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Abstract

There has been a huge interest in self-driving cars lately, which is under-
standable, given the improvements it is predicted to bring in terms of safety
and comfort in transportation. One enabling technology for self-driving
cars, is accurate and reliable localization. Without it, one would not be
able to use map information for path planning, and instead be left to solely
rely on sensor input, to figure out what the road ahead looks like. This
thesis is focused on the problem of cost effective localization of self-driving
cars, which fulfill accuracy and reliability requirements for safe operation.

In an initial study, a car equipped with the sensors of an advanced driver-
assistance system is analyzed with respect to its localization performance. It
is found that although performance is acceptable in good conditions, it needs
improvements to reach the level required for autonomous vehicles. The
global navigational satellite system (GNSS) receiver, and the automotive
camera system are found to not provide as good information as expected.
This presents the opportunity to improve the solution, with only marginally
increased cost, by utilizing the existing sensors better.

A first improvement is regarding global navigational satellite systems
(GNSS) receivers. A novel solution using time relative GNSS observations,
is proposed. The proposed solution is tested on data from the DriveMe
project in Göteborg, and found capable of providing highly accurate time-
relative positioning without use of expensive dual frequency receivers, base
stations, or complex solutions that require long convergence time. Error
introduced over 30 seconds of driving is found to be less than 1 dm on
average.

A second improvement is regarding how to use more information from
the vehicle mounted cameras, without needing extremely large maps that
would be required if using traditional image feature descriptors. This should
be realized while maintaining localization performance over an extended
period of time, despite the challenge of large visual changes over the year.
A novel localization solution based on semantic descriptors is proposed,
and is shown to be superior to a solution using traditional image features
in terms of size of map, at a certain accuracy level.
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Introductory Chapters





Chapter 1

Introduction

Autonomous vehicles have several advantages to vehicles which must be
driven by humans, one being increased safety. Despite an increase in number
of cars and total distance driven, traffic injuries has declined in Sweden [1]
and the USA [2], from being the leading cause of death in age groups below
45, to "merely" being in the top ten [3]. To continue this trend, we increase
the scope of traffic safety from just protecting passengers in case of an
accident, to mitigating or preventing accidents before they happen. Based
on studies such as [4], where it is noted that a vast majority of accidents
are caused by human error, we can see that the largest potential to further
increased safety, lies in letting technology assist drivers by automating the
driving task, and thus creating self-driving cars.

Other reasons for self-driving cars are economy, as people can be more
productive while on the road; equality, as blind and otherwise impaired
people then can ride by themselves; and also environment, since the need
for parking in cities could be reduced if all cars could leave by themselves
after the rider has reached the destination.

Now, let us look into the problems we need to solve to make autonomous
vehicles available. These problems include human factors, economy, legal
liability, equality, morality, etc. This thesis focuses on technical problems,
specifically those regarding precise localization. Economy and safety re-
strict possible solutions, but apart from that, we can view the problem of
localization independently. The technical problem of autonomous driving
can be described as a function which maps sensor data to control signals for
the car, primarily wheel torque for longitudinal acceleration and steering
torque for turning the car. The rest which needs controlling in the car, e.g.
controlling flow of fuel and air to the engine, is already solved.

There are several possible ways in which we can approach this problem
of mapping sensor data to control outputs. One possibility is to decide on a
sensor setup that seems reasonable, e.g., a set of cameras based on the fact
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Chapter 1. Introduction

Map

Sensors

Perception

Prediction

Planning

Actuation

Figure 1.1: Flow of data and processing modules for autonomous driving.
Localization is here considered part of the perception module.

that humans are able to drive a car mainly based on vision input, and then
treat it as a machine learning problem, using either reinforcement learning
or supervised learning with a human expert driver. This approach has so
far rendered some success [5–7], but most larger scale projects are focusing
on more modular approaches where the driving task is divided into smaller
parts, which can be designed and verified more independently of each other.

In the modular approach, the problem is subdivided into a few major
modules, where Figure 1.1 shows one example of such a subdivision. We
have one module which is responsible for planning a trajectory and following
it based on information from the other modules, another which interprets
the sensor inputs into a simple structure that is meaningful for the driving
task, and a third which predicts what other traffic participants will do. The
output from the perception block will typically contain information about
both the dynamic environment, such as position and velocity of other road
users, and the static environment, such as which areas are drivable and
which contain static obstacles.

When it comes to describing the static environment, there are two
paradigms. One is to rely only on the input provided by the sensors on
the own car, and the other is to rely also on a predefined map and relating
the sensor inputs to that map. The map paradigm will provide more in-
formation about the static environment than what is visible using only the
sensors, and is thus often preferred. However, to use a map, one must be
able to localize the car in the map. Any uncertainty in position and orienta-
tion in relation to the map will translate into uncertainty about the drivable
area and in consequence also the planned path. Thus, we can see that ac-
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curate localization in relation to an accurate map of the close surroundings
of the car, is an enabler for autonomous driving.

Then what is needed to solve effective localization for autonomous ve-
hicles? Firstly, we need to understand what is needed in terms of accuracy,
availability and price. These requirements are far from obvious, and could
warrant a thesis in and by itself, but a short description of how one can
reason about it is included in Chapter 2. Secondly, we need a map that
connects the observable landmarks with the possibly unobservable, static
features of the road that are needed for path planning, i.e. drivable surface,
static obstacles, etc. A few thoughts on this map have also been included
in Chapter 2. Thirdly, we need sensors which are capable of observing the
landmarks, and sensor models which describe how the observations relate
to the physical world. In Chapter 3, radars are briefly described, while
cameras and global navigation satellite systems such as GPS, are described
in further detail, with a focus on how they can be used for localization
purposes. Lastly, we need algorithms that combine the given maps and the
measurements into estimates of position and orientation. This is achieved
using the Bayesian estimation framework described in Chapter 4, where we
see how to combine the models of various sensors with a motion model for
the vehicle to arrive at probabilistic models of position and orientation.

This thesis examines what level of localization accuracy that can be
achieved using different types of automotive classified sensors. It further
establishes a few missing pieces in reaching desired performance, and pro-
poses solutions for some of them. This is done in three separate papers,
briefly summarized in Chapter 5.
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Chapter 2

Localization

As concluded in the introduction, accurate localization with respect to a
map is a key enabler for using information from those maps in the motion
planner. In this chapter we start with a brief overview of the research area,
then have a look at what goes in the map, then look at how to use the
map for localizing with respect to the drivable area, and finish by reasoning
about how to derive requirements on accuracy and availability.

1 Overview

If we look at the problem of localization with a given map in a slightly larger
context than for autonomous vehicles, we realize that it can be formulated in
many different ways. We can roughly categorize problems in four categories,
based on two criteria: metric vs. topological, and single shot vs. sequential.
In Table 2.1, the references given below are categorized in either of the four
categories.

The first division between metric or topological localization is regarding
the result of the localization. Topological localization is when the result
of localization is categorical and can be represented as nodes in a graph,
e.g., a certain room in a house, or the location where an image from a
training data set was taken. Examples here include place recognition by
image retrieval methods, where an image database of geo-tagged images is
used to represent possible locations, and then a query image is compared
to the images in the database, and the most similar image along with its
position is retrieved, see e.g., [8, 9]. Specialized loop closure detectors also
belong in this category, see e.g., [10, 11]. These provide information to a
larger system doing simultaneous localization and mapping (SLAM), when
a robot has roughly returned to a previously visited place just by looking
at image similarities. In this category, there are also some solutions which
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Chapter 2. Localization

topological metric
single shot / global [8–11] [15–17, 19, 20]

sequential / with prior [12–14] [21–23, 27, 28]

Table 2.1: Classification of localization problems with a few examples of
proposed solutions.

focus on robust localization in conditions with large visual variations, see
e.g., [12, 13]. They make use of sequences of images which as a group
should match a sequence of training images in an image similarity sense.
One could also argue that some hybrid methods, such as [14], belong in this
category, even though they claim to be "topometric" in the sense that they
provide interpolation between the nodes in the graph and thus give metric
localization result along some dimensions where a whole array of training
images has been collected.

Metric localization is more geometric in nature. The resulting location
is in a continuous space, and most easily expressed in coordinates using real
numbers. There are examples from the computer vision community that
does direct metric localization using a single query image, see e.g., [15–18],
but also examples where a form of topological localization is performed first
as an initial step, see e.g., [19, 20]. Most localization in robotics, with the
purpose of providing navigational information to a robot, requires metric
localization, with some examples in [21–23]. Localization using global satel-
lite navigational systems and inertial measurement units are also examples
of metric localization.

The second division we have when categorizing localization, is between
single shot localization and sequential localization. This is regarding what
type of information is used for the localization. Single shot localization
uses only one observation and no additional information from just before or
after. This is relevant when using single images, see e.g., [8, 9, 11, 15–20],
and sometimes also when using sensors that are specialized for localization,
such as the global navigation satellite systems, see e.g., [24].

