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Period-tripling subharmonic oscillations in a driven superconducting resonator
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We have observed period-tripling subharmonic oscillations in a driven superconducting coplanar waveguide
resonator operated in the quantum regime, kBT � h̄ω. The resonator is terminated by a tunable inductance that
provides a Kerr-type nonlinearity. We detected the output field quadratures at frequencies near the fundamental
mode, ω/2π ∼ 5 GHz, when driving the resonator with a current at 3ω, with amplitude exceeding an instability
threshold. We observed three stable radiative states with equal amplitudes, phase shifted by 2π/3 rad, red detuned
from the fundamental mode. The down-conversion from 3ω to ω is strongly enhanced by near-resonant excitation
of the second mode of the resonator and the cross-Kerr effect. Our experimental results are in quantitative
agreement with a model for the driven dynamics of two coupled modes.
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I. INTRODUCTION

Nonlinear dynamical systems exhibit a vast variety of
behaviors, from simple effects such as harmonic generation
to sophisticated multiple bifurcations to pattern formation and
chaos [1–3]. Particularly interesting are strongly nonlinear
phenomena in the quantum regime, which can be realized in
low-dissipation microwave systems such as circuit quantum
electrodynamics (cQED) devices. Such phenomena play a
central role and are widely employed in quantum information
technology for qubit readout [4–6], photon entanglement
[7–10], and generation of Schrödinger cat states [11,12].

Period-multiplying subharmonic oscillations [13,14] con-
stitute a particular class of nonlinear phenomena. The oscilla-
tions appear as a nonlinear response at the oscillator frequency
to an external drive at a multiple of the resonant frequency. In
the quantum picture, the elementary process that underlies the
subharmonic oscillations is a decay of a single photon into
three, four, or more photons. The subharmonic oscillations
are described by nonperturbative solutions to the dynamical
equations, which appear abruptly and coexist with the stable
vacuum state. In this respect the subharmonic oscillations
distinctly differ from conventional parametric oscillations,
which gradually emerge as a result of the vacuum instability.
This difference is analogous to the difference between a
first- and a second-order phase transition [15]. Furthermore,
a symmetry-breaking aspect of this difference has important
implications for the quantum dynamics of the period-tripling
oscillations [16].

Although the period-multiplying phenomenon is theoret-
ically explained in textbooks, experimental demonstrations
are not common. A few early observations of subharmonic
resonances in electromagnetic devices were performed on
essentially classical electrical circuits with saturable inductors
[17] or varactors [18]. More recent reports concern subhar-
monic resonances in lasers [19,20]. In Josephson circuits,
the period-multiplying phenomenon has not received much
attention; instead, research was focused on transition to chaos
[21,22] and, lately, on bifurcation phenomena [23,24] and
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parametric oscillations [5,6,25–27]. Only recently have sub-
harmonic oscillations in the quantum regime been theoretically
discussed in the context of cQED [16,28,29].

In this paper we report the experimental observation of
period-tripling subharmonic oscillations in a driven super-
conducting resonator in the quantum regime, kBT � h̄ω

[30–32], where the thermal energy is much smaller than the
energy of a single photon. We drive the nonlinear resonator
with a harmonic signal with power Pd at frequency 3ω,
approximately equal to three times the fundamental resonator
mode frequency, and observe a strong response at ω. The
output microwave signal consists of three correlated beams
with equal amplitudes and different phases, shifted by 2π/3
rad. The oscillations are detected within a certain window
of the driving field amplitude: they start at finite-threshold
detuning within the resonator bandwidth and persist deep into
the red-detuning region.

Our observations can be qualitatively understood from the
theory of a nonlinear oscillator [13,14]. When a driving force
with off-resonant frequency 3ω is applied, it generates a linear
response at the same frequency, which is down-converted to
frequency ω due to nonlinearity. The down-conversion has the
highest efficiency when the detuning, δ1 = ω − ω1, from the
oscillator resonant frequency ω1 is small, δ1 � ω1.

