
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4.8 A Final Remark
The topic of kinetic models in life science is of course much too large to be fully
covered within one thesis. It is the author’s hope that this work can at least serve as
a starting point for an organized way of thinking about the workflow for building and
using kinetic models, and contribute some examples of kinetic models and modeling
methods.
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a b s t r a c t

An increasing number of industrial bioprocesses capitalize on living cells by using them as cell factories
that convert sugars into chemicals. These processes range from the production of bulk chemicals in
yeasts and bacteria to the synthesis of therapeutic proteins in mammalian cell lines. One of the tools in
the continuous search for improved performance of such production systems is the development and
application of mathematical models. To be of value for industrial biotechnology, mathematical models
should be able to assist in the rational design of cell factory properties or in the production processes in
which they are utilized. Kinetic models are particularly suitable towards this end because they are
capable of representing the complex biochemistry of cells in a more complete way compared to most
other types of models. They can, at least in principle, be used to in detail understand, predict, and
evaluate the effects of adding, removing, or modifying molecular components of a cell factory and for
supporting the design of the bioreactor or fermentation process. However, several challenges still remain
before kinetic modeling will reach the degree of maturity required for routine application in industry.
Here we review the current status of kinetic cell factory modeling. Emphasis is on modeling
methodology concepts, including model network structure, kinetic rate expressions, parameter estima-
tion, optimization methods, identifiability analysis, model reduction, and model validation, but several
applications of kinetic models for the improvement of cell factories are also discussed.
& 2014 The Authors. Published by Elsevier Inc. On behalf of International Metabolic Engineering Society.

This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Throughout the World there is a desire to move towards
sustainable production of energy, fuels, materials and chemicals,
and biobased production of transportation fuels and chemicals is
expected to contribute significantly towards reaching this objec-
tive. This has resulted in the advancement of industrial biotech-
nology, where microbial fermentation is used for the conversion of
bio-based feedstocks to fuels and chemicals (Nielsen and Jewett,
2008; Tang and Zhao, 2009; Otero and Nielsen, 2010; Du et al.,
2011; Sauer and Mattanovich, 2012). Not only has this resulted in a
significant expansion of traditional processes such as bioethanol
production, which has increased from 10 billion liters produced in

2010 to 75 billion liters produced in 2012, but it has also resulted
in the introduction of novel processes for the production of
chemicals that can be used for the production of polymers, e.g.
lactic acid that goes into poly-lactate and 1,3 propanediol that goes
into Soronaŝ. With these successes the chemical industry is
looking into the development of other processes for the produc-
tion of platform chemicals that can find application in the
manufacturing of solvents and polymers. Traditionally the fermen-
tation industry used naturally producing microorganisms, but
today there is a focus on using a few microorganisms, often
referred to as platform cell factories, and then engineering their
metabolism such that they efficiently can produce the chemical of
interest. This engineering process is referred to as metabolic
engineering, and it involves the introduction of directed genetic
modifications. Due to the complexity of microbial metabolism,
both due to the large number of interacting reactions and the
complex regulation, there has been an increasing focus on the
use of mathematical models for the identification of metabolic
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engineering targets (Patil et al., 2004; Cvijovic et al., 2011;
Wiechert and Noack, 2011; Soh et al., 2012).

Industrial biotechnology can benefit from mathematical models
by using them to understand, predict, and optimize the properties
and behavior of cell factories (Tyo et al., 2010). With valid models,
improvement strategies can be discovered and evaluated in silico,
saving both time and resources. Popular application of models thus
includes using them to suggest targets for metabolic engineering
leading to increases in yield, titer, and productivity of a desired
product. Since these quantities not only depend on the genetic
constitution of cells but to a large extent also on how the cells are
utilized, models can additionally play a critical role in the optimiza-
tion and control of the bioreactor and fermentation processes. Other
possible model focus includes expanding the range of cell factory
substrates, minimizing the formation of undesired by-products,
increasing product quality, and guidance in the choice of cell factory
when introducing a novel product.

Many biological processes or systems of importance to biotech-
nology, such as the metabolism of a cell culture during a fed-batch
process, cellular stress responses, or the decision making during the
cell cycle, are non-stationary in their nature. These systems are
characterized by their dependence on time and the fact that the
effect of inputs to the systems depends on the systems history. The
most common way of modeling such dynamic systems is to set up
mathematical expressions for the rates at which biochemical reac-
tions of the systems are taking place. The reaction kinetics are then
used to form mass balance equations which in turn describe the
temporal behavior of all biochemical species present in the modeled
system. Mathematical models of this type are usually referred to as
kinetic models but the literature sometimes tends to use the terms
dynamic and kinetic models interchangeably due to their largely
overlapping concepts as far as biological models are concerned.
Reaction kinetics being the fundamental building block of kinetic
models, they are clearly distinguished from the large body of
so-called genome-scale metabolic models (GEMs) which mainly
focus on the stoichiometry of reactions (Thiele et al., 2009; Sohn
et al., 2010; Chung et al., 2010; Österlund et al., 2012). Although
kinetic models are frequently being used to describe dynamic
behaviors, they are equally important in the study of processes that
may be stationary or close to stationary, such as cell metabolism

during exponential phase, since they can relate the properties of a
(quasi) steady-state to the kinetic properties of the model
components.

This review looks at the work-flow and methods for setting up,
analyzing, and using kinetic models, focusing on models and
modeling methodology with relevance for industrial biotechnology.
The paper is divided into three main parts. The first part discusses
and describes different aspects of the model building procedure,
including defining the model focus, how to set up a model
structure, determine parameter values and validate the model.
The second part looks at how kinetic models have been used once
they are set up. Applications of kinetic cell factory models for
improving production, substrate utilization, product quality, and
process design are reviewed. In the last part, a number of advan-
tages and challenges of kinetic modeling are listed and some future
perspectives of kinetic modeling in biotechnology are discussed. A
complete overview of the organization can be found in Table 1. To
increase the readability, especially for readers who are not experi-
enced modelers, parts of the material which are of technical or
mathematical nature are displayed in special boxes. The models and
methods on which this review has been based have been supplied
by the partners of SYSINBIO (Systems Biology as a Driver for
Industrial Biotechnology, a coordination and support action funded
by the European commission within the seventh framework pro-
gramme) and through a thorough literature review.

2. Setting up kinetic models – Modeling framework

The kinetic modeling procedure can be divided into a number
of steps which are illustrated in Fig. 1. Since the choices and
decisions made at the different steps are dependent both on the
objective of the modeling and on the previous steps, the exact
details of how a model is set up will be different from case to
case. Also, some steps will probably have to be iterated several
times before a complete model can be presented (van Riel, 2006).
For instance, the model structure will most certainly evolve
during the model building process, having new elements added
and other removed or changed. Parameter estimation may have
to be performed again as new data sets are collected, and
different types of analysis on the finished model may lead to
new applications that was not initially foreseen. This type of
iterative work-flow is not unique for kinetic models of cell
factories, but apply for modeling efforts in general (Ljung,
1987). The steps of the kinetic modeling procedure are now
described briefly, and then followed by elaboration and in-depth
discussions on some of their aspects.

Purpose: The first step of modeling is to define the purpose of
the model, an important step as it includes the very reason for
setting up a model in the first place. Typical questions are: Why do
we model? What do we want to use the model for? What type of
behavior should the model be able to explain? The majority of the
goals of modeling cell factories are related to understanding and
predicting their behavior when perturbing them either internally
through genetic modifications, or externally by changing various
environmental factors. The model purpose defines the complexity
of the modeling problem and will influence all subsequent steps of
the modeling procedure.

Network structure: The model network structure is the wiring
diagram of the model. It defines the network of interconnected
elements that are assumed to be important for the modeling task in
question. For instance, it will contain elements such as compart-
ments, concentrations of metabolites, enzymes and transcripts, and
reactions (including transport across membranes), including their
effectors and stoichiometric coefficients. It also defines the inter-
faces of the model with the un-modeled exterior.

Table 1
Organization of this review.

Contents
1 Introduction
2 Setting up kinetic models – Modeling framework

2.1 Purpose
2.2 Model structure

2.2.1 Representation of network structure
2.2.2 Kinetic rate expressions
2.2.3 Approximate kinetic rate expressions
2.2.4 Stochastic kinetics

2.3 Parameter determination
2.3.1 Computing the estimate
2.3.2 Identifiability analysis and experimental design
2.3.3 Model reduction

2.4 Validation
3 Using kinetic models

3.1 Improving production
3.1.1 Local parameter sensitivity analysis
3.1.2 Simulating larger changes
3.1.3 Optimization problems

3.2 Improving substrate utilization
3.3 Improving product quality
3.4 Improving process design

4 Advantages, challenges and perspectives
4.1 Advantages
4.2 Challenges
4.3 Perspectives
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Kinetic rate expressions: Having defined the model network
structure, the next step in the modeling process is the determina-
tion of the mathematical expressions that define the interactions
between the different components. The model network structure
already delivers information about which elements should take
part in the mathematical expressions. Kinetic rate expressions can
be derived from actual reaction mechanisms, with different
degrees of detail, or be represented by approximate expressions
capturing the essential quantitative and qualitative features of a
reaction. The complexity of a reaction's kinetics is defined by the
scope of the reaction, the scope of the model and the biochemical
knowledge about the reactions. Both deterministic and stochastic
formulations of the reaction rates may be used.

Model structure: When the network structure and kinetic rate
expressions have been determined, the structure of the kinetic
model is complete. The model can now be written as a set of mass
balance equations with explicitly given kinetic expressions, which
determines the time trajectories of the modeled species, and a list
of model outputs indicating which parts of the modeled system
that are being observed in experiments, see Box 1.

Parameter determination: Next, the numerical values of the
parameters appearing in the rate expressions, the initial condi-
tions, and the outputs need to be determined. Parameter values
are sometimes established one by one, either from targeted
experiments measuring them directly or from other types of
a priori information on individual parameter values. In contrast,
parameter values can also be determined simultaneously in an
inductive way by utilizing the implicit information in measure-
ments of other quantities than the parameters themselves, using
parameter estimation methods. If the parameter estimation pro-
blem does not have a unique solution, the space of admissible
parameter values can be further constrained using physicochem-
ical and thermodynamics laws. Subsequently, from such a reduced
space parameter values can be determined by using Monte-Carlo
sampling techniques.

Validation: With the parameter values determined, the quality
of the model should be assessed. Such model validation can
consist of both qualitative reasoning as well as formal statistical
testing. In addition to explaining experimental data used for
setting up the model, it is common to further validate the model's
predictive power based on new sets of experimental data that was
not used previously in the modeling process.

Usage: When a model has been established it can be used in a
number of different ways to answer the questions for why it was

created. This involves various types of what–if analysis that
explores different scenarios and investigates the impact of model
assumptions. Examples of model usage include analysis of flux
control in a pathway, in silico evaluation of metabolic engineering
strategies, and design of optimal process conditions.

2.1. Purpose

Building models of biological systems is a way of collecting,
organizing, and representing knowledge and hypotheses. The
models can be thought of as formalized descriptions of what is
known expressed by precise mathematical statements. They can
be used for a variety of purposes including hypothesis testing,
understanding how different components of a system work
together to achieve some function or behavior, and learning about
system components which are hard to access experimentally. Most
importantly in the context of industrial biotechnology, they can be
used for making predictions about the effects of genetic engineer-
ing, e.g. deleting or overexpressing a metabolic enzyme, and for
optimizing the design and conditions of bioreactor or fermenta-
tion processes, e.g. determining the details of a fed-batch feeding
strategy.

A common goal for many cell factory production processes,
especially those for low-value products, is the desire to increase
either yield, titer, or productivity, or combinations thereof. As a
consequence, these quantities are ultimately what models should
aim to describe and they are defined in Box 2. Which quantity is
most relevant for a particular process is determined by a large
number of factors such as the value and market size of the
product, the substrate availability and cost, and the downstream
processing. Although the models presented in this review do not
always work directly with the above quantities, the models are
usually describing aspects of cells and production processes that at
least indirectly affect them and they should therefore always be
kept in the back of the mind.

Essentially, any kinetic model whose purpose is to describe
some aspects of the cellular machinery, or of the production
process, that may impact the performance of a cell factory is of
interest to biotechnology. Because there are many different types
of cell factories and a plenitude of interesting products to be
produced by them, the range of purposes and focus of potentially
relevant kinetic models is wide. Depending on the problem they
may address cellular processes such as metabolism, protein
maturation and secretion, signaling, gene regulation, stress

Box 1–Mass balance equations and model outputs.

Combining the stoichiometric information from the model network structure with the symbolic form of the kinetic rate expressions,
mass balance equations with explicitly given kinetics can be set up for all dynamic components of the modeled system. In the
deterministic, continuous case, these equations can be written as

dxðtÞ
dt
¼ S � vðxðtÞ;uðtÞ;θÞ ð1Þ

and their associated initial conditions are

xð0Þ ¼ x0ðθÞ: ð2Þ
Here, xðtÞ denotes an m-dimensional vector of time-dependent state variables, S a stoichiometric matrix of dimension m � n, and
vðxðtÞ;uðtÞ;θÞ an n-dimensional vector of reaction rates which are dependent on the state variables, a vector of input variables uðtÞ, and a
set of parameters θ. Eq. (1) sometimes needs to be extended to take volume changes of the respective compartment into account, for
example the dilution of intracellular species in growing cells. Additionally, it may be necessary to supplement the ordinary differential
equations in Eq. (1) with a set of algebraic equations for certain models. Since the quantities measured in experiments are not necessarily
the same as the model state variables, a function hðxðtÞ;θÞ is also needed to relate xðtÞ to a vector of model outputs

yðtÞ ¼ hðxðtÞ;uðtÞ;θÞ: ð3Þ
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responses, cell cycle progression and apoptosis, as well as external
or environmental factors like temperature, pH, osmolarity, product
and by-product toxicity, and not least the type and operation
mode of the bioreactor or fermentor. When describing the above
features of cell factories a model may be specifically designed for a
particular application, such as a specific pathway for the produc-
tion of a special metabolite, or it can describe more general
functions of the cell that may be exploited in different applica-
tions, such as primary metabolism or the protein synthesis
machinery. The diversity in the purposes and scopes of kinetic
models in biotechnology is reflected in the wide range of time-
scales of commonly modeled processes. Fig. 2 shows how impor-
tant processes such as signaling, the action of metabolic enzymes,
gene expression, protein secretion, the cell cycle, and bioreactor
processes have characteristic timescales that span and cover
almost ten orders of magnitude. Also the size of kinetic models
can be very different, ranging from single enzymes (Chauve et al.,
2010; Hattersley et al., 2011), to entire pathways (Hynne et al.,
2001), to larger models comprising several interacting modules or
pathways (Klipp et al., 2005b; Kotte et al., 2010).

2.2. Model structure

Contemporary kinetic modeling is increasingly targeting cells at
the molecular level, describing components like genes, enzymes,
signaling proteins, and metabolites. From a metabolic engineering
perspective this is in principle advantageous since it is at this level
that genetic alterations eventually would take place. In a process
referred to as a bottom-up or forward modeling, mechanistic
descriptions of a system's components are integrated to form a
description of the system as a whole (Bruggeman and Westerhoff,
2007). The central idea of this approach is that the behavior of a
system emerges from the interaction of its components, and,
importantly, that the behavior can be calculated if the properties of
the components and their interactions have been characterized in
sufficient detail. In principle the bottom-up concept can also be
applied to merge already existing models of cellular sub-systems into
larger models (Klipp et al., 2005b; Snoep et al., 2006). As indicated in
Fig. 1 a kinetic model consists of a network structure, a correspond-
ing set of rate expressions, and their associated parameter values.
Knowledge of all three parts is needed to form a complete model.Fig. 1. Illustration of the main steps of the kinetic modeling procedure.

Box 2–Production process quantities.

If we let the time dependent functions xðtÞ;pðtÞ, and c(t) denote the biomass concentration, the specific productivity, and the specific
substrate consumption, respectively, of a cell factory production process with a duration time T , the accumulative yield can be
defined as

R T
0 xðtÞpðtÞ dtR T
0 xðtÞcðtÞ dt

; ð4Þ

the titer as
Z T

0
xðtÞpðtÞ dt ; ð5Þ

and the productivity as

1

T

Z T

0

xðtÞpðtÞ dt : ð6Þ
Note that the T in the expression of the productivity might itself be a parameter for optimization. For models that only consider situations
where p(t) and c(t) are approximatively constant, such as for a continuous cultivation or perhaps for a population of cells growing in
exponential phase, the yield can instead be quantified by p=c and the titer and productivity can both be replaced by looking at the specific
productivity p if only a particular profile of x(t) is considered.
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Determination of the network structure and the symbolic structure
of rate expressions in kinetic models are usually done according to
the bottom-up approach (but exceptions exist, see for instance
Mettetal and Muzzey, 2008). It is dependent on experimental studies
characterizing the properties of the individual components appear-
ing in the model, information that is collected directly from the
literature or compiled in databases. For some systems the compo-
nents have been characterized in such detail that the bottom-up
approach can be applied in its entirety (Bruggeman et al., 2005), also
including the determination of all parameter values. However, it is
common that some or all of the parameters are unknown and
instead determined indirectly from system-level measurements of
other quantities using parameter estimation methods, a strategy
sometimes referred to as a top-down or inverse approach.

While the biochemistry and biophysics underlying the decision-
making when setting up the model structure is in some cases well
understood, this is generally far from true (Kaltenbach et al., 2009).
Undoubtedly, network structures and rate expressions will be set
up in incomplete or even incorrect ways. It may thus seem logical
trying to infer the model structure from system-level data, in the
same vein as the inverse problem of parameter estimation, but
because of the countless possibilities of network structures and
symbolic forms of rate expressions, a top-down approach is not
feasible for this part of the model building process. One strategy for
handling uncertainty in the model structure is to work with an
ensemble of models with different structures. This approach has
for instance been employed in a study of the TOR signaling
pathway in Saccharomyces cerevisiae (Kuepfer et al., 2007). Other
efforts have focused on the development of computational tools
that support the handling of such model families (Haunschild et al.,
2005). The problem can also in part be tackled by using different
kinds of flexible standardized kinetic rate expressions that can
display a large range of kinetic behaviors depending on their
parameter values. In this way part of the structural identification
problem can be turned into a parameter estimation problem (Chou
and Voit, 2009; Srinath and Gunawan, 2010). In another variant of
the bottom-up approach, addressing the issue of determining a
suitable network structure, Hildebrandt et al. (2008) proposed a
strategy where mechanistic modeling on the molecular level is
combined with an incremental adding of model components in a
systematic way. Starting from a basic backbone model, the effect of
each added component can be evaluated to gain insight into its
contribution to the overall behavior of the system. The authors of
that study used the procedure to construct a model for optimizing
the production of single-chain antibody fragment in S. cerevisiae,
focusing on the chaperon binding protein and the foldase protein
disulfide isomerase.

In contrast to the molecular level model structures, coarse-grained,
lumped descriptions of biological systems and their parts are some-
times employed instead. Setting upmodels with less complex network
structures can be a good way of capturing known higher-level
mechanisms, such as the activity of a complete pathway, even though
not all molecular mechanisms are understood. This is especially true
for models of protein production and the protein secretion machinery
where many details are still unidentified. For example, Wiseman et al.
(2007) used a simplified treatment of the endoplasmic reticulum
pathways for protein folding, degradation, and export to study their
contributions to protein homeostasis and protein export efficiency.
Similarly, the intricate details of the pathways of the unfolded protein
response (Curtu and Diedrichs, 2010) were condensed into a minimal
model featuring the basic mechanisms (Trusina et al., 2008; Trusina
and Tang, 2010). Despite the simplified treatment the model could
provide insight into the function of this homeostatic-restoring system,
in particular in addressing the differences between yeast and mam-
malian cells and the role of translation attenuation. An even simpler,
but nevertheless very useful, model of recombinant protein secretion
in Pichia pastoris was presented by Pfeffer et al. (2011). This model is
unique in that it was able to quantify the degree of intracellular
protein degradation under production like conditions. A study addres-
sing sustained oscillations in continuous yeast cultures is yet another
example of successful modeling using a relatively simple model
structure (Heinzle et al., 1982). At the extreme end of simple network
structures there are of course also the so-called unstructured models
which only use a single state variable to describe the cell biomass in
addition to a few state variables accounting for extracellular substrates
and products (Menezes et al., 1994; Por̈tner and Schäfer, 1996; Carlsen
et al., 1997; Ensari and Lim, 2003; Sarkar and Modak, 2003; Liu and
Wu, 2008; Yüzgeç et al., 2009). Such models are for the most part just
phenomenological representations of what is empirically observed. An
exception is a type of unstructured kinetic models that are derived
using prior knowledge of intracellular reactions; based on a stoichio-
metric description of a metabolic network, a set of macroscopic
reactions connecting the extracellular substrates and products are
determined by decomposing the network into its elementary flux
modes (Provost and Bastin, 2004; Haag et al., 2005; Provost et al.,
2006; Teixeira et al., 2007; Dorka et al., 2009; Zamorano et al., 2013).

A drawback of all the less detailed network structure approaches
mentioned above is the missing or complicated links between entities
of the model and the actual molecular entities inside the cell. These
links are particularly important if the model is to be used for
identification of explicit targets for strain improvement by genetic
engineering. However, depending on the purpose of modeling, a
model with a simpler structure may still be useful. It can for instance
foster a better general understanding of the system behavior or give

Fig. 2. Characteristic timescales for signaling, the action of metabolic enzymes, gene expression, protein secretion, the cell cycle, and bioreactor production processes.
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insights of the system that can be used as a starting point for further
detailed modeling. A less detailed model can also be used for making
predictions without explicit reference to the underlying, un-modeled
reactions at the molecular level. For instance, to accurately simulate
the concentration profiles of substrate, product, and biomass during a
fermentation, which may be valuable for process design, a simple
unstructured model may be sufficient. Thus, in situations where a
simple model structure is believed to meet the requirements of the
modeling purpose, nonessential details should be avoided since they
will only make the modeling process unnecessary cumbersome.

2.2.1. Representation of network structure
The goal of the model network structure is the collection of all

necessary and available biological information that will be con-
verted into a mathematical representation. However, the network
structure also serves as a basis for discussion between biologists
and engineers, physicists or mathematicians. The graphical repre-
sentation is therefore an important aspect of the model network
structure. An accurate and standardized visual language facilitates
the communication between researchers, especially for those
with different backgrounds, and it rationalizes the interchange of
models and biological knowledge, reducing the risk of misunder-
standings and ambiguity. The Systems Biology Graphical Notation
(SBGN) (Le Novère et al., 2009) was developed by members of the
systems biology community to address these issues and is now
emerging as a standard for graphical notation. The use of SBGN
in biochemical modeling was recently reviewed by Jansson and
Jirstrand (2010). Tools for visualization of model simulation
results, arranged in the form of a network structure map, have
also been developed (Oldiges et al., 2006; Noack et al., 2007).

2.2.2. Kinetic rate expressions
The kinetic rate expressions are the symbolic expressions that

describe the reactions and interactions between the elements of the
network structure. Determination of the numerical values of the
parameters occurring in them are discussed later. A fundamental
type of reaction kinetics is the so-called law of mass action. It states
that the reaction rate is proportional to the concentrations of the
reactants, or the reactant for a unimolecular reaction, and it is
frequently used as a description for elementary reactions (reactions

with one step). Kinetics of multi-step reactions, such as those of
enzymes and transporters, can be derived by combining the mass
action kinetics of their elementary reactions (Goryanin and Demin,
2009). The resulting dynamical systems are usually simplified based
on time-scale considerations (Klipp et al., 2005a; Almquist et al.,
2010a), or on symmetries, such as the commonly used assumption
of identical and independent behavior of ion channel subunits
(Almquist et al., 2010b). Typically the simplification is done to the
point where the internal dynamics of the reaction process is lost,
and the description has reduced to an explicit function of the
reactants and any effectors. The reduction also means that many of
the parameters appearing in the final rate expressions are aggre-
gates of elementary reaction parameters and therefore do not
always have the same type of biochemical interpretability. An
example of a well-known rate expression derived from elementary
reactions is the Michaelis–Menten kinetics. It is obtained by
separation of slow and fast dynamics and it is usually used to
describe enzyme kinetics where the concentration of substrate is
much higher than the concentration of the enzyme. A thorough
treatment of the Michaelis–Menten approximation and its connec-
tion to the underlying dynamic system of elementary reactions was
recently presented by Chen et al. (2010).

Determination of kinetic rate expressions is complicated by the
fact that mechanisms of enzymes, transporters, and other complex
biochemical reactions are often unknown (Costa et al., 2011). In those
cases where reaction mechanisms have been derived through careful
experimental studies, detailed modeling of the different reaction
steps can produce rate expressions with complicated symbolic forms
and large numbers of associated parameters (Goryanin and Demin,
2009), making subsequent model analysis and parameter determina-
tion difficult tasks. It must also not be forgotten that all kinetic rate
expressions, no matter how comprehensive in their details, are just
models. They have limitations in their applicability, they may be
incomplete, or even incorrect. For instance, the experimental condi-
tions under which a rate expression was established may differ from
those of the living cell being modeled, making the kinetics inap-
propriate. In addition, reaction rates will to different degrees of
extent depend on variables that were not considered in the deriva-
tion, such as pH, temperature, ionic strength, or the cooperative
effect of enzyme effectors.

Box 3–Approximative kinetic formats.

Generalized mass action (GMA) describes reactions by power law kinetics with non-integer exponents (Savageau, 1976). GMA allows
an analytical steady-state solution to be calculated for linear pathways.

S-systems also use power laws kinetics but here the individual reaction rates are aggregated into two reactions for every mass
balanced biochemical species (Savageau, 1976). This approximation makes analytical solutions of steady-states possible also for
branched pathways, but at the risk of introducing large errors and unrealistic results in certain situations (Heijnen, 2005).

Log-linear kinetics approximates reaction rates with a linear expression of logarithmic dependencies on reactants and effectors
(Hatzimanikatis and Bailey, 1996, 1997). However, the enzyme concentration appears among the linear terms and the reaction rate is
thus not proportional to the enzyme concentrations, something that is generally observed.

Lin-log kinetics (Visser and Heijnen, 2003; Heijnen, 2005) is also a linear expression of logarithms but with the difference that the
enzyme concentration is a multiplicative factor to this linear sum, giving a reaction rate that is proportional to enzyme concentration.
Like the power law approximations of GMA and S-systems, the log-linear and lin-log approaches enable analytic solutions of steady
states. However, unlike the scale-free power laws, their concentration elasticities go towards zero for high concentrations, which is in
agreement with the downward concave behavior of most enzymes’ kinetics (Heijnen, 2005).

Convenience kinetics is a generalization of Michaelis–Menten kinetics that covers arbitrary reaction stoichiometrics (Liebermeister
and Klipp, 2006a). It can be derived from a non-ordered enzyme mechanism under the assumption of rapid equilibrium between the
enzyme and its substrates and products. The convenience kinetics differs from the above rate laws in that it is saturable and can
handle concentrations that are equal or close to zero, the latter situation being known to cause problems for kinetics containing
logarithmic functions (Wang et al., 2007; del Rosario et al., 2008). It has also been described how to avoid violating the laws of
thermodynamics by using thermodynamically independent system parameters (Liebermeister and Klipp, 2006a).

Modular rate laws is a family of different rate laws which were presented with an emphasis on thermodynamical correctness
(Liebermeister et al., 2010).
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2.2.3. Approximate kinetic rate expressions
Since most kinetic rate expressions are unknown, and because

of the complexity and unreliability of those who are claimed to be
known, a number of different approximative kinetic rate expres-
sions have been suggested as alternatives. These rate expressions
have in common that their symbolic structures are intended to be
simple but yet flexible enough to describe many types of reaction
kinetics. They aim for a small number of parameters to facilitate
parameter determination, and some of them are designed to have
good analytical properties or to guarantee correct parameteriza-
tion from a thermodynamical point of view. Because of their
standardized formats they simplify the modeling-building process,
also encouraging automatic construction of kinetic models
(Liebermeister and Klipp, 2006a; Borger et al., 2007; Adiamah
et al., 2010; Liebermeister et al., 2010). Some of the approximative
rate expressions used in kinetic modeling (generalized mass
action, S-systems, log-linear, lin-log, convenience kinetics, and
modular rate laws) are briefly described in Box 3.

The use of approximative rate expressions have been compared
both to other approximative rate expressions as well as to traditional
mechanistic formulations of reaction kinetics in a number of
modeling studies. For example, a lin-log model (Visser et al., 2004)
was derived based on a already established mechanistic model of
the central carbon metabolism in Escherichia coli (Chassagnole et al.,
2002), and was found to give similar simulation results despite its
simpler structure and fewer parameters. In three parallel models of
sphingolipid metabolism in yeast (Alvarez-Vasquez et al., 2004), the
power law formats, GMA and S-systems, were compared to Michae-
lis–Menten kinetics. It was found that the models behaved similarly
both with respect to steady states and dynamics responses. The
performance of GMA, convenience kinetics, and Michaelis–Menten
kinetics was compared in a number of model variants describing the
biosynthesis of valine and leucine in Corynebacterium glutamicum
(Dräger et al., 2009). Hybrid models consisting of both approxima-
tive kinetics and mechanistic kinetics have also been evaluated and
concluded to be suitable approaches (Bulik et al., 2009; Dräger et al.,
2009; Costa et al., 2010).

2.2.4. Stochastic kinetics
A deterministic formulation of reaction kinetics will gradually lose

its validity as the number of reacting molecules becomes small. As a
rule of thumb, there should be at least 102–103 molecules per reactant
(Chen et al., 2010) when describing reactions with deterministic
models. Metabolic reactions, the most commonly modeled aspects
of cell factories, typically fulfill the requirements for deterministic
modeling. However, low numbers of reacting molecules and stochastic

behavior can occur in for instance signaling (Wang et al., 2006), gene
expression (Paulsson, 2004), and protein secretion (Love et al., 2010),
processes potentially relevant in cell factory applications. Modeling of
these and other processes is therefore in some cases best done using
stochastic approaches that take the randomness of biochemical
reactions into account (Ullah and Wolkenhauer, 2010). Such simula-
tions have for instance been used for models of S. cerevisiae to study
the GAL network (Ramsey et al., 2006), and the Ras/cAMP/PKA
signaling pathway (Cazzaniga et al., 2008) including the nucleocyto-
plasmic oscillations of the downstream transcription factor Msn2
(Gonze et al., 2008). For more details on stochastic kinetics see Box 4.

2.3. Parameter determination

Parameters in kinetic models are essentially determined in two
different ways; either one at a time, considering the different
components and processes of the model individually, or by collectively
calibrating the parameters to make the model fit measurements of the
intact system. The two approaches are often combined by setting
some parameters to previously known or measured values while
simultaneously fitting the remaining ones (Zi et al., 2010).

Following the first approach, there are studies where the model
building process has been complemented by experimental work
aiming to measure parameter values directly (Teusink et al., 2000),
but more commonly parameters are set to values already reported in
the literature (Alvarez-Vasquez et al., 2004). These values can some-
times be found in databases compiling experimental information on
kinetic parameters (Kanehisa and Goto, 2000; Rojas et al., 2007;
Schomburg and Schomburg, 2010; Scheer et al., 2011). A serious
problem with this approach is that it usually means that parameter
values will have to be collected from different sources, involving
different experimental conditions, different physiological states of the
cells, different strains, or even different organisms (Costa et al., 2011).
Notably, it is also common that such parameter values are derived
from in vitro measurements, where conditions may differ drastically to
those of in vivo systems (Minton, 2001, 2006), an approach which has
been shown to have shortcomings even if great care is taken (Teusink
et al., 2000). The above issues are being tackled by the development of
standardized experimental systems imitating in vivo conditions for
specific organisms or cell types (van Eunen et al., 2010). Sometimes
model parameters are determined in even less accurate ways, for
instance according to rule of thumb-like considerations such as using
generic rate constants for protein–protein associations or by educated
guessing of enzyme Km values (Hoefnagel et al., 2002). Finally, there
are many parameters whose values cannot be determined directly due
to the limitations of experimental techniques.

Box 4–Stochastic kinetics.

Models with stochastic reaction kinetics can be based on either discrete or continuous state spaces. In a discrete stochastic model, the
state of the system corresponds to the exact numbers of different types of molecules. Since it is impossible to predict the individual
reactions changing the state of the system, the system must instead be described by the probability of being in each possible state.
Knowing the transition probabilities between states, referred to as the reaction propensity, the time evolution of the probabilities for
the different states can be described by a differential equation known as the master equation. Because of the large number of possible
states even for the most simple biochemical systems it is not feasible to solve the master equation in most practical applications.
What can be done, however, are (repeated) realizations of the stochastic process described by the master equation using the
stochastic simulation algorithm (Gillespie’s algorithm) (Gillespie, 1976), or extensions of it such as tau-leaping (Gillespie, 2001).

Another strategy to deal with the discrete stochastic process of the master equation is to approximate it by a continuous stochastic
process. This is typically done by the use of stochastic differential equations known as Langevin equations, enabling simulations that
are more efficient (Higham, 2001; Adalsteinsson et al., 2004). Although Langevin equations can be rigorously derived to approximate
the discrete stochastic process described by the master equation (Gillespie, 2000; Lang et al., 2009), they can also be used to introduce
randomness to an ordinary differential equation in an ad hoc manner (Hasty et al., 2000; Ghosh et al., 2012). The continuous process
described by a Langevin equation can also be expressed by the corresponding deterministic partial differential equation for the
dynamics of the probability distribution, the Fokker–Planck or Kolmogorov forward equation (Jazwinski, 1970; Gillespie, 2000; van
Kampen, 2007).
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The alternative to determining parameters one by one is to
collectively calibrate the parameters to make the model reproduce
experimental measurements of other quantities than the parameter
themselves. This way of indirectly determining parameters is referred
to as parameter estimation (but also as system identification, model
fitting, or model calibration). The parameter estimation problem can
be seen either as the geometrical problem of minimizing the distance
between the model output and the corresponding experimental data,
or it can be interpreted statistically as the problem of maximizing the
likelihood of observing the data given a model that takes the
experimental uncertainty into account. It can be shown that these
views on parameter estimation are related. Specifically, when the
geometrical approach uses a (weighted) sum of squares as the distance
measure it is equivalent to when the statistical approach model

measurement errors as additive, independent, and normally distrib-
uted. For more details on how the parameter estimation problem is
formulated see Box 5. Some of the challenges of parameter estimation
include large qualitative and quantitative uncertainties faced in
biological systems, and parameter estimation for large-scale models.
In these cases, it is common that multiple sets of parameter values can
make the model reproduce the measurements. When the lack of
sufficient information in experimental data results in a population
rather than in a unique set of parameter values, an alternative to
conventional parameter estimation methods might be more appro-
priate (Miskovic and Hatzimanikatis, 2010; Soh et al., 2012;
Chakrabarti et al., 2013). In this approach, the space of admissible
parameter values is first reduced by applying physicochemical and
thermodynamic constraints integrated with available measurements.

Box 5–Formulating the parameter estimation problem.

The parameter estimation problem can be formulated as the following minimization problem. Consider N measured data points,
DN ¼ d1; ;dN , taken at time points t1; ; tN , which are described by a scalar-valued model output, y(t) (at the expense of a little more
notation the line of though easily extends to the case with vector-valued outputs, see for instance Raue et al., 2009). Now an objective
function V ðθÞ can be defined for some distance measure of the vector of residuals, ½d1�yðt1;θÞ; ;dN�yðtN ;θÞ�. For instance, using a
weighted sum of squares as a measure of the distance, the objective function, VSSðθÞ, becomes

VSS ðθÞ ¼ ∑
N

i ¼ 1

ðdi�yðt i ;θÞÞ2
s2
i

ð7Þ

where s2
i is the weight for the ith data point. The parameter estimate, θ̂, is then the set of parameters that minimizes VSSðθÞ

θ̂ ¼ arg min
θ

VSSðθÞ: ð8Þ
The parameter estimation problem can also been seen from a statistical view point, treating experimental observations as realizations of
random variables (Ljung, 1987). If the model is assumed to be a perfect description of the system, the deviation of each observed data
point, di, from the model prediction, yðt iÞ, must originate from a measurement error, ϵi , here assumed to be of additive nature

di ¼ yðt i Þþϵi : ð9Þ
By changing the model of the outputs in Eq. (3) to

yðtÞ ¼ hðxðtÞ;uðtÞ;θÞþϵ; ð10Þ
the observed data can at any time point be seen as a deterministic part, as previously, plus the realization of the random numbers in the
vector ϵ. If the measurement errors are assumed to be independent and normally distributed, with zero mean and variance s2

i for the ith
data point (again considering a scalar-valued model output), the likelihood of observing DN given θ, LðθÞ, can be written as

LðθÞ ¼ c ∏
N

i ¼ 1

exp �ðdi�yðt i ;θÞÞ2
2s2

i

" #
ð11Þ

where c is a constant not affecting the optimum of the likelihood function. The parameter vector θ̂ that maximizes LðθÞ is called the
maximum likelihood estimate. Using the fact that the logarithm is a strictly monotonically increasing function, the problem of maximizing
LðθÞ with respect to θ can be replaced with the problem of minimizing the negative logarithm of the likelihood function

�2 ln LðθÞ ¼ �2 ln cþ ∑
N

i ¼ 1

ðdi�yðt i ;θÞÞ2
s2
i

; ð12Þ

making the optimization problem equivalent to the sum of squares minimization described in Eq. (8). Therefore, the geometrical approach
using a weighted sum of squares as discrepancy measure will coincide with the statistical approach if measurement errors are
independent and normally distributed. More generally, any conceivable model of the measurement error like the one used here will
correspond to some kind of distance measure of the vector of residuals.

The likelihood function above describes the probability of observing the data DN given the parameters θ. It is also possible to treat
the parameters themselves as random variables (Ljung, 1987; Secrier et al., 2009). Using Bayes’ rule, the probability density function
for the parameters given the data, pðθjDNÞ, or the posterior, can be written as

pðθ9DNÞ ¼ pðDN jθÞpðθÞ
pðDNÞ ppðDN θÞpðθÞ�� ð13Þ

and the parameter set maximizing pðθjDNÞ is called the maximum a posteriori estimate. The posterior distribution is a combination of the
likelihood (of observing DN given the parameters) and any prior knowledge of the parameters. Prior knowledge could for instance come
from typical distributions of similar parameters, or from previous estimates which did not include the data used for the likelihood. If there
is no prior information about parameter values, i.e., the prior is a uniform distribution whose logarithm adds nothing but a constant to the
objective function, the maximum a posteriori estimate is reduced to the maximum likelihood estimate. The Bayesian approach with
maximum a posteriori estimation has for example been applied to a model of the threonine synthesis pathway (Liebermeister and Klipp,
2006b).
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Then, the reduced solution space is sampled using Monte-Carlo
techniques to extract a population of alternative sets of parameter
values.

2.3.1. Computing the estimate
When an objective function describing a model's ability to

reproduce the experimental data have been formulated – be it a
likelihood function based on a probabilistic model of model predic-
tion errors, or some other function – the parameter estimate is
obtained by locating its optimum. This is accomplished by different
ways of iteratively searching through the parameter space, usually
taking constraints on admissible parameter values into account, and
a large number of different optimization algorithms have been
designed for this task, see Box 6. However, the problem is compli-
cated by the fact that most models of biological systems contain
nonlinearities and many of these models have large number of
parameters to be estimated. A high dimensional parameter space in
combination with strong nonlinearities can result in complexly
shaped objective functions with many local optima. Such multi-
modality makes it hard to assess whether the global solution to the
optimization problem has been located or if only a local optimum has
been found. Adding further to the problem are the often vast and
relatively flat parts of the parameter space, which only shows a weak
response in the objective function (Transtrum et al., 2010) and
consequently may delay the convergence of the search. As the
objective function is not given as an explicit function of the model

parameters, its values for a certain parameter vector must be
determined by solving the model equations. Every iterate of the
optimization algorithm therefore requires one or more evaluations of
the model equations and the majority of time spent on computing
the estimate is typically used for integrating ODEs (Chou and Voit,
2009). The main challenges when optimizing the objective function
are thus to locate the global optimum, and doing this in
reasonable time.

2.3.2. Identifiability analysis and experimental design
An important but sometimes overlooked aspect of parameter

estimation is the level of confidence in the obtained estimates and
whether it is possible at all to uniquely assign values to the parameters
(Cedersund, 2006; Gutenkunst et al., 2007b; Ashyraliyev et al., 2009;
Roper et al., 2010; Raue et al., 2011; Erguler and Stumpf, 2011;
Meshkat et al., 2011; Hattersley et al., 2011). To accurately estimate
parameters requires a balance between the information content in the
experimental data and the complexity level of the model. However, it
is widely acknowledged that kinetic models often are over-
parameterized and too complex in their structures in relation to
available quantitative data (Nikerel et al., 2006, 2009; Schmidt et al.,
2008; Sunnåker et al., 2010; Schaber and Klipp, 2011). Some models
have intrinsic symmetries that allow transformations of state variables
and parameters in a way that does not change the model output. Such
redundant parameterization leads to a likelihood function that instead
of a unique minimum has a completely flat valley, meaning that there

Box 6–Optimization.

Two main categories of optimization methods can be distinguished, so-called local and global methods. Local methods require some
kind of initialization of parameters, a position in the parameter space from where to start the optimization. This parameter set can
come from in vitro measurements of reaction kinetics or other kinds of estimates, perhaps reported in the literature, but may also
require guessing. The initial parameter set is then improved by repeated application of the optimization algorithm. Many local
methods determine their direction of search in the parameter space based on the gradient and Hessian of the objective function at the
present point in parameter space (Nocedal and Wright, 1999). The Newton method uses the exact Hessian, but quasi-Newton
methods approximating the computationally costly Hessian using gradients, like the SR1 or BFGS algorithms, are more commonly
used. For least squares problems, which are the most common in biochemical modeling, the Hessian approximation of the Gauss–
Newton and Levenberg–Marquardt (Marquardt, 1963) methods are especially appropriate (Nocedal and Wright, 1999). The gradient of
the objective function needed by these methods are typically computed by finite difference approximations. However, numerical
solutions of the model equations using adaptive step length ODE solvers are known to introduce ”quantification errors” to the
objective function, making it non-smooth on small scales (Bohlin, 2006; Carlsson and Nordheim, 2011). The finite difference
approximation may thus become an unreliable description of the gradient and gradient-based methods can as a consequence
experience difficulties. To overcome such problems the gradient can instead be determined by integration of the so-called sensitivity
equations (Ljung and Glad, 1994a; Skaar, 2008; Carlsson and Nordheim, 2011). Another strategy of handling issues with non-smooth
objective functions is the use of non-gradient based methods like the Nelder–Mead method (Nelder and Mead, 1965), the Hooke–
Jeeves method (Hooke and Jeeves, 1961), or the principal axis method (Brent, 1973). Although such methods are robust and easy to
implement, they generally have much slower convergence in terms of the number of objective function evaluations.

