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Spatially Coupled Turbo-Like Codes
Saeedeh Moloudi, Student Member, IEEE, Michael Lentmaier, Senior Member, IEEE,

and Alexandre Graell i Amat, Senior Member, IEEE

Abstract—In this paper, we introduce the concept of spatially
coupled turbo-like codes (SC-TCs) as the spatial coupling of a
number of turbo-like code ensembles. In particular, we consider
the spatial coupling of parallel concatenated codes (PCCs),
introduced by Berrou et al., and that of serially concatenated
codes (SCCs), introduced by Benedetto et al.. Furthermore, we
propose two extensions of braided convolutional codes (BCCs), a
class of turbo-like codes which have an inherent spatially coupled
structure, to higher coupling memories, and show that these
yield improved belief propagation (BP) thresholds as compared
to the original BCC ensemble. We derive the exact density evo-
lution (DE) equations for SC-TCs and analyze their asymptotic
behavior on the binary erasure channel. We also consider the
construction of families of rate-compatible SC-TC ensembles.
Our numerical results show that threshold saturation of the
belief propagation (BP) decoding threshold to the maximum
a-posteriori threshold of the underlying uncoupled ensembles
occurs for large enough coupling memory. The improvement of
the BP threshold is especially significant for SCCs and BCCs,
whose uncoupled ensembles suffer from a poor BP threshold.
For a wide range of code rates, SC-TCs show close-to-capacity
performance as the coupling memory increases. We further give a
proof of threshold saturation for SC-TC ensembles with identical
component encoders. In particular, we show that the DE of
SC-TC ensembles with identical component encoders can be
properly rewritten as a scalar recursion. This allows us to define
potential functions and prove threshold saturation using the proof
technique recently introduced by Yedla et al..

Index Terms—Braided codes, density evolution, potential func-
tion, serially concatenated codes, spatially coupled codes, thresh-
old saturation, turbo codes.

I. INTRODUCTION

Low-density parity-check (LDPC) convolutional codes [1],
also known as spatially coupled LDPC (SC-LDPC) codes [2],
can be obtained from a sequence of individual LDPC block
codes by distributing the edges of their Tanner graphs over
several adjacent blocks [3]. The resulting spatially coupled
codes exhibit a threshold saturation phenomenon, which has
attracted a lot of interest in the past few years: The threshold
of an iterative belief propagation (BP) decoder, obtained by
density evolution (DE), can be improved to that of the optimal
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maximum-a-posteriori (MAP) decoder, for properly chosen
parameters. It follows from threshold saturation that it is
possible to achieve capacity by spatial coupling of simple
regular LDPC codes, which show a significant gap between BP
and MAP threshold in the uncoupled case. A first analytical
proof of threshold saturation was given in [2] for the binary
erasure channel (BEC), considering a specific ensemble with
uniform random coupling. An alternative proof based on
potential functions was then presented in [4]–[6], which was
extended from scalar recursions to vector recursions in [7]. By
means of vector recursions, the proof of threshold saturation
can be extended to spatially coupled ensembles with structure,
such as SC-LDPC codes based on protographs [8].

The concept of spatial coupling is not limited to LDPC
codes. Also codes on graphs with stronger component codes
can be considered. In this case the structure of the component
codes has to be taken into account in a DE analysis. Instead of
a simple check node update, a constraint node update within
BP decoding of a generalized LDPC code involves an a-
posteriori probability (APP) decoder applied to the associated
component encoder. In general, the input/output transfer func-
tions of the APP decoder are multi-dimensional because the
output bits of the component encoder have different protection.
For the BEC, however, it is possible to analytically derive
explicit transfer functions [9] by means of a Markov chain
analysis of the decoder metric values in a trellis representation
of the considered code [10]. This technique was applied in
[11], [12] to perform a DE analysis of braided block codes
(BBCs) [13] and other spatially coupled generalized LDPC
codes. Threshold saturation could be observed numerically
in all the considered cases. BBCs can be seen as a spatially
coupled version of product codes, and are closely related to
staircase codes [14], which have been proposed for high-
speed optical communications. It was demonstrated in [15]
and [16] that BBCs show excellent performance even with
the iterative hard decision decoding that is proposed for
such scenarios. The recently presented spatially coupled split-
component codes [17] demonstrate the connections between
BBCs and staircase codes.