However, application of this single-mode scenario to the
resonator setting requires additional considerations. In our
experiment, we drive the resonator close to its second mode,
ω2, such that δ2 = 3ω − ω2 � ω1. As a result, the response
at the driving frequency becomes strongly enhanced and
nonlinear, and the system dynamics is well described by two
strongly interacting modes. This situation is different from the
single-mode oscillator model explored in previous works on
subharmonic oscillations. In fact, this resonant enhancement
of the external drive, by more than three orders of magnitude, is
crucial for the possibility to access the subharmonic oscillation
regime in experiments.

II. EXPERIMENT

To observe subharmonic oscillations we use frequency-
tunable coplanar waveguide microwave resonators [30–32].
The resonator is capacitively coupled to a 50 � transmission
line on one end and grounded via a superconducting quantum
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FIG. 1. (a) Optical micrograph of one of the samples. The four
coplanar waveguide resonators meander between the on-chip flux line
on the left and the contact pads on the right. (b) Zoom of the SQUID
that terminates the bottom resonator. The SQUID is designed with two
identical Josephson junctions. (c) Measurement setup. Microwave
signals are applied via attenuated coaxial cables, one for direct driving
by an external ac current and one for flux modulation. To separate
input and output, a directional coupler is used to route the signal. A
static magnetic flux is induced by a superconducting coil. The output
signal is amplified in a 4–8-GHz bandwidth by a cryogenic amplifier
as well as a room-temperature amplifier. The quadrature voltages are
acquired by heterodyne detection followed by digital demodulation.

interference device (SQUID) on the other end (see Fig. 1). In
practice, the SQUID acts as a tunable nonlinear inductance
controlled by the magnetic flux � threading its loop and
the current Is , LJ (�,Is) = �0/[2π | cos(π�/�0)|√I 2

c − I 2
s ],

where �0 = h/2e is the magnetic flux quantum and Is

and Ic denote the current flowing through the device and
its critical current, respectively. The Josephson nonlinearity
of the SQUID induces, at weak excitation, a Duffing-Kerr
nonlinearity in the resonator.

The samples are fabricated using standard processes:
Josephson junctions are deposited by two-angle evaporation
of aluminum. The rest of the circuit is etched out of a sputtered
layer of niobium on a sapphire wafer. A micrograph of one chip
with four resonators of different lengths is shown in Fig. 1(a).
The chip is anchored to the mixing chamber stage of a dilution
refrigerator with a base temperature of 12 mK.

The measurement setup is sketched in Fig. 1(c). For static
magnetic flux biasing of the SQUID we use a superconducting
coil mounted close to the sample box. The SQUID nonlinearity
can be modulated by applying a microwave signal as an
external drive of the current through the SQUID Is or by flux
modulation. We focus mainly on the external driving. The
resonator output signal is amplified by a low-noise cryogenic
amplifier at the 3 K stage, as well as an additional amplifier
at room temperature, before being sampled by a digitizer. To
maintain phase coherence, a 10-MHz signal is used to lock
the signal generator and the digitizer together. The digitizer
down-converts both the in- and out-of-phase quadratures, I (t)
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FIG. 2. Determination of the second mode frequency via para-
metric up-conversion. A weak probe tone (horizontal axis), near the
resonant frequency of the first mode ω1, is up-converted by the flux
pump tone (vertical axis), near the difference frequency ω2 − ω1. The
process results in an avoided level crossing visible in the reflected
probe tone. The data presented show the reflected phase response for
a magnetic flux bias, � = 0.17 �0, where ω1/2π = 5.432 GHz and
(ω2 − ω1)/2π = 10.70 GHz, yielding ω2/2π = 16.132 GHz.

and Q(t), with a local oscillator before digitizing the data at an
effective sampling rate fs during a time ts . From the individual
quadratures the total output power after amplification can be
calculated as Pout = 〈I 2〉 + 〈Q2〉.

We directly probe the first resonator mode in a reflection
measurement. Higher modes can be measured only indirectly
due to the 4–8-GHz bandwidth limitation of our setup. To
detect the second mode we use parametric up-conversion
[33,34]: we modulate the magnetic flux penetrating the SQUID
loop at the difference frequency of the first and the second
modes, ω2 − ω1, while simultaneously applying a weak drive
tone at ω1. The flux pump converts photons from the first to
the second mode, resulting in an avoided crossing, as shown in
Fig. 2, from which we can determine the difference frequency.