Since the objective function typically has several local optima the choice of initial values is crucial for finding the global optimum using
local methods. The inefficiency of local methods in finding the global optimum (Mendes and Kell, 1998; Moles et al., 2003) has spurred the
development of global optimization methods that search the parameter space more comprehensively. A common drawback with these
algorithms is a slower rate of convergence. Some of the popular global methods include simulated annealing (Kirkpatrick et al., 1983;
Nikolaev, 2010), a large number of different genetic and evolutionary algorithms (Sarkar and Modak, 2003; Yüzgeç et al., 2009; Chou and
Voit, 2009; Ashyraliyev et al., 2009), and particle swarms (Kennedy and Eberhart, 1995), and their performance has been compared in
several studies (Moles et al., 2003; Dräger et al., 2009; Baker et al., 2010).

Most successful is the combination of local and global search methods. Such hybrid methods benefit both from the global
methods’ ability to explore the parameter space and from the faster convergence rate of the local methods once close to a (local)
optimum. As an example, the results obtained by Moles et al. (2003) using the global SRES method (Runarsson and Yao, 2000, 2005)
were substantially improved by different combinations with local methods (Rodriguez-Fernandez et al., 2006b), and further
strengthened by a systematic strategy for when to switch from the global to the local method (Balsa-Canto et al., 2008). Even more
promising results have been obtained with a hybrid approach based on a scatter search metaheuristic (Rodriguez-Fernandez et al.,
2006a). An enhanced version of the scatter search (Egea et al., 2010) has also been shown to benefit from a cooperative parallelization
(Balsa-Canto et al., 2012), as illustrated in a comparison with a non-cooperative parallelization of the algorithm on the parameter
estimation problem of the 193 parameter E. coli model by Kotte et al. (2010).

Several of the local, global, and hybrid methods mentioned above are available throughmodeling software tools like SBML-PET (Zi and
Klipp, 2006), the Systems Biology Toolbox (Schmidt and Jirstrand, 2006; Schmidt, 2007), COPASI (Hoops et al., 2006; Mendes et al., 2009),
PottersWheel (Maiwald and Timmer, 2008), and AMIGO (Balsa-Canto and Banga, 2011).
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are several parameter sets that are equally likely to have produced the
measured data. Models of this type are said to be structurally
unidentifiable (Bellman and Åstrom̈, 1970; Pohjanpalo, 1978). It should
be emphasized that this property is only dependent on the model
structure itself, including the set of measured model outputs and the
known input variables, but not on the quality or quantity of data used
for estimation. The analysis of structural identifiability can therefore be
done a priori, meaning that neither experimental data, nor a certain
parameterization, is required.

Structural identifiability is a necessary condition for an unam-
biguous estimation of parameters. It may however not be suffi-
cient because it can happen that even though the likelihood
function has a unique minimum for some parameter set, the
surroundings of this minimum could be very flat. Consequently
there may be other parameter sets with potentially very different
values that are almost as likely. Such diverse parameter sets
yielding very similar outputs have for example been observed in
a model of the methionine cycle dynamics (Piazza et al., 2008)
and in a model of monoclonal antibody production in Chinese
hamster ovary (CHO) cells (McLeod et al., 2011). This situation is
referred to as a lack of practical identifiability. Unlike structural
identifiability, this property does depend on the amount, quality,
and time points of experimental observations. Methods for deter-
mining practical identifiability also require that a parameter
estimate has already been obtained, and can therefore not be

applied a priori. A review of methods for identifiability analysis is
found in Box 7.

When estimating model parameters from experimental data,
decisions have to be made about what kind of experiments to
perform. It is rare that all state variables can be measured and
typically there are several quantities appearing in the model for
which experimental methods exist but come at a high cost in
terms of time- or resource-consumption. In these situations,
identifiability analysis can be a useful tool to guide the experi-
mental design. For instance, the structural identifiability of a
model depends on the set of model outputs but it is not only
interesting to know whether a particular set of measured outputs
renders the model identifiable but it is also of great interest to
learn which potential sets of outputs that have to be measured in
order to ensure structural identifiability. Addressing this question,
an algorithm was developed in the group of Jirstrand and collea-
gues (Anguelova et al., 2012) that a priori finds so-called minimal
output sets, which are sets of outputs that when measured results
in an identifiable model. The algorithm has been implemented in
Mathematica (Wolfram Research, Inc., Champaign, USA) and used
successfully in the analysis of models with over 50 parameters
(Anguelova et al., 2012). Since methods that only determine
structural identifiability will not be able to detect practical
identifiability, they can never be used to prove the feasibility of a
certain experimental design. Rather, because approaches like the

Box 7–Identifiability analysis.

One algorithm for determining structural identifiability has been presented by Sedoglavic (2002) which is particularly interesting.
Unlike previous efforts (Vajda et al., 1989; Audoly et al., 2001; Margaria et al., 2001) this method does not suffer from the limitation of
only being applicable to smaller systems. In fact, a recent implementation of the algorithm, which was also extended to handle
parameterized initial conditions, has been successfully applied to models with a size of about 100 state variables and 100 parameters
using a standard desktop computer (Karlsson et al., 2012). The results obtained by Sedoglavic are so far unfortunately not
disseminated in the biological modeling community, one of the reasons perhaps being the use of the related term observability
instead of the, in the biological field, more common term identifiability. It should be noted that this method, and all other methods
based on the so-called rank-test, are testing for so-called local structural identifiability. Thus, these methods will identify redundant
parameterizations that correspond to completely flat and continuous regions in the likelihood function but there may still be an
enumerable set of non-neighboring single points in the parameter space, also resulting in identical model output, which are not
detected by this analysis. One situation, where multiple parameter sets are possible and where local structural identifiability analysis
might be insufficient, is when measuring one or more components of a pathway containing an upstream reaction which is catalyzed
by two or more isoenzymes whose concentrations and activities are not explicitly measured. If the different enzymes are described by
the same type of model structure, permutations of concentrations and kinetic parameters for the set of isoenzymes results in models
with identical output. The models themselves are however not identical because the different parameter sets have different
implications when interpreting the properties and functions of the actual enzymes and their corresponding genes. Methods for the
analysis of global structural identifiability exist (Ljung and Glad, 1994b; Bellu et al., 2007) but are typically only applicable to smaller
systems with just a few state variables and parameters (Roper et al., 2010), or systems with a particular structure (Saccomani et al.,
2010), and therefore so far of lesser interest in the analysis of most models addressed in this review. A notable exception is the
successful application of the generating series approach to a medium-sized model of the NFkB regulatory module (Chis et al., 2011).
Though, potential issues with non-identifiability in the global sense could be eliminated if there is a priori knowledge about parameter
values that can be used as a starting guess when computing the estimate or to discard an incorrect solution to the parameter
identification problem.

A simple way of evaluating how accurately parameters can be identified in practice is to look at the standard parameter confidence
intervals determined from a quadratic approximation of the log-likelihood function around its optimum. However, due to the frequent
combination of limited amounts of experimental data and model outputs that depend non-linearly on the parameters, this type of
confidence intervals can be unsuitable (Raue et al., 2011; Schaber and Klipp, 2011). Another way of assessing the accuracy of the
parameter estimates is to use exact confidence intervals determined by a threshold level in the likelihood. A method to calculate such
likelihood-based confidence intervals based on the profile likelihood was recently proposed (Raue et al., 2009, 2010). Here, all
parameter directions of the likelihood function are explored by moving along the negative and positive directions of each parameter
while minimizing the likelihood function with respect to the remaining parameters (which means that one studies the projection of the
likelihood onto a specific likelihood-parameter axis plane). The confidence intervals are determined by the points where these
likelihood profiles cross over a certain threshold, and the confidence levels are determined by the level of that threshold. If the profile
likelihood for a parameter never reaches the threshold in either the negative or positive direction, or in neither, the confidence interval
of this parameter extends infinitely in at least one direction. According to this approach, parameters with unbounded confidence
intervals are defined as non-identifiable. This definition would make no sense for confidence intervals determined from the likelihood
curvature at the point of the estimate, since these are always finite (with the exception of a completely flat likelihood resulting from a
structural non-identifiable parameter). Profiling can also be applied to posterior distributions (Raue et al., 2013).
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minimal output sets do not require any wet-lab efforts at all, the
appropriate use of such structural identifiability analysis is to
beforehand disprove any experimental design that is bound to fail
in identifying the parameter values, and to give well-founded
suggestions of which additional quantities that have to be mea-
sured to resolve the identifiability issues. Insights obtained in this
way can potentially save a lot of valuable laboratory resources. The
analysis of practical identifiability will on the other hand require
an existing set of measurements, but it can not only determine
which parameters that are impossible to estimate uniquely but
also those that are too poorly constrained. This type of analysis is
therefore able to confirm if a given set of measurements really is
sufficient for parameter identification in practice. If this is not the
case, and additional measurements are required, practical iden-
tifiability analysis can be used to improve the experimental design
in more specific ways than methods like the minimal output sets,
for instance by indicating certain time points at which the
measurement of a particular quantity is most efficient in (further)
constraining a parameter value (Raue et al., 2009, 2010). Thus,
structural and practical identifiability analysis fulfills different
needs and can be said to have complementary roles when used
for experimental design.

2.3.3. Model reduction
It was shown above that identifiability analysis can guide the

experimental design so that the correct type and amount of data
required for system identification is collected. Another way of
achieving the balance between model and data is to decrease the
complexity of the model by different model reduction techniques.
These techniques aim at simplifying models to reach an appro-
priate level of detail for experimental validation (Klipp et al.,
2005a), and if done properly the reduced model retains the
essential properties of the original model. Model reduction can
also be performed on models where the parameters have already

been identified and whose applicability has been validated. In
these cases the purpose of the reduction is to facilitate the
understanding of essential structures and mechanisms of the
model and to decrease the computational burden of simulation
and analysis. Methods for model reduction are discussed in Box 8.

In addition to the more formal methods mentioned in Box 8, a lot
of model reduction is often done by the modeler already when setting
up the network structure and formulating the rate expressions. For
instance, different post-translationally modified versions of a protein
might de described by a single lumped state variable, concentrations
of co-factors might be excluded as state variables and consequently
not considered in the rate expressions of reactions in which they
participate, reactions which are thought to be marginally relevant for
the problem at hand might be left out from the model, known rate
expression might be simplified and described by approximate kinetic
formats as explained previously, and quantities that are changing
slowly in the characteristic time scale of the model, such as the
synthesis and degradation of enzymes during a much faster metabolic
process, may be considered frozen and hence set constant. Decisions
like these are usually dependent on a combination of the purpose of
the model, the modelers experience and intuition, and prior knowl-
edge of the modeled system.

2.4. Validation

Before a model is ready to be used its quality should be
established. This is done not only by evaluating the model's ability
to explain the experimental data used for parameter estimation
but also by comparing some of its predictions to new data that was
not used earlier in the model building process (Ljung, 1987). If a
priori information is available on values of parameters with a
biophysical interpretation, these should be compared to the
estimated values as a feasibility check. Additionally, other aspects
of the model, such as the predictions of unobserved state variables,

Box 8–Model reduction.

Two popular categories of model reduction methods are the ones based on time-scale separation and lumping. The time-scale
separation approach is based on defining a time-scale of interest and neglecting changes in state variables that occur on slower time-
scales and approximating state variables and processes associated with faster times-scales using the quasi-steady-sate and the quasi-
equilibrium approaches (Klipp et al., 2005a; Nikerel et al., 2009). Thus, the dynamics of some state variables will be replaced by either
constants or algebraic relations. If the time-scales of the reactions in a system are not known, several reduced versions of a model
may be considered (Almquist et al., 2010a) or further assumptions could be made (Almquist et al., 2010b). Lumping, on the other
hand, transforms the original state variables to a set of new state variables in a lower dimensional state space (Okino and
Mavrovouniotis, 1998). The choice of which state variables to lump together is frequently based on time-scale considerations, which
results in groups of quickly equilibrating state variables being completely eliminated and replaced by a new state variable. One
example of model reduction through lumping can be found in a study of secondary metabolism pathways in potato (Heinzle et al.,
2007). Here, the steady-state assumptions which were used to motivate the lumping of different metabolites were derived from
experimental work. Even though model reduction through lumping and time-scale separation often overlap, this is not always the
case. Examples of time-scale separation not involving lumping include setting slowly varying variables to constant values, and
examples of lumping not involving time-scale separation include mean concentration models of cellular compartments, i.e., reaction–
diffusion equations represented without the spatial dimension. Other model reduction techniques include sensitivity analysis
(Degenring et al., 2004; Danø et al., 2006; Schmidt et al., 2008) and balanced truncation (Liebermeister et al., 2005). The previously
mentioned profile likelihood approach to practical and structural identifiability analysis can also be used for model reduction (Raue et
al., 2009, 2010, 2011).

In most models with relevance for biotechnology the model components, such as state variables, their rates of change, and
parameter values, have precise physical meaning. A successful model reduction should therefore not only preserve the input–output
relations, which may be sufficient in other disciplines where models are used, but also preserve the interpretation of model
components (Cedersund, 2006). These ideas are central in a recently developed method that reduce models by lumping (Sunnåker et
al., 2010). Based on the approximation that state variables involved in fast reactions are in quasi-steady-state, interconnected groups
of such quickly adjusting states are identified and lumped together. The distribution among the original states of a lump is determined
analytically by so-called fraction parameters. These parameters can be used to retrieve the details of the original model, which is
known as back-translation, thereby allowing better biochemical interpretation of analysis and simulations done with the reduced
model. The method has also been extended to be able to handle nonlinear models and was successfully applied to a model of glucose
transport in S. cerevisiae (Sunnåker et al., 2011).

J. Almquist et al. / Metabolic Engineering 24 (2014) 38–6048



may be interrogated with respect to their biological plausibility.
Quality controls like the above are referred to as model validation.
Strictly speaking, however, a model can never be validated. It may
explain all experimental data generated sofar but it can never be
proven to correctly account for future experiments. What is meant
by validation is rather that the model has withstood repeated
attempts to falsify or invalidate it. The rationale here is that the
more experiments that have been successfully explained by the
model, and the more reasonable it is with respect to a priori
information about the biological system, the more it can be trusted
to correctly predict future experiments. If a model fails to pass the
validation step, researchers need to revise their model by suitable
iteration of the modeling steps outlined in Fig. 1.

The ability of a model to explain experimental data is fre-
quently judged by visual inspection of the respective time-series
(Heinzle et al., 2007; Li et al., 2011; Cintolesi et al., 2012) or by
qualitative comparison of model characteristics (Gonzalez et al.,
2001). A qualitative comparison may for instance involve an
investigation of whether the model can produce certain observed
behaviors such as oscillations, homeostasis, or switching. Such
analysis is sometimes actually performed before parameters have
been formally determined, typically using some initial estimate of
the parameter values, which might result in models being dis-
carded already at this point. While these less rigorous assessments
may be a good first step of the validation procedure there are also
formal statistical tests for determining the quality of a model, see
Box 9. Regardless of the outcome of statistical tests and formal
methods of validation, it should not be forgotten that these are
best used as support for decisions made by the modeler
(Cedersund and Roll, 2009) and that the ultimate validation is
whether the model can fulfill the purpose for why it was created in
the first place (Ljung, 1987).

Sometimes validation is done by qualitatively different types of
data than what was used for model identification. For instance, the
biological system can be measured under new external conditions
(Shinto et al., 2007; Oshiro et al., 2009), resulting in a different
operating point, new types of input schemes (such as steps, pulses,
periodic pules, or staircases) may be used (Klipp et al., 2005b; Zi
et al., 2010), data can be collected on previously unmeasured
molecular species, and validation experiments can be conducted
on modified versions of the original system, i.e. mutants, where
enzymes or other components are inactive, constitutively active, or
have been underexpressed, overexpressed, or completely deleted

(Alvarez-Vasquez et al., 2005; Klipp et al., 2005b; Wang et al., 2006;
Zi et al., 2010; Cintolesi et al., 2012). When models can successfully
explain such new data, it is a strong indication that the mechanistic
principles and assumptions behind the model are sound.

3. Using kinetic models

From a biotechnology perspective, a complete and validated
model according to the steps outlined previously is usually not in
itself the ultimate goal of modeling. The real value of a model lies
instead in using it to predict, evaluate, and explore different
scenarios or assumptions involving the modeled system and its
surrounding environment. An established model should thus
foremost be seen as a tool that can be used to answer questions
about the cell factory and it should be used as a complement or
alternative to performing actual experiments in the lab.

3.1. Improving production

A major question which has been attempted to be answered
using kinetic models is how to rationally design directed metabolic
engineering strategies that will improve a cell factory's ability to
produce a desired product. This requires models that can predict
the behavior of the cell in response to genetic alterations like gene
deletion or overexpression. One way of using kinetic models to
identify suitable targets is to perform a local parameter sensitivity
analysis. A more thorough treatment of the problem involves
simulating larger changes in the levels of enzymes and other
components.

3.1.1. Local parameter sensitivity analysis
The aim of a local parameter sensitivity analysis is to determine

the degree of change of some model property like a flux, a
concentration, or a more complex quantity such as the area under
the curve of some state variable, in response to a change in the
model parameters. As the parameters may represent quantities that
can be manipulated by genetic engineering, such as enzyme con-
centrations, the analysis provides predictive links between potential
targets and their effect on the cell factory behavior. Since a local
analysis only considers small or even infinitesimal perturbations
around a point in parameter space, it is not indented to mimic any
actual changes in, for example, an enzyme concentration. However, a

Box 9–Validation.

Model validation is typically done by analyzing the deviation between the measured data and the model outputs, Ei ¼ di�yðt iÞ. For a
model to be good these residuals should be sufficiently small and uncorrelated. First of all, if the parameters have been collectively
estimated, the model should be able to satisfactorily describe this ‘training’ data. For instance, the size of the residuals can be tested
by a w2 test (Jaqaman and Danuser, 2006; Cedersund and Roll, 2009) and the correlation of residuals can be tested by a run test or a
whiteness test (Cedersund and Roll, 2009). Secondly, the residual analysis should be performed also with new data that were not
previously used. This is done to assure that a good fit is not just because a too complex model has been over-fitted to the particular
data points of the estimation set. Validating a model with fresh data means that unless new data can be collected after parameter
estimation, some data has to be saved. This can be a problem if there is not much data to begin with. A common approach to this
situation is the use of resampling methods (Molinaro et al., 2005) where the model validation procedure is repeated and averaged
over different partitions of the original data into training and validation sets. One such method is k-fold cross-validation, which has for
instance been used in modeling of the TOR pathway (Kuepfer et al., 2007).

Model validation sometimes also involves comparison between competing models describing the same biological system, to see
which one is ‘most valid’ (Schaber et al., 2012). Two common criteria used to find the most suitable model include the Akaike
information criterion (AIC) (Akaike, 1974) and the Bayesian information criterion (BIC) (Schwarz, 1978), and two common tests that
also address the statistical significance of model discrimination are the likelihood ratio test (Kreutz and Timmer, 2009; Cedersund and
Roll, 2009) and the F-test (Jaqaman and Danuser, 2006; Cedersund and Roll, 2009). Other approaches to model discrimination, which
included the dependence of model discrimination on experimental design, have been explored in studies on formate dehydrogenase
production in Candida boidinii (Takors et al., 1997) of and L-valine production in C. glutamicum (Brik Ternbach et al., 2005).
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local parameter sensitivity analysis is easy to perform, gives a concise
and transparent output, and despite its limitations it does have some
predictive power allowing the results to be used as guidelines for
identifying reasonable metabolic engineering targets.

A popular application of kinetic models is a special type of
sensitivity analysis called metabolic control analysis (MCA) (Fell,
1992; Nielsen, 1998; Visser and Heijnen, 2002), the basis of which
was already developed in the seventies (Kacser and Burns, 1973;
Heinrich and Rapoport, 1974). It is concerned with the problem of
quantifying how the control of steady-state flux is distributed
among the enzyme-catalyzed reactions of a pathway. Two of the
central quantities in MCA are the elasticity coefficients and the
flux control coefficients (FCCs), defined in Box 10. They are both
measures of sensitivity that have been scaled to obtain dimension-
less numbers.

Normally there are many non-zero FCCs, meaning that there is
no single rate-limiting enzyme but that the control of a flux
instead is distributed over several reactions. However, it is likely
that some reactions have larger values of their FCCs than others,
indicating that these reactions are the ones primarily controlling
the flux. The enzymes of those reactions may consequently be
promising targets for successful metabolic engineering of the
pathway. Given a kinetic model the FCCs can readily be calculated
directly from its steady-state(s). The steady-state can be obtained
either by simulations asymptotically approaching it, or by analy-
tical or numerical solutions of the model equations. Alternatively,
the FCCs may for linear pathways be determined indirectly from
the summation and connectivity theorems using elasticity coeffi-
cients derived from the individual reaction rates of the model.

Sensitivity analysis in the form of MCA has been applied to a
variety of kinetic models describing many different kinds of cell
factories and types of products. It has for example been used to
determine suitable genetic targets for improved production of
lysine in C. glutamicum (Hua et al., 2000). This study found that
lysine production was primarily controlled by the enzymes aspar-
tokinase and lysine permease. The outcome of the analysis was
verified experimentally by overexpression of aspartokinase, result-
ing in a significant increase in lysine production. However, the

lysine flux did not increase as much as would be expected from the
sensitivity analysis, suggesting that model predictions of this type
are best used as supporting guidelines and that they never should
be taken as indisputable facts. Further verification of the model's
predictive capability was obtained by overexpression of the low
flux-control enzyme dihydrodipicolinate, which only had a very
limited effect on the production rate. Recently, Cintolesi et al. (2012)
applied MCA to a model of ethanol production from glycerol in E.
coli. Their analysis suggested that the control of the glycerol
fermentation was almost exclusively shared between glycerol
dehydrogenase and dihydroxyacetone kinase. The validity of this
prediction was confirmed by the 2.4-fold increase in glycerol to
ethanol flux observed when simultaneously overexpressing both
enzymes. It was additionally seen that overexpression of other
enzymes involved in glycerol metabolism, but whose flux control
coefficients were close to zero, did not lead to increased rates of
glycerol consumption and ethanol synthesis. The use of MCA is not
limited to fluxes of metabolites but can be applied to the steady-
state flux of any chemical entity. For instance, Gonzalez et al. (2001)
used MCA to study monoclonal antibody synthesis in eukaryotic
cells. They came to the conclusion that control of antibody produc-
tion is shared between different steps of the synthesis pathway and
that this division depends on the extracellular conditions and the
physiological state of the cell. Their predictions were shown to
compare qualitatively well with previously published experiments.
Other examples of MCA applied to kinetic models include glycerol
synthesis in S. cerevisiae (Cronwright et al., 2002), valine production
in C. glutamicum (Magnus et al., 2009), the central carbon metabo-
lism (Chassagnole et al., 2002) and production of threonine
(Chassagnole et al., 2001), tryptophan (Schmid et al., 2004), and
serine (Nikolaev, 2010) in E. coli, L-cysteine production in Pseudo-
monas sp. (Huai et al., 2009), production of lactic acid (Oh et al.,
2011) and compounds of the acetolactate branch (Hoefnagel et al.,
2002) in Lactococcus lactis, and the penicillin biosynthetic pathway
in Penicillium chrysogenum (Theilgaard and Nielsen, 1999). Except
for the work by (Hoefnagel et al.), which is further discussed in the
next subsection, the model predictions of those studies were not
tested by actually constructing the correspondingly modified

Box 10–Metabolic control analysis.

Consider a pathway, possibly containing branching points, consisting of metabolites xi, and reactions rates vj which are catalyzed by
enzymes with concentrations ej. The elasticity coefficients (ECs) are then defined as

ϵjx i
¼ xi

v j

∂vj

∂xi
; ð14Þ

which means that for each reaction of the pathway there is a set of ECs measuring its sensitivity to the concentrations of the different
metabolites. Each EC is a property of an individual enzyme and is therefore independent of the activity of the other enzymes in the
pathway. For any steady-state flux J in the pathway the flux control coefficients (FCCs) are defined as

CJ
j ¼

ej

J

∂J
∂ej

: ð15Þ

They quantify the degree of control exerted by the different enzymes on a steady-state flux of the pathway as a whole. This means that an
FCC for one of the enzymes can depend on the properties of the other enzymes, and the FCCs are therefore system properties. The ECs and
the FCCs are related by the summation theorem

∑
j

CJ
j ¼ 1 ð16Þ

which states that the sum of all FCCs is 1, and by the connectivity theorem

∑
j

CJ
j ϵ

j
x i
¼ 0 ð17Þ

which states that for each metabolite, the sum of the product of the FCCs and the ECs with respect to that metabolite is zero. The full
details of MCA comprise additional sensitivity coefficients which are related through similar theorems. Thus, MCA is not just a sensitivity
analysis but also a theoretical framework that formally describes the connection between properties of a system and its components.
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microbes. There are also computational studies where MCA has
been combined with parameter sampling approaches in order to
examine the effect of parameter uncertainty (Pritchard and Kell,
2002; Wang et al., 2004; Wang and Hatzimanikatis, 2006a, 2006b;
Miskovic and Hatzimanikatis, 2010).

Other types of local parameter sensitivity analysis are also
abundantly represented in the literature. For example, Oshiro et al.
(2009) determined the impact of parameter perturbations in a
kinetic model describing the dynamics of lactic acid production in
xylose fermenting L. lactis. Based on their results, the enzymes
around the pyruvate node were proposed as targets for genetic
manipulation. Some of these authors had also previously carried
out a similarly designed sensitivity analysis of acetone–butanol–
ethanol production in Clostridium acetobutylicum (strain N1-4,
formerly known as Clostridium saccharoperbutylacetonicum)
(Shinto et al., 2007). Here, several genetic engineering strategies
for increased butanol production were suggested, including
decreasing the activity of CoA transferase for butyrate and increas-
ing the activity of the reverse pathway of butyrate production. This
model (Shinto et al., 2007) was later improved by Li et al. (2011)
who arrived at similar conclusions in their sensitivity analysis. In
addition to looking at single parameters, their analysis also
considered all combinations of parameter pairs. Though, as the
size of parameter perturbations was small, the combined effects of
simultaneously changing two parameters always equaled the sum
of the separate parameter effects and no nonlinear crossover
effects were thus found. Unfortunately did neither the L. lactis
study nor the Clostridium studies genetically implement the
proposed strategies. In recent work on CHO cells, McLeod et al.
(2011) used sensitivity analysis to investigate which cellular
process that controlled the production of a recombinant mono-
clonal antibody. The sensitivity analysis was repeated to specifi-
cally target different days of a two week fed-batch process. Unlike
the modeling study by Gonzalez et al. (2001) it was found that
control was divided almost exclusively between transcription,
degradation, and translation of mRNA, and that this control
structure did not change appreciably during the different phases
of culturing. The authors consequently suggested that genetic
engineering strategies for their system should focus on these
processes, but the validity of their predictions was not tested
experimentally.

3.1.2. Simulating larger changes
The theory behind MCA and other local sensitivity approaches

is based on small perturbations of the parameter values and the
resulting sensitivities are normally only valid in the vicinity of the
nominal parameter values. Realistic cases of genetic manipulation
will on the other hand likely involve larger changes in the levels of
gene product concentrations. The extent to which the results of a
local analysis of the model can be extrapolated to larger perturba-
tions differs from case to case and cannot generally be determined
(Visser et al., 2004; Schmid et al., 2004; Nikolaev, 2010). However,
if a kinetic model has been formulated there is usually no reason
for limiting the model analysis to local parameter sensitivities. Just
as the control coefficients of MCA can be calculated directly from
model simulations, the model can in principle be used for
simulating any kind of perturbation of its components. By simu-
lating more extensive changes to models, metabolic engineering
scenarios can be explored in more realistic ways. In this respect,
such approaches are more powerful compared to the traditionally
used sensitivity analysis like MCA, and the predictions made have
the potential to be much more accurate. Though, performing
simulations that involve large changes in the model parameters,
or even changes to the model structure, may require that the
model has good predictive power not only for the specific

physiological setting for which it was developed but also for other
operating points, something that cannot generally be assumed to
be true. Therefore, the more extensive the perturbations to the
model are, the more careful one should be when interpreting the
results.

One example of model-based analysis of actual metabolic engi-
neering strategies was provided by Hoefnagel et al. (2002). Based on
MCA-derived candidate targets for increasing the production of
acetoin and diacetyl in L. lactis, they proceeded with simulations of
larger changes in the concentrations of two enzymes. First, a mutant
with a lactate dehydrogenase deletion was simulated. This did
indeed lead not only to a substantial flux towards the acetolactate
synthase branch but also to a reduction in glycolytic flux, indicating
potential problems with growth rates for such a strain. Then, a 40-
fold overexpression of NADH-oxidase was simulated also resulting
in some of the flux being diverted into the acetolactate branch.
Finally, a simulation combining the two modifications was per-
formed and it predicted that 92% of the flux through the pyruvate
node would go into the desired direction, and that the glycolytic flux
would be less affected. This fraction should be compared to a
negligible 0.1% measured in the wild-type strain. The model predic-
tion was tested, and at least to a certain degree confirmed, by an
experiment which showed that 75% of the pyruvate ended up as
acetoin in a strain where lactate dehydrogenase had been knocked
out and NADH-oxidase was overexpressed. In another purely
computational study, Chen et al. (2012) developed two separate
kinetic models of glycolysis and the pentose phosphate pathway in
S. cerevisiae and CHO cells. The authors then used the yeast model to
analyze the impact of metabolic engineering targeting the produc-
tion of dihydroxyacetone phosphate. Specifically, a deletion of the
enzyme triose phosphate isomerase was simulated by setting its
activity to zero. The rate of dihydroxyacetone phosphate production,
and its yield on glucose, for this in silico deletion mutant was
subsequently determined under different glucose uptake rates. Yet
other studies have simulated the effects of realistically sized pertur-
bations in the central metabolism of E. coli (Usuda et al., 2010; Kadir
et al., 2010), comparing their results to experimental data.

3.1.3. Optimization problems
Even though the analysis of a specific metabolic engineering

strategy is relatively easy to implement in silico given a kinetic
model, there are still at least in theory infinitely many possible
strategies to consider (assuming a continuum of expression levels)
and it may be unclear which particular ones to try out in simula-
tions. To overcome this difficulty, scenarios involving perturbations
to model parameters are sometimes formulated as optimization
problems (Hatzimanikatis et al., 1996a, 1996b; Mendes and Kell,
1998; Chang and Sahinidis, 2005; Pozo et al., 2011). A typical
objective function to be optimized would be the rate of formation
of the desired product and the optimization procedure may more-
over be subject to constraints regarding the maximum changes in
levels of enzymes and metabolites. All methods that can be used to
compute the parameter estimates, described in Box 6, are typically
applicable also for these problems. Using the output from kinetic
models to set up optimization problems is perhaps the most
rigorous and ambitious way of approaching the search for metabolic
engineering targets.

Different optimization approaches to determining appropriate
levels of metabolic enzymes have been used in a number of purely
simulation-based studies for various aspects of microbial metabo-
lism, including the production of ethanol in S. cerevisiae (Polisetty et
al., 2008), citric acid in Aspergillus niger (Alvarez-Vasquez et al.,
2000; Polisetty et al., 2008), and of serine (Visser et al., 2004; Vital-
Lopez et al., 2006; Nikolaev, 2010), tryptophan (Marín-Sanguino
and Torres, 2000; Schmid et al., 2004), and L-(-)-carnitine (Alvarez-
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Vasquez et al., 2002) in E. coli. The simultaneous production of
serine and tryptophan in E. coli has also been considered using a
multi-objective optimization strategy (Lee et al., 2010).

3.2. Improving substrate utilization

An interesting prospect in the development of competitive cell
factories is the expansion of their range of substrates. One example is
the improved use of lignocellulosic biomass for ethanol production
made possible by the introduction of genes for xylose utilization in S.
cerevisiae. To assist in the evaluation of directed genetic engineering
efforts towards improved efficiency in catabolism of this pentose
sugar, Parachin et al. (2011) used a kinetic modeling approach for
analyzing two different scenarios. One model was set up to represent
a strain in which extracellular xylose reaches the pentose phosphate
pathway through membrane transport followed by conversions by
the enzymes xylose reductase, xylitol dehydrogenase, and xyluloki-
nase. This model also featured a membrane transport reaction for the
excretion of the intermediate metabolite xylitol. Additionally, another
model was constructed for an alternative pathway comprising xylose
isomerase and xylulokinase. In both these models the effects of a 10-
fold overexpression as well as a severe knockdown (a 10-fold
decrease in activity) of the different enzymes were examined.
Simulating overexpression of xylose reductase in the first catabolic
pathway slightly not only increased the ability to consume xylose but
it also led to an increased excretion of xylitol. Conversely, not only the
knockdown of xylose transport capacity decreased the xylitol forma-
tion but also the xylose consumption. Changing the activity of xylitol
dehydrogenase, either by overexpression or knockdown, only had a
marginal effect on model simulations. The best outcome was
observed when xylulose kinase was overexpressed. This resulted in
a slight increase in xylose consumption combined with a dramatic
decrease in excretion of xylitol. Similarly, for the pathway using xylose
isomerase, the model analysis suggested overexpression of xylulose
kinase to be the best alternative for improving the utilization of
xylose. The predictions of the models were in essence validated
experimentally by aerobic and anaerobic cultivation of the corre-
spondingly engineered yeast strains.

Other kinetic modeling contributions aiming for improved
utilization of substrate includes enhancement of glucose uptake
in E. coli (Visser et al., 2004; Nishio et al., 2008; Nikolaev, 2010)
and application of the aforementioned MCA to the catabolism of L-
arabinose (de Groot et al., 2005) and xylose (Prathumpai et al.,
2003) in Aspergillus nidulans and Aspergillus niger. Of those studies,
only Nishio et al. (2008) proceeded to validate their predictions in
experimental follow-ups.

3.3. Improving product quality

For complex products such as glycoproteins, the quality of the
product may be subject to improvement by genetic manipulations.
The patterns of glycosylation have impact on in vivo activity,
immunogenicity, and product half-life and their importance has
encouraged the development of glycoengineered yeasts (Hamilton
and Gerngross, 2007; Ye et al., 2011; Nett et al., 2012), serving as
an alternative to production of human-like glycoprotein in animal
cells. Kinetic modeling has been employed to describe glycosyla-
tion in mammalian cells (Krambeck and Betenbaugh, 2005;
Hossler et al., 2007). Expanding on an earlier model (Umaña and
Bailey, 1997), Krambeck and Betenbaugh (2005) set up a model
describing the non-linear kinetics of the enzymes involved in N-
linked glycosylation in CHO cells. They were able to use their
model to simulate how the glycosylation profile changes when the
concentration of maturing protein in the Golgi increases. Specifi-
cally, they investigated a scenario where the concentration was
increased 4-fold in order to represent a hypothetical cell line with

an increased specific productivity. The results of their simulations
showed that the distribution of different glycoforms changes in
response to the increased productivity, indicating a potential
problem with reduced product quality. The authors then explored
in silico the possibility of restoring the original glycosylation
pattern in the high producer by means of changing the levels of
glycosylation enzymes and the availability of uridine diphosphate
N-acetylglucosamine. By just adjusting the level of a single
enzyme, N-acetyllactoseaminide α-2,3-sialyltransferase, more
than half of the deviation could be reverted. Other solutions,
involving changes in several targets, that almost completely
restores the glycan distribution were also proposed based on the
analysis. Models such as this are clearly interesting tools for
making predictions of how to preserve correct glycosylation in
high producing cells, but possibly also for how to engineer new
glycan patterns.

3.4. Improving process design

In addition to predicting the effects of internal perturbations
to a cell factory, kinetic models are also useful for predicting
their behavior in response to various external conditions.
Understanding the interplay between the cell and its environ-
ment is valuable since it can be used for improving the
fermentation or bioreactor process. To describe the complete
production process, a model which can reproduce cellular
properties such as the rate of growth, substrate consumption,
and product formation, is combined with a model of the
bioreactor in which the cells are cultivated. Bioreactor models
are usually set up as quite simple dynamical systems based on
mass balances of substrates, products, biomass, and viable cells,
normally assuming ideal mixing (however, highly complex
models also exists Lapin et al., 2010). Considering the bioreactor
as part of the modeled system is necessary for calculating the
quantities discussed in the section on model purpose, like
productivity and final titer. Not only are both the time trajec-
tories for biomass concentration and the specific rates of
consumption and production need for their determination but
the dynamics of these variable are usually dependent on one
another (Maurer et al., 2006; Douma et al., 2010) and their
dynamics must be dealt with simultaneously.

To be useful for the design or optimization of fermentation or
bioreactor processes, the models of the cell metabolism need only
be predictive in a input–output sense. As long as this is the case it
does not matter whether they are mechanistically correct repre-
sentations of intracellular biochemistry or just empirical models.
Because of the challenges of setting up mechanistic models on the
molecular level, the production processes have traditionally been,
and commonly still are, modeled with either unstructured kinetic
models or by other simplified model designs (DiMasi and Swartz,
1995). Such kinetic models have been used to describe both
continuous and fed-batch cultivations. For continuous cultures,
modeling has for instance been used to study growth and
metabolism of mammalian cells (DiMasi and Swartz, 1995) and
the effect of oxygen uptake on L-lysine production in Corynebac-
terium lactofermentum (Ensari and Lim, 2003). Models have also
been used for optimizing operating conditions such as the dilution
rate in order to maximize production of protein in S. cerevisiae
(Carlsen et al., 1997) and L-(-)-carnitine in E. coli (Alvarez-Vasquez
et al., 2002). The model-based predictions in both of these studies
turned out to agree very well with experiments. In industry many
processes are run in fed-batch mode and kinetic models of fed-
batch processes have for example been used to study penicillin
fermentation in P. chrysogenum (Menezes et al., 1994) and produc-
tion of proteins in mammalian cell lines like baby hamster kidney
(Teixeira et al., 2007), murine hybridoma (Dorka et al., 2009), and
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CHO (Xing et al., 2010). Several investigators have also used similar
models for the optimization of fed-batch feeding profiles (Sarkar
and Modak, 2003), for instance to maximize astaxanthin produc-
tion in Xanthophyllomyces dendrorhous (Liu and Wu, 2008) or
protein production in E. coli (Levisauskas et al., 2003) and P.
pastoris (Maurer et al., 2006), and for maximizing production of
biomass while at the same time minimizing ethanol formation in a
S. cerevisiae fermentation (Yüzgeç et al., 2009). The predicted
optimal cultivation strategies in all of these studies were shown
to compare well with validation experiments and did indeed
lead to significantly improved fed batch processes. As well
as using kinetic process models for optimizing operational strate-
gies in advance, kinetic models are also potentially useful for
online control (Chae et al., 2000; Teixeira et al., 2007; Yüzgeç et al.,
2009).

Although models with simpler structures have proven useful
in many cases, models of production processes and cell cultiva-
tion with increasing mechanistic details of intracellular reac-
tions are now starting to appear (Bettenbrock et al., 2006;
Shinto et al., 2007; Oshiro et al., 2009; Kadir et al., 2010; Li et
al., 2011; Nolan and Lee, 2011). In fact, kinetic models of
substantial complexity, which have been successful in describ-
ing how the metabolic state of cells varies with the external
conditions, have recently been presented for both E. coli (Kotte
et al., 2010; Usuda et al., 2010) and S. cerevisiae (Moisset et al.,
2012). In addition to detailed representations of primary meta-
bolic reaction networks, these models include genetic regula-
tion of enzyme concentrations. One of the advantages of using
more detailed models of the production process is that it allows
the synergistic effects of metabolic engineering and process
conditions to be evaluated, something which was recently
explored in a mainly computational study addressing CHO cell
metabolism (Nolan and Lee, 2012).

4. Advantages, challenges and perspectives

4.1. Advantages

The general strength of the kinetic modeling approach is that it
quantitatively takes into account the factors that determine the
rate of reactions. Compared to the modeling paradigm of the
constraint-based stoichiometric models, which mainly is focusing
on which reactions that can occur and the proportions of their
reactants and products, kinetic models also define when and to
what extent reactions take place. For an enzymatic reaction, for
instance, not only can the effects of substrate and product
concentrations be incorporated into the kinetic rate expression,
but also the effects of co-factors, activators, inhibitors, and other
modulators of enzyme activity. The ability of kinetic models to
incorporate detailed information about reactions gives them a
number of advantageous properties. Though, it must be empha-
sized that the advantages listed below partially reflect the poten-
tial capabilities of kinetics models, and not necessarily what is
routinely achieved for all kinetic models.

The principles of kinetic modeling are applicable for all parts of
the cell as well as the extracellular environment. Thus, a kinetic
model can not only describe the rates of several interlinked
enzyme-catalyzed reactions and the corresponding dynamics of
the interconverted metabolites, but it may also include additional
layers accounting for the rates of synthesis and degradation of
transcripts and enzymes, as well as the rates of reactions involved
in various sensing mechanisms and signal transduction. The many
different levels of control, regulation and coordination of biochem-
istry are essential features of living cells (Heinemann and Sauer,
2010) and a modeling framework with a broad applicability is

clearly an advantage if one desires to study the integration of
different cellular processes. A kinetic model of the cell factory is
furthermore easily embedded in a dynamic model of the bior-
eactor process itself. GEMs, on the other hand, are less flexible and
work best for modeling fluxes of metabolites.

