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Abstract
This thesis is about different kinds of detection problems in biology: detec-

tion of DNA sequences in crime scene samples, detection of harmful bacteria in
feed and food stuff and detection of epidemical diseases in animal populations.
In each case, biological data is produced or collected in order to determine
which DNA sequences, bacteria types or diseases are present, if any. However,
the state of nature will often remain uncertain due to limited amounts of sam-
ples, low quality samples and imperfect methods for detection and classification.
For correct and efficient interpretation of such data it is therefore often neces-
sary to use statistical methods, taking the different sources of uncertainty into
account. Several Bayesian models for analysis of such data, for determining
the performance of detection methods, and for deciding on the optimal analysis
procedure are developed and implemented.

In paper I of this thesis it is investigated how the quality in forensic DNA
profiles, such as allele dropout rates, changes with different analysis settings,
and how the results depend on features in the DNA sample, such as the DNA
concentration and marker type. Regression models are developed and the bet-
ter analysis setting is determined. In paper II Bayesian decision theory is used
to determine the optimal forensic DNA analysis procedure, after the DNA con-
centration and level of degradation in the sample have been estimated. It is
assumed the alternatives for DNA analysis are 1) using a standard assay, 2)
using the standard assay and a complementary assay, or 3) the analysis is can-
celled. In paper III detection models for bacteria are developed. It is shown
how heterogeneous experimental data can be used to learn about the sensitivity
of detection methods for specific bacteria types, such as Bacillus anthracis. As
exemplified in the paper, such results are useful e.g. when evaluating negative
analysis results. Finally, in paper IV a Bayesian method for early detection of
disease outbreaks in animal populations is developed and implemented. Based
on reported neurological syndromes in horses, connected e.g. with the West
Nile Virus, the probability of an outbreak is computed using a Gibbs sampling
procedure.

Keywords: Bayesian inference, Forensic DNA analysis, PCR, Allele dropout,
Bacillus anthracis, Syndromic surveillance, Markov chain Monte Carlo
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Chapter 1

Introduction

In this thesis different kinds of detection problems in biology are addressed.
This includes detection of DNA sequences in crime scene samples, detection of
harmful bacteria in feed and food and detection of epidemical diseases in animal
populations. All the problems stem from issues faced by expert authorities in
Forensic Science, Veterinary Science and Food Control. As later described in
detail, biological data are analysed by these authorities in order to determine
which DNA sequences, bacteria types or diseases are present, if any. The detec-
tion problems are connected with different scientific hypotheses (here denoted
by the letter H). For example:

H1: The suspect is the source of the DNA
H2: Someone else than the suspect is the source of the DNA

or

H1: Genotype G is present in the sample
H2: Genotype G is not present in the sample

or

H1: The bacterium Bacillus anthracis is present in the material
H2: The bacterium Bacillus anthracis is not present in the material

or

H1: An outbreak of a neurological disease is ongoing
H2: An outbreak of a neurological disease is not ongoing

As discussed later, many of the hypotheses above are composite and can
thus be broken down into sub-hypotheses.
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2 1. Introduction

Due to limited amounts of samples, low quality samples or imperfect meth-
ods for detection and classification the raw data may not reveal the true hy-
pothesis (state of nature) directly. For correct and efficient interpretation of
biological detection data it is often necessary to use statistical methods, taking
the different sources of uncertainty into account. Ideally, the finder of facts is
able to assign a probability to each hypothesis, and doing so using formal statis-
tical methods. Using Bayes’ theorem the posterior probability P (Hi|y) of each
hypothesis Hi with data y can be computed exactly or approximately. Required
for the computations using the theorem are the prior probabilities P (Hi) and
the value of the mass function or probability density function f(y|Hi) for data
y for each hypothesis (i.e. the likelihood of each hypothesis). With unknown
model parameters θ with prior distribution π(θ|Hi) the (marginal) likelihood
f(y|Hi) can be expressed as

∫
f(y|θ, Hi)π(θ|Hi)dθ, integrating over all values

of θ.
Hence, to assign probabilities to hypotheses, such that the probabilities are

aligned with data and prior knowledge, it is important to find appropriate sta-
tistical models for the components above, and to use proper computational
methods. Ideally, the detection methods used for sample analysis provides data
that, when combined with the statistical models, gives substantial support to
the correct hypothesis.