In this paper, we study codes on graphs whose constraint
nodes represent convolutional codes [18]–[20]. We denote
such codes as turbo-like codes (TCs). We consider three
particular concatenated convolutional coding schemes: Parallel
concatenated codes (PCCs) [21], serially concatenated codes
(SCCs) [22], and braided convolutional codes (BCCs) [23].
Our aim is to investigate the impact of spatial coupling on the
BP threshold of these TCs. For this purpose we introduce some
special block-wise spatially coupled ensembles of PCCs (SC-
PCCs) and SCCs (SC-SCCs) [24]. In the case of BCCs, which
are inherently spatially coupled, we consider the original
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block-wise ensemble from [23], [25] and generalize it to
larger coupling memories. Furthermore, we introduce a novel
BCC ensemble in which not only the parity bits but also the
information bits are coupled over several time instants [26].

For these spatially coupled turbo-like codes (SC-TCs), we
perform a threshold analysis for the BEC analogously to
[3], [11], [12]. We derive their exact DE equations from the
transfer functions of the convolutional component decoders
[27], [28], whose computation is similar to that for generalized
LDPC codes in [10]. In order to evaluate and compare the
ensembles at different rates, we also derive DE equations for
the punctured ensembles. Using these equations, we compute
BP thresholds for both coupled and uncoupled TCs [29] and
compare them with the corresponding MAP thresholds [30],
[31]. Our numerical results indicate that threshold saturation
occurs if the coupling memory is chosen sufficiently large.
The improvement of the BP threshold is specially significant
for SCCs and BCCs, whose uncoupled ensembles suffer from
a poor BP threshold. We then consider the construction of
families of rate-compatible SC-TCs which achieve close-to-
capacity performance for a wide range of code rates.

Motivated by the numerical results, we prove threshold
saturation analytically. We show that, by few assumptions in
the ensembles of uncoupled TCs, in particular considering
identical component encoders, it is possible to rewrite their
DE recursions in a form that corresponds to the recursion
of a scalar admissible system. This representation allows us
to apply the proof technique based on potential functions
for scalar admissible systems proposed in [4], [5], which
simplifies the analysis. For the general case, the analysis is
significantly more complicated and requires the coupled vector
recursion framework of [7]. Finally, for the example of PCCs,
we generalize the proof to non-symmetric ensembles with
different component encoders by using the framework in [7].

The remainder of the paper is organized as follows. In
Section II, we introduce a compact graph representation for
the trellis of a convolutional code that is amenable for a DE
analysis. Furthermore, we derive explicit input/output transfer
functions of the BCJR decoder for transmission over the
BEC. Then, in Section III, we describe uncoupled ensembles
of PCCs, SCCs and BCCs by means of the compact graph
representation. SC-TCs, their spatially coupled counterparts,
are introduced in Section IV. In Section V, we derive exact
DE equations for uncoupled and coupled ensembles of TCs.
In Section VI, we consider random puncturing and derive the
corresponding DE equations and analyze SC-TCs as a family
of rate compatible codes. Numerical results are presented and
discussed in Section VII. Threshold saturation, which is ob-
served numerically in the results section, is proved analytically
in Section VIII. Finally, the paper is concluded in Section IX.

II. COMPACT GRAPH REPRESENTATION AND TRANSFER
FUNCTIONS OF CONVOLUTIONAL CODES

In this section, we introduce a graphical representation of
a convolutional code, which can be seen as a compact form
of its corresponding factor graph [20]. This compact graph
representation makes the illustration of SC-TCs simpler and is
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Fig. 1. (a) Factor graph representation of a rate-k/n systematic convolutional
code. (b) Compact graph representation of the same code.

convenient for the DE analysis. We also generalize the method
in [27], [28] to derive explicit input/output transfer functions
of the BCJR decoder of rate-k/n convolutional codes on the
BEC, which will be used in Section V to derive the exact DE
for SC-TCs.