Kinetic models can assist in understanding the complex beha-
viors of biological systems. Although the qualitative behavior may
be intuitive, such as end-product inhibition in a linear pathway,
understanding both the qualitative and quantitative aspects of
how system behavior emerges from the properties of its compo-
nents and their interactions is generally not trivial. In fact, even
really small molecular circuits with just a few components are
capable of producing non-intuitive dynamic behaviors such as
adaptation, homeostasis, irreversible switching and oscillation
(Tyson et al., 2003). Modeling behavior like these requires a kinetic
approach and is beyond the scope of GEMs. One interesting
example of how kinetic modeling has provided insight into the
emergence of complex behaviors is the model of metabolic
adaption in E. coli (Kotte et al., 2010). Here, a kinetic formulation
of the reactions of the central metabolism, including their tran-
scriptional and translational regulation, was shown to be capable
of reproducing system-level metabolic adjustments through a
mechanism termed distributed sensing of intracellular metabolic
fluxes. This can be compared to the incorporation of Boolean rules
for known gene regulation in GEMs (Herrgård et al., 2006). Since
the regulatory information is explicitly hard-wired into the model,
this strategy can never offer the same explanatory power in terms
of actual molecular mechanisms.

Kinetic modeling can turn understanding of how cell factories
work into predictions about how to improve them. When models
have been set up linking relevant aspects on the system-level with
the properties of the system components, they become valuable
for predicting and optimizing the performance of cell factories.
Ideally, the model components represent things that can be
manipulated such as expression levels or process parameters,
but also when model components are more abstract there may
be general predictions achievable that still are useful. Kinetic
models are unique in that predictions and optimizations are
quantitative and can be very detailed, going beyond the regime
of gene addition and deletion typically identified from flux balance
analysis of GEMs. Thus, if such details are desired, kinetic models
are conceptually superior to GEMs which instead are better suited
for pathway-oriented problems involving prediction of the steady-
state flux-capabilities of metabolic networks.

4.2. Challenges

A number of challenges must be addressed and overcome for
biotechnology to capitalize from the advantages of kinetic model-
ing. The overall challenge lies in producing predictive models of
high quality that really can make a difference for improving cell
factory performance. Although this review has presented a number
of studies where models have been used for predicting metabolic
engineering targets, some of which have been experimentally
verified, we are still far away from having kinetic models that are
sufficiently good to be used for in silico design of industrially
competitive cell factories. In this respect, kinetic models have not
reached the same degree of maturity and industrial applicability as
the much more successful GEMs.

The difficulty of producing high quality predictive models is
that it requires a lot of detailed information about the system that
one wishes to model. If too little information is available, the
strengths and advantages of the kinetic modeling approach cannot
be realized. Unfortunately kinetic modeling efforts frequently
suffer from incomplete and uncertain knowledge of the underlying
biochemistry with respect to both network structures, kinetic
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rate expressions, and parameter values (Schaber et al., 2009;
Kaltenbach et al., 2009; Soh et al., 2012). Thanks to the many
reconstructions of genome-scale metabolic networks, the path-
ways and stoichiometry of metabolic reactions are often mapped
out quite well, but regulatory mechanisms, both at the level of
enzyme–metabolite interaction and at the transcriptional and
translational level, are usually characterized to a lesser extent.
For systems involving other types of reactions, such as protein
secretion networks or signal transduction, knowledge of compo-
nents and interaction is usually scarce, making the formulation of
the network structure a challenging task (Schaber and Klipp,
2011). Little is also known about the exact mechanisms of the
majority of reactions, meaning that the structure of kinetic rate
expressions is also mostly unknown. Though, if a network struc-
ture as defined here (including qualitative knowledge about
reaction modifiers) can be formulated, this issue can to some
degree be circumvented using approximative kinetic rate expres-
sions. The challenge of determining suitable structures for kinetic
models should not be underestimated. While the literature often
emphasizes the lack of quantitative information regarding para-
meter values, the lack of qualitative information based on which
the model structure is set up may prove to be an even more
difficult problem, at least when modeling certain parts of the
cellular biochemistry. Nevertheless, the limited information about
parameter values also deserves a lot of attention. Already in
smaller models there are typically lots of parameters with
unknown values and determining them is indeed a challenge.
Even in those cases where parameter values are claimed to be
known as the result of studying individual components, models
that agree with experimental data of system properties do not
automatically follow. A well-known example illustrating this point
is the study of glycolysis in S. cerevisiae by Teusink et al. (2000).
Here, kinetic parameters were determined experimentally under
standard conditions in vitro for most of the glycolytic enzymes.
When the individual enzyme kinetics were pieced together
to form a model of the entire pathway, the model predictions
deviated substantially from the in vivo behavior in some parts.
This and other examples suggest that the accumulated uncertainty
introduced by in vitro measurements, differences in experimental
protocols, using data from different organisms, etc., make the
resulting models questionable. If possible, modelers should try to
make a transition from the bottom-up philosophy of determining
parameter values, and instead collectively estimate them using
in vivo data with the same scope as that of the system being
modeled. As shown in this review, rigorous mathematical frame-
works have been established for this task and there are several
available methods for solving the resulting optimization problems.
There are also established methodologies within identifiability
analysis and model reduction which will help in achieving well-
posed estimation problems.

Producing the right kind of data is critical for parameter
estimation in kinetic models. Ideally, methods from identifiability
analysis and experimental design should assist in laying down the
directions for what data to collect, rather than uncritically basing
these decisions common practice or on intuition. Performing
relevant analysis and simulations before even a single experiment
has been performed can potentially save both time and resources,
and lead to better models. Of course, it may then turn out that the
construction of a particular model is best done with the aid of data
that is currently not routinely produced. To estimate parameter in
larger scale models it is for instance expected that high-
throughput time-series data will be a crucial factor. Thus, kinetic
modeling can act as a driver for the development of new experi-
mental techniques as well as a better use of existing ones.

The time it takes to set up kinetic models must be reduced.
Since modeling projects can be very different in their scopes and

purposes it is hard to find a recipe that fits all scenarios and as a
result the modeling procedure often becomes rather slow, typi-
cally involving a lot of manual work and case-to-case considera-
tions by the modeler. One part of the solution towards a faster
modeling cycle may be for the kinetic modeling community to
continue to strive for a higher degree of standardization and
automization. This is important not only for the representation
and implementation of models, but foremost for the methods and
workflows used to set them up. In this respect, valuable insights
may come from looking at workflows for setting up GEMs
(although the methods of course are different) where a substantial
number of models have been produced in relatively short time.

If the routine generation of highly predictive kinetic models
would become a reality, this will in turn pose new challenges for
molecular biologists. As the predictions of metabolic engineering
strategies derived from such models might be quantitatively very
precise, an equally high precision in their implementation may
potentially be needed to materialize the full potential of those
predictions. This may require a precision in molecular biology
methods that is currently not achievable, for instance such as very
finely tuned expression levels or precise alteration of the catalytic
properties of an engineered enzyme. In fact, the lack of such
precision is already today preventing an exact implementation of
the detailed results from the previously mentioned computational
studies on optimal levels of metabolic enzymes.

4.3. Perspectives

It is not unrealistic to envision a future scenario where indust-
rially relevant strategies for cell factory improvements based on
classical methods gradually become exhausted or obsolete, and
where the design is successively replaced by model-driven methods
(Otero and Nielsen, 2010; Miskovic and Hatzimanikatis, 2010;
Cvijovic et al., 2011). The most mature mathematical models of
today, the GEMs, are the obvious candidates for this transition and
they have already generated valuable results (Bro et al., 2006; Lee et
al., 2006; Asadollahi et al., 2009; Becker et al., 2011; Neuner and
Heinzle, 2011; Park et al., 2011). However, as the lower-hanging
fruits of computational strategies are collected, the stoichiometric
models will eventually also run into problems of predicting new
targets. In this long-term perspective, kinetic models may well
become a strong driving force for advancing the industrial applica-
tion of cell factories. Two of the future aspects that are likely to be
important for moving kinetic modeling forward are how their size
and coverage can be increased and how they should deal with the
previously mentioned limitations and uncertainty in the information
needed to set them up.

In the future we will need to start producing large-scale kinetic
models. The organization of the different biochemical reactions
and pathways of the cell is characterized by a high degree of
interconnectivity, for example through common precursor, energy,
and redox metabolites. Because of this, changes in one part of the
network of reactions may have unexpected consequences for other
parts, rendering a global system perspective necessary. In the light
of this complexity, one of the reasons for the successful application
of stoichiometric models for predicting metabolic engineering
targets is the fact that they can be set up on the genome-scale.
Their aim for completeness means that they are re-usable for
many kinds of problems and their popularity has even encouraged
community consensus reconstructions of metabolic networks for
S. cerevisiae (Herrgård et al., 2008). In addition to an extensive
coverage of metabolism, recent work on GEMs is taking a genome-
scale perspective also on the transcriptional and translational
machinery (Thiele et al., 2009) as well as on protein secretion
pathways (Feizi et al., 2013). The GEMs clearly have the advantage
of being suitable for large scales, but they ultimately lack the
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details required for a full characterization of the cell. Existing
kinetic models, on the other hand, are usually set up on a small or
at most medium scale. They are often built under rather specific
assumptions which make them less adaptable for re-use in new
situations and their lack of standard impedes the possibilities of
merging smaller models into larger ones. Moving towards large-
scale kinetic models, especially for the most important platform
cell factories, will hopefully allow for better predictions and widen
the possible model applications. Although the routine construction
and use of genome-scale kinetic models definitely lies many years
ahead, there are however already some emerging efforts towards
the formulation of kinetic models with a more complete coverage.
Various modeling methodologies have been proposed aiming to
move large-scale modeling from stoichiometric constraint-based
approaches to the kinetic domain (Famili et al., 2005; Smallbone et
al., 2007; Jamshidi and Palsson, 2008; Ao et al., 2008; Adiamah et al.,
2010; Smallbone et al., 2010), but their usefulness for cell factory
improvements remains to be proven. Important results have been
achieved for consistent reduction of metabolic networks (Soh, 2013),
which may contribute towards genome-scale kinetic models through
facilitating intermediate large-scale steppingstones (Chakrabarti et al.,
2013). The idea of a community of modelers that together drives the
development of large-scale kinetic models is potentially also inter-
esting. Clearly, it is very difficult at this stage to predict which
particular parts of the kinetic modeling procedure will be most
crucial for eventually achieving kinetic genome-scale models. If it at
all is possible given our current capabilities, it will likely involve a
combination of the different topics covered within this review. In
parallel with these developments, the constraint-based approaches
have been modified to account for the dynamics of fluxes by
sequential solutions of different steady states. These rather popular
methods of so-called dynamic flux balance analysis (Mahadevan et
al., 2002; Lee et al., 2008; Oddone et al., 2009) are however not
addressing the kinetics of reactions, and are therefore still limited in
this sense. Though, the concepts of dynamic flux balance might
become useful in hybrid strategies where stoichiometric models and
kinetic models are combined.

The awareness of the limited and uncertain information available
for setting up kinetic models, especially large models, should lead to a
critical examination of modeling strategies. One way in which
modelers are facing up to the challenge posed by uncertainty is the
inclusion of uncertainty itself as a part of the models. As shown in this
review there is an increasing trend of publications addressing the
uncertainty of both structure (Chou and Voit, 2009; Kaltenbach et al.,
2009; Schaber et al., 2012), and of parameters, both directly (Pritchard
and Kell, 2002; Liebermeister and Klipp, 2005; Piazza et al., 2008;
Contador et al., 2009; Kotte and Heinemann, 2009; McLeod et al.,
2011) and indirectly through sampling of enzyme state spaces (Wang
et al., 2004; Wang and Hatzimanikatis, 2006a, 2006b; Miskovic and
Hatzimanikatis, 2010, 2011). The presence of nested uncertainties of
model structure and parameter values has also been emphasized
(Schaber et al., 2009; Schaber and Klipp, 2011). Taking an even more
fundamental approach to the uncertainty of molecular cell biology,
researchers should also continue to investigate the prospect of
accounting for uncertainty of parameters, reaction rates, and networks,
using kinetic models based on stochastic differential equations, some-
thing which has been successful in other fields of biological modeling
(Berglund et al., 2012). Related approaches can additionally be used to
account for the uncertainty and variation between individual cells in a
population (Almquist et al., 2008). Fueled by novel experimental
techniques such as single cell metabolomics (Heinemann and
Zenobi, 2011) and single cell level cultivation (Grünberger et al.,
2012), cellular heterogeneity is a topic of growing interest (Lidstrom
and Konopka, 2010) but its implications for cell factory design are
largely uncharted territory. Based on these trends, further develop-
ment of kinetic modeling strategies that can handle uncertainty will

likely be one essential ingredient for generating better cell factory
models in the future. As part of such efforts it should be particularly
important to elucidate the impact of uncertainty on the predictive
power of models Gutenkunst et al. (2007a,b).
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P Gennemark3*

The investigational ticagrelor-neutralizing antibody fragment, MEDI2452, is developed to rapidly and specifically reverse the
antiplatelet effects of ticagrelor. However, the dynamic interaction of ticagrelor, the ticagrelor active metabolite (TAM), and
MEDI2452, makes pharmacokinetic (PK) analysis nontrivial and mathematical modeling becomes essential to unravel the
complex behavior of this system. We propose a mechanistic PK model, including a special observation model for post-
sampling equilibration, which is validated and refined using mouse in vivo data from four studies of combined ticagrelor-
MEDI2452 treatment. Model predictions of free ticagrelor and TAM plasma concentrations are subsequently used to drive a
pharmacodynamic (PD) model that successfully describes platelet aggregation data. Furthermore, the model indicates that
MEDI2452-bound ticagrelor is primarily eliminated together with MEDI2452 in the kidneys, and not recycled to the plasma,
thereby providing a possible scenario for the extrapolation to humans. We anticipate the modeling work to improve PK and
PD understanding, experimental design, and translational confidence.
CPT Pharmacometrics Syst. Pharmacol. (2016) 00, 00; doi:10.1002/psp4.12089; published online on 0 Month 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � Antiplatelet therapy for the prevention of atherothrombotic
events in patients with acute coronary syndrome is known to increase the risk of bleeding complications. The unique
reversible binding mode of action of the oral antiplatelet agent, ticagrelor, has enabled the development of MEDI2542, a
ticagrelor-specific antidote for rare emergency situations. • WHAT QUESTION DOES THIS STUDY ADDRESS? � This
study seeks to unravel the PK interaction between ticagrelor and MEDI2452 through the use of mathematical modeling,
aiming for both qualitative understanding as well as detailed quantitative predictions. • WHAT THIS STUDY ADDS TO
OUR KNOWLEDGE � A mathematical model describing the simultaneous PKs of ticagrelor and MEDI2452 in the
mouse is presented. The model offers a mechanistic explanation for the complex kinetics and can predict the unob-
served free ticagrelor plasma concentration that drives the platelet aggregation PDs. • HOW THIS MIGHT CHANGE
DRUG DISCOVERY, DEVELOPMENT, AND/OR THERAPEUTICS � The combined ticagrelor-MEDI2452 model can con-
tribute to the development of MEDI2452 by assisting in interpretation of observed data, by prediction of free ticagrelor
and TAM plasma concentrations, and by simulation of experimental designs.

Ticagrelor is a direct acting and reversibly binding P2Y12

antagonist.1 In the PLATO study, a positive benefit-risk pro-

file for the prevention of atherothrombotic events in patients

with acute coronary syndrome was established.2 Based on

the PLATO data, as well as data with the thienopyridines,

clopidogrel in CURE,3 and prasugrel in TRITON,4 dual anti-

platelet therapy, consisting of aspirin and a P2Y12 antago-

nist, is critical for the treatment of acute coronary

syndrome. In addition, in the recently completed PEGASUS

TIMI-54, the benefit-risk profile for long-term treatment with

ticagrelor in patients with a history of myocardial infarction

and a high risk of developing an atherothrombotic event

was documented supporting the use of ticagrelor for long-

term treatment.5 However, all antiplatelet therapies are

known to increase the risk of bleeding complications.2–5

The unique reversibly binding mode of action of ticagrelor

provides an opportunity for developing a specific reversal

agent not possible for the thineopyridines, which are all irre-

versible P2Y12 antagonists. The first data for the ticagrelor-

specific neutralizing antibody fragment (Fab), MEDI2452,

has recently been published.6

MEDI2452 specifically binds free (unbound to plasma

proteins) ticagrelor and free AR-C124910XX—the ticagrelor

active metabolite (TAM)—with a high affinity of about

20 pM.6,7 MEDI2452 thereby prevents ticagrelor’s and

TAM’s (similar potency vs. P2Y12 as ticagrelor) interaction

with, and inhibition of, the platelet P2Y12 receptor.

MEDI2452 may prove valuable as an agent for patients on

ticagrelor therapy who require urgent surgery or suffer an

acute major bleed. If successful, MEDI2452 would be the
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first antidote for an antiplatelet drug. Recently, specific anti-
dotes for oral anticoagulants have been described and are
undergoing clinical trials, including a specific Fab for the
thrombin inhibitor dabigatran, idarucizumab,8–11 and a
recombinant catalytically inactive Factor (F)Xa, andexanet
alfa, which is targeted to reverse all the FXa inhibitors.12

The main objective of the present work is to better under-

stand the pharmacokinetics (PKs) of ticagrelor, TAM, and

MEDI2452, in general, and to be able to predict free plasma

concentrations of ticagrelor and TAM in particular. Knowl-

edge of free plasma concentrations is crucial as it is only the

free fractions—and not the more than 99% protein-bound

fraction or the dynamically changing MED2452-bound

fraction—that can inhibit the P2Y12 receptor and thereby

drive the pharmacodynamic (PD) response. The PK analysis

is complex because of the dynamic interaction that occurs

between these compounds when administered to the same

system. It is expected that mathematical modeling will be

essential for unraveling their combined PK behavior. In addi-

tion, we investigate if a simple turnover model driven by the

predicted free levels can describe PD data of platelet aggre-

gation. The work was accomplished in three stages. First, a

mathematical model of the combined ticagrelor-MEDI2452

PK in the mouse was set up based on data of separately

administered ticagrelor and MEDI2452, and on assumptions

supported by literature. Second, the model was validated

and refined using several different combined ticagrelor-

MEDI2452 PK datasets not used in the first stage. Finally,

the model was used to understand how the complex PK

emerges from the ticagrelor-MEDI2452 interaction. Specifi-

cally, we let the model predict free plasma levels of ticagrelor

and TAM under different experimental designs, and, in turn,

let these predictions drive the PD model.

MATERIALS AND METHODS
MEDI2452 prestudy: dosing only MEDI2452 to rats
MEDI2452 PK was observed following a 1,000 mg 3 kg21

i.v. bolus dose in conscious Sprague-Dawley rats. Venous

serum samples were obtained predose and at 5, 15, and

30 minutes, and 1, 2, 6, 12, 24, and 48 hours postdose.

The study was performed by Huntingdon Life Sciences

(Huntingdon, UK) in compliance with the United Kingdom

Animals (Scientific Procedures) Act 1986 Amendment Reg-

ulations 2012.

Ticagrelor prestudies: dosing only ticagrelor to mice
Ticagrelor PK in nonfasted male C57Bl6 mice (Charles

River, Sulzfeld, Germany; body weight in the range of

15–25 g) was observed in two studies, of which the first

also included TAM observations. The studies were

approved by the ethical committee for animal research at

the University of G€oteborg, Sweden. Mice were anesthe-

tized with isoflurane vapor (Forene; Abbot Scandinavia AB,

Sweden). A catheter was inserted in the left jugular vein for

administration of the vehicle or drug. The body temperature

was maintained at 388C by external heating. In the first

study, four mice were given ticagrelor as an i.v. infusion at

a rate of 240 lg 3 min21 3 kg21 for 5 minutes, followed by

30 lg 3 min21 3 kg21 for 15 minutes. The ticagrelor and

TAM total concentrations (free and protein-bound) in
plasma were observed at 20, 30, 40, 50, 65, and 80
minutes after the start of infusion (thus, the first sample
was collected immediately poststop of infusion). In the sec-
ond study, two mice were administered an i.v. bolus dose
of 2,000 lg 3 kg21 ticagrelor. The total ticagrelor concen-
tration in blood was measured in samples collected at 2, 5,
10, 30, 60, 90, 120, and 150 minutes after the dose.

Main studies: dosing MEDI2452 to ticagrelor-treated
mice
Four different studies in nonfasted male C57Bl6 mice were
used for model validation and refinement, labeled study 1 to 4.
Their designs are illustrated in Figure 1, and the full details
are given in Supplementary Text S1. Animal handling and
experimental setup were as described for the ticagrelor pre-
studies. In common with these studies, the mice were first
dosed with an i.v. infusion of ticagrelor, allowing the plasma
concentration to reach steady-state. Then, a bolus of the anti-
dote MEDI2452 was administered. The PD data from studies
1, 3, and 4 have previously been reported.6

Bioanalysis
Quantification of total (free and protein bound) as well as free
(protein unbound) ticagrelor and TAM in plasma samples in
the mouse was determined by protein precipitation and liquid
chromatography mass spectrometry. The lower limits of quan-
tification of free ticagrelor and TAM were 0.03 nmol L21 and
0.06 nmol L21. Quantification of MEDI2452 in mouse and rat
plasma was performed with the Gyrolab nanoliter scale immu-
noassay assay platform. Mouse and rat assays had lower lim-
its of quantification of 260 and 350 ng3mL21. Quantification
of ADP-induced platelet aggregation was evaluated using the
Multiplate impedance aggregometer (Dynabyte, Munich,
Germany). Further details of the bioanalysis are given in Sup-
plementary Text S1.

Data analysis
Parameter estimation was performed according to a maximum
likelihood approach with a multiplicative lognormal error model
for the PK model and a mixed additive and multiplicative
error model for the PD model, using the na€ıve-pooled data
approach. Uncertainty of parameter estimates was determined
by bootstrapping, sampling single measurements randomly
with replacement within each experiment (N 5 300). Uncer-
tainty of the final PK model used for predictions and for driving
the PD model was generated based on Monte Carlo sampling
from the parameter distributions obtained from bootstrapping,
and from additional parameter uncertainties defined in Table 1.
In addition to uncertainty with respect to parameter values,
model predictions also incorporate the effect of uncertainty
resulting from the model’s residual variability (Supplementary
Text S2).

Numeric analyses were performed in MATLAB (R2014a;
The MathWorks, Natick, MA). Specifically, the Matlab function
fminsearch was used for solving the optimization problems
encountered during parameter estimation. The Matlab model
code is provided in the Supplementary Model Code files.
The analytical solution used in the observation model was
derived in Mathematica 10 (Wolfram Research, Champaign,
IL).
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RESULTS
PK models for only ticagrelor or MEDI2452
Before the combined ticagrelor-MEDI2452 interaction model
could be set up, two independent PK models were derived
for the separate administration of ticagrelor in the mouse

and of MEDI2452 in the rat. The details of these models
are described in Supplementary Text S2, Supplementary
Figure S1, and Supplementary Figure S2. We found that
ticagrelor (and TAM) follows two-compartment kinetics in
the absence of MEDI2452, and that MEDI2452 kinetics in

Figure 1 Designs of validation studies 1 to 4. Mice were given ticagrelor as an i.v. infusion during 20 minutes. Immediately after the ticagrelor
infusion, an i.v. bolus dose of MEDI2452 or vehicle was given. Terminal blood samples for plasma exposure of ticagrelor and MEDI2452 were
collected at various time-points. For study design 3, gray circles indicate blood samples from a separate pharmacokinetic experiment.

Table 1 Model parameters

Name Unit Value Estimated value Uncertainty Explanation

f – 0.0020 0.0020 (not estimated) 0.0012, 0.0028a Fraction unbound ticagrelor (internal data, n 5 38)

kon nM21 3 min21 0.14 0.11 0.078, 0.122b Second-order rate constant. Initial point estimate

obtained from different estimates of the rate

constants of the similarly sized ligands

methotrexate, dabigatran, and topotecan.8,17,20,27

Kd nM 0.02 0.02 (not estimated) 0.013, 0.029c Affinity of MEDI2452 for ticagrelor and TAM.6

Clmet L 3 min21 3 kg21 0.012 0.0080 0.0077, 0.0083b TAM-specific ticagrelor clearance

Cl L 3 min21 3 kg21 0.058 0.022 0.019, 0.025b Remaining ticagrelor clearance

V1 L 3 kg21 1.63 1.12 0.95, 1.18b Initial estimate obtained

by V1,Tica 2 VMEDI2452 5 1.68–0.05 L 3 kg21

Cld L 3 min21 3 kg21 0.042 0.041 0.050, 0.066b Ticagrelor intercompartmental clearance

V2 L 3 kg21 1.8 1.8 1.32, 1.88b Ticagrelor volume of second compartment

V L 3 kg21 0.05 0.05 (not estimated) – MED2452 (central compartment) volume of distribution.

Standard plasma volume.

Clf L 3 min21 3 kg21 0.0030 0.0025 0.0024, 0.0026b MED2452 Cl. Initial estimate scaled value from

rat (0.0048 L 3 min21 3 kg21) adjusted

to 60% to match data.

Clfast L 3 min21 3 kg21 10 10 (not estimated) – Rapid compared to other clearances in the system

r2
tica nM 3 nM 0.076 0.064, 0.081b

r2
TAM nM 3 nM 0.080 0.076, 0.087b

r2
MEDI nM 3 nM 0.28 0.26, 0.31b

r2
freetica nM 3 nM 0.042 0.039, 0.045b

r2
freeTAM nM 3 nM 0.060 0.057, 0.069b

TAM, ticagrelor active metabolite; Tica, ticagrelor.
aFifth and 95th percentiles obtained from internal data (n 5 38). bFifth and 95th percentiles obtained from bootstrapping. c95% confidence interval.6
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the absence of ticagrelor was adequately described using a

one-compartment model during the timescale of interest.

This timescale was dictated by the experiments in which

both compounds were administered and occurred over 80

minutes after drug dosing. The parameters of the rat

MEDI2452 model were furthermore adjusted based on allo-

metric scaling and a priori knowledge of mouse plasma vol-

ume to describe the presumed kinetics in the mouse

(Supplementary Text S2).

A combined ticagrelor-MEDI2452 PK model
A combined ticagrelor-MEDI2452 PK model was hypothe-

sized by integrating the independently derived models for

the respective compounds. To this end, assumptions were

required with respect to the reconciliation of compartment

structures of the two independent models and with respect

to certain kinetic matters brought to the fore by the model

integration.
Because the central compartment of the independent

MEDI2452 model equaled the mouse plasma volume, and

because the larger central compartment of the independent

ticagrelor and TAM model could be reasonably expected to

contain the plasma volume, we assumed the central com-

partment of the independent ticagrelor and TAM model to

be divided into two subcompartments for the hypothesized

combined model. A plasma compartment that is identical to

the central compartment of independent MEDI2452 model,

with the previously introduced volume V (Supplementary
Text S2), and a compartment representing tissue rapidly
exchanging with plasma, with the new volume V1, now rep-

resenting the remainder of the previous ticagrelor and TAM
central compartment. Thus, V accommodates all com-
pounds, whereas V1 is only for ticagrelor and TAM. The
peripheral compartment with volume V2 of the independent

ticagrelor and TAM model (Supplementary Text S2) was
kept unchanged.

We further assumed that: (I) binding and unbinding of
ticagrelor and TAM to plasma protein is fast (i.e., the reac-
tion is considered to reach equilibrium instantaneously);

(II) distribution between V and V1 also is fast in the above
sense; (III) the ticagrelor-MEDI2452 complex is cleared at
the same rate as MEDI2452; and (IV) the kinetics of TAM
is governed by the same principles as ticagrelor (i.e., the

equations are structurally equivalent, using the same
parameters as for ticagrelor). Assumption (I) is a standard
assumption within PK modeling because this equilibrium
typically is reached on a timescale of seconds, and it is jus-

tified in our case in which the other dynamics occur on a
timescale of minutes. Assumption (II) is reasonable
because we were not able to improve the separate ticagre-
lor PK model by adding a third compartment. Assumption

(III) is natural if no other information is available and it has
been used in similar modeling situations.13–15 Regarding
assumption (IV), all aspects of TAM kinetics have not been

Figure 2 Schematic illustration of the combined ticagrelor-MEDI2452 pharmacokinetic-model. Reactions assumed to equilibrate instan-
taneously are indicated by double arrows. Input to the system (ticagrelor and MEDI2452) are shown as dashed arrows. The rapid equi-
libriums of free and protein-bound ticagrelor and ticagrelor active metabolite (TAM) are depicted by encapsulated entities. The fractions
of free ticagrelor and TAM within these entities are determined by the parameter f. The total contents of free and protein-bound ticagre-
lor and TAM in the plasma compartment (V) are cleared at the rate Cl, and ticagrelor is additionally being metabolized to TAM at the
rate Clmet. The total content of the encapsulated ticagrelor entity may furthermore distribute instantaneously to one peripheral compart-
ment (V1), and more slowly, with the intercompartmental clearance Cld, to another (V2). Free ticagrelor and TAM in the plasma com-
partment can reversibly bind to free MEDI2452 with the rate kon, forming complexes with dissociation constant Kd. Both the complexes
and free MEDI2452 are cleared at the rate Clf.
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investigated, but it is known that the affinities of both

MEDI2452 and P2Y12 for TAM,6 (data on file) are highly

similar to the corresponding affinities for ticagrelor.6,16 The

possibility of target-mediated drug disposition was excluded

from the model according to the discussion in Supplemen-

tary Text S2.
The model is illustrated in Figure 2. It is defined by the

following equations:

V3TicaVðtÞ052Clfast 3
�

TicaVðtÞ2TicaV1ðtÞ
�

2Cld 3
�

TicaVðtÞ2TicaV2ðtÞ
�

2 V3kon

�
f3TicaVðtÞ3FabV ðtÞ2Kd 3FabTicaVðtÞ

�

2Clmet 3TicaVðtÞ2Cl3TicaVðtÞ1TicaInputðtÞ;

(1)

V13TicaV1 tð Þ05Clfast3
�

TicaVðtÞ2TicaV1 tð Þ
�
; (2)

V23TicaV2ðtÞ05Cld3
�

TicaVðtÞ2TicaV2ðtÞ
�
; (3)

V3TamVðtÞ052Clfast 3
�

TamVðtÞ2TamV1ðtÞ
�

2Cld 3
�

TamVðtÞ2TamV2ðtÞ
�

2 V3kon

�
f3TamVðtÞ3FabV ðtÞ2Kd 3FabTamVðtÞ

�

1Clmet3TicaVðtÞ2Cl3TamVðtÞ;

(4)

V13TamV1 tð Þ05Clfast 3
�

TamVðtÞ2TamV1 tð Þ
�
; (5)

V23TamV2ðtÞ05Cld 3
�

TamVðtÞ2TamV2ðtÞ
�
; (6)

V3FabVðtÞ052 V3kon

�
f3TicaVðtÞ3FabVðtÞ2Kd 3FabTicaVðtÞ

�

2 V3kon

�
f3TamV ðtÞ3FabVðtÞ2Kd 3FabTamVðtÞ

�

2Clf 3FabVðtÞ1FabInputðtÞ;
(7)

V3FabTicaVðtÞ05V3kon

�
f3TicaVðtÞ3FabV ðtÞ2Kd 3FabTicaVðtÞ

�

2Clf 3FabTicaVðtÞ;
(8)

V3FabTamVðtÞ05V3kon

�
f3TamVðtÞ3FabVðtÞ2Kd 3FabTamVðtÞ

�

2Clf 3FabTamVðtÞ;
(9)

where the state variables TicaV(t), TicaV1(t), TicaV2(t),

TamV(t), TamV1(t), and TamV2(t) refer to the time-dependent

concentrations of free and protein-bound (not including

MEDI2452) ticagrelor and TAM in V, V1, and V2, respectively,

where FabV(t) refers to MEDI2452 concentration in V, and

where FabTicaV(t) and FabTamV(t) refer to the ticagrelor-

MEDI2452, and TAM-MEDI2452 complexes in V. Values of the

parameters, and their justifications, are reported in Table 1.

Observation model
The reactions in which ticagrelor and TAM form complexes

with MEDI2452 do, in general, never fully reach their equilibria

in the in vivo system. This is due to the continuously ongoing

clearance and redistribution of the interacting species, which

interferes with the processes of reaching the equilibria. When

blood samples are collected, however, physiological reactions,

like clearances and intercompartmental distribution, are inter-

rupted, and there is sufficient time available for reaching the

equilibria before the bioanalysis of the sample content is com-

plete. Because of this, a model of the dynamic process taking

place in vitro is required in addition to the original model of the

in vivo system. Such an observation model can mathemati-

cally be constructed by setting the values of all clearance

parameters to zero, reflecting the in vitro conditions of the bio-

analysis, and then compute the closed-form analytical solution

for the equilibria (Supplementary Text S2). The use of the

observation model is critical for distinguishing between actual

levels of free ticagrelor and TAM, and of measured values

(Supplementary Figure S3). Specifically, the observed con-

centrations of free ticagrelor and free TAM are less than the

concentrations of free ticagrelor and free TAM in the in vivo

system. For free levels of MEDI2452, which is present in

larger concentrations compared to free ticagrelor and TAM,

the difference of using the observation model becomes

marginal.

The hypothesized model explains observed data from

four separate studies
The model was validated on experimental data from study

1 to 4, comprising different dosing and sampling schedules

(Figure 1). By a reduction (40%) of the allometrically

scaled MEDI2452 clearance (corresponding to scaling rat-

mouse with exponent 1 and not 0.75), and without chang-

ing any other parameter value, we could reasonably well

simulate all the qualitative characteristics of the observed

data (Figure 3), as well as many of the quantitative charac-

teristics. For studies 1 to 3, the predicted time profiles of

plasma levels of total ticagrelor, total TAM, and free

MEDI2452 were generally in accordance with data,

although there was some underprediction of total ticagrelor

and total TAM in the absence of MEDI2452, especially in

study 3. For study 4, both model and data displayed

increasing levels of total ticagrelor, total TAM, and free

MEDI2452, as a function of dose, as well as decreasing

levels of free ticagrelor and free TAM as a function of dose.

Although the model performed reasonably well for total and

free ticagrelor and TAM in study 4, there was a tendency to

underpredict free ticagrelor and free TAM and at lower

doses there was an overprediction of free MEDI2452.
The validation data were subsequently used to refine the

model by reestimation of some of its parameters (Table 1).

As shown in Figure 3, the refined model improved the fit to

data in general, including– to us – the particularly important

levels of free ticagrelor and free TAM. A residual plot for the

refined model is presented in Supplementary Figure S4.

Ticagrelor is not likely to be fully recycled
When ticagrelor-bound or TAM-bound MEDI2452 is elimi-

nated in the kidneys, it is currently not known if ticagrelor

and TAM are eliminated, recycled, or a combination thereof.

Fabs are, however, generally cleared through the kidneys

and elimination is faster than for immunoglobulin G (IgG).17
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Our main hypothesis (assumption III) has therefore been

that both compounds are eliminated intact via the urine as a

complex together with MEDI2452, and the model based on

this assumption fits data reasonably well. To challenge this

assumption we instead assumed that a fraction r of cleared

ticagrelor and TAM is recycled. This was implemented in the

model by adding the terms r3Clf 3FabTicaV tð Þ and r3Clf 3

FabTamV tð Þ to the right-hand sides of Eq. (1) and (4),

respectively. For the values 0.25, 0.5, and 1 of the recycling

fraction r , the previously refined model parameters were

then reestimated. The resulting negative log-likelihood values

(174, 287, and 613) show that the model becomes increas-

ingly inferior for higher degrees of recycling. These values

should also be compared to the model completely lacking

recycling, whose negative log-likelihood value is 95 and

thereby remains the best model. The same conclusion also

follows from inspecting the model simulations in Figure 4;

whereas the model of total ticagrelor and total TAM are only

slightly worsened by the successive increase in the recycled

fraction, free levels of ticagrelor and TAM are worse, and

free MEDI2452 levels are drastically impaired.

Predicted total ticagrelor plus TAM and free ticagrelor

plus TAM in plasma show opposite response after

administration of MEDI2452
The refined model was subsequently used to predict the

dynamics of both observed and unobserved variables in

studies 1 to 4. For these predictions, the effects of both

parameter uncertainties and residual variability were taken

into account. This was done by Monte Carlo simulations in

which parameter values were sampled according to the

uncertainties derived from formal parameter estimation or

from uncertainties reported in literature. Figure 5 shows

simulations of total ticagrelor plus TAM, free MEDI2452,

and free ticagrelor plus TAM in V in response to coadminis-

tration of ticagrelor with either MEDI2452 or vehicle. For all

designs, total ticagrelor plus TAM and free ticagrelor plus

TAM in plasma show opposite response after administration

of MEDI2452, with total levels rising while free levels drop.

We also note that the levels of free ticagrelor plus TAM

after administration of MEDI2452 always remain below the

corresponding levels for the vehicle groups during the 100

minutes of the experiments. Importantly, the predictions in

Figure 5 were computed for the in vivo levels of free tica-

grelor plus TAM (i.e., the observation model was not used).

As previously explained, and illustrated in Supplementary

Figure S3, true in vivo levels and measured levels in ex

vivo samples of ticagrelor and TAM may differ significantly.

The PK model can drive the PD response using a

standard turnover model
Inhibition of platelet aggregation stimulated by ADP is a com-

monly used PD marker for P2Y12 receptor antagonists, both in

animals and in the clinic. The predicted levels of free ticagrelor

plus TAM were therefore used to drive a simple turnover

model describing the dynamics of platelet aggregation, as

described in detail in Supplementary Text S2. As seen in

Figure 6, the combined ticagrelor-MEDI2452 PK model

extended with a platelet aggregation PD model can describe

experimental data in a quite satisfactory way. A residual plot
for the PD model is provided in Supplementary Figure S5.

DISCUSSION

Mathematical PK models accounting for the effects of an
interfering antidote are scarce in the literature, indicating that
this kind of modeling remains largely unexplored. A few exist-
ing examples include modeling of so-called inverse targeting
strategies, in which antidrug antibodies are administered to
reduce systemic drug toxicities.13–15,18 There are similarities
between our model and the class of target-mediated drug
disposition models19–21 in the sense that it mechanistically
accounts for the buffering interaction of ticagrelor (and TAM)
with another molecular species. In our case, the interacting
entity is not the drug target, but instead an antidote. Like
the target-mediated drug disposition models, which in addi-
tion to the interaction itself also includes other necessary
aspects of the target dynamics, such as its turnover, our
model also includes the parts of the antidote dynamics that
are not directly affecting its interaction with ticagrelor (i.e., its
distribution and clearance). However, in contrast to our model
in which the dynamic aspect of ticagrelor-antidote binding is
preserved, target-mediated drug disposition models are
frequently simplified according to the rapid-binding
assumption.22

As a step toward validating the model, it was compared to
completely fresh data that had not been used for setting up
the model. Strictly speaking, models can never be validated
but the confidence in a model gradually increases as it suc-
cessfully predicts new experiments and repeatedly withstands
attempts of falsification.23 Given a minor change in the param-
eter value for MEDI2452 clearance, the model successfully
described the qualitative characteristics of the experimental
data of total and free ticagrelor and TAM, and free MEDI2452,
in four different studies. Many of the quantitative characteris-
tics were also acceptably well described. Considering the
simplicity of allometric scaling it is fully reasonable that a
parameter value not derived from mouse data would require a
slight final adjustment. By additionally reestimating some of
the model parameters, allowing the validation data to inform
the inference, an even better description of the data with
respect to the quantitative details was possible. Moreover, the
successful application of free level predictions to platelet
aggregation data further contributes to validating the com-
bined ticagrelor-MEDI2452 PK model. The overall outcome of
the model validation and refinement is encouraging and sug-
gests that the principles and assumptions underlying the
model are sound and that the model has true predictive capa-
bilities. However, there are still possible improvements to be
made, for instance, by considering a full nonlinear mixed
effects approach.24,25

A na€ıve analysis of the data may suggest that administra-
tion of MEDI2452 is a counterproductive strategy for neu-
tralizing the effects of ticagrelor because it results in a
rapid increase by more than an order of magnitude in the
total plasma levels of both ticagrelor and TAM. Similar
observations of rapidly increasing total levels after antidote
administration have been made for colchicine,26
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dabigatran,27 and rivaroxaban.12 However, model simula-

tions show that, despite the large increases in total plasma

ticagrelor levels, the free levels in fact display an opposite

response after administration of MEDI2452. Reasoning

about the structure and parameter values of the model

helps to explain the relationship between total and free

plasma ticagrelor. Because the volume of distribution for

ticagrelor is much larger compared to MEDI2452 (i.e.,

V1V11V2 � V ), free ticagrelor that is bound by

MEDI2452 is rapidly replenished from V1, and on a slower

timescale also from V2. Thus, MEDI2452 is effectively act-

ing like a buffer for ticagrelor in the plasma compartment,

causing a substantial accumulation of total ticagrelor in the

plasma. A similar explanation can be used for understand-

ing the increase in total TAM. Moreover, if the molar dose

of MEDI2452 is comparable to or larger than the total

amount of ticagrelor and TAM in all three compartments at

the time of dosing, MEDI2452 will bind sufficient ticagrelor

and TAM to induce a significant reduction of their free levels

in all compartments, including plasma. Although some of

the qualitative behaviors of the combined ticagrelor-

MEDI2452 PK can be understood from pure reasoning like

above, the quantitative details are harder to grasp by intu-

ition because of the nonlinear interaction of ticagrelor and

MEDI2452, the delayed distribution of ticagrelor to V2, and

the metabolism of ticagrelor to TAM, which, in turn, also

competes for MEDI2452.

The ability to predict the plasma concentrations of free

ticagrelor and free TAM are the key results from the present

work. Knowledge about these levels is important because

they drive the PD response and therefore also predict the

efficacy of MEDI2452. Having access to a trustworthy

model is advantageous because it can be used as a com-

plement or an alternative to experimental observations.20,21

Although model simulations of the measured free ticagrelor

and TAM have been validated, at least to some degree, all

simulations of the actual free levels in vivo (Figure 5) are

untested predictions. In fact, these predictions are not only

untested but also untestable given the current experimental

procedure of measuring free levels of ticagrelor and TAM.