Connected to each detection problem are also decision problems for deci-
sion makers: e.g. to decide on a verdict that a suspect is guilty of committing a
crime, that a batch of food should be destroyed or that disease control actions in
an animal population should be initiated. As discussed later, Bayesian decision
theory can be used to determine what action is optimal and what detection pro-
cedure provides the most useful results for the decision maker, taking economic
and social costs for different outcomes into consideration.

In papers I - IV several Bayesian models for analysis of biological detection
data, for determining the performance of detection methods, and for deciding
on the optimal analysis procedure are improved, developed and implemented.

A general background to the topics of this thesis is given in chapter 2. A
background to forensic DNA analysis is given in section 2.1. An introduc-
tion to microbiological sampling is given in section 2.2, followed by a general
background to syndromic surveillance in section 2.3. A short introduction to
Bayesian inference and numerical tools for Bayesian computations is given in
section 2.4. Finally, a summary with discussion about the four papers I - IV is
given in section 3.1 - 3.4.



Chapter 2

Background

2.1 Forensic DNA analysis
Forensic science can be defined as science done in relation to investigation of
crimes or in the evaluation of civil disputes [1, 2]. One such discipline discussed
in this thesis is forensic DNA analysis [3]. Routinely, crime scene samples are
collected and sent to forensic laboratories for DNA analysis. The results are
compared to the DNA profiles of potential sources of the DNA (i.e. the suspects
or victims), assessing how much the results speak in favour of or against them
as being the source. A brief description of the basis and technology for DNA
analysis follows.

The DNA molecule has a double stranded helix structure with the four
nucleobases A (adenine), T (thymine), C (cytosine) and G (guanine) as the
building blocks of the genetic code. At several locations in the genome there
are repeating patterns with 2-7 basepairs of the nucleobases A, T, C, G as
the repeating unit (short tandem repeats, STRs). The number of such repeats
often differ between individuals and can therefore be used to discriminate one
person’s DNA from another. By investigating the number of repeats at several
locations of the genome a DNA profile is obtained; a numerical vector with the
number of repeats at the different locations investigated in the genome.

A specific region targeted for DNA analysis is referred to as a genetic marker.
The variant forms at a genetic marker are referred to as alleles (e.g. for STR
markers the alleles are determined by the number of repeats). The markers
selected for human forensic DNA analysis are found in regions between the
genes, i.e. in the regions not coding for any protein. As humans have two
sets of chromosomes, one maternal and one paternal, it is possible to have two
different alleles at each marker. In such a case the individual is heterozygous at
that marker (e.g. alleles 11/13), otherwise homozygous (e.g. alleles 13/13).
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4 2. Background

A method known as Polymerase Chain Reaction (PCR) is used to analyse
specific DNA sequences [3]. In this reaction the target DNA sequences are
copied in a chain reaction process producing a large number of copies of the
sequences enabling them to be detected. There are several important compo-
nents in the PCR reaction: the extracted DNA sample; primers, which "find"
the DNA markers; nucleobase building blocks for the A,C,T,G bases; DNA
polymerase that adds the nucleobases to the correct positions; and fluorescence
dyes, attached to the DNA molecules to enable detection. By altering the tem-
perature in cyclic patterns more and more copies of the target DNA sequences
are created from the mix of substances. First the temperature is increased to
typically about 94◦C where the DNA stands separate. Then the temperature
is lowered to about 60◦C where the primers bind to the DNA. Increasing the
temperature to 72◦C the building of new DNA copies takes place. This process
is repeated a number of times (e.g. 30) to create a large number of copies of the
target DNA sequences. If the process runs with maximum efficiency, the total
number of DNA copies is doubled in each cycle.

As the non-DNA content of the sample may inhibit the reaction, those sub-
stances should ideally be removed prior to the PCR analysis. This step is known
as DNA extraction. Different methods are available to extract the DNA and
remove much of the non-DNA substances. Typically, with the purification of
DNA there is also some loss of DNA molecules.

To detect the DNA fragments after the PCR run a method known as cap-
illary electrophoresis (CE) is often used. A sub-sample of the PCR product is
injected into the CE instrument and the molecules are detected using lasers.
The end result is a diagram, known as an electropherogram, with peaks that
represent how strong the fluorescence signals are from the different markers anal-
ysed. The fluorescence intensity is correlated with the number of DNA copies.
The positions of the peaks in the electropherogram are used to determine what
alleles are present. Typically, additional smaller peaks are also present that
are due to different sources of noise. To avoid overlap between markers in the
electropherogram different fluorescence dyes are used in the PCR analysis.

