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ABSTRACT

When a vertical load acts on the web of a channel beam, a torsional moment which
twists the cross-section is introduced, leading to an uncertain capacity with regards to
lateral-torsional buckling. The general method in Eurocode 3 states that buckling curve
d should be used in channel beam design, but the definition of the elastic critical bending
moment in the so called "3-factor formula" is in fact only valid for cross-sections that
are symmetric around the minor axis, which is not true for channel sections.

In this parametric study the load-carrying capacity of single span steel channel beams of
various sizes, lengths and load configurations, with fork support boundary conditions has
been made using Finite Element (FE) Modelling in ANSYS. The GMNIA-approach was
utilized, which takes geometric imperfections and material non-linearity into account. An
initial equivalent geometric imperfection was applied from the lateral-torsional buckling
mode with the magnitude of the beam length divided by 150. For the end moment load
case, the imperfection was additionally modelled as L/1000 and with residual stresses
included in the beam cross-section. The stress and deformation patterns were studied as
well.

The results from the FE-analyses show that when load eccentricity is introduced, the
normal stresses from restrained warping limits the load-carrying capacity for beams with
low slenderness. A size effect was noticed regarding the relationship between the size
of the cross-section and the capacity as reducing the size resulted in increased capacity.
Additionally, it was observed that the point of load application had a larger effect when
load eccentricity was involved. Both of these observations can also be explained by the
effect of warping stresses.

The channel beam design curve proposed by (Snijder et al., 2008) seems to be a good
choice, taking torsional effects into account, although it does not claim to be correct
for beams with a ratio L/h < 15. For these cases extra caution should be taken, perhaps
limiting the reduction factor χLT to 0.5.

Stocky beams have a higher post-yielding strength than slender beams. Finally, the
GMNIA-method with geometric imperfection of L/150 leads to a clearly lower capacity
than the L/1000 method including residual stresses.

Keywords: Lateral-torsional buckling, Eurocode 3, buckling curves, channel section,
Finite Element Method, GMNIA, elastic critical bending moment
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Vippning av u-balkar i stål
En parametrisk studie genom FE-analys
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Avdelningen för konstruktionsteknik
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SAMMANFATTNING

När en u-balk belastas vertikalt i sitt liv uppstår samtidigt ett vridmoment, som leder
till en osäkerhet gällande bärkapaciteten med hänsyn till vippning. Enligt metoden med
generella vippnigskurvor i Eurokod 3 ska kurva d användas för u-balkar, men definitionen
av elastisk kritisk vippning i den s.k. "3-faktorsformeln" är endast giltig för tvärsektioner
som är symmetriska runt sin svaga axel, vilket ej är sant för u-balkar.

I denna parametriska studie har bärförmågan för gaffellagrade enfacksstålbalkar av u-
tvärsnitt analyserats, med varierande storlek, längd och lastfall, genom finita elementmetoden
i programvaran ANSYS. GMNIA-tekniken, som beaktar geometriska imperfektioner
och icke-linjäritet i materialegenskaper, användes. En initial ekvivalent geometrisk
imperfektion applicerades i form av vippningsmoden med en maximal deformation
av balkens längd delat med 150. För lastfallet med pålagda ändmoment modellerades
balkarna även med en maximal deformation av L/1000, samtidigt som egenspänningar
infördes. Förutom bärförmåga studerades även spännings- och deformationsmönster.

Resultaten från FE-analyserna visar att normalspänningar från förhindrad välvning
begränsar bärförmågan för oslanka balkar då lasteccentricitet föreligger. En storlekseffekt
noterades gällande tvärsektionens storlek och bärfömågan på så vis att mindre tvärsektion
ledde till en ökad bärförmåga. Vidare observerades att lastappliceringspunkten hade
större effekt då lasteccentricitet förelåg. Alla dessa observationer kan förklaras av
normalspänningar från välvning.

Designkurvan för u-balkar föreslagen av (Snijder m. fl., 2008) verkar vara ett bra val som
beaktar vridningseffekten, även om den ej är giltig för balkar då L/h < 15. För dessa fall
bör extra försiktighet vidtas, och reduktionsfaktorn χLT eventuellt sänkas till 0.5.

Balkar med låg slankhet har en större förmåga att bära ytterligare last efter att stålet har
flutit vid någon punkt i balken. Slutligen leder GMNIA-metoden med en geometrisk
imperfektion av L/150 till en avsevärt lägre bärförmåga än då L/1000 samt egenspänningar
appliceras.

Nyckelord: Vippning, Eurokod 3, vippningskurvor, u-tvärsnitt, finit elementmetod,
GMNIA, elastiskt kritiskt böjmoment
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NOMENCLATURE

Greek letters

α [ ] Imperfection factor for flexural buckling

αcr,op [ ] Load increase factor according to the general method in
Eurocode 3, with regards to buckling

αLT [ ] Imperfection factor for lateral-torsional buckling

αult,k [ ] Load increase factor according to the general method in
Eurocode 3, disregarding buckling

α1/2/3/4/5 [ ] Factor for end warping and lateral restraint conditions

γM1 [ ] Partial factor steel, resistance of members to instability

ε [ ] Strain

η [ ] Generalized initial imperfection for column buckling

ηLT [ ] Generalized initial imperfection for lateral-torsional buckling

κM [ ] Reduction factor with regards to lateral-torsional buckling,
κM design method

λ [ ] Load multiplication factor for linear buckling analysis

λ̄ [ ] Non-dimensionless slenderness, column buckling

λ̄LT [ ] Non-dimensionless slenderness, lateral-torsional buckling

λ̄MT [ ] Non-dimensionless slenderness with torsional effect
included, lateral-torsional buckling

λ̄op [ ] Non-dimensionless slenderness according to the general
method in Eurocode 3

λ̄T [ ] Additional contribution to slenderness from torsional effect on
channel beam

µ [ ] Factor influencing the C1-factor

ν [ ] Poisson’s ratio

σV M [N/m2] Yield stress criterion according to Von-Mises

σx,ω [N/m2] Normal stresses from restrained warping

σx,My [N/m2] Normal stress from major axis bending

τ [N/m2] Shear stress

ϕx,y,z [rad] Angle of twist around x-, y- and z-axes

ϕ0 [rad] Maximum initial imperfection angle of twist,
lateral-torsional buckling

χ [ ] Reduction factor with regards to column buckling

χLT [ ] Reduction factor with regards to lateral-torsional buckling

χLT,mod [ ] Additional reduction factor with regards to lateral-torsional buckling,
taking moment distribution into account

χop [ ] Reduction factor according to the general method in Eurocode 3
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Ψ [ ] Fraction between applied end moments at the two ends of a beam

ψ [ ] Eigenvector for linear buckling analysis

Roman letters

A [m2] Cross-section area

A1,A2 [ ] Factors for the shape of the moment diagram

C [Nm2] Torsional stiffness, same as GIt
Cw [Nm4] Warping stiffness, same as EIw

C1 [ ] Moment diagram factor in the 3-factor formula

C2 [ ] Point of load application factor in 3-factor formula

C3 [ ] Degree of monosymmetry factor in the 3-factor-formula

E [N/m2] Young’s modulus

ET [N/m2] Tangent modulus

F [N] Force

G [N/m2] Shear modulus

H [J] Total potential energy

Hi [J] Potential energy from external loads

Hy [J] Internal and elastically stored potential energy

Hde f lected [J] Potential energy for a beam just after buckling

Hstraight [J] Potential energy for a beam just before buckling

I [m4] Moment of inertia

It [m4] Torsional cross-section constant

Iw [m6] Warping cross-section constant

Ix [m4] Moment of inertia around x-axis

Iy [m4] Moment of inertia around y-axis

Iz [m4] Moment of inertia around z-axis

K [ ] Stiffness matrix

KT [ ] Stiffness matrix in the Newton-Raphson integration method

Kv [m4] See It
Kw [m6] See Iw

L [m] Length of structural element

Lcr [m] Effective critical buckling length of structural element

Mb,Rd [Nm] Bending moment design resistance

Mcr [Nm] Elastic critical bending moment

Mcr,FEM [Nm] Elastic critical bending moment from FE-analysis

Mcr,0 [Nm] Elastic critical bending moment for referance load case

Mcr,3 f f [Nm] Elastic critical bending moment according to the 3-factor formula

Mmax [Nm] Maximum bending moment along a beam
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Mpl [Nm] Plastic moment resistance

Mx,tot [Nm] Torsional moment from Saint-Venant and restrained warping combined

Mx,SV [Nm] Saint-Venant torsional moment

Mx,ω [Nm] Torsional moment from restrained warping

Mx [Nm] Torsional moment around x-axis

My,gl [Nm] Bending moment around global y-axis

My,Rd [Nm] Strong axis bending moment design resistance

My,z [Nm] Bending moment around y- and z-axes

Mω [Nm] The so called bi-moment, related to warping

N [N] Axial compression force

Nb,Rd [Nm] Column design resistance for axial load with regards to flexural buckling

Ncr [N] Critical column buckling force

NEd [N] Applied axial load in column

NRd [N] Column axial load design resistance

Ny [N] Axial compression force resulting in yielding

Pbase [N] Initial applied load in a linear buckling analysis

Pcr,FEM [N] Critical load according to FEM linear buckling analysis

S [ ] Stress stiffness matrix

Wel [m3] Elastic section modulus

Wpl [m3] Plastic section modulus

b [m] Flange width

bs [m] Equivalent flange width for simplified channel cross-section

e0 [m] Max initial geometric bow imperfection

e0,d [m] Max initial equivalent geometric bow imperfection

eSC [m] Lateral distance between shear center and centre line of web

fy [N/2] Yield stress of steel

h [m] Total cross-section height

hw [m] Height of web

hs [m] Height between centre of of flanges

kc [ ] Factor that depends on the shape of the moment diagram

kw [ ] End rotational effective length factor

kz [ ] End warping effective length factor

t f [m] Flange thickness

tw [m] Web thickness

ux [m] Translation in x-direction

uy [m] Translation in y-direction

uz [m] Translation in z-direction

v [m] Lateral deflection of beam or column
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v0 [m] Lateral deflection due to initial out-of-straightness

vmax [m] Lateral deflection due to initial imperfection and
second order effects combined

x [m] Beam length direction

y [m] Lateral direction of beam

yG [m] Lateral direction between the centre of gravity
and the centreline of the web

z [m] Vertical direction of beam

za [m] Vertical coordinate for the point of load application

zg [m] Vertical distance between point of load application
and the shear centre

zs [m] Vertical coordinate for the shear centre
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1 Introduction

1.1 Background
As steel structures tend to be slender, a limiting factor in design is often the risk of various
types of instability phenomena, known as buckling. Lateral-torsional buckling of steel
beams is treated in the European standard EN-1993-1-1:2005 (hereafter Eurocode 3) in
the following way: the theoretical elastic critical bending moment Mcr is needed to decide
the normalized relative slenderness λ̄LT , which in combination with an imperfection
factor αLT gives the design bending moment reduction factor with regard to lateral-
torsional buckling χLT .

Earlier versions of Eurocode 3 had a suggestion on how to calculate Mcr, which was
removed in later versions. The approach was known as “the 3-factor formula” and
produced reliable results for symmetric cross-sections such as I-beams. This is, however,
not the case for channel sections, where the shear centre does not coincide with the
vertical axis of the centre of gravity. The applied load will inevitably cause a torsional
moment in the beam, which makes it difficult to predict Mcr.

For advanced loading cases, a modern approach is to utilize Finite Element Method
(FEM) computer software in design. A disadvantage of this technique is that it can be
very time consuming and hence not always economical. The designer may also lose
some control over the calculation process which can make it more difficult to validate
the results.

It has been noticed in an earlier Master’s thesis project at Reinertsen (Hauksson and
Vilhjálmsson, 2014) that when dealing with non-symmetric channel sections some of the
current engineering software differs significantly. At present, no simple way of checking
the validity with hand calculations exists. The uncertainty might be handled by avoiding
channel sections in longer spans, using lateral bracings or over-dimensioning the beam
cross-section size to be on the safe side.

Scholars, such as (N. Trahair, 1998) has highlighted the need for additional research
on other cross-sections than the already well known I-beams. Suggestions have already
been made on how to improve the hand calculation procedure in Eurocode 3 for channel
sections by (Snijder et al., 2008).
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1.2 Aim and objectives
The overall purpose of this Master’s thesis project was to gain further insight into the
behaviour of lateral-torsional buckling of steel channel beams regarding the effects of
slenderness, point of load application and cross-section size on deformations, stress
patterns and load-carrying capacity.

1.3 Limitations
To avoid the risk of local buckling, only cross-sections in class 1 were considered.
Standard UPE-sections 100, 160 and 220 were chosen, which implies that only beams
with equal top and bottom flange size were studied. Laterally braced beams were not
studied, nor continous beams or frames of structural members. The beams were not
exposed to axial load.

The loading cases considered were end moment loading, point load in the middle of
the span and linearly distributed load at top, middle and bottom web. The intermediate
buckling region was of primary interest and therefore the study was limited to beams
with slenderness values (λ̄LT ) approximately between 0.6 and 1.7.

1.4 Method
Initially, a literature study on the theory behind various instability phenomena for steel
beams was made, including how Eurocode 3 treats lateral-torsional buckling. The 3-
factor formula that establishes the elastic critical moment Mcr was also studied. The
present methods on how to deal with different loading conditions, end restraints and
cross-section shapes when it comes to lateral-torsional buckling were assessed.

A parametric study was conducted where channel beams with different dimensions,
lengths and load conditions were modelled and analysed in computer software ANSYS.
The parametric study was performed in FE-software ANSYS with three chosen cross-
sections: UPE100, UPE160 and UPE220. Load was applied through end moments, a
point load in the beam mid section and finally distributed load in the top, the middle and
the bottom of the web respectively.

The analyses were first made by performing a linear elastic buckling analysis. Then,
the elastic critical buckling shape was used as an initial geometric imperfection for
the collapse analysis, with a maximum lateral deflection of the beam length divided
with 150. For the end moment load case an additional method was also used, where
residual stresses were modelled in the beams and the maximum imperfection was L/1000.
Eurocode 3 prescribes these two options for applying imperfections.

The end moment loading was used as a reference case to verify the validity of the model,
as in this load case load eccentricity is avoided. The buckling curves plotted from the
results of the analyses were therefore expected to resemble the general lateral-torsional
buckling curves in Eurocode 3.

Thereafter point load and linearly distributed load were applied in collapse analyses, and
the maximum load carrying capacity was plotted in buckling curve diagrams against
beam slenderness λ̄LT .
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To be able to analyse stress patterns the equivalent von Mises stress was extracted from
three points in the mid-section of the beam for each load step, explained further in
Section 7.1.2. The maximum deformation was also recorded.

Finally the results were compared to the study made by (Snijder et al., 2008).
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2 Definitions

2.1 Coordinate system
The Cartesian coordinate system is used where the x-direction represents the length
direction of the beam. When viewing the beam from the left, the z-axis is pointing down
and the y-axis is pointing to the right, demonstrated in Figure 2.1. Due to the orientation
of the cross-section, major axis bending will be about the y-axis and minor axis bending
will be about the z-axis. When the channel beam is loaded with a vertical force or end
moments (about the y-axis) then the strong axis will be the y-axis – major axis bending.
The weak axis is referred to as the z-axis – minor axis bending.

x

y

z

Figure 2.1: Directions for the coordinate system

2.2 Cross-section notation
The lengths and measurements of the cross-section are labelled according to the standard
in Eurocode 3, see Figure 2.2.

t
w

t
f

b

h
w
h

Figure 2.2: Notation of the cross-section, following Eurocode 3 standard

h = Total height of cross-section

hw = Free height of the web between flanges

b = Width of flanges

tw = Thickness of web

t f = Thickness of flanges
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2.2.1 Simplified cross-section in FE-model

Since most of the equations in this thesis are applied on a simplified channel cross-section
that is the result of using shell elements in the FE-analysis, some additional notations are
needed, shown in Figure 2.3.

h hs

b
bs

tw

tf

Figure 2.3: Notations for simplified cross-section

Additional cross-section labels are:

hs = Finite element model web height

bs = Finite element model flange width height

2.3 Centre of gravity, GC
The centre of gravity in a body of homogeneous material coincides with the geometric
centre, known as the centroid (Lundh, 2000). The centre of gravity can figured as the
point where the weight of an object is concentrated, as showed in Figure 2.4. The
twisting moment caused by gravitation from the body is zero around this point.

G.C.

Figure 2.4: The centre of gravity

For a simplified channel section, the distance yG from the web center line to the gravity
centre is:

yG =
1
A

(
2t f bs

bs

2

)
(2.1)

A is the cross-section area, A = 2bst f +hstw.
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2.4 Shear centre, SC
If a structural element is transversally loaded in its shear centre, no twist occurs of the
cross-section. If a torque is applied in the same point, no translation of the shear center
takes place (Yoo and Lee, 2011).