Sequential localization means using a sequence of observations and some
motion model to connect them, or alternatively, to have useful prior knowl-
edge on the location from some other source. This is the type of observations
available for on-line robot navigation, see e.g., [12, 13, 21–23, 25–28]. We
note that the type of localization needed for autonomous vehicles falls in
the intersection of sequential localization and metric localization. Thus, the
rest of the thesis will focus on metric, sequential localization.

Localization for autonomous vehicles has been done for quite some time
using expensive sensor setups, including survey grade GNSS receivers, fiber
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1. Overview

optical inertial measurement units and multi beam rotating laser scanners.
Some of the most well known examples are the contributions to the DARPA
Grand Challenge in 2005, see e.g., [25], and the DARPA Urban Challenge
in 2007, see e.g., [26]. Some spin-offs from these DARPA challenges, such
as Waymo, use similar technology, arguing that the cost of sensors will fall
enough to make it viable for consumers in a near future. Others argue that
more simple sensors should be enough for accurate and robust localization,
but this is yet to be shown in practice. This cost constraint is the reason
that this thesis is focused on solutions using sensors that are expected to
be readily available in future cars.

Localization with a given map, and mapping given known positions and
orientations, are considered subproblems to the more general problem of
simultaneously estimating both location and map (SLAM). See e.g. [29,
30] for a survey of the SLAM problem. Although localizing with a given
map would be sufficient for an autonomous vehicle, there is still a need
to build the map and keep it updated. To keep costs down, this should
should be performed without huge fleets of special mapping vehicles using
very expensive positioning systems. Thus, viewing both the localization
and mapping problems as SLAM problems is attractive from economical
reasons, in spite of it being slightly more complicated.

In the 1990’s, SLAM was usually solved using extended Kalman filters,
see e.g., [31, 32], where the state vector described the location of landmarks
of the map and the most recent robot location. There were both convergence
and scalability issues with this approach, due to a fixed linearization point,
and an ever growing landmark covariance matrix that needed inverting in
every update. In 2002, solutions using particle filters [33] were presented.
They provided better performance for larger problems, due to not having
to encode the correlation between landmarks, since they are conditionally
independent given the robot trajectory. A few years later the trend shifted
towards viewing the SLAM problem as a continuously growing smoothing
problem, as in e.g., GraphSLAM [34], and iSAM [35, 36]. This is still how
it is typically solved today, see e.g. [37, 38] for some more recent work.
For people with a background in computer vision rather than robotics, it
could be worth noting that, when using point features from camera images
in GraphSLAM or iSAM, the solution is virtually identical to continuously
solving a growing bundle adjustment problem with optimization methods
that consider the sparse and incremental nature of the problem [39, 40].
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Chapter 2. Localization

2 Map representation

As previously noted, the problem in this thesis is self localization for au-
tonomous vehicles using automotive grade sensors, and a map. For this we
need a map, and although we have hinted that this can be solved using
SLAM, it could be useful to discuss what to put in the map.

We know that the path planner needs some navigation information, e.g.,
drivable area, lane connectivity, traffic rules, suitable speed profiles, etc., to
do its job. This navigational information is connected to positions in the
world through markings on the ground, and traffic signs, which can be ob-
served by a forward looking camera. These cues are what we would like
to localize with respect to. However, some sensors, e.g., cameras looking
backwards, radars, or GNSS receivers, can not directly observe them. In-
stead we may choose to use some other observable landmarks, and encode
their relation to the navigational information in the map. With a map
that holds both the navigational information needed by the path planner,
and observable landmarks, the car can use on-board sensors to detect angle
and/or range to the landmarks, and triangulate a position relative to the
navigational information in the map.

Now, these observable landmarks that we choose to add to the map
can be quite sensor specific. Although geometric features, such as points
or curves, are a popular choice, there are plenty of other options. One
alternative is a grid map, where the world is discretized in a 2-D or 3-D grid,
where each pixel (or voxel in the 3-D case) describes some property about
that small part of the world. An often used property is occupancy, i.e., if
the grid cell is transparent or opaque to the relevant sensor, often indicating
that the cell is empty or occupied, hence its name [41, 42]. Another property
that has been used successfully with grid maps is reflectivity, as in e.g., [43].
A version of grid mapping that has been popularized with the introduction
of the Kinect RGB-D camera, is the truncated signed distance function.
Here, each voxel stores the signed distance to the nearest opaque surface,
if it is below some threshold distance. In indoor environments, where the
size of the map is quite limited, 3-D grid maps have been demonstrated
with impressive results. However, a grid representation of the world scales
badly with the number of dimensions to be described, and although work
has been done to compress the 3-D grids maps, see e.g., [44], most often
this approach is used for 2-D maps.

For large 3-D maps, a more common approach is to store sparse features
that are possible to describe with a few parameters. Points, lines, and B-
splines are popular, but not the only possible choices. When using these
types of features, we should take care to construct feature detectors that
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3. Accuracy requirements

are able to reliably detect these features in the sensor data.

Reference frame

For the motion planner, the only relevant information needed is the relative
position from ourselves to other traffic participants, and to relevant objects
in the immediate surroundings. Where the origin of the metric map of the
world lies is irrelevant, as long as all relative positions and angles are correct.
For most sensors, especially the cameras and radars used in this thesis, this
is also true. However, GNSS provides global localization with respect to a
certain origin of the Earth, and thus, if we want to use GNSS to localize
in the map, the map must be aligned to the world origin as defined by the
coordinate system used in GNSS.

Historically, maps have been thought of as 2-D projections of the surface
of the Earth to a flat surface, such as a piece of paper or a screen. It
is mathematically impossible to map the surface of a sphere to a plane
without distortions and discontinuities, but there has been many proposals
for suitable projections that does this without too much distortion, or with
some special property preserved at the expense of some other error being
introduced.

For our needs, however, we can drop the requirement that the map must
project well to a 2-D plane. We are merely interested in using the map for
localization and path planning, and for that we need to keep track of 3-D
position of landmarks, and the road. The map must at least be able to store
a 3-D representation of landmarks and the road, in any part of the world
without discontinuities.

The most straight forward reference frame for a global 3-D map is an
Earth centered and Earth fixed (ECEF) Cartesian coordinate frame that fol-
lows the rotation of the Earth. In this coordinate system there are no prob-
lems to map even Scott-Amundsen station at the south pole without discon-
tinuities, and the transformation to a local east-north-up (ENU) frame is a
simple rotation and translation. In the experiments in this thesis, however,
the area where the car is driving is small enough, that a map in the local
ENU frame, with a flat Earth assumption, is sufficient.

3 Accuracy requirements

Now, let us look into what performance we require of our localization. What
accuracy of localization is needed for autonomous driving? How often and
long can the localization be allowed to have an error over a certain threshold,
and what is that threshold? These are difficult questions to answer, but in
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Chapter 2. Localization

order to evaluate performance, it is important to at least have an idea of
the magnitudes, and a method to argue about them.

One possible starting point is a safety analysis. There are tools and
frameworks to aid in such analysis, and they help us through hazard analysis
and risk assessment to identify critical scenarios and the safety goals that
arise from them. The hazards are classified according to their risk, which
leads to a classification also of the safety goals. The ISO standard 26262
defines five Automotive Safety Integrity Levels (ASIL): QM, A, B, C, and D,
with D being the highest level. The classification is based on how frequent
the situation is (exposure), how severe the damages would be, and how
controllable the situation is by the driver.

Let us take an example with the hazard of drifting out of the lane in
a curve and colliding with oncoming traffic at 20 m/s or higher when in
autonomous mode. This hazard is very severe in terms of expected dam-
ages to the people involved in a head on collision, the situation is quite
frequent (high exposure), and it has low controllability since the driver is
not expected to be alert when the car is in autonomous mode. Thus, it gets
the highest classification, ASIL D, which roughly translates to a desired fre-
quency of error of less than 1 in 1000 years. Next, we can split the hazard
into a fault tree, which should contain all possible faults that could cause
it. There can be several possible causes, e.g., skidding if there is ice, not
getting enough steering torque from the power steering, or lane information
reported to the path planner being wrong. If the lane information is based
only on using a map and localization, with ASIL D, both the map and the
localization are required to give a lateral error that is small enough such
that the vehicle does not cross over to the other lane (∼1 m).

This margin applies to the combined error of all components in the au-
tonomous car, from sensing to actuation. To get the requirements for a
specific module in the chain of modules presented in Figure 1.1, one could
subtract the error introduced by the last module of the chain, and then
propagate the remainder backwards through the various transformations
that each block causes. Localization resides in the perception module, early
in the chain, and this type of backwards propagation of permissible error
could be quite cumbersome. A slightly less difficult way to get a rough
understanding of the error margins, could be to simulate errors in the local-
ization and propagate them forward to see what the final control error will
be.
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Chapter 3

Sensors and observations

When self-localization of cars is the topic, people often come to think of a
Global Navigation Satellite System (GNSS), often the Global Positioning
System (GPS), which has as its main purpose to measure position of the
receiver. However, as we have seen, there are also other sensors, primar-
ily used for other purposes, which can be quite useful also for localization.
Cameras and radars, as examples of this type of sensors, are primarily used
to detect obstacles and other road users in the local environment around the
car, and often more than one of each is required to get a good enough un-
derstanding of the surroundings. Together with GNSS, and motion sensors
such as accelerometers, gyroscopes and wheel speed sensors, they provide
the measurements that we use for localization.