In Fig. 3(a) we present the extracted frequencies of the
lowest mode for our sample together with a fit to the spectral
dispersion, Eq. (A1). The extracted parameters are presented
in Table I. The resonator is overcoupled and has a narrow
bandwidth, less than 1 MHz.

III. SUBHARMONIC OSCILLATIONS

A. Observations

We observe period-tripling subharmonic oscillations at
ω ≈ ω1 by applying an external signal at 3ω. This effect
has been observed in several samples, although in this paper
we present data for only one sample. As can be seen in
Fig. 4(a), we observe subharmonic oscillations in a range of
red detuning, δ1 = ω − ω1 < 0, and for signal generator drive
powers above ∼ −13 dBm. This range of drive powers and
detunings forms region II, where the subharmonic oscillations
are visible. Above and below, in regions I and III, respectively,
no subharmonic oscillations are observed.
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FIG. 3. (a) Spectroscopy of resonator modes 1 and 2, fitted
using Eq. (A1). Extracted resonator and SQUID parameters are
found in Table I. Inset: anharmonicity of the spectrum, 3ω1 − ω2.
(b) An illustration of the frequency spectrum. Since the spectrum is
nonequidistant, the drive signal around 3ω falls slightly above mode
2, while the measurement frequency ω is slightly below mode 1.

We also investigated the quadratures of the oscillations
using histograms of the I (t) and Q(t) signals. In Fig. 4(c)
we show a background histogram (peaked at I = Q = 0)
illustrating the system noise level. This histogram represents
the system ground state. At higher drive power, inside region
II, the histograms feature three well-defined stable states
forming a regular triangle [see Figs. 4(e) and 4(f)]. At the
low-power edge of region II the system shows four states [see
Fig. 4(d)]. This observation is in full agreement with the phase
portrait of the subharmonic oscillator (see Fig. 7) featuring
four coexisting stable steady states: the silent ground state and
the three excited states.

The system switching rates between the states are different
for different operating points, δ1 and Pd . Analysis of the
underlying time-domain data yields a switching rate of 1 kHz
in Fig. 4(d) and 15 kHz in Fig. 4(f). In Figs. 4(d) and 4(e) the
histograms show clearly separated states, while in Fig. 4(f)
the states are connected by faint lines. These lines indicate
enhancement of the stochastic switching between the steady
states. When the system switching rate becomes comparable to
the sampling rate, fsw ∼ fs , the states are averaged together.

Lowering the sampling rate to 10 kHz makes the switching
processes between the stationary states more visible (see

Fig. 5). In region II the transitions occur only between the
excited states, forming a triangle configuration, while at the
border of regions II and III the transitions connect the ground
and excited states, forming a star configuration.

B. Theory

To explain the experimental observations and establish a
basis for quantitative comparison, we perform a theoretical
analysis based on the theory for two-mode resonant dynamics
in a frequency-tunable resonator [26,34]. The two-mode
equations for slowly varying Heisenberg operators of the
coupled modes, a1 and a2, in the doubly rotating frame with
frequencies ω and 3ω have the form

iȧ1 + (δ1 + i�1 + α1a
†
1a1 + 2α a

†
2a2)a1 + α̃ a

†2
1 a2 = 0,

iȧ2 + (δ2 + i�2 + α2 a
†
2a2 + 2α a

†
1a1)a2 + α̃

3
a3

1

= √
2�2,ext B2. (1)

Here, the amplitude of the fundamental mode, a1, describes
the subharmonic oscillator, while that of the second mode,
a2, acts as an effective parametric pump. B2 is the complex
amplitude of the external drive and �n is the mode damping.
Explicit equations for the external damping �2,ext and the
Kerr coefficients αn are presented in Eqs. (A5) and (A6).
The cross-Kerr coefficients are related to the Kerr coefficients,
α = √

α1α2 and α̃ = 4
√

α3
1α2. Equations (1) are associated with

and can be derive from the quantum Hamiltonian,

H/h̄ = −
∑
n=1,2

(
δna

†
nan + αn

2
a†2

n a2
n

) − 2α a
†
1a1a

†
2a2

− α̃

3

(
a
†3
1 a2 + a3

1a
†
2

) + √
2�2,ext(B2a

†
2 + B∗

2 a2). (2)

Subharmonic oscillations are essentially a classical phe-
nomenon since a large number of photons is generated in the
resonator. Thus we restrict the analysis to the quasiclassical
solutions of Eq. (1), neglecting quantum effects. A detailed
description of the eigenfunctions and tunneling rates can be
found in Ref. [16] for the Hamiltonian (2) in the single-mode
case.