This demonstrates that the sum of the shear stresses of one side of the point is equal to
the shear stresses on the other side:

∑τRightO f SC = ∑τLe f tO f SC

∑τTopO f SC = ∑τBottomO f SC

For a double symmetric cross-section the shear centre coincides with the gravity centre.
For a single symmetric cross-section the shear centre will be located along the symmetry
line, but not in the gravity centre.

In Figure 2.5, the cross-section for the I-beam is double symmetric which means that the
shear centre will coincide with the gravity centre.

S.C. and G.C.

coincides

Figure 2.5: Shear centre and gravity centre coincides in a double symmetric I-beam

The channel beam, however, is symmetric about the y-axis but not about the z-axis which
implies that the shear centre will coincide with the gravity centre in the z-direction but
not in the y-direction. If such a beam is transversally loaded in the shear centre the beam
would then bend in pure flexion and no twist is induced, see Figure 2.6.

S.C.

e
sc

Figure 2.6: Shear centre located outside of channel beam geometry

The horizontal distance between the shear centre and the web centre line is calculated
through the equation:

eSC =
b2

s h2
s t f

4Iy
(2.2)
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2.5 Degrees of freedom
2.5.1 Translation in x, y and z
The beam is able to move in the three principle axes x,y and z. The translation is depicted
in Figures 2.7, 2.8 and 2.9.

x

z

w

Figure 2.7: Translation in the x-direction

y

z

v

Figure 2.8: Translation in the y-direction

y

z

u

Figure 2.9: Translation in the z-direction

2.5.2 Rotation about x, y and z
The centre of rotation is defined in the gravity centre so that no additional translation is
introduced. Major axis bending is rotation about the y-axis and minor axis bending is
rotation about the z-axis. These rotations as well as rotation about the x-axis (torsion)
are shown in Figures 2.10, 2.11 and 2.12.

y

z

φ
x

Figure 2.10: Rotation about the x-axis (twisting of cross-section)
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x

z

φ
y

Figure 2.11: Rotation about the y-axis, from major axis bending

x

y

φ
z

Figure 2.12: Rotation about the z-axis, from minor axis bending

2.6 Bending
Major axis bending of a beam can described by the simple formula:

My =−EIy
d2u
dx2 (2.3)

The second moment of inertia I is defined as

I =
∫ ∫

z2dydz (2.4)

For a channel beam with simplified cross-section, Iy is then defined as

Iy =
2bst3

f + twh3
s

12
+2bst f

(
hs

2

)2

(2.5)

Minor axis bending is expressed as

Mz =−EIz
d2v
dx2 (2.6)

Iz is defined as

Iz =
2t f b3

s +hst3
w

12
+2bst f

(
bs

2
− yG

)2

+hstwy2
G (2.7)

2.7 Torsion
2.7.1 Pure torsion

When applying end torques to a prismatic beam with circular cross-section, as in
Figure 2.13, the behaviour is described by uniform torsion (Höglund, 2006).
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The correlation between torsional moment and the angle of twist can be described by
Saint-Venant’s torsion:

Mx,SV = GIt
dφ

dx
(2.8)

where GIt is the torsional stiffness

Figure 2.13: Pure Saint-Venant torsion of a circular cross-section

This equation implies that throughout the length of the beam the cross-section is rotated
but remains plane and undistorted. The torsional moment of inertia It is defined as

I =
∫

A
r2dA (2.9)

For rectangular thin elements within a cross-section It is simplified as
width ·height3

3
.

For a channel beam with simplified cross-section, It is therefore:

It =
2bst f 3 +hstw3

3
(2.10)

2.7.2 Warping

If a non-circular prismatic beam is exposed to torsional moment, however, the behaviour
will differ. The beam will rotate about the x-axis but now also distort so that the cross-
section no longer remains plane. For an I-beam or channel beam, this leads to the flanges
distorting in opposite directions as can be seen in Figure 2.14.

M
t

Figure 2.14: Warping of flanges
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The warping restraint torsion is described by the following equation:

Mx,w =−EIw
d3ϕ

dx3 (2.11)

The warping constant Iw for a channel beam can be expressed by the following formula
according to (Hoogenboom, 2003):

Iw =
t f bs3hs2

12
· 3bst f +2hstw

6bst f +hstw
(2.12)

Bi-moment

The so called bi-moment is also known as warping moment and represents the distribution
of longitudinal normal stresses resulting from restrained warping. For a double symmetric
cross-section such as an I-beam, the bi-moment can be represented by a pair of equal and
opposite bending moments in the flanges. For a channel beam the web also contributes.
The bending moments in each cross-section subpart are multiplied with the distance
to either of the "plastic neutral lines", extending from the gravity center. Thereby the
bi-moment has the unity Nm2. The resulting stress is given by

σx,ω =
Mω

Iw
ω (2.13)

where ω is the sectorial coordinate, representing different locations on the cross-section.
Mw is the applied bi-moment. Appendix C shows an example on how to calculate the
sectorial coordinate ω and and the applied bi-moment Mω .

Mω =−EIw
d2ϕ

dx2 (2.14)

2.7.3 Pure Saint-Venant torsion and warping restraint torsion combined

The torsional moment is resisted by the two components Saint-Venant torsion (pure twist
of cross-section) and the warping restraint torsion:

Mx,tot = GIt
dφ

dx
−EIw

d3ϕ

dx3 (2.15)

A beam loaded at mid span by a torsional moment is shown in Figure 2.15 . At the
supports, torsion is prevented but warping is freely allowed. At the middle of the beam
length, warping is prohibited due to symmetry, but torsion is allowed.
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-Mx

0

Mx

Mx

Saint Venant-torsion

Warping restraint-torsion

Summation of torsion

Figure 2.15: Distribution of Saint-Venant torsion and warping torsion along beam

2.8 Point of load application
The point of load application (PLA) is defined as the vertical distance from shear centre
to the application of the load. Placing the load above the shear centre will increase the
rotation of the cross-section due to the eccentricity that arises as soon as the cross-section
starts to twist. In contrary, if the load is placed below the shear centre, the rotation of the
cross-section will be counteracted by the load, demonstrated in Figure 2.16.

S.C. G.C.S.C. G.C.S.C. G.C.

Figure 2.16: Different points of load application

If, however, the load is placed directly in the shear centre, the rotation will neither
increase nor decrease. Beams with shear centres outside the physical geometry will
behave like double symmetric beams when applying an imaginary load on a vertical axis
through the shear centre. Applying real transversal loads on the structure will introduce
an initial twisting of the cross-section due to the horizontal eccentricity.

2.9 Boundary conditions
To analyse lateral-torsional buckling for a single span beam that is simply supported on
each end, a fork support is used. In a fork support, the translation in z and y is restrained
at both ends and at one end the translation in x is locked. The rotation about the x-axis is
prohibited due to the geometry of a fork support but rotations about the y- and z-axis are
allowed. The fork support for each end is shown in Figure 2.17.
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y

x

z

Figure 2.17: Fork support
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3 Theoretical background to structural instability

It is claimed that the risk of buckling in general is the most important design consideration
in many structural systems (Simitses and Hodges, 2006). Structural failure resulting
from instability often lead to catastrophic consequences, and have commonly occured
during erection (Galambos and Surovek, 2008). As an example of such failures a number
of large steel box-girder bridges collapsed during a period around 1970:s.

Structural elements can be divided into four categories, depending on their relative
dimensions (Simitses and Hodges, 2006):

1) Same magnitude in all three dimensions - compact solid elements such as a cube or a
short cylinder, see Figure 3.1a.

2) One dimension is of smaller magnitude than the other two - plates, shells, see
Figure 3.1b.

3) One of the dimensions is of larger magnitude than the other two, which are of equal
size - thin beams and columns, see Figure 3.1c

4) All three dimensions are of different magnitudes - thin-walled beams with open
cross-section, for example composite sections such as I-beams, see Figure 3.1d

The first category is not prone to instability but the other three are. In this thesis project,
category 4 is of main interest.

(a) (b)

(c) (d)

Figure 3.1: Four categories of structural elements regarding their relative dimensions
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3.1 Principal states of stability
To describe the stability of a structural system, an often used concept is to refer to the
equilibrium of a ball with different configurations as shown in Figure 3.2 (Yoo and Lee,
2011). Three main states can be distinguished in which the ball will respond differently
to small disturbances.

Stable state
If the ball at position A is disturbed with a small force, and that force is later removed,
the ball will return to its original position. This corresponds to the minimum energy of
the system, and the ball is in a stable equilibrium.

Unstable state
The unstable state is when the ball is on the top, position B. If the ball at this position is
slightly disturbed, it will increasingly move away from its original position. Therefore,
the energy of the system is at its maximum when the ball is in position B.

Indifferent or neutral state
If the ball is in position C and is disturbed, there will be no change in the energy of the
system. Thus, the ball can find a new equilibrium at any position and it will neither
return to the original position nor continue to move increasingly.

A

B

C

Figure 3.2: Three principal states of stability

3.2 Euler’s theory of elastic column buckling
The first structural element analysed scientifically with regards to instability was the
column, and was performed by Leonard Euler in 1757 (Timoshenko, 1983). When a
column in compression reaches a critical load its behaviour passes from compression
elastically (shortening) to bending laterally (i.e. global buckling). At that moment, a
small increase in load gives a large increase in lateral deflection. When Euler calculated
the critical load for columns the following assumptions were made (Pettersson, 1971):

• No residual stresses from the manufacturing process

• Perfectly straight column

• Load applied at the centre of the cross-section

• Elastic material response for both compression and tension (Hooke’s law)

• Coplanar and quasistatically applied load

• Isotropic and homogeneous material
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The derivation of the critical load Ncr starts by setting up a second order differential
equation for a pinned-pinned column, where the load is applied axially (Salmon et al.,
2008). The boundary conditions for this specific case imply that there are no movements
at the supports.

EI
d2y
dx2 +Mz = 0 (3.1)

y(0) = y(L) = 0 (3.2)

According to Figure 3.3 the bending moment, Mz, can be substituted with Mz = N · y(x)
and hence:

EI
d2y
dx2 +N · y(x) = 0 (3.3)

N

l

y

x

N

N

y

x

Mz = N · y

Figure 3.3: Bending moment introduced due to second order effects

By dividing all terms with EI and introducing k2 = N/EI Equation (3.3) can be rewritten
into:

d2y
dx2 + k2y(x) = 0 (3.4)

The general solution to this differential equation is given on the form:

y(x) = Asin(kx)+Bcos(kx) (3.5)

By inserting the boundary condition y(0) = 0, B can be solved:

Asin(0k)+Bcos(0k) = 0 ⇒ B = 0 (3.6)
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Continue solving the differential equation by using the other boundary condition, y(L) =
0:

Asin(kL) = 0 ⇒


A = 0 No deflection (trivial)
kL = 0 No applied load
kL = nπ, (n = 1,2 . . .) Buckling occurs

(3.7)

The critical force is then solved for by inserting k =
√

N/EI into the third term in
Equation (3.7) √

N
EI

L = nπ ⇔ N =
n2π2EI

L2 (3.8)

The buckling mode of interest is related to the lowest value of N which corresponds to
n = 1. This force is usually called the critical buckling force:

Ncr =
π2EI

L2 (3.9)

Below in Figure 3.4 the buckling force is plotted against column slenderness to produce
an elastic critical buckling curve for columns according to Euler’s theory. The dashed
line shows the force Ny that would result in yielding of the entire cross-section.

Ny

1/λ̄ 2

λ̄

N

1.0

N
or

m
al

fo
rc

e

Column slenderness

Figure 3.4: Elastic buckling curve according to Euler’s theory

A column that buckles according to Euler’s theory follows the theory of stability. For
N < Ncr, the system is in the stable state, and the column only deforms axially. For
N > Ncr the system is in the unstable state, where a small increase in load results in a
large increase in lateral deflection.

For structural systems it is usually of interest to find the critical load that leads to the
unstable state. At this load, the system can find equilibrium for both a completely straight
and slightly bent shape (Galambos and Surovek, 2008). This is explained further in
Section 4.1.1.

3.3 Real columns with imperfections
The theoretical Euler buckling is also known as bifurcation type buckling. In Figure 3.5
the compression load is plotted against lateral deflection. Initially the increased load
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does not result in lateral deflection, but at the critical level Ncr, there is a sharp turn,
thereby the name bifurcation buckling (Yoo and Lee, 2011).

ϕ

N

Theoretical ideal column
Ncr

A
xi

al
lo

ad

Lateral deflection

Figure 3.5: Buckling behaviour of an ideal column

In reality, initial geometric imperfections, residual stresses and load eccentricity will
lead to a behaviour that could be described as deflection-amplification type buckling. At
first, a small deflection leads to increased stresses due to a second order moment, which
increases the deflection and so on. The principal load-deflection curve of a real column
(or beam) will resemble the curves in Figure 3.6.

ϕ

N

Theoretical ideal column
Ncr

Real column with imperfections

A
xi

al
lo

ad

Lateral deflection

Figure 3.6: Buckling behaviour of real and ideal column

3.3.1 Effect of initial geometric imperfections

No production method leads to perfectly straight structural members, and therefore
second order effects are introduced when axial loads are applied on a column. The initial
geometric imperfection is assumed to have a bow shape, seen in Figure 3.7 below, and a
common manufacturing limit for the maximum initial deflection is L/1000, but depends
on the type of cross-section (Galambos, 1998).

e0 = L/1000

L

Figure 3.7: Inititally assumed geometric out-of-straightness
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3.3.2 Effect of residual stresses

When hot-rolled or welded sections are manufactured, subsequent uneven cooling lead
to residual stresses in the metal. The difference in stress is higher in more stocky cross-
sections, and steel class and cooling temperature are also of some importance (Galambos,
1998).

Cold-formed sections exhibit residual stresses due to plastic deformations during bending,
but not of the same magnitude as hot-rolled or welded sections (Höglund, 2006).

Without residual stresses, the loading of a beam would result in a symmetric stress
distribution in the cross-section. When taking this effect into account, however, a certain
part such as the outer edge of a flange, might yield much earlier than expected. Residual
stresses and stresses from applied loads are added through superposition resulting in the
actual stress level, as illustrated in Figure 3.8.

Residual stresses Normal stress

from applied load
Total stress

Figure 3.8: Combined effect of residual stresses to the left and normal stresses caused
by bending moment from applied load in the middle

3.3.3 Ayrton-Perry formulation for buckling of real columns

In 1886, Ayrton and Perry further developed Euler’s theoretical column buckling theory
by taking into consideration the yield strength of the material as well as an initial
geometric imperfection. Thereby a formulation of the failure load was established for
columns, but the magnitude of the initial imperfection was not decided (Brown, 2016).
Later, in 1925, Robertson made further contributions by determining actual imperfection
values with the support from experiments. Therefore initial geometric imperfections,
residual stresses and unintended load eccentricity was automatically implemented. His
curve, which became known as the Perry-Robertson curve, had an elastic failure criterion
where the column failed when the outer most fibre in the cross-section at the critical part
of the column reached yielding.

The starting point of the Ayrton-Perry formulation is to model residual stresses, geometric
imperfections and unintended load eccentricity as an "equivalent geometric imperfection"
in the form of a single bow with a maximum deflection of e0,d (Boissonnade et al., 2006):

v0(x) = e0,d sin
πx
L

(3.10)

The additional deflection due to the axial load can also be represented by a sinusoidal
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function:

v(x) = Asin
πx
L

(3.11)

The differential equation for the deflected shape can be written as:

v′′+
NEd

EI
(v0 + v) = 0 (3.12)

NEd NEd
e0d

A

l

vmax = e0d +A

Figure 3.9: Eccentricity due to second order effects

By inserting Equations (3.10) and (3.11) into Equation (3.12), the amplitude A can be
solved:

−π2

L2 Asin
πx
L

+
NEd

EI
sin

πx
L

(
e0,d +A

)
= 0 (3.13)

sin
πx
L

(
NEd

EI
e0,d +

NEd

EI
A− π2

L2 A
)
= 0 (3.14)

A =
NEd

Ncr−NEd
e0,d, where Ncr =

π2EI
L2 (3.15)

The total deflection, vmax is the sum of the initial maximum deflection and deflection due
to axial load (A+ e0,d), see Figure 3.9. Hence:

vmax =
NEd

Ncr−NEd
e0,d +

Ncr−NEd

Ncr−NEd
e0,d

=
Ncr

Ncr−NEd
e0,d =

1
1−NEd/Ncr

e0,d (3.16)

A second-order in-plane control of an elastic column can be performed:

NEd

NRd
+

1
1−NEd/Ncr

NEde0,d

MRd
≤ 1.0 (3.17)
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A collapse mechanism is formed when NEd = Nb,Rd = χNRd . By using the following

relationships: λ̄ 2 =
NRd

NEd
, NRd = A fy/γM1, MRd = Wel fy/γM1, Equation (3.17) can be

rewritten into:

χNRd

NRd
+

1

1−χλ̄
2

χ
A fy

γM0
Wel fy

γM1

e0,d ≤ 1.0 (3.18)

χ +
1

1−χλ̄
2

χA
Wel

e0,d ≤ 1.0 (3.19)

By introducing the generalised imperfection, η =
Ae0,d

Wel
, we then have

χ +χ
η

1−χλ̄
2 ≤ 1.0 (3.20)

Equation (3.20) can be solved and thus we have an expression for the reduction factor χ :

χ =
1

Φ+
√

Φ2− λ̄ 2
≤ 1.0 (3.21)

Φ = 0.5[1+η + λ̄
2] (3.22)

In Eurocode 3, the generalised imperfection is formulated as

η = α(λ̄ −0.2) (3.23)

The imperfection factor α depends on the shape of cross-section, steel strength, around
which axis the buckling occurs etc, and it takes residual stresses, out-of-straightness and
load eccentricity into account. In Eurocode 3 there are five column buckling curves,
shown in Figure 3.10, deriving from different values of α: a, a0, b, c and d.