Due to e.g. very low initial DNA concentrations (low-template DNA), degra-
dation of the DNA, inhibitory substances in the sample or due to sampling ef-
fects it is possible that some of the target DNA sequences that were originally
present in the sample are not detected. Failure to detect one or several alleles
in the sample is known as allele dropout [3, 4].

The crime scene sample may be affected by DNA degradation due to expo-
sure to, e.g. oxygen, heat and ultraviolet radiation [3]. The larger the analysed
DNA fragment, the more likely it is to be damaged by degradation, causing
allele dropout. In order to enhance the analysis, the sample may be processed
in different ways. For instance, if the DNA concentration is low, the sample
may be analysed in replicate to increase the possibility of allele detection and
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reduce the uncertainty about the DNA profile [4, 5]. For degraded samples,
smaller STR allele fragments can be chosen for analysis [6].

Sometimes the DNA analysis is affected by minor, sporadic DNA contami-
nations causing one or perhaps a few extra alleles to be detected. Alleles that
are due to such sporadic contaminations, unlikely to be detected in a repeated
analysis, are known as drop-in alleles.

In addition to peak heights, dropout and drop-in rates there are several
other quality measures used for assessing the PCR performance. Important
examples are the heterozygote balance: the peak height ratio of the two alleles
in a heterozygous marker; stutter ratios: the peak height ratio of a neigh-
bouring artefact "false" allele and the true allele; fluorescence saturation and
bleed-through: non-representative peak heights and false peaks caused by an
exaggerated number of DNA copies in the CE.

Another method to detect the DNA, different from CE, is real time quanti-
tative PCR (qPCR) [3]. In qPCR the fluorescence intensity is measured in every
PCR cycle, in contrast to conventional PCR with CE where the fluorescence in-
tensities are measured after the last cycle. An initial DNA analysis using qPCR
can be used to determine the sample quality in terms of DNA concentration,
DNA degradation and presence of inhibitory substances, and thereby guiding
the scientist about the better analysis procedure.

Given now the DNA profile of a suspect and the electropherogram of the
crime scene sample two competing hypotheses are considered:

H1: The suspect is the source of the DNA

H2: Someone else than the suspect is the source of the DNA

As genetic relatedness is an important factor in the statistical analysis several
sub-hypotheses of H2 are considered. Typical hypothesis pairs are:

H1: The suspect is the source of the DNA

H2: A person unrelated to the suspect is the source of the DNA

and

H1: The suspect is the source of the DNA

H2: A full sibling to the suspect is the source of the DNA

The forensic scientist assesses the relative likelihood of these hypotheses
given the DNA profile of the suspect and the EPG data [7]. The general math-
ematical framework for evaluating the strength of evidence is described later.
Several statistical models are available taking stochastic effects, such as the
probability of dropout and drop-in, into account [7].
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The whole DNA analysis process is complex and finding the optimal setting
or analysis strategy for a sample is not trivial. The laboratory may choose
to analyse the sample in different ways depending on the type and quality of
the sample, the importance of the case and the cost and performance of the
available analysis methods. Theoretically well-founded guidelines for the choice
of analysis method are, however, lacking in most situations. As a starting point,
the performance and limitations of PCR analysis for samples with different
quality have to be understood. These issues are discussed in paper I and II of
the thesis.

2.2 Microbiological sampling
There are many harmful bacteria that for different reasons might be present in
food or feed or in the environment. Thus, investigating the presence of such
pathogens can be very important for protecting humans and animals. Such
cases may be related to feed and food quality regulations, tracing or confirma-
tion/falsification of an outbreak, bioterrorism and forensic examinations.

Typically, only a subset of a batch of food or an area can be investigated, due
to limited resources. Samples from the target location or batch may be collected
in a heuristic manner, or by using some probabilistic sampling method such as
random sampling, systematic sampling or stratified sampling [8].

For detection of bacteria in the samples a number of detection methods are
available. A common method is cultivation by using so called agar plates and
testing whether colonies of the bacterium appears on them (see below). Another
possibility is to use PCR based techniques. The amounts of bacteria in a sample
is often defined as the number of colony forming units (CFU). This is the number
of viable bacteria that could potentially duplicate and create colonies or infect
humans or animals. Prior to analysis with PCR or with plates the sample
generally undergoes pre-enrichment, where the CFUs are allowed to multiply in
a medium ("pre-enrichment broth") suitable for bacterial growth at about 37◦C
for a number of hours. Thereafter sub-samples are taken for analysis by DNA
extraction and qPCR analysis or with agar plates. Using agar plates the sub-
sample from the pre-enrichment broth is placed on a plastic plate containing a
medium suitable for growth of the specific bacteria. Eventually colonies of the
bacterium may appear on the plates, if they are present in the sample.