The trivial quasiclassical solution to Eq. (1), a1 = 0,
describes a silent oscillator state. It is always stable [see
the Appendix, Eq. (A3)]. The nontrivial solutions describing
stable steady states of the excited oscillator consist of a phase-
degenerate triad, with the states being stable within the region
of existence, Eq. (A14). In terms of a polar parametrization of

TABLE I. Resonator and SQUID parameters: d , resonator length; Ic, SQUID critical current; CJ , SQUID capacitance; γ0 = L0
J /L0d , the

inductive participation ratio; L0 and C0, inductance and capacitance per unit length; ω1(0), resonant frequency of the first mode at � = 0;
3ω1(0) − ω2(0), spectrum anharmonicity; 2�1(0), damping of the first resonator mode; Q1,int and Q1,ext, quality factors of the fundamental
mode.

d Ic CJ γ0 L0 C0 ω1(0)/2π [3ω1(0) − ω2(0)]/2π 2�1(0)/2π

(μm) (μA) (fF) (%) (μH/m) (nF/m) (GHz) (MHz) (MHz) Q1,int(0) Q1,ext(0)

5080 1.90 86.1 7.7 0.44 0.16 5.504 136 0.38 61.1 × 103 19 × 103
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FIG. 4. (a) Intensity of the subharmonic oscillation output signal as a function of drive power and detuning for � = 0. The oscillations are
detected in region II. The solid white line corresponds to the maximum output signal for each measurement frequency; the white star at the
end of the solid white line represents the subharmonic oscillation frequency threshold. The dashed white line that separates regions I and II
corresponds to the theoretical boundary of existence for the subharmonic oscillations. In region III, the oscillations, although they exist as a
solution to Eqs. (1), are not visible because the oscillator switches to the ground state. (b) The dots represent three linecuts from (a) at detuning
values indicated by the white arrows; a theory fit to these three data traces is represented by the black lines. (c)–(f) Histograms of the detected
radiation quadrature voltages from the operating points indicated by the white circles in (a). These histograms reveal three dynamic states: (c)
the ground state, i.e., the background noise level; (d) the ground state (in the middle) and the three excited states with equal amplitudes and
with phases differing by 2π/3; and (e) and (f) the three excited states. All histograms are sampled at a rate of fs = 100 kHz. The features in
(f) are connected by faint lines, an artifact from the averaging that indicates that the switching rate at this point is higher than in (d) and (e) and
not negligible compared to fs . These histograms can be compared to the histograms sampled with fs = 10 kHz that are presented in Fig. 5 and
were measured with parameters indicated by the white squares in (a).

the quasiclassical field amplitudes,

a1 = r1e
iφ1 , a2 = r2

β
eiφ2 , θ = 3φ1 − φ2, (3)

with β = 4
√

α2/α1, the stable solution has the form

r2
1 = |δ1|

α1
− 3r2

2

2
+

√
r2

2 |δ1|
α1

− 7r4
2

4
− �2

1

α2
1

, (4)

sin θ = �1

α1r2r1
, θ ∈ (π/2, π ) mod(2π ). (5)

The solution (4) exists within an interval of the effective
pump intensity r2

2±,

r2
2 ∈ (

r2
2−, r2

2+
)
, r2

2± = 2|δ1|
7α1

[
1 ±

√
1 − 7�2

1

δ2
1

]
, (6)

and at negative red detuning from the fundamental resonator
mode,

δ1 � −
√

7 �1. (7)

The solution (4) is finite at the boundaries of existence (6);
that is, the subharmonic oscillations emerge abruptly when the
boundaries are crossed. The oscillations achieve a maximum

intensity,

r2
1,max = 4

7α1

(|δ1| +
√

|δ1|2 − 7�2
1

)
, (8)

that grows linearly with the detuning far from the threshold,
|δ1| 
 �1. The maximum is achieved in this region at r2

2 =
|δ1|/14α1.