So, how do these sensors work, and how do we use them for localization?
One common factor is that they capture electromagnetic waves (light or
radio) that was either transmitted or reflected by some object in the en-
vironment. They typically record the angle of arrival, or measure distance
to the object by recording the time delay of the captured signal. Some-
times the intensity, and possibly some other features of the signal are also
recorded. With sensors measuring angle to landmarks, the known positions
of the landmarks can be used to triangulate the ego-position, see Figure
3.1. With sensors measuring distance, trilateration is used, see Figure 3.2.
In both cases more than one landmark has to be detected to calculate an
unambiguous position. In this chapter we look into more details on how the
sensors used for localization in this thesis work, and how the measurements
are modeled.
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1 landmark 2 landmarks

Figure 3.1: Triangulation from landmarks with known positions. With only
one landmark, there is no unique solution, but with two landmarks we get
a unique solution in 2-D.

1 landmark 2 landmarks

Figure 3.2: Trilateration from landmarks with known positions. With only
one landmark, again there is no unique solution, and with two landmarks
we get two possible positions in 2-D, but no information about orientation.

12



1. Global Navigation Satellite System

1 Global Navigation Satellite System

GNSS is, in a localization context, a rather unique sensor compared to
other sensors. Its sole purpose is localization, while cameras and radars are
primarily used in the self-driving car for their ability to detect obstacles and
other road users. GNSS is also the only sensor which has a global frame of
reference.

All GNSS systems, including GPS, which is the most well known, use the
same principle of positioning. Kaplan and Hegarty describe this in detail in
their book [45]. Essentially, a number of satellites with accurately known
Earth orbits, transmit signals at very well defined times, and the receivers
measure the delay from the transmission to the reception. From this delay
the receiver can calculate the range to the satellite. By using multiple
simultaneous satellite observations, the receiver is able to trilaterate its
position.

Coarse/acquisition (C/A) code ranging

The signal that is transmitted from the satellite consists of a carrier signal,
on top of which there are up to two other signals, modulated using Binary
Phase Shift Keying. One of the signals is a repeating sequence of pseudo
random numbers, which functions as a unique identifier for the satellite,
and is also what is used for range calculations. The other signal, which
is transmitted at a slower bit rate, is the navigational message. It pro-
vides information about the satellite such as its status, orbital parameters,
corrections to its clock, etc.

The normal method for determining position using GPS uses the se-
quence of pseudo random numbers to calculate a pseudo range from the
receiver to the satellite. Since the sequence of pseudo random numbers
(C/A code) is known in advance by the receiver, this can be done with a
tracking loop that calculates how much a local copy of the C/A code must
be time shifted to match the received signal, see Figure 3.3. If the receiver
had a perfect clock, and if smaller error sources are ignored, one could sim-
ply multiply the time shift with the speed of light to get the distance to
the satellite. Given three such measurements to different satellites, the 3-D
position of the receiver could be trilaterated. However, the clock in a typical
receiver is of relatively low quality, which is why the receiver time must also
be treated as an unknown variable. That increases the requirement to four
satellites, in order to calculate a solution for position and time. This is the
basic idea of how simple positioning using the C/A code in GPS works. If a
receiver does not make use of the carrier phase to smooth the pseudo range
measurements from the C/A code, there is a noise floor of around 1% of
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Δt

Figure 3.3: The time offset, ∆t, when matching pseudo random numbers
in the received C/A code signal to the internally generated sequence, is
unique.

the bit length in the code, which is difficult to get below. The bit length
is calculated as the bit length in seconds times the speed of light, and is
around 300m. This means that the receiver tracking loop introduces noise
on the pseudo range measurements that has a standard deviation of about
3m. However, since modern receivers use some tricks, such as carrier phase
smoothing [46], the receiver noise is usually quoted as much lower today,
see Table 3.1. Apart from the receiver tracking noise, there are other errors
affecting the pseudo range measurements, leading to an average error that
is typically quoted as around 7 m, for a standard single frequency receiver.

Carrier phase ranging

Now, consider the carrier signal, which has a wavelength of about 0.2 m;
much shorter than the bit length of the C/A code. If the tracking loops in
the receiver are able to determine the phase of the carrier signal within 1%,
and if there is a way to remove additional errors, then potentially a very
accurate range measurement to the satellite can be obtained.

The alignment to the carrier phase through phase lock loops in the
receiver, is indeed accurate to about 1 mm. However, there is now another
problem. Every cycle of the carrier signal looks the same. This means
that if we examine the cross correlation between the received signal and
the internal oscillator, we would find an infinite number of peaks with a
spacing that corresponds to the wavelength of the carrier signal. Which
peak the phase lock loop locks on to, is random. This causes the range
measurement using the carrier phase, to be offset by an unknown integer N
times the wavelength. This integer, N , must be determined if we want to
use the carrier phase range measurement as a normal range measurement,
see Figure 3.4.
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Δt−1T

Δt+1T

Δt

Figure 3.4: The true time offset, Deltat, when matching the received carrier
signal to the internal oscillator, is not uniquely observable.

If we look a little bit deeper inside the receiver, we find that the phase
tracking is not performed on the raw carrier signal, but instead on an inter-
mediate frequency signal created by down mixing the carrier signal. When
this intermediate frequency is 0 Hz, i.e., when the mixing signal has a fre-
quency equal to the nominal frequency of the carrier, it is easiest to analyze
what is going on. If there was no relative range rate between receiver and
satellite, the down mixed signal would be constant. When there is a relative
range rate, the frequency of the mixed signal equals the Doppler shift of the
carrier signal. The change in phase of this signal, multiplied by the wave
length of the nominal carrier signal, equals a change in range to the satel-
lite. Thus, we get a measurement of how much closer, or further away, the
satellite is now, as compared to when the signal was first acquired. Instead
of wrapping around every whole cycle, the phase should continue counting
also the whole number of cycles since it locked on to the signal. This "un-
wrapped" phase signal, counting number of whole cycles and the fractional
part of the cycle, is what is considered the carrier phase measurement from
the receiver.

In order to use the carrier phase measurements for localization, we need
to solve the problem with the unknown integer of wavelengths between the
receiver and satellite at the time phase lock was acquired. There are various
methods for resolving this unknown variable when 5 or more satellites are
visible and the conditions are otherwise good. The Least-squares Ambigu-
ity Decorrelation Adjustment (LAMBDA) [47], is one popular method to
resolve the integer ambiguity.

15



Chapter 3. Sensors and observations

Error source Uncorrected Consumer receiver High end receiver
Satellite clock 1.1 1.1 0.03
Satellite orbit 0.8 0.8 0.03
Ionosphere 15 7.0 0.1
Troposphere 0.2 0.2 0.2
Receiver noise N/A 0.1 0.01
Multipath N/A 0.2 0.01

Total N/A 7.1 0.2

Table 3.1: Standard deviation of user equivalent range errors (UERE) in
meters for a typical consumer receiver using one frequency band [45], and
a high end, dual frequency receiver using corrections for satellite errors.

Error sources

In addition to the limited accuracy of the phase lock loops, error in the
estimated range to a satellite also comes from other sources. There is one
family of errors that relate to the accuracy of the navigational message.
Both the atomic clock of the satellite, and the position as given by the
orbital parameters encoded in the navigational message, may be wrong by
up to a few meters. The clock error, which is measured in seconds, is
multiplied by the speed of light, in order to be comparable to other error
sources.

On its way from the satellite to the receiver, the signal passes through
the atmosphere, and this affects the time of arrival. In the ionosphere, the
Sun radiation creates electrically charged particles that delay the signal.
This delay varies with the time of day and some other factors. When the
signal enters the more dense troposphere, there is yet another delay, which
varies less than the ionosphere delay. Thus, it is more predictable when the
altitude and weather conditions of the location are known.

Finally, there is multi path error, which is a local error caused by the
signal reflecting from surfaces near the receiver. While all the errors above
are strongly correlated in space, such that two receivers with a base line of up
to a kilometer, experience almost the same satellite errors and atmospheric
errors, the multi path error caused by reflections is not correlated when the
receivers are more than a few meters apart.

Corrections of errors

All the errors above, with exception for the multi path, are possible to
largely compensate for, because they change relatively slowly over time,
and are spatially highly correlated. Corrections of the errors come in two
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different forms. Either one tries to model all parts and estimate them
accurately from a few well known reference stations around the world, or
one can bundle up all errors and correct the measurement directly with the
help of a nearby reference station. The assumption in the latter case is that,
if the base line between the receivers is short enough, then the total error at
the two receivers will be almost identical. Thus, the errors will effectively
cancel out, when taking the so called double difference [48].