Mathematical modeling is therefore a necessity for unravel-

ing the details of the combined ticagrelor-MED2452 PK.
The values of the model parameters—both the parameters

estimated in the present work and those taken from

literature—are uncertain to some degree, and, as a conse-

quence, the model predictions are uncertain too. Providing a

measure of uncertainty for the model state variables is often

more interesting than the parameter uncertainties, but,

unfortunately, also often overlooked. We have showed that,

despite the parameter uncertainty, the behavior of the model

predictions is relatively well defined. In addition to uncertain-

ties in parameter values, there may be uncertainties with

respect to the model structure. It is, for instance, not known

what happens to ticagrelor and TAM when ticagrelor-bound
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or TAM-bound MEDI2452 is being eliminated, but because
of the presumed renal elimination we assumed that no recy-
cling occurs. There are examples of other modeling studies
that have considered both full recycling of antibody
ligands14,15 and partial (25%) recycling of Fab ligands.14 We
showed that model behavior was highly sensitive to introduc-
ing a recycling mechanism, and that the corresponding alter-
native predictions successively became more and more
difficult to reconcile with experimental data as the degree of
recycling was increased from 0% to 100%. Thus, the model-
ing supports the view that, in the mouse, when MEDI2452 is
eliminated, potential ticagrelor or TAM bound to MEDI2452
is not primarily recycled to the plasma (but eliminated
together with MEDI2452), although we would not exclude
that a smaller fraction may be. This is an important finding
as it constitutes a possible scenario in the extrapolation to
humans. The analysis of potential recycling rests on the
notion that the clearance of MEDI2452 in the combined PK
model represents elimination and not distribution. It was
therefore crucial to ensure that the rapid phase of the sepa-
rate MEDI2452 PK model was due to elimination, before
reducing the initial two-compartment model to a one-
compartment model (Supplementary Text S2).

The proposed model is a good starting point for scaling to
model the PK of other species, including humans, and for
expansion to a population model. Hence, we anticipate it to
be valuable in the future clinical development of MEDI2452.
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ABSTRACT A wide range of ion channels have been considered as potential targets for pharmacological treatment of atrial
fibrillation. The Kv1.5 channel, carrying the IKur current, has received special attention because it contributes to repolarization
in the atria but is absent or weakly expressed in ventricular tissue. The dog serves as an important animal model for electrophys-
iological studies of the heart and mathematical models of the canine atrial action potential (CAAP) have been developed to study
the interplay between ionic currents. To enable more-realistic studies on the effects of Kv1.5 blockers on the CAAP in silico, two
continuous-time Markov models of the guarded receptor type were formulated for Kv1.5 and subsequently inserted into the
Ramirez-Nattel-Courtemanche model of the CAAP. The main findings were: 1), time- and state-dependent Markov models of
open-channel Kv1.5 block gave significantly different results compared to a time- and state-independent model with a down-
scaled conductance; 2), the outcome of Kv1.5 block on the macroscopic system variable APD90 was dependent on the precise
mechanism of block; and 3), open-channel block produced a reverse use-dependent prolongation of APD90. This study suggests
that more-complex ion-channel models are a prerequisite for quantitative modeling of drug effects.

INTRODUCTION

The ultrarapidly activating delayed rectifier Kþ current,
commonly denoted IKur, conducted by the Kv1.5 channel,
has emerged as a target for pharmacological treatment of
atrial fibrillation (AF; see Tamargo et al. (1) and references
within). IKur contributes to both early and late repolarization
of the action potential (AP) of the human atrial myocyte and
because a similar current largely seems to be lacking in
ventricular tissue, a blocker of the Kv1.5 channel would
have potential to selectively increase the duration of the
atrial AP (APD) and, hence, the refractory period (AERP).
IKur blockers have been shown to affect human atrial AP
repolarization in vitro, and selectively increase atrial refrac-
toriness and terminate atrial arrhythmias in several animal
species in vivo (2–8). Human in vitro data as well as
computer modeling of human atrial cells using Hodgkin-
Huxley representations of IKur have also shown that the
effect of a block of IKur on AP repolarization depend on
the relative densities of all involved ion channels and may
be more effective in diseased tissue (3,9). In both animal
disease models and humans, ion channel densities changes
during progression of AF (see Tamargo et al. (1) and refer-
ences within), thus changing the relative contribution of
each involved ion channel in the repolarization process.
This remodeling process also facilitates the progression of
the disease. In a complex biological system with interwoven
dependencies like this, good knowledge of the behavior of
individual components in isolation does not automatically
provide good knowledge of the behavior of the system as
a whole. Mathematical modeling may be especially helpful
in elucidating important system properties by combining

mathematical formulations of the knowledge of single
components. For example, complete models of the human
atrial myocyte AP have been developed (10,11) and exten-
sions of these models have been used to evaluate the effects
of IKur block (3,9).

Animal models are used extensively throughout the drug
development process from early discovery to late develop-
ment, to improve understanding of biological mechanisms,
and to allow for predictions of human responses to drug
exposure. For this reason, mathematical models of animal
models are of interest. Different animal models are used
in different disease areas and for cardiovascular diseases,
experimental dog models have been widely used to study,
for example, atrial arrhythmia mechanisms in vivo. The
Ramirez-Nattel-Courtemanche (RNC) model (12) is a math-
ematical model of the canine atrial AP. It is based on the
Hodgkin-Huxley formalism, contains all major ionic
currents, and has been validated using experimental mea-
surements in canine atrial myocytes. In this model, the
IKur current carried by Kv1.5 is known as IKurd.

However, most Kv1.5 blockers are selectively blocking
only the activated or open state of Kv1.5 channels (2,13–18)
and important features of the drug-ion channel interaction
such as use- and voltage-dependence are not easily imple-
mented in the Hodgkin-Huxley formalism. Rather than
using the Hodgkin-Huxley formulation, state-dependent
blocking mechanisms are usually modeled with Markov
models. Therefore, a continuous-time Markov model of the
guarded receptor type was set up for the canine Kv1.5 to
enable studies on the effects of Kv1.5 open-channel blockers
on the canine atrial AP in silico. Conceptually similar
Markov models have previously been successfully used to
describe the kinetics of block of human Kv1.5 by quinidine
(13), quinine, clofilium, and tetrapentylammonium (14),

Submitted March 29, 2010, and accepted for publication August 27, 2010.

*Correspondence: joachim.almquist@fcc.chalmers.se

Editor: Michael D. Stern.

� 2010 by the Biophysical Society

0006-3495/10/11/2726/11 $2.00 doi: 10.1016/j.bpj.2010.08.062

2726 Biophysical Journal Volume 99 November 2010 2726–2736



loratadine (15), and bupi-, ropi-, and mepi-vacaine (16). The
Markov model was subsequently inserted into the RNC
model, replacing the original Hodgkin-Huxley expression.
A subset of the parameters in our model reflects properties
of a drug and drug-channel interactions such as the net charge
of a drug, and the rates of binding to, and dissociation from,
the receptor site on the channel. By performing simulations
with the modified version of the RNC model, we have been
able to examine the influence of these drug-defining param-
eters on theAP. Themodel has also been used tomake predic-
tions about the morphological changes of the AP for two
particular IKur blockers, whose kinetic parameters have
been determined experimentally elsewhere (2). In connec-
tion to this, our model of open-channel Kv1.5 block was
extended to also account for drugs that, like the above-exem-
plified compounds, exhibit a voltage-dependent dissociation
rate distinguished from the type of voltage dependence
caused by drugs carrying a net charge. To our knowledge,
this phenomenon has not been captured in any previous
Kv1.5 Markov model.

METHODS

The RNC model

Canine atrial myocytes displays regional variations in ionic current density

(12). In this study, values for cells from the pectinate muscle (PM) were

used, and as described in Ramirez et al. (12), the maximum conductance

of L-type Ca 2þ channels, transient outward Kþ current, and Naþ channels

were set to 40%, 40%, and 50%, respectively, of their nominal values to

account for the major changes in ion channel density that occurs during

progression of AF in the dog (19). An often-encountered issue with models

of electrophysiological systems is small drifts in ion concentrations. In our

implementation, the ion concentrations of Naþ, Kþ, and Cl– were, for

simplicity, fixed to their initial values as listed in Ramirez et al. (12).

This did not alter the behavior of the model in any noticeable way except

for the loss of dynamics for these ion concentrations.

Our Kv1.5 models

Transition rates between states in the models are assumed to have an expo-

nential voltage dependence and are characterized by two parameters—the

zero voltage rate and the equivalent charge movement up to the transition

state. The parameters in our five-state Kv1.5 model were optimized to

reproduce the behavior of the original RNC model. This optimization

was performed using a multidimensional downhill simplex method (20)

implemented in the Systems Biology Toolbox for MATLAB (The Math-

Works, Natick, MA) (21,22). The model reduction used in connection

with our 10-state model is based on an analytical equilibrium solution (23).

Simulations

Simulations were performed with the Systems Biology Toolbox for

MATLAB (21,22), which uses the CVODE integrator (24). For all stimula-

tion frequencies, a stimulation current of �2900 pA was applied during

2 ms. Simulation data used for analysis was always collected from the

last of a series of 40 APs. This gave a maximum difference in membrane

potential between the last two APs equal to 0.01 and 0.05 mV for AF re-

modeled cells stimulated at frequencies of 1 and 4 Hz, respectively. Visual

inspections of APs and of the difference between consecutive APs was also

performed to ensure that the AP waveforms really were converging toward

stable limit cycles. As a measure of APD, we used APD90, which was

defined as the time it takes, after a stimulation, to reach a voltage level of

�72 mV. This corresponds to a 90% repolarization of a normal cell stimu-

lated at a frequency of 1 Hz.

RESULTS

Modeling the Kv1.5 ion channel

Our strategy for implementing the continuous-time Markov
model was in many respects similar to several modeling
efforts of potassium channels found in the literature
(13,15,16,23,25).

Kv1.5 lacks the so-called fast N-type inactivation but is
affected by the slower C-type inactivation. From Fig. 3 in
Ramirez et al. (12), it is apparent that the inactivation prop-
erty becomes increasingly important for positive values of
the membrane potential. However, for the range of voltages
where the model will operate, inactivation is not very signif-
icant. At a membrane potential of 20 mV, the steady-state
value of the inactivation variable, uN, is ~0.95, which
means a reduction in IKurd by only 5% at steady state. For
membrane potentials at or below zero, steady-state inactiva-
tions are clearly negligible. Also considering that inactiva-
tion is a rather slow process, the effective reduction in IKurd
is even less for the typically short periods of more strongly
depolarized membrane potentials during an action potential.
As a consequence, the inactivation property was, for
simplicity, omitted from our model. This approximation
was validated by simulating theAP bothwith the inactivation
property in place and, as a comparison, with the inactivation
turned off. For the normal cell, the difference in membrane
potential did not exceed 1.5 mV during the course of the
AP and the maximum difference in IKurd was 0.1 pA/pF at
a stimulation frequency of 4 Hz. In the AF setting, which
was most frequently used in this study, differences were
even less. Less difference were also observed when all simu-
lations were repeated using a stimulation frequency of 1 Hz.

Under the assumption that transition rates between the
open and closed conformations of a subunit are independent
of the state of the other subunits and that all four subunits
operate in an identical manner, the Kv1.5 channel can be
represented by the five-state model in Fig. 1 A. It has four
closed, nonconducting states, C1-C1, and an open, conduct-
ing state, O. Here, a and b are the forward and reverse rate
constants of the transition to the open conformation, respec-
tively. A mathematical description of the scheme in Fig. 1 A
is given by a system of ordinary differential equations

dC1

dt
¼ �4aC1 þ bC2; (1a)

dC2

dt
¼ 4aC1 � bC2 � 3aC2 þ 2bC3; (1b)

dC3

dt
¼ 3aC2 � 2bC3 � 2aC3 þ 3bC4; (1c)
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dC4

dt
¼ 2aC3 � 3bC4 � aC4 þ 4bO; (1d)

dO

dt
¼ aC4 � 4bO; (1e)

where

a ¼ a0exp

�
ZaFV

RT

�
; (2a)

b ¼ b0exp

��ZbFV

RT

�
; (2b)

and C1–C4 and O represents the fraction of channels in the
different states. The parameters a0 and b0 are the forward
and reverse rate constants of the transition to the open
conformation at zero membrane potential while Za and Zb

are the equivalent charge movements up to the transition
state, defining the degree of voltage dependence of a and
b. Together, the expressions in Eqs. 1 and 2 determine the
time evolution of the fraction of open Kv1.5 ion channels.
The conductance of the Kv1.5 channel was described by
the voltage-dependent relation for the total conductance of
Kv1.5 channel

gKurd ¼ 0:00855 þ 0:0779

1 þ exp
�
V þ 11
�16
� (3)

used in Ramirez et al. (12). This expression correctly relates
experimental data of IKurd to the fraction of open channels
(26). Multiplying the fraction of open channels with the
conductance gKurd and with the deviation of the membrane
potential from the Nernst potential of Kþ ions, gave the
expression for IKurd,

IKurd ¼ gKurdOðV;a0;b0; Za; ZbÞðV � EKÞ; (4)

to be compared with the Hodgkin-Huxley expression

IKurd ¼ gKurdu
3
auiðV � EKÞ (5)

used in Ramirez et al. (12).

Determining parameters

To maintain the properties of the RNC model in absence of
a blocking agent, values of the parameters in the expressions
in Eq. 2 were chosen accordingly. In practice, this was done
by generating artificial data of themembrane potential of a re-
modeled cell during an 2 Hz AP using the RNC model with
the original equations for IKurd. The IKurd part of the model
was then replaced by the expressions in Eqs. 1 and 2, and
the parameters were optimized to fit the artificially generated
data. Optimizing the parameters during a complete AP, as
opposed to using an in silico voltage-clamp protocol for IKurd
alone, is appealing because the data set is naturally weighted
over the desired operating range of themodel. In this way, the
parameter values were found to be

a0 ¼ 0:6161 s�1; b0 ¼ 0:1001 s�1; Za ¼ 0:9470; and

Zb ¼ 0:8129:

The quality of the obtained parameter set is demonstrated in
Fig. S1 in the Supporting Material. There, the membrane
potential and IKurd of the Markov model is compared to
the original RNC model, using both the remodeled and
normal cell.

Including blocked state

A simple open-channel block of Kv1.5 was introduced by
adding a new state connected to the open state in Fig. 1 A.
The new state represents a nonconducting conformation
where the drug only interacts with the open state of the ion-
channel protein. This is the so-called foot-in-the-door mech-
anism, which has been described for several Kv1.5 blockers
including AVE0118 (27) and the diphenyl phosphine oxides
DPO-1 and DPO-2 (2,28). Returning to the open or closed
states requires that the bound drug dissociates from its
binding site. The extended model is shown in Fig. 1 B. In
the mathematical description, Eq. 1 e was modified and
a differential equation for the blocked state was added,

dO

dt
¼ aC4 � 4bO� g½Drug�O þ dB; (6a)

dB

dt
¼ g½Drug�O� dB; (6b)

where [Drug] denotes the concentration of the drug. The
rates g and d are of the same form as a and b in the expres-
sions in Eq. 2,

FIGURE 1 Five-state Kv1.5 model (A). Transitions between the states

are determined by the rates a and b. Six-state Kv1.5 model with an

open-channel block (B). Transitions between the open and the blocked state

are determined by the rates g and d and by the drug concentration. Ten-state

Kv1.5 model with several blocked states (C). Transitions between the

blocked states are determined by the rates z and 3.
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g ¼ g0exp

�
ZgFV

RT

�
; (7a)

d ¼ d0exp

��ZdFV

RT

�
: (7b)

The potential voltage dependence of these rates (for nonzero
Zg and/or Zd) then reflects the fact that the drug binding site
may be located somewhere within the membrane electrical
field. If the drug has a net charge, it will sense part of the
electrical field and the binding and dissociation rates will
be altered. The extended model of Kv1.5 current is then
given by

IKurd ¼ gKurdOðV;a0; b0;g0; d0; Za; Zb; Zg; Zd; ½Drug�Þ
� ðV � EKÞ; ð8Þ

reflecting the introduced dependence of the drug.

Sensitivity analysis

Themodel was first used to illustrate how the AP of a remod-
eled PM cell changes in response to different concentrations
of a typical, uncharged drug with g ¼ 10 mM–1 s–1 and
d ¼ 2 s–1, at a stimulation frequency of 1 Hz. The simulated
membrane potential and IKurd current are shown in Fig. 2. In
the absence of IKurd block, the AP of the remodeled cell has
the characteristic triangular shape lacking a clearly defined
plateau. At low drug concentrations, a plateau emerges and

the triangular shape is gradually lost. As the drug concentra-
tion increases further, the plateau phase becomes wider and
more elevated before the AP finally culminates in a spike
and dome morphology for the highest concentrations. In
this way, the addition of the drug delays the repolarization
and therefore increases the duration time of the AP. These
changes in the AP morphology are accompanied by an
attenuation of IKurd during the peak and the first part of
the plateau phase. The AP peak, shown in the inset of
Fig. 2 A, is not affected by the drug. However, it can be
noted that the peak is lower in our simulation of the AF-re-
modeled AP, reaching only 17 mV, compared to the normal
cell simulated in Ramirez et al. (12). The above effects on
the AP qualitatively resembles the effect of changing the
maximum IKurd conductance on the normal canine AP
(12). A prolonged duration of the AP, and an emerging
plateau, have also been reported from simulations of the
AF remodeled human atrial myocyte but no dome-shaped
plateau phase was observed even though conductance of
IKur was reduced to 20% (3) and 10% (9) of their nominal
values, respectively.

A drug-induced increase of the APD and, as a conse-
quence, in the AERP, has been considered as an effective
antiarrhythmic mechanism. To quantify the effects of
Kv1.5 blocking drugs on the AP we therefore used the
APD90-measure, as defined in the Methods. For all simula-
tion results presented in this section, the similarly defined
measure APD70 was also calculated. As it gave qualitatively
very similar results, these results are not shown. However,
this suggests that the choice of APD measure does not
have a critical influence on the conclusions drawn as long
as it is chosen somewhere in mid- or end-repolarization
phase. This can also be seen in Fig. 2 where the traces run
in parallel during the later part of repolarization. Because
the proposed antiarrhythmic mechanism is an increase in
the refractory period, the different concentrations of the
drug in Fig. 2 was used to investigate how the refractory
period varies with APD90. Both for the remodeled and
normal cell, this relationship was very well described by
a linear function (not shown). This suggests that APD90

can be used as a relevant measure of the refractory period.
Having tested the model for one specific parameter setup,

it was used, subsequently, to examine systematically how
the APD90 of a remodeled PM cell changes with respect
to the drug concentration, the free parameters of the expres-
sions in Eq. 7, and AP stimulation frequency. The results
were also compared to a simple model featuring a time-
and voltage-independent block obtained by just reducing
the conductance by a constant factor.

First, the effect of an uncharged drug was investigated for
two stimulation frequencies. Combining 21 values of the
effective on-rate, the concentration of the drug times the
binding rate, between 0 and 200 s–1,

½Drug�g ¼ 10n; n ¼ 0; 1; ::; 20
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with 17 values of the dissociation rate between 0.25 and
64 s–1,

d ¼ 2n; n ¼ �2;�1:5; ::; 6

produced 375 different test situations. Results are shown as
combined surface and contour plots in Fig. 3. At a stimula-
tion frequency of 1 Hz, APD90 increased for both decreasing
values of the off-rate and for increasing values of the effec-
tive on-rate (see Fig. 3 A). At 4 Hz, the trend is comparable
to 1 Hz, but saturation at high effective on-rates is not as
evident and values of APD90 are substantially lower overall
(see Fig. 3 B). Avery low frequency, 0.1 Hz, was also tested,
and was found to be very similar to 1 Hz (results not shown).
The difference in APD90 between 1 Hz and 4 Hz, in absolute
numbers, is shown in Fig. 3 C. It shows that APD90 is 17 ms
longer at 1 Hz compared to 4 Hz in absence of drug (points
along the off-rate axis where the effective on-rate is zero).
For almost all other points in the plane, the difference is
larger, with a maximum difference of 41 ms.

Evidently, the presence of Kv1.5 targeting drugs in a re-
modeled PM cell tend to extend the duration of the AP
more at lower frequencies than at higher. This reverse use-
dependence also holds in terms of the relative increase in
APD90 (not shown). The frequency dependence was investi-
gated further by looking at APD90 and seeing how the frac-
tion of open and blocked Kv1.5 developed over time in both
the remodeled and the normal cell. Four different frequen-
cies, 0.5, 1, 2, and 4 Hz, was used with and without 8 mM
of the drug used in Fig. 2. The highest frequency, 4 Hz,
could not be tested for the normal cell in presence of the
drug because no stable limit cycle with a period of 250 ms
was present. In Fig. 4 A the frequency dependence of

APD90 is shown for the remodeled cell (left), and for the
normal setting (right). Interestingly, in the normal setting,
the reverse use-dependence seen for the remodeled cell is
not present. Instead, the increase in APD90 becomes larger
at higher frequencies. Fig. 4 B shows the fraction of
Kv1.5 in the open state during the first 100 ms of the AP
in absence of the drug. The morphological changes in the
AP due to rate adaption have the effect that lower fractions
of Kv1.5 are in the conducting, drug-susceptible state at
higher frequencies compared to lower. This observation
holds both for the remodeled and normal cell. The same
plot, but in the presence of the drug, is shown in Fig. 4 C.
Because of the block, smaller fractions of conducting
Kv1.5 are now seen. Finally, the fraction of blocked chan-
nels at different frequencies is shown in Fig. 4 D for the first
100 ms of the remodeled (left) and normal (right) AP. At the
lowest frequency, there were virtually no channels blocked
at the point of stimulation. At higher frequencies, significant
fractions of channels were still blocked at the onset of
stimulation.

The parametersZg andZd in Eq. 7 are the equivalent charge
movements up to the transition state of a drug in the electrical
field. By setting Zg and Zd to values other than zero, we exam-
ined the effects of various types of charged drugs on theAPD.
Assuming a drug with a net charge of þ1, its binding site
located at a point 20% into the electrical field, and a symmet-
rical barrier, we set Zg ¼ Zd ¼ 0. These values are similar to
experimentally determined values for two blockers of the
human Kv1.5 (13,16). However, introducing a voltage-
dependence of the interaction between the drug and its
binding site had limited effect on APD90. At 4 Hz, there
was virtually no change in APD90, except for very small
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off-rates, where the duration was decreased by ~3–4 ms. The
effectwas evenmoremarginal at 1Hz, producingonly a small
decrease in duration of 4ms for combinations of low effective
on-rate and low off-rate. These results suggest that Zg and Zd
may only have a significant impact if the receptor site is
located deep within the electrical field and/or the drug has
several charged groups at physiological pH.

In several studies (3,11,29,30), the effect of an ion
channel blocking drug has been modeled as a time- and
voltage-independent decrease in channel conductance. If
the degree of decrease in conductance in such a model is
assumed to be the result of a simple state-independent bimo-
lecular reaction in equilibrium (between the drug and its

binding site), a comparison of this approach to our dynamic
modeling is possible. The constant degree of block in the
simpler model, Bconst, would then be a function of the effec-
tive on-rate kon (the concentration of the drug times the
binding rate) and the off-rate koff (dissociation rate),

Bconst ¼ kon
koff þ kon

: (9)

To see how the two models differ, the difference in their
APD90 at a stimulation frequency of 4 Hz was calculated
from simulations. The result is shown in Fig. 3 D. For large
effective on-rates and small off-rates, as well as for the
opposite situation with small effective on-rates and large
off-rates, the two models gave similar results. In the other
parts of the on-off plane the difference was bigger, peaking
at 32 ms. We also looked at the difference between the
models at a stimulation frequency of 1 Hz. There was a simi-
larly located peak of the same height, but the differences in
other parts were roughly halved (not shown).

Extending the model

It is important to emphasize that the drug dissociation rate in
our open-channel block model only accounts for voltage
dependence arising from the charge of the drug. For the
human Kv1.5, voltage-dependent dissociation rates not
related to the charge of the drug has been reported (2,15).
The dissociation rates in Lagrutta et al. (2) were determined
at two different membrane potentials and denoted kon for the
open state and koff for the closed state. For one particular
compound, the DPO-1, these rates differed by a factor of
60. Apparently, at least for the hKv1.5 channel, the state
of the blocked channel can change with the membrane
potential producing a strong voltage dependence of the
dissociation rate in addition to any voltage dependence
due to the charge of the drug.

To describe this, additional blocked states could be added
in sequence to the blocked state of Fig. 1 B. This would
introduce a state-dependent recovery from block, similar
to the already existing state-dependent formation of block.
The model outlined in Fig. 1 C is one out of many possible
extensions to our model that could account for the state-
dependent type of voltage dependence discussed above. A
similar model structure has been used for the hERG channel
(31). Four new blocked states were added, creating sym-
metry to the four closed states in the upper part. The reason
for introducing precisely four new blocked states was conse-
quently to reflect an assumption that the four subunits may
fully or partially close independently and identically also
when a drug is bound. Because these conformational
changes would be expected to be different than in the
absence of a drug, two new rates of the same type as earlier,
z and e, was introduced. Compared to the six-state model,
the 10-state model can be seen as a more elaborate imple-
mentation of the foot-in-the-door mechanism.
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10 mM–1 s–1, d ¼ 2 s–1, and Zg ¼ Zd ¼ 0. Left column uses the AF setting,

right column uses the normal cell setting. Row A shows APD90 as function

of frequency in absence of the test drug (dashed) and with the test drug

(solid). Row B shows the fraction open Kv1.5, O, during the first 100 ms

of the AP in absence of the test drug while rows C and D show the fraction
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drug during the first 100 ms of the AP. Bold traces correspond to a stimula-

tion frequency of 0.5 Hz, solid traces to 1 and 2 Hz, respectively, and dashed

traces to 4 Hz.
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For the rates z and e to be determined, four parameter
values are required. To reduce complexity of the extended
model, it was assumed that the transition rates between
the closed states were faster than drug binding and dissoci-
ation. Under this assumption, the blocked branch of the
system can be reduced to a single lumped state. Let the
blocked lumped state be defined as

LB ¼ B1 þ B2 þ B3 þ B4 þ B: (10)

The occupancy of the original states are now determined
from the equilibrium relations in each of the lumped states.
In particular, the fraction of LB in the blocked state B, fB, is

fBðVÞ ¼ 1

1 þ 4Q þ 6Q2 þ 4Q3 þ Q4
; (11)

where Q is the ratio of z and e. In the same way as O deter-
mines the fraction of unblocked channels accessible for drug
binding, fB determines the fraction of blocked channels that
are subject to drug dissociation. Using this variable, the
changes in O and in the lumped state LB with respect to
time can then be described by

dO

dt
¼ aC4 � 4bO þ dfBLB � g½Drug�; (12a)

dLB

dt
¼ g½Drug� � dfBLB; (12b)

to be compared with Eq. 6.

Results from extended model

To explore further the impact of state-dependent recovery
from block, literature values for voltage-dependent
apparent association and dissociation rates (2) were imple-
mented in the 10-state model. In particular, data from two
compounds were chosen, DPO-1 and DPO-2, because of
their similarity in all parameters but the apparent dissocia-
tion rate, where they displayed a large difference. These
inhibitors have been characterized by measuring the
apparent association rate at þ40 mV, here denoted kon,
and the apparent dissociation rate at þ40 mV and at
�80 mV, here denoted kopenoff and kclosedoff , respectively.
Although the kinetic parameters were determined for
hKv1.5 channels, they will be assumed to be the same for
the canine Kv1.5. In the 10-state model described above,
the drug association rate is g. Because basically all chan-
nels will open at þ40 mV, the measured association rate,
kon, translates directly to our parameter g. The apparent
dissociation rate for the collection of blocked states in the
10-state model is dfB, with fB being a voltage-dependent
function containing the variable Q. Written out, Q depends
on the membrane potential, V, on Q0, the ratio of z0 and e0,
and on ZQ, the sum of Z3 and Zz,

Q ¼ z

3
¼ z0

30
exp

��ðZ3 þ ZzÞFV
RT

�
¼ Q0exp

��ZQFV

RT

�
:

(13)

At the measured membrane potentialsþ40 mVand�80 mV,
the apparent dissociation rate is known. The parameters Q0,
ZQ, and d should therefore be set so that the two conditions

dfBð40Þ ¼ kopenoff and dfBð�80Þ ¼ kclosedoff

are satisfied. With three parameters and only two relations,
there is no unique solution. However, the solution can be
parameterized in terms of, e.g., ZQ. From the parameterized
solution (not shown), it can be noted that the lower the value
of ZQ, the more linear the apparent dissociation rate will be
as function of V between the known values at þ40 mV and
�80 mV. Conversely, the larger the value of ZQ, the more
nonlinear the apparent dissociation rate will be between
the known values.

The different combinations of Q0 and ZQ that reproduce
the kinetic parameters for the two compounds have different
interpretations. The parameter ZQ should be interpreted as
the total equivalent charge moved during transition of one
of the Kv1.5 subunits, when the drug is bound to the
receptor site. In the absence of a bound drug molecule, the
parameter optimization resulted in a total equivalent charge
movement, Za þ Zb, equal to 1.76. This sum constitutes an
upper bound for ZQ provided that binding of the drug, per se,
does not induce a conformational change or that the interac-
tion of the drug with the receptor site does not increase the
distance translocated by a subunit during opening/closing.
However, the binding of the drug may act as an obstacle,
decreasing the distance moved in the electrical field, result-
ing in a value of ZQ lower than Zaþ Zb. In any case, nothing
is said about the location of the barrier, the exact values of Ze
and Zz, because of the model reduction. While ZQ has the
interpretation of equivalent charge movement, Q0 should
be interpreted as the relative affinity for the closed state of
a subunit in the absence of an electrical force. One can
hypothesize that the presence of a bound drug alters this
relative affinity. Taken together, in the interpretation of the
10-state model a blocking drug leads to one or two things
besides stopping the potassium current through the channel.
The subunits may be hindered by the drug, making them
move a shorter distance in the electrical field, and the bound
drug may alter the subunits relative affinity for the open and
closed states. Both events will affect the apparent dissocia-
tion rate through their impact on fB.

Four versions of each compound were considered. For the
values 1.75, 1.3, 0.85, and 0.4 of ZQ, we calculated Q0 and d.
We did not consider values of ZQ lower than 0.4 because fB
at this point is already quite linear with respect to V, and
little further change is anticipated. All parameter values,
including the experimentally determined ones in Lagrutta
et al. (2), are shown in Table S1 in the Supporting Material.
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Having derived parameter sets for the four versions of each
drug, their effect on the APD90 of a remodeled PM-cell was
tested using a broad range of concentrations. The results from
simulations are shown in Fig. 5. Upper and lower rows are
results for a stimulation frequency of 1 Hz and 4 Hz, respec-
tively. Column A shows APD90 for the four versions of
compound 1, column B shows APD90 for the four versions
of compound 2, and column C shows the differences in
ADP90 between columns A and B. The colors black, blue,
green, and red corresponds to the different versions with ZQ
set to the values 1.75, 1.3, 0.85, and 0.4. The concentrations
tested are Kd2

n, where Kd is the dissociation constant, and
where n ¼ �3, �2,., 7 is shown on the x axis. At 1 Hz,
APD90 was 134 ms in the absence of a drug, increasing to
values close to 200 ms at high concentrations for all param-
eter versions. For compound 1 (column A) the particular
version was of considerable importance at intermediate
concentrations. The fourth version (red curve), with ZQ ¼
0.4, gave the strongest prolongation of the AP, and the first
version (black curve) gave the weakest. This is reasonable,
considering that the voltage dependence of fB give rise
to smaller apparent dissociation rates in the range
between þ40 mV and �80 mV for ZQ ¼ 0.4 than for ZQ ¼
1.75. For compound 2 (column B), however, the dose-
response curve was virtually independent of the parameter
setup. The reason for this is that even though the behavior
of fB also differs for the different ZQ values for compound
2, it has a ratio of kopenoff to kclosedoff equal to 2.27, while this
number is 61.7 for compound 1. This means that the relative
size of fB at different ZQ is less for compound 2 than for

compound 1, and hence that the variation of the apparent
dissociation rate is less in its different versions. At 4 Hz,
APD90 was 118 ms in absence of a drug, increasing to values
close to 170 ms at high concentrations for all parameter
setups. Also at this frequency, the versions of compound 2
showed practically no differences, in contrast to compound
1 where the parameter setup was again critical for the result-
ing APD90. In column C, the differences in APD90 of all
versions of the two compounds are displayed. At 1 Hz, the
maximum difference ranged from 31 ms to 19 ms, and at
4 Hz from 26 ms to 10 ms. Based on these simulations it
can be concluded, at least when looking at concentrations
on a Kd scale, that DPO-1 is a more efficacious blocker
than DPO-2, irrespective of the version implemented. This
conclusion is consistent with the fact that DPO-1 is a more
potent blocker of human Kv1.5 than DPO-2 (2). DPO-1 has
also been shown to increase dog atrial refractoriness and to
increase human atrial AP duration (2,8). It should also be
noted from the simulations that both compounds display
a reverse use-dependence, showing a larger increase in
APD90 at 1 Hz than at 4 Hz.

DISCUSSION

To enable more-realistic studies on the effects of Kv1.5
blockers on the canine atrial AP in silico, two continuous-
time Markov models of the guarded receptor type were set
up for the Kv1.5 channel. Ion-channel model parameters
were determined by using artificially generated data from
the RNC model and available experimental data on the
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kinetics of drug-ion channel interaction. The Kv1.5 Markov
models were subsequently inserted to the simple AF-remod-
eled version of the RNC model.

The main findings from this study are:

1. Time- and state-dependent Markov models of open-
channel Kv1.5 block gave significantly different results
compared to a time- and state-independent model with
a downscaled conductance.

2. The outcome of Kv1.5 block on the macroscopic system
variable APD90 was dependent on the precise mechanism
of block.

3. Open-channel block produced a reverse use-dependent
prolongation of the APD90.

Our data clearly suggest that the choice of ion channel
model has a large impact on the simulation results. When
the dynamic six-state model was compared to a time- and
state-independent model, differences in the simulated
APD90 as large as 32 ms were observed. This suggests
that the simple down-scaling of IKurd conductance
commonly used in many studies may be too unsophisticated
for quantitative modeling of drug effects.

To be able to simulate drugs showing an apparent voltage
dependence in their dissociation rates, a 10-state Markov
model was formulated. To our knowledge, this is the first
Markov model of Kv1.5 able to capture this phenomena.
It was shown how the experimentally measured kinetic
parameters of two clinically relevant drugs (2) could be im-
plemented and the model was subsequently used to simulate
the effect of these compounds. The simulations showed that
the slower recovery of block at polarized potential of DPO-1
made it a more efficacious drug than DPO-2.

There are two frameworks commonly used for modeling
state-dependent block—the modulated receptor theory and
the guarded receptor theory. Sections reviewing these
concepts and the means by which they have been applied
in ion-channel modeling can be found in Brennan et al.
(32). Briefly, in the modulated receptor theory, drugs
interact with their receptor for all conformational states of
a channel, each state differing in its kinetics of drug binding
and dissociation. In the guarded receptor theory, drug inter-
action is limited to certain channel states only. The 10-state
guarded receptor model of Kv1.5 developed in this study
can be considered a special case of the more-general modu-
lated receptor model. Hypothesizing nonzero affinities for
all of the closed states in Fig. 1 C would transform the
model into a modulated receptor. While adding vertical
transitions between the closed and blocked states might
allow for more complex and sophisticated behaviors, it
would also make system identification from experimental
data more demanding. As was seen for the two compounds,
all parameters in our model could not even be uniquely
determined. Because of the identifiability issue, and the
fact that the 10-state model developed contained enough
complexity to describe state-dependent recovery from

block, a general modulated receptor model was not consid-
ered in this study.

Tsujimae et al. (9) took another approach to incorporate
the effects of voltage- and time-dependent block, including
the voltage-dependent recovery from block. They extended
a Hodgkin-Huxley formulation of human IKur by intro-
ducing a new multiplicative variable, describing the fraction
of unblocked channels, in the expression for this current.
Their modified formulation is given by

IKur ¼ yKurgKuru
3
auiðV � EKÞ; (14)

where yKur is the fraction of IKur that is not blocked by a
drug. The remaining variables have the same meaning as
those of Eq. 5. Because the variables of Hodgkin-Huxley
formulations are independent, open-state block was
mimicked by designing the voltage-dependent steady-state
profile for the fraction of unblocked channels to resemble,
qualitatively, the opposite of the activation profile. Time
constant profiles describing the kinetics of formation of
and recovery from block were set up based on the same
compounds investigated by us in this study. The authors
connected known values of the time constant of block at
two membrane potentials with a Boltzmann function with
a half-value and slope of �40 mV and 5 mV, respectively.
However, compared with our implementation of the two
DPOs, it was not discussed in detail how to determine the
voltage-dependent profiles for the relaxation time-constant
and for the steady-state fraction of unblocked channels for
some particular drug. Neither did their implementation
address the effects from charged drugs. Furthermore, our
model allows for any value of the drug concentration,
whereas the Tsujimae model only considers one particular
steady-state profile for the fraction of unblocked channels.

The outcome of the simulations with the 10-state model
leads to important conclusions regarding the experimental
protocols used to probe potential IKurd blockers. Because
the precise choice of Q0 and ZQ had a major impact on
the AP-prolonging effects of one of the compounds, addi-
tional measurements of the apparent dissociation rate at
other membrane potentials may be crucial. Such additional
measurements of the apparent dissociation rate would allow
Q0 and ZQ to be determined. To increase the chances of good
parameter identifiability besides just increasing the number
of measurements, the preceding analysis of the 10-state
model can be used for optimal experiment design with
respect to the voltages at which measurements are to be per-
formed, thereby increasing the predictive power of the
model.

It was also found that open-channel block produced larger
increases of the canine APD90 at lower frequencies than at
higher. This was observed for the six-state model as well
as for two specific blockers encoded in the 10-state model,
using the remodeled setting. On the other hand, when the
six-state model was used with the normal cell setting,
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a positive frequency dependence was observed. Because an
open-state block can, in itself, never give rise to reverse use-
dependence, it must be understood that it is an emergent
property of the ensemble of all currents and the role played
by Kv1.5 in this context. The environment of other ionic
currents can be thought to interact with Kv1.5 and Kv1.5
block in two ways.

First, the voltage-dependent activation of Kv1.5 means
that the fraction of Kv1.5 susceptible to block is dependent
on how V develops during the AP. This, in turn, depends on
the density and activity of all other currents. The rate adap-
tion to higher stimulation frequencies, described in Ramirez
et al. (12), leads to a decreased APD and a lower fraction of
open Kv1.5 channels susceptible to block during the AP.
This was seen both in the AF setting and for the normal
cell (see Fig. 4 B) However, a lower fraction of open chan-
nels did not lead to a lower fraction of blocked channels
when the drug was added. This was seen in Fig. 4 D where
the fraction of blocked channels is shown at different
frequencies. Because the fraction of blocked channels
during the initial phase of the AP in fact increases with
frequency, it appears that the use-dependence of open-state
block itself overcomes the decreasing fraction of susceptible
channels at higher frequencies shown in Fig. 4 B.

Second, the impact of actually blocking Kv1.5 again
depends on all other currents and the relative importance
of IKurd compared to them. In Fig. 4 C, it was shown that
in addition to the increase of the blocked fraction with
higher frequencies in Fig. 4 D, the fraction of open channels
is decreasing. Despite the decrease in the fraction of con-
ducting Kv1.5 at higher frequencies observed for both the
remodeled and normal cell, the increase in APD has a posi-
tive frequency dependence only in the normal cell. This
illustrates the fact that there are several factors in addition
to the drug-ion channel interaction itself that determine
the outcome of ion channel block on a particular systems
property, i.e., APD90. It is most likely that such properties
are different depending on species, tissue-type, the degree
of electrical remodeling, etc. The finding that that DPO-1
produced a positive frequency-dependent increase of APD
in human atrial cells (2) does thus not necessarily imply a
contradiction to our simulation data. DPO-1 has been shown
to increase atrial AERP and thus most likely APD90 in a
canine disease model, but no information is available
regarding frequency dependency or effects in normal tissue
(8). Interestingly, Wu et al. (33) showed that a Kv1.5 block
produced a reverse use-dependent increase in pig atrial
AERP in vivo.

The changes in conductances used in the AF setting were
chosen as to mimic, in a simplistic way, the major ionic
alterations observed during tachycardia-dependent remodel-
ing in the dog according to references given. These ionic
changes were experimentally observed and model AP
morphology was then fitted to experimental data from cells
where these ionic changes had been observed. It is clear

from our data and Ramirez et al. (12) that a block of IKurd
in the native canine myocyte model, apart from increasing
the duration of the plateau phase of the AP, most likely
also prolongs late repolarization phases of the AP, suggest-
ing an increased effective refractory period and, hence, less
likelihood of AF initiating. This prolongation has also been
observed experimentally in isolated canine myocytes (34).
Although the simplistic remodeled atrial cell model used
in this study does not fully capture all changes that occur
during the remodeling process and the predictive value,
thus, is uncertain, our data clearly suggest that more-
complex ion-channel models are a prerequisite for quantita-
tive modeling of drug effects.

SUPPORTING MATERIAL

Model validation and DPO parameter sets are available at http://www.

biophysj.org/biophysj/supplemental/S0006-3495(10)01058-1.
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Abstract
The last decade has seen a rapid development of experimental techniques that allow data

collection from individual cells. These techniques have enabled the discovery and charac-

terization of variability within a population of genetically identical cells. Nonlinear mixed ef-

fects (NLME) modeling is an established framework for studying variability between

individuals in a population, frequently used in pharmacokinetics and pharmacodynamics,

but its potential for studies of cell-to-cell variability in molecular cell biology is yet to be ex-

ploited. Here we take advantage of this novel application of NLMEmodeling to study cell-to-

cell variability in the dynamic behavior of the yeast transcription repressor Mig1. In particu-

lar, we investigate a recently discovered phenomenon where Mig1 during a short and tran-

sient period exits the nucleus when cells experience a shift from high to intermediate levels

of extracellular glucose. A phenomenological model based on ordinary differential equa-

tions describing the transient dynamics of nuclear Mig1 is introduced, and according to the

NLMEmethodology the parameters of this model are in turn modeled by a multivariate prob-

ability distribution. Using time-lapse microscopy data from nearly 200 cells, we estimate this

parameter distribution according to the approach of maximizing the population likelihood.

