
Chalmers Publication Library

Enhanced Vehicle Positioning in Cooperative ITS by Joint Sensing of Passive
Features

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IEEE International Conference on Intelligent Transportation Systems

Citation for the published paper:
Soatti, G. ; Nicoli, M. ; Garcia, N. et al. (2017) "Enhanced Vehicle Positioning in
Cooperative ITS by Joint Sensing of Passive Features". IEEE International Conference on
Intelligent Transportation Systems

Downloaded from: http://publications.lib.chalmers.se/publication/252735

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/252735


Enhanced Vehicle Positioning in Cooperative ITS
by Joint Sensing of Passive Features

Gloria Soatti∗, Monica Nicoli∗, Nil Garcia†, Benoit Denis‡, Ronald Raulefs§ and Henk Wymeersch †
∗Politecnico di Milano, Milan, Italy†Chalmers University of Technology, Gothenburg, Sweden‡French Atomic Energy Commission, Grenoble, France§German Aerospace Center (DLR), Wessling, Germany

Email:{gloria.soatti,monica.nicoli}@polimi.it,{nilg,henkw}@chalmers.se,benoit.denis@cea.fr,ronald.raulefs@dlr.de

Abstract—Satellite-based navigation systems, such as Global
Positioning System (GPS) or Galileo, are the most common
and accessible techniques for vehicle positioning. However, in
dense urban areas, even if combined with vehicle on-board
sensors, they lead to large localization errors due to multipath
and signal blockage. In recent years, cooperative intelligent
transportation systems (C-ITS) have gained increasing attention
as they allow vehicles to cooperate and broadcast safety-related
information to the neighbors through vehicle-to-vehicle (V2V)
communications. In this paper, a novel cooperative positioning
method is developed by exploiting V2V communications without
using explicit V2V ranging. Vehicles localize, in a distributed
way, a set of jointly sensed non-cooperative features (e.g., people,
traffic lights) and use them as common noisy reference points to
implicitly enhance their own position accuracy. Distributed belief
propagation is combined with consensus-based estimation of the
features’ positions to enable cooperative localization of vehicles.
Numerical results show that the proposed method is able to
significantly enhance the GPS-based vehicle location accuracy,
reducing the error by approximately a factor 2 in the considered
scenario, or even more in setups with denser feature deployments.

I. INTRODUCTION

Accurate position information is an essential component in

Intelligent Transportation Systems (ITS), such as navigation,

assisted driving and road safety [1]. Global Positioning System

(GPS) enables to easily obtain information on vehicle position

with accuracy of 5-10 meters under favorable conditions [2],

but performances are degraded in harsh environments such as

urban canyons and tunnels. Moreover, stand-alone GPS does

not meet the requirements of safety-critical ITS services [3].
Recently, dedicated short range communication (DSRC)

standards [4], relying on IEEE 802.11p technology, have been

developed to support Vehicle-to-Vehicle (V2V) and/or Vehicle-

to-Infrastructure (V2I) communications in Cooperative ITS

(C-ITS). These technologies can be exploited to achieve a

more accurate and reliable vehicle localization through cooper-

ative positioning (CP) [5,6]. In this context, extensive studies

have been carried out to combine GPS measurements with

other independent information, such as digital road maps, ref-

erence landmarks and/or inter-vehicle ranging measurements

[7]–[9]. In particular, [7] proposes a CP algorithm, where a

signal-strength-based ranging technique, integrated with road

map information and vehicle kinematics, is used to improve

position accuracy. Another CP method is proposed in [8],

where GPS-based location information and high-resolution
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Fig. 1. Vehicular network with cooperative vehicles and non-cooperative
features (i.e., people, traffic lights and trees).

maps are exchanged amongst vehicles to augment positioning

performance. Though these solutions have shown to enhance

location accuracy, they either rely on complex techniques with

high computational cost, or require particular hardware or ad-

hoc infrastructures, which make them hard to deploy. Further-

more, such methods use explicit V2V ranging measurements

which tend to be of low quality (e.g., power observations), are

not available in current standards for vehicular communica-

tions (e.g., time-based range measurements in IEEE 802.11p),

or require specific hardware that may not be available (e.g.,

UWB radios) [9].