A. Compact Graph Representation

Consider a rate-k/n systematic convolutional encoder of
code length nN bits, i.e., its corresponding trellis has N trellis
sections. At each time instant τ = 1, . . . , N , corresponding to
a trellis section, the encoder encodes k input bits and generates
n−k parity bits. Let u(i) = (u

(i)
1 , u

(i)
2 , . . . , u

(i)
N ), i = 1, . . . , k,

and v(i)p = (v
(i)
p,1, v

(i)
p,2, . . . , v

(i)
p,N ), i = 1, . . . , n− k, denote the

k input sequences and the n−k parity sequences, respectively.
We also denote by v(i) = (v

(i)
1 , v

(i)
2 , . . . , v

(i)
N ), i = 1, . . . , n,

the ith code sequence, with v(i) = u(i) for i = 1, . . . , k

and v(i) = v
(i−k)
p for i = k + 1, . . . , n. The conventional

factor graph of a convolutional encoder is shown in Fig. 1(a),
where black circles represent code bits, each black square
corresponds to the code constraints (allowed combinations of
input state, input bits, output bits, and output state) of one
trellis section, and the double circles are (hidden) state variable
nodes.

For convenience, we will represent a convolutional en-
coder with the more compact graph representation depicted
in Fig. 1(b). In this compact graph representation, each input
sequence u(i) and each parity sequence v(i)p is represented by a
single black circle, referred to as variable node, i.e., each circle
represents N bits. Furthermore, the code trellis is represented
by a single empty square, referred to as factor node. The factor
node is labeled by the length N of the trellis. Each node in
the compact graph represents a sequence of nodes belonging
to the same type, similar to the nodes in a protograph of
an LDPC code. Variable nodes in the original factor graph
may represent different bit values, even if they belong to
the same type in the compact graph. However, assuming a
tailbiting trellis, the probability distribution of these values
after decoding will be equal for all variables that correspond
to the same node type. As a consequence, a DE analysis can be
performed in the compact graph, independently of the trellis
length N , which plays a similar role as the lifting factor of
a protograph ensemble. If a terminated convolutional encoder,
which starts and ends in the zero state, is used instead, the
bits that are close to the start and end of the trellis will have
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a slightly stronger protection. Since this effect will not have
a significant impact on the performance, we will neglect this
throughout this paper and assume equal output distributions
for all bits of the trellis, even when termination is used.

B. Transfer Function of the BCJR Decoder of a Convolutional
Code

Consider the BCJR decoder of a memory ν, rate−k/n
convolutional encoder and transmission over the BEC. Without
loss of generality, we restrict ourselves within this paper to
encoders with k = 1 or n − k = 1, which can be imple-
mented with 2ν states in controller canonical form or observer
canonical form, respectively. We would like to characterize the
transfer function between the input erasure probabilities (i.e.,
prior to decoding) and output erasure probabilities (i.e., after
decoding) on both the input bits and the output bits of the
convolutional encoder. Note that the erasure probabilities at
the input of the decoder depend on both the channel erasure
probability and the a-priori erasure probabilities on systematic
and parity bits (provided, for example, by another decoder).
Thus, in the more general case, we consider non-equal erasure
probabilities at the input of the decoder.

Consider the extrinsic erasure probability of the lth code
bit, l = 1, 2, . . . , n, which is the erasure probability of the lth
code bit when it is estimated based on the other code bits1.
This extrinsic erasure probability, at the output of the decoder,
is denoted by pext

l . The probabilities pext
l depend on the erasure

probabilities of all code bits (systematic and parity) at the input
of the decoder,

pext
l = fl(p1, p2, . . . , pn), (1)

where pl is the erasure probability of the lth code bit at the
input of the decoder and fl(p1, p2, . . . , pn) is the transfer
function of the BCJR decoder for the lth code bit. For
notational simplicity, we will often omit the argument of
fl(p1, p2, . . . , pn) and write simply fl.