Based on the estimated distribution, parameter values for individual cells are furthermore

characterized and the resulting Mig1 dynamics are compared to the single cell times-series

data. The proposed NLME framework is also compared to the intuitive but limited standard

two-stage (STS) approach. We demonstrate that the latter may overestimate variabilities by

up to almost five fold. Finally, Monte Carlo simulations of the inferred population model are

used to predict the distribution of key characteristics of the Mig1 transient response. We find

that with decreasing levels of post-shift glucose, the transient response of Mig1 tend to be

faster, more extended, and displays an increased cell-to-cell variability.
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Introduction
Cell biology data has traditionally been acquired by analyzing samples containing a large num-
ber of cells. However, data that has been produced by averaging the properties of individual
cells may result in misleading interpretations of actual behaviors and underlying mechanisms
[1–3]. Today, experimental methods are available that make it possible to measure certain
quantities at the level of individual cells. These methods include techniques such as flow cy-
tometry, fluorescence microscopy, and single cell transcriptomics, proteomics, and metabolo-
mics. The development of experimental methods operating on single cells have enabled the
study and characterization of cell-to-cell variability, adding a new dimension to the under-
standing of cell biology. For instance, flow cytometry has been used to study the population
variability of the GAL regulatory network in yeast [4] and T cell activation [5]. This method
produces snapshot data of the population at one or several time points. Each cell is only used
for one single measurement, but the method can on the other hand be used to analyze a very
large number of cells. For the generation of time-resolved data of the same particular cells, fluo-
rescence microscopy of cells expressing proteins tagged with fluorescent proteins, e.g., GFP,
has emerged as a powerful technique. Compared to the high-throughput capabilities of flow cy-
tometry, time-laps imaging using fluorescence microscopy is typically carried out on a low- or
medium-throughput scale. However, this data is substantially richer in information than snap-
shot data due to the temporal tracking of the same individual cells. Time-resolved data from
single cells generated by the combination of microscopy and fluorescent proteins have been
used in a large number of studies, including for instance investigations of nuclear accumulation
of transcription factor activator ERK2 [1], golgi maturation in yeast [6], and stress-induced nu-
clear translocation of yeast kinase Hog1 [7] and transcription factors Crz1 [8] and Msn2 [9].
Although various cell-to-cell variability aspects of such data are increasingly being quantified
and classified, the development of appropriate mathematical models and modeling approaches
is still in its infancy. The need for suitable modeling approaches to describe the variability in
dynamic behavior of cell populations has previously been pointed out by the authors of the
present work [10], and by others [11], and research activities within this field are expected
to increase.

Cell-to-cell variability between genetically identical cells, cultured under the same condi-
tions, originates from the inherently stochastic nature of biochemical reactions. The sources of
contribution to variability in gene expression can be separated into the effect of intrinsic noise
on the actual reactions themselves, and extrinsic noise in the concentration of components par-
ticipating in gene expression [12–14]. The latter concentrations are in turn ultimately also de-
termined under the influence of intrinsic noise. Similarly, cell-to-cell variability may
additionally originate from the intrinsic and extrinsic fluctuations in other parts of the cellular
machinery, such as signalling pathways, and may further be impacted by small local differences
in the external environment of individual cells. To mathematically model aspects of variability
that are dominated by intrinsic noise, thus displaying noisy dynamics, stochastic approaches
are required [2, 15, 16]. These typically involve the chemical master equation, or more com-
monly, approximations thereof. However, in many cases noise will establish itself as different
expression-levels of various proteins, such as metabolic and signalling enzymes [5, 11, 14] and
it is in fact often argued that such extrinsic noise is the dominant source of variability [12, 14,
17–19]. Cell-to-cell variability caused by different levels of protein expression can be described
by deterministic models, where the values of parameters describing protein concentrations, en-
zymatic rate constants, etc., are distributed across the population. This approach was taken in a
computational study on the behavior of protein kinase cascades [20]. Here, the authors ex-
plored the variability in signalling activity through simulations where enzyme concentrations
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were randomly sampled from log-normal distributions. In another study on the heterogeneous
kinetics of ATK signalling [21], an ordinary differential equation model was fitted to average
population data. The behavior of individual cells was then simulated by log-normal sampling
of parameters representing enzyme concentrations. Still other examples can be found in
modeling of the cell-to-cell variability of apoptosis signalling [18, 22, 23]. Importantly, in nei-
ther of these studies were the parameter distributions estimated using single-cell data.

Estimation of parameter distributions for models of heterogenous cell populations has pre-
viously addressed the special case of single cell snapshot data. This has been done using Bayes-
ian approaches, for models with either deterministic [24] or stochastic [19] dynamics, and
using maximum likelihood approaches for deterministic models [25]. Recently, Bayesian esti-
mation methods for models with stochastic dynamics have also been customized for the case of
time series measurements of the same single cells [26, 27]. In this work we extend on the ap-
proaches of deterministic single-cell dynamic modeling by incorporating parameter variability
by means of so called nonlinear mixed effects (NLME) modeling, and estimating parameters
from time series data using a maximum likelihood approach. NLME is a well-established and
wide-spread approach to describe inter-individual variability between subjects of a population.
It has a long history with numerous successful applications within various scientific fields [28],
in particular including dynamical models in population pharmacokinetics and pharmacody-
namics, but is sofar largely unexploited for addressing cell-to-cell variability in cell biology-ori-
ented fields. An essential feature of the NLME framework is that all individuals of a population
share the same model structure and that differences between subjects are due to different values
of model parameters. Thus, the approach is suitable if it is reasonable to assume that the same
mechanisms are controlling the behavior of different cells but quantitative details represented
by parameter values may differ from one cell to another. This is implemented in the model by
letting a subset of the parameters be described by a multivariate probability distribution, whose
statistical properties are in turn parameterized by a set of additional parameters. Furthermore,
as NLME facilitates the identification of parameters by considering the information from all in-
dividuals simultaneously, it is an especially appropriate modeling strategy when considering
the often sparsely in time sampled data from single cells. We here apply NLME modeling in
the novel context of single-cell data, using it to quantify the dynamic behavior of the yeast tran-
scription factor Mig1.

Glucose and fructose are the most preferred carbon sources in Saccharomyces cerevisiae and
the presence of any of these sugars activates the transcriptional repressor Mig1. This mecha-
nism is referred to as glucose repression and involves genes required for the uptake and utiliza-
tion of alternative carbon sources, gluconeogenic genes and the genes required for respiration
[29]. A central role in glucose repression is played by the yeast AMP-activated protein kinase,
Snf1 [30]. Snf1 is activated in response to glucose depletion by phosphorylation of the Thr210
residue within its activation loop [31]. This activation is promoted by any of the upstream acti-
vating kinases Sak1, Elm1 and Tos3 [32–34]. Snf1 phosphorylation is mainly antagonized by
the activity of the Reg1-Glc7 protein phosphatase 1 (PP1) [35]. Active Snf1 phosphorylates the
transcriptional repressor Mig1 promoting its dissociation from the co-repressor complex Ssn6
(Cyc8)-Tup1 and its nuclear export [36, 37]. Addition of glucose results in a rapid dephosphor-
ylation of Snf1 and Mig1 and subsequently in nuclear accumulation of Mig1 [38, 39].

We recently published single-cell time-series data of Mig1 localization [39]. One of the in-
teresting findings in that study was the behavior of Mig1 when glucose-grown cells experienced
a shift in extracellular glucose from a high level (4%) to an intermediate level (1.5, 1.0, and
0.5%). In contrast to shifts to low concentrations of extracellular glucose, in response to which
Mig1 persistently re-localized to the cytosol, shifts to intermediate levels of extracellular glu-
cose caused Mig1 to first rapidly exit from the nucleus but then gradually return to its original
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nucleocytoplasmic distribution. Thus, it appears that the Snf1-Mig1 system can respond to a
change in glucose concentration but depending on the absolute concentration level the system
may perform some kind of adaptation. Such a transient response was an unexpected finding
and the mechanism behind the apparent adaptation is unknown. In fact, considering a recent
study involving 24 different mechanistic mathematical model variants [40], all based on up-to-
date understanding of the Snf1-Mig1 system on the molecular level, none of the investigated
models would be able to account for the transiently cytosolic Mig1. This can be realized by rec-
ognizing that in response to a change in extracellular glucose concentration, the accumulation
of activations and inhibitions of every possible path for going from extracellular glucose to
Mig1 will drive the Mig1 localization equilibrium in the same direction. Hence, none of the
pathway combinations which were implemented in the different model variants are sufficient
to explain the non-monotonic nature of the re-entry response. Furthermore, our single-cell
time-series data clearly indicated that the extent and timing of the transient re-localization dif-
fered between individual cells. Although previous mathematical modeling efforts of the
Snf1-Mig1 system have had access to data at the single cell level [40, 41], cell-to-cell variability
has not yet been addressed.

In the present work, we set out to describe and quantify the previously reported nuclear exit
and re-entry observations, focusing especially on the population variability aspect. Due to the
lack of a mechanistically based hypothesis, a simple phenomenological model is developed.
Using the NLME approach we are able to show that this model successfully captures the main
characteristics of the transient behavior as it varies between individual cells. Importantly, we
provide a model-based quantification of the cell-to-cell variability. This variability is reported
in terms of estimated distributions of the model parameters. We show that there is a strong
correlation between the two parameters determining the time-scales of nuclear exit and re-
entry, respectively. This is an interesting finding as it offers a clue to the actual mechanism be-
hind the exit and re-entry behavior. The NLME approach is furthermore compared to the sim-
pler two-stage-approach [42]. While the latter appears to provide reasonable estimates of the
median parameter values, it severely overestimates the population variability of the parameters
and thus clearly demonstrates why NLME should be preferred. Finally, once parameter esti-
mates have been obtained, the parameter variability of the population can be translated into
variability of any model-derived property through Monte Carlo simulations. This type of anal-
ysis is used to investigate three key characteristics of Mig1 behavior, namely the median and
variability of 1) the response time of Mig1 to a glucose shift, 2) the maximal response of nuclear
exit, and 3) the duration of Mig1 cytosolic re-localization. A comparison with a simple non-
model-based analysis suggests that these characteristics may not be immediately accessible
from data alone. Hence, from a data quantification point of view the model, although only of
phenomenological character, is crucial for extracting quantitative information about the pro-
cess generating the data.

Results

Data description
This study relies on single cell data that we recently published [39]. In brief, these data were ac-
quired from a Mig1-GFP expressing yeast strain using an experimental setup that is combining
microfluidics, optical tweezers, fluorescence microscopy, and image processing. We study the
scenario where glucose-grown cells are experiencing an instantaneous shift in extracellular glu-
cose, going from 4% glucose to an intermediate level. In total, data from nearly 200 yeast cells,
divided over four different data sets, are being used. The experiments are listed in Table 1.
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The data from experiments 1 to 4 is shown in Fig 1. The main feature of Mig1 behavior dur-
ing these glucose exposure patterns is an initial rapid exit from the nucleus, followed by a
slower re-entry, where Mig1 levels are readapting towards the baseline level prior to the glucose
shift. Both the degree of Mig1 exiting the nucleus and the duration of the complete transient
phase seem to increase with decreasing levels of extracellular glucose. All cells seem to share
these characteristics but the baseline level of nuclear Mig1 and the timing and degree of exit
and re-entry are varying between individual cells.

Setting up a model
Signalling pathways are notoriously challenging to model because of the limited and uncertain
knowledge of their components and the interactions between them [43–45]. Since state-of-the-
art mechanistic modeling of the Snf1-Mig1 system does not support the transient Mig1 behav-
ior described here [40], we instead aim for a phenomenological model that is as simple as possi-
ble, yet flexible enough to describe the Mig1 data. The simplicity of such a model is particularly
important in our cases since there is only one measured species from which to calibrate the
model, and since we are looking to infer not only parameters values but
parameter distributions.

A minimal model of perfect adaptation was considered for modeling the dynamics at the
single cell level. This model structure captures the main characteristics of the observed Mig1
behavior, while still providing some degree of interpretability with respect to the components
and interactions of the model. The model is illustrated in Fig 2. It consists of two state variables,
one representing the time-dependent concentration of Mig1(t) in the nucleus and one repre-
senting the time-dependent lumped effect, here denoted X(t), of one or several unknown com-
ponents involved in the adaptation. Since we do not know the scaling factor between the
observed fluorescent light intensity and the underlying actual concentration of Mig1 molecules,
we chose to formulate the model in terms of the observed light intensities. The rate of accumu-
lation of both state variables respond linearly to the level of extracellular glucose, Glu(t), which
is treated as an experimentally controlled input to the system. Considering that the amounts of
the involved components of the Snf1-Mig1 system are of the order 4 to 40 thousand molecules
per cell [40], a deterministic model is assumed to be sufficient [46]. The mass balance equations
for the state variables are defined by

dMig1ðtÞ
dt

¼ r1 � r2

dXðtÞ
dt

¼ r3 � r4;

Table 1. Experiments.

Exp Nr Number of cells From To

1 56 4% 1.5%

2 46 4% 1.5%

3 46 4% 1%

4 46 4% 0.5%

List of experiments showing the experiment number, the number of cells used, and the levels of

extracellular glucose.

doi:10.1371/journal.pone.0124050.t001
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where the rates are defined as

r1 ¼ k1 � GluðtÞ
r2 ¼ k2 � XðtÞ �Mig1ðtÞ
r3 ¼ k3 � GluðtÞ
r4 ¼ k4 � XðtÞ:

The initial conditions are

Mig1ð�30Þ ¼ Ms

Xð�30Þ ¼ Xs;

where we have chosen the initial time to -30 s with the convention that the input to the system
is changed at time 0. The input to the system, the extracellular level of glucose, is

GluðtÞ ¼ 4� ð4� gÞ � HðtÞ;

Fig 1. Visualization of all single cell data. Time-series data of fluorescent light intensity for nuclear Mig1 in single cells, shown for the four different
experiments. At time zero, the extracellular glucose concentration is changed according to Table 1.

doi:10.1371/journal.pone.0124050.g001
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whereH(t) is the Heaviside step function and g is equal to either 1.5, 1, or 0.5 depending on the ex-
periment. An observation of nuclear Mig1 at time t, yt, is modeled by introducing an additive error

yt ¼ Mig1ðtÞ þ et

where et*N(0, s), with s denoting the variance of the measurement error. In a previous study of
GFP-Mig1 [41] a moderate bleaching effect was identified from averaged single cell data. However,
these experiments involved a substantially larger number of measurements (80 per cell and experi-
ment compared to our 15) and the samples were likely bleached to a higher degree. We did not in-
clude the effect of fluorophore bleaching in our model, as the majority of cells displayed intensity
levels which eventually returned close to the starting levels. In fact, a comparison of the intensities
before the glucose shift and at 20 minutes showed that there was an average recovery level of 96%,
a number that was determined despite the fact that all cells might not fully have completed their
re-entry during the course of the experiment.

It is straightforward to show that the steady-state value of the response variable in the
model is independent of the input signal [47]. In the context of Mig1-observations, this means
that the model is limited to the experiments where the re-entry phenomena with perfect adap-
tation is manifested. To be able to describe Mig1 localization in response to a general perturba-
tion in the glucose level, it is clear that some other kind of model would be necessary.

An important question in modeling arises when a model structure has been proposed but
parameter values needs to be estimated from experimental observations; is there enough infor-
mation in the data to uniquely determine the parameter values? If we in addition to Mig1(t)
had been able to measure X(t), all parameters would have been structurally identifiable [48,
49]. However, when X(t) is not measured it turns out that the model is not identifiable, irre-

spective of the amount and quality of the data being used. If we let ~XðtÞ ¼ aXðtÞ, ~k2 ¼ k2=a,

and ~k3 ¼ a � k3, and multiply the differential equation for X(t) with α, the model equations can

Fig 2. Illustration of the mathematical model. Extracellular glucose is controlling the rate of production of
nuclear Mig1 and a hypothetical component X. The level of X in turn modulates the degradation of nuclear
Mig1.

doi:10.1371/journal.pone.0124050.g002
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be written

dMig1ðtÞ
dt

¼ k1 � GluðtÞ � ~k2 � ~XðtÞ �Mig1ðtÞ

d~XðtÞ
dt

¼ ~k3 � GluðtÞ � k4 � ~XðtÞ:

This transformation leaves the measured state variable Mig1(t) unchanged, and in this sense
results in an equivalent model. Thus, there is a redundancy in the dependence between X(t), k2,
and k3 which prevents us from uniquely identifying these parts of the model. The crucial point,
however, is that by choosing α to contain either the factor k2 or 1/k3, one of the parameters will
cancel out and the transformed model will contain one parameter less. For instance, choosing
α = k4/(k3�Glu(−30)), the parameter k3 will no longer appear in the equations and does not

have to be estimated. This particular α also yields a very simple initial condition for ~XðtÞ. In
this way we reduce the complexity of the original model but fully preserve its ability to describe

the observed state variable Mig1(t). The fact that ~XðtÞ, ~k2, and ~k3 are different from the corre-
sponding state variable and parameters of the original model is of no concern to us since they
anyway represent aspects of a hypothesized process that is not defined on the molecular level,
and hence there is no loss of interpretability. The model could have been reduced with respect
to the parameter k2 instead, but since k2 will determine the turnover-timescale of Mig1(t) re-
duction with respect to k3 is more convenient.

For simplicity in notation, we will now drop the tildes and let the original names of variables
and parameters refer to the reduced model. The equations defining the model in Fig 2 are

dMig1ðtÞ
dt

¼ k1 � GluðtÞ � k2 � XðtÞ �Mig1ðtÞ
dXðtÞ
dt

¼ k4
GluðtÞ

Gluð�30Þ � k4 � XðtÞ:

Further model simplification can be achieved by acknowledging that the modeled system
should be in steady-state at the beginning of each experiment. By assuming a steady-state at t =
−30, we see that

0 ¼ k1 � Gluð�30Þ � k2 � Xs �Ms

0 ¼ k4 � k4 � Xs;

and thus that the values of the model parameters are constrained by the initial values. From the
second equality, we require that Xs = 1. We furthermore let the parameter k1 be a function of
the other parameters and of the input according to

k1 ¼
k2Ms

Gluð�30Þ :

This particular choice of reparameterization is motivated by the fact that the parameter k2 can
be interpreted in terms of the turnover-timescale for Mig1(t) and Ms as the basal level of Mig1,
making the resulting model most convenient.

We now turn to the population aspect of the mathematical model and how to account for
the variability of the measured Mig1 dynamics in individual cells. In contrast to the non-ran-
dom parameter values typically encountered in computational biology, variability between sub-
jects is introduced by letting parameter values be described by probability distributions.
Specifically, we chose to let the parameters of the dynamical model described above to be
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defined as the product of a so called fixed effect parameter, which involves no randomness, and
a so called random effect parameter according to

Ms ¼ Mse
Z1

k2 ¼ k2e
Z2

k4 ¼ k4e
Z3 :

Here, the vector of random effect parameters, η = (η1, η2, η3), is normally distributed with zero
mean and covariance matrixΩ. This means that the parameters Ms, k2, and k4 are log-normally

distributed. Their median values are determined by the parametersMs, k2, and k4, and their de-
gree of variability is determined byΩ. The particular choice of a log-normal distribution is mo-
tivated by the universal appearance of this distribution in nature, ultimately originating from
the fundamental laws of chemistry and physics [50, 51]. For instance, the concentrations of
several mammalian signalling proteins have been shown to be log-normally distributed [5].
Since the proposed model is not a molecular-level mechanistic model, population variability of
its parameters are meant to capture the aggregated effects of the underlying variability in all
components relevant to Mig1 localization, ranging from proteins directly involved in Mig1
nucleocytoplasmic transport to proteins involved in sensing and signalling, etc.

Estimating parameters
The experimental data described previously was used to estimate the parameters of the dynam-
ical population model. This was done by maximizing the so called FOCE approximation of the
population likelihood, using a gradient-based optimization scheme [52]. Three types of param-
eters were included in the parameter estimation:

• The fixed effect parameters of the model,Ms, k2, and k4.

• The variance of the measurement noise, s.

• The parameters used to define the random effect covariance matrix, ω11, ω12, ω13, ω22, ω23,
and ω33. Details of the parameterization of the random effect covariance matrixΩ are ex-
plained in the Methods section.

There are in a total 10 parameters to be estimated, collected in the vector

θ ¼ ðMs; k2; k4; s;o11;o12;o13;o22;o23;o33Þ:

Each of the four experiments were considered separately, resulting in one set of estimates
per experiment. The estimated values of the parameters for the different data sets are shown in
Table 2. For each estimated parameter, its relative standard error (RSE) is shown within paren-

thesis. The estimate of the initial median level of nuclear Mig1,Ms, is similar throughout the
set of experiments. Experiments 1, 2 and 3 are similar with respect to the estimates of the pa-

rameters k2 and k4, while experiments 4 shows a slightly larger k2 and a k4 that is roughly dou-
ble in size. The estimates of the measurement error variance differ for the different
experiments. Moreover, it is clear that the parameters of the dynamical model are determined

with high certainty, especiallyMs which has a RSE of at most 2% in all of the four experiments.
The values of the parameters used for constructing the covariance matrix for the random effect
parameters are on the other hand somewhat more uncertain but the RSEs are in general still ac-
ceptable. One exception to this is RSE for ω13 in experiment 1. However, considering that RSE
is a relative measure and that the estimate of this parameter value is close to zero, the absolute
uncertainty is still low (standard error is 0.00128).
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Table 3 shows the covariance matrix for the random effect parameters, and the correspond-
ing correlation matrix. For each matrix entry its RSE is shown within parenthesis. The correla-
tion in population variability between η1 and η2 (associated with Ms and k2, respectively) is not
very strong, and not showing a clear tendency across the experiments, but is on the other hand
not very precisely estimated either. For experiments 2 to 4 there is a moderate negative correla-
tion between η1 and η3 (associated with Ms and k4, respectively), and here correlation estimates
are less uncertain. In these three experiments we also see that there is a substantial correlation

Table 2. Parameter estimates.

Parameter Exp 1 Exp 2 Exp 3 Exp 4

Ms
3.27 × 103 (1) 3.36 × 103 (1) 3.64 × 103 (2) 3.14 × 103 (1)

k2
0.00579 (4) 0.00473 (6) 0.00592 (9) 0.00815 (7)

k4
0.00846 (4) 0.00971 (9) 0.00999 (9) 0.0229 (8)

s 8.73 × 103 (6) 38.1 × 103 (6) 20.8 × 103 (6) 24.1 × 103 (6)

ω11 0.0653 (11) 0.0712 (20) 0.0624 (12) 0.0228 (34)

ω12 0.0391 (28) 0.0447 (53) 0.0568 (22) 0.0691 (13)

ω13 47.5 × 10−6 (25598) −0.0377 (49) −0.0649 (24) −0.0322 (46)

ω22 0.231 (12) 0.144 (44) 0.313 (13) 0.252 (15)

ω23 0.0398 (108) 0.193 (35) 0.526 (16) 0.281 (25)

ω33 0.255 (12) 0.439 (17) 0.567 (12) 0.432 (16)

Estimated parameter values and their corresponding relative standard error (expressed in percentage in the parenthesis), considering each of the four

experiments separately.

doi:10.1371/journal.pone.0124050.t002

Table 3. Covariance and correlations matrices.

Exp Nr Ω Corr

1 0:0058 ð20Þ 0:009 ð35Þ 12:� 10�6 ð25684Þ
0:055 ð26Þ 0:01 ð112Þ

0:065 ð25Þ

0
BB@

1
CCA

1 0:51 ð24Þ 620:� 10�6 ð24736Þ
1 0:17 ð102Þ

1

0
BB@

1
CCA

2 0:0085 ð27Þ �840:� 10�6 ð735Þ �0:017 ð58Þ
0:058 ð54Þ 0:085 ð46Þ

0:19 ð35Þ

0
BB@

1
CCA

1 �0:038 ð652Þ �0:41 ð41Þ
1 0:8 ð22Þ

1

0
BB@

1
CCA

3 0:011 ð22Þ �0:016 ð66Þ �0:037 ð31Þ
0:37 ð25Þ 0:3 ð27Þ

0:32 ð25Þ

0
BB@

1
CCA

1 �0:25 ð60Þ �0:61 ð17Þ
1 0:86 ð6Þ

1

0
BB@

1
CCA

4 0:0063 ð25Þ 0:0083 ð75Þ �0:014 ð55Þ
0:14 ð31Þ 0:12 ð37Þ

0:19 ð32Þ

0
BB@

1
CCA

1 0:28 ð69Þ �0:41 ð39Þ
1 0:74 ð14Þ

1

0
BB@

1
CCA

Covariance and correlations matrices and their corresponding relative standard error (expressed in

percentage in the parenthesis), considering each of the four experiments separately. The random effect

parameters described by the first to the third row of these matrices, are associated with the fixed effect

parameters Ms, k2, and k4, respectively.

doi:10.1371/journal.pone.0124050.t003
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between η2 and η3 (associated with k2 and k4, respectively), with the precision in the estimates
being quite good. Experiment 1 on the other hand only suggest a weak correlation between η2
and η3, but may nevertheless be compatible with the other experiments since the estimated cor-
relation is highly uncertain.

We additionally determined the maximum a posteriori estimates of the random effect pa-
rameters for each individual cell. These are the most likely values of η for an individual given
the already estimated probability distribution for these parameters, and are also known as the
empirical Bayes estimates (EBEs) [53]. To be able to trust further analysis involving the EBEs
we determined the so called η-shrinkage, defined as the relative decrease in standard deviation
of the EBEs compared to the standard deviation defined by the population estimateΩ. These
values are shown in S1 Table. It is recommended that shrinkage should not be greater than 20
to 30% to avoid misleading conclusions in EBE-based diagnostics [53]. Although two of the
percentages in experiments 2 are approaching such levels, the set of values as a whole should be
considered feasible.

The EBEs were used to further investigate the correlation between k2 and k4. Fig 3 shows

how the EBE values of the random effect parameters associated with k2 and k4, namely η1 and
η2, are distributed in each of the four experiments. For each experiment, a normal distribution
fitted to the EBE values is illustrated by two black ellipses, indicating the regions of one and

Fig 3. The distribution of maximum a posteriori η. For experiments 1 to 4 (A to D), the EBEs of η2 and η3 are shown as red points. The regions of one and
two standard deviations of a normal distribution fitted to the EBEs, and the NLME population estimate of the distribution of η2 and η3, are shown as black and
filled gray ellipses, respectively.

doi:10.1371/journal.pone.0124050.g003
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two standard deviations. The distribution of η2 and η3 defined by the population estimateΩ is
similarly illustrated by filled grey ellipses. This analysis confirmed the results displayed in
Table 3. Again, there is only a slight correlation of the EBEs in experiments 1 (0.16), as shown
in Fig 3A, but a pronounced correlation for the other three experiments (0.86, 0.87, 0.70), as
shown in Fig 3B, 3C and 3D. The somewhat worse shrinkages of experiment 2 are also seen in
Fig 3B as a difference between the filled and non-filled ellipses, respectively (although yielding
very similar variances, please note that the black ellipses are based on fitting the EBEs to a nor-
mal distribution while the η-shrinkage is just based on the variance of the EBEs). In experiment
3, Fig 3C, five cells (with numbers #1, #2, #14, #26, and #29) stand out a bit from the others. Be-
cause of their comparatively more negative values of the random effect parameters, these cells
have smaller effective values of k2 and k4 and should therefore display slower dynamics in re-
sponse to the glucose shift. These cells may constitute a subgroup, but because of the relatively
small sample size, and because of potential uncertainty in the EBEs of those cells, it is difficult
to say with certainty. To make sure that these cells were viable and intact we went back to the
raw images and inspected them manually. All cells looked normal although cell #29 appeared
to be smaller and with a less developed nucleus.

Comparing the inferred model to data
The behavior of the model using the estimated parameter values was examined. We simulated
the Mig1 dynamics of a typical cell by setting the random effect parameters to zero. For each of
the four experiments, this simulation is shown together with the data from all cells in the first
row of Fig 4. Additionally, we used the derived EBEs to simulate the model for specific cells
and compared the results to the experimental observations. This was done for four representa-
tive cells per experiment and the results are shown in rows two to five in Fig 4. Plots of all indi-
vidual cell data and model simulations for the four different experiments are shown in S1, S2,
S3, and S4 Figs, respectively. Despite its simplicity the proposed model captures the different
single cell Mig1 dynamics well, including cells with a “median response” (Exp 2 #21), high
(Exp 2 #30) and low (Exp 3 #31) initial levels of Mig1, respectively, with fast (Exp 4 #9), and
slow (Exp 4 #41) dynamics of the transient behavior, respectively, as well as cells with fewer
data points (Exp 1, #30). We also note the unusually slow dynamics of cell #2 in experiment 3.
This is one of the cells which we showed previously (Fig 3C) to have values of the EBEs that de-
viated from the others cells, and whose slower dynamics was already predicted at that point.

Accounting for background fluorescence
The model was built under the assumption that the observed fluorescent light intensities are
proportional to the actual concentration of Mig1. This assumption does not account for the
presence of background fluorescence. To test whether the simplification of disregarding any
background fluorescence is critical for the outcome of the analysis, we repeated the parameter
estimation using the modified observational model

yt ¼ bþMig1ðtÞ þ et;

where b is a parameter to be estimated from data. The details of the parameter estimation are
described in S1 Text, the results of the parameter estimation is shown in S2 Table and the cor-
responding random effect covariance and correlation matrices are shown in S3 Table, and
plots of all individual cell data and model simulations for the four different experiments are
shown in S5, S6, S7, and S8 Figs. In summary, changing the observation model to account for
background fluorescence gave a marginally better fit to data but the parameter estimation
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suffered from issues with practical identifiability [54] and this model variant was therefore not
considered further.

Using all data sets simultaneously
Having estimated parameters successfully for each experiment separately, we decided to use all
four data sets simultaneously for estimating the model parameters. The details of this analysis
are described in S2 Text, the results of the parameter estimation is shown in S4 Table and the

Fig 4. Model simulations and data. The first row show plots of all single cell data together with a simulation of a cell using the median parameters for each
experiment, respectively. Rows two to five shows data and corresponding model simulations (derived using the EBEs) for a subset of all cells, exemplifying
the fit on the individual level. The simulated median cell is shown in dashed for comparison. Columns one to four correspond to experiments 1 to 4.

doi:10.1371/journal.pone.0124050.g004
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corresponding random effect covariance and correlation matrices are shown in S5 Table, and
plots of all individual cell data and model simulations for the four different experiments are
shown in S9, S10, S11, and S12 Figs. We then reinvestigated the distribution of the EBEs of the

random parameters associated with k2 and k4, shown in Fig 5. As in Fig 3, a normal distribution
fitted to the EBE values is illustrated by two black ellipses indicating the levels of one and two
standard deviations, and the distribution of η2 and η3 defined by the population estimateΩ is
similarly illustrated by filled grey ellipses. To separate the EBEs belonging to individual cells
from the same experiment, we color-coded the dots for experiments 1 to 4 in blue, pink, yellow,
and green, respectively. While the EBEs for experiments 1 to 3 display apparently similar distri-
butions, though the five cells from experiment 3 still stand out, it is clear the cells from experi-
ment 4 have consistently higher values of their random effect parameters, especially η3. Thus,
even if the simulated Mig1 dynamics compare well with the single cell experimental observa-

tions, a model using the same parameter distributions k2 ¼ k2e
Z2 and k4 ¼ k4e

Z3 for all experi-
ments is in some sense still misleading, and the results from the separate analysis should be
considered more trustworthy.

Comparing population parameter estimates to the statistics of single
subject estimation
If every cell contains sufficient information to precisely estimate the parameters of the dynam-
ical model, the parameters describing the population variability could simply be derived by fit-
ting a parameterized distribution to the collection of all individual estimates. This
straightforward approach to population modeling is known as the standard two-stage (STS)

Fig 5. The distribution of EBEs of η for all cells in all experiments. The EBEs from individual cells are color-coded according to the experiments in which
their data was produced using blue, pink, yellow, and green, for experiments 1 to 4, respectively.

doi:10.1371/journal.pone.0124050.g005
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approach [42]. However, even moderate issues with identifiability for the parameter estimation
of single cells may lead to biased estimates of population median parameters and overestima-
tion of parameter variability. Being a much easier method to implement, and requiring sub-
stantially shorter times for computing the estimates, we decided to test whether the STS
approach would be a feasible alternative to NLME. For each of the four experiments, the values
of all random effect parameters were set to zero and the values of Ms, k2, k4, and s were estimat-
ed for every cell. The resulting sets of parameter values were subsequently fitted to log-normal
distributions. To avoid that extreme parameter estimates from uninformative single cell data
sets had an unreasonably large impact on the estimated distributions, we repeated the analysis
by removing single cell estimates that had at least one parameter value that differed more than
15 times from the median value of the set of individual estimates. This meant the exclusion of 2
cells from experiment 1, 3 cells from experiment 2, and 3 cells from experiment 4. No outliers
were removed from experiment 3. The results of the comparison between STS and NLME is
shown in Table 4, expressing the STS parameter estimates as percentages of the corresponding
NLME estimates. The STS approach performed acceptably for estimating the median values of
all experiments except for experiment 2 when all cells were used. When the outlier estimates
had been removed it performs satisfactory for estimating median values in all experiments.
The estimates for the measurement variance, s, were in all cases substantially lower. However,
this parameter was not assigned to be distributed in the NLME approach, making the compari-
son more difficult. Importantly, with a few exceptions regarding the variance of Ms, there is a
clear overestimation in the variance of the model parameters, and this bias is in some cases
considerable. It is obvious that a naive application of the STS approach, i.e., without screening
for deviating values first, will give highly questionable estimates of the variability. Additionally
we observed that even with a more careful use of the STS approach, variances may still be se-
verely overestimated. For instance, the variance of k2 in experiment 2 is nearly five times larger
when comparing the STS estimate to that of the NLME approach.

To illustrate why the STS approach gives different results than NLME three specific cells
were examined more closely (Fig 6). Many cells contain an amount of information that is suffi-
cient for the STS approach to produce similar estimates as the NLME at the single cell level. Fig
6A shows one such example where the simulations using the two different estimates practically
look identical. In this example the NLME simulation used the value-triplet (3565, 0.00667,
0.00754) for the parameters (Ms, k2, k4), and the STS simulation used the highly similar values
(3578, 0.00668, 0.00738). When all cells are included in the analysis, a few rare time-series

Table 4. Comparison of STS to NLME.

Parameter Exp 1
All cells

Exp 1
3 cells removed

Exp 2
All cells

Exp 2
2 cells removed

Exp 3
All cells

Exp 4
All cells

Exp 4
2 cells removed

Ms
101 100 100 101 100 102 103

k2
105 101 149 104 100 99 96

k4
94 98 140 99 100 97 88

s 30 67 31 58 70 27 64

Var[Ms] 101 97 123 107 109 412 394

Var[k2] 217 132 8797 490 129 510 177

Var[k4] 182 153 3329 206 142 839 217

The parameters estimates from the STS approach, either including all cells or removing cells with outlier estimates, expressed as percentages of the

corresponding values derived from the NLME approach.

doi:10.1371/journal.pone.0124050.t004

A Nonlinear Mixed Effects Approach for Cell-To-Cell Variability

PLOS ONE | DOI:10.1371/journal.pone.0124050 April 20, 2015 15 / 32



containing only one or two data points will be used. Fitting all model parameters to such data
will produce completely arbitrary estimates due to lack of identifiability. This kind of scenario
is shown in Fig 6B. Because the NLME approach is “borrowing” information (in form of the
empirical prior) from the other cells when computing the estimate for a single cell, this simula-
tion still resembles the median cell, while the STS simulation on the other hand produces a
much more extreme behavior. We can also see that the simulated median cell of the population
differs when the median parameters has been determined from all individual estimates. In this
example the NLME simulation used the values (3007, 0.00442, 0.0104), while the STS used the
very different values (2732, 0.0201, 0.00509). The inclusion of cells like these in the analysis is
the reason why the STS approach where no estimates were discarded performed so badly. Fig
6B also shows that the dynamics of a typical cell derived from the STS approach without dis-
carding outliers may differ to the typical cell of the NLME approach. As shown in Table 4 the
STS approach can be improved by removing obvious outliers from the set of individual cell pa-
rameters. Although it is straightforward to remove parameter estimates from obviously nonin-
formative data sets, e.g., time-series containing only a single data point, such preprocessing will
to some extent be arbitrary. Consider for instance the single cell data in Fig 6C where the
NLME and STS simulations used the values (3360, 0.00619, 0.0171), and (3185, 0.0151,
0.0557), respectively. There are 13 data points for this cell, yet it lacks the good identifiability
properties from the example in Fig 6A. In such cases the STS approach tend to produce exag-
gerated, but not extreme, estimates, which contributes to bias and variability overestimation on
the population level.

Predicting the variability of the response activation time, amplitude, and
duration
Having established an NLME model, it is possible to repeatedly simulate this model in order to
determine the population-distribution of any property being described by the model. This was
done to compute the population statistics of three quantitative measures of the transient Mig1
dynamics:

Fig 6. Comparing simulated Mig1 dynamics for individual cells using parameter from the STS and NLME approaches. Simulations with parameter
values from the STS analysis are shown in blue, and in black for NLME. Simulations of typical cells are shown in dashed. A. An information-rich data set
which by itself allows precise estimation of model parameters. The typical STS cell was simulated using the median parameters considering removal of
outliers. B. The extreme case of an uninformative data set (only one data point). Here the STS approach may produce arbitrary parameter estimates which
leads to questionable simulations as well as corrupting the population statistics of individual estimates. In this example the typical STS cell was simulated
using the median parameterswithout considering removal of outliers, producing a different results compared to the typical NLME cell. C. A cell where the
information content is too low for estimating all parameters with high precision. Model fits like this contribute to overestimation of parameter variability on the
population level. The typical STS cell was simulated using the median parameters considering removal of outliers.

doi:10.1371/journal.pone.0124050.g006
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• Response time. The time it takes to reach the lowest concentration of nuclear Mig1 after a
shift in extracellular glucose.

• Amplitude. The amplitude of the response measured in % below the baseline.

• Duration. The total time during which nuclear Mig1 remains below the level of half-
maximum response.

These measures are illustrated in Fig 7A. According to the estimated population variability of
the parameters Ms, k2, and k4, we randomly created 100 000 in silico cells per experiment and
simulated their Mig1 dynamics. The distributions and the typical values (medians) of the re-
sponse time, amplitude, and duration are shown in Fig 7B, 7C and 7D, respectively. The typical
values are also shown in Table 5. We observe that the simulated median response time is simi-
lar for concentrations of 1.5% and 1% glucose, respectively, but decreases markedly at 0.5%.
Additionally, there is an increased variability of the response time for the intermediate concen-
tration. The simulated amplitude of the Mig1 response exhibited quite small differences be-
tween the three conditions, both with respect to the median and the variability. A clear increase
in median duration of the simulated response was observed as glucose concentrations de-
creases. The variability of the duration also increased with decreasing glucose levels. A similar
behavior of the response duration was observed also when this quantity was defined by other
levels than 50% of the maximum response (not showed).

As a comparison to the model-based predictions of Mig1 dynamics, a simple non-model-
based analysis was performed directly on the data and on dense data sets generated by smooth-
ing and resampling the experimental data. The results from the simple analysis are shown to-
gether with the model-based predictions in Table 5. The simple analysis gave similar results for
the amplitude, but did not identify an increased duration with decreasing extracellular glucose
concentrations, and did furthermore suggest an opposite dependence of the typical response
time on extracellular glucose concentrations when compared to the model-based predictions.
Also, compared to the smooth distributions from the model-based analysis, the corresponding
population histograms from the simple analysis were much less informative due to the limited
number of cells and/or a binning based on the rather few discrete time points of the data, as
shown for the simple analysis of the experimental data in S13 Fig.

Discussion
State-of-the-art experimental techniques such as fluorescence microscopy allow time-resolved
data to be collected from individual living cells. This development has provided researchers
with tools enabling them to investigate various aspects of cell-to-cell variability in cell popula-
tions. The progress of single cell experimental methods requires a parallel advancement in the
development of mathematical models for describing cell population heterogeneity. We propose
that so called nonlinear mixed effects (NLME) models, a class of models that for example is
used for modeling variability between individuals in pharmacological studies, also may be
adopted for modeling cell-to-cell variability in molecular biology. The usefulness of this frame-
work was demonstrated by applying a model of this type to study the localization dynamics of
the yeast transcription factor Mig1. This protein is a key component in the regulation of carbon
metabolism, responsible for repressing a larger number of genes in the presence of glucose.
Using an NLME model we were able to quantify and simulate the cell-to-cell variability of
yeast cells with respect to their behavior of Mig1. Comparing the proposed modeling method-
ology to a second more intuitive approach, we showed that the former is crucial in order to not
overestimate the variability. An additional comparison of the NLME model to a simple non-

A Nonlinear Mixed Effects Approach for Cell-To-Cell Variability

PLOS ONE | DOI:10.1371/journal.pone.0124050 April 20, 2015 17 / 32



Fig 7. Distribution of the model-derived quantities response time, amplitude, and duration. A.
Illustration of response time, (negative) response amplitude in % of baseline, and duration of half-maximal
response. Distribution of activation (B), amplitude (C), and duration, for experiment 1 and 2 (blue), experiment
3 (pink), and experiment 4 (yellow). The typical cells (median response) are indicated by vertical dashed
lines. Distributions of the model-derived quantities were determined from 100 000 Monte Carlo simulations
per experiment.

doi:10.1371/journal.pone.0124050.g007
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model-based analysis indicated that modeling may be required for reliable interpretation of
population data.

Population model of Mig1 dynamics
We recently reported on a novel and unexpected aspect of Mig1 dynamics, namely the tran-
sient exit and subsequent nuclear re-entry of this protein in response to a shift from high to in-
termediate concentrations of extracellular glucose [39]. Similar transient responses followed by
perfect adaption have been observed for other signalling proteins such as nuclear ERK2 in re-
sponse to EGF levels [1], and the yeast kinase Hog1 in response to hyperosmotic shock [55].
Since the current understanding of the Snf1-Mig1 system does not provide a mechanistic basis
for the apparent adaptation behavior, a simple phenomenological model of perfect adaptation
was introduced to describe the observed Mig1 dynamics. The proposed model is a well known
dynamical modeling motif and has previously been presented as one of the basic signal-re-
sponse elements of regulatory networks [47]. Due to its simpler structure, the qualitative be-
havior of the model is limited to adaptation, with the parameter values controlling the the
quantitative details of this behavior, and it can therefore not be used as a general-purpose
model of Mig1 localization in response to extracellular glucose. To account for the observed
cell-to-cell variability of Mig1 dynamics so called random effect parameters were introduced to
the model. In contrast to most dynamical models used in computational biology, a subset of
the model parameter values are now stochastic variables characterized by a distribution rather
than scalar values. Although the model was not based on known molecular mechanisms for
Mig1 regulation, it was successful in describing the experimental observations of Mig1 dynam-
ics. It is however clear that even though such a phenomenological model can fit the data it may
not provide the same fundamental insights of a mechanistically based model. Though, given
the circumstances of limited knowledge of the mechanistic details of the Snf1-Mig1 system, we
believe that the proposed model has an appropriate level of complexity, especially considering
the population variability aspect, and that it may be a stepping stone towards future
mechanistic models.