The effective pump strength r2 is defined by a nonlinear re-
sponse to the external drive B2, Eq. (A8). The response exhibits
instability at a weak drive, |B2|2 � β2|δ1|3/(18�2,extα1), as
shown in Figs. 8 and 9, but has a regular monostable behavior
at larger drive, up to the maximum value given by Eq. (A18),

|B2,max|2 ≈ (3ω1 − ω2)2|δ1|
7β2�2,extα1

, δ1 
 �1,� < 0.4�0. (9)

The phase φ2 is defined by the phase of the drive φB ,
and for the stable branch and large detuning, δ1 
 �2, it is
approximately π shifted from the latter (see the Appendix).
This situation persists within a wide interval of magnetic flux
bias, 0 < � < 0.4�0, as long as the anharmonicity of the
resonator spectrum exceeds the detuning, 3ω1 − ω2 
 δ1 (see
the inset in Fig. 3).
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FIG. 5. Histograms sampled with a rate fs = 10 kHz, ten times
slower than in Figs. 4(c)–4(f). Here, the lines between the steady
states are clearly seen. (a) The histogram measured well inside region
II reveals a triangle configuration of transitions between the excited-
state features. (b) The histogram measured at the border between
regions II and III exhibits a “star” configuration of transitions between
the ground and excited states. These histograms are measured at
δ1/2π = 1.5 MHz and drive power as indicated by the white squares
in Fig. 4(a).

C. Analysis

Using the outlined theoretical results, we are able to
quantitatively analyze the details in Fig. 4. Figure 4(b) displays
three linecuts of the subharmonic oscillation region taken at
three different values of detuning. The oscillation amplitudes,
represented by dots, show sharp onsets at the low-power edge
of region II and smoother decays towards the high-power edge.
The solid lines correspond to a theoretical fit. The power of
the external drive is in linear units,

Pd = 3h̄ω |B2|210Att/10, (10)

where Att is the attenuation (in dB) between the generator
and the resonator for the 3ω drive signal and |B2|2 is given by
Eq. (A17). The measured output power is

Pout = h̄ω|a1|22�1,ext10G/10. (11)

Here, G denotes the overall gain of the measurement signal
ω between the resonator and digitizer. The relation between
the amplitudes of modes 1 and 2 is given in Eq. (4).
The fit is done by adjusting only one fitting parameter,
X = Q2,ext10Att/10, which is found in Eqs. (10) and (A17),
where Q2,ext = ω2/2�2,ext. The other parameters are measured
independently and are listed in Table I; the Kerr coefficient
α1/2π = 85 kHz assumes the theory value, and the gain is
estimated to be G = 66 ± 0.5 dB. The best fit is achieved
for X = (9.97 ± 0.03) × 1011. From this we can calculate the
photon population of the first resonator mode |a1|2. It is found
that 2.4 nW of output power in Fig. 4(a) correspond to roughly
100 photons.

As seen in Fig. 4(b), the observed oscillations reach a
maximum and disappear (the oscillator switches to the ground
state) before they reach the theoretical maximum, Eq. (8).
A comparison of the experimental and theoretical maxima
reveals the scaling,

|a1,max|2exp = 0.7|a1,max|2. (12)

Using Eq. (A18) and fitting parameters extracted from
Fig. 4(b), we evaluate the boundaries of existence and the
stability of the subharmonic oscillations. The upper boundary

is presented by the dashed white line in Fig. 4(a). Above
the dashed line, in region I, the oscillations do not exist;
below this line the theory predicts the existence of oscillations
and stability within all of regions II and III [the oscillation
lower boundary, Eq. (6), lies far below the edge of the panel].
However, the oscillations are visible only in the narrow region
II but not in region III. This can be explained by a competition
between the excited states and the stable ground state. At the
boundary between regions II and III, the system explores all
four available states, as indicated by Fig. 4(d), and in region
III the system preferentially stays in the ground state [see
Fig. 4(c)]. Quantitative evaluation of the lower boundary of
visibility of the subharmonic oscillations requires a dynamical
analysis including the effect of noise, which goes beyond the
scope of the present study.