The largest error source, the ionospheric delay, is inversely proportional
to the carrier frequency, and thus, receivers that use two or more frequency
bands can almost entirely eliminate this error. Single frequency receivers
are restricted to rely either on a model of the ionosphere, or on the can-
celing effect of a nearby base station. Rudimentary state space corrections
are part of the base GPS system, in the form of coefficients to Klobuchar’s
ionospheric model [49], and rough models of satellite clock and orbital pa-
rameters. The WAAS/EGNOS/MBAS corrections provide more detailed
ionospheric corrections, satellite clock corrections and satellite orbit param-
eters. There are even more accurate corrections available with a delay of a
couple of days from the International GNSS Service (IGS). Because of the
delay, these corrections are more accurate than the on-line corrections, and
thus, tend to be used in post-processing.

These corrections are used to a varying degree in receivers, depending
on different design choices. Precise point positioning (PPP) is a technique
that aims at resolving integer ambiguity of the carrier phase measurements
by use of these corrections, but without the use of a nearby base state. In
contrast, differential GNSS (D-GNSS) works with observation space cor-
rections for the C/A code based pseudo range, and "real time kinematics"
(RTK) is when observation space corrections are used to resolve carrier
phase measurement ambiguities. The D-GNSS solution usually results in
position estimates with error below 0.5 meters, while RTK with properly
resolved integer ambiguity results in an error of a few centimeters. Observa-
tion space corrections are easy to apply, and converge quickly to an integer
solution of the phase ambiguity when compared to state space corrections.
However, they require a short base line (∼10km) to the base station to
work, and are thus less suitable on the sea, or in other areas where there
are no base stations around.

Configuration aspects for GNSS receivers

There are many aspects to consider in the design of a GNSS receiver which
all affect the end performance and cost. Number of frequency bands will
affect ionosphere error and speed of acquiring integer ambiguity resolution in
RTK systems. Use of carrier phase enables high accuracy techniques such as
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Frequency Carrier Correction Filter
bands phase space design
L1∗ no observation∗ loosely coupled

L1+L2 yes∗ state tightly coupled∗

L1+L2+L5 ultra-tight / vector

Table 3.2: Configuration aspects for GNSS receivers. The asterisks mark
the configuration used in Paper II.

RTK and PPP. Corrections can come either as state space corrections where
each error source is estimated, or as observation space corrections where the
observations of a nearby base station are subtracted from the mobile receiver
observations to form single or double differences. Finally, the design of the
localization filter where the GNSS measurements are combined with other
position measurements from e.g., an Inertial Measurement Unit (IMU), can
be coupled to various degrees. In a loosely coupled filter, the GPS receiver
calculates a position/velocity/time (PVT) solution with no feedback from
the position filter. The PVT solution provided by the receiver is then at
some frequency, sent to the filter, where it is regarded as a measurement. A
tightly coupled filter uses the pseudo ranges and phase information to each
individual satellite, directly as measurements in the position filter. There
they are combined together with measurements from IMU and other sources,
as any other landmark measurement. One consequence of this is that, unlike
in the loosely coupled filter, pseudo range measurements contribute to the
position estimate even when there are only 2 or 3 visible satellites. In even
more tightly coupled filters, the solution from the position filter is fed back
into the tracking loops of the receiver. Thus, an IMU can help to reacquire
the signal after short reception outages, or harden the receiver to spoofing.
In Paper II we look at a specific configuration that has not been used much
before, but offers a combination of low cost and high relative accuracy; see
the combination marked with asterisks in Table 3.2.

2 Camera

Cameras are probably the most popular sensors to use with autonomous
vehicles. They combine a low price with information rich measurements.
One can also argue for the use of cameras by noting that humans can drive
using only the same visual information that cameras capture, and that the
road environment with traffic signs, lane markers, etc., is constructed with
this in mind.
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Figure 3.5: Pinhole camera projection of two points from an object, with
image plane coordinate system (X, Y, Z), camera coordinate system (u, v),
focal length (f), and principal point (u0, v0) marked.

Cameras typically do not emit any light, and relies on objects scattering
light from various sources in the environment. They measure intensity of
light in different angles from the focal point, but usually do not measure the
range directly. As such, when using the camera for localization, we make
use of several landmarks in the environment with known positions, measure
the angle to them, and can then triangulate the ego position.

Pinhole camera model

To be able to use a camera in our localization process, we need a model
which describes how the camera measurement, comprising the image pixels,
relates to angles to objects. The camera sensor is essentially a grid of
photo detectors where each one measures light intensity at a certain angle
of incidence to the camera. The geometric relation between a light source
in 3-D and the pixel on the flat image sensor which captures the light is
modeled by the pinhole camera model in conjunction with a simple non-
linear model for distortion [50].

Assuming the camera with focal length f is placed with the focal point
(pinhole) in the origin, pointing along the Z-axis, and with the X-axis point-
ing to the right, a 3-D point, [X, Y, Z]>, will project to the image plane at
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[−fX/Z,−fY/Z]> according to the pinhole camera model. This is under
the assumption that the image plane lies behind the focal point as in the
rightmost projection in 3.5. For convenience, we most often pretend that
the image plane lies in front of the focal point, the leftmost projection in
3.5, to get an image that is not upside down, and thus get rid of the nega-
tion, [fX/Z, fY/Z]>. In the case of digital cameras, the image coordinate
frame normally has its origin in one of the corners such that the point in
the middle of the image is at position [u0, v0]>, leading to an offset in image
coordinates as [fX/Z + u0, fY/Z + v0]>.

This equation can be expressed conveniently when using homogeneous
coordinates for both 3-D point, U = W [X, Y, Z, 1]>, and the 2-D point in
the image, u = w[u, v, 1]>. We also need to loosen the assumption that
the camera is located at the world origin, by introducing a rotation matrix
from world coordinates to camera coordinates, R, and a translation vector,
C̃, which gives the camera center in world coordinates. We then get the
homogeneous camera coordinates as

u = PU (3.1)

P = KR[I | − C̃] (3.2)

K =

fmx 0 u0

0 fmy v0

0 0 1

 , (3.3)

where P is the complete camera calibration matrix, K is the intrinsic pa-
rameter matrix, mu andmv are conversion factors from metric units to pixel
units for the focal length, and u0 and v0 define the principal point of the
camera given in pixel units. Having separate mu and mv allows for different
size of pixels in u (right) and v (down) directions.

Non linear distortion

For real cameras using optical lenses, the pinhole model is not particularly
exact, but the errors can usually be described well with a relatively simple
model. By combining the pinhole camera model with a non-linear distortion
model, one can achieve sub-pixel accuracy. The distortion model we use is
based on [50], and comprises two components: a radial distortion (3.6), and
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a decentering distortion (3.7),

û = K

xdyd
1

 (3.4)

[
xd
yd

]
=

[
xu
yu

]
+R+D (3.5)

R =

[
xu
yu

]
(κ1r
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4 + κ3r

6 + . . . ) (3.6)
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[
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u))
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u))

]
(1 + λ3r
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4 + . . . ) (3.7)

r =
√
x2
u + y2

u (3.8)

w

xuyu
1

 = R[I | − C̃]U, (3.9)

where û is the distorted point in the raw image, xd and yd are the normal-
ized distorted image coordinates, xu and yu are the normalized undistorted
image coordinates, R is the radial distortion, D is the decentering distor-
tion, κi are the parameters for radial distortion, λi are the parameters for
decentering distortion, and w is the homogeneous scaling factor. Usually
the distortion model is good enough using only κ1 and κ2, but often λ1,
λ2, and κ3 are also considered. These non-linear distortion parameters, to-
gether with the parameters in K (3.3), are the intrinsic parameters of the
camera. They are usually determined in a calibration procedure by maxi-
mum likelihood estimation [51, 52]. With calibrated cameras, and assuming
that the calibration stays constant over time, one only needs to determine
the 6 free parameters of the camera pose for each image frame used in the
localization. This is the procedure used in Paper III.

Image features

Now that we have a good model for how points in the world are projected to
the camera image, we look into what we use the model for. The landmarks
that we save in the map, must be possible to detect and localize in the
images, and we do this using various feature detectors.

Typical examples of general image features are corner points, local min-
ima or maxima of intensity, lines, or smooth curves. These features are often
detected by looking at the gradient and finding where it is large (or 0 in
the case of local extremal points), see [53] for an overview of general image
feature detectors. These points or lines have no semantic meaning beyond

21



Chapter 3. Sensors and observations

being points that are easy to detect and identify, and are quite general in
the sense that they tend to work decently on most images, as long as the
images are not extremely blurry or "smooth".

Often feature descriptors are used together with the detected features,
in order to aid the data association (correspondence) between features at
different time instances, or to landmarks in the map. There are many
general purpose descriptors, e.g., SIFT [54], SURF [55], and BRIEF [56],
which condense the local neighbourhood of a point in an image into a short
vector which should be distinctive for this particular point. Again, these
descriptors are general in the sense that they tend to work decently on most
images.