Let r(i) = (r
(i)
1 , r

(i)
2 , . . . , r

(i)
N ), i = 1, . . . , n, be the vectors

of received symbols at the output of the channel, with r(i)j ∈
{0, 1, ?}, where ? denotes an erasure. The branch metric of the
trellis edge departing from state σ′ at time τ − 1 and ending
to state σ at time τ , τ = 1, . . . , N , is

γτ (σ′, σ) =

n∏
l=1

p
(
r(l)τ

∣∣ v(l)τ ) · p(v(l)τ ) , (2)

where p
(
v
(l)
τ

)
is the a-priori probability on symbol v(l)τ .

The forward and backward metrics of the BCJR decoder
are

ατ (σ) =
∑
σ′

γτ (σ′, σ) · ατ−1(σ′) (3)

βτ−1(σ′) =
∑
σ

γτ (σ′, σ) · βτ (σ′). (4)

1Without loss of generality we assume that the first k bits are the systematic
bits.

Finally, the extrinsic output likelihood ratio is given by

L
(l)
out,τ =∑
(σ′,σ):v

(l)
τ =0

ατ−1(σ′) · γτ (σ′, σ) · βτ (σ)∑
(σ′,σ):v

(l)
τ =1

(
ατ−1(σ′) · γτ (σ′, σ) · βτ (σ)

·
p
(
v
(l)
τ = 1

)
p
(
v
(l)
τ = 0

) .
Let the 2ν trellis states be s1, s2, . . . , s2ν . Then, we de-

fine the forward and backward metric vectors as ατ =
(ατ (s1), . . . , ατ (s2ν )) and βτ = (βτ (s1), . . . , βτ (s2ν )), re-
spectively. For transmission on the BEC, the nonzero entries
of vectors ατ and βτ are all equal. Thus, we can normalize
them to 1.

We consider transmission of the all-zero codeword. The
sets of values that vectors ατ and βτ can take on are
denoted by Mα = {m(1)

α , . . . ,m
(|Mα|)
α } and Mβ =

{m(1)
β , . . . ,m

(|Mβ |)
β }, respectively. It is important to re-

mark that these sets are finite. Furthermore, the sequence
. . . ,ατ−1,ατ ,ατ+1, . . . forms a Markov chain, which can
be properly described by a probability transition matrix, de-
noted by Mα. The (i, j) entry of Mα is the probability of
transition from state m(i)

α to state m(j)
α . Denote the steady

state distribution vector of the Markov chain by πα, which
can be computed as the solution to

πα = Mα · πα. (5)

Similarly, we can define the transition matrix for the sequence
of backward metrics . . . ,βτ+1,βτ , βτ−1, . . . , denoted by
Mβ , and compute the steady state distribution vector πβ .

Example 1: Consider the rate-2/3, 4-state convolutional
encoder with generator matrix

G(D) =

(
1 0 1

1+D+D2

0 1 1+D2

1+D+D2

)
.

Mα and Mβ are equal and have cardinality 5,

Mα =Mβ =

{(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)}.

Consider equal erasure probability for all code bits at the
input of the decoder, i.e., p1 = p2 = p3 = p. Then,

Mα =


(1− p)2(2p+ 1) (1− p)2 (1− p)3 0 0

p2(1− p) 0 p(1− p)2 p3 − 2p+ 1 (1− p)2
p2(1− p) p(1− p) p(1− p)2 0 0
p2(1− p) p(1− p) p(1− p)2 0 0

p3 p2 p2(3− 2p) p2(2− p) p(2− p)

 .

4

In order to compute the erasure probability of the lth bit at
the output of the decoder, we have to compute the probability
of L(l)

out,τ = 1. Define the matrices Tl, l = 1, 2, . . . , n, where
the (i, j) entry of Tl is computed as

Tl(i, j) = p
(
L
(l)
out,τ = 1 | ατ = m(i)

α ,βτ+1 = m
(j)
β

)
.
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Then, the extrinsic erasure probability of the lth output, pext
l ,

introduced in (1), is obtained as

pext
l = fl(p1, p2, . . . , pn) = p

(
L
(l)
out,τ = 1

)
=

|Mα|∑
i=1

|Mβ |∑
j=1

p
(
L
(l)
out,τ = 1 | ατ = m(i)

α ,βτ+1 = m
(j)
β

)
· p
(
ατ = m(i)

α

)
· p
(
βτ+1 = m

(j)
β

)
= πα · Tl · πβ . (6)

Example 2: Consider the rate−2/3 convolutional encoder
with generator matrix

G(D) =

(
1 0 1

1+D

0 1 D
1+D

)
.