Even if the bacteria are present in the batch they might not be detected.
They might not be present in the samples analysed due to sampling effects,
or they are present in the samples but not detected by the subsequent anal-
ysis methods. In the latter case the reason can be due to competition from
background flora, anti-bacterial substances or PCR inhibitors in the sample,
loss of bacteria or DNA in the sub-sampling phases or in the DNA extraction
phase. Thus, for correct and efficient evaluation of negative analysis results it
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is important to take these different sources of uncertainty into account. For
instance, incidences in the US 2001, where letters contaminated with anthrax
were sent to several people, gave rise to a large scale sampling campaign that
later highlighted the need for sound probabilistic methods for evaluating neg-
ative analysis results [9]. It follows that the statistical models used for sample
analysis should take the detection probability of the detection method and the
distribution of bacteria in the batch into account.

To assess the detection probabilities of the detection method an experiment
can be performed where the target material1 is spiked (i.e. artificially contam-
inated) with the target bacterium at different concentrations [10, 11, 12]. The
number of detections and non-detections at the different concentrations used
serve as basis for establishing the detection probabilities.

For safety reasons or due to limited capacity of safety labs the spiking ex-
periments are sometimes performed using a surrogate bacterium instead of the
target bacterium. Since the growth characteristics and detection probability can
differ between bacterium strains [13] the difference might have to be accounted
for in the evaluation of sampling results. As an example, the bacterium Bacil-
lus cereus is sometimes used as surrogate for the extremely harmful bacterium
Bacillus anthracis, the cause of anthrax [14].

Similarly, sometimes results are available from other spiking experiments
with other matrices. Again, any important difference in detection probabilities
between the matrix types should be accounted for if taking such experimental
data into account.

Thus, for efficient use of heterogeneous experimental data, and for evalua-
tion of sampling results, flexible statistical methods has to be developed and
implemented. In paper III a modelling framework is presented.

2.3 Syndromic surveillance
Epidemic diseases in human and animal populations cause different kinds of
syndromes in the affected individuals. Hence, the occurrence of such syndromes
may be evidence of an outbreak of an epidemic disease. The same syndromes
may however be explained by other causes or non-epidemic diseases. One impor-
tant pathogen causing serious health issues in horses and humans is the West
Nile virus [15], spread by infected birds via mosquitos. In horses a common
syndrome is neurological problems.

In a syndromic surveillance system the count of syndromes are analysed
statistically, together with other available and relevant information, such as
clustering of syndromes in space and time, historical data on the occurrence of
syndromes, seasonality of the disease, import risk assessment, etc, to determine

1"Materials" is sometimes referred to as "matrices" with "matrix" as the singular form
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the probability of a disease outbreak [16, 17]. Alternatively, instead of the
posterior probability of an outbreak being reported, an alarm is triggered based
on some summary statistics of the syndromic data and a model for the number
of syndromes during a non-epidemic period. For instance, an unexpectedly high
number of reported syndromes might be indicative of an outbreak [18, 19]. The
approach assumes that the false positive and false negative rates of the alarm
system have been established as low [18].

An efficient syndromic surveillance system is thus able to detect both com-
mon and unusual diseases in an early stage based on the pre-diagnosis data.
Regardless of the statistical method used, a decision maker may want to use
the conclusions to take disease control actions: e.g. to initiate epidemiological
investigations or to initiate vaccination programs, or wait for more data. If the
utilities for correct and incorrect actions are available, e.g. based on the mone-
tary cost for different outcomes, as well as the probability of an outbreak, the
optimal action can be determined using a Bayesian decision theoretic framework
[20].

Important for the enhancement of surveillance systems are more advanced
disease spread models, improved computational algorithms and instructive ex-
amples based on realistic data. These issues are discussed in paper IV.

2.4 Bayesian inference

Throughout the thesis, statistical inference is performed mainly using Bayesian
analysis. Many of the problems dealt with have a hierarchical structure, or
have several sources of information and data that should be taken into account.
In some cases probabilities of hypotheses (i.e. posterior probabilities) are re-
quested. The flexibility and features of the Bayesian approach thus makes it an
attractive choice. The flexible modelling and computational frameworks avail-
able, as well as the interpretational ease of results, are other arguments for
adopting the approach. Finally, the approach offers an intuitive and relatively
straightforward method for decision making.