Another approach to image features, is to detect features which have a
special meaning to humans. In a road environment that could mean e.g.,
traffic signs, pedestrians, or lane markers. These detectors are harder to
construct, but it is more obvious how the detections are useful in an au-
tonomous car context, when compared to general feature points. Recent
object detection algorithms are often based on supervised learning algo-
rithms, specifically deep neural networks. These algorithms rely on having
many manually labeled training examples to learn from. When that is
available they have shown great performance, compared to hand engineered
algorithms. These deep neural networks were first used to classify whole
images, but also to detect interesting objects with bounding boxes within
images. Recently there has been a surge in pixel wise classification, also
called semantic segmentation. The task for a semantic classifier is to assign
a semantically meaningful class, such as "human", "car", "building", etc.,
to each pixel in the image. With the introduction of fully convolutional
networks [57], it is now possible to get quite good performance in this type
of tasks, and one can see how it takes the bounding box approach one step
further.

Automotive cameras detect and classify objects that are meaningful for
the driving task, such as other vehicles, pedestrians, traffic signs, lane mark-
ers, etc. Usually these features are detected and located in the image, but
sometimes the detected positions are transformed into a vehicle coordinate
frame. This transformation into 3-D can be achieved after capturing two
or more frames and using visual odometry to triangulate the position of
the object, or by using a flat world assumption, and knowledge about the
mounting position of the camera on the vehicle. In Paper I we use only the
lane marker descriptions from a camera of this type.
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3 Radar

Radars work by illuminating objects with their own "light" source, and
measure the time it takes for the signal to return, and can hence deduce
the distance to the object. They emit radio waves in a beam which is swept
over the scene of interest. Some older models used a physically moving
antenna, but modern radars use electronically steered beams. The antenna
elements are arranged such that by shifting the phase of the transmitted
signal slightly, a beam can be directed in a selected angle. By steering
this beam, the angle to objects can be measured. Besides angle, range and
reflectivity of the objects are measured, and most often also the Doppler
shift in the returned signal is measured, which means that the relative speed
between the radar and the object can be determined. As with automotive
cameras, automotive radars do further processing to detect peaks in the
raw data which should correspond to the objects of interest. The radar
usually also tracks and filters these detections over multiple frames before
publishing the information on the data bus. Since the speed of the vehicle
relative to the ground is estimated relatively well by the wheel speed sensors,
and the relative speed to a target is measured by the radar, it is possible
to extract the stationary objects for use in the localization process, while
disregarding the moving objects, which are not of interest for localization
purposes. Traffic signs and other metallic poles, such as the ones holding up
side barriers, are typical examples of objects that are both stationary and
good radar reflectors, and thus, of interest as landmarks in a radar map.

In contrast to camera images, the detection from a radar contain rela-
tively little information. There is, to our best knowledge, no way to produce
an effective descriptor for the radar detections. Thus, it will be much harder
to match radar detections over time, or to a radar map. One way of han-
dling the measurement to map association is presented in Paper I, but there
are many other possible solutions to the data association problem, see e.g.,
[58–61].
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Chapter 4

Filtering and smoothing

Bayesian filtering and smoothing are tools which are very useful for the task
of localization. They can be used to answer questions such as, "What is
the most likely location of the car, when taking into account all measure-
ments that we have done up until now?" or "How certain is this estimated
location?".

The word "Bayesian" in "Bayesian filtering" means that we make use
of Bayes’ rule to update our belief of some state as we collect more mea-
surements. This belief is expressed as a probability density (or probability
mass function in the case of discrete variables), and is exactly what we
use to answer questions about most likely value or uncertainty about some
variable.

"Filtering", in this context, means that we have a sequence of noisy
measurements from our sensors, and are interested in recursively estimating
some state (e.g. the current location and orientation of a car), making use of
all past measurements to infer this state. This is in contrast to "smoothing"
where we are looking at the problem in an off-line setting, and thus also
future measurements are available for all but the very last time instance.

An example of the on-line filtering setting, is the localization necessary
for autonomous driving. The current location of the vehicle is most relevant
for planning and control but the location one hour ago is not that useful. On
the other hand, creating a map of the static environment around the road,
is an example where smoothing makes more sense. Then, we are interested
in creating the best possible estimate of the positions of landmarks, and we
would like to use all available data. However, it is not critical to make the
estimation on-line while recording the measurements. We may just as well
save all the data and process it afterwards, when we return to the office.
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1 Problem formulation and general solution

Let us define the state that we are interested in estimating as a vector
of real numbers, xk ∈ Rn, and the measurement we receive at time tk as
another vector, yk ∈ Rm. The subscript k denotes the k:th measurement
which is taken at time tk. One measurement sequence consists of T discrete
measurements, which means that k ∈ [1, . . . , T ] and that j < k =⇒ tj ≤ tk.
We can now define filtering as finding the posterior density, i.e., the density
over possible states after all available measurements have been accounted
for, p(xk|y1:k), and smoothing as p(x1:T |y1:T ). Here, y1:k is short notation
for y1,y2, . . . ,yk, and T is the last time instance in the sequence.

To find the posterior density, we make a few simplifying assumptions.
One assumption is that the current measurement yk when the correspond-
ing state xk is given, is conditionally independent of all other states and
measurements. Another assumption is that the state sequence is Marko-
vian, which means that state xk when given state xk−1 is conditionally
independent of all previous states,

p(xk|x1:k−1,y1:k−1) = p(xk|xk−1) (4.1)
p(yk|x1:k,y1:k−1) = p(yk|xk). (4.2)

Density (4.1) captures the uncertainties in the state transition, and (4.2)
captures the relation between the measurement and the state. The same
relations can also be expressed as

xk = fk−1(xk−1,qk−1) (4.3)
yk = hk(xk, rk), (4.4)

where qk and rk are random processes, describing the error or uncertainty in
the models. As (4.3) models the procession of states over time, it is called a
process model, or motion model when the state involves position. Similarly,
(4.4) models the measurements, and is called a measurement model.

When we have restricted the class of problems to Markovian processes
with conditionally independent measurements, the filtering and smoothing
problems can be solved with recursive algorithms. In the filtering case,
there is a forward recursion, whereas in the smoothing case, there is also
a backward recursion. The base case in the filtering solution is for k = 0,
when we have no measurement, and we base our solution solely on any prior
knowledge we may have, summarized in p(x0).

The forward recursion step is then split in two parts: a prediction us-
ing the process model, and then an update using the measurement model.
Assuming we have a solution for p(xk−1|y1:k−1) from the previous time in-
stance, we can now express p(xk|y1:k) in terms of already known densities
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with the help of Dr. Kolmogorov and Reverend Bayes as

p(xk|y1:k−1) =

∫
p(xk−1,xk|y1:k−1)dxk−1 (4.5)

=

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (4.6)

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
, (4.7)

where the denominator in (4.7) is constant with respect to the state variable
xk.

As mentioned, smoothing can also be done recursively in two passes,
where the first forward pass is identical to the filter recursion, and then a
backward pass. The base case for the backward recursion is the final state
at k = T , where the smoothing solution is identical to the filtering solution,
p(xT |y1:T ). Then assume that we have the smoothed solution at time k+ 1,
p(xk+1|y1:T ) and now the task is to express p(xk|y1:T ) in already known
terms,

p(xk|y1:T ) =

∫
p(xk,xk+1|y1:T )dxk+1 (4.8)

=

∫
p(xk|xk+1,y1:T )p(xk+1|y1:T )dxk+1 (4.9)

=

∫
p(xk|xk+1,y1:k)p(xk+1|y1:T )dxk+1 (4.10)

=

∫
p(xk+1|xk)p(xk|y1:k)p(xk+1|y1:T )

p(xk+1|y1:k)
dxk+1. (4.11)

In (4.11) we see the motion model p(xk+1|xk), the filtering density p(xk|y1:k),
the smoothing density from the previous step p(xk+1|y1:T ), and the filtering
prediction density p(xk+1|y1:k), all of which are available from before.

2 Kalman filter

If the errors qk and rk from (4.3) and (4.4) are additive, normally dis-
tributed, and independent over time, and the models in themselves are
linear, then we can solve the filtering and smoothing problems optimally, in
a mean square error sense, using a Kalman filter [62]. All the assumptions
regarding the process noise are seldom correct, but it is still a useful simpli-
fication which works often enough. Also, there is seldom a need for having
different models at each time instance. Then the simplified models are
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xk = Fxk−1 + qk−1, qk−1 ∼ N (0,Q) (4.12)
yk = Hxk + rk, rk ∼ N (0,R), (4.13)

where F is the linear process model in matrix form, H is the linear mea-
surement model in matrix form, and Q and R are the covariance matrices
for the process noise and the measurement noise, respectively. Under these
assumptions, the posterior distributions for both the filtering problem and
the smoothing problem are also Gaussian, and can be exactly represented
by their mean and covariance. The Kalman filter calculates mean, µ̂k|k,
and covariance Pk|k, of the posterior density for each time step, k, with the
following recursion

µ̂k|k−1 = Fµ̂k−1 (4.14)

Pk|k−1 = FPk−1|k−1F
> + Q (4.15)

ŷk = Hµ̂k|k−1 (4.16)

Sk = HPk|k−1H
> + R (4.17)

Kk = Pk|k−1H
>S−1

k (4.18)
µ̂k|k = µ̂k|k−1 + Kk(yk − ŷk) (4.19)

Pk|k = Pk|k−1 −KkSkK
>
k . (4.20)

Here µ̂k|k is the estimated mean at time instance k using measurements up
to, and including time k, while µ̂k|k−1 is the predicted mean at time instance
k using measurements up to, and including time k − 1, ŷk is the predicted
measurement, Sk is the predicted measurement covariance, and Kk is the
Kalman gain, all at time k.