In Fig. 4 all data are taken at zero magnetic flux, � = 0.
However, the subharmonic oscillations are detected also at
nonzero flux up to � ≈ 0.4�0. In Fig. 6(a) we present the
maximum output power as a function of detuning for different
flux bias values. At � = 0 this corresponds to the white solid
line in Fig. 4(a). The output power is proportional to the
maximum population of the first resonator mode and grows
linearly with the detuning, in good agreement with the theory
[Eq. (8)]. Furthermore, the flux dependence of the line slopes
in Fig. 6(a) is in good agreement with the theory prediction
given by the flux dependence of the Kerr coefficient (A6) in
Eq. (8) and making use of the scaling, Eq. (12), as illustrated
in Fig. 6(b).

The subharmonic oscillations are predicted to start at a
threshold at small red detuning, Eq. (7). Experimentally, this
threshold is defined as the end point of the white curve
in Fig. 4(a), marked with a white star. Experimental data
for the frequency thresholds at different � are presented in
Fig. 6(c) (blue dots). For smaller flux values, |�| � 0.4�0, the
threshold values of the output radiation, Eq. (11), evaluated
for δ1 = −√

7�1 exceed the noise level, Pn ≈ 0.44 nW,
and therefore the measurement procedure identifies the true
threshold, Eq. (7). However, at the edges of this region,
|�| ≈ 0.4�0, the output power rapidly decreases, as indicated
in Figs. 4(a) and 4(b), and therefore the visible oscillation
threshold shifts to larger detuning. Quantitatively, the shifted
position of the threshold is defined by Pout(|a1,max|2) =
Pn. We compute the solution to this equation using the
parameters in Table I and the flux dependence of �1,ext in
Eq. (A5). The internal losses and noise power are assumed
to be flux independent. The theory plot of this solution,
the red line in Fig. 6(c), excellently reproduces the data.
We note that no fitting parameters were used in Figs. 6(b)
and 6(c).

IV. CONCLUSION

We observed period-tripling subharmonic oscillations in
a driven nonlinear multimode microwave resonator in the
quantum regime. When an external drive tone was applied
at a frequency 3ω, we observed output oscillations at ω,
demonstrating period tripling. The output signal consists
of three correlated beams having the same amplitudes but
with their phases shifted by 2π/3 rad with respect to each
other. The oscillations are observed at red detuning from the
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resonator fundamental mode and in a finite interval of drive
power. Due to the proximity of the second resonator mode
to the drive tone, the down-conversion efficiency is strongly
enhanced, enabling access to the subharmonic oscillation
regime. A theory for the two-mode subharmonic resonance
was developed to explain the observations. The theoretical
predictions are in good quantitative agreement with the
experimental observations regarding the boundary of exis-
tence of oscillations, maximum output power, and frequency
threshold.

Our successful implementation of an intermode interaction
of the a

†3
1 a2 type may in the future be used to create

multiphoton entanglement and multicomponent macroscopic
cat states [12].
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APPENDIX

In this appendix we derive quasiclassical solutions to
Eq. (1), identify the stable solutions, and discuss the solu-
tion properties relevant for quantitative interpretation of the
experimental data.

Before proceeding with solving Eq. (1), we reproduce the
spectral equation for the tunable resonator [26,31] that is used
for fitting the data in Fig. 3 and justifies the two-mode model
for the resonator,

(knd) tan knd = 2EJ (�)

EL,cav
− 2CJ

Ccav
(knd)2. (A1)

Here, kn = ωn/v is the mode wave vector, d is the length of
the resonator, EL,cav is the inductive energy of the resonator,
Ccav is the resonator capacitance, CJ � Ccav is the Josephson
junction capacitance, and 2EJ (�) = 2EJ cos(π�/�0) is the
Josephson energy of the SQUID.

It is useful to note that the quasiclassical version of the
Hamiltonian (2), a metapotential, can be written in terms of
quadratures, [pn = Re(an), qn = Im(an)], of the form

H (pn,qn)/h̄ = −
∑

n

[
δn

(
p2

n + q2
n

) + αn

(
p2

n + q2
n

)2]
− 2α

(
p2

1 + q2
1

)(
p2

2 + q2
2

)
+ α̃

3

[
q1q2

(
q2

1 − 3p2
1

) − p1p2
(
p2

1 − 3q2
1

)]
.