In this paper, we propose a novel implicit cooperative

positioning (ICP) algorithm to improve the GPS-based vehicle

location accuracy by interaction amongst vehicles through

V2V communication links, as exemplified in Fig. 1. Differ-

ently from existing CP methods based on V2V ranging, a

set of non-cooperative features (e.g., people, traffic lights or



(a) (b) (c)

V2F 
sensing

V2V 
communication

GPS+V2F+V2V (ICP) GPS+V2F+V2V (ICP)GPS+V2FGPS

V2V 
communication

Fig. 2. Example of ICP procedure with three vehicles and one feature. (a) Vehicle/feature position information, represented as Gaussian beliefs (solid/dashed
colored ellipses), obtained from on-board GPS and relative V2F sensing system. (b) Distributed fusion of vehicles’ data over V2V links for cooperative
localization of the feature (black ellipse). (c) Implicit improvement of the vehicle location information (colored ellipse) based on the refined feature localization.

trees) is passively detected and jointly localized by the vehicles

so as to create a network of additional reference stations for

GPS augmentation. As features are passive objects, vehicles

have only some noisy information about the vehicle-to-feature

(V2F) relative locations made by their on-board systems, such

as radar or camera. In contrast to conventional map-based

localization, the proposed method does not require an offline

map, though it can be used if available. To take advantage

of this online dynamic information, we develop a consensus-

based belief propagation (BP) algorithm for solving the vehicle

positioning problem.

The proposed approach is exemplified in Fig. 2, where

three vehicles cooperatively localize a passive feature by

sharing over V2V links their own information about the feature

position based on on-board GPS and radar systems. Location

information is modelled as a Gaussian belief, as shown in Fig.

2-(a) by the 1-σ elliptical contours around vehicles and fea-

tures. Combination of multi-vehicle data allows each vehicle to

obtain a more accurate estimate of the feature position (Fig.

2-(b)), which is then used to enhance the vehicles’ location

accuracy itself (Fig. 2-(c)). The procedure, iterated till conver-

gence, is implemented in a fully distributed way by combining

a BP message passing scheme (for beliefs’ exchange among

vehicles) with a consensus approach (for distributed estimation

of feature positions). Performance analysis in a simulated

urban scenario shows that the proposed ICP method provides

significant gain in terms of location accuracy with respect to

conventional GPS positioning.

II. PROBLEM FORMULATION

We consider a network of Nv cooperating vehicles as in

Fig. 1. The position of vehicle i = 1, . . . , Nv , denoted as

xi,t = [xxi,t, xyi,t]
T ∈ R

2×1, evolves over time t according

to the dynamic model [7]:

xi,t = xi,t−1 + Tsvi,t−1 + Tswi,t−1, (1)

where vi,t−1 = [vxi,t vyi,t]
T ∈ R

2×1 is the vehicle velocity

measured by the inner speedometer at the time t − 1, Ts is

the sampling interval and wi,t−1 ∼ N (0,Qi,t−1) is the zero-

mean Gaussian driving process.

The vehicular network is modelled as a time-varying undi-

rected graph, Gt = (V, Et), with vertices V = {1, . . . , Nv}
representing the vehicles and edges Et the V2V communica-

tion links. Assuming that each vehicle has a communication

range Rc (see the dotted red circle in Fig. 1), the edge set is

Et = {(i, j) ∈ V × V : ||xi,t − xj,t|| ≤ Rc}, with vehicles i
and j connected if and only if their distance is lower or equal

to Rc (red links in Fig. 1) and with || · || being the Frobenius

norm. The set of neighbors that directly communicates with

vehicle i ∈ V is denoted as Ji,t = {j ∈ V : (i, j) ∈ Et},

its cardinality, or vehicle degree, as di,t = |Ji,t| and the

maximum degree as Δt = max di,t.

As shown in Fig. 1, the scenario involves also a set

F = {1, . . . , Nf} of static passive features (e.g., people, traffic

lights or trees), which are non-cooperative entities sensed

by the vehicle’s on-board equipment (e.g., radar or camera-

based detector) and used as common noisy reference points

for cooperative localization. Note that the method can be

easily generalized to moving features. At time t = 1, no

prior knowledge on the feature positions fk = [fxk, fyk]
T ∈

R
2×1, ∀k ∈ F is assumed to be available. Due to the limited

sensing range Rs, each vehicle i senses only a subset of all

features Fi,t = {k ∈ F : ||fk − xi,t|| ≤ Rs} ⊆ F (dotted

black circle in Fig. 1).