The optimal smoothed solution can be achieved by first applying the
Kalman filter, and then applying the Rauch-Tung-Striebel smoothing re-
cursion [63], starting from k = T − 1 as

Gk = Pk|kF
>P−1

k+1|k (4.21)

µ̂k|T = µ̂k|k + Gk(µ̂k+1|T − µ̂k+1|k) (4.22)

Pk|T = Pk|k + Gk(Pk+1|T −Pk+1|k)G
>
k . (4.23)

3 Unscented Kalman Filter

In many problems either, or both, of the process and measurement models
are non-linear, in which case there is usually no exact solution. One com-
mon solution, when the non-linearities are relatively mild, is to linearize
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3. Unscented Kalman Filter

the functions using Taylor series expansion at the estimated mean. This
results in the posterior being approximated as a normal distribution, and
the algorithms to calculate it, are the Extended Kalman filter (EKF) [64,
65] and Extended Rauch-Tung-Striebel smoother (ERTS), respectively.

Another option, which is used in the appended papers, is the sigma point
methods, such as the Unscented Kalman Filter (UKF) [66] and the Cuba-
ture Kalman Filter (CKF) [67]. These methods also approximate the pos-
terior as a normal distribution, but in a slightly different way than through
Taylor series expansion. One can think of the UKF and CKF in terms of
numerical differences and view them as approximations to the EKF, but
that is somewhat unfair, since both UKF and CKF generally approximate
the densities involved better than what the EKF does [68]. The Unscented
transform, which is the basis of the UKF, estimates the mean and covari-
ance of y = h(x) where x is a normally distributed random variable, by first
selecting a set of sigma points, X (i), around the mean of x. These sigma
points are then propagated through the non-linear function, resulting in
another set of sigma points, Y(i). Then, the mean and covariance of y can
be approximated from Y(i) as a weighted sum.

The UKF recursion which approximates the posterior density as a nor-
mal distribution, is then given in terms of its approximated mean, µ̂k, and
covariance Pk for each time step k. First determine the sigma points,

X (0)
k−1 = µ̂k−1 (4.24)

X (i)
k−1 = µ̂k−1 +

√
n+ κ

[√
Pk−1

]
i

(4.25)

X (i+n)
k−1 = µ̂k−1 −

√
n+ κ

[√
Pk−1

]
i

, (4.26)

then the prediction density,

X (i)
k|k−1 = f(X (i)

k−1) (4.27)

µ̂k|k−1 =
2n∑
i=0

W (i)X (i)
k|k−1 (4.28)

Pk|k−1 =
2n∑
i=0

W (i)(X (i)
k|k−1 − µ̂k|k−1)(X (i)

k|k−1 − µ̂k|k−1)> (4.29)
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then the posterior density,

Y(i)
k = h(X (i)

k|k−1) (4.30)

ŷk =
2n∑
i=0

W (i)Y(i)
k (4.31)

Sk =
2n∑
i=0

W (i)(Y(i)
k − ŷk)(Y(i)

k − ŷk)
> (4.32)

Ck =
2n∑
i=0

W (i)(X (i)
k|k−1 − µ̂k|k−1)(Y(i)

k − ŷk)
> (4.33)

Kk = CkS
−1
k (4.34)

µ̂k|k = µ̂k|k−1 + Kk(yk − ŷk) (4.35)

Pk|k = Pk|k−1 −KkSkK
>
k (4.36)

all with weights as

W (0) =
κ

n+ κ
(4.37)

W (i) =
1

2(n+ κ)
, i = 1, . . . , 2n. (4.38)

Here n is the dimensionality of the state, κ is a tuning parameter,
√

P

denotes any matrix square root such that
√

P
√

P
>

= P, and
[
·
]
i
selects

the i:th column of its argument. The special case when κ = 0 turns the
UKF into CKF, which is used in Paper II.

In cases where the noise is not additive, it is possible to augment the
state vector with noise states and use the same updates of the UKF or CKF
filters [69].

4 Particle filters

Both the EKF and UKF approximates the posterior density as a normal
density. Sometimes this approximation can be too crude. This may happen
e.g., when the process model or the measurement model is highly non-linear,
or it is known that the posterior density is multi-modal, and this needs to be
reflected in the filtering solution. One possible solution when this is the case,
is through multiple hypotheses filters [70–72], which describe the posterior
as a sum of several normal distributions. Another popular solution is the
particle filter, which makes no parametric approximation of the posterior
density, but instead describes the posterior distribution as a weighted sum
of many Dirac delta functions.
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When using a particle filter, we draw N samples, x(i), from a proposal
distribution q(x0:k|y1:k) and assign a weight w(i) to each sample, where

w
(i)
k =

p(x0:k|y1:k)

q(x0:k|y1:k)
. (4.39)

Now the posterior distribution can be approximated as

p(x0:k|y1:k) ≈
1

N

N∑
i=1

w
(i)
k δ(x0:k − x

(i)
0:k). (4.40)

For the recursive step, assume that we have x
(i)
0:k−1 and w(i)

k−1 from the pre-
vious step. The new set of samples at step k is drawn from the proposal
distribution and gets weights as

x
(i)
k ∼ q(xk|x(i)

0:k−1,y1:k) (4.41)

w
(i)
k ∝

p(yk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
0:k−1,y1:k)

w
(i)
k−1. (4.42)

The version of particle filters that is used in Papers I and III, called the
bootstrap particle filter [73], uses the motion model as proposal distribu-
tion, q(x(i)

k |x
(i)
0:k−1,y1:k) = p(x

(i)
k |x

(i)
k−1), which makes for a particularly easy

recursion,

x
(i)
k ∼ p(xk|x(i)

k−1) (4.43)

w
(i)
k ∝ p(yk|x(i)

k )w
(i)
k−1. (4.44)

After the new samples are drawn and the weights are updated, the weights
should be normalized such that

∑
iwi = 1 over time. Due to the possibility

of particle depletion, i.e. most of wi are almost zero, the samples need to be
resampled periodically. The resampling creates multiple copies of samples
with large weights, and removes samples with near zero weight, and then
resets the weights of the resampled particles.

5 Smoothing and mapping

Bayesian smoothing of a Markov process can be done optimally in a forward
pass, followed by a backwards pass as seen in (4.11). However, for a typical
mapping problem the Markov property does not hold, because when one
returns to a previously visited place and recognizes this (loop closure), a
direct dependence from that earlier time to now is created.
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x1

y1

y4 y3
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x2

l2l1

x3x4

Figure 4.1: Bayes net representation of a small SLAM problem with 4 robot
poses, 2 landmarks, and 4 observations. Unknown variables are white, while
given measurements are marked gray.

Let us create a small example that shows the problem. Assume that we
have two landmarks, l1 and l2, that we are interested in mapping. We drive
near them with a robot, and make noisy observations with a sensor on the
robot. Our problem now, is that we do not know exactly the positions and
orientations of the robot during the measurement campaign. Let us assume
that the robot has made four measurements, y1, . . . , y4, of the landmarks
from four different positions, x1, . . . , x4. Let l1 be seen from x1 and x4, and
l2 from x2 and x3. The corresponding Bayes network is shown in Figure 4.1.
The relation between the posterior density of interest p(l1, l2|y1:4) and the
measurement models p(y1|x1, l1) and p(y2|x2, l2) can be seen by introducing
the x:s in the posterior density,

p(l1, l2|y1:4) =

∫
p(l1:2, x1:4|y1:4)dx1:4. (4.45)

Now, the joint density inside the integral can be factorized in terms of
motion model and measurement model.

p(l1:2, x1:4|y1:4) ∝ p(y1|x1, l1)p(x2|x1)

p(y2|x2, l2)p(x3|x2)

p(y3|x3, l2)p(x4|x3)

p(y4|x4, l1) (4.46)

The landmarks, especially l1 which appears together with x1 to x4, pre-
vent us from solving this with forward-backward smoothing. Therefore, we
have to fall back to iterative methods. The iterative method could be for
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example, loopy belief propagation [74], but often it is simply reformulated
as a maximum á-posteriori (MAP) problem. When the noise in the models
is additive and Gaussian, which often is the assumption, the MAP problem
is equivalent to a weighted least squares problem,

arg max
l1:2,x1:4

p(l1:2, x1:4|y1:4) = arg min
l1:2,x1:4

− log p(l1:2, x1:4|y1:4)

= arg min
l1:2,x1:4

||y1 − h(x1, l1)||2R+

||x2 − f(x1)||2Q + . . .+

||y4 − h(x4, l1)||2R, (4.47)

where ||x||2Σ = x>Σ−1x. This least-squares problem can be solved using a
general purpose optimizer, such as Levenberg-Marquardt. This formulation
of the mapping problem is usually called Graph-SLAM, where SLAM stands
for "simultaneous localization and mapping".