Ideally, historical data, expert knowledge or logical and physical constraints
are available to create informative prior distributions. Alternatively, the robust-
ness of the posterior distributions may be checked by applying different vague
prior distributions.

A brief discussion of Bayesian inference and numerical tools for Bayesian
computations is given below, with topics relevant for the papers of the thesis.
Throughout, it is assumed the probability distributions are proper.
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2.4.1 Hierarchical models
Let f(y|θ) denote the mass function or probability density function for data
y given parameters θ. The prior distribution for θ is denoted by π(θ|μ) with
the hyper-prior parameters μ having prior distribution π(μ). The full set of
variables and parameters together with their distributions and their multi-level
dependencies among each other depicts a Bayesian hierarchical model [21, 22].
In a regression model f(y|θ) is modelled as a function of some predictor variables
x. For a concrete example, assume:

yi,j ∼ N(α + β · xi,j , σ2) (2.1)

for i = 1, . . . , n and j = 1, . . . , m. The parameters α, β and σ may e.g. be
assumed independent with prior distributions π(α), π(β) and π(σ) respectively.
Differences between groups j = 1, . . . , m could be modelled using random effect
parameters, depicting a hierarchical model:

yi,j ∼ N(α + β · xi,j + εj , σ2) (2.2)

with random effects

εj ∼ N(0, τ2) (2.3)

where τ has prior distribution π(τ). Hence, εj depicts the deviation from the
mean intercept value α for each group j = 1, . . . , m. Note that if the model is
updated using Bayes’ theorem and observed data yi,j for groups j = 1, . . . , m−1
(i.e. not for group m) the posterior distribution for εm will typically also be
affected due to the dependence on τ . This is a typical feature of a Bayesian
hierarchical model. In contrast, if independent intercept parameters are used
for all groups a similar "borrowing" of information between groups about the
intercepts is not obtained.

2.4.2 Markov chain Monte Carlo
In some cases the posterior distributions of the model can be derived ana-
lytically, such as for conjugate models, but in general methods providing ap-
proximate results are required. Numerical integration, discretization of the pa-
rameter state space or rejection sampling are common methods [22]. Another
common and general strategy, useful even for complex problems, is via Markov
chain Monte Carlo (MCMC) simulation [21, 22, 23]. Assuming the model have
unknown parameters θ an initial vector of starting values θ(0) is chosen (e.g.
arbitrarily) and a sequence of draws θ(1), θ(2), . . ., θ(N) are simulated via some
of the available MCMC algorithms. Typically the draws are not independent. A
feature of the simulation algorithms is that the empirical distribution of samples
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converges (in distribution) to the true posterior distribution. In each iteration
a new vector is sampled based on a transition distribution and the set of pa-
rameter values from the previous iteration, forming a Markov chain. The chain
should satisfy several mathematical conditions in order to ensure convergence
to the target posterior distribution:

• irreducible: for any state of the chain it should be possible to reach any
other state.

• aperiodic: the chain must not get trapped in cycles.

• non-transient: it should always be possible to return to a state.

• the chain should have the target distribution as its stationary distribution.

As the number of iterations increases the draws behave more and more as
(dependent) draws from the target posterior distribution. Due to sampling
variation, auto-correlation and correlation between parameters a large number
of iterations may be required to explore the parameter state space satisfactory.
It is customary to discard some of the initial simulated values, assuming they
are not from the stationary distribution.

In general there is no way of knowing the required number of iterations
for when convergence can safely be assumed. However, a number of informal
methods for checking non-convergence have been developed. A common rec-
ommendation is to run several MCMC simulations in parallel with substantial
difference in their starting values θ(0). The different chains should eventually
converge to the same distribution. Informally this can be checked in different
ways. Often it is checked that some monitoring statistics are stable and similar
between chains. Graphical inspections via time series plots of the sampled val-
ues (i.e. the traceplots) or via histograms of the sampled values are important
tools. In both cases, the chains should be similar in terms of their distribution,
assuming convergence. Another approach is via comparison of the between-
and within variance of the different chains. Such methods are discussed e.g. by
Gelman et. al. [22]. Another possibility is via standard hypothesis testing of
equality between chains.

The more iterations and chains used and the more methods used for checking
convergence, the more the scientist may become convinced that non-convergence
is unlikely and that the chain has indeed converged.