At time t, two types of location measurements are available

at each vehicle: the GPS fix and the relative V2F position

with respect to all features within the sensing range. The GPS

measurement of vehicle i location is modelled as:

y
(GPS)
i,t = xi,t + n

(GPS)
i,t , (2)

with n
(GPS)
i,t ∼ N (0,R

(GPS)
i,t ) being the GPS error [7] [10].

The V2F relative location observation y
(V2F)
i,k,t ∈ R

2×1 made

by vehicle-i on feature k ∈ Fi,t is given by:

y
(V2F)
i,k,t = q(fk − xi,t) + n

(V2F)
i,k,t = q(δi,k,t) + n

(V2F)
i,k,t , (3)



where n
(V2F)
i,k,t ∼ N (0,R

(V2F)
i,k,t ) is the measurement uncer-

tainty and the deterministic function q(δi,k,t) models the

relation to the V2F relative position δi,k,t = fk − xi,t. De-

pending on the class of on-board sensors detecting the feature,

the measurement may represent the V2F range q(δi,k,t) =
||δi,k,t||, the angle q(δi,k,t) = ∠(δi,k,t), or the relative

position q(δi,k,t) = δi,k,t. In this study, we focus on the latest

case assuming that both range and angle measurements are

available from on-board vehicle radar equipment. However,

the framework is general enough to include other classes of

measurements. The measurement errors n
(GPS)
i,t and n

(V2F)
i,k,t are

assumed to be mutually independent and also independent over

vehicles, features and time. We assume perfect association

among measurements and features at each vehicle.
The problem investigated in this paper is the estimation of

the position xi,t at each vehicle i, based on all measurements

(2)-(3) gathered by the interconnected vehicles. Relying on

the diversity gain provided by the multiplicity of observations

of the same passive features at different vehicles and on the

V2V connectivity for fusion of such observations, the ICP

approach is proposed in the following sections for improving

vehicle positioning, based on both centralized (Sec. III) and

distributed (Sec. IV) processing frameworks.

III. CENTRALIZED ICP METHOD

In this section, we describe the centralized approach for the

joint estimation all vehicles/features’ positions θt = [xT
t , f

T]T

∈ R
(2Nv+2Nf )×1 that will be used as basis for the development

of the distributed ICP method in Sec. IV.
Let xt = [xT

1,t · · ·xT
Nv,t

]T ∈ R
2Nv×1 and f =

[fT1 · · · fTNf
]T ∈ R

2Nf×1 be the vectors of, respectively,

all vehicles’ and features’ positions at time t. The vector

y
(GPS)
t = [

(
y
(GPS)
1,t

)T · · · (y(GPS)
Nv,t

)T
]T ∈ R

2Nv×1 collects all

the GPS measurements (2) and y
(V2F)
t � [y

(V2F)
i,k,t ]i∈V,k∈Fi,t

=

[
(
y
(V2F)
1,t

)T · · · (y(V2F)
M,t

)T
]T ∈ R

2M×1 all the V2F observa-

tions (3). The V2F measurements are conveniently indexed

as y
(V2F)
m,t = y

(V2F)
im,km,t, with m = 1, . . . ,M and M =∑Nv

i=1 |Fi,t|, m identifying the measurement (im, km) made

by the vehicle im ∈ V on the feature km ∈ Fim,t.
In the centralized approach, measurements taken by all

vehicles are aggregated by a fusion center into the vector:

yt =

[
y
(GPS)
t

y
(V2F)
t

]
=

[
I2Nv 02Nv×2Nf

Mv Mf

]
︸ ︷︷ ︸

Ht

θt +

[
n
(GPS)
t

n
(V2F)
t

]
︸ ︷︷ ︸

nt

, (4)

and used to estimate the overall dynamic state θt. Ht is

the known regressor matrix, where Mv = [Mm,i] is block-

partitioned into M ×Nv blocks of dimensions 2× 2 defined

as Mm,i = −I2 if i = im, Mm,i = 0 otherwise. Similarly,

the matrix Mf = [Mm,k], is block-partitioned into M ×Nf

blocks of dimensions 2× 2 defined as Mm,k = I2 if k = km,

Mm,k = 0 otherwise. The additive Gaussian measurement

noise vector is nt ∼ N (0,Rt), with n
(GPS)
t = [n

(GPS)
i,t ]i∈V ,

n
(V2F)
t = [n

(V2F)
i,k,t ]i∈V,k∈Fi,t

, and the noise covariance matrix

is Rt = blockdiag(R
(GPS)
1,t , ...,R

(GPS)
Nv,t

,R
(V2F)
1,t , ...,R

(V2F)
M,t ),

with R
(V2F)
m,t =R

(V2F)
im,km,t based on V2F measurement indexing.