λ̄

χ

a0
a
b
c
d

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.4
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0.8

1.0
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n
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Figure 3.10: Column buckling curves in Eurocode 3
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The value 0.2 in Equation (3.23) is the plastic limit, meaning that all columns with
a lower slenderness are expected to develop full plastic cross-section capacity before
failure.

3.3.4 Three principal buckling regions

The normalised slenderness λ̄ of a beam or column is mainly depending on its length-
to-thickness ratio. When plotting slenderness against buckling resistance three distinct
regions can be distinguished in Figure 3.11 (Yoo and Lee, 2011).

Region 1 corresponds to stocky beams which fail through yielding of the whole cross-
section. The phenomenon of buckling never takes place.

Region 3 corresponds to slender beams which fail in elastic buckling close to the
predictions of Euler buckling theory.

Region 2 is called the intermediate region.

λ̄

N

(1)

Theoretical perfect column

Real column with imperfections
1/λ̄ 2

(2)

(3)

1.0 2.00.2

Ny

A
xi

al
lo

ad

Column slenderness

Figure 3.11: Three buckling regions

For increased understanding and to be able to interprete and analyse the results from
the FE-analyses, a short explanation of other common instability phenomena (except
lateral-torsional buckling) is given in the next section.

3.4 Other instability phenomena in beams and columns
3.4.1 Flexural buckling

Previous sections describing Euler’s original elastic column buckling is an example of
flexural buckling. This is the most common way in which a column buckles. No twisting
takes place and deformation is two-dimensional so the response can be described as
in-plane behaviour, as shown in Figure 3.12. In addition, a beam transversally loaded
around its weak axis will buckle flexurally.
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Figure 3.12: Flexural buckling

3.4.2 Torsional buckling

If a column or beam is subjected to a uniformly distributed axial torque, it might twist
around its longitudinal axis without deflecting neither vertically nor laterally, as shown
in Figure 3.13. This is referred to as torsional buckling. Already in 1855, the theory of
uniform torsion was described by Saint-Venant (N. S. Trahair, 1993). At this time other
instability phenomena were not described mathematically, except for column (flexural)
buckling.

Torsional buckling can also occur without applied torque, with the conditions that the
structural element is braced against flexural buckling or if it has a non-symmetric shape
(Höglund, 2006).

Figure 3.13: Torsional buckling

3.4.3 Local buckling

Local buckling can occur in a part of a cross-section, for example in the web or flange of
an I-beam, if the part is slender enough (CEN, 2005). The structural member does not
buckle globally, but several buckles might form next to each other in a certain region
(Höglund, 2006).

The size of one buckle is usually about the width of the plate element, illustrated in
Figure 3.14. If local buckling takes place, the cross-section stiffness is reduced and the
risk of global buckling is increased (N. S. Trahair, 1993).

In general, the design philosophy is avoid local buckling in steel structures. This might
not always be the best solution as the post-critical strength is not taken advantage of.
Local buckling can in fact be the preferred failure mode in ultimate limit state in extreme
loading cases (Seif and Schafer, 2010).
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Figure 3.14: Local buckling of web and top flange of I-beam

3.4.4 Distortional buckling

This particular buckling mode can be described as something in between local buckling
and global buckling (N. S. Trahair, 1993). The behaviour is more common in cross-
sections with slender rather than stocky webs. For an I-beam, the section can for example
be deformed in such a way that the bottom flange deflects laterally without significant
twist, see Figure 3.15, if the top flange is braced laterally but not the bottom flange. This
leads to reduced torsional stiffness (Samanta and Kumar, 2006).

Figure 3.15: Distortional buckling that could occur when the top flange is laterally
braced while the bottom flange is not

In a cold-formed lipped channel beam, flexural buckling of the lip and the flange it
is attached to, might lead to distortional buckling, see Figure 3.16 (Höglund, 2006).
Usually, there is no post-critical strength for this buckling mode. The buckles are formed
with a length of three to eight times the element width.
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Figure 3.16: Distortional buckling of channel beam flanges

3.4.5 Torsional flexural buckling

When some kind of asymmetry is involved, torsional flexural buckling can develop.
Either one of the flanges is braced while the other is not, or the cross-section is of for
example L-shape. The effect is simultaneous deflection and twist.

The resulting deformation pattern is similar to lateral-torsional buckling but the difference
is that torsional flexural buckling is caused by axial compressive load and not by
transversal load.
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4 Lateral-torsional buckling

For a laterally unrestrained or insufficiently restrained beam, lateral-torsional buckling
in particular is commonly the limiting factor in design (Hughes, 2009). Other conditions
that need to be fulfilled for this effect to occur is that the cross-section must have
significantly lower stiffness around the minor axis than the major axis, the load must be
applied around the major axis and the cross-section need to have low torsional stiffness.
Closed sections such as box-beams are therefore not prone to lateral-torsional buckling
(Höglund, 2006).

In lateral-torsional buckling, the beam is loaded in the plane of its major axis until it
buckles by a sudden simultaneous lateral deflection and twisting of the cross-section
(Galambos and Surovek, 2008). As an example of this behaviour, consider a simply
supported I-section beam. When loaded by a uniformly distributed load, the top flange
is compressed whereas the bottom flange is tensioned. The compressed flange is prone
to buckle as a strut but is partly restrained by the web in the vertical direction so it will
instead buckle laterally. The tension flange however does not need to buckle and is,
together with the web, partly restricting the lateral deformation of the compression flange.
The imbalance in lateral deflection between the two flanges also lead to torsion of the
cross-section. The resulting three-dimensionally bent shape can be seen in Figure 4.1.

1

2

Figure 4.1: Lateral-torsional buckling of I-beam

The first work on lateral-torsional buckling was made in 1899 by Prandtl and Michell
on thin, high cross-sections of rectangular shape (N. S. Trahair, 1993). A few years
later, in 1905, Timoshenko included effects of warping, which made it possible to
describe the torsion of I-section beams correctly. Other researchers such as Wagner made
further contributions that eventually led to a general theory on lateral-torsional buckling
which can be found in the textbooks by Timoshenko and others. Before the 1960s the
assessment of lateral-torsional buckling required extensive calculations by hand, which
was a clear limiting factor due to the time needed. The computer revolution made it
possible to describe beam behaviour with various loading conditions and restraints in
both isolated members and frames. With the use of the Finite Element Method for
stuctural analysis, the need for scientific publications on the subject decreased.
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In Chapter 3, the difference between theoretically perfect columns and real columns
with imperfections was described. The same methodology will be used on lateral-
torsional buckling the following sections, starting with elastic critical bending moment
Mcr, moving on to the design of real beams in Eurocode 3 and then finishing with some
methods for the design of channel beams specifically.

4.1 Elastic critical bending moment, Mcr

In Section 3.3.3 the critical load for column buckling Ncr was derived. By making the
same assumptions (no material or geometric imperfections and so on), the elastic critical
bending moment for lateral-torsional buckling, Mcr, can be described.

A number of methods to calculate the theoretical critical elastic buckling load of a beam
are mentioned in (Simitses and Hodges, 2006). Analytical methods are not practical to
use in design, since for every load case and boundary condition a new lengthy calculation
procedure need to be performed. Therefore general expressions are used, such as the
3-factor formula which is described in Section 4.3.

Among the analytical methods are the equilibrium method, the dynamic method and the
potential energy method. The potential energy method will be given a longer treatment in
Section 4.1.1, since it is thereafter used to derive the expression for Mcr that the 3-factor
formula is based on.

The equilibrium method is based on the fact that a beam or column remains straight until
an equilibrium can exist in both the straight and the slightly bent shape. This is also
called the bifurcation method. Mathematically the solution is derived from an Eigenvalue
boundary problem.

The dynamic, or kinetic method, is a direct application of structural stability theory,
which is described in Section 3.1. The equations of free vibrations of a system are
studied to decide for what external load a small disturbance lead to a deviation of the
equilibrium.

4.1.1 Potential energy method

The energy method is equivalent to the dynamic method for conservative systems, and can
only be used for such systems, where the work performed by applied forces and reaction
forces are independant on path, but dependant only on initial and final configurations.

An example of a conservative system is a ball subject to gravitational fields. It is irrelevant
how the ball is moved, but the potential energy difference is dependant on initial and
final height. An object subject to friction and moved along a surface is an example of
an unconservative system. The work performed is not only dependant on the initial and
final coordinates but on the path travelled.

Another example is shown in Figure 4.2 where a compressive load is applied at the
free end of a column. If the load remains vertical it is a conservative stability problem,
whereas if the load direction changes tangentially it is an unconservative system (Pettersson,
1971).
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Unconservative
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N N

N
N

Figure 4.2: An example of a conservative and an unconservative stability problem

A structural element will find equilibrium in a position where the potential energy of the
deflected shape is minimized, given that boundary conditions are fulfilled, according to
(Höglund, 2006). The potential energy is expressed as having two parts, one with energy
from external loads Hy and one from elastically stored internal energy in the deflected
shape Hi.

H = Hy +Hi (4.1)

It is useful to set the energy level for the straight position just before buckling as the
energy zero level. Then the energy potential change ∆H is of interest:

∆H = Hde f lected−Hstraight (4.2)

Since the work performed by applied loads is completely converted to elastic energy
through deflection of the structure, it is true that for any equilibrium position:

Hy =−Hi (4.3)
Hy +Hi = 0 (4.4)

The potential energy at an equilibrium position is at its minimum, meaning that for the
given loads and boundary conditions, any change in the shape of the beam will increase
the potential energy as illustrated in Figure 4.3.
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N

N

Figure 4.3: Potential energy is at minimum in equilibrium positions

For the special case of elastic buckling, the potential energy does not change, however,
when the shape changes from straight to deflected at the critical buckling load, illustrated
in Figure 4.4:

ΔH=0

N

N

N

N

Figure 4.4: Potential energy before and after buckling is equal

∆H = 0 (4.5)

To calculate the critical buckling load in this way, differential equations are set up that
describe the energy in the system. The specific boundary and loading conditions are
taken into account and then a deflected shape is assumed and the energy for the suggested
shape can find a minimum.

This procedure is obviously not practical to use in structural design. The equations
set up are only valid for the specific boundary and loading conditions, and extensive
calculations are needed to obtain the solution. Following is a derivation through the
potential energy method of Mcr, the elastic critical bending moment with regards to
lateral-torsional buckling.
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4.2 Derivation of Mcr through the potential energy method
To derive an expression for the critical elastic bending moment, the energy method
described in the previous section can be used. The following derivation is based on the
works of (Höglund, 2006) and (Galambos and Surovek, 2008).

Consider a single span, double symmetric beam with fork supports subjected to equal
but opposite applied end moments. It should be noted that although the applied load is
working around the y-axis, the deformed shape resulting from theoretical lateral-torsional
buckling involves bending of the beam cross-section in the lateral direction (y-axis) and
twist around the x-axis but major axis bending is actually not a part of the response.

Since a buckled beam will find the most energy efficient shape, the function for the total
potential energy is at a local minimum for that specific shape. The total potential energy
is obtained by adding the external work performed on the beam by the applied load and
and the internally stored energy created by minor axis bending and twisting of the beam.
By using calculus of variations and Euler-Poisson system of equations, it is possible to
solve the differential equation that are derived, which is shown in detail in Section 4.2.4.
The following assumptions are made:

• The material is linearly elastic, homogeneous and isotropic

• Angle of twist and deflections are small

• No local buckling or distortion of cross-section

• There are no residual stresses or initial out-of-straightness of the beam

It can be mentioned that different litterature uses different notations for warping and
torsional stiffness, and therefore the following notations are equivalent:

Torsional stiffness: GIt =C = GKv
Warping stiffness: EIw =Cw = EKw

4.2.1 Elastically stored internal energy

Bending about weak axis

Work is defined as force multiplied by a distance in the same direction as the force. By
combining the definition of stress (σ = P/dA) and Hooke’s law (σ = Eεy) the force
can be expressed as P = dAEεy. The distance can be expressed by the Cauchy strain
(∆dx = εydx). For a beam subjected to a bending moment around the z-axis (Mz), the
work, for an element in the infinitesimal part in the x-direction, is:

d2H(i, j)b,z =
1
2

dAEεy︸ ︷︷ ︸
f orce

· εydx︸︷︷︸
direction

(4.6)

All elements in the x-direction summed up:

dHib,z =
1
2

dx
A∫

0

Eε
2
y dA (4.7)
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The previous equation can be rewritten by using (εy = σx/A =−Mzy/EIz)

Hib,z =
dx
2

M2
z

EI2
z

A∫
0

y2 dA =
1
2

M2
z

EIz
dx (4.8)

Integration along the beam gives

Hib,z =

L∫
0

M2
z

2EIz
dx (4.9)

The fundamental Euler-Bernoulli beam equation states that

Mz = v′′EIz (4.10)

Mz and v are here expressed in the local z cross-section direction, since the cross-section
twist in lateral-torsional buckling. By inserting Equation (4.10) in Equation (4.9), the
elastically stored energy from minor axis bending along the entire beam is then expressed
as

Hib,z =

L∫
0

EIz(v′′)2

2
dx (4.11)

Saint-Venant torsion

The Saint-Venant torsion for an infinitely small part is expressed by the torsional stiffness
GIt multiplied by the angle of twist distributed along the part, as shown in Section 2.7:

TSV = GIt
dϕ

dx
= GItϕ ′ (4.12)

The potential energy for an infinitesimal part of the beam is

dHi,SV = TSV
dϕ

2
=

{
dϕ =

dϕ

dx
dx = ϕ

′dx
}
=

1
2

GIt
(
ϕ
′)2 dx (4.13)

Summarizing all the parts over the length of the beam yields

Hi,SV =
∫ L

0

GIt(ϕ ′)2

2
dx (4.14)
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Figure 4.5: Force couple in flanges creating warping torsion

Warping torsion

The strain energy from warping comes from lateral bending of the flanges:

M =−EIz, f langev′′ (4.15)

The relation between twist and lateral deflection of the flange centreline is v =
hw + t f

2
ϕ ,

illustrated in Figure 4.5.

Equation (4.15) can then be written

M =−EIz, f lange
hw + t f

2
ϕ
′′ (4.16)

Calculating the force in the flanges by taking the derivative with respect to the moment
gives

F =
dM
dx

=−EIz, f lange
hw + t f

2
ϕ
′′′ (4.17)

The moment of inertia about the z-axis can be approximated by the contribution from
the flanges (ignoring the web): Iz ≈ 2I f lange. Inserting this approximation into Equation
(4.17):

F =−E
Iz

2
hw + t f

2
ϕ
′′′ (4.18)

Torsion due to warping is calculated as:

Tw = F · (hw + t f ) =−
EIz(hw + t f )

2

4
ϕ
′′′ (4.19)
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Simplify Equation (4.19) by inserting Iw =
Iz
(
hw + t f

)2

4
:

Tw =−EIwϕ
′′′ (4.20)

The potential energy for an infinitesimal part is calculated in the same way as for
Saint-Venant torsion:

dHi,w = Tw
dϕ

2
=−1

2
EIwϕ

′′′
ϕ
′dx (4.21)

Calculate the total potential energy by integrating over the whole length of the beam

Hi,w =−
∫ L

0

EIwϕ ′′′ϕ ′

2
dx (4.22)

Perform integration by parts (
∫

uv′dx = uv−
∫

u′vdx) where ϕ ′′′ = v′ and ϕ ′ = u to be
able to rewrite the total potential energy:

Hi,w =−
∫ L

0

EIwϕ ′′′ϕ ′

2
dx =−1

2
[
EIwϕ

′′
ϕ
′]L

0−
(
−
∫ L

0

EIw(ϕ
′′)2

2
dx
)

(4.23)

The first expression (after the equal sign) is equal to zero when a fork support is used,
since ϕ ′′(0) = ϕ ′′(L) = 0 and hence

Hi,w =
∫ L

0

EIw(ϕ
′′)2

2
dx (4.24)

Total potential energy for torsion
Total energy for torsion consists of Saint-Venant torsion and warping:

Hi,t = Hi,SV +Hi,w (4.25)

Inserting Equations (4.14) and (4.24) into Equation (4.25) results in

Hi,t =
∫ L

0

GIt(ϕ ′)2

2
dx+

∫ L

0

EIw(ϕ
′′)2

2
dx (4.26)

4.2.2 External energy: bending about weak axis
As explained earlier major axis bending is excluded from this derivation. The applied
end moments work around the global y-axis but as soon as the beam starts to twist
the applied bending moment My can be separated into cross-section components where
the contribution to bending around the local cross-section z-axis is Myφ , as shown in
Figure 4.6.