By solving the optimization problem in (4.47), we get the maximum
á-posteriori solution of both poses and landmarks. As always with local
optimization algorithms, there is a risk of getting stuck in local minimas,
but if the initialization is good, this is less of a problem.
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Chapter 5

Contributions and future work

In Paper I [75], we investigate localization performance when using a par-
ticular setup of low cost, automotive grade sensors found on a production
vehicle from 2014. Performance when both camera and radar are functional
and seeing landmarks, is found to be satisfactory, but when one or both
is absent, performance quickly degrades past acceptable limits. To reach
the desired performance, a few items are identified as candidates for further
improvement. Information from the sensors is not used to its fullest extent,
due to preprocessing in the sensors; e.g., the position estimates from the
GPS system are not useful for anything more than a first rough initializa-
tion. The examined solution is sensitive to patches where landmarks are
absent, so if error growth was much slower while landmarks are unavailable,
the patches without observable landmarks could be handled better. The
lane marker features provided by the vision system, are not sufficient for
stand alone localization. Data association of measurements to the map is
not trivial, and give rise to large errors if assumed to be correct when they
are not. Modeling and implementation was a shared work between the first
author and me, under the supervision of the two last authors.

In Paper II [76], we propose an alternative configuration of GNSS re-
ceiver. It uses only the basic state space corrections provided in the nav-
igational message, and the carrier phase observations, to obtain a highly
accurate relative positioning without the need for communication with base
stations, or complex and time consuming ambiguity resolution. Together
with a standard automotive grade IMU, and wheel speed sensors, this type
of receiver would enable accurate positioning in open environments where
landmarks may be scarce, but GNSS availability is high. Models and im-
plementation for this alternative configuration was done by me under su-
pervision of the second author.

In Paper III [77], we aim to increase use of the camera beyond the
simplest features, such as lane markings, while still being robust towards
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the large changes in visual appearance that occur naturally due to differ-
ent seasons and lighting conditions. Aiming for lower dependence towards
the visual appearance of landmarks in the map representation, a model for
localization in semantically labeled point clouds is proposed, implemented,
and evaluated against a reference method based on traditional image fea-
tures. Although the intended resilience towards changing appearance was
not achieved, it was shown that visual localization using point clouds can be
done with far less informative descriptors where matching of feature points
from image to map is infeasible, and yet achieve comparable performance.
Idea, localization model, and implementation was done primarily by me un-
der supervision of the last author. Reference localization was done primarily
by the second author. Mapping of environment and obtaining ground truth
poses was shared work between last author and me.

Future work

Below are some thoughts about future work that may follow this thesis.

• Derive accuracy and reliability requirements
All the papers in this thesis are missing a good definition of what the
required localization accuracy and reliability requirements are. This
ought to be properly defined and motivated, preferably through a
derivation as hinted at in Chapter 2.

• Increase accuracy and scope of semantic localization
The accuracy of the solution in Paper III is not satisfactory. Perhaps
using more advanced map primitives may help in increasing accuracy.
One could imagine that line or surface descriptors would provide richer
information, and thus also better performance for localization. Also,
visual changes from day to night are in some sense bigger than changes
over the seasons, but they were not in the scope in Paper III, since it
was neither included in the data set used for training the semantic seg-
menter, nor in the dataset used for testing localization performance.

• Train semantically aware image feature detector/descriptor
Even though data size of the maps produced in Paper III is con-
siderably smaller when comparing to a point cloud map using SIFT
descriptors, it is still rather large, and may need further compression.
One possibility could be to train a better feature detector, possibly
also together with a feature descriptor. This detector and descriptor
should be semantically away such that only the most relevant points
that are known to be constant over time and easy to recognize in
various conditions, are detected and included in the map.

36



Bibliography

[1] Trafikanalys, “Vägtrafikskador 2011”, Tech. Rep.

[2] National Highway Traffic Safety Administration, “Traffic safety facts
2015”, Tech. Rep.

[3] National Highway Traffic Safety Association, “Motor vehicle traffic
crashes as a leading cause of death in the united states, 2012-2014”,
Tech. Rep., 2016.

[4] S. Singh, “Critical reasons for crashes investigated in the national
motor vehicle crash causation survey”, Tech. Rep., 2015.

[5] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network”, in Advances in neural information processing systems, 1989,
pp. 305–313.

[6] U. Muller et al., “Off-road obstacle avoidance through end-to-end
learning”, in Advances in neural information processing systems, 2006,
pp. 739–746.

[7] M. Bojarski et al., “End to end learning for self-driving cars”, ArXiv
preprint arXiv:1604.07316, 2016.

[8] I. Ulrich and I. Nourbakhsh, “Appearance-based place recognition for
topological localization”, in Robotics and Automation, 2000. Proceed-
ings. ICRA’00. IEEE International Conference on, Ieee, vol. 2, 2000,
pp. 1023–1029.

[9] A. Torralba et al., “Context-based vision system for place and object
recognition”, in Proceedings of the Ninth IEEE International Confer-
ence on Computer Vision-Volume 2, IEEE Computer Society, 2003,
p. 273.

[10] E. Olson, “Recognizing places using spectrally clustered local matches”,
Robotics and Autonomous Systems, vol. 57, no. 12, pp. 1157–1172,
2009.

[11] M. Cummins and P. Newman, “Fab-map: Probabilistic localization
and mapping in the space of appearance”, The International Journal
of Robotics Research, vol. 27, no. 6, pp. 647–665, 2008.

37



BIBLIOGRAPHY

[12] M. J. Milford and G. F. Wyeth, “Seqslam: Visual route-based navi-
gation for sunny summer days and stormy winter nights”, in Robotics
and Automation (ICRA), 2012 IEEE International Conference on,
IEEE, 2012, pp. 1643–1649.

[13] T. Naseer et al., “Robust visual robot localization across seasons us-
ing network flows”, in Twenty-Eighth AAAI Conference on Artificial
Intelligence, 2014.

[14] H. Badino, D. Huber, and T. Kanade, “Visual topometric localization”,
in Intelligent Vehicles Symposium (IV), 2011 IEEE, IEEE, 2011, pp. 794–
799.

[15] L. Svarm et al., “Accurate localization and pose estimation for large 3d
models”, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2014, pp. 532–539.

[16] T. Sattler, B. Leibe, and L. Kobbelt, “Efficient & effective prioritized
matching for large-scale image-based localization”, IEEE transactions
on pattern analysis and machine intelligence, vol. 39, no. 9, pp. 1744–
1756, 2017.

[17] Y. Li, N. Snavely, and D. P. Huttenlocher, “Location recognition using
prioritized feature matching”, in European conference on computer
vision, Springer, 2010, pp. 791–804.

[18] Y. Li et al., “Worldwide pose estimation using 3d point clouds”, in
Large-Scale Visual Geo-Localization, Springer, 2016, pp. 147–163.

[19] G. Schindler, M. Brown, and R. Szeliski, “City-scale location recogni-
tion”, in Computer Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on, IEEE, 2007, pp. 1–7.

[20] A. Irschara et al., “From structure-from-motion point clouds to fast
location recognition”, in Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, IEEE, 2009, pp. 2599–2606.

[21] H. Durrant-Whyte, D. Rye, and E. Nebot, “Localization of autonomous
guided vehicles”, in Robotics Research, Springer, 1996, pp. 613–625.

[22] S. Thrun et al., “Robust monte carlo localization for mobile robots”,
Artificial intelligence, vol. 128, no. 1-2, pp. 99–141, 2001.

[23] A. C. Murillo, J. J. Guerrero, and C. Sagues, “Surf features for effi-
cient robot localization with omnidirectional images”, in Robotics and
Automation, 2007 IEEE International Conference on, IEEE, 2007,
pp. 3901–3907.

[24] S. Corbett and P. Cross, “Gps single epoch ambiguity resolution”,
Survey Review, vol. 33, no. 257, pp. 149–160, 1995.

38



BIBLIOGRAPHY

[25] S. Thrun et al., “Stanley: The robot that won the darpa grand chal-
lenge”, Journal of field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[26] C. Urmson et al., “Autonomous driving in traffic: Boss and the urban
challenge”, AI magazine, vol. 30, no. 2, p. 17, 2009.

[27] A. Vu, J. A. Farrell, and M. Barth, “Centimeter-accuracy smoothed
vehicle trajectory estimation”, IEEE Intelligent Transportation Sys-
tems Magazine, vol. 5, no. 4, pp. 121–135, 2013.

[28] M. Schreiber, C. Knöppel, and U. Franke, “Laneloc: Lane marking
based localization using highly accurate maps”, in Intelligent Vehicles
Symposium (IV), 2013 IEEE, IEEE, 2013, pp. 449–454.

[29] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: Part i”, IEEE robotics & automation magazine, vol. 13, no. 2,
pp. 99–110, 2006.

[30] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and map-
ping (slam): Part ii”, IEEE Robotics & Automation Magazine, vol. 13,
no. 3, pp. 108–117, 2006.

[31] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spa-
tial relationships in robotics”, in Autonomous robot vehicles, Springer,
1990, pp. 167–193.

