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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

The energy hub concept is gradually getting popular due to its capability to integrate renewable energy technologies into the 
energy grid with a minimum impact. Designing distributed energy hubs is a challenging task due to the coupling of optimum 
dispatch and energy system sizing problems. Operation of the system needs to be considered for 8760 time steps and energy 
system sizing optimization can take several days to complete. This time must be shortened in order to make it easier to optimize 
the multi-energy hubs connected to multi energy grids where there is a strong coupling among energy hubs and network. This 
study introduces a novel optimization algorithm, coupling an existing energy hub model with a hybrid surrogate model in order 
to reduce computational time in the optimization process. 
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1. Introduction 

Distributed energy systems can play a vital role when integrating SPV and wind energy technologies [1]. A 
number of different concepts such as virtual plants, smart micro-grids, energy hubs, integrated energy systems etc. 
are emerging within the umbrella of distributed energy systems due to their potential to integrate non-dispatchable 
energy technologies into the grid with a minimum impact [2]. Distributed energy systems consist of different system 
components such as solar PV (SPV) panels, wind turbines, energy storage devices (such as battery banks, H2 fuel 
cells etc.) and dispatchable energy sources (such as internal combustion generators, gas turbines etc.), which 
are complementary to each other. Therefore, a number of options can be considered when operating an energy 
system [3]. As a result, both dispatch and energy system sizing problems have to be considered simultaneously 
when designing distributed energy systems which make it a challenging task. Furthermore, higher computational 
time is taken for the optimization process, which can take from a few days up to a week [4]. Hence, it is important to 
look for promising methods that can reduce the computational time when designing distributed energy systems. In 
order to address this research problem, a novel computational algorithm with the assistance of a surrogate model is 
introduced in this study. A brief overview about the energy hub concept is presented in Section 2. Section 3 of this 
article presents an overview of the computational algorithm proposed to combine the surrogate model with the 
Actual Engineering Model (AEM). Section 5 and 6 present the actual engineering model used and the surrogate 
model developed. Finally, the results obtained from the analysis are presented in Section 7. 

2. Overview of the Energy hub 

Direct integration of non-dispatchable energy technologies such as SPV panels and wind turbines is challenging 
due to the fluctuations in demand and generation. The energy hub is getting gradually popular as a method to 
integrate non-dispatchable renewable energy technologies into the grid. Energy hubs combine dispatchable energy 
sources and energy storage along with non dispatchable energy storage which helps to absorb the fluctuations. A 
simple energy hub consisting of wind turbines, SPV panels, battery bank and ICG operating connected to the grid is 
considered in this study (Fig. 1). The energy hub is maintaining interactions with the grid in both forms of 
purchasing and selling electricity. Grid curtailments are introduced for both selling and purchasing electricity 
considering the stability of the grid. Time of use (TOU) pricing scheme is considered in this study when determining 
the price of electricity in the grid.    

 

Fig.1 Overview of the energy hub 

3. Overview of the computational model 

Surrogate models are black box models that simply present the relationship between input and output, bypassing 
a complex computational model which takes considerable computational time. Although surrogate models are fast in 
computation, these models cannot completely replace actual engineering models (AEM) in most of the instances. 
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Hence, surrogate models should be combined with AEM in order to reach the optimum design solution using less 
computational time. Black box models such as neural networks, support vector machines etc. (as described in 
Section 4) are used to map decision space variables into objective space in surrogate models, which is a single step 
process when compared to AEM (Fig. 2). AEM is more accurate when computing the objective function. However, 
it takes considerable computational time to compute the objective function values when compared to surrogate 
models. On the other hand, surrogate models are much faster in computing but lack in accuracy. Hence, there should 
be an optimum combination of surrogate models and AEMs to obtain the Pareto set. In this study, we try to combine 
surrogate models sequentially with AEM and we name this method Sequential Surrogate Model (SEM).   

SEM consists of two steps: 1) a surrogate model is initially used with the optimization algorithm to generate the 
initial Pareto front, 2) the initial Pareto front is used as the starting point for the secondary stage optimization which 
is using AEM. Higher computational speed of the surrogate model helps the optimization algorithm to reach to the 
Pareto front faster. However, AEM is used in the second stage which maps decision space variables into the 
objective space with a better accuracy. Therefore, the surrogate model in SEM helps reaching the actual Pareto front 
within a short period of time, which is later refined using the AEM.    

 
 

Fig.2: Overview of the SEM 

4. Energy flow model and dispatch strategy 

The energy flow model considers the hourly power generation using renewable energy technologies and ICG and 
the energy interactions with energy storage and grid. Hourly renewable energy potential, state of charge of the 
battery bank and price of grid electricity are used to compute the operating load factor of the ICG and interactions 
with the grid and battery bank. Hourly wind speed at the height of an anemometer is taken to compute the hourly 
wind speed at wind turbine hub level. Power law approximation is used to consider the atmospheric boundary layer 
when computing the wind speed at wind turbine hub level. Hourly wind speed at the wind turbine hub level is used 
to calculate hourly power generation from the wind turbines. Cubic spline interpolation functions [5] are used to 
map the power curve characteristics into the wind turbine model. Similarly, hourly horizontal solar irradiation data 
are taken for the location and converted into tilted global solar irradiation using an-isotropic model [6]. Hourly tilted 
solar irradiation is used to compute solar PV power generation using Durisch model [7]. The specialty of the 
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Durisch model is that it considers factors such as global solar irradiation on the PV panel, temperature of the solar 
cell, air mass and the type of solar panel when computing the efficiency of the solar panel. A detailed description 
about the energy flow model can be found in Ref. [8]–[12].     