The potential energy from applied end moments is described by the following equation:

Hy,My =
∫ L

0
Myϕv′′ dx (4.27)
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Figure 4.6: Bending around global z-axis leading to local cross-section bending
composants

4.2.3 Calculus of variations and Euler-Poisson system of equations
Calculus of variations can be useful when needing to find extreme values to functions
(Komzsik, 2014). A buckled beam will have such a shape that the potential energy is
minimized, and therefore the method of calculus of variations can be used to find the
load that is required for a beam to buckle elastically.

In calculus of variations a general functional that includes several functions with higher
order derivatives can be desribed as:

F(y1, ...,ym) =
∫ L

0
f (x,y1,y′1, ...,y

n1
1 , ...,ym,y′m,y

(nm)
m )dx (4.28)

According to (Komzsik, 2014), this leads to a system of equations:

∂ f
∂y1
− d

dx

(
∂ f
∂y′1

)
+

d2

dx2

(
∂ f
∂y′′1

)
− ...(−1)n1

d(n1)

dxn1

∂ f

∂y(n1)
1

= 0 (4.29)

∂ f
∂ym
− d

dx

(
∂ f
∂y′m

)
+

d2

dx2

(
∂ f
∂y′′m

)
− ...(−1)nm

d(nm)

dxnm

∂ f

∂y(nm)
m

= 0 (4.30)

Calculus of variations does not find the maximum or minimum value to a function in
itself, but it defines the differential equation(s) that the function must satisfy in order to
have a stationary value (Yoo and Lee, 2011). The resulting differential equation(s) may
be coupled or uncoupled and can be solved by inserting known boundary conditions.

4.2.4 Solving the differential equations for Mcr

The total energy from internal and external work is described as:

H = Hi +Hy =
∫ L

0

EIz (v′′)
2

2
dx+

∫ L

0

GIt (ϕ ′)
2

2
dx+

∫ L

0

EIw (ϕ
′′)2

2
dx+

∫ L

0
Myϕv′′ dx

(4.31)

When using calculus of variations this can be expressed symbolically as:

F =
∫ L

0
f (v′′,ϕ ′,ϕ ′′,ϕ ′′′)dx (4.32)

, Civil and Environmental Engineering, Master’s Thesis 2017:52 33, Civil and Environmental Engineering, Master’s Thesis 2017:52 33, Civil and Environmental Engineering, Master’s Thesis 2017:52 33



So the functional is dependant on the second derivative of u and on the first three
derivatives of ϕ:

f =
EIz (v′′)

2

2
+

GIt (ϕ ′)
2

2
+

EIw (ϕ
′′)2

2
+Myϕv′′ (4.33)

The Euler-Poisson system of equations is then written:

∂ f
∂v
− d

dx

(
∂ f
∂v′

)
+

d2

dx2

(
∂ f
∂v′′

)
= 0 (4.34)

∂ f
∂ϕ
− d

dx

(
∂ f
∂ϕ ′

)
+

d2

dx2

(
∂ f

∂ϕ ′′

)
− d3

dx3

(
∂ f

∂ϕ ′′′

)
= 0 (4.35)

Since v and v′ is missing, Equation (4.34) can simply be written:

d2

dx2

(
∂ f
∂v′′

)
= 0 (4.36)

and applied on Equation (4.33), Equation (4.36) is then described as:

EIzv′′′′+Myϕ
′′ = 0 (4.37)

Equation (4.35) is treated the same way and leads to:

Myv′′−GItϕ ′′+EIwϕ
′′′′ = 0 (4.38)

Integrating Equation (4.37) twice gives:

EIzv′′+Myϕ = k1x+ k2 (4.39)

The boundary conditions of a fork support imply that the curvature and the angle of twist
at the supports is 0 leading to: v′′(0,L) = 0 and ϕ(0,L) = 0⇒ k1 = 0 and k2 = 0

Therefore Equation (4.39) is simplified to

EIzv′′+Myϕ = 0 (4.40)

and further:
v′′ =−

My

EIz
ϕ (4.41)

By inserting Equation (4.41) into Equation (4.38):

−
My

2

EIz
ϕ−GItϕ ′′+EIwϕ

′′′′ = 0 (4.42)

The equations are now rewritten as to only depend on ϕ and its derivatives, as the rest
of the terms are constants. A solution to the fourth order differential equation of ϕ is
proposed on the form:

ϕ = Asin
jϕx
L

(4.43)
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The fourth differential becomes:

ϕ
′′′′ = A(

jϕ
L
)

2
sin

jϕx
L

(4.44)

By inserting Equation (4.44) into Equation (4.42):

Asin
jϕx
L
·

[
EIw

(
jπ
L

)4

+GIt

(
jπ
L

)2

−
M2

y

EIz

]
= 0 (4.45)

The trivial solution to
(

Asin
jϕx
L

= 0
)

is of no interest. Therefore the first factor is

ignored, leaving EIw

(
jπ
L

)4

+GIt

(
jπ
L

)2

−
M2

y

EIz
= 0

M2
y

EIz
= EIw

(
jπ
L

)4

+GIt

(
jπ
L

)2

(4.46)

The smallest potential energy is reached when j = 1, which relates to the critical load
My = Mcr:

M2
cr

EIz
=

π4

L4

(
EIw +

L2GIt
π2

)
(4.47)

Solving for Mcr:

Mcr =

√
EIz

π4

L4

(
EIw +

L2GIt
π2

)
(4.48)

Extend:

Mcr =
π2

L2

√
EIz

√
EIw +

L2GIt
π2 ·

√
EIz√
EIz

(4.49)

Mcr =
π2EIz

L2

√
EIw +

L2GIt
π2

√
EIz

(4.50)

Mcr =
π2EIz

L2

√
Iw

Iz
+

L2GIt
π2EIz

(4.51)

The expression that the 3-factor formula for elastic critical bending moment relies on is
thereby reached.
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4.3 The 3-factor formula for calculating Mcr

The previous section showed how to derive the elastic critical bending moment for a
double-symmetrical I-beam, with the specific load of applied end moments and with
fork end supports. However, Equation (4.51) has been extended to an analytical formula
commonly known as the 3-factor formula, to incorporate also more load configurations,
some single-symmetric cross-sections and end support conditions.

As of today, Eurocode 3 itself (CEN, 2005) gives no suggestion on how to calculate
the elastic critical bending moment resistance, Mcr, for lateral-torsional buckling of
beams. The earlier version of Eurocode 3 named ENV 1993-1-1:1992 had the 3-factor
formula incorporated though, and the formula is now found in NCCI, non-contradictory
complementary information to the Eurocodes, on which the following section is based
on (Boissonnade et al., 2006) and (Bureau, 2006).

The formula contains a number of constants depending on material properties, cross-
section parameters, load case, beam length and support conditions. The result is
conservative and sometimes approximate (Boissonnade et al., 2006). An important
fact to take into consideration is that the formula is only valid for major axis bending
where the cross-section is uniform and symmetrical around the minor axis. It would
therefore not be 100% accurate for channel beams. The formula is as follows:

Mcr =C1
π2EIz

(kzL)2 (

√
(

kz

kw
)2 Iw

Iz
+

(kzL)2GIt
π2EIz

+(C2zg−C3z j)2− (C2zg−C3z j)) (4.52)

C1 = Coefficient depending on the shape of the moment diagram

C2 = Coefficient depending on the point of load application relative to the shear centre

C3 = Coefficient depending on the symmetry of the cross-section around the weak axis

Iz = Moment of inertia around minor axis

Iw = Warping constant

It = Torsion constant

kz,kw = Effective length factors that takes rotational and warping end restraints into
account. They are usually set to 1.0 and are analogous to Euler buckling cases 2,3,4.

zg = za− zs

za = Vertical coordinate for the point of load application

zs = Vertical coordinate for the shear center

z j = zs−0.5
∫

A(y
2 + z2)

z
Iy

dA

4.3.1 C1-factor

The C1-factor is mainly depending on moment distribution. It is not only the maximum
bending moment in the beam that is of interest but how the bending moment is distributed
along the beam. A uniform bending moment from applied end moment, which is the
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standard load case, gives the lowest value whereas a point load in mid span gives a higher
value. C1 is known for many standard load cases and can be found in handbooks such as
(Boissonnade et al., 2006), some of these are presented in Table 4.1

Finite element results from (Kirby and Nethercot, 1979) show that C1 does in fact also
depend on a factor µ which depends on the length of the beam according to the following
equation:

µ =
GItL2

EIw
(4.53)

The effect of µ on the C1-value increases when the moment distribution is non-linear.
Also the end restraint conditions affect C1. If warping and bending is not allowed, and
kz = kw = 0.5, it decreases.

C1 for non-standard and combined load cases

When load cases are combined into a non-standard configuration, a table value for C1
might not exist. It is then possible to use closed-form expressions to approximate it. The
idea is to extract the exact bending moment at points along the beam, and then use these
in a fixed formula that produces a value for C1.

A simple formula was developed 1955 by (Salvadori, 1955) which is a good approximation
for linear moment distributions, for example applied end moments.

C1 = 1.75−1.05Ψ+0.3Ψ
2 ≤ 2.3 (4.54)

Ψ is the fraction between the end moments at the two ends according to Figure 4.7.

ψM

M

Figure 4.7: Moment distribution for unequally applied end moments

The contributions from (Serna et al., 2006) and (López et al., 2006) led to a formula for
C1 that also takes end warping and lateral restraint conditions into account through the
coefficients kw and kz:

C1 =

√
√

kA1 +(
1−
√

k
2

A2)2(
1−
√

k
2

A2)

A1
(4.55)

k =
√

kwkz

The A-factors take the shape of the moment diagram into account:

A1 =
M2

max + k(α1M2
1 +α2M2

2 +α3M2
3 +α4M2

4 +α5M2
5)

(1+α1 +α2 +α3 +α4 +α5)M2
max

(4.56)
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A2 = |
M1 +2M2 +3M3 +2M4 +M5

9Mmax
| (4.57)

The values for M1-M5 and Mmax are decided according to Figure 4.8.

L/4

M
1

M
2

M
3

M
4

M
5

M
max

L/4 L/4 L/4

Figure 4.8: Bending moment values from different parts of the beam

The α-factors take end warping and lateral restraint conditions into account:

α1 = 1− kw

α2 = 5
k3

z

k2
w

α3 = 5(
1
kw

+
1
kz
)

α4 = 5
k3

w
k2

z

α5 = 1− kz

4.3.2 C2-factor

If a transversal load acts on a beam outside of the shear centre, the C2-factor must be
considered in the 3-factor formula. In reality this is often the case since it is physically
impossible to load a beam inside of its actual geometry. For beams with open cross-
section such as I-sections or channel sections, the load will typically act on the top or
bottom flange.

A load above the shear centre, or on the top flange, will increase the twisting and therefore
destabilize the beam, resulting in a lower value for the elastic critical bending moment
Mcr. The opposite is true if the load is acts on the bottom flange, or under the shear
centre. The beam is then stabilized against twisting and Mcr will be higher.

C2 is linked to the vertical distance parameter z j that describes the distance between the
point of load application and the shear centre:

zg = za− zs

A rule of thumb is that zg is negative if the load acts towards the shear centre, and positive
if it acts away from the shear centre.
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4.3.3 C3-factor

A third C-factor is accounted for if the cross-section is assymetric about its major axis.
It is not uncommon that I-beams have a larger top flange than bottom flange for example.
C3 is linked to the parameter z j which is not as intuitive as zg but is decided through the
following formula:

z j = zs−0.5
∫

A
(y2 + z2)

z
Iy

dA (4.58)

Since none of the beams studied in this thesis project have flanges of unequal size, the
C3-factor is also not used.

4.3.4 C-factors for some simple load cases

The C-factors are known approximately for basic loading cases such as simply supported
and fixed beams with uniform or point load, as can be seen in Table 4.1.

Table 4.1: C-factors for common load cases, from (Boissonnade et al., 2006)

Bending moment
diagram

Values of
kz

Loading and support
conditions

Value of factors
C1 C2 C3

1.0
0.5

1.0
0.5

1.0
0.5

1.12
0.97

1.35
1.05

1.04
0.95

0.45
0.36

0.59
0.48

0.42
0.31

0.525
0.478

0.411
0.338

0.562
0.539

4.3.5 End restraint coefficients kw and kz

End restraint coefficients kw and kz are equivalent to Euler buckling effective length
factor Lcr/L, shown in Figure 4.9.

The factor kw takes end warping conditions into account, and unless warping is prevented
through special provisions, kw = 1.0 (Bureau, 2006). End rotations about the z-axis are
dealt with through kz.

A beam with fork supports therefore has kw = kz = 1.0. If one end is fixed, these
coefficients become 0.7 and if both ends are fixed they are 0.5.
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EULER II
kz,w = 0.5 

EULER III
kz,w = 0.7

EULER IV
kz,w =  1.0

Figure 4.9: Warping restraint coefficients kw and kz equivalent to Euler buckling lengths

4.3.6 Simplified cases for Mcr

For the reference case, a doubly symmetric cross-section such as an I-beam, loaded with
equally applied end moments and with fork supports, the terms with C-factors disappear
in the formula, except for C1 which becomes 1.0:

Mcr,0 =
π2EIz

L2

√
Iw

Iz
+

L2GIt
π2EIz

(4.59)

For the same beam loaded in its shear center, with either point load or linearly distributed
load, the C1-factor needs to be considered:

Mcr =C1
π2EIz

L2

√
Iw

Iz
+

L2GIt
π2EIz

(4.60)

If the beam is doubly symmetric but loaded along the vertical axis of the shear center,
but not in the shear centre itself, the C2-factor must be accounted for:

Mcr =C1
π2EIz

(kzL)2 (

√
(

kz

kw
)2 Iw

Iz
+

(kzL)2GIt
π2EIz

+(C2zg)2− (C2zg) (4.61)

If the beam is loaded in its shear center but is singly symmetric, e.g. the top and bottom
flanges are not equal, the C3-term needs to be added:

Mcr =C1
π2EIz

(kzL)2 (

√
(

kz

kw
)2 Iw

Iz
+

(kzL)2GIt
π2EIz

− (C3z j)2 +(C3z j)) (4.62)

4.4 Design methods in Eurocode 3
In Section 4.2 the elastic critical bending moment for equally applied end moments on a
double symmetric cross-section with fork supports, Mcr was derived. The expression
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was then extended in Section 4.2 through the 3-factor formula, to allow for other
load configurations and boundary conditions. As with column buckling it is possible
to formulate an Ayrton-Perry expression to take residual stresses, initial geometric
imperfection and unintended eccentric loading into account. The derivation is more
advanced for lateral-torsional buckling, since it involves two degrees of freedom: lateral
deflection v and twist ϕ . The initial imperfection v0 and ϕ0, relating to the first buckling
Eigenmode of the beam, can be shown to have the following relation:

v0

ϕ0
=

Mcr

Ncr,z
(4.63)

where Ncr,z is the elastic critical load for flexural buckling.

An Ayrton-Perry formulation for lateral-torsional buckling of beams can be found in its
fullness in (Boissonnade et al., 2006), (Szalai and Papp, 2010) or (Taras and Greiner,
2010). The final end result is the same equation that was derived for column buckling in
Section 3.3.3, but for beams the buckling reduction factor is instead labelled χLT and the
generalized imperfection factor ηLT :

χLT +χLT
ηLT

1−χLT
¯

λLT
2 ≤ 1.0 (4.64)

The general imperfection for lateral-torsional buckling can be described as (Taras and
Greiner, 2010):

ηLT =
Ae0,d

Wel

λ̄ 2
LT

λ̄ 2
(4.65)

The first part is the generalized imperfection for columns η , but for ηLT the term
λ̄ 2

LT

λ̄ 2
is

also added.

In Eurocode 3, however, the generalized imperfection ηLT is still formulated in the same
way as for the column buckling case:

ηLT = αLT (λ̄ −0.2) (4.66)

The so called buckling curves in Eurocode 3 were originally developed for flexural
column buckling, but for simplicity a similar approach is applied for lateral-torsional
buckling of beams (Taras and Greiner, 2010). There are two similar methods to calculate
the buckling reduction factor χLT : the general case and an alternative procedure for rolled
or equivalent welded sections, the former having a plastic limit of λ̄LT = 0.4 instead.
There is also the possibility to use the general method for lateral and later-torsional
method described in Section 4.4.4.
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4.4.1 General case

According to Eurocode 3, beam bending moment capacity with regards to lateral torsional
buckling is calculated the following way:

Mb,Rd = χLT
My,Rd

γM1
(4.67)

Mb,Rd is the reduced buckling resistance capacity of a beam

My,Rd is the cross-section bending moment resistance, and for a cross-section in class 1
this would be Mpl

γM1 is a material partial factor, set to 1.0 in the latest Swedish version of Eurocode 3
(national parameter).