One of the MCMC algorithms available is the Gibbs sampler. Denote the
parameter vector as θ = (θ1, . . . , θk), where k is the number of parameters and
let θ−i = (θ1, . . . , θi−1, θi+1, . . . , θk). Hence, θ−i is the parameter vector with
all parameters except θi (or more general, all parameters except a subset of
them). In each iteration t = 1, 2, . . . , N the Gibbs sampler cycles through the
conditional density functions π(θi|θ(t−1)

−i , y); i = 1, . . . , k, and samples a value
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from each of them using e.g. conjugacy, if possible, or some other sampling
method, such as rejection sampling. The software OpenBUGS [24] implements
algorithms for Gibbs sampling.

Another software for MCMC simulations is Stan [25], implementing algo-
rithms for Hamiltonian Monte Carlo sampling [22]. The method utilizes gradi-
ent information about the parameter space. In many cases this allows for more
efficient sampling compared to Gibbs sampling, with less sampling issues caused
by correlated variables.

2.4.3 Model comparison and model check
Some common methods for model comparison in a Bayesian setting are briefly
mentioned here.

A measure sometimes useful for comparing two models is the Bayes factor
[22, 26, 27]. Assuming the two models are labeled as H1 and H2, and that their
prior probabilities are positive, the Bayes factor is defined as:

BF1,2 =
P (H1|y)/P (H2|y)

P (H1)/P (H2)
=

f(y|H1)
f(y|H2)

=
∫

f(y|θ, H1)π(θ|H1)dθ∫
f(y|θ, H2)π(θ|H2)dθ

(2.4)

Hence, the Bayes factor expresses how the relative probability of H1 to H2
changes with the observed data. The ratio f(y|H1)/f(y|H2) is known as the
likelihood ratio. Sometimes the expression likelihood ratio is used only when
there are no unknown parameters θ. If P (H1) + P (H2) = 1 the Bayes factor is
the change in odds of H1 to H2. This framework is often used e.g. in Forensic
statistics [7, 28]. The two hypotheses then depict the prosecutor’s and the
defence’s position respectively, as mentioned earlier. Ideally, after the forensic
scientist have computed the Bayes factor, or the likelihood ratio, the court or
the police combines it with their prior odds to find the posterior odds. The
Bayes factor or likelihood ratio may be reported together with an ordinal scale
of conclusions, assigning verbal expressions to the numerical results [28, 29].

Clear evidence against a single model may sometimes be detected by com-
paring simulated data from the model to the observed data, or by comparing
some summary statistics of the two kinds of data. The comparison is made
either using the prior predictive distribution or the posterior predictive distri-
bution. The data used for comparison is any observed data left out from the
model fitting ("cross-validation") or the same data as used for model fitting
[22, 23].

Another measure used for model comparison is the log pseudomarginal like-
lihood [21]. Assuming the data is measured using a common scale for all models
and that the same sampling scheme is used it is defined as:
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LPMLi =
n∑

j=1
log(f(yj |y−j , Hi)) (2.5)

for model Hi, and with data vector y−j = (y1, . . . , yj−1, yj+1, . . . , yn). When
comparing models the one with the higher LPML is preferred. A related mea-
sure is the Leave-One-Out Information Criterion (LOOIC), recently discussed
and implemented by Vehtari et al. [30].

Another common statistic used in Bayesian analysis is the Deviance Infor-
mation Criterion (DIC), a measure sometimes useful to determine what model
has the better trade-off between model fit and model complexity [22, 23]. It is
based on the deviance statistic

Di(θ) = −2log(fi(y|θ)) + C (2.6)

for model i and some constant C. Measuring the model fit by the expected
value E(Di(θ)|y) and model complexity by pi,D = E(Di(θ)|y) − Di(θ̂) for
posterior mean θ̂, DIC is defined as

DICi = E(Di(θ)|y) + pi,D (2.7)

2.4.4 Decision theory
Assume the set H1, . . . , HN of hypotheses represent the possible states of nature
in a scientific problem. A decision maker may have to act as if one of the
hypotheses is true (c.f. the examples given in chapter 1). Denote the action
of deciding on hypothesis 1, . . . , N by a1, . . . , aN respectively. Assume that
for i = 1, . . . , N and j = 1, . . . , N each combination (ai, Hj) of actions and
hypotheses is assigned a utililty U(ai, Hj). The utilities can have positive or
negative values. Thus, if action ai is taken when hypothesis Hj is true utility
U(ai, Hj) is obtained (e.g. measured in monetary units).