[32] J. J. Leonard and H. F. Durrant-Whyte, “Simultaneous map build-
ing and localization for an autonomous mobile robot”, in Intelligent
Robots and Systems’ 91.’Intelligence for Mechanical Systems, Pro-
ceedings IROS’91. IEEE/RSJ International Workshop on, Ieee, 1991,
pp. 1442–1447.

[33] M. Montemerlo et al., “Fastslam: A factored solution to the simulta-
neous localization and mapping problem”, in Aaai/iaai, 2002, pp. 593–
598.

[34] S. Thrun and M. Montemerlo, “The graph slam algorithm with appli-
cations to large-scale mapping of urban structures”, The International
Journal of Robotics Research, vol. 25, no. 5-6, pp. 403–429, 2006.

[35] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization
and mapping via square root information smoothing”, The Interna-
tional Journal of Robotics Research, vol. 25, no. 12, pp. 1181–1203,
2006.

[36] M. Kaess, A. Ranganathan, and F. Dellaert, “Isam: Incremental smooth-
ing and mapping”, IEEE Transactions on Robotics, vol. 24, no. 6,
pp. 1365–1378, 2008.

39



BIBLIOGRAPHY

[37] D. Cremers, “Direct methods for 3d reconstruction and visual slam”,
in Machine Vision Applications (MVA), 2017 Fifteenth IAPR Inter-
national Conference on, IEEE, 2017, pp. 34–38.

[38] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras”, IEEE Transactions
on Robotics, 2017.

[39] B. Triggs et al., “Bundle adjustment-a modern synthesis”, in Interna-
tional workshop on vision algorithms, Springer, 1999, pp. 298–372.

[40] R. I. Hartley and A. Zisserman, Multiple View Geometry in Com-
puter Vision, Second Edition. Cambridge University Press, ISBN:
0521540518, 2004.

[41] A. Elfes, “Sonar-based real-world mapping and navigation”, IEEE
Journal on Robotics and Automation, vol. 3, no. 3, pp. 249–265, 1987.

[42] D. Pagac, E. M. Nebot, and H. Durrant-Whyte, “An evidential ap-
proach to map-building for autonomous vehicles”, IEEE Transactions
on Robotics and Automation, vol. 14, no. 4, pp. 623–629, 1998.

[43] J. Levinson and S. Thrun, “Robust vehicle localization in urban en-
vironments using probabilistic maps”, in Robotics and Automation
(ICRA), 2010 IEEE International Conference on, IEEE, 2010, pp. 4372–
4378.

[44] A. Hornung et al., “Octomap: An efficient probabilistic 3d mapping
framework based on octrees”, Autonomous Robots, vol. 34, no. 3,
pp. 189–206, 2013.

[45] E. Kaplan and C. Hegarty, Understanding GPS: Principles and Ap-
plications, Second Edition, ser. Artech House mobile communications
series. Artech House, 2005.

[46] R. Hatch, “The synergism of gps code and carrier measurements”,
in International geodetic symposium on satellite doppler positioning,
vol. 1, 1983, pp. 1213–1231.

[47] P. J. Teunissen, “The least-squares ambiguity decorrelation adjust-
ment: A method for fast gps integer ambiguity estimation”, Journal
of geodesy, vol. 70, no. 1, pp. 65–82, 1995.

[48] M. Petovello, “The differences in differencing”, Inside GNSS, pp. 28–
32, Sep. 2011.

[49] J. Klobuchar et al., “Ionospheric time-delay algorithm for single-frequency
gps users”, Aerospace and Electronic Systems, IEEE Transactions on,
no. 3, pp. 325–331, 1987.

40



BIBLIOGRAPHY

[50] D. C. Brown, “Close-range camera calibration”, Photogramm. Eng,
vol. 37, no. 8, pp. 855–866, 1971.

[51] J. Heikkila and O. Silven, “A four-step camera calibration proce-
dure with implicit image correction”, in Computer Vision and Pat-
tern Recognition, 1997. Proceedings., 1997 IEEE Computer Society
Conference on, IEEE, 1997, pp. 1106–1112.

[52] Z. Zhang, “A flexible new technique for camera calibration”, IEEE
Transactions on pattern analysis and machine intelligence, vol. 22,
no. 11, pp. 1330–1334, 2000.

[53] T. Tuytelaars, K. Mikolajczyk, et al., “Local invariant feature detec-
tors: A survey”, Foundations and trends R© in computer graphics and
vision, vol. 3, no. 3, pp. 177–280, 2008.

[54] D. G. Lowe, “Distinctive image features from scale-invariant key-
points”, International journal of computer vision, vol. 60, no. 2, pp. 91–
110, 2004.

[55] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features”, Computer vision–ECCV 2006, pp. 404–417, 2006.

[56] M. Calonder et al., “Brief: Binary robust independent elementary fea-
tures”, Computer Vision–ECCV 2010, pp. 778–792, 2010.

[57] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation”, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

[58] C. Lundquist, L. Hammarstrand, and F. Gustafsson, “Road intensity
based mapping using radar measurements with a probability hypoth-
esis density filter”, IEEE Transactions on Signal Processing, vol. 59,
no. 4, pp. 1397–1408, 2011.

[59] L. Hammarstrand, M. Lundgren, and L. Svensson, “Adaptive radar
sensor model for tracking structured extended objects”, IEEE Trans-
actions on Aerospace and Electronic Systems, vol. 48, no. 3, pp. 1975–
1995, 2012.

[60] M. Fatemi et al., “Variational bayesian em for slam”, in Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2015 IEEE
6th International Workshop on, IEEE, 2015, pp. 501–504.

[61] M. Lundgren, L. Svensson, and L. Hammarstrand, “Variational bayesian
expectation maximization for radar map estimation.”, IEEE Trans.
Signal Processing, vol. 64, no. 6, pp. 1391–1404, 2016.

41



BIBLIOGRAPHY

[62] R. E. Kalman et al., “A new approach to linear filtering and prediction
problems”, Journal of basic Engineering, vol. 82, no. 1, pp. 35–45,
1960.

[63] H. E. Rauch, F. Tung, C. T. Striebel, et al., “Maximum likelihood
estimates of linear dynamic systems”, AIAA journal, vol. 3, no. 8,
pp. 1445–1450, 1965.

[64] R. E. Kopp and R. J. Orford, “Linear regression applied to system
identification for adaptive control systems”, Aiaa Journal, vol. 1, no.
10, pp. 2300–2306, 1963.

[65] A. Gelb, Applied optimal estimation. MIT press, 1974.

[66] S. Julier and J. Uhlmann, “A new extension of the kalman filter to
nonlinear systems”, in The Proceedings of AeroSense: The 11th Inter-
national Symposium on Aerospace/Defense Sensing, Simulation and
Controls, Multi Sensor Fusion, Tracking and Resource Management
II, 1997.

[67] I. Arasaratnam and S. Haykin, “Cubature kalman filters”, Automatic
Control, IEEE Transactions on, vol. 54, no. 6, pp. 1254–1269, 2009.

[68] F. Gustafsson and G. Hendeby, “Some relations between extended and
unscented kalman filters”, IEEE Transactions on Signal Processing,
vol. 60, no. 2, pp. 545–555, 2012.

[69] E. Wan and R. V. D. Merwe, “The unscented kalman filter for nonlin-
ear estimation”, Proceedings of the IEEE 2000 Adaptive Systems for
Signal Processing, Communications, and Control Symposium, 2000.

[70] D. Reid, “An algorithm for tracking multiple targets”, IEEE transac-
tions on Automatic Control, vol. 24, no. 6, pp. 843–854, 1979.

[71] I. J. Cox and S. L. Hingorani, “An efficient implementation of reid’s
multiple hypothesis tracking algorithm and its evaluation for the pur-
pose of visual tracking”, IEEE Transactions on pattern analysis and
machine intelligence, vol. 18, no. 2, pp. 138–150, 1996.

[72] S. S. Blackman, “Multiple hypothesis tracking for multiple target
tracking”, IEEE Aerospace and Electronic Systems Magazine, vol. 19,
no. 1, pp. 5–18, 2004.

[73] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to
nonlinear/non-gaussian bayesian state estimation”, in IEE Proceedings
F (Radar and Signal Processing), IET, vol. 140, 1993, pp. 107–113.

42



BIBLIOGRAPHY

[74] K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation
for approximate inference: An empirical study”, in Proceedings of the
Fifteenth conference on Uncertainty in artificial intelligence, Morgan
Kaufmann Publishers Inc., 1999, pp. 467–475.

[75] M. Lundgren et al., “Vehicle self-localization using off-the-shelf sen-
sors and a detailed map”, in IEEE Intelligent Vehicles Symposium,
Proceedings, 2014, pp. 522–528.

[76] E. Stenborg and L. Hammarstrand, “Using a single band gnss receiver
to improve relative positioning in autonomous cars”, in Intelligent Ve-
hicles Symposium (IV), 2016 IEEE, IEEE, 2016, pp. 921–926.

[77] E. Stenborg, C. Toft, and L. Hammarstrand, “Long-term visual local-
ization using semantically segmented images”, Unpublished,

43