(A2)

The phase portrait for the period-tripling subharmonic oscilla-
tor defined by this metapotential is presented in Fig. 7. It gives
general information about the structure of the subharmonic
oscillator stable steady states: they consist of four states,
including the trivial ground state at the origin, p1 = q1 = 0,
and the three nontrivial states corresponding to the excited
oscillator.

To establish the stability of the trivial solution to Eq. (1),
a1 = 0, we linearize this equation and assume time dependence

p1

q 1

20

0

-20
200-20

FIG. 7. Phase portrait for the subharmonic dynamics of the
resonator fundamental mode defined by the metapotential, Eq. (A2),
with fixed values p2 and q2 given by the experimental data point
δ1/2π = −12 MHz and |B2|2 = 6.25 × 1010 photons/s.
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FIG. 8. Response of the second mode r2
2 as a function of detuning for different drive amplitudes B2 (represented by the color scale). The

phase of the response is included in the sign of the drive amplitude. The panels illustrate the evolution of the response with decreasing spectrum
anharmonicity. The curves are restricted to the region of existence of subharmonic oscillations. Exact resonance (B2 = 0) is indicated with a
black dashed line. (γ1 = 1.93,0.10,0.08; γ2 = 0.)

of the small fluctuation, a1 ∝ eλ0t ; then we find

λ0 = i(δ1 + 2α|a2|2) − �1. (A3)

Since Re λ0 < 0, the trivial solution is always stable.
Solving Eq. (1) consists of two steps. First, a solution for

the subharmonic oscillations of the first mode is constructed
treating the field of the second mode as an effective pump
[13,14]. Then the field of the second mode is computed as
a nonlinear response to the drive. Analysis of Eq. (1) is
convenient to perform using dimensionless parameters,

δ = δ1

α1
, � = 3ω1 − ω2

α1
,

δ2

α1
= 3δ + �, γn = �n

α1
. (A4)

Derivations of the explicit equations for the external damping,

�n,ext = ωn(knd)

(
Cc

Ccav

)2

, (A5)

where Cc is the coupling capacitance, and for the Kerr
coefficients,

αn = h̄ω2
nE

2
L,cav

16E3
J (�)

, (A6)

are found in [26]. With these parameters and using the
representation (3), the stationary equation (1) takes the form

(
δ + iγ1 + r2

1 + 2r2
2

)
r1 + r2r

2
1 e−i(3φ1−φ2) = 0, (A7)

[
3δ + � + iγ2 + β2

(
r2

2 + 2r2
1

)]
r2 + β2

3
r3

1 ei(3φ1−φ2)

= β

√
2γ2,ext

α1
B2e

−iφ2 . (A8)

To solve Eq. (A7), we separate the real and imaginary parts,

γ1 = r2r1 sin(3φ1 − φ2),

δ + r2
1 + 2r2

2 = −r2r1 cos(3φ1 − φ2), (A9)

and eliminate the oscillator phase. Then we get a closed
equation for r1, which has the solutions

r2
1 = −[

δ + (3/2)r2
2

] ±
√

−r2
2 δ − (7/4)r4

2 − γ 2
1 . (A10)

These solutions are restricted to the region defined by Eqs. (6)
and (7). Equations for the phase φ1, extracted from Eq. (A9),
read

sin(3φ1 − φ2) = γ1

r2r1
> 0,

cos(3φ1 − φ2) = ±
√

1 − γ 2
1

(r2r1)2
= −δ − 2r2

2 − r2
1

r2r1
. (A11)

The solutions have a threefold degeneracy: for every given
value of the phase φ2, there are three values of the subharmonic
oscillation phase φ1 shifted by 2π/3 rad with respect to each
other (see Fig. 7).

To evaluate the stability of these solutions, we use their
simplified forms for brevity, which is valid away from the
threshold, |δ| 
 γ1,

3φ1 − φ2 = 0, π, r1 = ∓
(

r2

2
±

√
|δ| − 7

4
r2

2

)
(A12)

(the minus and plus signs in front of the parentheses correspond
to the zero and π phase differences, respectively). The
linearized equation for the small fluctuation δa1 around each
of the steady-state solutions has the form

iδȧ1 + (
δ + 2r2

1 + 2r2
2

)
δa1 − (

r2
1 + 2δ + 4r2

2

)
δa∗

1 = 0.