The minimum mean square error (MMSE) estimate of θt

given all measurements y1:t = {y1, . . . ,yt} up to time t [11]

θ̂t|t =
[
x̂t|t
f̂t|t

]
=

∫
θtp(θt|y1:t)dθt, (5)

is extracted from the posterior probability density function

(pdf), p(θt|y1:t), which can be computed sequentially accord-

ing to the Bayesian approach [11]:

p(θt|y1:t) ∝ p(yt|θt)

∫
p(xt|xt−1)p(θt−1|y1:t−1)dxt−1, (6)

where ∝ stands for proportionality and the prediction has

been simplified to account for the time-invariance of the

features’ positions. The likelihood function p(yt|θt) =

p(y
(GPS)
t |xt)p(y

(V2F)
t |θt) can be calculated from the two

independent measurement models (2)-(3) and the transition

pdf p(xt|xt−1) from the vehicle mobility model (1).

Recalling that all models are linear and Gaussian distributed,

for the implementation of the centralized ICP localization (5)-

(6) we consider the Kalman filtering algorithm:

θ̂t|t = θ̂t|t−1+Ct|tHT
t R

−1
t

(
yt −Htθ̂t|t−1

)
, (7)

where θ̂t|t−1 is the prediction at time t of all vehicles’ states

and features’ locations:

θ̂t|t−1 =

[
x̂t|t−1

f̂t|t−1

]
=

[
x̂t−1|t−1 + Tsvt−1

f̂t−1|t−1

]
, (8)

with vt−1 = [vi,t−1]i∈V according to (1). The covariance of

the estimate is:

Ct|t = Cov
(
θ̂t|t

)
=

(
C−1

t|t−1 +HT
t R

−1
t Ht

)−1

, (9)

where

Ct|t−1 = Cov
(
θ̂t|t−1

)
= blockdiag(Cx,t|t−1,Cf,t|t−1),

(10)

is the covariance of the prediction, with submatrix Cx,t|t−1 =
blockdiag(Cx1,t|t−1, . . . ,CxNv ,t|t−1) referring to the vehicles

and Cxi,t|t−1 = Cxi,t−1|t−1 +Qi,t−1 to vehicle i ∈ V . The

submatrix Cf,t|t−1=blockdiag(Cf1,t−1|t−1, ...,CfNf
,t−1|t−1)

denotes the prior covariance of the features with Cfk,t|t−1

referring to feature k ∈ F .

IV. DISTRIBUTED ICP METHOD

The centralized solution presented in the previous section

is not feasible for large-scale networks as the performance

is penalized by latency and communication/computational

overhead required for data processing at the fusion center that

badly scale with the network size. Furthermore, it is vulnerable

to failure when fusion center breaks down. For these reasons,

here we propose a distributed solution based on a combination

of BP and consensus algorithms.

The distributed method enables the sequential evaluation,

at each vehicle i ∈ V , of the marginal posterior pdfs re-

sulting from the factorization of (6), namely p(xi,t|y1:t) and

p(fk|y1:t), ∀k ∈ F (Sec. IV-A). However, as features are

passive objects, they are not actively involved in the BP

procedure. Thus, each vehicle i has to calculate not only its



own belief but also all features’ beliefs using only V2V links.

To address this challenge, we propose a new consensus-based

BP method that allows cooperation between vehicles for the

distributed evaluation of the features’ beliefs (Sec. IV-B).