Table 5. Typical values of response time, amplitude, and duration.

Quantity Method Exp 1 and 2 (1.5%) Exp 3 (1%) Exp 4 (0.5%)

Response time [s] Model 204 211 137

Response time [s] Simple analysis, experimental data 240 270 420

Response time [s] Simple analysis, smoothed data 229 265 413

Amplitude [%] Model 21 26 23

Amplitude [%] Simple analysis, experimental data 23 29 23

Amplitude [%] Simple analysis, smoothed data 23 28 22

Duration [s] Model 639 758 844

Duration [s] Simple analysis, experimental data 780 630 780

Duration [s] Simple analysis, smoothed data 768 597 757

Typical values of time to full response, the amplitude of the response, and the duration of the response, obtained from the NLME model and from a simple

non-model-based analysis using either the original or smoothed experimental data. The typical values of derived using the model were determined from

100 000 Monte Carlo simulations per experiment.

doi:10.1371/journal.pone.0124050.t005

A Nonlinear Mixed Effects Approach for Cell-To-Cell Variability

PLOS ONE | DOI:10.1371/journal.pone.0124050 April 20, 2015 19 / 32



Parameter estimates
The model performs well with similar median values of the time constants k2 and k4 both for
1.5% and 1% glucose, although with some variations in their variability. However, in experi-
ment 4 the estimated time constant of the adaptation process, k4, was larger and a slightly larg-
er value of k2 was obtained as well. The fact that other parameter values are required for this
particular experiment can be seen as an indication that this level, 0.5% glucose, is close to a
threshold in the behavior of the Snf1-Mig1 system. Indeed, this was also observed in experi-
ments, where the transient behavior disappears for extracellular glucose levels below 0.5% [39].
It also suggests that to model all four experiments simultaneously, the linear response to glu-
cose, as defined by the adaptation model, may not be sufficient.

Although the estimates of k2 and k4 appeared to be determined with good precision in the
separate analysis, we decided to fix these parameters, including their distribution within the
population, and estimate them from all experiments simultaneously. The resulting estimates
were close to the average of the separate estimates. However, from the distribution of the EBEs
(the maximum a posteriori estimates of the random parameters η) it was obvious that the
EBEs from the fourth experiment formed a separate cluster. This most likely violates the as-
sumption that the random effect parameters from the different experiments are identically dis-
tributed and confirms what was already suspected based on the different and quite well-

determined values of k2, and k4 in the separate analysis of experiment 4. Thus, the simultaneous
analysis of all four experiments again suggests that the characteristics of Mig1 regulation is
changing at a glucose level around 0.5%.

To account for background fluorescence we set up an alternative model of the measurement
process. This did only result in a marginal improvement in the ability to explain the data, and
since parameter estimation for this model appeared to experience problems with practical
identifiability, it was not considered further. We want to stress that this does not mean that
there is no background fluorescence, only that with the alternative model and the available
data it appears unfeasible to estimate it. Finally, even though the results from this altered
model should be interpreted cautiously due to the issues with parameter identifiability, we note
that the model behavior was highly similar to the original model and that the correlation in
population variability between k2 and k4 remained.

Interpreting the model
Mig1 is continuously being transported in both directions across the nucleocytoplasmic inter-
face and that its localization is dependent on the balance between these fluxes [39]. A change in
Mig1 localization is thus due to a change in the balance between the rates of nuclear import
and export. In light of this, the model can be interpreted as two counteracting mechanisms on
Mig1 cellular localization: One quickly responding mechanism that promotes transport of
Mig1 into the nucleus in response to an extracellular glucose signal (r1), and another delayed
mechanism that counteracts the first one by promoting nuclear exit in response to glucose (the
modulation of r2 by X). However, our present understanding of the signalling network control-
ling Mig1 activity does not include any mechanism that operates by favoring phosphorylation
and cytosolic localization in response to the presence of glucose. Moreover, we observed a
strong correlation in the cell-to-cell variability of k2 and k4, the parameters which determine
the time scales of the two counteracting mechanisms. This means that if a mechanism of the
second kind existed, it must be highly coordinated with the first one. As this might require a
very precise orchestration in the expression of the hypothetically involved signalling compo-
nents, we consider the explanation of counteracting mechanisms for the transient behavior
even less likely. Taken together, it appears more plausible that the transient pattern is already
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present in the dynamics of an upstream pathway component that is controlling Mig1 localiza-
tion according to the first type of mechanism. At least three candidate components may be
considered for transmitting such a transient signal to Mig1:

• Snf1. This is a strong candidate since we know that on the averaged population level, Snf1
displays a temporal phosphorylation pattern that is similar to that of Mig1 localization [39].
However, the dynamics of Snf1 phosphorylation on the single cell level has not
been investigated.

• Glc7-Reg1. Although mathematical modeling results and the lack of direct experimental evi-
dence disfavor a direct regulation of Mig1 by Glc7-Reg1 [40], this scenario can not be ruled
out. This phosphatase may alternatively transmit a transient signal indirectly via its effect on
Snf1 phosphorylation.

• It has been observed that constitutively phosphorylated Snf1, as the result of overexpressing
its upstream kinase Sak1, did not affect either Mig1 phosphorylation or its localization in the
presence of glucose [40]. Based on this it was suggested that Snf1 activation is a necessary but
not sufficient condition for mediating glucose de-repression, and that there must be a second
glucose-regulated step directing Snf1 to Mig1. Such a mechanism may constitute the up-
stream source of the transient signal.

A combination of these scenarios would also be possible. Furthermore, the transient pattern
need not emerge at the level of one of these components but could be present even further up-
stream, perhaps even in glycolysis itself which in a not fully understood manner generates the
signal(s) for Snf1-Mig1 regulation. Further investigating the origin of the transient behavior,
and the mechanisms behind its cell-to-cell variability, would be an interesting proposition for
future single-cell studies.

A moderate negative correlation in the population variability of Ms and k4 was also found.
This suggests a negative correlation between the levels of Mig1 and the timescale of the hypoth-
esized adaptation process. This may very well be reasonable considering that molecular pro-
cesses of the Snf1-Mig1 system which directly involve the Mig1 protein, such as
phosphorylation and inter-compartment transport, may be subject to saturation effects. Thus,
in cells where Mig1 levels are higher than average, the adaptation tends to be slower since a
higher number of molecules has to be regulated by a capacity-limited system.

Predicting the variability in response time, amplitude, and duration
Estimates of how parameters vary across the population can not only be analyzed as such, but
they can also be used to derive the population variability of any system behavior described by
the model. This can be achieved by Monte Carlo simulations using the inferred population
model. Such model-based quantification is a powerful tool since it allows us to compute the
cell-to-cell variability in aspects of Mig1 regulation which are not easily measurable directly
from the time-series data. We used this approach to predict the population variability in three
key determinants of the transient Mig1 response. From the results of this analysis (Fig 7) the
following was concluded:

• The response time decreases as the level of the secondary glucose concentration decreases.
Compared to the 1.5% level, the intermediate level (1%) additionally displays an increased
cell-to-cell variability in the response time.
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• The amplitude of the response, as determined relative to the baseline Mig1 level of each cell,
appears to be largely independent of the glucose level, both with respect to its median value
and with respect to its variability.

• The duration of the transient response is increased as the glucose level is decreased. Com-
pared to the 1.5% level, there is also a clear increase in cell-to-cell variability of the duration.

To summarize, as the level of glucose after the shift is decreased, the transient Mig1 response
tended to be faster and more extended, as well as showing an increased cell-to-cell variability in
both of these two characteristics. Interestingly, we also note that all distributions of the investi-
gated response characteristics appear to be log-normally shaped.

The model-based simulations of variability in response time, amplitude, and duration were
also compared to a simple analysis based directly on the experimental data and on the corre-
sponding smoothed and resampled data. Contrary to the model-based results, the simple data
analysis did not identify an increasing duration of the response with decreasing extracellular
glucose concentration, and did furthermore imply an increasing, rather than decreasing, re-
sponse time with decreasing extracellular glucose concentration. Although such differences
will depend on both the particular model used and on how the simple analysis is executed, the
comparison suggests that a model-based approach may be more reliable for studying cell-to-
cell variability in sparse or noisy data.

NLME should be preferred to STS
We compared the results from NLME modeling to the more naive STS approach, which con-
sists of performing parameter estimation on single cell data separately and subsequently fitting
parameterized distributions to the resulting set of point estimates. Since the estimation of pa-
rameters for individual subjects do not rely on information from the rest of the population, the
STS approach may tend to over-fit the data, potentially leading to biased estimates but even
more commonly to overestimation of parameter variability [42]. Although the two methods
provided comparable estimates of the median parameter values, the STS approach severely
overestimated parameter variability. The results were particularly bad when estimates from
some of the most sparse data sets were included. On the other hand, the NLME modeling ap-
proach was fully capable of handling these sparse data sets. In fact, even individuals with just a
single observation were feasible and added information to the estimation. For the present study
this meant that we did not have to discard any data, allowing us to use the available measure-
ments optimally. Our data included up to 15 data points per individual cell. It is however realis-
tic to assume that some single cell studies may involve substantially sparser sampling of certain
quantities, creating an even stronger motivation in favor of the NLME approach compared to
STS.

It must be recognized that sparseness in data, determined from counting the number of ob-
servations as such, may be a poor indicator for determining if the STS approach will be appro-
priate. Our comparison of the individual fit of the STS approach to the EBE-based estimate
resulting from the NLME population estimation in Fig 6C illustrates this point. If this data set
had been very rich in information the NLME-derived population prior would have had a
minor impact on the EBE parameter estimate, and the resulting dynamics, and the two ap-
proaches would have produced similar results for this cell. Since this was not the case, it is clear
that data sets which are not obviously sparse in the sense of containing very few observations
(this data sets contained 13 data points) are not automatically suitable for the STS approach.
The important question is rather whether the balance between information content in the data
and the complexity of the model allows parameters to be estimated with high precision,
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considering the individual data sets in isolation. Thus, the advantage of NLME over STS is ulti-
mately determined not only by the data sets at hand but also by the particular model being
used. Another way of looking at the NLME approach compared to the STS approach would
therefore be that the complexity of the model can be allowed to increase, beyond the point of
practical identifiability in single subjects, as long as there is enough data on the
population level.

Parameter estimates of individual single cell data have previously been performed in a
model of the NF-κB signalling pathway [56]. Here, 6 parameters were estimated for 20 differ-
ent cells using 15 data points per cell, and the authors noted that some of the parameters were
estimated with a quite high uncertainty. Had parameter distributions been fitted to these single
cell estimates, the risk of overestimating parameter variability would probably had been high.
In another mathematical modeling study of cell-to-cell variability [23], parameter estimation at
the single cell level was performed by complementing the single cell time lapse data with other
types data, with the purpose of increasing parameter identifiability.

The need for population modeling frameworks
The idea of applying hierarchical modeling, such as NLME, to longitudinal population data ac-
quired at the level of single cells has previously been acknowledged and outlined by the authors
of this work [10]. Since then, initial efforts towards single cell modeling using the NLME ap-
proach have in fact been considered in a few cases [57, 58], but the full potential of the ap-
proach has yet to be realized. The present study is to our knowledge the first one to combine,
and in detail cover, aspects of NLME modeling such as uncertainty of estimates, investigation
of EBEs and comparison of simulations to single cell data, and using an estimated model for
prediction. Also, this is the first study in which NLME has been applied not only with a focus
on its technical aspects but also with an ambition to advance the understanding of cell biology.

In parallel with the developments within NLME modeling, single cell time series data have
recently also been approached using hierarchical Bayesian methods [26, 27]. In addition to ex-
trinsic variability these efforts also considered intrinsic noise. Although a deterministic ap-
proach seems to describe the single cell Mig1 data studied here quite well, an extension of the
NLME approach to also cover uncertainty in the dynamics would be interesting. One way of
achieving this would be to replace the ordinary differential equation by so called stochastic dif-
ferential equations (SDEs). The combination of NLME and SDE has previously been consid-
ered in pharmcokinetics and pharmcodynamics [59–61]. Not only would this allow intrinsic
noise to be addressed within the NLME framework, but the SDEs could also be used to account
for miss-specification of the deterministic parts of a model. Applying dynamical modeling with
SDEs towards this end has previously proven useful for guiding the process of model develop-
ment [62]. This strategy may be especially rewarding for modeling of signalling transduction
pathways, as these systems typically suffer from limitations and uncertainty in the information
needed for setting up models.

The need for modeling frameworks that are able to address single cell data is perhaps most
clearly demonstrated by a growing number of studies in which such data was collected but
then averaged during the computational analysis [41, 63]. We predict that hierarchical model-
ing frameworks such as NLME modeling will become even more important as single cell exper-
imental methods continue to develop, and as the biological questions will involve the single cell
perspective to a larger extent. In the future, dynamical modeling of non-genetic cell-to-cell var-
iability may not only be relevant for basic research but also become an important ingredient in
various applied fields of life science such as quantitative pharmacology [11] and industrial bio-
technology [64]. As previously pointed out [58], an intriguing future prospect of single cell
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NLME modeling is the inclusion of so called covariates in the model. Covariates are known in-
dividual-specific variables which are used to account for predictable sources of the variability.
In pharmacokinetic modeling, which frequently uses the NLME approach, covariates may for
instance include weight, age, and sex. In the context of single cell modeling, the addition of co-
variates to the model could be used to incorporate cell-specific information such as size, shape,
or age, in addition to the time-series data. Another important challenge for system identifica-
tion from population data is the development of methods that can handle the combination of
measurements at the single cell level with the traditional type of data produced from averaging
over many cells.

Methods
The yeast strains, experimental setup, and imaging and image analysis, have been described
previously [39].

Parameter estimation for NLMEmodels
NLME models are often used in situations where sparse time-series data is collected from a
population of individuals subject to inter-individual variability. These models contain both so
called fixed effect parameters, being non-random, and so called random effect parameters,
which are determined by some statistical model. Given a set of population data and a NLME
model, the fixed effect parameters can be estimated according to the maximum likelihood ap-
proach. The likelihood subject to maximization is the so called population likelihood. This is a
special kind of likelihood that has been marginalized with respect to all random effect parame-
ters, and that is taking the observations from all individuals of the population into account. We
now state the general form of a NLME model, the population likelihood, and its approximation
by the so called FOCE method.

Consider a population of N subjects and let the ith individual be described by the dynamical
system

dxiðtÞ
dt

¼ fðxiðtÞ;uiðtÞ;Zi; θ; ηi; tÞ
xiðt0Þ ¼ x0iðuiðt0Þ;Zi; θ; ηiÞ;

where ui(t) is a time dependent input function, Zi a set of covariates, θ a set of fixed effects pa-
rameters, and ηi a set of random effect parameters which are multivariate normally distributed
with zero mean and covarianceΩ. The covariance matrixΩ is in general unknown and will
therefore typically contain parameters subject to estimation. These parameters will for conve-
nience of notation be included in the fixed effect parameter vector θ. A discrete-time observa-
tion model for the jth observation of the ith individual at time tij is defined by

yij ¼ hðxij;uij; tij;Zi; θ; ηiÞ þ eij;

where

eij � Nð0;Rijðxij;uij; tij;Zi; θ; ηiÞÞ;

and where the index notation ij is used as a short form for denoting the ith individual at the jth
observation. Furthermore, we let the expected value of the discrete-time observation model be
denoted by

ŷij ¼ E½yij�:
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Given a set of experimental observations, dij, for the individuals i = 1,. . ., N at time points
j = 1,. . ., ni, we define the residuals

ϵij ¼ dij � ŷ ij;

and write the population likelihood

LðθÞ ¼
YN
i¼1

Z
p1ðdijθ; ηiÞp2ðηijθÞ dηi; ð1Þ

where

p1ðdijθ; ηiÞ ¼
Yni
j¼1

exp � 1

2
ϵT
ijR

�1
ij ϵij

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð2pRijÞ

q
and

p2ðηijθÞ ¼
exp � 1

2
ηT
i O
�1ηi

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð2pOÞp :

The marginalization with respect to ηi in Eq 1 does not have a closed form solution. By writing
Eq 1 on the form

LðθÞ ¼
YN
i¼1

Z
exp ðliÞ dηi;

where the individual joint log-likelihoods are

li ¼ � 1

2

Xni
j¼1

ϵT
ijR

�1
ij ϵij þ log det ð2pRijÞ

� �

� 1

2
ηT
i O
�1ηi �

1

2
log det ð2pOÞ;

a closed form solution can be obtained by approximating the function li with a second order
Taylor expansion with respect to ηi. This is the well-known Laplacian approximation. Further-
more, we let the point around which the Taylor expansion is done to be conditioned on the ηi
maximizing li, here denoted by η�i , and we approximate the Hessian used for the expansion
with first order terms only. Thus, the approximate population likelihood La becomes

LðθÞ � LaðθÞ ¼
YN
i¼1

exp ðliðη�i ÞÞ det
�Dliðη�i Þ

2p

� ��12 !
:

where

Dliðη�i Þ � �
Xni
j¼1
rϵT

ijR
�1
ij rϵij � O�1;

and

rϵij ¼
@ϵij

@ηi

				
ηi¼η�i

:
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This variant of the Laplacian approximation of the population likelihood is known as the first
order conditional estimation (FOCE) method [65].

The maximum likelihood estimate of θ is obtained by maximizing the approximate popula-
tion likelihood La(θ). The parameters being estimated are all parameter included in θ, namely
the fixed effect parameters of the dynamical model, including the fixed effect parameters of the
observational model, and any parameters appearing in the random effect covariance matrixΩ.
The optimization problem resulting from the desire to maximize La with respect to θ was
solved using the BFGS method [66]. Note that every evaluation of La requires the determina-
tion of η�i for all individuals due to the conditional nature of the FOCE approximation. Thus,
the optimization of La with respect to θ involves a nested optimization of li with respect to ηi
for every individual, making the parameter estimation a challenging problem. An exhaustive
account of how the gradient-based optimization was performed for the FOCE approximation
of the population likelihood can be found in [52].

Since the approximate population likelihood involves a marginalization over the random ef-
fect parameters ηi, these are not explicitly estimated. However, once the estimate of θ has been
obtained, the maximum a posteriori estimates of the random effect parameters for each indi-
vidual cell (referred to as empirical Bayes estimates in the results section) can be determined.
These are in fact equivalent to η�i , meaning that they are already provided as an indirect effect
of the final evaluation of La.

Parameterization of the random effect covariance matrix
The elements of the random effect covariance matrixΩ cannot be chosen independently from
one another. To ensure thatΩ will be positive semi-definite and symmetric, and thus a covari-
ance matrix, it is decomposed intoΩ = U UT, where U is an upper triangular matrix which can
be parameterized according to

U ¼

o11 o12 o13

o22 o23

o33

0
BBB@

1
CCCA:

Such decomposition is only unique ifΩ is strictly positive definite and if the diagonal elements
of U are positive. The sought-after covariance matrix can for practical purposes always be con-
sidered positive-definite, and since we are not interested in U as such we do not care about the
signs of its diagonal entries. With the parameterization above,Ω becomes

O ¼

o2
11 þ o2

12 þ o2
13 o12o22 þ o13o23 o13o33

o12o22 þ o13o23 o2
22 þ o2

23 o23o33

o13o33 o23o33 o2
33

0
BBB@

1
CCCA:

Uncertainty of parameter estimates
The uncertainty of parameter estimates are reported as relative standard errors. The relative
standard error is computed by taking the absolute value of the ratio between the standard error
of the parameter estimate to the estimated value, expressed in percentage. Parameter standard
errors are obtained by taking the square root of the diagonal elements of the inverse of the neg-
ative Hessian, calculated at the points of the estimated parameter values. Since the uncertainties
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in the entries ofΩ (and the corresponding correlation matrix) depend on various combination
of parameter uncertainties, they were determined by computing the RSE from a large number
of sampled covariance and correlation matrices.

We note that measures of confidence based on the exact likelihood, such as likelihood pro-
filing, typically are superior to the results from asymptotic theory. Although preferable, such
methods are too time-consuming for the large NLME problems considered here.

Starting values for the optimization algorithm
To reduce the time of computing the parameter estimates and to increase the chances of reach-
ing a meaningful, and hopefully global, optimum, it is important to provide the optimization
algorithm with starting values of the parameters that are as good as possible. By visually in-
specting the data we were able to obtain educated guesses of some of the parameters. The same
values were used to initiate the parameter estimation for all four data sets. The starting value of
Ms was set to 3300. Noting that the parameter k4 determines the relaxation time-scale of X and
that the observed re-entry took place at roughly 200 s, we set k4 = 1/200 = 0.005. If X is consid-
ered constant, the initial relaxation time-scale of Mig1 is given by k2. If we by a very crude visu-
al assessment determine this time-scale to 50 s, we consequently set k2 = 1/50 = 0.02. The
measurement noise appear to be on the scale of a hundred to a few hundreds and its variance,
s, was set to 40 000. Choosing staring values for the parameters of the random effect covariance
matrix is more difficult. We have chosen ω11 = ω22 = ω33 = 0.1 and ω12 = ω13 = ω23 = 0. This
roughly corresponds to parameter standard deviations of ± 10% with no covariance between
random effect parameters. When all experimental data was used simultaneously for estimation,
the experiment-specific parameters inherited the starting values defined above.

Avoiding a constrained problem
The parameters Ms, k2, k4, and s are only meaningful for nonnegative values. To avoid a con-
strained optimization problem, any strictly positive parameter, θ, is transformed according to

y ¼ e~y , with the new starting value ~ys ¼ logys. When the parameter estimates have been deter-
mined, the values of the transformed parameters must then be transformed back. However,
when the parameter uncertainties are determined through the calculation of the Hessian, no
parameter transformations are performed. In this case it is not needed since we only evaluate
the likelihood function and its gradient for values of the parameters that are known to be posi-
tive. As a result, the Hessian and the coefficients of variations derived from it are valid for the
original, untransformed parameterization of the model.

Simple analysis of Mig1 dynamics
A simple analysis was designed to extract the typical values (medians) of the response time,
amplitude, and duration of Mig1 dynamics directly from data, without the use of a dynamical
model. The amplitude for each cell was defined by maximal difference between the baseline
and the subsequent data points, and the response time was defined as the time for the maximiz-
ing data point. The duration was defined as the difference in time between the first two data
points to in each direction cross the level determined from 50% of the amplitude. The simple
analysis was also applied to smoothed and densely resampled data. Smoothed data was generat-
ed for each cell by fitting a cubic B-spline to its experimental data, and from this smooth func-
tion sampling 1000 data points equidistantly in time.
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Abstract The first order conditional estimation (FOCE)

method is still one of the parameter estimation workhorses

for nonlinear mixed effects (NLME) modeling used in

population pharmacokinetics and pharmacodynamics.

However, because this method involves two nested levels

of optimizations, with respect to the empirical Bayes esti-

mates and the population parameters, FOCE may be nu-

merically unstable and have long run times, issues which

are most apparent for models requiring numerical integra-

tion of differential equations. We propose an alternative

implementation of the FOCE method, and the related

FOCEI, for parameter estimation in NLME models. Instead

of obtaining the gradients needed for the two levels of

quasi-Newton optimizations from the standard finite dif-

ference approximation, gradients are computed using so

called sensitivity equations. The advantages of this ap-

proach were demonstrated using different versions of a

pharmacokinetic model defined by nonlinear differential

equations. We show that both the accuracy and precision of

gradients can be improved extensively, which will increase

the chances of a successfully converging parameter esti-

mation. We also show that the proposed approach can lead

to markedly reduced computational times. The

accumulated effect of the novel gradient computations

ranged from a 10-fold decrease in run times for the least

complex model when comparing to forward finite differ-

ences, to a substantial 100-fold decrease for the most

complex model when comparing to central finite differ-

ences. Considering the use of finite differences in for in-

stance NONMEM and Phoenix NLME, our results suggests

that significant improvements in the execution of FOCE are

possible and that the approach of sensitivity equations

should be carefully considered for both levels of

optimization.

Keywords Nonlinear mixed effects modeling � First
order conditional estimation (FOCE) � Sensitivity equations

Introduction

Nonlinear mixed effects (NLME) models are suitable

in situations where sparse time-series data is collected from

a population of individuals exhibiting inter-individual

variability [10]. This property has rendered NLME models

popular in both pharmacokinetics and pharmacodynamics,

and several public and commercial software packages have

been developed for performing NLME modeling within

these fields [13]. These modeling softwares include the

well-known NONMEM [5], which was the first program to

be developed and still is one of the most widely used, but

also a number of other programs such as Phoenix

NLME [21] and Monolix [15]. A core part of their func-

tionality consist of various methods for addressing the

problem of parameter estimation in NLME models, and

several studies have been devoted to describing and com-

paring different aspects of these methods [4, 8, 9, 11,

12, 22].
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The ‘‘mixed effects’’ in NLME refers to the fact that these

models contain both fixed effect parameters, having the same

value for all individuals, and random effect parameters,

whose value differ from one individual to another and whose

distribution in the population is determined by some statis-

ticalmodel.A common approach to the parameter estimation

problem in NLME models is based on maximizing the so

called population likelihood. The population likelihood is a

function of the fixed effect parameters only, and it is obtained

by marginalizing out the random effects from the joint dis-

tribution of data and random effects. However, the integral

required for the marginalization lacks a closed-form solution

for all realistic problems. Because of this, maximum likeli-

hood parameter estimation for NLME models revolves

around different numerical approximation methods for

computing this integral. One of the main approaches for

tackling the problem is a class of related methods based on

the so called Laplacian approximation [25]. It includes the

popular and widely used first order conditional estimation

(FOCE)method, which is a special case of the closely related

FOCEwith interaction (FOCEI).With the FOCE and FOCEI

methods, the approximation of the integral involves a Taylor

expansion around the values of the random effect parameters

that maximize the joint distribution. This means that one

optimization problem per individual has to be solved for

every evaluation of the approximated population likelihood.

Since the aim is to maximize the (approximated) population

likelihood, which constitutes the original optimization

problem, conditional estimation methods such as FOCE

produce a parameter estimation problem involving two

nested layers of optimizations. For some NLME parameter

estimation problems this results in long execution times, and

in difficulties with numerical precision making the opti-

mizations unstable and limiting the precision of estimates

and the ability of obtaining confidence intervals. These is-

sues are particularly pronounced for models that are for-

mulated by systems of differential equations which are

lacking analytical solutions [4, 7, 8].

The optimization problems resulting from the FOCE and

FOCEI approximations, and other closely related ap-

proximations, are typically solved using gradient-based op-

timization methods such as the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) quasi-Newton method [20]. For problems

where analytical expressions for the function and its gradient

are not available, it is common that gradients are computed by

finite difference approximations. We instead propose another

approach for determining the gradient of the FOCE and

FOCEI approximations of the population likelihood. Our

approach is based on formally differentiating the likelihoods

used at the two levels of optimization, and computing the

required derivatives of the model state variables using so

called sensitivity equations. The proposed approach for

computing gradients is readily applicable for the inner level of

the nested optimization problem. However, we also derive the

necessary theory for computing gradients through the ap-

proach of sensitivity equations at the outer level optimization.

This step is the more challenging, and requires that sensi-

tivities up to second order of the state variables with respect to

the parameters and random parameters are obtained. Being

able to compute the gradient of the FOCE or FOCEI ap-

proximations of the population likelihood using the approach

introduced in this paper is a great advantage as it circumvents

the need for repeatedly having to solve the inner level opti-

mization problem for obtaining the outer level gradients from

a finite difference approximation.

This paper is organized in the following way. First, the

mathematical theory is introduced. Here we recapitulate

NLMEmodels based on differential equations, including the

formulation of the population likelihood and its ap-

proximations, as well as derive expressions for both the

gradients of the individual joint log-likelihoods with respect

to the random effect parameters, used for the inner level

optimization problems, and the gradient of the approximate

population likelihood with respect to the fixed effect pa-

rameters, used for the outer level optimization problem.

Then, we apply the sensitivity approach for computing the

gradients for different versions of a benchmark model.

Compared to the finite difference approximation, the pro-

posed approach leads to both higher precision and better

accuracy of the gradient, as well as decreased computational

times. Finally, the presented results are discussed and pos-

sible future extensions are outlined.

Theory

Various definitions and results from matrix calculus are

used in the derivations of this section. These can be found

in the ‘‘Appendix 1’’ section.

The nonlinear mixed effects model

Consider a population of N subjects and let the ith indi-

vidual be described by the dynamical system

dxiðtÞ
dt

¼ f
�
xiðtÞ; t;ZiðtÞ; h; gi

�

xiðt0Þ ¼ x0i
�
Ziðt0Þ; h; gi

�
;

ð1Þ

where xiðtÞ is a set of state variables, which for instance

could be used to describe a drug concentration in one or

more compartments, and where ZiðtÞ is a set of possibly

time dependent covariates, h a set of fixed effects pa-

rameters, and gi a set of random effect parameters which

are multivariate normally distributed with zero mean and

covariance X. The covariance matrix X is in general un-

known and will therefore typically contain parameters
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subject to estimation. These parameters will for conve-

nience of notation be included in the fixed effect parameter

vector h. Fixed effects parameters will hence be used to

refer to all parameters that are not random, not being

limited for parameters appearing in the model differential

equations. A model for the jth observation of the ith indi-

vidual at time tji is defined by

yij ¼ h
�
xij; tji ;ZiðtjiÞ; h; gi

�
þ eij; ð2Þ

where

eij 2 N
�
0;Rij

�
xij; tji ;ZiðtjiÞ; h; gi

��
; ð3Þ

and where the index notation ij is used as a short form for

denoting the ith individual at the jth observation. Note that

any fixed effect parameters of the observational model are

included in h. Furthermore, we let the expected value of the

discrete-time observation model be denoted by

ŷij ¼ E
�
yij
�
: ð4Þ

The population likelihood

Given a set of experimental observations, dij, for the in-

dividuals i ¼ 1; . . .;N at the time points tji , where

j ¼ 1; . . .; ni, we define the residuals

�ij ¼ dij � ŷij; ð5Þ

and write the population likelihood

LðhÞ ¼
YN
i¼1

Z
p1
�
dijh; gi

�
p2
�
gijh
�
dgi; ð6Þ

where

p1
�
dijh; gi

�
¼
Yni
j¼1

exp
�
� 1

2
�TijR

�1
ij �ij

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det
�
2pRij

�q ð7Þ

and

p2
�
gijh
�
¼

exp
�
� 1

2
gTi X

�1gi
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det
�
2pX

�q ; ð8Þ

and where di is used to denote the collection of data from

all time points for the ith individual.

The FOCE and FOCEI approximations

The marginalization with respect to gi in Eq. 6 does not

have a closed form solution. By writing Eq. 6 on the form

LðhÞ ¼
YN
i¼1

Z
expðliÞ dgi; ð9Þ

where the individual joint log-likelihoods are

li ¼ � 1

2

Xni
j¼1

�TijR
�1
ij �ij þ log det

�
2pRij

�� �

� 1

2
gTi X

�1gi �
1

2
log det

�
2pX

�
;

ð10Þ

a closed form solution can be obtained by approximating

the function li with a second order Taylor expansion with

respect to gi. This is the well-known Laplacian ap-

proximation. Furthermore, we let the point around which

the Taylor expansion is done to be conditioned on the gi
maximizing li, here denoted by g�i ; I.e., the expansion is

done at the mode of the posterior distribution. Thus, the

approximate population likelihood, LL, becomes

LðhÞ � LLðhÞ ¼
YN
i¼1

exp
�
liðg�i Þ

�
det

�Dliðg�i Þ
2p

	 
�1
2

 !
:

ð11Þ

Here, the Hessian Dliðg�i Þ is obtained by first differentiating

li twice with respect to gi, and evaluating at g�i . If we let gik
denote the kth component of gi, we have

dli

dgik
¼� 1

2

Xni
j¼1

 
2�TijR

�1
ij

d�ij
dgik

� �TijR
�1
ij

dRij

dgik
R�1

ij �ij

þ tr R�1
ij

dRij

dgik

	 
!
� gTi X

�1 dgi
dgik

:

ð12Þ

Differentiating component-wise again, now with respect to

the lth component of gi, we get the elements of the Hessian

d2li

dgikdgil
¼�1

2

Xni
j¼1

 
2
d�Tij
dgil

R�1
ij

d�ij
dgik

�2�TijR
�1
ij

dRij

dgil
R�1

ij

d�ij
dgik

þ2�TijR
�1
ij

d2�ij
dgikdgil

��TijR
�1
ij

d2Rij

dgikdgil
R�1

ij �ij

þ2�TijR
�1
ij

dRij

dgik
R�1

ij

dRij

dgil
R�1

ij �ij

�2�TijR
�1
ij

dRij

dgik
R�1

ij

d�ij
dgil

� tr R�1
ij

dRij

dgil
R�1

ij

dRij

dgik

	 


þ tr R�1
ij

d2Rij

dgikdgil

	 
!
�dgTi
dgil

X�1 dgi
dgik

;

ð13Þ

where the last term is really just the klth element of X�1,

X�1
kl . The expression for the elements of the Hessian may

be approximated in different ways, with the main purpose

of avoiding the need for computing the costly second order

derivatives. We apply a first order approximation, where

terms containing second order derivatives are ignored, and

write the elements of the approximate Hessian, Hi, as
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Hikl ¼ � 1

2

Xni
j¼1

 
al BaTk þ tr �cl ck½ �

!
� X�1

kl ; ð14Þ

where

ak ¼
d�Tij
dgik

� �TijR
�1
ij

dRij

dgik

 !
; ð15Þ

B ¼ 2R�1
ij ; ð16Þ

and

ck ¼ R�1
ij

dRij

dgik
: ð17Þ

This variant of the Laplacian approximation of the popula-

tion likelihood is known as the first order conditional esti-

mation with interaction (FOCEI) method. The closely related

first order conditional estimation (FOCE) method is obtained

by ignoring the dependence of the residual covariance matrix

on the random effect parameters. The rationale for excluding

the second order terms is that their expected values are zero

for an appropriate model, as shown in the ‘‘Appendix 2’’

section. The Appendix also shows how the Hessian may be

slightly further simplified, using similar arguments, to arrive

at the variant of FOCE used in NONMEM. Those additional

simplifications are however of relatively little importance

from a computational point of view, since the components

needed to evaluate these Hessian terms have to be provided

for the remaining part of the Hessian anyway. We will

therefore restrict the Hessian simplification by expectation to

the second order terms only. Furthermore, we will from now

on for convenience consider the logarithm of the FOCEI

approximation to the population likelihood, LF ,

log LðhÞ � log LFðhÞ ¼
XN
i¼1

liðg�i Þ �
1

2
log det

�Hiðg�i Þ
2p

	 
� �
:

ð18Þ

Gradient of the individual joint log-likelihood

with respect to the random effect parameters

We now turn to the computation of the gradient of the in-

dividual joint log-likelihoods, liðgiÞ, with respect to the

random effect parameters, gi, using the approach of sensi-

tivity equations. Consider the differentiation done in Eq. 12.

Given values of h and gi, the quantities �ij,Rij, andX can be

obtained by solving the model equations. However, we ad-

ditionally need to determine d�ij=dgik and dRij=dgik. Ex-
panding the total derivative of these quantities we see that

d�ij
dgik

¼
d
�
dij � ŷij

�

dgik
¼ � oh

ogik
þ oh

oxij

dxij
dgik

� �
; ð19Þ

and

dRij

dgik
¼ oRij

ogik
þ oRij

oxij

dxij
dgik

: ð20Þ

The derivatives of h and Rij are readily obtained since

these expressions are given explicitly by the model for-

mulation. In contrast, the derivative of the state variables,

xij, are not directly available but can be computed from the

so called sensitivity equations. The sensitivity equations

are a set of differential equations which are derived by

differentiating the original system of differential equations

(and the corresponding initial conditions) with respect to

each random effect parameter gik,

d

dt

dxi
dgik

� �
¼ of

ogik
þ of

oxi

dxi
dgik

� �

dxi
dgik

� �
ðt0Þ ¼

ox0i
ogik

:

ð21Þ

The solution to the sensitivity equations can be used to

evaluate the derivatives in Eqs. 19 and 20, which in turn

are needed for the gradient of the individual joint log-

likelihoods. Importantly, these derivatives are also used for

computing the approximate Hessian, Eq. 14, appearing in

the approximate population log-likelihood.

In the unusual event that one or more of the random

effect parameters only appear in the observational model,

all sensitivities of the state variables with respect to those

parameters are trivially zero. Note also that the sensitivity

equations for all but trivial models involve the original

state variables, which means that the original system of

differential equations has to be solved simultaneously.

Thus, if there are q non-trivial sensitivities and n state

variables, the total number of differential equations that has

to be solved in order to be able to compute li and dli=dgi
for each individual is

nð1þ qÞ: ð22Þ

Gradient of the approximate population log-

likelihood with respect to the fixed effect parameters

We now derive the expression for the gradient of the ap-

proximate population log-likelihood, log LFðhÞ, with re-

spect to the parameter vector h. Differentiating log LF with

respect to the mth element of h gives

log LF

dhm
¼
XN
i¼1

dliðg�i Þ
dhm

� 1

2
tr H�1

i ðg�i Þ
dHiðg�i Þ
dhm

	 
� �
: ð23Þ

Here it must be emphasized that all derivatives with respect

to components of the parameter vector h are taken after

replacing gi with g�i . This is critical since g�i is an implicit
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function of theta, g�i ¼ g�i ðhÞ. In other words, we have to

account for the fact that the gi maximizing the individual

joint log-likelihood changes as h changes.

To determine the total derivatives with respect to com-

ponents of the parameter vector h we will be needing the

following result. Consider a function v which may depend

directly on the parameters h and gi, and on the auxiliary

function w representing any indirect dependencies of these

parameters,

v ¼ v
�
wðh; giÞ; h; gi

�
: ð24Þ

We furthermore introduce the function z to denote the

evaluation of v at gi ¼ g�i ðhÞ,

z ¼ z
�
wðh; g�i ðhÞÞ; h; g�i ðhÞ

�
¼ vjgi¼g�

i
ðhÞ: ð25Þ

Separating the complete dependence of z on h into partial

dependencies we get that

d

dh
vjgi¼g�

i
ðhÞ

� �
¼ dz

dh

¼ oz

ow

dw

dh
þ oz

oh
þ oz

og�i

dg�i
dh

¼ oz

ow

ow

oh
þ oz

ow

ow

og�i

dg�i
dh

þ oz

oh
þ oz

og�i

dg�i
dh

¼ oz

ow

ow

oh
þ oz

oh
þ dz

dg�i

dg�i
dh

¼ o

ow
vjgi¼g�

i
ðhÞ

� � ow
oh

þ o

oh
vjgi¼g�

i
ðhÞ

� �

þ d

dg�i
vjgi¼g�

i
ðhÞ

� � dg�i
dh

¼ ov

ow

ow

oh

� �




gi¼g�

i
ðhÞ
þ ov

oh

� �




gi¼g�

i
ðhÞ

þ dv

dgi

� �




gi¼g�

i
ðhÞ

dg�i
dh

¼ dv

dh






gi¼g�

i
ðhÞ
þdv

dgi






gi¼g�

i
ðhÞ

dg�i
dh

:

ð26Þ

Thus, the total derivative with respect to h after insertion of

g�i is equal to the sum of total derivatives with respect to h

and gi before insertion of g�i , where the second derivative is

multiplied with the sensitivity of the random effect opti-

mum with respect to the parameters h. It is straightforward

to see that this result holds also when differentiating func-

tions that only exhibit a subset of the possible direct and

indirect dependencies of Eq. 24, for instance functions with

just an indirect dependence on the two kind of parameters.

Applying the results from Eq. 26 to the first term within

the summation of Eq. 23, we have that

dliðg�i Þ
dhm

¼ dliðgiÞ
dhm






gi¼g�

i
ðhÞ

þ dliðgiÞ
dgi






gi¼g�

i
ðhÞ

dg�i
dhm

: ð27Þ

However, since dli=dgi evaluated at g
�
i is zero by definition,

the second term of the right hand side of Eq. 27 disappears

and

dliðg�i Þ
dhm

¼ dliðgiÞ
dhm






gi¼g�

i
ðhÞ

¼
"
� 1

2

Xni
j¼1

 
2�TijR

�1
ij

d�ij
dhm

� �TijR
�1
ij

dRij

dhm
R�1

ij �ij

þ tr R�1
ij

dRij

dhm

	 
!
þ 1

2
gTi X

�1 dX
dhm

X�1gi

� 1

2
tr X�1 dX

dhm

	 
#

gi¼g�
i
ðhÞ

: ð28Þ

Using asterisks to denote that gi has been replaced with g�i ,

we also get the following for the derivative of the second

term within the summation of Eq. 23,

dHiklðg�i Þ
dhm

¼�1

2

Xni
j¼1

 
da�l
dhm

B� a�Tk þa�l
dB�

dhm
a�Tk þa�l B

� da
�T
k

dhm

þ tr � dc�l
dhm

c�k � c�l
dc�k
dhm

	 
!
�dX�1

kl

dhm
;

ð29Þ

where

da�k
dhm

¼ d

dhm

d�Tij
dgik

 !�

�
��Tij
dhm

R��1
ij

dRij

dgik

� ��

þ ��Tij R
��1
ij

dR�
ij

dhm
R��1

ij

dRij

dgik

� ��

� ��Tij R
��1
ij

d

dhm

dRij

dgik

� ��
;

ð30Þ

dB�

dhm
¼� 2R��1

ij

dR�
ij

dhm
R��1

ij ; ð31Þ

and

dc�k
dhm

¼ �R��1
ij

dR�
ij

dhm
R��1

ij

dRij

dgik

� ��
þR��1

ij

d

dhm

dRij

dgik

� ��
:

ð32Þ

We now continue to expand the terms in Eqs. 28–32 con-

taining derivatives with respect to hm. The terms dX=dhm
and dX�1

kl =dhm are obtainable by straightforward differen-

tiation. Noting that the terms ��ij, ðd�ij=dgikÞ�, R�
ij, and

ðdRij=dgikÞ�, have indirect and/or direct dependence on h
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and g�i , we apply the results from Eq. 26 and expand the

remaining derivatives. First,

d��ij
dhm

¼ d�ij
dhm






gi¼g�

i
ðhÞ

þ d�ij
dgi






gi¼g�

i
ðhÞ

dg�i
dhm

: ð33Þ

Here, d�ij=dgi was determined previously in Eq. 19, and

the derivative in the first term is given by

d�ij
dhm

¼
dðdij � ŷijÞ

dhm
¼ � oh

ohm
þ oh

oxij

dxij
dhm

� �
: ð34Þ

The sensitivity of the random effect optimum with respect

to the fixed effect parameters, dg�i =dh, must also be de-

termined, which we will return to later. Then,

dR�
ij

dhm
¼ dRij

dhm






gi¼g�

i
ðhÞ
þdRij

dgi






gi¼g�

i
ðhÞ

dg�i
dhm

; ð35Þ

where dRij=dgi was determined in Eq. 20, and

dRij

dhm
¼ oRij

ohm
þ oRij

oxij

dxij
dhm

: ð36Þ

Next,

d

dhm

d�ij
dgik






gi¼g�

i
ðhÞ

 !