 Power generation using ICG, interactions with the storage and the grid are obtained using the dispatch strategy. 
A bi-level dispatch strategy introduced by Perera et-al [1], [13], [14] is used in this study. Operating load factor of 
the ICG is determined in the first level of the dispatch strategy using fuzzy logic. Afterwards, the mismatch between 
demand and generation is computed. The interactions between grid and energy storage are determined subsequently 
considering the TOU price of electricity in the grid, grid curtailments and the state of charge of the battery bank 
using finite state machines. The Markov decision model is used to evaluate the performance of the system 
throughout the year on an hourly basis (8760 steps). Based on that, the life time of the battery bank and ICG and 
other operation costs were determined.    

 Initial capital investments for the system and the operation costs were considered in the cost model. Initial cost 
consists of acquisition cost of system components and installation costs. Operation consists of two parts i.e. fixed 
annual operational cost (FAO) and variable operating cost (VOC). FAO considers the maintenance cost for SPV 
panels and wind turbines, expenses for the fuel and operation of ICG, expenses for grid interactions etc. VOC 
consists of replacement cost for ICG and battery bank. Finally, the net present value of all the cash flows is taken 
and used to compute Levelized Energy Cost (LEC), which is taken as the objective function for the optimization. 
Similarly, hourly simulation of the energy system is used to compute the loss of load probability of the energy 
system (LOLP) and Levelized CO2 emissions (LCO2). LEC and LCO2 are taken as the objective functions for the 
Pareto optimization. LOLP is considered as a constraint in the optimization.   

5. Surrogate model to present the energy system 

The surrogate model has 21 input variables and 3 output variables. Three candidate methods, namely linear 
regression, regression support vector machine and artificial neural network were used to model the relationship 
between these input and output variables. The accuracy of each of the candidate methods was evaluated using the 
mean squared error (Eq. 1). In this equation  is the output from the AEM for the  test point and  is the output 
from the surrogate model.  corresponds to the output variable being evaluated and N is the size of the 
test set.  

                     (1) 
Out of the three candidate methods, the artificial neural network had the lowest mean squared error for all three 

output variables. Therefore, it was selected to be used as the surrogate model. The final neural network is a fully 
connected network that consists of two hidden layers, with each layer consisting of 50 neurons. The Tansig transfer 
function is used for the neurons in the hidden layer and for the output layer a linear transfer function is used. The 
model was trained on a dataset with 640’000 training samples and Levenberg-Marquardt backpropagation was used 
to train the network. 

6. Optimization algorithm 

Formulation of objective functions is not straight forward when using AEMs. Furthermore, mapping of decision 
space variables using surrogate models results in non-convex functions in most of the instances (especially when 
using artificial neural networks). Heuristic algorithms perform better when optimizing objective functions which are 
neither linear nor analytical nor convex. An evolutionary algorithm is used in this study to conduct Pareto multi 
objective optimization considering GHG emission and Levelized energy cost as objective functions. E steady ɛ-state 
evolutionary algorithm based on the hyper volume technique is used as the optimization algorithm [15]. Simulated 
Binary crossover and Polynomial mutation operators [16] are used as the operators for the optimization. Constraint 
tournament method is used to handle the constraint in the optimization. A detailed description of the optimization 
algorithm can be found in Ref. [10].  
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7. Results and Discussion 

Initially, the surrogate model developed is used to predict the two objective functions and the constraint used in 
the optimization problem. Subsequently, the same neural network architecture is used and trained for eight different 
output variables. When analyzing the results it is clear that the surrogate model can be effectively used for most of 
the output variables. When considering the two objective functions and the constraint considered for the 
optimization output, variables one and three perform better than output variable 2.  
 

 

Fig.3 comparison of Surrogate model with AEM 

 
Using the surrogate model developed, a Pareto optimization is conducted and a Pareto front is obtained 

considering LEC and LCO2. Four design solutions from the Pareto front are taken and presented in Table 1. As 
expected, LCO2 notably increases with the reduction of cost. When considering the design solutions, it is prudent 
that S2 and S4 are having the same system configuration. However, the LCO2 emissions show a significant 
difference in emissions. This is mainly due to the changes in operation strategy.     

Table 1:Selected Design solutions from the Pareto front 

 
 
 
 
 

Solution Levelized Cost of 
Energy ($) 

Levelized CO2 
Emissions (103 

Kg) 

Capacity of 
SPV panels 

(kW) 

Capacity of 
wind turbines 

(kW) 

Number of 
battery banks 

S1 0.20 575 78 55 20 
S2 0.24 536 113 80 18 
S3 0.18 810 32 130 3 
S4 0.30 474 113 80 18 
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8. Conclusion 

This study presents a novel method to combine surrogate models with AEMs. An artificial neural network is used 
to develop the surrogate model in order to replace the actual engineering model. The surrogate model can help to 
map the decision space variables into the objective space with a substantial accuracy. Pareto optimization is 
conducted combining both a surrogate model and the actual engineering model. When considering the 
computational time, surrogate models can help to minimize the computational time notably.  
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