A. Belief Propagation for V2V cooperation
A BP method is designed to enable the evaluation at each

vehicle of the posterior pdf of its own location and all features

k ∈ F . The message-passing approach is based on the

Gaussian approximation and follows the algorithm in [12] here

adapted to the specific localization problem. At time t, the

marginal posterior pdfs are approximated at vehicle i through

iterations n = 1, ..., Nbp by the beliefs:

b
(n)
i,t (xi,t) ≈ p(n)(xi,t|y1:t), (11)

b
(n)
k,t (fk) ≈ p(n)(fk|y1:t). (12)

Beliefs are initialized at BP step n = 0 as:

b
(0)
i,t (xi,t) = p(y

(GPS)
i,t |xi,t)p(xi,t|y1:t−1), (13)

b
(0)
k,t(fk) = b

(Nbp)
k,t−1(fk), (14)

where b
(Nbp)
k,t−1(fk) is the kth feature belief at time slot t − 1,

while for the ith vehicle p(y
(GPS)
i,t |xi,t) is the local GPS

likelihood computed according to (2) and p(xi,t|y1:t−1) =∫
p(xi,t|xi,t−1)b

(Nbp)
i,t−1 (xi,t−1)dxi,t−1 is the prior informa-

tion, with p(xi,t|xi,t−1) and b
(Nbp)
i,t−1 (xi,t−1) respectively state-

transition pdf from (1) and belief at time slot t− 1.
At step n > 0, the estimation procedure is carried out as

summarized in the following, with the support of the illustra-

tions in Fig. 2. The evaluation starts from the vehicle/feature

beliefs available from step n− 1 (see Fig. 2-(a)). In order to

compute a belief about the feature-k position, vehicle i needs

to combine the belief of its own location from step n−1 with

the V2F likelihood p(y
(V2F)
i,k,t |fk,xi,t), evaluated according to

the model (3). The resulting belief is provided as a message

from vehicle i to feature k (dashed contours in Fig. 2-(a)):

m
(n)
i→k(fk) ∝

∫
p(y

(V2F)
i,k,t |fk,xi,t)

b
(n−1)
i,t (xi,t)

m
(n−1)
k→i (xi,t)

dxi,t. (15)

All messages on feature k are then combined to extract a

refined belief (black circle in Fig. 2-(b)):

b
(n)
k,t (fk) ∝ b

(0)
k,t(fk)

∏
i∈Vk,t

m
(n)
i→k(fk), (16)

where Vk,t is the set of vehicles that acquire measurements of

feature k. We assume that (16) is reset to a uniform distribution

if the feature is not observed by any vehicle i ∈ V . Based on

the refined feature belief (16) and the V2F likelihood, vehicle

i receives a message from feature k (see Fig. 2-(c)):

m
(n)
k→i(xi,t) ∝

∫
p(y

(V2F)
i,k,t |fk,xi,t)

b
(n)
k,t (fk)

m
(n)
i→k(fk)

dfk. (17)

The belief of vehicle i ∈ V is then updated by combining

the vehicle’s local information with all messages coming from

all the features k ∈ Fi,t (colored ellipses in Fig. 2-(c)):

b
(n)
i,t (xi,t) ∝ b

(0)
i,t (xi,t)

∏
k∈Fi,t

m
(n)
k→i(xi,t). (18)

The BP steps (15)-(18) are repeated till convergence. Iterations

stop when ||f̂ (n+1)
k,t − f̂

(n)
k,t || < γmp, ∀k ∈ F , and ||x̂(n+1)

i,t −
x̂
(n)
i,t || < γmp, ∀i ∈ V , where γmp denotes a threshold, whereas

f̂
(n)
k,t and x̂

(n)
i,t are the feature and vehicle location estimates at

step n based on the beliefs (16) and (18), respectively.

Note that since prior distributions of vehicles and features

are Gaussian, models are linear in the state and have inde-

pendent Gaussian noise, computations (14)-(18) reduce to the

evaluation of linear combinations of mean vectors and covari-

ances of beliefs/messages. The problem is the computation of

the feature belief (16), as discussed in the following.

B. Consensus Algorithm for Fusion of Features’ Beliefs

For the evaluation of (16), we need to compute the product

of the messages from all vehicles sensing feature k:

u
(n)
fk

(fk) �
∏

i∈Vk,t

m
(n)
i→k(fk) =

∏
i∈V

m
(n)
i→k(fk), (19)

which can be conveniently expressed as a product over all the

vehicles by extending the definition of the messages also to

non-connected vehicle-feature pairs as follows: m
(n)
i→k(fk) is

defined based on (15) if i ∈ Vk,t, while for i /∈ Vk,t it is set

as a Gaussian pdf with covariance matrix tending to infinity.