¼ d

dhm

d�ij
dgik

� �� �




gi¼g�

i
ðhÞ
þ d

dg

d�ij
dgik

� �� �




gi¼g�

i
ðhÞ

dg�i
dhm

¼ d

dhm

d�ij
dgik

� �� �




gi¼g�

i
ðhÞ
þ
X
l

d

dgil

d�ij
dgik

� �� �




gi¼g�

i
ðhÞ

dg�il
dhm

¼�
 

o2h

ogikohm
þ o2h

ogikoxij

dxij
dhm

þ o2h

oxijohm
þ o2h

ox2ij

dxij
dhm

 !
dxij
dgik

þ oh

oxij

d2xij
dgikdhm

!





gi¼g�

i
ðhÞ

�
X
l

 
o2h

ogikogil
þ o2h

ogikoxij

dxij
dgil

þ o2h

oxijogil
þ o2h

ox2ij

dxij
dgil

 !
dxij
dgik

þ oh

oxij

d2xij
dgikdgil

!





gi¼g�

i
ðhÞ

dg�il
dhm

;

ð37Þ

where we after the third equality have used the results from

Eq. 19. The derivative of ðdRij=dgikÞ� with respect to hm is

done in a highly similar way and is left to the reader as an

exercise.

In the above expressions, derivatives of h and Rij are

obtained by direct differentiation. The derivatives of the

state variables are determined by the previously derived

sensitivity equation in Eq. 21 and by the additional sensi-

tivity equations

d

dt

dxi
dhm

� �
¼ of

ohm
þ of

oxi

dxi
dhm

� �

dxi
dhm

� �
ðt0Þ ¼

ox0i
ohm

;

ð38Þ

d

dt

d2xi
dgikdhm

� �
¼ o2f

ogikohm
þ o2f

ogikoxi

dxi
dhm

þ o2f

oxiohm
þ o2f

o2xi

dxi
dhm

� �
dxi
dgik

� �

þ of

oxi

d2xi
dgikdhm

� �

d2xi
dgikdhm

� �
ðt0Þ ¼

o2x0i
ogikohm

;

ð39Þ

and

d

dt

d2xi
dgikdgil

� �
¼ o2f

ogikogil
þ o2f

ogikoxi

dxi
dgil

þ o2f

oxiogil
þ o2f

o2xi

dxi
dgil

� �
dxi
dgik

� �

þ of

oxi

d2xi
dgikdgil

� �

d2xi
dgikdgil

� �
ðt0Þ ¼

o2x0i
ogikogil

:

ð40Þ

As noted previously, all sensitivity equations must be

solved simultaneously with the original differential

equations for all but trivial models. However, since one or

more parameters in the vector h may not appear in the

differential equation part of the model (such as pa-

rameters appearing only in X), there may be sensitivities

which are trivially zero. If there are p non-trivial sensi-

tivities among the parameters in h, q non-trivial sensi-

tivities among the parameters in g, and n state variables,

the total number of differential equations that has to be

solved in order to be able to compute logLF and

d logLF=dh for each individual is

n
�
1þ q

��
1þ pþ q=2

�
: ð41Þ

Finally, we need to determine dg�i =dh. At the the optimum

of each individual joint log-likelihood we have that

dli

dgi
¼ 0; ð42Þ

or put differently,

dli

dgi






gi¼g�

i
ðhÞ
¼ 0: ð43Þ

This equality holds for any h, and thus
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d

dh

dli

dgi






gi¼g�

i
ðhÞ

 !
¼ 0: ð44Þ

Recognizing that dli=dgi fulfills the requirements of ap-

plying the results from Eq. 26, we can write this as

d

dh

dli

dgi






gi¼g�

i
ðhÞ

 !
¼ d2li

dgidh






gi¼g�

i
ðhÞ
þd2li

dg2i






gi¼g�

i
ðhÞ

dg�i
dh

¼ 0:

ð45Þ

By rearranging terms and inverting the matrix, we finally

get that

dg�i
dh

¼ � d2li

dg2i






gi¼g�

i
ðhÞ

 !�1
d2li

dgidh






gi¼g�

i
ðhÞ
: ð46Þ

The second order derivatives of the individual joint log-

likelihoods with respect to the random effect parameters

were previously derived in Eq. 13. In contrast to the first

order approximation of the Hessian used in the approximate

population log-likelihood, the second order derivatives of �ij
and Rij are kept. These are obtained by differentiating

Eqs. 19 and 20 once more with respect to gi (not shown).

This in turn requires the second order sensitivity equations of

the state variables with respect to gi, which were previously

provided in Eq. 40. In addition to second order derivatives of

the individual joint log-likelihoods with respect to the ran-

dom effect parameters, Eq. 46 also requires the second order

mixed derivatives, which are given by

d2li

dgikdhm
¼� 1

2

Xni
j¼1
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d�Tij
dhm

R�1
ij

d�ij
dgik

� 2�TijR
�1
ij
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ij
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þ 2�TijR
�1
ij

d2�ij
dgikdhm

� �TijR
�1
ij

d2Rij

dgikdhm
R�1

ij �ij

þ 2�TijR
�1
ij

dRij

dgik
R�1

ij

dRij

dhm
R�1

ij �ij

� 2�TijR
�1
ij

dRij

dgik
R�1

ij

d�ij
dhm

þ tr R�1
ij

dRij

dhm
R�1

ij

dRij

dgik
þR�1

ij

d2Rij

dgikdhm

	 
!

� gTi X
�1 dX

dhm
X�1 dgi

dgik
:

ð47Þ

Here, all terms have previously been introduced except

d2�ij=dgikdhm and d2Rij=dgikdhm, which are provided

within the derivation of Eq. 37 and through a correspond-

ing derivation involving Rij.

Better starting values for optimization of random

effect parameters

Computing the approximate population log-likelihood and

its gradient with respect to the parameters h requires the

determination of g�i for every individual. The first time

log LF and its gradient are evaluated it is reasonable to

initiate the inner level optimizations for g�i with gi ¼ 0.

However, in the subsequent steps of the optimization with

respect to h, better starting values for gi can be provided.

One way of choosing the starting values g0i for the opti-

mization of gi is to set them equal to the optimized value

from the last step of the outer optimization. If we for

simplicity of notation from now on suppress the index of gi
denoting the individual, i, and instead let the the index s

denote the step of the outer optimization with respect to h,

this can be expressed as g0sþ1 ¼ g�s . This will be particularly

helpful as the optimization converges and the steps in h

become smaller. Using g� from the evaluation of log LF as

starting value is also a good strategy when computing the

gradient of log LF by a finite difference approximation.

If the sensitivity approach is used for computing the

gradient of log LF , even better starting values of g can be

provided. This is accomplished by exploiting the fact that

the sensitivity dg�=dh happens to be part of the gradient

calculation. By making a first order Taylor expansion of

the implicit function g�ðhÞ, we propose the following up-

date of the starting values of the random effect parameters

Fig. 1 Starting values for finding optimal random parameter values.

The hypothetical relationship between a parameter h and the optimal

value of a random effect parameter g� is depicted by the solid curve,

and the optimal values of g for two consecutive h of the optimization,

hs and hsþ1, are shown as black points. The two approaches for

selecting starting values g0sþ1 are shown as dashed lines and gray

points, with the label (A) for using the previous value and (B) for

using the gradient based update
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g0sþ1 ¼ g�s þ
dg�s
dh

ðhsþ1 � hsÞ: ð48Þ

The two approaches for choosing g0sþ1 are illustrated in

Fig. 1.

Results

Based on the theory presented in the previous section, we

propose an alternative implementation of the FOCE and

FOCEI methods for parameter estimation of NLME models

based on differential equations. The steps of this novel

approach are outlined in Algorithm 1. The crucial points

are the computation of gradients using sensitivity equa-

tions, for both the inner and outer problem, and the way

that starting values for the inner problem are determined.

The algorithm was evaluated using a two-compartment

model with a capacity-limited elimination. This is a mod-

erately complex pharmacokinetic model that requires the

numerical solution of differential equations. All details re-

garding the model, including model equations, parameters

used for simulating data, the starting values for the parameter

estimation, and the parameter estimates, can be found in the

‘‘Appendix 3’’ section. A short summary of the model is

shown in Table 1. Briefly, four versions of the model (M1-

M4) were used. In modelM1, some parameters were fixed to

the true values, hence excluded from the estimation. Three

random effect parameters were introduced but their

covariance matrix was limited to a diagonal matrix. Obser-

vations were modeled using a normally distributed additive

error. All parameters were estimated in modelM2, including

the full covariance matrix for the random effect parameters.

In model M3, an additional random effect parameter was

introduced and the full covariance matrix was extended ac-

cordingly. The observational model was also altered to in-

clude measurements from both compartments, and the error

in the measurements from the first compartments was mod-

eled with both an additive and proportional term. Model M4

is the same asM3 but for thismodel the parameter estimation

was performed with FOCEI instead of FOCE.

Improving gradient precision and accuracy

We compared our proposed method of computing the

gradient of the approximate population log-likelihood,

log LF , with respect to h to the more straightforward ap-

proach of finite difference approximation. Two versions of

the finite difference approximations were considered, a

forward difference and a central difference. To investigate

the precision and accuracy of these approximations, we

first determined the estimate of h for model M1. We then

computed all 6 elements of the gradient at this point in

parameter space using different values of the relative step

size, 10�h. The details of the comparison are explained in

the methods section. In addition, we computed the gradient

using the approach based on sensitivity equations. A

comparison of the two approaches is shown in Fig. 2,

Algorithm 1 Parameter estimation algorithm
s := 0, θs := θstarting Initialize algorithm
for all individuals do

u := 0, ηu
s := 0

end for
repeat Solve the outer problem

for all individuals do
u := 0
repeat Solve the inner problem

Solve for x and the sensitivities dx/dη
Compute l and dl/dη
Update ηu+1

s according to BFGS
u := u + 1

until η∗
s is obtained

end for
for all individuals do

Set η := η∗
s

Solve for x and the sensitivities dx/dη, dx/dθ, d2x/dη2, and d2x/dηdθ
end for
Compute log LF and d log LF /dθ
Update θs+1 according to BFGS
for all individuals do Set starting values for inner problem

η0
s+1 = η∗

s +
dη∗

s
dθ

(θs+1 − θs)
end for
s := s + 1

until convergence of θ
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where each row shows one element of the gradient at two

levels of magnification.

The left column of Fig. 2 shows a pattern that appears to

be consistent for all parameters; for large h, i.e. small step

sizes, the result of the finite difference approach is

dominated by numerical noise for both forward and central

differences. Thus, for this particular model, and for this

particular point in parameter space, the finite difference

approximations have low precision as h increases beyond

3. For small h, i.e. large step sizes, there is a trend of

severely decreased accuracy for the forward differences.

Looking at the values of the gradient from the approach of

sensitivity equations, it is clear that for h around 2 and

smaller, forward differences produces values of elements

of the gradient that are up to two orders of magnitude

larger, and with a wrong sign in four of six cases. The

behavior of the central difference approximation for small

and intermediate h is best viewed in the right column,

where the scales of the axis have been chosen differently.

For the three first elements of the gradient, namely the

derivatives of log LF with respect to Vmax, V1, and Km, the

central difference approximation appears to be accurate but,

on the scale of the size of the gradient computed according to

the sensitivity equation approach, the limits in precision are

visible. For the derivatives with respect to the the parameters

of X, x11, x22, and x33, there are obvious issues with both

accuracy and precision of the approximation, producing

derivatives that are both of wrong size and sign. The fact that

the approximation starts to deviate systematically for h less

than 2 indicates that in these parameter directions, and on this

scale, an expansion of the approximate log-likelihood

function has a significant contribution of third order terms

and higher, causing a bias in the approximation of the gra-

dient using central differences.

The approach of determining the gradient using sensi-

tivity equations is also subject to numerical errors. By re-

peated evaluation of the gradient using randomized values

for the starting values of the inner optimization problem,

we determined the relative standard error. For all 6

parameter directions of the gradients, the relative standard

errors were between 0.1 and 1 %. Thus, these numerical

errors are so small that they would not even be visible on

the scales of Fig. 2.

Improving computational time

We investigated the improved computational times result-

ing from replacing finite difference approximations of the

gradients in the inner and outer problem with gradients

computed using sensitivity equations, and from using better

starting values for the inner problems. The contribution

from each of these three steps, as well as their accumula-

tive effect, are shown in Fig. 3.

For the first step of improvement, using gradients based

on sensitivity equations for the inner problem, computa-

tional times for models M1 and M2 (with 3 random effect

parameters) decreased to almost a third compared to the

approximation using forward differences, and to a fifth

compared to central differences. The ratio of these two

relative decreases is reasonable considering that the for-

ward difference approximation requires 4 function

evaluations and the central difference requires 7 evalua-

tions. Model M3 and M4 contain one additional random

effect parameter and the gains in speed were slightly larger

compared to both variants of the finite difference

approximation.

Replacing the finite difference approximation of the

gradient in the outer problem with the approach based on

sensitivity equations results in further improvement of

computational times. As the number of parameters in the

outer optimization problem increase from 6 to 18 for the

models M1 to M3, the reduction in computational times

improves from 29 to 14 % when compared to forward

differences, and from 16 to 7 % compared to central dif-

ferences. Although model M4 is identical to M3, the re-

duction in computational times are slightly less for this

model. This is because M4 uses FOCEI for estimating

parameters, which compared to FOCE requires more time

Table 1 Overview of benchmark models showing the method used,

the numbers of different types of parameters, and the total number of

ordinary differential equations (ODEs) per individual for the inner

and outer problem (including the number of sensitivity equations

according to Eqs. 22 and 41)

Model M1 M2 M3 M4

Method FOCE FOCE FOCE FOCEI

Total number of fixed effect parameters (h) 6 12 18 18

Parameters in the ODE model 3 5 5 5

Parameters in the observational model 0 1 3 3

Parameters in the random effect covariance matrix 3 6 10 10

Number of random effect parameters (g) 3 3 4 4

ODEs per individual, inner problem 8 8 10 10

ODEs per individual, outer problem 44 60 80 80
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for putting together the more complex gradient expressions

once the sensitivity equations have been solved. Again it is

reasonable to expect a nearly doubled factor of decrease

when comparing central and forward finite differences

since the former need almost twice as many function

evaluations.

The final step of improvement is only applicable when

gradients for both the inner and outer problem are com-

puted using the approach based on sensitivity equations.

Thus, the distinction between forward and central differ-

ences is no longer of importance. The decrease in com-

putational times were around 70 % for models M1 to M3,

and somewhat less for model M4, which again benefits less

due to its larger overhead of having to compute all inter-

action terms.

The accumulated effect of all the steps range from a

decrease in computational times to 7 % for the least

complex model when comparing to forward differences, to

the substantial decrease to 1 % for the most complex model

when comparing to central differences.

Discussion

This article has demonstrated a novel approach to the

computation of gradients needed for the FOCE and FOCEI

approximation of the population likelihood encountered in

NLME modeling. We have derived the analytic expres-

sions for the gradients of both the individual and popula-

tion log-likelihoods as well as the so called sensitivity

equations, whose solution is a necessity for evaluating the

gradient expressions.

Using sensitivity equations to compute the gradient for

the inner problem is quite straightforward. As we under-

stand it, approaches along these lines are in fact used for

the inner problem, at least to some extent, in softwares such

as NONMEM and Phoenix NLME. For the approximate

population log-likelihood on the other hand, the sensitivity

approach to gradient computation is complicated by the

fact that this function depends on the nested optimization

of the individual joint log-likelihoods. In this work we

have, to the best of our knowledge, for the first time

demonstrated how sensitivity equations can be used for

computing the gradient of the FOCE and FOCEI ap-

proximations to the population log-likelihood. A key step

to obtain this gradient involves the derivative of the opti-

mal random effect parameters with respect to the fixed

effect parameters. It was shown that this derivative could

be determined given second order sensitivity equations.

Abandoning the finite difference approximation of gra-

dients in favor of the approach of sensitivity equations

were shown to have two advantages; gradients could be

computed with a higher precision and computational times

were substantially reduced. Though, implementation of the

presented method is more challenging compared to finite

difference FOCE/FOCEI, and the limitations of the

Laplacian approximation are still present.

Fig. 2 Precision and accuracy of the approximate population log-

likelihood gradient. Each row displays one element of the gradient,

and the left and right columns show two different levels of

magnification, respectively. Evaluations of the derivatives of logLF
using forward and central differences with different relative step sizes

are shown as blue and red dots, respectively. A single evaluation of

the derivatives using the approach based on sensitivity equations is

indicated by a black line, and the value zero is shown as a dashed line

for comparison
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Increased precision and accuracy of gradients

The optimization of the approximate population log-likeli-

hood log LF with respect to h would typically be performed

with a quasi-Newton method. A straightforward approach

to obtaining the gradient needed for such methods is to

compute it from a finite difference approximation. How-

ever, the finite difference approach may result in issues with

both precision and accuracy of the gradient. We demon-

strated this for the computation of the gradient in the outer

problem, evaluated close to the optimum of log LF .

Although the use of central differences with an appropriate

step length could avoid the worst problems, precision and

accuracy were still inferior compared to the approach based

on sensitivity equations. The potential limitations of com-

bining NLME models based on differential equations with

likelihood optimization using gradients computed by finite

differences have previously been recognized [3]. The issues

with the finite difference approximation depend both on

numerical limitations and on the approximation itself. First

of all, evaluation of log LF can only be done to a certain

precision. This is especially evident for models based on

differential equations, whose solution involves adaptive

schemes for numerical integration. In addition to the nu-

merical precision of functions like log, which is high, the

precision of log LF depends on the precision of the solutions

to the differential equations, and the precision of computing

derivatives with respect to g. The precision of logLF also

has a strong dependence on the precision of g�, which in

turn again depends on the solutions of differential equations

and, if the inner level optimization problem is performed

using a gradient-based method, depends on computing

derivatives of the individual joint log-likelihoods with re-

spect to g. Secondly, taking finite differences of log LF will

amplify numerical errors, resulting in increasingly poor

precision of the gradient as the step size is decreased. On the

other hand, taking too long steps will decrease the accuracy

of the approximation due to the increasing impact of higher

order terms in an expansion of log LF (forward differences

is only exact up to first order terms, and central differences

is only exact up to second order terms). Even if it for a given

model in some cases would be possible to customize the

step length for the finite difference approximation (which

typically would be different in each separate parameter

direction) using an analysis like the one performed here, it

would be infeasible in practice since such an investigation

may take longer time than solving the parameter estimation

problem itself. Adding further to the problem, the choice of

a suitable step size will most certain be different depending

on the point in parameter space, thus constantly requiring a

reevaluation of the step size.

There are several advantages of being able to compute

gradients with an improved precision and accuracy

(i) Parameter estimates can be computed with higher pre-

cision, or alternatively, the same precision can be obtained

but with shorter run times since we may afford to reduce

the precision of the inner problem while still maintaining a

similar precision in the outer problem [11]. (ii) Premature

termination and convergence problems of the parameter

estimation algorithm can be avoided or at least reduced [8,

24]. (iii) May enable the calculation of standard errors of

the parameter estimates in cases where this was not pos-

sible due to the numerical issues of the finite difference

approach [7]. However, we want to point out that for many

points in the parameter space the limited precision and

accuracy of the finite difference approach may not be

crucial for the progression of the optimization as long as

the approximation of the gradient results in a true ascent

direction of the function being maximized.

Decreased computational times

The relative decrease in computational times were inves-

tigated for the successive application of three specific steps

toward improvement, namely (i) Gradients based on sen-

sitivity equations in the inner problem, (ii) Gradients based

on sensitivity equations in the outer problem, and (iii)

Better starting values for the inner problem. In all cases of

applying the two first steps, we found that the decrease in

computational times were substantially larger when com-

paring to central differences instead of forward differences.

This was anticipated since central differences requires al-

most twice as many function evaluations as forward dif-

ferences. Moreover, for both the inner and outer levels of

optimization, the gains in computational times tended to be

larger for models with higher number of parameters. For

instance, the run time improvements of providing gradients

from sensitivity equations in the outer problem were more

than doubled for model M3 with 18 parameters compared

to model M1 with 6 parameters. It was also observed that

the improvement factor in the outer optimization was

slightly lower for FOCEI compared to FOCE. Although the

number of ODEs to be solved in both the inner and outer

problem is the same, this was expected considering that the

FOCEI method is based on more extensive expressions for

both the likelihood and its gradient.

There are two main reasons why the approaches based

on sensitivity equations should be faster. First of all, the

right hand side of the sensitivity equations has lots of

common subexpressions both with other sensitivity equa-

tions and with the original system of differential equations.

Thus, the cost of evaluating the right hand side for the

combined system of the original differential equations and

the sensitivity equations can be surprisingly small. Fur-

thermore, since the sensitivity equations are linear in the

sensitivity state variables, there is typically little extra
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effort needed in the adaptive time stepping of the differ-

ential equations solver for accommodating these additional

equations. For the inner problem this means that it is faster

to solve the combined system, yielding in total nð1þ qÞ
differential equations, rather than having to solve the n

original differential equations 1þ q times, which would

have been the case using forward finite differences. Se-

condly, the use of sensitivity equations in the outer level

optimization avoids the repeated need of having to solve

the inner problems for perturbed values of the outer pa-

rameters. The exact improvement made at this step de-

pends on several factors of which perhaps the most

important one is the desired precision (and hence the

number of iterations required) of the inner optimizations

needed for every parameter perturbation of a finite differ-

ence approximation (had this alternative been used

instead).

We furthermore note that the computation of gradients

based on sensitivity equations is highly amenable to par-

allelization, something which may be exploited to speed up

computations considerably. The potential gains of doing

this are expected to be similar to those of parallelizing the

computation of the population log-likelihood itself [11].

In addition to the reduced computational times coming

from the two steps of improved gradient computations, a

third level of speed up was obtained by choosing more

informed starting values for the inner problem. Although

this improvement was not as substantial as the others, the

gains from this step may be quite dependent on the starting

values of the outer optimization problem. As the outer level

optimization converges, the steps in h become successively

smaller, which in turn means that the linear approximation

of g�ðhÞ becomes better. Thus, the overall improvement in

computational time will depend on how much of the op-

timization that was spent in these ‘‘later stages’’ of con-

vergence. This means that it is likely that the relative

improvement will be larger if the optimization had been

started closer to the optimum.

Setting the results of Fig. 3 in relation to commercial

softwares for NLME parameter estimation, we would like

to comment on a mixed analytical/finite difference ap-

proach to the differentiation of the FOCE likelihood with

respect to the parameters of the random effect covariance

matrix X, which is used as default by NONMEM (when

the SLOW option is not selected). Since these parameters

do not normally directly influence neither the residuals, nor

the residual covariance matrix, their part of the likelihood

gradient is less complicated compared to other parameters.

As shown by the theory in this paper, their part of the

gradient may be computed using only second order g

sensitivities (Eq. 40), not requiring first order h or second

order mixed sensitivities (Eqs. 38 and 39, respectively).

Although NONMEM FOCE does not use second order g

sensitivities, it still utilizes this technique by performing a

central finite difference evaluation on the first order g

sensitivities. While this is slower than performing com-

pletely analytical second derivatives, along with some

erosion of precision, it is certainly faster than the SLOW

FOCE method, which must perform the inner problem re-

optimizations at each outer level perturbation of the X-

parameters. The derivatives of the likelihood with respect

to the remaining parameters are still obtained from finite

differences.

The degree of improvement of speed for the S-S ap-

proach compared to an approach that is mixing finite dif-

ferences and analytical methods at the outer level, i.e, an S-

F/S approach, may therefore be less substantial than what

can be achieved for going from S-F to S-S. Under the

realistic assumption that all perturbed evaluations of log LF
are equally costly, and further assuming that the X-part of

the gradient can be obtained at a computationally in-

significant cost (ignoring the relatively few extra evalua-

tions needed for the central finite difference of the first

order g sensitivities), the reference time of 100 % for going

from forward differences S-F to S-S in Fig. 3 would

change to ðð1þ Ph � PXÞ=ð1þ PhÞÞ100 % if instead going

from S-F/S to S-S, where Ph is the total number of pa-

rameters and PX is the number of X-parameters. The ref-

erence time for going from central differences S-F to S-S

would for S-F/S to S-S similarly change to

ðð1þ 2Ph � 2PXÞ=ð1þ 2PhÞÞ100 %. For model M1 this

would mean that the improvements to 29 and 16, for for-

ward and central differences, respectively, should be

compared to the S-F/S references of 57 and 54, rather than

to 100, and for model M3 the improvements to 14 and 7

should be compared to 47 and 46. In general, one would

expect the advantage of the S-S approach to decrease as the

fraction of X-parameters with respect to the total number

of parameters increases, e.g., for problems with many

random effect parameters when estimating the full random

effect covariance matrix. It must however be emphasized

that this is a mixed analytical/finite difference approach,

and may as such have lower precision and accuracy com-

pared to the S-S approach. Moreover, the remaining part of

the gradient will still be completely derived from finite

differences, and is expected to have the same comparable

quality to the S-S approach as demonstrated in the results

section.

Extending the line of thought, one could also consider a

hybrid between the above S-F/S approach and the S-S

approach, where the derivatives of log LF with respect to

the X-parameters are computed according to the exact

approach presented in this work but where the deriva-

tives for the remaining parameters of the outer level

problem are obtained from a finite difference approach.

This would indeed require the second order sensitivity
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equations with respect to g, but not the first order h or

the mixed second order sensitivity equations. The accu-

racy and precision would still be lower for the part of

the gradient obtained from finite differences but the

elements corresponding to the parameters of X would be

of the same quality as the S-S approach, i.e., without

approximations.

Challenges and limitations

Moving from a convenient proof-of-concept environment

such as Mathematica, in which the proposed method cur-

rently is implemented, to a more stand-alone environment

of a commercial software may present various challenges.

One of the most obvious challenges is the integration of

Fig. 3 Comparison of relative

estimation times. The relative

computation times expressed in

percentage are shown for going

from one scheme for obtaining

gradients to another. Results are

shown for the model variants

M1-M4, using either a forward

or central implementation of the

finite difference approach. F-F

denotes the use of finite

differences for both the inner

and outer problem, S-F the use

of gradients based on sensitivity

equations for the inner problem,

S-S the use of gradients based

on sensitivity equations for both

inner and outer problems, and S-

S-g denotes the additional

implementation of the better

starting values for the inner

problem
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functionality for performing symbolic differentiation. This

is essential since the sensitivity equations, i.e., the differ-

ential equations in Eqs. 21, 38, 39, and 40, are model

specific and have to be derived for every new model, in

order to apply the results of this paper. It also applies to the

derivatives of h, Rij, and X, which too are model specific.

Since differential equation models may be quite complex,

and because second order derivatives are needed, it is not

realistic to perform these derivations manually, and a tool

that can perform symbolic differentiation will be required.

To this end, one may consider to look at free symbolic

packages such a SymPy [23]. The use of tools for symbolic

analysis may furthermore be crucial to exploit the existence

of common subexpressions, e.g., in the right hand sides of

the sensitivity equations.

An alternative approach, which does not require sym-

bolic differentiation, would be to use so called automatic

differentiation (AD) [19]. The idea of AD is that every

mathematical function that can be written as a computer

program can be differentiated by applying the chain rule of

differentiation, leading to the differentiation of every ele-

mentary operation of that computer program. Even though

AD in principle could be applied directly to the ap-

proximate population likelihood, whose gradient we wish

to compute, this would in practice be infeasible as this

function is based on the execution of both optimization

routines and adaptive numerical integration of differential

equations. If used, AD would therefore not be applied to

the population likelihood, but to the right hand sides of the

model differential equations, and to the other model objects

requiring differentiation. The parameter estimation would

thus still proceed according to the steps laid out in Algo-

rithm 1, but with symbolic differentiation replaced with

AD. Following such an approach, the precision and accu-

racy of the gradients are not expected to differ, but it would

have to be investigated how AD performs in terms of

computational times. With a so called reverse mode AD it

may actually be possible to improve run times even further

compared to the current results.

Even if tools for differentiation can be provided for a

stand-alone implementation, estimation methods which in-

volve the direct differentiation of model state variables, etc.,

may experience limitations when considering other types of

mathematical formalisms, such as models based on

stochastic differential equations or hidden Markov models,

since the required derivatives may be challenging to obtain.

The method of computing gradients based on finite differ-

ences, on the other hand, do not care about the details of how

a model is evaluated and has no limitations in this sense.

Finally, it should also be mentioned that although the

approach for gradient computations presented here may

improve the performance of FOCE and FOCEI, the

fundamental limitations of the Laplacian approximation as

such still remains. Being only an approximation to the

population likelihood, this class of methods do not guar-

antee the desirable statistical properties of a true maximum

likelihood estimate. In this respect the new generation of

estimation methods which are based on Monte Carlo ex-

pectation maximization methods, such as stochastic ap-

proximation expectation maximization and importance

sampling, are superior to the classical ones since the pa-

rameter estimates and their confidence intervals, etc., are

not biased by likelihood approximations. However, FOCE

and FOCEI will likely be important complementary

methods for a long time still, and improving their effi-

ciency is therefore nonetheless relevant.

Possible extensions

The approach of computing gradients using sensitivity

equations presented here could bemodified for other variants

of the population likelihood based on the Laplacian ap-

proximation. For instance, with some alterations it could be

applied to the first order (FO) approximation of the popula-

tion likelihood. Since the FO method does not rely on con-

ditioning with respect to the optimal random effect

parameters, the use of an approach based on sensitivity

equations would be less complicated but at the same time

also less rewarding. Gradients based on the approach of

sensitivity equations could with some adjustments also be

derived for the Laplacemethod. This would however require

third order sensitivity equations butmay beworthwhile since

the potential gains should be at least as substantial as for

FOCE and FOCEI. Because the theory presented in this ar-

ticle is derived for the FOCEI approximation, it accounts for

the dependence of residual errors on the random effect pa-

rameters. This means that the gradient expressions stated

here are suitable for prediction error-type NLME models,

including models based on stochastic differential equations

(see for instance [6, 14, 18]), since these typically display an

interaction between residuals and random effects. The first

step towards this end has in fact already been taken through

the successful application of sensitivity equations for com-

puting gradients in stochastic differential equationmodels on

the single-subject level [16]. Furthermore, gradient com-

putations based on sensitivity equationsmay be useful for the

problem of optimal experimental design [1, 17].

Conclusions

The presented approach of computing gradients for both

the individual- and population-level log-likelihoods of the

FOCE and FOCEI approximations leads to more robust

gradients and decreased computational times. We therefore

204 J Pharmacokinet Pharmacodyn (2015) 42:191–209

123



suggest that future implementations of these conditional

estimation methods should include the approach based on

sensitivity equations for computing the gradients. We ea-

gerly await the further development of the proposed ap-

proach from the prototyped version used in the present

study to its implementation in publicly or commercially

available software packages.

Methods

The NLME parameter estimation algorithm investigated in

this study was implemented in Mathematica 9. An execu-

table version of the code, and the data sets used within this

study, may be received from the authors upon request.

Comparison of performance

The performance of a computer program for parameter

estimation in NLME models depends on several factors,

such as the particular NLME model, the experimental data,

how the estimation problem is formulated and possibly

approximated, the choice and settings of the optimization

method (including sub-methods such as line-searches, etc.),

starting values of parameters, the differential equation

solver used, the design of convergence criteria, etc. This

paper is investigating the advantages of providing gradients

by means of sensitivity equations for the FOCE or FOCEI

approximation of the population likelihood. However, this

paper is not claiming to address all the other factors that

will impact on the parameter estimation. Comparing mea-

sures such as absolute run-times of our implementation

with commercial software like NONMEM may therefore

be misleading with respect to the advantages of gradient

calculations. To avoid this the comparison is designed to

look only at the improvements made by abandoning the

finite difference approximation in our own implementation.

Comparison of precision and accuracy

The comparison of precision and accuracy was performed

in the following way. At the optimal values of h (found

from the comparison of computational times), the elements

of the gradient of the approximate log-likelihood function

were approximated with finite differences, using a relative

step size, according either to a forward difference

log LF
�
hmð1þ 10�hÞ

�
� log LFðhmÞ

hm10�h
; ð49Þ

or a central difference,

log LF
�
hmð1þ 10�hÞ

�
� log LF

�
hmð1� 10�hÞ

�
2hm10�h

: ð50Þ

For these function evaluations, the inner problemwas solved

to a precision of 4 digits (using the gradients from the ap-

proach of sensitivity equations). Furthermore, for forward

differences the value of log LF was recalculated for every h

using randomized starting values for the inner problems.

Thiswas done to avoid correlations between differenceswith

different step size that may otherwise have resulted from a

single realization of the numerical error of log LF .

The approach of determining gradients using sensitivity

equations does not involve any approximations, and is

therefor expected to be correct on average. Its precision

was assessed by computing the gradient 500 times using

randomized starting values for the inner problems. For

these gradient evaluations, the inner problem was solved to

a precision of 4 digits.

Comparison of computational times

The comparison of computational times was done in the

following way. Both the inner and outer problem were

solved using gradients based on sensitivity equations, as

outlined in the theory section. The inner problem was

solved to a precision of 4 digits, and the outer to a precision

of 3 digits. The comparison to finite differences was done

by simultaneously clocking the time of computing gradi-

ents by a finite difference approximation but proceeding

with the optimizations according to values of the gradient

from the sensitivity approach. The reason for doing this is

that the number of iterations, and the properties of every

iteration (such as stiffness of the model equation with that

certain set of parameters), for solving both the inner and

outer problem might be affected by the choice of method

for computing the gradients. Even small numerical differ-

ences in the results of the two methods may cause the paths

taken in the parameter space to diverge substantially over

the course of the optimizations, potentially making the

comparison unfair. In this way we isolate the comparison to

the actual computational times for the different methods of

obtaining the gradients. Since the methods based on sen-

sitivity equations were shown to have a higher precision in

the evaluation of gradients, there may be additional gains

in computational times to be made from traversing the

parameter space based on more exact gradients. However,

quantifying this type of contribution may require averaging

over a large number of models and parameter starting

values and was not considered. Thus, our implementation

of the comparison focuses on the direct improvements in

computational times and will therefore be a conservative

measure of the gains in speed.

To make a fair implementation of timing the finite dif-

ferences approach the following starting values of the

random effect parameters for the inner problem were used.
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When evaluating the approximate population log-likeli-

hood at the unperturbed parameter values of the outer

problem, the starting values for the parameters of the inner

problem were set to the optimum from the previous outer

evaluation, i.e., according to approach A in Fig. 1. For

evaluating the approximate population log-likelihood at the

perturbed parameter values of the outer problem, the

starting values for the parameters of the inner problem

were set to the optimum obtained for the unperturbed outer

problem parameters. The relative size of each perturbation

of the parameters in h was 10�2.

Compared to the finite difference approaches, using

sensitivity equations had an overhead of evaluating the

quite substantial mathematical expressions for the gradi-

ents once the differential equations are integrated, some-

thing which was carefully included in the comparison of

computational times.

Optimization algorithm

Both the inner and outer optimization problems were

solved using the BFGS method [20].

Derivation of sensitivity equations

Given an NLME differential equation model, the corre-

sponding sensitivity equations were derived by symbolic

differentiation in Mathematica.
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Appendix 1: Matrix calculus

The default representation of a vector is a column vector,

y ¼

y1
y2

..

.

ym

0
BBB@

1
CCCA: ð51Þ

The derivatives of vectors and matrices by scalars are de-

fined as element-wise derivatives, according to

dy

dx
¼

dy1

dx
dy2

dx

..

.

dym

dx

0
BBBBBBB@

1
CCCCCCCA
; ð52Þ

and

dA

dx
¼

da11

dx

da12

dx
� � � da1n

dx
da21

dx

da22

dx
� � � da2n

dx

..

. ..
. . .

. ..
.

dam1

dx

dam2

dx
� � � damn

dx

0
BBBBBBB@

1
CCCCCCCA
; ð53Þ

respectively. The derivative of scalar by vector is given by

dy

dx
¼ dy

dx1

dy

dx2
� � � dy

dxm

� �
; ð54Þ

the derivative of vector by vector is given by

dy

dx
¼

dy1

dx1

dy1

dx2
� � � dy1

dxn
dy2

dx1

dy2

dx2
� � � dy2

dxn

..

. ..
. . .

. ..
.

dym

dx1

dym

dx2
� � � dym

dxn

0
BBBBBBBB@

1
CCCCCCCCA
; ð55Þ

and the derivative of row-vector by vector is given by

dyT

dx
¼

dy1

dx1

dy2

dx1
� � � dym

dx1
dy1

dx2

dy2

dx2
� � � dym

dx2

..

. ..
. . .

. ..
.

dy1

dxm

dy2

dxm
� � � dym

dxn

0
BBBBBBBB@

1
CCCCCCCCA
: ð56Þ

The derivative of a quadratic form is obtained in the fol-

lowing way. Let y ¼ bTAb, where A is a square matrix and

b a suitable vector. If A is symmetric then

dy

dx
¼ dbT

dx
Abþ bT

dA

dx
bþ bTA

db

dx

¼ bTAT db

dx
þ bT

dA

dx
bþ bTA

db

dx

¼ 2bTA
db

dx
þ bT

dA

dx
b:

ð57Þ

The derivative of an inverse matrix is found by noting that
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dA�1

dx
¼

d A�1AA�1
� �

dx
¼ dA�1

dx
AA�1 þ A�1 dA

dx
A�1

þ AA�1 dA
�1

dx
; ð58Þ

and thus that

dA�1

dx
¼ �A�1 dA

dx
A�1: ð59Þ

The derivative of the logarithm of the determinant of a

covariance matrix is given by the following expression. If

A is a real-valued, symmetric, positive-definite matrix, then

d

dx
log jAj ¼ tr A�1 dA

dx

	 

: ð60Þ

This can be seen by first writing A as A ¼ QKQ�1, where

K is a diagonal matrix. Now, the left-hand side of Eq. 60

becomes

d

dx
log jAj ¼ d

dx
log jQj � jKj � jQ�1j
� �

¼ d

dx
log jKj

¼ d

dx

X
i

logKii ¼
X
i

1

Kii

dKii

dx
¼ tr K�1 dK

dx

	 

;

ð61Þ

which is equal to the right-hand side of Eq. 60 since

tr A�1 dA

dx

	 

¼ tr QK�1Q�1 dQ

dx
KQ�1

	 


þ tr QK�1 dK
dx

Q�1

	 

� tr

dQ

dx
Q�1

	 


¼ tr
dQ

dx
Q�1

	 

þ tr K�1 dK

dx

	 


� tr
dQ

dx
Q�1

	 

¼ tr K�1 dK

dx

	 

:

ð62Þ

Appendix 2: Hessian approximation

For an appropriate model, it holds that

E½�ij� ¼ 0; ð63Þ

and

E �ij�
T
ij

h i
¼ Rij; ð64Þ

where the expected values are taken with respect to data,

which here are considered to be random variables whose

values have not yet been realized. Based on these equa-

tions, the Hessian in Eq. 13 can be simplified to various

degrees by approximating its different terms with their

expected values. A minimal simplification for eliminating

the second order derivative terms is achieved by noting that

E 2�TijR
�1
ij

d2�ij
dgikdgil

	 

¼ E 2�Tij

h i
R�1

ij

d2�ij
dgikdgil

¼ 0; ð65Þ

and

E ��TijR
�1
ij

d2Rij

dgikdgil
R�1

ij �ij þ tr R�1
ij

d2Rij

dgikdgil

	 
	 


¼ E �tr �TijR
�1
ij

d2Rij

dgikdgil
R�1

ij �ij

	 
	 

þ tr R�1

ij

d2Rij

dgikdgil

	 


¼ E �tr R�1
ij

d2Rij

dgikdgil
R�1

ij �ij�
T
ij

	 
	 

þ tr R�1

ij

d2Rij

dgikdgil

	 


¼ �tr R�1
ij

d2Rij

dgikdgil

	 

þ tr R�1

ij

d2Rij

dgikdgil

	 

¼ 0;

ð66Þ

where we are making use of the fact that the trace of a

scalar is just the scalar, the order of the expectation and

trace operators can be shifted, and the cyclic property of

the trace operator. This simplification is used in the present

study.

Further simplifications of Eq. 13 may be performed by

noting that the expectation of additional terms vanishes,

E �2�TijR
�1
ij

dRij

dgil
R�1

ij

d�ij
dgik

	 

¼ 0; ð67Þ

E �2�TijR
�1
ij

dRij

dgik
R�1

ij

d�ij
dgil

	 

¼ 0; ð68Þ

and by taking the expected value and collecting terms,

E 2�TijR
�1
ij

dRij

dgik
R�1

ij

dRij

dgil
R�1

ij �ij � tr R�1
ij

dRij

dgil
R�1

ij

dRij

dgik

	 
	 


¼ tr R�1
ij

dRij

dgil
R�1

ij

dRij

dgik

	 

:

ð69Þ

Taken together, all simplifications yield the following

Hessian

~Hikl ¼ �
Xni
j¼1

 
d�Tij
dgil

R�1
ij

d�ij
dgik

þ 1

2
tr R�1

ij

dRij

dgil
R�1

ij

dRij

dgik

	 
!

