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ABSTRACT
We present a mixed reality application (HoloFEM) for the Microsoft
HoloLens. The application lets a user define and solve a physical
problem governed by Poisson’s equation with the surrounding real
world geometry as input data. Holograms are used to visualise both
the problem and the solution. The finite element method is used to
solve Poisson’s equation. Solving and visualising partial differential
equations in mixed reality could have potential usage in areas such
as building planning and safety engineering.

CCS CONCEPTS
•Human-centered computing→Mixed / augmented reality;
•Applied computing→Mathematics and statistics; •Mathemat-
ics of computing → Mathematical software; Partial differential
equations;
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1 INTRODUCTION
We develop an application, called HoloFEM, for solving Poisson’s
equation with the finite element method (FEM) using Microsoft’s
mixed reality glasses HoloLens [Microsoft 2017]. The aim is to set
up and solve a partial differential equation (PDE) in the real world
geometry surrounding the HoloLens user, and then visualise the
computed solution on top of the real surroundings in mixed reality.

Partial differential equations are used to model many physical
processes, such as fluid flow, heat transport and electromagnetic
fields to name a few. We consider here the Poisson equation, which
serves a prototypical example of a PDE. This equation models
steady-state diffusion and electrostatic potential. The Poisson prob-
lem is mathematically formulated as: Find the solution u : Ω → R
such that {

−∆u = f in Ω,

u = д on ∂Ω, (1)

where Ω ⊂ R3 is the solution domain, ∆ is the Laplace operator, f
is a given source, д is a given boundary value of the solution, and
∂Ω is the boundary of Ω.
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Since various PDEs often show up in modelling and engineering
problems, there could be a potential use for mixed reality PDE-
solving software that allows a user to define a problem, compute a
solution, and study it on the spot. Say for example that we would
like to know how a dangerous substance spreads in a room after
a leak has sprung. The heat equation could be used as a simplistic
model for describing this situation, potentially making applications
like HoloFEM useful in building planning and safety engineering.

Augmented, mixed, and virtual reality are already used in engi-
neering, architecture, and design, see for example [Bendinger 2004;
Heuveline et al. 2011], but to our knowledge there is currently no
other mixed reality PDE-solving software.

2 TECHNICAL DESCRIPTION
The workflow of the application HoloFEM has three main stages.
The first one is the meshing stage, where a computational mesh is
generated from the environment. This is followed by the simulation
stage, where the mathematical problem is formulated and solved.
Finally, the solution is visualised in the last stage.

2.1 Meshing
The Microsoft HoloLens can scan the user’s surroundings and ex-
tract a discrete representation of the geometry, in the form of a
surface mesh. This mesh is not adequate for numerical computa-
tions – firstly, it is a surface mesh, while we need a volume mesh
to solve (1), and secondly, the mesh quality is rather poor.

Instead, the main planes are extracted from the surface mesh.
These will represent the walls, the floor and the ceiling of the room
in which the user is located. From this geometric representation,
the computational volume mesh is constructed. The procedure so
far is summarised in Figure 1. The steps in the mesh generation are
shown in Figure 2.

Surroundings Surface
mesh

Planes
Space

(polygon 
+ height)

Volume
mesh

HoloLens HoloToolkit HoloFEM

Geometry pipeline

Figure 1: The geometry pipeline shows the steps in going
from a spatial scan of the surroundings to a volume mesh.
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Figure 2: Themeshing pipeline demonstrates the generation
of a volume mesh from a space, i.e., the last arrow in the
geometry pipeline.
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2.2 Simulation
The user may configure the problem parameters by placing point
sources in the surroundings and setting boundary conditions on
the walls, floor, and ceiling of the room. This is done in a similar
fashion to how holograms are usually placed with the HoloLens.

When the user is satisfied with the problem specification, the
problem is discretised with the finite element method. The FEniCS
form compiler [Logg et al. 2012a,b] is used to generate code for
the finite element assembly, see Figure 3. This means that this part
of the program can easily be generalised to handle other PDEs.
The assembled sparse linear system can be solved with standard
techniques, e.g., preconditioned Krylov subspace methods.
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Figure 3: The simulation pipeline outlines how a mesh and
PDE-problem are used to obtain a solution with FEM.

2.3 Visualisation
The visualisation of the numerical solution takes advantage of the
mixed reality technology of the HoloLens. Holograms are placed at
nodal points of the computational mesh, or at the cell centers, and
are superimposed on the real world background. This simplistic
approach suffices for the current prototype. More sophisticated
approaches could be developed specific to the engineering applica-
tions considered.

3 DEMO OVERVIEW
In its current state the application HoloFEM works mainly with
voice commands. A user, wearing the HoloLens, starts by saying
“Scan room”. This initiates the scanning phase in which the sur-
roundings are scanned by looking around the room. During the
scanning phase a surface mesh is produced that shows what sur-
faces have already been scanned, see the left part of Figure 4. After
the scanning phase is completed, the approximative geometric
representation of the room (a prism with polygonal base) is auto-
matically created. A tetrahedral mesh is then generated with the
voice command “Generate mesh”. In the right part of Figure 4, parts
of a space and a volume mesh are displayed.

Figure 4: Meshes. Left: Surface mesh (yellow) of the sur-
roundings. Right: Space (blue) and generated volume mesh
(green).

When the mesh has been generated, the user may define addi-
tional problem data. The voice command for defining a source is

“Create source”. This places a source in front of the user. The voice
command for defining boundary conditions is “Set boundary value”.
This sets the solution to be zero on the wall the user is looking at.
In Figure 5, visualised problem data are shown.

Figure 5: Problem data represented by holograms. Left:
Source (fire ball) placed in room. Right: Zero value bound-
ary conditions (ice patches) on wall.

Once the desired problem data have been defined it is time to
solve the problem. The voice command for that is “Solve problem”.
After the problem has been solved, the solution is automatically
visualised. The solution values at the nodal points of the volume
mesh are represented by spheres. The size of a sphere is proportional
to the solution value. The spheres are also coloured according to an
RGB-scale, where blue represents low values and red high values.
See Figure 6 for a visualised solution.

Figure 6: Solution represented by spheres. Left: Solution
and tetrahedral mesh used in simulation. Right: Solution to-
gether with problem data used in simulation.

4 CONCLUSIONS
We have developed an application for solving and visualising a PDE
model with the Microsoft HoloLens. A user wearing the HoloLens
can scan the surroundings, define a mathematical model and see the
numerical solution superimposed on the real world, all within a mat-
ter of seconds. This has potential applications in building planning
and safety engineering. Future development includes extension to
other PDE models and more sophisticated visualisation.
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