Unfortunately, features are passive objects and thus they

are not actively involved in the estimation process. A cooper-

ation between vehicles through V2V communication links is

required to merge the messages in (19). To solve the problem,

we observe that the product of Nv Gaussian pdfs in (19) is

also a Gaussian function (though not normalized) [13]:

u
(n)
fk

(fk) =

Nv∏
i=1

N (μi,k,Ci,k)︸ ︷︷ ︸
m

(n)
i→k(fk)

∝ N (μ̃k, C̃k), (20)

with covariance C̃k = (
∑Nv

i=1 C
−1
i,k )

−1 and mean μ̃k =

C̃k · (∑Nv

i=1 C
−1
i,kμi,k), which can be expressed in terms of

arithmetic average. Thus, for the cooperative evaluation of the

first two moments of u
(n)
fk

(fk) in (19), we propose to employ

the average consensus approach [14], based on successive

refinements of local estimates at vehicles and information

exchange between neighbors. Namely, starting from the evalu-

ation of the covariance matrix C̃k and using for initialization

Φ
(p)
i,k = C−1

i,k , the local estimate at vehicle i is updated at

iteration p = 1, 2, . . . as:

Φ
(p+1)
i,k = Φ

(p)
i,k + ε

∑
j∈Ji,t

(
Φ

(p)
j,k −Φ

(p)
i,k

)
. (21)

based on the estimates Φ
(p)
j,k provided by the neighbors

j ∈ Ji,t. For step-size 0 < ε < 1/Δt, the estimate is

known to converge to the average of the initial estimates,

i.e., Φ
(∞)
i,k = 1/Nv

∑
i Φ

(0)
i,k [14]. Thus, we easily obtain that

C̃k =
(
NvΦ

(∞)
i,k

)−1

. Similarly, for the cooperative evaluation

of the mean μ̃k, the consensus algorithm is initialized with

Φ
(0)
i,k = C−1

i,kμi,k. Then, according to (21), we find that μ̃k =

NvC̃kΦ
(∞)
i,k . In order to minimize communication costs, we
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Fig. 3. Vehicle localization accuracy at time instant t = 50 s for sensing ranges (a) Rs = 40 m and (b) Rs = 120 m: stand-alone GPS method (light blue
ellipse) and distributed ICP approach (red contour). RMSE values of vehicle position accuracy for all methods (bottom-left corner of the subfigures).

stop the consensus iterations when ||Φ(p+1)
i,k −Φ

(p)
i,k || < γcon,

∀i ∈ V and ∀k ∈ F . Once vehicles reach an agreement on

μ̃k and C̃k, each vehicle can locally compute the approximate

marginal posterior pdf of the feature k and successively the

message m
(n)
k→i(fk) according respectively to (16) and (17).

V. SIMULATION RESULTS

We consider a 1.5 km × 1.5 km urban canyon scenario,

with two crossing roads as depicted in Fig. 1. Each road is

a two-way two-lane street, with lane and sidewalk widths set

to 3 m and 1.3 m, respectively. The scenario involves Nv

vehicles, grouped in four clusters of Nv/4 vehicles each, that

enter at time t = 0 from the four corners of the urban canyon

area, with space headway 24 m, drive straight ahead along

their respective lanes at average speed of 50 km/h, cross the

intersection and exit on the opposite sides. Each vehicle’s

motion is simulated according to (1), with driving process

covariance Qi,t = diag(σ2
vxi

, σ2
vyi

). The velocity uncertainty

in the direction of road is σv|| = 2 m/s, while the one in

the orthogonal direction is σv⊥ = 0.01 m/s; depending on

the driving direction of the vehicle, the velocity uncertainties

along axes x (σvxi ) and y (σvyi ) are defined accordingly. The

sampling time is set to Ts = 1 s. The Nf features are randomly

deployed along the sidewalks of the two roads, in an area of

dimensions 700 m × 700 m centered around the crossroad.