� X�1
kl ;

ð70Þ

which is the variant used in NONMEM [2].

Appendix 3: Benchmark models and data

The equations for the two-compartment pharmacokinetic

model are
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V1

d c1ðtÞ
dt

¼ uðtÞ þ Cld ðc2ðtÞ � c1ðtÞÞ �
Vmax c1ðtÞ
Km c1ðtÞ

V2

d c2ðtÞ
dt

¼ Cld ðc1ðtÞ � c2ðtÞÞ

c1ð0Þ ¼ c2ð0Þ ¼ 0; ð71Þ

where uðtÞ is an input function, which was used to model a

constant infusion with the rate 0.67 per minute during the

first 30 minutes followed by another 30 minutes of wash-

out. For models M1 and M2, the scalar-valued observation

model was defined by yt ¼ c1ðtÞ þ et, where et 2 Nð0;RtÞ
and

Rt ¼ r2a1
� �

: ð72Þ

For models M3 and M4, the vector-valued observation

model was defined by yt ¼ ðc1ðtÞ; c2ðtÞÞ þ et, where

Rt ¼ ðra1 þ rp1c1ðtÞÞ2
r2a2

� �
: ð73Þ

In models M1 and M2, the three parameters Vmax, Km, and

V1, were defined to be log-normally distributed on the

population level. This was accomplished by multiplying

them with expðg1Þ, expðg2Þ, and expðg3Þ, respectively,

where g ¼ ðg1; g2; g3Þ is normally distributed with zero

mean. In the first variant of this model, M1, the covariance

matrix for the random effect parameters is defined by the

diagonal matrix

X ¼
x2

11

x2
22

x2
33

0
@

1
A; ð74Þ

and in the second variant, M2, the full matrix is estimated

using the parameterization

X ¼
x2

11 þ x2
12 þ x2

13 x12x22 þ x13x23 x13x33

x12x22 þ x13x23 x2
22 þ x2

23 x23x33

x13x33 x23x33 x2
33

0
@

1
A

ð75Þ

to ensure positive definiteness. In models M3 and M4, an

additional random effect parameter was in the same way

introduced for the parameter Cld. A similarly defined full

matrix for 4 random effect parameters was used for models

M3 and M4.

The parameter values used for simulating data are

shown in Table 2, together with information of which pa-

rameters are being estimated in the four model variants,

and what the starting values of the estimation were. One

data set consisting of 10 simulated individuals was used for

models M1 and M2. Here, the values of c1 were collected

at the time points t ¼ 10; 15; 20; . . .; 60. For models M3

and M4, another data set consisting of 20 simulated

Table 2 Parameter values used for simulating data (D), starting values for estimation (S), and parameter estimates (E) for the different models

Parameter D S, M1 S, M2 S, M3/M4 E, M1 E, M2 E, M3 E, M4

Vmax 0.5 0.2 0.2 0.2 0.424 0.419 0.473 0.473

Km 4 3 3 3 3.91 2.53 4.37 4.37

Cld 0.01 – 0.01 0.01 – 0.00976 0.00813 0.00813

V1 0.3 0.1 0.1 0.1 0.288 0.285 0.321 0.321

V2 0.1 – 0.1 0.1 – 0.0956 0.0959 0.0959

ra1
ffiffiffiffiffiffiffi
0:5

p
� 0:707 –

ffiffiffiffiffiffiffi
0:1

p
� 0:316

ffiffiffiffiffiffiffi
0:1

p
� 0:316 – 0.414 0.644 0.644

rp1 0� -� -� ffiffiffiffiffiffiffi
0:1

p
� 0:316 -� -� 0.00165 0.00163

ra2
ffiffiffiffiffiffiffi
0:5

p � � 0:707 -� -� ffiffiffiffiffiffiffi
0:1

p
� 0:316 -� -� 0.730 0.730

x11
ffiffiffiffiffiffiffi
0:5

p
� 0:707 1 1 1 0.616 0.553 0.559 0.560

x12 0 – 0 0 – -0.0518 -0.123 -0.123

x13 0 – 0 0 – 0.439 -0.138 -0.138

x�
14 0� -� -� 0 -� -� 0.0273 0.0275

x22
ffiffiffiffiffiffiffi
0:5

p
� 0:707 1 1 1 0.772 0.575 0.533 0.533

x23 0 – 0 0 – �0.485 0.0174 0.0174

x�
24 0� -� -� 0 -� -� -0.0230 -0.0230

x33
ffiffiffiffiffiffiffi
0:5

p
� 0:707 1 1 1 0.994 1.39 0.776 0.776

x�
34 0� -� -� 0 -� -� -0.409 -0.409

x�
44

ffiffiffiffiffiffiffi
0:5

p � � 0:707 -� -� 1 -� -� 0.870 0.870

Parameters which were not estimated are indicated with a dash. The * indicate that a parameter is only used in models M3 and M4
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individuals was used, where the values of c1 and c2 were

collected at the time points t ¼ 10; 15; 20; . . .; 60.
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Abstract. Inclusion of stochastic differential equations in mixed effects models provides means to
quantify and distinguish three sources of variability in data. In addition to the two commonly
encountered sources, measurement error and interindividual variability, we also consider uncertainty in
the dynamical model itself. To this end, we extend the ordinary differential equation setting used in
nonlinear mixed effects models to include stochastic differential equations. The approximate population
likelihood is derived using the first-order conditional estimation with interaction method and extended
Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two
pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-
order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by
using the proposed method, the three sources of variability can be successfully separated. If the stochastic
part is neglected, the parameter estimates become biased, and the measurement error variance is
significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a
preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared
between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between
model predictions and observations, previously described as measurement noise only, are now separated
into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics.
These examples demonstrate that stochastic differential mixed effects models are useful tools for
identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter
estimates due to such model deficiencies.

KEY WORDS: extended Kalman filter; model uncertainty; nonlinear kinetics; parameter estimation;
state prediction.

INTRODUCTION

In pharmacokinetic and pharmacodynamic modeling, the
physical system is often assumed to be described by a system
of ordinary differential equations (ODEs). In pharmacoki-
netics, compartmental models are mostly used, whereas for
pharmacodynamics, direct or turnover response models
are common (1). The observed data are assumed to arise
from a deterministic process under some measurement
noise (additive, proportional, a combination of the two, or
more general probabilistic models). However, the use of

deterministic modeling approaches for describing the
dynamics often suffers from limited and uncertain knowl-
edge regarding the details of such processes. Since it is up
to the modeler to define a model describing the drug
administration and its effect, there is also an uncertainty
in the model itself. This uncertainty is not explicitly
accounted for when considering a deterministic model,
for example when using ODEs to describe the dynamics
together with a measurement model to incorporate the
error. This can lead to model deficiencies, such as
correlated residuals, overestimated measurement noise,
and incorrect inference (2).

Nonlinear mixed effects (NLME) models were intro-
duced into the pharmaceutical field to analyze data from
several individuals simultaneously (3–5). The individuals are
assumed to be described by a common structural model with
some of the model parameters varying within the population
(so-called random effects parameters), while other parame-
ters are invariant between subjects (so-called fixed effects
parameters). The NLME approach can be of great benefit
when the data is sparse and the information from a single
subject is not sufficient to identify the model parameters. It is
typically performed using a deterministic model describing
the underlying system, for example by utilizing ODEs (6, 7).
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We consider the extension of the NLME approach to
allow for uncertainty in the model dynamics. This is done by
considering stochastic differential equations (SDEs), which is
an extension of ODEs to allow for a random part in the
model dynamics. This approach has previously been advocat-
ed, see for example (8–10). We have previously also
demonstrated the benefits of using SDEs when solving the
inverse problem of parameter estimation (11). SDEs can
furthermore be used to model the inherent randomness in
pharmacokinetic and pharmacodynamic systems (12, 13), as
an alternative to discrete models using a master equation
approach and the Gillespie algorithm (14–16). Also, in
systems without true randomness, SDEs can be used to
model an incomplete or imperfect model structure. SDEs (see
(17, 18) for references) have long been used in mathematical
finance, for example to model the uncertainty in an asset (19).
In contrast to the classical approach, where data variability
arises from the measurements and the variability in param-
eters, a stochastic model also incorporates errors in the
dynamics itself. Hence, this kind of modeling allows for three
different sources of variability: population variability, mea-
surement error, and system noise.

One often faces the inverse problem of estimating model
parameters from observed noisy data. There are several
approaches to the delicate problem of estimating parameters
in stochastic differential mixed effects models. In general,
there is no closed form solution of the likelihood function.
Approaches to the parameter estimation problem on a
population level include for example the first-order (FO)
and the first-order conditional estimation (FOCE) method
(20, 21) and stochastic approximation of expectation maximi-
zation (SAEM) method (22). State estimation on an individ-
ual level includes, for example, the Kalman filter (KF), the
extended Kalman filter (EKF), and particle filters. For a
combination of the FOCE approximation of the population
likelihood and the EKF, see for example (10, 23–25). In (26),
the authors propose a combination of the SAEM algorithm
and EKF. For a review of parameter estimation methods in
SDE population models, see (27).

In this paper, we consider approximation of the popula-
tion likelihood by using the first-order conditional estimation
with interaction (FOCEI) approximation of the population
likelihood together with the EKF for state estimation on the
individual level. In contrast to previous efforts (10, 23–25), we
estimate the full covariance matrix describing population
variability. That is, we allow for correlation between random
parameters in the model. By utilizing the FOCEI method, we
allow for interaction between output variance and random
parameters. Furthermore, instead of adopting the commonly
used finite difference approximation, we make use of
sensitivity equations to evaluate the gradient of the objective
function in the optimization procedure, previously mentioned
in (28). Moreover, we produce illustrative plots describing
state variable uncertainty and output uncertainty (which is a
combination of state and measurement uncertainty). These
plots serve as diagnostic tools of model appropriateness and
illustration of the uncertainty in model output.

The extension of ODEs to SDEs is illustrated using two
examples of pharmacokinetic data. First, a stochastic one-
compartmental pharmacokinetic model with first-order input
and nonlinear elimination is considered by using a simulated

data set consisting of 20 animals. Since we now account for
three sources of variability in data, it is important to know if
the three sources can be distinguished from each other. From
the simulated data, the parameters of the model are
estimated, including the system noise and the covariance
matrices describing measurement error and parameter vari-
ability. Second, we consider a data set from a preclinical study
of nicotinic acid (NiAc) turnover in obese rats, where the
original NiAc disposition model and a NiAc disposition
model extended to an SDE model are compared in terms of
parameter estimates and model prediction.

MATERIALS AND METHODS

Mathematical Theory

In this section, we state the stochastic mixed effects
model and derive the (approximate) maximum likelihood
theory needed for parameter estimation. This section is
recommended for readers not familiar with the concept of
SDEs. We also introduce the concept of the EKF, which
serves as a state estimator for the stochastic model (29).

The Stochastic Mixed Effects Model Framework

In population modeling, NLME models are used to
describe data of the form

yi j; i ¼ 1; …;N; j ¼ 1;…; ni; ð1Þ

where the vector yij denotes the j:th observation for the i:th
individual. The statistical model is the following

dxi ¼ f xi; ui; t;ϕið Þdt; xi 0ð Þ ¼ x0 ϕið Þ ð2Þ

yi j ¼ h xi; ui; ti j;ϕi

� �þ ei j; ð3Þ

where time is denoted by t. Note that the differential equation
is written in differential form, which is the standard notation
for SDEs that will be introduced later on. The vector-valued
function f(xi,ui, t,ϕi) describes the dynamics of the system,
and ϕi denotes the individual parameters for individual i.
The state variables of the system are denoted xi and may
for example be the concentration of a drug or drug effect.
The input to the system is denoted ui, which for example
can be an infusion. Measurements are assumed to be
taken at discrete points in time and characterized by the
measurement function h(xi,ui, tij,ϕi) and the measurement
error eij~N(0,S(xi,ui, tij,ϕi)).

The individual parameters ϕi are related to the popula-
tion parameters θ according to

ϕi ¼ g θ;Zi;ηið Þ;

where θ denote the fixed effect parameters, Zi denote the
covariates for individual i and ηi~N(0,Ω) are the random
effects for individual i, which are assumed to be multivar-
iate normal distributed with mean zero and covariance Ω.
The model described above is the commonly used NLME
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model setup, and we refer the reader to (6, 7) for more
information.

Instead of considering the deterministic model in the
classic framework, we want to include some kind of uncer-
tainty in the differential equations as well. This is achieved by
expanding the ODEs to SDEs. The stochastic differential
mixed effect model, abbreviated SDMEM (30), is defined as

dxi ¼ f xi; ui; t;ϕið Þdt þΣ xi; ui; t;ϕið ÞdW i; xi 0ð Þ ¼ x0 ϕið Þ ð4Þ

yi j ¼ h xi; ui; ti j;ϕi

� �þ ei j: ð5Þ

An SDE of the form (4) consists of two parts. First, we
have the so-called drift function f(xi,ui, t,ϕi) corresponding to
the deterministic part in the model, which is the same as in
Eq. (2). Second, we have the random term Σ(xi,ui, t,ϕi)dWi,
which corresponds to the uncertain part of the model. We
will later refer to Σ(xi,ui, t,ϕi)dWi as the system noise. The
system noise is a continuous stochastic process, in contrast
to the measurement noise, which is realized at discrete time
points. In Eq. (4), dWi corresponds to the increment of a
q-dimensional Wiener process Wi. The elements of dWi are
independent and normally distributed with mean zero and
variance dt. Moreover, the Wiener increments dWi are
considered independent across individuals and independent
of the measurement error.

In contrast to the classic approach, where the only
error arises in the measurement equation, an SDE setting
provides a flexible framework to account for fluctuations
in the underlying state variables. The system noise is a
tool that accounts for all the unknown phenomena that
are not captured by the deterministic model, for example
approximations, modeling errors, and oversimplifications.
In a mixed effects model setting, variability in response
can now arise from three different sources, namely
measurement noise, system noise, and parameter
variability.

Parameter Estimation in the Stochastic Mixed Effects
Population Framework

Given a collection of measurements of the form (2)
and an underlying model of the form (4)–(5), the model
parameters can be estimated using the maximum likelihood
approach. This has previously been elaborated, see, e.g.,
(10, 25). For convenience of the reader, we here provide
the necessary equations together with the extension to
models with interaction between random effects and output
covariance.

For a specific individual i, the optimal parameter values
are found by maximizing the individual likelihood. Using the
notation Yik=[yi1,yi2, …, yik] to denote the measurements up
to time point tk for individual i, the combined likelihood
becomes

Li θ
���Yini

� �
¼ ∏

ni

j¼2
p yi j

���Yi j−1ð Þ;θ
� � !

p yi1
���θ� �

where the probability for an observation given the previous
observations and the parameters is p(yij|Yi(j−1),θ). Assuming

Gaussian densities, which are characterized by their first and
second moments denoted by

byi j ¼ E yi j
���Yi j�1ð Þ;θ

� �
Ri j ¼ Var yi j

���Yi j�1ð Þ;θ
� �

;

we can write down the individual likelihood. Taking the
logarithm, the individual log-likelihood is given by

logLi θ
���Yini

� �
¼ −

1
2

Xni
j¼1

ϵTi jR
−1
i j ϵi j þ logj2πRi jj

� �
;

where

ϵ i j ¼ yi j−byi j;
is the prediction error, assumed to be normal distributed with
mean 0 and variance Rij. We denote the collection of all
individual measurements Y ¼ Y1n1 ;Y2n2 ;…;YNnNf g. The pop-
ulation likelihood is simply a product of individual likelihoods,

L θ
���Y� �

¼ ∏
N

i¼1
p Yini

���θ;Ω� �
Since the random effects are unobserved quantities, we

marginalize over the random effects,

L θ
���Y� �

¼ ∏
N

i¼1

Z
p Yini

���θ;ηi

� �
p ηi

���Ω� �
dηi ¼ ∏

N

i¼1
exp lið Þdηi; ð6Þ

where li ¼ li ηið Þ ¼ li ηi;Yini ;θð Þ is the a posteriori log-
likelihood for the random effects of the i:th individual

li ¼ −
1
2

Xni
j¼1

ϵTi jR
−1
i j ϵ i j þ logj2πRi jj

� �
−
1
2
ηT
i Ω

−1ηi−
1
2
logj2πΩj; ð7Þ

In most cases, there is no closed form expression for the
integral in Eq. (6). The integral can be approximated using
the Laplace approximation, see (31–33). The Laplace ap-
proximation uses a second-order Taylor expansion of li
around a point ηi

*. Here, the point is chosen to be the value
of ηi which maximizes the individual log-likelihood (7),

η*
i ¼ argmax

ηi

li ηið Þ:

Using this ηi
*, we end up with the approximate population

likelihood function

L θ
���Y� �

≈∏
N

i¼1
exp li η*

i

� �� � −Δli η*
i

� �
2π

���� ����;
whereΔli(ηi

*) denotes theHessian of the individual log-likelihood
(7) evaluated at the point ηi

*. Taking the logarithm, we have

log L θ
���Y� �

≈
XN
i¼1

li η*
i

� �
−
1
2
log

−Δli η*
i

� �
2π

���� ����:
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The expression for the element at index l,k of the
Hessian matrix is

Δli ηð Þð Þl;k ¼ ∂2li ηð Þ
∂ηl∂ηk

≈−
Xni
j¼1

∂ϵTi j
∂ηl

R−1
i j

∂ϵ i j
∂ηk

þ ϵTi jR
−1
i j

∂Ri j

∂ηl
R−1

i j

∂ϵTi j
∂ηk

þ ∂ϵTi j
∂ηk

R−1
i j ϵ i j

−ϵTi jR
−1
i j

∂Ri j

∂ηl
R−1

i j

∂Ri j

∂ηk
ϵ i j−

1
2
Tr −R−1

i j

∂Ri j

∂ηl
R−1

i j

∂Ri j

∂ηk

� �
−Ω−1

l;k;

where only first-order partial derivatives are considered and
higher-order contributions are assumed to be negligible in the
calculation of the Hessian Δli(η). This is called the FOCEI
approximation. If we assume no interaction between the
output covariance Rij and the random parameters, the
approximate Hessian is given by

Δli ηð Þð Þl;k ¼ ∂2li ηð Þ
∂ηl∂ηk

≈ −
Xni
j¼1

∂ϵTi j
∂ηl

R−1
i j

∂ϵ i j
∂ηk

−Ω−1
l;k; ð9Þ

referred to as the FOCE method (33). Finally, the
maximum likelihood estimates are given by maximizing the
approximate population likelihood as

bθ ¼ argmax
θ

logL θ
���Y� �

: ð10Þ

Due to the stochastic part of the model in Eqs. (4)–(5),
the state of the system is uncertain. There are several
solutions to the state estimation problem in these situations,
including for example particle filters and the Kalman filter
(29). In this paper, we will utilize the so-called extended
Kalman filter (EKF).

The Continuous Discrete Extended Kalman Filter

To calculate the individual log-likelihoods (7), we need
the prediction errors ϵij and the output covariance matrices
Rij. As noted in (10, 25), these identities can be recursively
computed using the extended Kalman filter (EKF).

The continuous discrete EKF is a state estimator for
continuous discrete state space models of the form (4)–(5)
(29). From observations, the state variables of the system and
their covariance are estimated in order to compute the
residuals and the output covariance. From now on, we drop
the individual notation i.

The EKF is an extension of the famous Kalman filter to
nonlinear models (34). For linear dynamic models, the Kalman
filter provides an optimal state estimator for a given parameter
vector ϕ. For nonlinear models, the EKF uses a first-order
linearization around the model trajectory. The EKF provides
estimates of the conditional expectation of the state x̂kjk ¼ E
xtk jYk;ϕð Þ and its covariance Pkjk ¼ Var xtk jYk;ϕð Þ. Given
initial conditions x̂1j0 ¼ x0 and P1|0=P0 and linearizations

At ¼ ∂ f
∂xt

����
xt¼bxtjk

Ck ¼ ∂h
∂xt

����
xt¼bxkjk−1 ;

the state variables and their covariance are predicted between
two consecutive measurement time points according to

dbxtjk
dt

¼ f bxtjk; ut; t;ϕ� �
; t∈ tk; tkþ1½ �

dPtjk
dt

¼ AtPtjk þ PtjkAt þΣΣT ; t∈ tk; tkþ1½ �:

From the predicted state variables and their covariance,
we have the output prediction equations

bykjk−1 ¼ h bxkjk−1; uk; tk;ϕ� �
Rkjk−1 ¼ CkPkjk−1C

T
k þ S:

From the state covariance Pk|k−1 and measurement
covariance Rk|k−1, the Kalman gain is given by

Kk ¼ Pkjk−1C
T
kR

−1
kjk−1:

Finally, the state and its covariance are updated accord-
ing to

bxkjk ¼ bxkjk−1 þKkϵk
Pkjk ¼ Pkjk−1−KkRkjk−1KT

k ;

where the residual ϵk is given by

ϵk ¼ yk−bykjk−1:
Optimization of the Approximate Population Likelihood

To maximize the approximate population likelihood in
Eq. (10), we have to solve a nested optimization problem. For
every value of the population parameters θ in the optimiza-
tion of the approximate population likelihood, the individual
likelihoods in Eq. (7) have to be maximized with respect
to the random effects due to the Laplace approximation.
We refer to the maximization of the individual likelihoods
as the inner optimization problem and maximization of
the approximate population likelihood as the outer
optimization problem.

For the outer and inner optimization problems, we use a
local gradient-based quasi-Newton optimization routine
based on the Broyden-Fletcher-Goldfarb-Shannon (BFGS)
updating formula (35). The BFGS updating formula is a
popular optimization method because it performs well in
many different problems.

Since the optimization methods are gradient-based, we
need to calculate the gradient of the outer objective function
(10) and the gradient of the inner objective function (7). We
also need to calculate the approximate Hessians (8) or (9) of
the inner objective function. As argued in (28), there are
three approaches to this problem, namely (i) approximations
based on finite differences, (ii) symbolic differentiation, or
(iii) automatic differentiation tools. Instead of using finite
difference approximation, as performed in (8, 10), we use
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symbolic differentiation using the symbolic algebra capabil-
ity in Mathematica. By using symbolic derivation, the system
of ODEs if differentiated with respect to the model
parameters to obtain the so-called sensitivity equations.
These sensitivity equations are integrated together with the
original system of ODEs to form the expression of the
gradient.

Application 1: Simulation and estimation of a stochastic
one-compartmental pharmacokinetic model

To illustrate the concept of SDEs explained in the
previous section, we consider a one-compartment pharmaco-
kinetic model with first-order input and nonlinear elimina-
tion. In this application, we validate the proposed stochastic
modeling framework. A necessary condition is that the model
parameters and the three sources of variability (measurement
error, population variability, and model uncertainty) can be
identified. Here, we consider data from a simulated popula-
tion consisting of 20 animals. Moreover, we are interested in
investigating the difference in parameter estimates with an
assumption of a deterministic model. Consider the determin-
istic mixed effects pharmacokinetic model

dAi

dt
¼ − kaiAi; Ai 0ð Þ ¼ 20

V
dCi

dt
¼ kaiAi � Vmi

Km þ Ci
Ci; Ci 0ð Þ ¼ 0;

where Ai (mg) and Ci (mg L−1) are the amount of drug in
the GI tract and the concentration of drug in plasma for
individual i, respectively. We assume that the kai and Vmi are
multivariate log-normal distributed, that is

kai ¼ kaexp ηi1ð Þ ;
Vmi ¼ Vmexp ηi2ð Þ;

where the random effects vector η=(ηi1,ηi2) is assumed to
follow a multivariate normal distribution with mean zero and
covariance matrix Ω. The parameters of the model are the ka
(min−1), Vm (mg min−1), Km (mg L−1), and V (L). Moreover,
we parameterize Ω=UUT, where U is an upper triangular
matrix of the form

U ¼ ω11 ω12

0 ω22

� �
:

The reason for the parameterization Ω=UUT is to assure that
Ω is a positive definite matrix, a necessary condition since it is
a covariance matrix. We get

Ω ¼ ω2
11 þ ω2

12 ω12ω22

ω12ω22 ω2
22

� �
:

Using additive system noise, we end up with an SDE
describing the concentration of drug.

VdCi ¼ kaiAi−
Vmi

Km þ Ci
Ci

� �
dt þ σdWi; Ci 0ð Þ ¼ 0: ð11Þ

In the stochastic model, there exists a system noise σdWi,
where σ is the scaling factor and dWi is the increment of a
standard Wiener process. In Eq. (11), the system noise is
independent of the drug concentration. This may not be a
realistic assumption since it allows for a change in concentra-
tion even in the absence of drug. By defining the system noise
dependent on the concentration level itself, such phenomena
can be avoided. The final model, which we consider for
simulation and estimation, is

dAi

dt
¼ −kaiAi; Ai 0ð Þ ¼ 20 ð12Þ

VdCi ¼ kaiAi � Vmi

Km þ Ci
Ci

� �
dt þ σĈ idWi; Ci 0ð Þ ¼ 0; ð13Þ

where σ (L min−1) is the system noise factor. In the SDE
above, Ĉi denotes the approximation of the conditional
expectation of the concentration Ci computed by the EKF.
The reason for this model is that the EKF does not allow
for state-dependent system noise. However, by utilizing
the approximation of the conditional expectation of the
concentration, we can still use a proportional-like system
noise. For SDEs with system noise dependent on the
stochastic process itself, one can in rare cases use the
Lamperti transform to obtain a state-independent system
noise. The SDE (12)–(13) has a stochastic part in the
equation describing the central compartment. Since dWi is
the increment of a Wiener process, this implies that dWi is
normally distributed with variance dt, which in turn
implies that σĈidWi is normally distributed with variance
σ2Ĉi

2dt.
Mass-balance constrains for SDE models can be

enforced by assign the structure of Σ according to the
stoichiometry of the modeled system. For example, account-
ing for uncertainty in the drug uptake rate from the GI tract
can be achieved by adding the same system noise term to the
Eq. (12) with opposite sign. However, we have chosen to
assume that the system noise describes an uncertainty in the
elimination process from the central compartment, requiring
no mass-balancing.

Furthermore, the measurement yik is the concentration
for individual i measured at time tik under additive Gaussian
noise according to

yik ¼ Ci tikð Þ þ eik; ð14Þ

where eik~N(0,s2). A population consisting of 20 animals is
simulated according to the parameter values in the third
column of Table I. A total of 100 data sets are simulated, and
the model parameters are estimated using the FOCEI
method. The response is measured at equidistant time
points tk=1, 9, 17, …, 97 minutes for all animals.

Application 2: Stochastic NiAc disposition in obese
Zucker rats

In this section, we extend a pharmacokinetic model of
nicotinic acid (NiAc) in obese Zucker rats, previously used to
drive a pharmacodynamic model describing nonesterified
fatty acid (NEFA) turnover (36–41). The disposition of NiAc
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in obese rats was described by a one-compartment model
with endogenous synthesis of NiAc and a capacity-limited
elimination process. Instead of using a deterministic model
for the pharmacokinetics, we consider the extension to a
stochastic NiAc disposition model.

Original NiAc Disposition Model

The previously used pharmacokinetic model was a
one-compartmental model with a synthesis rate Synt
(μmol min−1 kg−1) of NiAc in the absence of drug with a
nonlinear elimination with parameters Vmi (μmol min−1 kg−1)
and Km (μmol L−1) describing the maximal rate from the
central compartment and the Michaelis-Menten constant,
respectively. The mixed effects kinetics is described by the
ODE

Vc
dci
dt

¼ uþ Synt−
Vmici

Km þ ci
; ð15Þ

ci 0ð Þ ¼ Synt Km

Vmi−Synt
; ð16Þ

where u (μmol min−1 kg−1) denotes the input. Two
different infusion rates were used, 0.67μmol min−1 kg−1

(corresponding to 20μmol kg−1 over 30 min) and
0.17μmol min−1 kg−1 (corresponding to 51μmol kg−1 over
300 min).

In previous work, in addition to Vmi, Synt was allowed to
be distributed in the population. In this paper, we only
consider Vmi, to be distributed in the population. This choice
was due to the fact that few data samples were taken at
steady-state and that the estimation results in (39) showed a
very high residual standard error on the interindividual
variability parameters. We consider a log-normal distribution
of the maximal rate Vmi. That is

Vmi ¼ Vmexp ηið Þ;

where ηi~N(0,ω2). Vc (L kg−1) denotes the central
volume. The first group consisted of eight subjects and the
second group of seven subjects. There was also one subject
receiving placebo, giving a total of 16 subjects in the analysis.

Stochastic NiAc Disposition Model

We consider the extension to a stochastic NiAc model
described by the SDE

Vcdci ¼ uþ Synt−
Vmici

Km þ ci

� �
dt þ σbcidWi ð17Þ

In the stochastic NiAc disposition model, the system
noise σĉidWi models the uncertainty in dynamics. Again, we
assume a system noise proportional to the mode ĉi. We refer
to σ (L min−1 kg−1) as the system noise factor. In contrast
to the original NiAc disposition model, the total error is
now divided into measurement error and system noise.
The choice of the stochastic model structure is to allow
for an uncertainty in the elimination process dependent
on the drug concentration.

The purpose of the extension is to identify the structural
parameters together with the sources of variability. Most
importantly, we are interested in identifying the system noise
factor σ. Note that σ=0 corresponds to the original NiAc
disposition model.

RESULTS

Application 1: Simulation and estimation of a stochastic
one-compartmental pharmacokinetic model

In this example, the primary interest lies in how well the
parameters in the model can be estimated from data. Since
we have three sources of variability (parameter variability,
measurement error, and system noise), it is important to
know whether these sources of variability can be separated in
the estimation.

The parameters in the model are estimated using the
FOCEI method. The parameters in the model consist of the
structural parameters ka, Vm, Km and V and the parameters
s, ω11,ω12, ω22 and σ describing the three sources of variability.
Hence, our vector of model parameters is θ=(ka, Vm, Km,V,
s, ω11,ω12, ω22,σ) which gives a total number of 9 parameters to
be estimated.

We estimate the model parameters using the SDE
approach and compare this to the corresponding ODE model
(σ=0). The estimated parameter values using the SDE model
and the ODE model are shown in Table I. The relative

Table I. Estimated parameter values for the one-compartmental model (12)–(13) using the ODE and the SDE model

Parameter Definition True value Starting value ODE model (RSE %) SDE model (RSE %)

ka First-order absorption 0.1 0.2 0.078 (22.6) 0.103 (12.9)
Vm Maximal velocity 0.5 1 0.637 (20.3) 0.508 (9.52)
Km Michaelis-Menten const. 3 1 5.43 (51.3) 3.04 (14.9)
V Compartmental volume 1 2 0.793 (17.6) 1.00 (5.50)
s Measurement error std. 0.1 0.5 0.609 (17.2) 0.099 (7.49)
ω11 Interindividual variability ka 0.5 0.1 0.403 (22.8) 0.456 (18.4)
ω12 Interindividual correlation 0.1 0 0.098 (120.9) 0.092 (149.5)
ω22 Interindividual variability Vm 0.3 0.1 0.332 (18.3) 0.279 (18.9)
σ System noise factor 0.05 0.01 - 0.050 (6.56)

The relative standard errors (RSEs) in % are included in parenthesis
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standard errors (RSEs) in % are included in parentheses.
They are obtained by calculating the mean and standard
deviations of the 100 estimates. The distribution of the
estimated model parameters for the 100 simulated data sets
are seen in Fig. 1.

Application 2: Stochastic NiAc disposition in obese
Zucker rats

The measured NiAc concentrations for the two infusion
groups are shown in Fig. 2.

Estimated Parameters

The parameters are estimated using the FOCE approx-
imation of the individual Hessians. The reason for using the
FOCE approximation is to guarantee that the individual
Hessians are positive definite. The starting values for the
structural parameters were adopted from Ahlström et al. (39)
with values Vm=1.8 μmol min−1 kg−1, Km=23 μmol L−1, Vc=
0.319 L kg−1, and Synt=0.00125 μmol min−1 kg−1. Moreover,
the starting values for the variance components were s=0.1,
ω=0.1, and σ=0.01 L min−1 (for the SDE model).

Table II shows the estimated parameters for the two
models of interest. As a reference, we also provide the
estimates from Ahlström et al. (39). The relative standard
errors (RSEs) in % are included in parentheses, calculated
from the approximated Hessian at the optimum. Two
comparisons are of interest. First, we used the original NiAc

disposition model (15) to compare the results from our
estimation with the results from (39). Second, we are
interested in the differences in parameter estimates using
the original NiAc disposition model (15) and the stochastic
NiAc disposition model (17).

Fitted Population and Individual Models

The fitted population models for the two approaches are
illustrated in Fig. 2.

Given the estimated population parameters as priors, the
individual likelihoods are maximized once again to obtain the
maximum a posteriori estimates for the random effect
parameters. These optimal parameter values are then
inserted in the model equations to obtain the individual
model fits. The original NiAc disposition model fit is obtained
by simply solving the ODE describing NiAc concentration
given an individual’s parameter values. For the stochastic
NiAc disposition model, the individual fit is slightly more
complicated to obtain. Due to the stochastic component, the
individual model fits for the stochastic model are obtained by
a method called smoothing. This has previously been
demonstrated by Kristensen et al. (2). When smoothing is
used, the model is used to provide an optimal state estimator
given all the measurements for a specific individual. The
fitted individual models together with the output uncer-
tainties are illustrated in Fig. 3 for three animals (rows 1–3)
with the shorter infusion for the estimated ODE (a–c) and

Fig. 1. Smoothed histograms over the estimated parameters from 100 simulated data sets. The estimated parameters using
the SDE model is shown in blue and the estimates using the ODE model (σ=0) is shown in purple. The vertical lines show
the parameter values used for simulation
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SDE (d–f) NiAc disposition model. The uncertainty bands
represent one standard deviation of the output uncertainty
(that is, the square root of the output covariance). Note that
the concentration and its uncertainty are visualized on a
linear scale, in contrast to the previous plots in Fig. 2, to
emphasize the improved fit for large NiAc concentrations
using SDEs.

DISCUSSION

The extension of NLME models to stochastic differential
mixed effect models has been considered to provide a more
general model to describe the error between model predic-
tion and observed data. By utilizing the stochastic setting, the
total error is divided into measurement noise and model
uncertainty. Together with the population variability induced
in a mixed effect model, we are able to account for a total of
three sources of variability.

Maximum Likelihood Estimation

We have taken the maximum likelihood approach to
parameter estimation by combining an approximation of the
population likelihood together with an extended Kalman
filter for state estimation. In contrast to the estimation
method proposed in (10, 23–25), we have further developed
the method by considering interaction between the output
covariance and random effects, referred to as the FOCEI
method (33). The interaction between output covariance and
random effects occurs for example in ODE models with a
proportional measurement noise and in stochastic models

where the output covariance depends on the Kalman update,
which in turn depends on the individual response.

The parameters were estimated using the gradient-based
method BFGS (35). In many applications, the gradient of the
objective function is approximated using finite differences.
However, numerical ODE solvers with an adaptive step length
are known to introduce quantification errors to the objective
function, making it nonsmooth on small scales (42). To
overcome such problems, we utilized the sensitivity equations
when calculating the gradient in the inner and outer
optimization problem. The sensitivity equations were obtained
by differentiating the system of differential equations and the
extendedKalman filter equations with respect to the parameters
in the model. This has been previously demonstrated by
Leander et al. (11) in the single individual case, and we are
preparing a manuscript that concerns the mixed effects case.

The extension to SDEs comes with an increased computa-
tional burden. Due to the fact that we now consider equations
describing the time evolution of both mean and covariance of a
stochastic process, a larger system of ODEs has to be solved.
The implementation of the numerical machinery for parameter
estimation also becomes more challenging and requires ad-
vanced numerical techniques such as the EKF. The stochastic
mixed effects modeling framework has been implemented in
Mathematica 9. An executable version of the code may be
received from the authors upon request.

Application 1: Simulation and estimation in the simu-
lated stochastic one-compartmental pharmacokinetic model

As a first application of stochastic mixed effects modeling,
we used a stochastic one-compartmental pharmacokinetic

Fig. 2. Plots of the estimated ODE (solid) and SDE (dashed) NiAc model together with the observed
concentration time courses of NiAc for the two infusion groups. a 20μmol kg−1 over 30 min. b 51μmol kg−1

over 300 min over 300 min. The concentration is shown on a log-linear scale

Table II. Estimated parameter values and interindividual variability (IIV) for the NiAc disposition model, with corresponding relative
standard errors (RSE %)

Parameter Definition Ahlström et al.
Current investigation:
ODE model

Current investigation:
SDE model

Vm Maximal velocity 1.59 (13.9) 1.46 (16.3) 1.35 (16.7)
Km Michaelis-Menten const. 18.9 (21.5) 15.2 (21.7) 13.6 (21.5)
Vc Central volume 0.328 (12.4) 0.29 (4.3) 0.32 (5.5)
Synt Endogenous synthesis rate 0.00280 (10.1) 0.0006 (29.5) 0.0018 (24.3)
s Residual prop. error 0.400 (26.3) 0.460 (8.08) 0.241 (11.7)
ω Variability Vm 0.214 (234) 0.174 (22.5) 0.133 (27.0)
σ System noise factor - - 0.033 (15.7)

See Ahlström et al. (39) for reference
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model for a simulation study. The aim was to investigate
whether the three sources of variability (measurement error,
population variability, and model uncertainty) could be sepa-
rated using the proposed maximum likelihood estimation.

From the parameter estimates for the SDE model in
Table I and the smoothed histograms in Fig. 1, we conclude
that all estimated parameter values are close to their true
values used for simulation. The measurement error standard
deviation s and the system noise factor σ are identical to the
true values using the SDE approach. Also, the correlation
between the random effects is close to the true value for the
SDE model. However, the RSE for the random effect
correlation is very high, implying that the correlation is
difficult to reliably estimate. This may depend on the fact
that only 20 individuals were included in each data set.

In the ODE case, we conclude that all the structural
parameters are biased and differ significantly from the true
parameter values used for simulating the data. Comparing the
results to the ODE case where the system noise is neglected
(σ=0), we can see that the measurement error standard
deviation s is increased six-fold. Hence, we conclude that
when the system noise is set to zero (equivalent to the ODE
case), the measurement error standard deviation is increased

to account for that variability, which is not unexpected since
we neglect the variability in dynamics. We also conclude that
the RSEs for the SDE model are generally lower than the
RSEs for the ODE model, although the RSEs for ω12 and ω22

are slightly higher in the SDE model.
Most importantly, we conclude that we can successfully

distinguish the three sources of variability, which is a
necessary condition of the extended framework to be of
practical value.

Application 2: Stochastic NiAc disposition in obese
Zucker rats

Using the original NiAc disposition model, and
comparing the results with previous work, we can conclude
that most of the parameter values are similar. Our estimated
values differ most in Km and Synt. Note that the quotients Vm/
Km are similar in the work by Ahlström et al. (39) and in the
current investigation (0.084 and 0.096, respectively). This may
imply that there are problems estimating the parameters Vm

and Km, whereas the quotient as such is identifiable. One
striking difference between our estimation and previous
results is that the relative standard error for the parameter
describing the interindividual variability (IIV) is significantly

Fig. 3. Observed plasma NiAc concentration time profiles together with the estimated ODE (a–c)
and SDE (d–f) NiAc disposition model for three animals (each row) from the first infusion group
(20μmol kg−1 over 30 min)
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lower in our investigation. The IIV for Vm was 234% in (39),
while it is reduced to 22.5% in our investigation. This is most
likely because instead of using finite difference approximation
of the gradient in the optimization problem, we utilize
sensitivity equations, yielding a more robust calculation of
the gradient, which also seems to influence the precision of
parameter estimates.

If we turn to our investigation and compare the ODE
and the SDE NiAc disposition models, we can see that the
endogenous synthesis rate Synt is increased for the stochastic
model, which is also seen in the population model fits in
Fig. 2. Moreover, another difference in the parameter
estimates is that the measurement error is much lower (two-
fold) for the stochastic model whereas the system noise factor
significantly differed from zero. This implies that the error
that existed in the original model (measurement error) is now
separated into two parts, namely the measurement error and
the system noise. The interindividual variability for the
maximal rate Vm is slightly decreased when the stochastic
NiAc disposition model is used. Hence, some of the
population variability in the maximal rate Vm seen in the
original NiAc disposition model may instead be explained by
a model uncertainty.

With respect to the individual fits in Fig. 3, there is a
clear difference in terms of model fits. The original NiAc
disposition model, proposed in (39), seems to underestimate
the drug concentration during the infusion. The stochastic
model that we propose is much closer to the measurements
and seems to account for model deviation that the original
model is not capable of. In the original NiAc disposition
model, the output covariance is equal to the measurement
covariance, whereas in the stochastic model, it is a combina-
tion of the state covariance and measurement covariance.

That means that the confidence band in the original
model simply arises from the variance of measurements,
which we assumed to be proportional to the concentration
level. Using the stochastic model, we conclude that the
uncertainty is highest between two consecutive time points.
In contrast to the original model, we have a decreased
uncertainty at the measurements, at which information is
gained about the underlying system.

In previous work (39), the original NiAc disposition
model was used to drive a pharmacodynamic model describ-
ing production of NEFA. By utilizing the stochastic NiAc
disposition model, the fitted individual models seem to be
able to capture the high concentrations during the infusion.

This is seen in Fig. 3 and may give a better input to the
NEFA model. A better input to a pharmacodynamic model
can be of broader interest in PKPD modeling, since a
deterministic pharmacokinetic model often is used to drive a
pharmacodynamic model. Using a stochastic pharmacokinetic
model can better account for uncertainty in the drug kinetics.

CONCLUSIONS

We conclude that the stochastic modeling framework we
proposed here leads to a more general framework for handling
measurement error andmodel errors. This framework, together
with an effective method for calculating the gradients in the
nested optimization problem, provides us with a flexible, robust
modeling framework for mixed effects models.
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