(A13)

Assuming Re(δa1), Im(δa1) ∝ eλ1α1t , for this solution we find
from Eqs. (A13) and (A12)

λ2
1 = ± 6r2

1 r2(r1 ± r2/2). (A14)

For the minus sign in front of the parentheses, which
corresponds to 3φ1 − φ2 = π in Eq. (A12), the exponent is

λ2
1 = − 6r2

2

(
±

√
|δ| − 7

4
r2

2

)
. (A15)

For the positive root, λ2
1 < 0; hence the solution with both

signs positive in Eq. (A12) is stable. The full form of this
solution is presented in the main text in Eqs. (4) and (5). The
other choices of the signs result in positive λ1 > 0, hence
corresponding to unstable solutions.

Equation (A8) describes a Duffing oscillator perturbed by
the back-action of the subharmonic oscillator. The imaginary
part of this equation defines the phase of the response φ2.
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FIG. 9. Response of the second mode r2
2 as a function

of drive power for different values of the spectrum an-
harmonicity, � = 1500,500,50, −10, at δ = −20, corresponding
to � = 0.1,0.32,0.406,0.4178 �0 (γ1 = 1.93,0.43,0.10,0.08, γ2 =
13.6,2.94,0.71,0.55, γ2,ext = 13.1,2.84,0.69,0.53).

Similar to Eq. (A11), the difference between this phase and
the phase of the drive φB is defined by the damping γ2, and
for the major parameter interval of interest, �,|δ| 
 γ2, phase
φ2 is either close to the phase of the drive or shifted by π ,
φ2 − φB ≈ 0, π [compare Eq. (A12)]. The amplitude of the
response is found from the equation{[

3δ + � + β2
(
r2

2 + 2r2
1

)]
r2 − β2

3
r3

1

}2

+ γ 2
2 r2

2

= β2 2γ2,ext

α1
|B2|2. (A16)

The dependence r2
2 (δ) for different drive amplitudes B2

and flux values is illustrated in Fig. 8. For better clarity the
plots are made neglecting damping of the second mode on the
left-hand side and including the phase of the response in the
sign of the drive amplitude; then positive B2 > 0 correspond

to φ2 = φB , and negative B2 < 0 correspond to φ2 = φB + π .
The response qualitatively resembles the one of the Duffing
oscillator; the similarity is most pronounced at small values of
the spectrum anharmonicity illustrated in Figs. 8(b) and 8(c)
for � = 50 and � = −10. Here, the bistability region is seen
at B2 > 0 as well as the exact resonance, B2 = 0, which is indi-
cated with a black dashed line in Fig. 8(c). The stable solutions
correspond to the lower branch at positive B2 and the branch
with negative B2 above the resonance. There is, however, a
second resonance that appears at smaller values of r2; the
states below this resonance line, at negative B2, are unstable.

The dependence r2
2 (|B|2) from Eq. (A8) is illustrated in

Fig. 9 for a representative value of the detuning, δ = −20, and
for different values of the spectrum anharmonicity �, which is
controlled by the bias magnetic flux �. When the spectrum
anharmonicity is large, � = 1500, 500 (� = 0.1,0.32 �0),
the stable solution for r2 exists for all drive amplitudes
except for very small values, where the second, unstable
solution appears (this solution corresponds to the region below
the second resonance in Fig. 8). In this region of large
anharmonicity, which significantly exceeds the experimental
interval of detunings, Eq. (A8) can be significantly simplified
by dropping |δ| � �, r2

1 ,r2
2 � |δ|,

�2r2
2 = 2β2γ2,ext

α1
|B2|2. (A17)

Inserting Eq. (8) into this equation, we obtain the maximum
drive power at which the subharmonic oscillations may persist,

|B2|2 ≈ 2�2|δ|α1

7β2γ2,ext
, |δ| 
 γ1. (A18)

When the anharmonicity decreases (� � 50, � ≈ 0.41), an
unstable (back-bending) branch emerges at large drive. This
feature is associated with the bifurcation in Fig. 8. This effect
should lead to a reduction of the visible part of the subharmonic
oscillation region in Fig. 4(a). With a further decrease of the
anharmonicity the subharmonic oscillations should disappear
at � � 0.4�0.
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