Assuming p1 = p2 = p3 , p, the transfer functions for the
corresponding decoder are

f1 = f2 =
p(p5 − 4p4 + 6p3 − 5p2 + 2p+ 1)

p6 − 4p5 + 6p4 − 6p3 + 5p2 − 2p+ 1
,

f3 =
p2(p2 − 4p+ 4)

p6 − 4p5 + 6p4 − 6p3 + 5p2 − 2p+ 1
.

4
Lemma 1: Consider a terminated convolutional en-

coder where all distinct input sequences have distinct en-
coded sequences. For such a system, the transfer function
f(p1, p2, . . . , pn) of a BCJR decoder with input erasure prob-
abilities p1, p2, . . . , pn, or any convex combination of such
transfer functions, is increasing in all its arguments.

Proof: We prove the statement by contradiction. Recall
that the BCJR decoder is an optimal APP decoder. Now,
consider the transmission of the same codeword over two
channels, called channel 1 and 2. The erasure probabilities of
the ith bit at the input of the decoder are denoted by p(1)i and
p
(2)
i for transmission over channel 1 and 2, respectively. These

erasure probabilities are equal for all i = 1, . . . , n except for
the jth bit, for which p

(1)
j < p

(2)
j . Assume that the transfer

function f is non-increasing in its jth argument,

f(p
(1)
1 , . . . , p

(1)
j , . . . , p(1)n ) ≥ f(p

(2)
1 , . . . , p

(2)
j , . . . , p(2)n ). (7)

Puncture the jth bit sequence of the codeword transmitted over
channel 1 such that p(1)j,punc = p

(2)
j . Since puncturing can only

make the output of the decoder worse (otherwise we could
replace our encoder with the punctured one and achieve a
higher rate),

f(p
(1)
1 , . . . , p

(1)
j,punc, . . . , p

(1)
n ) > f(p

(1)
1 , . . . , p

(1)
j , . . . , p(1)n ),

(8)

Since after puncturing p
(1)
i and p

(2)
i are equal for all i, then

f(p
(1)
1 , . . . , p

(1)
j,punc, . . . , p

(1)
n ) = f(p

(2)
1 , . . . , p

(2)
j , . . . , p

(2)
n ).

Then, we can rewrite the inequality (8) as

f(p
(2)
1 , . . . , p

(2)
j , . . . , p(2)n ) > f(p

(1)
1 , . . . , p

(1)
j , . . . , p(1)n ). (9)

However, the inequality (9) is in contradiction with (7).
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Fig. 2. (a) Conventional factor graph of a PCC. Compact graph representation
of a (b) PCC, (c) SCC, (d) BCC.

III. COMPACT GRAPH REPRESENTATION OF
UNCOUPLED TURBO-LIKE CODES

In this section, we describe PCCs, SCCs and BCCs using
the compact graph representation introduced in the previous
section. In Section IV we then introduce the corresponding
spatially coupled ensembles.

A. Parallel Concatenated Codes

We consider a rate R = 1/3 PCC built from two rate-1/2
recursive systematic convolutional encoders, referred to as the
upper and lower component encoder. Its conventional factor
graph is shown in Fig. 2(a), where Π denotes the permutation.
The trellises corresponding to the upper and lower encoders
are denoted by TU and TL, respectively. The information se-
quence u, of length N bits, and a reordered copy are encoded
by the upper and lower encoder, respectively, to produce the
parity sequences vU and vL. The code sequence is denoted
by v = (u,vU,vL). The compact graph representation of the
PCC is shown in Fig. 2(b), where each of the sequences u,
vU and vL is represented by a single variable node and the
trellises are replaced by factor nodes TU and TL (cf. Fig. 1). In
order to emphasize that a reordered copy of the input sequence
is used in TL, the permutation is depicted by a line that crosses
the edge which connects u to TL.