In the Bayesian framework, given data y and probabilities P (Hj |y), optimal
decisions are obtained by choosing the action a1, . . . , aN that maximizes the
expected utility[31]:

E(U(ai|y)) =
N∑

j=1
U(ai, Hj)P (Hj |y) (2.8)

Using the equation above as basis for optimal decisions, rules for determining
optimal analysis strategies e.g. in forensic DNA analysis can be derived, as
shown in paper II.



Chapter 3

Summary of papers

3.1 Paper I
Title: Enhanced low-template DNA analysis conditions and investigation of al-
lele dropout patterns.

In this paper different measures of EPG quality are considered to find optimised
settings for PCR cycle number and CE injection time for the ESX 16 analysis
kit. 30–35 PCR cycles are applied to find the cycle number where allele detection
is optimal and drop-in alleles and bleed-through peaks has a low impact. For
each PCR product, three different CE injection times (5, 10 and 20 s) are
applied. Mock crime scene DNA extracts of different quantities are prepared and
analysed, including samples containing just a few DNA molecules and samples
almost generating complete DNA profiles. In addition to dropout and drop-
in rates, heterozygote balances, peak heights and stutter ratios are monitored.
For dropout rates, heterozygote balances and peak heights regression models
are created, using the DNA amount, PCR cycle number and CE injection time
as predictor variables. The dye colour and marker type are also included as
predictors for the dropout models. As the data is highly structured, with each
of the generated PCR products being analysed using 5, 10 and 20 s in CE
injection, Bayesian hierarchical models with random effects are used taking the
dependencies between results into account. Thus, using the fitted models the
scientist is able to predict the changes in EPG quality with altered analysis
settings.

Irrespective of DNA amount, the dropout probability seems not to be af-
fected by increasing the number of PCR cycles beyond 33 or by elevating the
CE injection time. The results for 33, 34 and 35 PCR cycles indicate that het-
erozygote balance and stutter ratio are mainly affected by DNA amount, and

13
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not by PCR cycle number and CE injection settings. 32 and 33 PCR cycles
with 10 CE injection seconds were judged to be the optimal LT-DNA analy-
sis conditions, maximising detection of true alleles while minimising the risk
for problematic artefact peaks and bleedthrough. It is adviced using a similar
systematic approach when optimising the detection limit for another STR kit.

Differences in the risk for allele dropout are found between several STR
markers. If amplification efficiencies were equal for all markers, no impact of
marker or fluorescent label would be expected. The validity of the results also
for casework samples is tested. The dropout rates are computed for several
casework DNA extracts, low in DNA and analysed with 30 and 32 cycles in
replicates. The results agree with the predictions from the statistical models.

3.2 Paper II
Title: Determining the optimal forensic DNA analysis procedure following in-
vestigation of sample quality

In this paper, it is shown how guidelines for the choice of analysis method of
forensic samples can be created using Bayesian decision theory. The theory is
applied to forensic DNA analysis, showing how the information from the initial
qPCR analysis can be utilized. Clearly, a crucial factor when choosing method
for analysis is that the results should be useful in court. Hence, a holistic
approach is taken, connecting the results of the initial qPCR analysis of the
crime scene samples with decisions about guilt or source. The expected value
of different PCR analysis strategies are shown, using Bayesian decision theory
and statistical modelling. It is assumed the alternatives for DNA analysis are
1) using a standard assay, 2) using the standard assay and a complementary
assay, or 3) the analysis is cancelled. The costs for DNA analyses and costs
for erroneous conclusions are two of the factors that have to be considered.
Although the theory is applied to forensic DNA analysis, the framework is
general and could be applied to other forensic disciplines as well.

One of the main features of the approach is how the DNA concentration
and level of degradation, both estimated in the initial qPCR analysis, affect
the probability of allele dropout. A regression model for the risk of dropout
is derived, based on experimental data, and a simulation algorithm for the
distribution of likelihood ratios is described. The likelihood ratios are simulated
under each of the hypotheses of the case. Their distributions reveal how likely it
is to obtain ”meaningful” evidence, i.e. with the potential to affect the court’s
decision. Maps are produced showing the optimal DNA analysis strategy for
different qPCR results. An important feature of the method is that the decision
maps can be created prior to the DNA analysis, avoiding the need for real
time simulations. Therefore, in terms of computational efforts, increasing the
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complexity of the models is a viable option, e.g. by allowing for mixtures (DNA
from more than one person).