For positioning, vehicles rely solely on GPS - integrated

with the on-board inertial sensor by Kalman filtering - until

they start sensing some common features and they can benefit

from V2V cooperation by the ICP method. The GPS measure-

ment covariance matrix at each vehicle is R
(GPS)
i,t = σ2

GPSI2,

with σGPS = 20 m. The covariance matrix of V2F sensing is

R
(V2F)
i,k,t = σ2

V2FI2, with σV2F = 0.1 m (as representative of

radar accuracy). The communication range at each vehicle is

set to Rc = 200 m, while the sensing range Rs is assumed

to be lower and varies through simulations. The consensus

step-size is set to ε = 0.99/Δt, while thresholds for BP

and consensus convergence are set to γbp = γcon = 10−3.

Note that faster consensus methods can be used (e.g., with

Metropolis weights), but these are not evaluated in this paper.

The positioning performance is evaluated through Monte

Carlo simulations in terms of root mean square error (RMSE)

of the vehicle position estimate over the area covered by

features, where the ICP algorithm can be employed. An

example of simulation is in Fig. 3, where a zoomed view

of the urban canyon area is shown with Nv = 8 vehicles

and Nf = 8 features in proximity of the intersection. Fig. 3

presents the average performance at time instant t = 50 s,

based on the 2 × 2 mean square error matrix of vehicles

and features’ position estimates at convergence, respectively

MSEi = E[(x̂i,t−xi,t)(x̂i,t−xi,t)
T ] and MSEk = E[(f̂k,t−

fk)(f̂k,t − fk)
T ]. Averages have been taken over 400 indepen-

dent observations, for both the stand-alone GPS (with inertial

sensor) and the distributed ICP algorithms. The error ellipses,

at 50% confidence, are plotted around the vehicle (blue car)

and feature (black triangle) positions. In particular, Figs. 3-(a)

and (b) show the performances of the distributed ICP method

(red contour) for sensing ranges Rs ∈ {40, 120} m compared

to the conventional GPS solution (light blue ellipse). The V2F

connectivity is also given (grey lines). Results show that the

proposed distributed ICP method outperforms the stand-alone
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Fig. 4. RMSE of the vehicles’ location estimates vs. different sensing ranges
and for Nf ∈ {10, 20, 60} features. Performance of the distributed ICP
approach is compared with the stand-alone GPS and centralized ICP methods.

GPS, as confirmed by the comparison in terms of RMSE of

the vehicle position estimate, averaged over all vehicles, on

the bottom-left corner of the figures.

In Fig. 4, we consider a scenario with Nv = 12 vehicles,

Nf ∈ {10, 20, 60} features and sensing range varying from

Rs = 10 m up to Rs = 120 m. The position RMSE, averaged

over vehicles and time, is plotted for the three methods,

namely the stand-alone GPS, the centralized and distributed

versions of the proposed ICP method. The accuracy of the ICP

algorithm increases with the sensing range and the availability

of features. The distributed implementation is shown to closely

attain the centralized approach. The ICP algorithm reduces the

GPS error from 7 m down to 3.5 m.

A more in depth analysis of the performance is in Fig. 5,

which shows the cumulative density function (CDF) of the ICP

localization error, for sensing range Rs = 40 m and Rs = 120
m (dashed and solid lines), for Nf ∈ {10, 20, 60} features. The

proposed ICP method is compared to the stand-alone GPS

(black dashed-dot line). For sensing range Rs = 40 m and

50% of confidence level, the distributed ICP approach achieves

a location accuracy of 5.25 m, 4.54 m and 3.45 m respectively

for 10, 20 and 60 features, while the stand-alone GPS accuracy

is 6.64 m. Moreover, when the V2F connectivity range is large

enough (e.g., Rs = 120 m), the proposed method can reach a

good accuracy of 3 m with only 20 features.

VI. CONCLUSION

In this paper, a novel cooperative positioning method in

vehicular networks was proposed exploiting non-cooperative

features as common noisy reference points that were localized

by vehicles and implicitly used to enhance the GPS vehicle

accuracy. To solve the positioning problem, we developed a

consensus-based BP algorithm, where a consensus method

was nested within the BP algorithm to enable cooperation

between vehicles for the distributed estimation of the features’

positions. The proposed ICP method was shown to closely

attain the equivalent centralized approach and to provide

meaningful performance gains in terms of vehicle position

accuracy with respect to the stand-alone GPS solution.
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Fig. 5. CDF of the vehicles’ location error. Performance results of the
distributed ICP algorithm for Rs = 40 m and Rs = 120 m and for
Nf ∈ {10, 20, 60} are compared with the stand-alone GPS approach.
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