The buckling reduction factor χLT is decided through the following combination of
equations:

χLT =
1

ΦLT +
√

Φ2
LT − λ̄ 2

LT

≤ 1.0 (4.68)

where λ̄LT is the non-dimensionless slenderness.

ΦLT = 0.5[1+αLT (λ̄LT −0.2)+ λ̄
2
LT ] (4.69)

λ̄LT =

√
Mpl

Mcr
(4.70)

The five buckling curves a0, a, b, c and d come from the different values of the
imperfection factor αLT and give different reductions on the bending moment capacity.
The imperfection factor depends on cross-section shape and whether it is a hot-rolled
or welded section. The values of αLT for the five buckling curves are the same as for
column buckling, and are given in Table 4.2.

Table 4.2: The imperfection factor αLT and the corresponding buckling curves

Buckling curve a0 a b c d

Imperfection factor, αLT 0.13 0.21 0.34 0.49 0.76

The general case only uses curves b,c and d, and the correct curves is decided from
Table 4.3.

Figure 4.10 show the corresponding buckling curves.
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Table 4.3: Choice of buckling curve for general case

Cross-section Limits Buckling curve

Rolled I-section
h/b≤ 2 b
h/b > 2 c

Welded
I-section

h/b≤ 2 c
h/b > 2 d

Other d

λ̄

χLT

b
c
d
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Figure 4.10: General case buckling curves in Eurocode 3

4.4.2 Alternative procedure for rolled sections or equivalent welded
Since the buckling curves for LT-buckling have not been as precise and well-defined as
those for column buckling, extensive parametric simulations were carried out during a
decade around 2000 using the GMNIA-technique (Geometrically and Materially Non-
linear Imperfect Analyses). This method takes residual stresses, initial bow imperfection
and material non-linearity into account, and represents reality well (Boissonnade et al.,
2006).

The main focus was on I-sections, and here are some of the findings:

The study showed that the theoretical plateau-limit for λ̄LT is about 0.25. Most codes
already use a limit of 0.4 and therefore it was of interest to keep this number in design.

The studies resulted in a proposal of a slightly different way to calculate χLT using
buckling curves. The procedure is as follows:

χLT =
1

ΦLT +
√

Φ2
LT −βλ̄ 2

LT

≤ 1.0 (4.71)

χLT ≤
1

λ̄ 2
LT

(4.72)

ΦLT = 0.5[1+αLT (λ̄LT −0.4)+βλ̄
2
LT ] (4.73)
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β = 0.75

λ̄LT =

√
Mpl

Mcr
(4.74)

The buckling curve to use is decided through Table 4.4, and now the curve a is also
available.

Table 4.4: Choice of buckling curve for rolled or equivalent welded sections

Cross-section Limits Buckling curve

Rolled I-section
h/b≤ 2 a
h/b > 2 b

Welded
I-section

h/b≤ 2 c
h/b > 2 d

Other d

The resulting buckling curves are illustrated in Figure 4.11.
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Figure 4.11: Alternative procedure buckling curves in Eurocode 3

Effect of moment distribution

To account for the moment distribution the following procedure is then followed:

χLT,mod =
χLT

f
≤ 1 (4.75)

f = 1−0.5(1− kc)[1−2(λ̄LT −0.8)2]≤ 1 (4.76)

The factor kc depends on the moment diagram shape, see Figure 4.12.
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Moment distribution Values of
kc

1.0

0.94

0.86

Figure 4.12: kc for some standard load cases

For linear moment diagrams, kc =
1

1.33−0.33Ψ
, and other cases can be found in graphs

in Annex C in (Boissonnade et al., 2006).

4.4.3 Direct determination of λ̄LT for simple cases

For certain cases there is no need to calculate Mcr to obtain λ̄LT . This is true for a beam
subjected to transverse loads that acts through the shear center or if end moments are
applied. Factor kc takes the shape of the bending moment diagram into account and kp
the torsional stiffness of the cross-section. The formula is as follows: (Boissonnade et al.,
2006)

λ̄LT = λ̄zkpkc (4.77)

kp =
1

[1+
1
20

(
λ̄z

h/t f
)2]0.25

(4.78)

h = the total height of the cross-section

t f = the flange thickness

For rolled sections, kp is reduced by factor 0.9.

4.4.4 The general method for lateral and lateral-torsional buckling combined

The general method, as described in Eurocode 3, for lateral and lateral-torsional buckling
is particularly useful in combination with FE-analysis. The other methods mentioned
here only deal with single members, but the general method can be used for both single
members and whole frames. It can also deal with complex support conditions and
non-uniform cross-sections.

The criterion to fulfill is:

χopαult,k

γM1
≥ 1.0 (4.79)
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αult,k is the smallest load increase factor of the design loads to reach maximum capacity
of the most critical section in the structure, but not considering lateral or lateral-torsional
buckling.

χop is the reduction factor that takes into consideration lateral and lateral-torsional
buckling, calculated from the slenderness factor λ̄op:

λ̄op =

√
αult,k

αcr,op
(4.80)

αcr,op is the smallest load increase factor of in-plane loads to cause elastic critical
buckling in lateral or lateral-torsional buckling modes, but disregarding in-plane buckling.

χop is taken as the smallest of the two parameters χ and χLT according to Eurocode EN
1993-1-1 section 6.3.1 and 6.3.2. It is also possible to make an interpolation between
these two values.

If αult,k is calculated through the following equation:

1
αult,k

=
NEd

NRk
+

My,Ed

My,Rk
(4.81)

the resulting equation is (if the smallest of χ and χLT is taken):

NEd

NRk/γM1
+

My,Ed

My,Rk/γM1
≤ χop (4.82)

If an interpolation is used then the equation instead looks like this:

NEd

χNRk/γM1
+

My,Ed

χLT My,Rk/γM1
≤ 1.0 (4.83)

4.5 Design of channel beams
Lateral-torsional buckling of channel beams is not explicitly treated in Eurocode 3.
The general method as presented in Section 4.4.4 could be used as it applies to all
cross-sections and load cases.

When examining the research available on the design of channel beams, one realizes that
there are few articles published on this matter. Some of them deal with lipped channel
beams, which have stiffeners along the flange edges, and are therefore not applicable
here. There is one relevant article in recent years found, however, published by (Snijder
et al., 2008).

The article describes a number of possible design methods regarding lateral-torsional
buckling of channel beams, then presents a new suggestion on a buckling curve for
channel beams.
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4.5.1 Modified κM-method
The method given in (DIN, 1990) is similar to Eurocode 3.

M
κMMpl

≤ 1.0 (4.84)

M is the design bending moment resistance of the cross-section.

Mpl is the plastic bending moment resistance.

κM is the buckling reduction factor, calculated differently than in Eurocode 3:

κM = (1+ λ̄
5
M)−0.4 (4.85)

The slenderness is, as in Eurocode 3, calculated in the following way:

λ̄M =

√
Mpl

Mcr
(4.86)

However, when dealing with channel beams an addition is made due to the torsional
moment that arises:

λ̄MT = λ̄M + λ̄T (4.87)

The added factor λ̄T depends on the slenderness of the cross-section in the following
way:

λ̄T = 1.11− λ̄Mif 0.5≤ λ̄M < 0.75 (4.88)

λ̄T = 0.69−0.44λ̄Mif 0.75≤ λ̄M < 1.14 (4.89)

λ̄T = 0.19if λ̄M ≥ 1.14 (4.90)

The resulting design curve is shown in Figure 4.13.
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Figure 4.13: Design curve for κM-method

, Civil and Environmental Engineering, Master’s Thesis 2017:52 47, Civil and Environmental Engineering, Master’s Thesis 2017:52 47, Civil and Environmental Engineering, Master’s Thesis 2017:52 47



4.5.2 Modified χLT -method

By combining the Eurocode 3 equation for the reduction factor χLT and the added effect
of torsion these equations are attained:

χLT =
1

ΦLT +
√

Φ2
LT − λ̄ 2

MT

(4.91)

ΦLT = 0.5[1+αLT (λ̄MT −0.2)+ λ̄
2
MT ] (4.92)

Here λ̄MT is the same as described in Equation (4.87).

The resulting design curve is presented in Figure 4.14
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Figure 4.14: Design curve for modified χLT -method

4.5.3 Simplified design rule

A large investigation with both Finite Element Analyses and experimental analyses
carried out in Germany led to a general design rule for combined bending and torsion on
I- and channel section beams (Lindner and Glitsch, 2004).

M
χLT Mpl,y

+Cmz
Mz

Mpl,z
+ kzwkwα

Mω

Mpl,ω
≤ 1.0 (4.93)

Channel beams loaded at the web with a vertical load are not subjected to a bending
moments around the z-axis, Mz is then 0 and the design rule is simplified:

M
χLT Mpl

+ kwα
Mω

Mpl,ω
≤ 1.0 (4.94)

M is the design bending moment resistance of the cross-section. Solving for the design
moment requires trial and error calculation and is explained further in Appendix C.

Mω is the applied warping bi-moment.

Mpl,ω is the plastic bi-moment capacity.
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kw is a factor depending on the effect of the torsional moment:

kw = 0.7−0.2
Mω

Mpl,ω
(4.95)

α is the amplification factor, according to the equation:

α =
1

1− M
Mcr

(4.96)

This method does not result in a general buckling curve since it is load case and boundary
condition dependant. The procedure in Appendix C has been followed to calculate the
design curve for a UPE160-beam subjected to distributed load at the mid web, resulting
in the design curve in Figure 4.15.
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Figure 4.15: Design curve for simplified design rule

4.5.4 General method

The general method is possible to use for channel sections and has been described in
Section 4.4.4.

4.5.5 Snijder design curve

A parametric study on channel beams was performed in 2008 by (Snijder et al., 2008).
The article mentions briefly how the FE-model was set up with boundary conditions,
load application and choice of elements.

From the results of the study, the researchers present a new suggestion to a buckling
curve that could be used in accordance with Eurocode 3 but taking the torsional effect
into account in the following way:

χLT =
1

ΦLT +
√

Φ2
LT − λ̄ 2

MT

(4.97)
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ΦLT = 0.5[1+αLT (λ̄MT −0.2)+ λ̄
2
MT ] (4.98)

Buckling curve a0 is used:
αLT = 0.21 (4.99)

λ̄MT = λ̄M + λ̄T (4.100)

λ̄M =

√
Mpl

Mcr
(4.101)

The effect of torsion is considered by the added term λ̄T

λ̄T = 1.0− λ̄M if 0.5≤ λ̄M < 0.8 (4.102)

λ̄T = 0.43−0.29λ̄M if 0.8≤ λ̄M < 1.5 (4.103)

λ̄T = 0 if λ̄M ≥ 1.5 (4.104)

Figure 4.16 shows the suggested channel beam buckling curve plotted in a graph along
with buckling curve d according to the general case in Eurocode 3.
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Figure 4.16: Suggested channel beam design curve curve by (Snijder et al., 2008)
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5 Parametric study

A parametric study was performed on steel channel beams with strength class S355 and
of UPE profile type. The chosen parameters were cross-section size, beam length and
load case. It was deemed appropriate to use three different profiles, partly to evaluate the
correctness of the modelling of boundary conditions: one of the smaller (UPE100), one
of the larger (UPE220) and one in between (UPE160). Geometric properties for these
are shown in Table 5.1.

Table 5.1: Beam section properties for profiles UPE100, UPE160 and UPE220

Section UPE100 UPE160 UPE220

hw(mm) 85 141 196
b f (mm) 55 70 85
t f (mm) 7.5 9.5 12
tw(mm) 4.5 5.5 6.5
Iy(×106 m4) 2.00 8.83 26.2
Iz(×106 m4) 0.38 1.05 2.44
Iw(×109 m6) 0.64 4.66 20.5
It(×104 m4) 1.83 4.84 11.7

A number of different beam lengths were chosen for each load case, to create a spread of
beam slenderness λ̄LT approximately between 0.6 and 1.7. This is in the intermediate
buckling region (although there is no clear definition for it) where the theory says that
residual stresses and initial imperfections have the most influense. The effect of the
shape of the moment diagram, i.e. the C1-factor, in the 3-factor formula implies that the
beam lengths for the end moment load case will be slightly shorter than for example
those in the linearly distributed load case in order to have the same slenderness, if the
maximum resulting bending moment is the same.
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Figure 5.1: Spread of λ̄LT -values in the parametric study

5.1 Load cases
Three standard load cases were studied: end moment loading, uniformly distributed load
and a point load in the mid span. The specifics are given under respective section below.

5.1.1 End moment loading

The load case that applies end moments to a channel beam, seen in Figure 5.2, is a
good starting point since no load eccentricity is introduced in the beam. The results
are therefore expected to follow ordinary buckling curves well. As mentioned earlier,
the elastic critical moment from the 3-factor formula also uses this load case with fork
supports as the reference case.

Figure 5.2: Load case: Applied end moments

For the lengths of analysed beams for the end moment load case, see Table 5.2.

5.1.2 Linearly distributed load at mid web: varying cross sections

For the mid web loading, the three cross-sections UPE100, UPE160 and UPE220 were
compared. The load case is portrayed in Figure 5.3 and the chosen beam lengths can be
found in Table 5.3.
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Table 5.2: Lengths of beams for load case applied end moments

Profile Lengths (mm)

Slenderness , λ̄λλ LT

UPE100
1000 1600 2300 3200 4700
0.59 0.82 1.02 1.22 1.49

UPE160
1200 1800 2500 3500 5000
0.60 0.81 1.02 1.25 1.53

UPE220
1400 2000 2800 4000 5500
0.59 0.78 1.00 1.26 1.51

Figure 5.3: Linearly distributed load: varying of cross-section

Table 5.3: Lengths of beams for linearly distributed load, varying of cross-section

Profile Lengths (mm)

Slenderness , λ̄λλ LT

UPE100
1200 1800 2600 3600 5200
0.64 0.83 1.03 1.23 1.49

UPE160
1400 2000 2800 4000 5500
0.64 0.83 1.03 1.28 1.52

UPE220
1600 2200 3000 4200 6000
0.62 0.79 0.99 1.22 1.50

5.1.3 Linearly distributed load: varying of point of load application

To study the effect of point of load application, the beam cross-section size does not
need to be varied. Therefore only UPE160 beams with different lengths were loaded at
top of web and bottom of web, see fig Figure 5.4 and Table 5.4. The linearly distributed
load case at mid web with UPE160 from last section is also used as results.
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Figure 5.4: Linearly distributed load: Varying point of load application

It was decided to use the same lengths on the beams regardless of point of load application.
The beams that would have a slenderness, λ̄LT , under 0.6 or above 1.7 were however not
analysed, which means that the beams with lengths 2000, 2800, 4000 and 5500 mm were
analysed for all points of load applications. Beam lengths of 1400 mm were analysed for
top web and mid web loading and 7500 mm were analysed only for bottom web loading.

Table 5.4: Lengths of beams for linearly distributed load, varying of PLA

Profile Lengths (mm)

Slenderness , λ̄λλ LT

Top web
1400 2000 2800 4000 5500
0.77 0.97 1.17 1.40 1.63

Mid web
1400 2000 2800 4000 5500
0.64 0.83 1.03 1.28 1.52

Bottom web
2000 2800 4000 5500 7500
0.71 0.91 1.16 1.42 1.70

5.1.4 Point load

For the point load, a single series of UPE160 beams were analysed. The load is applied
in the middle of the web in mid span, see Figure 5.5. The chosen beam lengths can be
found in Table 5.5.

Figure 5.5: Load case: point load
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Table 5.5: Lengths of beams for point load

Profile Lengths (mm)

Slenderness , λ̄λλ LT

UPE100
1400 2000 2800 4000 5500
0.65 0.81 0.98 1.18 1.40

UPE160
1800 2500 3600 4800 6000
0.70 0.87 1.09 1.29 1.45

UPE220
1400 2000 2800 4000 5500
0.67 0.79 0.99 1.23 1.54

5.2 Boundary conditions
The beams were modeled with the boundary conditions known as fork supports which
allows warping, see Section 2.9 and Figure 5.6. The method used to accomplish fork
support behaviour in the FE-model is described in Section 6.3.3.

Fork support

UPE profile

Figure 5.6: Fork support. Adopted from Höglund, (2006).

5.3 Two methods of GMNIA
The most advanced method to determine the buckling strength capacity of steel beams is
through a Geometrically and Materially Non-lInear Analysis which includes imperfections
(Schneider, 2006). The shape of the failing buckling mode for the structure is first
generated and then applied in a second analysis as an initial geometric imperfection.