B. Serially Concatenated Codes

We consider a rate R = 1/4 SCC built from the serial
concatenation of two rate-1/2 recursive systematic component
encoders, referred to as the outer and inner component en-
coder. Its compact graph representation is shown in Fig. 2(c),
where TO and TI are the factor nodes corresponding to the
outer and inner encoder, respectively, and the rectangle illus-
trates a multiplexer/demultiplexer. The information sequence
u, of length N , is encoded by the outer encoder to produce
the parity sequence vO. Then, the sequences u and vO are
multiplexed and reordered to create the intermediate sequence
ṽO, of length 2N (not shown in the graph). Finally, ṽO is
encoded by the inner encoder to produce the parity sequence
vI. The transmitted sequence is v = (u,vO,vI).
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ũt,0
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C. Braided Convolutional Codes

We consider a rate R = 1/3 BCC built from two rate-
2/3 recursive systematic convolutional encoders, referred to
as upper and lower encoders. The corresponding trellises are
denoted by TU and TL. The compact graph representation of
this code is shown in Fig. 2(d). The parity sequences of the up-
per and lower encoder are denoted by vU and vL, respectively.
To produce the parity sequence vU, the information sequence
u and a reordered copy of vL are encoded by TU. Likewise, a
reordered copy of u and a reordered copy of vU are encoded
by TL in order to produce the parity sequence vL. Similarly
to PCCs, the transmitted sequence is v = (u,vU,vL).

IV. SPATIALLY COUPLED TURBO-LIKE CODES

In this section, we introduce SC-TCs. We first describe the
spatial coupling for both PCCs and SCCs. Then, we generalize
the original block-wise BCC ensemble [23] in order to obtain
ensembles with larger coupling memories.

A. Spatially Coupled Parallel Concatenated Codes

We consider the spatial coupling of rate-1/3 PCCs, de-
scribed in the previous section. For simplicity, we first describe
the SC-PCC ensemble with coupling memory m = 1. Then we

show the coupling for higher coupling memories. The block
diagram of the encoder for the SC-PCC ensemble is shown in
Fig. 3. In addition, its compact graph representation and the
coupling are illustrated in Fig. 4.

As it is shown in Fig. 3 and Fig. 4(a) we denote by ut the
information sequence, and by vU

t and vL
t the parity sequence

of the upper and lower encoder, respectively, at time t. The
code sequence of the PCC at time t is given by the triple vt =
(ut,v

U
t ,v

L
t ). With reference to Fig. 3 and Fig. 4(b), in order

to obtain the coupled sequence, the information sequence, ut,
is divided into two sequences of equal size, ut,0 and ut,1 by
a multiplexer. Then, the sequence ut,0 is used as a part of
the input to the upper encoder at time t and ut,1 is used as a
part of the input to the upper encoder at time t+ 1. Likewise,
a reordered copy of the information sequence, ũt, is divided
into two sequences ũt,0 and ũt,1.

Therefore, the input to the upper encoder at time t is a
reordered copy of (ut,0,ut−1,1), and likewise the input to the
lower encoder at time t is a reordered copy of (ũt,0, ũt−1,1).
In this ensemble, the coupling memory is m = 1 as ut is used
only at the time instants t and t+ 1.

Finally, an SC-PCC with m = 1 is obtained by considering
a collection of L PCCs at time instants t = 1, . . . , L, where
L is referred to as the coupling length, and coupling them as
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ut

vL
t

vU
t

ut�m,m

u0
t�m,m

u0
t�1,1

ut�1,1

ut,1

ut,m

u0
t,m

u0
t,1

(a) (b)

N

N

ut

vO
t

vI
t

ṽO
t,0

ṽO
t,1

ṽO
t,m

ṽO
t�m,m

ṽO
t�1,1

N

2N

TU

TL

TO

TI

Fig. 5. Compact graph representation of (a) SC-PCCs, and (b) SC-SCCs of
coupling memory m for time instant t.

described above, see Fig. 4(c).
An SC-PCC ensemble with coupling memory m is obtained

by dividing each of the sequences ut and ũt into m + 1 se-
quences of equal size and spread these sequences respectively
to the input of the upper and the lower encoder at time slots
t to t+m. The compact graph representation of the SC-PCC
with coupling memory m is shown in Fig. 5(a) for a given
time instant t.