Some ideas for estimation of the costs and utilities connected to the analysis
are discussed. The importance of sensitivity analyses for different values of the
model parameters are stressed. In the working example, the sensitivity analysis
indicated no major differences in decisions when changing the parameter values
moderately.

3.3 Paper III
Title: Detection probability models for bacteria, and how to obtain them from
heterogeneous spiking data. An application to Bacillus anthracis

In this paper the evaluation of negative analysis results and the modelling of
detection probability curves for bacteria are discussed. The latter is a crucial
part in the evaluation of negative analysis results, together with a model for
the distribution of bacteria in the target area or target batch. It is shown step-
by-step how such detection models can be created and how different sources of
data can be included, including results from both PCR analyses and analyses
with agar plates, with different bacteria strains and matrix types. The theory is
applied to evaluation of samples with Bacillus anthracis as the target bacterium,
using Bacillus cereus as surrogate bacterium in the spiking experiments for the
target matrix. Other available spiking data with Bacillus anthracis and Bacillus
cereus is included in the analysis, to learn about the model parameters.

Two different modelling approaches, differing in whether the pre-enrichment
step and the PCR detection step are modelled separately or together, are ap-
plied. There are some potential advantages with dividing the statistical mod-
elling into a pre-enrichment step and a detection step. If the pre-enrichment
protocol or the analytical detection protocol is changed in some way then parts
of the model can be kept and do not have to be re-evaluated; e.g. if the PCR
protocol is changed the posterior distributions of the pre-enrichment phase pa-
rameters could be kept as prior distributions for the new setup. If the knowledge
in one part or the other of the model is good, a smaller experiment might be
performed to assess the complete model rather than performing a more exhaus-
tive experiment. It is also possible to use data from more types of experiments
in order to further reduce the uncertainties in the detection probabilities, e.g.
using data from quality assurance experiments specifically made to study the
PCR performance (without pre-enrichment).

The different candidate models are compared via their log pseudo-marginal
likelihood (LPML), and checked with observed data using the posterior predic-
tive distributions. The statistical checks of the final models do not suggest any
overall misfit.
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The relative importance on the detection curves for various existing data sets
are evaluated and illustrated. It is shown how extrapolating the information
from all the experiments with the surrogate bacterium Bacillus cereus together
with the data for Bacillus anthracis for all but one matrix gives similar results
as using the complete set of data.

3.4 Paper IV
Title: Surveillance of equine diseases through implementation of a Bayesian
spatio-temporal model: an example with neurological syndromes and West Nile
Virus

In this paper a Bayesian method for early detection of disease outbreaks in ani-
mal populations is developed and implemented. Based on reported neurological
syndromes in horses, connected e.g. with West Nile Virus (WNV), the probabil-
ity for an outbreak is computed. The basic model structure and computational
algorithms are general and could be applied also to other scenarios for animal or
human disease surveillance as well. A discrete spatio-temporal model is devel-
oped, defining the spatial units by grid cells and counting the number of reported
neurological syndromes in horses for each week in France. The magnitude of
syndromes for a non-outbreak period is estimated using available syndromic
data from 2006–2016. Based on known WNV outbreaks a disease spread model
is derived and the expected number of syndromes for a WNV-like outbreak is
estimated. Our model allows a cell to be unaffected by a disease causing neuro-
logical syndromes, being affected by a WNV-like disease, or being affected by a
non-WNV like disease causing neurological syndromes. The probability for each
of these states is estimated using a Gibbs sampling procedure. It is described
how the simulations can be performed using known conditional distributions
for all unknown parameters. For the disease status variables a Forward filtering
Backward smoothing algorithm is described and implemented.

The use of the models for several outbreak scenarios are examplified. Impor-
tant quality measures such as the sensitivity and specificity of the surveillance
system are presented. Results are given for different threshold decision rules,
based on the probability of an outbreak. The number of instances with high
probability for an outbreak despite not being affected is relatively small. Many
outbreaks are detected, in the sense of yielding a high probability of outbreak,
within 2 weeks after the index case, and almost all within 4 weeks. A novel and
relatively simple model for the spread of a disease between non-neighbours is de-
scribed, enabling faster detection of outbreaks that have spread a long distance.
In a limited example, the number of disease related syndromes for the coming
week is predicted. The results can be used to concretely make decision makers
aware about possible future events, if no disease control actions are taken.
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