Eurocode 3 states that one of two methods might be used in design:

• An equivalent geometric initial imperfection is applied to the beam, and the
maximum deflection is set to the length of the beam divided by a certain number,
which depends on the cross-section. According to Table 5.6, from Eurocode 3
(1993-1-1 section 5.3.2), a channel beam would fall under buckling curve d and so
the magnitude of the geometric imperfection is set to L/150. This is to account for
initial bow imperfection, residual stresses and unintended load eccentricity.
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Table 5.6: Equivalent geometric imperfection according to Eurocode 3

Buckling curve Equivalent
geometric imperfection

a0 L/350
a L/300
b L/250
c L/200
d L/150

• An initial imperfection with maximum deflection of the length divided by 1000
is applied, and the effect of residual stresses is explicitly taken into account. The
value L/1000 is taken from the fact that this is a common manifacturing tolerance
limit for unintended initial out-of-straightness for structural members.

The two methods are described in table format in Table 5.7.

Table 5.7: Two different methods to apply GMNIA according to Eurocode 3

Method Initial
imperfection

Residual
stresses

Method one L/150 Not included
Method two L/1000 Included

In this study, the method that uses an equivalent bow imperfection of L/150 will mainly
be used, but the application of residual stresses is performed as a comparison for the
same series of beams for the end moment load case on UPE160.
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6 Finite Element Model

6.1 General overview of FEM-program ANSYS
ANSYS, Inc. is a company in the USA that develops computer-aided engineering
software (CAE) which gives the user the ability to analyse and simulate different
situations concerning electronics, fluid dynamics and structural analysis. The software
is centered on an instance called Workbench where the simulation is set up in a tree-
like manner, where different components are dropped to the canvas and interconnected
to other components. Different parameters can be initialized in each component and
controlled on a global scale in Workbench. In Engineering Data, which is present in
each of the analysis components, the material is specified and can also be viewed in
Workbench. A simple example for a structural analysis is set-up in Figure 6.1. The first
box presents the geometry and the second is the analysis to be performed.

Figure 6.1: Graphic overview of Workbench in ANSYS

The parameters that are created can be viewed and controlled in Workbench, see
Figure 6.2. In the top right corner Table of Design Points is placed where rows can be
added to extend the simulation.
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Figure 6.2: Control of analysis parameters

The geometry is either defined in a built-in instance called DesignModeler, see Figure 6.3,
or externally in a program such as SolidWorks by Autodesk. In DesignModeler
parameters can be initialized such as the length, width and height of structural components
and these can be externally controlled in Workbench.

Figure 6.3: Building geometry in DesignModeler

When it comes to the analysis itself, all is controlled in yet another instance called
Mechanical, see Figure 6.4, which adapts to the specific analysis component chosen
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in Workbench. Here, the geometry is imported from the previously defined geometry
component. In the model, the user has the ability to define the density of the Finite
Element mesh and what type of element to use. In ANSYS there exists many different
element types for 1D, 2D and 3D geometry and the elements are chosen according to the
best fit to the analysis.

Figure 6.4: Analysis specifics performed in Mechanical

6.2 Schematic description of Finite Element analysis steps
The FE-analysis was made in two steps. The first step is to perform a linear Eigenvalue
buckling analysis where the first buckling mode is found, and that shape is then used
as a geometric imperfection for consequent collapse analysis. Geometry, elements,
meshing and boundary conditions are the same for both analyses, but linear buckling is
performed with linear elastic material whereas the collapse analysis is made with a bi-
linear material simulating an elastic-plastic stress-strain curve with low strain hardening.
This is explained further in Section 6.3.2. Figure 6.5 shows a schematic figure of the
analysis setup steps.
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Figure 6.5: Schematic figure showing the setup in ANSYS

6.3 Analysis setup
6.3.1 Geometry and choice of elements
The Finite Element structure was built with ANSYS shell elements "SHELL181", which
is a 4-node element with 6 degrees of freedom for each node. These include translational
dof in x,y, and z-direction as well as rotational dof around the x,y and z-axes. This
shell element is suitable for non-linear applications with large strain and large rotation.
Shell elements are good to use for slender structures, where the stress doesn’t vary much
through the thickness of a material, which is the case for the cross-sections considered
(Snijder et al., 2008).

At the supports additional stiff beam elements were added, see comment in Section 6.3.3.

The beam geometry was split in half at the x-midpoint and along the web at the y-
midpoint, see image below. In this way the load can be placed directly at the nodes
created by the geometry, which is shown in Figure 6.6.

y

z

x

Figure 6.6: Geometry of a beam built with shell elements

6.3.2 Material model and properties
Steel with a yield strength of 355 MPa was used in the parametric study. A bilinear
material model was used for the collapse analysis, shown on the right in Figure 6.7.
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Young’s modulus has been set to E = 210 GPa and the tangent modulus to ET =E/10000.
Eurocode 3 states that a tangent modulus of ET = E/10000 or ET = E/100 might be
used, depending on if strain hardening effects are to be neglected or accounted for. The
first alternative was chosen to rule out any unwanted effects of strain hardening. The
stress levels therefore cannot reach much higher than the yield stress of 355 MPa.
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Figure 6.7: Linear (left) and bilinear (right) material model for steel S355

6.3.3 Applying boundary conditions

To set up fork support conditions, stiff beam elements as can be seen in Figure 6.8 were
added along the edges of the cross-section. These elements allow the flanges to warp
freely, and at the same time prevent the cross-section to distort locally. Unless these
beam elements are used, the beam ends can distort. The beam elements are made of a
very stiff material with Young’s modulus E = 1016 Pa. The width in global x-direction is
0.2 mm and in transverse direction (global y-direction for the web and global z-direction
for the flanges) 5 mm.

x

z

y

Stiff beams
at supports

Beams stiff about the y-axis (flanges)

Beam stiff about the z-axis (web)

Figure 6.8: Stiff beam elements along edges at supports

The web midpoint was locked in x-,y- and z-directions for one support and y- and
z-direction at the other. The beam has to be locked somewhere in the x-direction to
avoid rigid body motion, but if both supports are fixed in the x-direction then the beam
cannot shorten as it deflects vertically and laterally. The boundary conditions are shown
graphically in Figure 6.9.
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Figure 6.9: Boundary conditions to resemble fork support

6.3.4 Control of boundary conditions

To check the validity of the boundary conditions, the elastic critical eigenvalue buckling
loads in terms of Mcr from the FE-analyses are compared to the value predicted by the
3-factor formula as explained in Section 4.3. The load case is applied end moments on
UPE160 beams and the results are found in Table 6.1.

Table 6.1: Comparison of elastic critical moment, 3-factor formula and FEM

Beam length (mm) MMMcr,3- f actor (kNm) MMMcr,FEM (kNm) Error (%)

1200 121.76 115.77 4.9
1800 65.88 63.93 3.0
2500 42.44 41.38 2.5
3500 28.25 27.57 2.4
5000 18.96 18.50 2.5

The normal stresses in the x-direction are also examined. For a fork support with linearly
distributed load, the normal stresses at the end of the beam are supposed to be zero as
the beam is free to rotate around its y- and z-axes, and the flanges are free to warp. Some
of these properties can be verified in Figure 6.10.

Figure 6.10: Warping of flanges and visual examination of normal stresses
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6.3.5 Meshing

To create finite elements with close to quadratic shape and still keep the same mesh
subdivision technique for the three cross-sections it was decided to divide the flanges
into five subparts and the web into ten subparts. The properties for the three studied
beam sections UPE100, UPE160 and UPE220 are found in Table 6.2. The term "size
ratio" means the fraction between the lengths in the mesh elements two directions, and is
displayed to show that the mesh elements are square or close to square.

Table 6.2: Mesh element size description

Cross Section UPE100 UPE160 UPE220

Width, flange (mm) 52.75 67.25 81.75
Height, web (mm) 92.5 150.5 208

E
le

m
en

ts
iz

e Width, flange (mm) 10.55 13.45 16.35
Height, web (mm) 9.25 15.05 20.8
Length along beam (mm) 9.25 15.05 20.8
Size ratio, flanges 0.88 1.12 1.27
Size ratio, web 1.00 1.00 1.00

6.3.6 Mesh convergence

A more refined mesh would be ideal but given the total number of computer analyses to
be made, the number of elements had to be limited somewhat. To study the effects of
mesh size a number of analyses were made on a single cross-section with an increasingly
more refined mesh according to the numbers in Table 6.3. The beam chosen was of
cross-section UPE160 and with length of 3.5m.

Table 6.3: Mesh convergence for linear buckling analysis

Flange
subdivision

Web
subdivision

Total nr
of elements

Buckling load multiplication
factor, ANSYS

3 6 1680 4.54
4 8 2976 4.50
5 10 4660 4.47
6 12 6696 4.45
8 16 11904 4.43
10 20 18600 4.41
12 24 26784 4.40

With increased mesh density the buckling factor seems to converge at λ = 4.40. It was
chosen to use 5 elements in the flanges and 10 elements in the web, since a denser mesh
increased the time needed for the analyses beyond what was considered reasonable. The
chosen mesh for this study resulted in λ = 4.475. This suggests that the results might be
slightly unconservative (about 1.6 percent in this case).
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6.4 Linear eigenvalue buckling
ANSYS formulates linear buckling problems through an Eigenvalue problem1:

([K]+λi[S])ψi = 0

[K] = stiffness matrix

[S] = stress stiffness matrix

λi = ith eigenvalue, load multiplication factor

ψi = ith eigenvector, displacements

Only the buckling mode for the lowest critical load is of interest for this specific project.
For a beam transversally loaded and with fork supports, the first buckling mode will be
similar to the one seen in Figure 6.11, which is the lateral-torsional buckling load. The
magnitude of the applied load Pbase is set to a value lower than expected buckling load.
The result of such analysis is a load multiplication factor λ that is multiplied with the
applied load Pbase to get the critical buckling load Pcr,FEM.

Pcr,FEM = λ ·Pbase

Depending on the load case, the elastic critical bending moment Mcr,FEM is then derived.

Figure 6.11: Shape of buckled beam from ANSYS linear eigenvalue buckling analysis

6.5 Collapse analysis
6.5.1 Modelling of residual stresses

Table values of residual stresses for many I-sections exist but this is not the case for
channel sections. The residual stresses were therefore modelled from the suggestion of
(Snijder et al., 2008) as can be seen in Figure 6.12. Positive numbers represent tension
and negative numbers compression.

1ANSYS help manual
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Value dependent
on cross-section,
see Table 8.4

-0.075f
y

-0.075f
y

0.15f
y

0.15f
y

Figure 6.12: Residual stresses in a channel section

Where flanges and web meet, the stress is set to 0.15 · fy and at the ends of the flanges to
−0.075 · fy. To create force equilibrium in the cross-section the value in the middle of
the web is adjusted according to the specific profile, see Table 6.4.

Table 6.4: Maximum compression value from residual stresses in middle of web

Profile Max compression
stress, web

UPE100 −0.293 · fy

UPE160 −0.266 · fy

UPE220 −0.209 · fy

In order to apply residual stresses into each shell element, the command "INISTATE" in
ANSYS was used, and the code with explanation is found in Appendix F. "INISTATE"
means "initial state" and is given as start value before the actual analysis start. Note that
the stress is applied equally over the integration points in one element, which means that
there will be a clear difference in applied stress between adjacent elements, creating the
stair pattern in Figure 6.13.

Figure 6.13: Actual application of residual stresses in each shell element

The resulting normal stress levels as shown in the 3d-model in ANSYS is shown in
Figure 6.14.
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Figure 6.14: Resulting normal stresses from application of residual stresses

6.5.2 Load increment in collapse analysis

For end moments and linearly distributed load, the load was applied with maximum 200
increments until the FE-analysis could not reach convergence anymore. The maximum
load was set to a reasonable value in relation to expected load-carrying capacity for the
specific beam and load case. To verify that the number of increments was sufficient
enough, the steps were increased five times to maximum 1000 increments and it was
noted that the final results were very similar, differing with maximum 0.5 %.

For the point load case, instead a displacement-controlled analysis was made. In this
analysis type, the point where the force is supposed to act was deflected step-wise
downwards, meaning negative global z-direction. The deformation is set to act in the
z-direction, but the point is free to move in x- and y-direction. A fictituous support is
therefore placed at the point of load application, and the reaction force can be evaluated
by the FEM-program. When applying a point force through displacement-controlled
increments, post-buckling behaviour can be studied and a force-deflection curve can be
plotted. For a force-controlled analysis it is not possible to study post-buckling behaviour,
since the finite element software cannot find convergence when it increases the load
above the maximum load carrying capacity of the beam.

6.5.3 Yield criterion

The finite element model relies on the von Mises yield criterion, where the equivalent
stress is calculated as:

σV M =

√
(σ1−σ2)

2 +(σ2−σ3)
2 +(σ3−σ1)

2

2

σ1,2,3 are the principal stresses, and yielding occurs when σV M = fy = 355MPa.

6.5.4 Integration method

Full Newton-Raphson integration method as shown in Figure 6.15 was used, which is the
standard method to solve nonlinear problems in ANSYS. Five integration points were
used through the shell thickness in each element, which was considered enough.

66 , Civil and Environmental Engineering, Master’s Thesis 2017:5266 , Civil and Environmental Engineering, Master’s Thesis 2017:5266 , Civil and Environmental Engineering, Master’s Thesis 2017:52



F

uDisplacement

F
or

ce

[KT] is reformulated
for every iteration.

Figure 6.15: Full Newton-Raphson integration method
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7 Results and discussion

7.1 Outline of result and discussion
Each load case is presented under its own section in the following order: end moments,
point load, distributed load at mid web and finally distributed load with varying of point
of load application. Each section is divided into two subsections: one for elastic buckling
and load-carrying capacity and one for deformation and stress results.

Under each section a discussion follows since it would be difficult to refer to all the result
graphs otherwise than where they are presented. In the last section a final discussion is
made on the most crucial issues, aswell as a comparison to the design curve created by
(Snijder et al., 2008).

7.1.1 Elastic critical bending moments and load-carrying capacity
The elastic critical bending moments and the ultimate load-carrying capacities for each
beam and load case are extracted from the FE-analyses and presented in Appendix D.
The reduction factor χLT is calculated from the ultimate bending resistance, MRd , and
then plotted against beam slenderness, λ̄LT . These plots are combined with the existing
buckling curves in Eurocode 3.

7.1.2 Deformation and stresses
It would be far too comprehensive to present graphs of stresses and deformation for each
FE-analysis made in the parametric study. Therefore, only a few examples under each
load case have been chosen to highlight certain observations and conclusions.

Deformation and stresses are plotted against applied load to be able to study their
interdependance. The term "Max deformation" in the graphs mean the resultant deformation
in x-, y- and z-axis combined. The stress levels are evaluated for three points in the beam,
described in Figure 7.1. These three specific points were chosen since it was noted that
yielding in the beam first occurred in any of these three points.

Bottom flange

Top web

Top flange

Figure 7.1: Stress extracted from three result points at the beam mid section

Finally the true scale deformation and stress levels from the final load step before failure
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of the beams from the FE-analyses are shown. The von-Mises stress criterion has been
used as a tool to determine which parts of the beam that have reached yielding at failure,
and these regions are shown with the darkest colour, while areas with lower stress levels
are lighter.

7.2 Load case: Applied end moments
The load case with applied end moments was performed on all three cross-sections
UPE100, UPE160 and UPE220 with slenderness values approximately between 0.6 and
1.7. The end moment load case is used as a reference case for the analyses since it does
not involve load eccentricity. If the finite element model is correct then these results
should be in agreement with the shape of the buckling curves found in Eurocode 3.

The first sections below describe the results from analyses performed with GMNIA-
method 1, which uses an initial maximum geometric imperfection of the beam length
divided by 150. Finally a comparison is made with a series of UPE160 beams with
various lengths but now performed with GMNIA-method 2 (geometric imperfection are
modelled using L/1000 and residual stresses are considered by applying initial stresses
in each shell element).

7.2.1 Elastic critical buckling and load-carrying capacity
The ultimate load-carrying capacity from the FE-analysis are plotted against the buckling
curves in Eurocode 3, see Figure 7.2. It was expected that due to the lack of load
eccentricity, the results would be similar to that of a beam with an I-section. For the
stockiest beams the results are along buckling curve b (third line from the top), however
for the slender beams the reduction is above buckling curve a0 (top line). A rolled
I-section with h/b > 1.2 with slender flanges and web is approximated by buckling curve
a, which is quite similar to the given results.
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Figure 7.2: Buckling curves from end moment loading.

The stiff beam elements that are used to model fork supports, seem to give the beam an
added, unintended stiffness also in the lateral direction. This can be noted by studying
the three curves from UPE100, UPE160 and UPE220 in Figure 7.2. The smallest cross-
section (UPE100) results in a curve with the highest reduction factor, and the largest
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cross-section (UPE220) results in a curve with the lowest reduction factor curve. A
possible explanation for this is that since the stiff beam elements along the edges of the
end of the beam are of the same width and thickness, the stiffening effect is greater the
smaller the cross-section is. However, the difference in load-carrying capacity according
to the buckling curves in Figure 7.2 between UPE100, UPE160 and UPE220 is quite
small which was taken as a sign towards that the boundary conditions of a fork support
were modeled in a satisfactory manner. The stocky beams seem to approach full plastic
cross-section capacity and the slender beams seem to approach elastic buckling.

In Appendix D, the elastic critical bending moment calculated by the FE-analysis in the
end moment series (Mcr,FEM) is compared to the theoretical value given by the 3-factor
formula (Mcr,3 f f ). For stocky beams with λ̄LT ∼ 0.6, the difference is about 5 % while
for slender beams with λ̄LT ∼ 1.5, the difference is smaller at around around 3 %. It
seems that the boundary conditions were modelled in a satisfactory manner.

7.2.2 Stresses and deformation

The deformation patterns for the end moment load case follow expected behaviour.
All beams deflect into shapes that are typical to what is expected for beams failing
in lateral-torsional buckling, such as the one in Figure 7.3 below (deformations are
magnified).

Figure 7.3: Shape of elastic buckling for end moment load case

Stresses and deformation are shown in Figure 7.4 for the shortest UPE220 beam. For
the stocky beam with length 1400 mm the stresses increase linearly until close to failure.
The deformation curve is also linear up to the point where the top web yields. The
linearity is due to the small deformations which limits second order effects, and the fact
that yielding does not occur until about 70 % of max load. The graph also shows that
the stresses in the outer edge of the top flange remain low throughout the whole loading
history.

70 , Civil and Environmental Engineering, Master’s Thesis 2017:5270 , Civil and Environmental Engineering, Master’s Thesis 2017:5270 , Civil and Environmental Engineering, Master’s Thesis 2017:52



0

5

10

15

20

25

30

35

0

50

100

150

200

250

300

350

0% 20% 40% 60% 80% 100%

M
ax

 d
ef

or
m

at
io

n 
[m

m
]

E
qu

iv
al

en
t 

st
re

ss
 (

vo
n 

M
ise

s)
  [

M
P

a]

Applied load [% of maximum]

Stress-load and deformation-load plots
End moments, UPE220, L = 1400 mm

Top flange
Bottom flange
Top web
Deflection

Figure 7.4: Equivalent stress in probe points for UPE220 L1400 at failure.

The stress pattern in Figure 7.5 show that there is yielding along the whole beam in the
areas where the web and the flanges are connected. The entire bottom flange also yields
at the beam mid section. The angle of twist at failure is only a few degrees and it is
difficult to distinguish if the bottom flange has deformed laterally at all. Since the top
flange deflects laterally, it also displays a minor axis bending pattern, which added to the
major axis bending creates stresses close to zero at the outer edge of the top flange.

ϕ

ϕ

[MPa]

Figure 7.5: Stresses and deformation for UPE220 L1400 at failure.

The results for the beam with length 5500 mm, see Figure 7.6, are presented. Both
stresses and deformation increase linearly up to about 35-40 % of max load, and the
bottom flange yields first, at around 85 % of max load. The other two result points reach
yielding shortly after that.
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Figure 7.6: Equivalent stress in probe points for UPE220 L5500

The fact that all three result points reach yielding does not imply that the whole cross-
section yields. The result points are the extremes, and the stress is in both compression
and in tension, which means that in between them are areas with zero stress, as can be
seen in the stress pattern at failure in Figure 7.7.

ϕ

ϕ

[MPa]

Figure 7.7: Stresses and deformation for UPE220 L5500

Unlike for stockier beams, the largest yielding zones are now located at the supports
where the entire flanges yield a few decimeters from the beam ends. Also the bottom
flange deflects laterally. When viewing the beam shape and stress levels at failure, one
can draw the conclusion that minor axis bending is the defining action in the mid section,
whereas major axis bending is so at the supports. At the supports the stress levels in the
flanges are equal: the entire top flange is in compression and the entire bottom flange is
in tension. For the middle section of the beam, and especially the top flange, the outer
edge is in tension while the inner edge is in compression.

It can also be said that no significant difference in behaviour between the three studied
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cross-sections was noticed for the end moment load case.

7.2.3 Comparison of load-carrying capacity between GMNIA-methods

For the UPE160 series of beams, both GMNIA-methods were used in analysis. The
results from the comparison between the two methods of simulating imperfections
in the beams are shown in Appendix D. The obtained buckling curves are presented
in Figure 7.8, and the difference in load-carrying capacity is distinct. Analyses with
GMNIA-method 2 result in a buckling curve about two "Eurocode 3 buckling curves"
higher than with GMNIA-method 1. The difference is largest at a beam slenderness of
approximately λ̄LT = 1.0, and decreases as the slenderness increases or decreases from
this value. This conclusion is in line with what is written in Section 3.3, that initial
imperfections has greatest effect on the load-carrying capacity at an intermediate beam
slenderness.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

R
ed

uc
tio

n 
fa

ct
or

, 
LT

[ -
]

Beam slenderness, LT [ - ]

Comparison between GMNIA methods 

GMNIA method 1

GMNIA method 2

EC3 buckling
curves a0-d

λ

χ

Figure 7.8: Buckling curves from end moment loading.

7.3 Load case: Point load
7.3.1 Elastic critical buckling and load-carrying capacity

The results are found in Appendix D. The elastic critical bending moment from the FE-
analsis, Mcr,FEM, have a much lower value for the stocky beams than what is predicted
by the 3-factor formula, Mcr,3 f f . The difference for UPE160, L=1.6m, is 20.5 % (λ̄LT =
0.64) and the beam with length 2200 mm (λ̄LT = 0.81) is 10.8 %. The longest beam with
length 6500 mm, however, only show 2.8 % difference. When looking at the buckling
modes it seems that the linear buckling analysis displays a shape with local buckling
for the shortest beams. In lateral-torsional buckling the beam cross-section should not
deform but remain undistorted.

The buckling curve from the point load in the Finite Element analyses is shown in
Figure 7.9. When studying the buckling curves it can be noted that the stockiest beam,
UPE160 L=1600mm, resulted in a lower reduction factor than the second stockiest beam,
UPE160 L=2200mm. The reason behind this unexpected behaviour is explained in
Section 8.1.
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Figure 7.9: Buckling curve from point load

The stockiest beam has a slenderness of λ̄LT = 0.64 and a buckling reduction factor, χLT ,
of 0.547. Buckling curve d gives χLT = 0.683 according to Eurocode 3. Hence the given
results are 19.9 % lower than buckling curve d.

7.3.2 Stresses and deformation

Figure 7.10 show the stress distribution at failure for the shortest beam, with a length
of 1600 mm. The ANSYS Finite Element results show that for the stockier beams, the
concentrated point load makes the web deform and buckle locally, and the effect is more
evident the stockier the beam is.

ϕ

web bulges in

ϕ

[MPa]

Figure 7.10: Stresses and deformation for UPE160 L1600 at failure.

It can be noticed from the stress pattern that major axis bending is the defining behaviour,
since there is no lateral stress difference in the flanges. The mid beam cross-section
yields almost entirely except for the bottom flange. The stresses are lower in large parts
of the rest of the beam.
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Compare the beam in Figure 7.10 with a slender beam in the end moment loading, as in
Figure 7.11. In the point load case the bottom flange deflects in the opposite direction to
the top flange. Hence the torsional effect of the load eccentricity is strong.

ϕ

ϕ

[MPa]

Figure 7.11: Stresses and deformation for UPE160 L6500 at failure.

Since the point load case is performed through a deflection-controlled load increment,
the behaviour can be observed after maximum load-carrying capacity has been reached.
The force-deflection curves are found in Appendix E and the stockiest beam (UPE160,
L=1600mm) show a force-deflection curve that is almost bilinear with a steep angle up
to the maximum load-carrying capacity and then a smaller angle on the slope after that.
The explanation to the bi-linear behaviour, is that a stocky beam do not deflect or twist
much so yielding of the entire cross-section occurs rapidly as second order effects are
limited. The most slender beam has a load-deflection curve that has a "round" shape,
which in this case at least partly depends on the fact that yielding in the cross-section
occurs early. The yielding results in that the beam looses stiffness and deformations are
magnified increasingly as load is added.

The force-deformation curves of beams with length 1600, 3000 and 6500 mm are
normalized in Figure 7.12 by letting 100 % at the axes represent the point when maximum
load-carrying capacity is reached.
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Figure 7.12: Force-deflection curves from point load at mid web

7.4 Load case: Linearly distributed load
7.4.1 Elastic critical buckling and load-carrying capacity

The elastic critical bending moments from the ANSYS FE-analyses follow the same
patterns as in the case with end moment loading, which means that for more slender
beams they differ only with a few percent to Mcr,3 f f , given by the 3-factor formula.
For the stockiest beams for each cross-section, however, the difference is 1.8 %, 4.9
%, and 9.1 % for UPE100, UPE160 and UPE220 respectively. The same effect was
present for the end moment load case in that the stocky beams showed a greater spread
in Mcr between the two methods, but the result did not differ significantly between the
cross-sections.

When it comes to the ultimate load-carrying capacity, there is a similar outcome to notice.
For the end moment load case, the buckling curves for the three cross-sections were very
close, but that is not the case here. The discrepancy between the curves in Figure 7.13,
representing the three cross-sections, is larger than what one could expect. At least for a
double symmetric beam, the cross-section size should not effect the buckling curve. The
explanation has to do with the normal stresses resulting from warping restrained torsion
that comes from the load eccentricity. This effect is further discussed in Section 8.1
The UPE100 beam with length of 1200 mm has a slenderness of λ̄LT = 0.64 and a
buckling reduction factor, χLT , of 0.73. The UPE220 beam with length of 1600 mm has
a slenderness of λ̄LT = 0.62 and a buckling reduction factor, χLT , of 0.58. The UPE220
beam has a reduction factor approximately 20 % less than for the UPE100 beam.
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Figure 7.13: Buckling curves from distributed load, varying cross-sections.

7.4.2 Stresses and deformation

Figure 7.14 shows the final state of the UPE160 L1600 beam before failure. As in the
case with point load, the flanges deflect in opposite directions. The areas with the lowest
stress levels are located at the edges of the flanges and in the middle of the web height.
Major axis bending of the flanges will create compression in the top flange and tension
in the bottom flange. Minor axis bending is limited for such a short beam, but results
in tension at the outer edge of the top flange and compression in the outer edge of the
bottom flange (since it deflects and is bent the opposite direction of the top flange). The
resulting stresses from major and minor axis bending therefore counteract each other in
these areas. With the same reasoning, the opposite is true for the areas where flanges and
web meet. Additionally, normal stresses from the warping restrained torsion should be
added. The normal stress distribution from restrained warping is shown in Appendix C.

ϕ

ϕ
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Figure 7.14: Stresses and deformation for UPE160 L1600 at failure.

Figure 7.15 show that the top of the web is where yielding starts. The deflection of the
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beam is linear up this point, which is at approximately 60 % of ultimate failure load. The
load-deflection curve becomes more non-linear when the second yielding occurs in the
top flange at about 80 % of max load. The stress in the outer part of the bottom flange
stays at under 200 MPa until the very few last load steps when the stress approaches the
yielding point and the beam deformation start to increase dramatically.
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Figure 7.15: Equivalent stress in probe points for UPE160 L1600

The stress pattern for UPE160 L5500, shown in Figure 7.16, at failure is similar to the
longest beam in the point load series, as seen in Figure 7.10, except that there is no
stress concentration in the web at the mid section of the beam. The stress is high in both
flanges near the supports and yielding is reached at the outer edges of the flanges.

ϕ

ϕ
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Figure 7.16: Stresses and deformation for UPE160 L5500 at failure.

The stress and deformation history for the most slender beam, see Figure 7.17, is more
non-linear than for the stocky beam (L1600). Yielding first occurs at about 80 % of
max load in the bottom flange, which is opposite behaviour compared to the previous
stocky beam where the bottom flange had the lowest stress levels. Furthermore, the
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load-deflection plot deviates from linearity much earlier. The continually increasing
deformation is a result of that the beam buckles in a linear elastic type buckling, since
the deformation is non-linear even before the beam has yielded. It can also be noticed
that the three displayed result points reach yielding close to each other.
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Figure 7.17: Equivalent stress in probe points for UPE160 L5500

7.5 Distributed load, varying point of load application
In the following section, a series of UPE160-beams are analysed with varying point of
load application. The load is placed at the bottom of the web, middle of the web and top
of the web. Note that the mid web series of beams is the same as presented in the results
for the three cross-sections with distributed load.

7.5.1 Elastic critical buckling and load-carrying capacity

The elastic critical bending moments from ANSYS follow the same pattern as the other
analyses with distributed load: for the stockiest beams the difference compared to the
3-factor formula is about 6 % and for the slender beams the difference is about 2 %. The
results are found in Appendix D.

The buckling curves, as can be seen in Figure 7.18, show that the three cases (top web
loading, mid web loading and bottom web loading) converge for slender beams, but
diverge increasingly for stockier beams. The end moment loading series have been added
for the UPE160-beam, to represent an imagined buckling curve for a channel beam
loaded in its shear centre (since the end moment load case does not introduce torsional
moment).

It is clear that without eccentricity (end moment load case), the beam reaches its highest
capacity and after that bottom web loading, mid web loading and finally top web
loading. This is also explanied through load eccentricity and warping restrained torsion
in Section 8.1.
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Figure 7.18: Buckling curves from distributed load, varying PLA.

Finally, the ultimate load-carrying capacity is compared between the three load cases for
the same beam length in Table 7.1 below. For the stockiest beam with length 1400 mm,
there is approximately 20 % higher capacity for lowering the point of load application
(PLA) from top web to mid web or from mid web to bottom web. For the most slender
beam with length 5500 mm, the difference is less, at about 9 %.

Table 7.1: Load-carrying capacity for UPE160 beams depending on PLA

Beam length (mm) Top web
loading

Mid web
loading

Bottom web
loading

1400 23.8 28.7 33.9
2000 23.3 27.9 31.7
2800 21.8 26.0 28.4
4000 19.2 21.6 24.0
5500 16.9 18.4 20.1

7.5.2 Stresses and deformation

Below are shown the final stress patterns for UPE160 length 2800 mm loaded at bottom
web, mid web and top web respectively in Figures 7.19, 7.20 and 7.21. The angle of
twist at failure increases as the load is moved from the bottom of the web to the top
of the web. The angle is about twice as large for the top web loading compared to the
bottom web loading, even though the beam with top web loading fail at a lower load
than the the beam with bottom web loading.

It is noticed from the deformation pattern for the bottom flange, that for the bottom web
loading, the bottom flange deflects in the same lateral direction as the top flange. When
the beam is loaded at the mid web the bottom flange stays laterally undeflected but when
loaded in the top, the flanges deflect in opposite directions as described in earlier load
cases for stocky beams. This is expected, since the top web loading will increase the
twisting moment due to load eccentricity more than the bottom web loading.
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Figure 7.19: Stresses and deformation for UPE160 L2800 at failure (bottom web
loading).
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Figure 7.20: Stresses and deformation for UPE160 L2800 at failure (mid web loading).
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Figure 7.21: Stresses and deformation for UPE160 L2800 at failure (top web loading).

Stresses and deformation plotted against applied load for the three beams are shown
in Figures 7.22, 7.23 and 7.24. For the bottom web loading, the behaviour of both
deformation and stresses is mostly linear. The top web yields first at about 75 % and
the load-stress curve is almost linear up to this point. The load-deformation curve also
deviate from linearity at this load level.

When moving the load upwards from bottom web through mid web to top web, the outer
edge of the bottom flange yields later and the outer edge of the top flange yields earlier.
The top web yields first for all three cases at about 75 % of max load. When the load
is located above the shear centre, it is more difficult to find a point where the beam
behaviour changes from linear to nonlinear. The load-deformation curve start to deviate
from linearity at 30 % of max load, and the increase in deformation is slightly less for
the last few load steps than for the bottom web loading.
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Figure 7.22: Equivalent stress in probe points for UPE160 L2800, bottom web loading
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Figure 7.23: Equivalent stress in probe points for UPE160 L2800, mid web loading
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Figure 7.24: Equivalent stress in probe points for UPE160 L2800, top web loading

General conclusion from yielding patterns in result points

Table 7.2 shows the point of yielding for the outer edges of the top and bottom flange
and the top part of the web. The top web result point reaches yielding first for all short
beams regardless of point of load application for the disttributed load. In addition, the
longer the beam is, yielding takes places at a greater load compared to the maximum
applied load. However, for the outer edge of the bottom flange the opposite is true: for
a longer and more slender beam, yielding will occur at a small load compared to the
maximum value.

A fourth column has been added in the table to display "average yielding" of the three
result points in the mid section of the beam. The result shows that beams with low
slenderness have a higher post-yielding capacity than the more slender beams.
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Table 7.2: First yielding at result points

Yielding starts at ( % of max load)

Beam length (mm) Top flange
result point

Bottom flange
result point

Top web
result point Average

B
ot

to
m

w
eb

PL
A 1400 86 98 56 80

2000 96 91 65 84
2800 99 85 75 86
4000 96 81 85 88
5500 94 80 90 88
7500 90 80 95 88

M
id

w
eb

PL
A

1400 83 - 59 -
2000 89 98 66 84
2800 94 91 76 87
4000 93 83 85 87
5500 90 82 92 88
7500 93 84 100 92

To
p

w
eb

PL
A 1400 79 - 64 -

2000 83 - 68 -
2800 85 95 77 86
4000 88 88 86 87
5500 86 83 92 88
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8 Discussion and analysis

8.1 The influence of warping stresses
It was generally observed from the results that when there is load eccentricity, beams
with low slenderness failed for a load less than expected. The warping stresses will be
investigated in order to explain this effect.

It is very difficult to analytically calculate the stresses in a second order plastic analysis.
Therefore a first order elastic analysis is used, by studying the stress level in the outer
edges of the flanges.

The stress from major axis bending is calculated as (here the full beam height h, rather
than hs, has been used):

σx,My =
My

Iy

h
2

(8.1)

Appendix C shows how to calculate the warping normal stress through Terrington’s
bi-moment:

σx,ω =
Mω

Mpl,ω
ω1 (8.2)

If the elastic yield criterion is made so that

σx,My +σx,ω = fy (8.3)

then an elastic first order yield criterion curve can be established. For the linearly
distributed load cases in the FE-analyses it was noticed that for low slenderness values,
the larger cross-sections resulted in a lower reduction factor χ than the smaller. Therefore
the first order elastic yield curve is calculated for the the distributed load case for UPE100,
UPE160 and UPE220 respectively. The result is shown in Figure 8.1.
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Figure 8.1: First order elastic yield curve

, Civil and Environmental Engineering, Master’s Thesis 2017:52 85, Civil and Environmental Engineering, Master’s Thesis 2017:52 85, Civil and Environmental Engineering, Master’s Thesis 2017:52 85



The first thing to notice is that the warping stresses are increasing with decreasing beam
slenderness. For short beams a large part of the plastic cross-section capacity is utilized
by warping normal stresses.

It can also be seen that the smaller cross-section UPE100 reaches yielding at a higher load
level than the other two cross-sections. The first order elastic yield curve is not equivalent
to the real non-linear behavior in a real beam, since it does not take into account increased
second order twisting and deformation. For beams with low slenderness, however, the
deformation and second order effects are small so it should be a fairly good indicator
of the real effect. It is therefore reasonable to assume that the first order elastic yield
lines confirm that when it comes to UPE-beams, the larger cross-sections have a lower
load-carrying capacity at low slenderness values.

In Section 4.5.3, an example of the simplified design rule was made to show a buckling
curve for linearly distributed load at mid web on a UPE160. Since this design rule
implicitly takes warping normal stresses into account it would be interesting to add also
the curves for UPE100 and UPE220, which is shown in Figure 8.2.
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Figure 8.2: Simplified design rule

The simplified design rule seem to confirm that the smallest cross-section UPE100
should have a higher load-carrying capacity at low slenderness values than the other two
cross-sections.

For the case of varying the point of load application the FE-results showed that for high
slenderness, the three design curves converged but for low slenderness values the curves
diverged increasingly. Also this can be explained through the influence of warping
stresses.

For long beams the warping stresses are low, so the load-carrying capacity approaches
elastic buckling regardless point of load applicatoin. For short beams, the warping
stresses are much higher. From Terrington’s formula for the bi-moment, it is clear that
the (elastic) warping stresses are linearly depandant on the load eccentricity. Initially
the eccentricity, e, is equal to the distance from the web centreline to the shear centre,
eSC, but as soon as the cross-section starts to twist, the distance changes. For the top
web load application, the distance e increases and for the bottom web load application
the load eccentricity actually decreases for increased twisting of the cross-section. The
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angle of twist at failure (and also the load eccentricity distance e) is significantly higher
for the top web loading than the bottom web loading, thereby the normal stresses from
restrained warping are also higher and the load-carrying capacity for top web loading is
reduced.

8.2 Comparison with Snijder channel beam design curve
The simplified design rule does take normal stresses from warping implicitly into account,
and it is therefore the most accurate design method. It is however not practical to use in
design since it differs greatly from the existing procedure for lateral-torsional buckling
in Eurocode 3. The fact that this buckling design curve depends on load case, boundary
conditions and cross-section makes it impossible to establish one general design curve
for all cases, which is preferred for simplicity.

The design curve by (Snijder et al., 2008) has therefore been chosen to serve as an
example for comparison of the load-carrying capacity. There is no point comparing the
end moment load case with channel beam design curves since it does not involve load
eccentricity. The load-carrying capacity of the beams in Section 7.5 is plotted against
the design curve proposed by (Snijder et al., 2008) in Figures 8.3 and 8.4.
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Figure 8.3: Distributed load mid web, result comparison to Snijder et al. design curve
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Figure 8.4: Distributed load varying PLA, result comparison to Snijder et al. design
curve

In the study by (Snijder et al., 2008), an equivalent geometric imperfection of L/150 as
well as L/1000 with residual stresses was used. The design curve is however based on the
results from the second method of GMNIA. The results from this study are therefore not
exactly equivalent. For the end moment load case, UPE160 L=2500mm (λ̄LT = 1.03),
the difference between the two methods is 17 %. If one would assume that the difference
in load-carrying capacity between the methods for other load cases is similar, then it
seems the resulting buckling curves would end up "above" the proposed design curve.

Another explanation is found by the fact in the study by (Snijder et al., 2008), the beam
studied were limited to the ratio of beam length divided by cross-section height between
15 and 40: 15 < L/h < 40. For UPE160 the lower limit is at L=2400 mm, and the two
shorter beams in this study are 1400 mm and 2000 mm long, which means they should
not be compared to this design curve.

It seems that the effect of warping cannot be approximated through the beam slenderness.
It might be that the length-height ratio L/h is more important to capture the load-carrying
capacity reducing effect.

The shortest beams in the distributed load case at mid web were 1200 mm for UPE100,
1400 mm for UPE160 and 1600 mm for UPE220. The three beams have a very similar
slenderness and are therefore comparable. The ratio L/h for the three cross-sections are
12 (UPE100), 8.75 (UPE160) and 7.27 (UPE220). This is interesting since the relation
between the buckling curves for the low slenderness values in Figure 7.13 is very similar.
UPE100 has a clearly higher buckling design curve than the other two, and the difference
between UPE160 and UPE220 is not as large.

8.3 Structural engineering design considerations
It is obvious that the ordinary lateral-torsional buckling procedure in Eurocode 3,
following buckling curve d for channel beams, is unconservative for beams with a
low length-to-height ratio. The Snijder design curve seems to be a good way of taking
the torsional effect into account, but it is only valid when L/h > 15. For shorter beams
than that, perhaps the simplified design rule could be followed or extra caution be taken
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by reducing the reduction factor to 0.5. A clear proposal cannot be made here, since the
studied beams were not in the slenderness range λ̄LT < 0.6.

8.4 Stress patterns
When comparing the stress pattern for the most slender and the stockiest beams in each
load case series, it can be noticed that for the stocky beams the stress pattern differ
clearly between the load cases whereas the slender beams show a similar stress pattern
regardless of load case. The stocky beams for end moment, point load and distributed
load case can be seen in Figures 7.4, 7.10 and 7.14 respectively. The slender beams for
the same load cases are displayed in Figures 7.7, 7.11 and 7.16.

A probable explanation is that the more slender beams fail in a mode approaching elastic
lateral-torsional buckling regardless of what type of load is applied, and a similar stress
pattern is developed with the outer parts af the edges in tension and the top part of
the web in compression. The stockier beams fail through yielding of almost the entire
cross-section, but where the yielding areas are depend much more on the load case.
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9 Conclusions

The most important conclusions from this master’s thesis project are presented below:

• For stocky beams with eccentric loading (λ̄LT ≈< 0.8) the load-carrying capacity
did not approach plastic strength. The bottom flange deflects laterally in the
opposite direction to the top flange. The failure mode of these beams is related
to the cross-section plastic capacity being reached from major axis bending and
restrained warping effects combined.

• For eccentric loading the reduction factor χ increases when the cross-section size
is smaller. The results also show that for beams with low slenderness the point
of load application have a more significant effect than otherwise. Both of these
observations can be explained through the effect of warping stresses.

• The Snijder channel beam design curve seems to be a good way of taking the
torsional effect into account, but it does not claim to be valid for beams in the
range L/h < 15. For these beams extra care should be taken, perhaps limiting the
reduction factor χ to 0.5.

• Modelling the beams with residual stresses and a maximum initial imperfection of
the beam length divided by 1000 results in a significantly higher capacity than if
an equivalent geometric imperfection of L/150 is used. The difference is largest at
λ̄LT =1.0 where the first method shows a 21 % higher load-carrying capacity for
the end moment load case.

• Stress-deformation plots show that deformation is basically linear until yielding
occurs for the stocky beams, but for slender beams deformation start to become
unlinear at a much lower load. The behaviour of deformation and stress become
more linear the stockier the beam is, and the lower below shear center the load is
applied.

• For stocky beams (λ̄LT ≈< 0.8) yielding first occurs at the top of the web, but for
slender beams the outer edge of the bottom flange yields first. Stocky beams have
a much higher post-yielding capacity than slender beams.
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Appendix A Cross-section geometry and material
data
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Appendix B Mcr according to the 3-factor formula
and χLT design calculation
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Appendix C Bi-moment and simplified design
rule calculation

Terrington’s applied bi-moment

In Section 2.7.2, the equation for bi-moment was explained shortly:

Mω =−EIwϕ
′′(x)

The first order angle of twist, ϕ , can be decided from tables where the torsional
differential equation has been solved for different load cases and boundary conditions.
Such tables can be found in (Terrington, 1968). For a beam with fork supports, and
subjected to a distributed torsional load, the angle of twist can be described as:

ϕ(x) =
qeSCa2

GIt

[
L2

2a

(
x
L
− x2

L2

)
+ cosh

(
x
a

)
− tanh

(
L
2a

)
sinh

(
x
a

)
−1
]

where a =

√
EIw

GIt
, q = applied distributed load and eSC is the load eccentricity. By

deriving the former equation:

ϕ
′(x) =

qeSCa2

GIt

[
L2

2a

(
1
L
− 2x

L2

)
+

1
a

sinh
(

x
a

)
− 1

a
tanh

(
L
2a

)
cosh

(
x
a

)]
The equation is derived yet again:

ϕ
′′(x) =

qeSCa2

GIt

[
L2

2a

(
− 2

L2

)
+

1
a2 cosh

(
x
a

)
− 1

a2 tanh
(

L
2a

)
sinh

(
x
a

)]
Simplifying:

ϕ
′′(x) =

qeSC

GIt

[
−1+ cosh

(
x
a

)
− tanh

(
L
2a

)
sinh

(
x
a

)]

The mid part of beam has the highest load effect, therefore x =
L
2

is inserted:

ϕ
′′(x = L/2) =

qeSC

GIt

[
−1+ cosh

(
L
2a

)
− tanh

(
L
2a

)
sinh

(
L
2a

)]
The bi-moment can now be expressed:

Mω =−EIw
qeSC

GIt

[
−1+ cosh

(
L
2a

)
− tanh

(
L
2a

)
sinh

(
L
2a

)]
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Warping normal stresses

For a channel section the sectorial coordinate is described by

ωi =−zi(yi + eSC)

For this specific case, the zero point for the y-coordinate is located at the web centreline.
The sectorial coordinates at the four corner points are therefore:

ω1 =
hs(−bs + eSC)

2

ω2 =
hseSC

2

ω3 =−
hseSC

2

ω4 =−
hs(−bs + eSC)

2

The resulting stress is then:

σx,ω =
Mω

Iw
ω

Figure C.1 shows the location of the sectorial coordinates ω1−4. The warping normal
stress distribution will also have the same shape, since it is dependant linearly on ω .

ω4
ω3

ω2
ω1

Figure C.1: Plastic warping capacity

Plastic warping capacity Mpl,ω

The simplified design rule in Section 4.5.3 requires the plastic warping capacity to be
known. The resulting moment from warping normal stresses around the horizontal
symmetry line must be zero:

Mpl,ω,sl = 0 = F1
hs

2
−F2

hs

2
−F3

hs

4
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F1 = (bs−bpl)t f fy

F2 = bplt f fy

F3 =
hstw fy

2

The resulting forces are shown in Figure C.2.

hs

bs

bpl bs-bpl

F1
F2

F3

F3

F1F2

Figure C.2: Plastic warping capacity

By inserting the expressions for F1, F2 and F3 in the former equation, the length bpl can
be decided:

bpl = bs

(
1
2
− hstw

8bst f

)
The bending moment in the flanges are then multiplied with the distance to the horizontal
symmetry line, and the bending moment in the web is multiplied with the distance to the
vertical plastic line (bpl):

Mpl,ω = 2
F1(bs−bpl)

2
hs

2
+

F2bpl

2
+

2F3hs

2
bpl

Simplified rule design calculation

The beam studied here has the same properties and load case as the one in Appendix B
(UPE160 with length 2000mm and distributed load applied at the top of the web). χLT is
calculated from buckling curve a however. Known properties are:
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Mpl,ω= 0.89 kNm2

Mpl,y= 45.19 kNm

χLT = 0.67

λLT = 0.99

Mcr = 46.34 kNm

The simplified design rule requires trial and error calculation with an initial guess on the
applied design load q since M, kω , α and Mω depend on it. The load is iterated until:

M
χLT Mpl,y

+ kwα
Mω

Mpl,ω
≤ 1.0

This leads to a design load of M = 17.2 kNm. By changing the length of the beam and
repeat the procedure a design curve can be established, which is shown in Figure 4.15
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Appendix D FE-results for load carrying capacity
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Appendix E Load-deflection curves for point
load
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Appendix F Ansys code for applying residual
stresses

/ com −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ com , START
/ com −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! I n p u t a rgumen t s
L=ARG1 !mm
NumDiv_B=ARG2 !−
NumDiv_H=ARG3 !−
B=ARG4 !mm
H=ARG5 !mm
fy =ARG6/1000000 ! Pa
t f =ARG7 !mm
tw=ARG8 !mm

ee =1 ! how many mm from ends o f e l e m e n t s

amax =0.15∗ fy
bmax=−0.075∗ fy
cmax =0.15∗ fy
dmax=(−2∗( amax+bmax )∗B∗ t f / ( H∗ tw)−cmax )

! C a l c u l a t e e l e m e n t l e n g t h s
ElemLength_B=B / NumDiv_B
ElemLength_H=H / ( NumDiv_H∗2)

!WEB
∗dim , f , a r r a y , NumDiv_H
∗DO, i , 1 , NumDiv_H

i i =NumDiv_H∗2+1− i

s t a r t i =( i −1)∗ElemLength_H+ee
s t o p i = i ∗ElemLength_H−ee
s t a r t i i =( i i −1)∗ElemLength_H+ee
s t o p i i = i i ∗ElemLength_H−ee

e s e l , s , cen t , z , s t a r t i , s t o p i
e s e l , a , cen t , z , s t a r t i i , s t o p i i
f ( i )= cmax +( dmax−cmax ) / ( 0 . 5 ∗H)∗ ( 2∗ i −1)∗ElemLength_H / 2
i n i s t a t e , d e f i n e , a l l , , , , f ( i )
!THINK ABOUT THE DIRECTIONS , ONE CAN CHANGE THE POS .
OF f ( i ) , LIKE 0 , 0 , f ( i ) AND ALSO CHANGE THE SIGNS FOR
amax , bmax , cmax , dmax

∗ENDDO

106 , Civil and Environmental Engineering, Master’s Thesis 2017:52106 , Civil and Environmental Engineering, Master’s Thesis 2017:52106 , Civil and Environmental Engineering, Master’s Thesis 2017:52



!BOTH FLANGES
∗dim , g , a r r a y , NumDiv_B
∗DO, j , 1 , NumDiv_B

s t a r t j =( j −1)∗ElemLength_B +1
s t o p j = j ∗ElemLength_B−1
e s e l , s , cen t , y , s t a r t j , s t o p j

g ( j )= amax +( bmax−amax ) / B∗ (2∗ j −1)∗ElemLength_B / 2
i n i s t a t e , d e f i n e , a l l , , , , g ( j ) , 0
!THINK ABOUT THE DIRECTIONS , ONE CAN CHANGE THE POS .
OF g ( j ) , LIKE 0 , 0 , g ( j ) AND ALSO CHANGE THE SIGNS FOR
amax , bmax , cmax , dmax

∗ENDDO

e s e l , a l l

/ com −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ com , END
/ com −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! e l i s t
! ∗ s t a t u s , f
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Appendix G Ansys code for applying geometric
imperfection

/ p r ep7
l e n g t h =ARG1

max_imp_fac to r =( l e n g t h / 1 5 0 )
/ com,% max_ imp_fac to r%

upgeom , max_imp_fac tor , , , ’% _ w b _ u s e r f i l e s _ d i r (1)% b u ck l e ds ha pe ’ , r s t ,
/ s o l u
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