The coupling is performed as follows. Divide the informa-
tion sequence ut into m+1 sequences of equal size N/(m+1),
denoted by ut,j , j = 0, . . . ,m. Likewise, divide ũt, the
information sequence ut reordered by a permutation, into
m+1 sequences of equal size, denoted by ũt,j , j = 0, . . . ,m.
At time t, the information sequence at the input of the upper
encoder is (ut,0,ut−1,1, . . . ,ut−m,m), properly reordered by
a permutation. Likewise, the information sequence at the input
of the lower encoder is (ũt,0, ũt−1,1, . . . , ũt−m,m), reordered
by a permutation. Using the procedure described above, a
coupled chain (a convolutional structure over time) of L PCCs
with coupling memory m is obtained.

In order to terminate the encoder of the SC-PCC to the
zero state, the information sequences at the end of the chain
are chosen in such a way that the code sequences become
vt = 0 at time t = L+ 1, . . . , L+m, and ut is set to 0 for
t > L. Analogously to conventional convolutional codes, this
results in a rate loss that becomes smaller as L increases.

B. Spatially Coupled Serially Concatenated Codes

An SC-SCC is constructed similarly to SC-PCCs. Consider
a collection of L SCCs at time instants t = 1, . . . , L, and
let ut be the information sequence at time t. Also, denote by
vOt and vIt the parity sequence at the output of the outer and
inner encoder, respectively. The information sequence ut and
the parity sequence vOt are multiplexed and reordered into the

utut�1 ut+1

vU
t+1

vL
t+1vL

t�1

vU
t�1 vU

t

vL
t

N

N

N

N

N

N

TU
TU TU

TL TL
TL

Fig. 6. Compact graph representation of the original BCCs.

sequence ṽOt . The sequence ṽOt is divided into m+1 sequences
of equal length, denoted by ṽO

t,j , j = 0, . . . ,m. Then, at time
instant t, the sequence at the input of the inner encoder is
(ṽO
t−j,0, ṽ

O
t−1,1 . . . , ṽ

O
t−m,m), properly reordered by a permu-

tation. This sequence is encoded by the inner encoder into
vIt. Finally, the code sequence at time t is v = (ut,v

O
t ,v

I
t).

Using this construction method, a coupled chain of L SCCs
with coupling memory m is obtained. The compact graph
representation of SC-SCCs with coupling memory m is shown
in Fig. 5(b) for time instant t.

In order to terminate the encoder of the SC-SCC, the
information sequences at the end of the chain are chosen in
such a way that the code sequences become vt = 0 at time
t = L+1, . . . , L+m. A simple and practical way to terminate
SC-SCCs is to set ut = 0 for t = L − m + 1, . . . , L. This
enforces vt = 0 for t = L+1, . . . , L+m, since we can assume
that ut = 0 for t > L. Using this termination technique, only
the parity sequence vI

t needs to be transmitted at time instants
t = L−m+ 1, . . . , L.

C. Braided Convolutional Codes

The compact graph representation of the original BCCs is
depicted in Fig 6. As for SC-PCCs, let ut, vU

t and vL
t denote

the information sequence, the parity sequence at the output
of the upper encoder, and the parity sequence at the output
of the lower encoder, respectively, at time t. At time t, the
information sequence ut and a reordered copy of vL

t−1 are
encoded by the upper encoder to generate the parity sequence
vU
t . Likewise, a reordered copy of the information sequence,

denoted by ũt, and a reordered copy of vL
t−1 are encoded by

the lower encoder to produce the parity sequence vL
t . The code

sequence at time t is v = (ut,v
U
t ,v

L
t ).

As it can be seen from Fig 6, the original BCCs are
inherently spatially coupled codes2 with coupling memory
one. In the following, we introduce two extensions of BCCs,

2The uncoupled ensemble, discussed in the previous section, can be defined
by tailbiting a coupled chain of length L = 1.
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ṽU
t�1,1

ṽU
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Fig. 7. Compact graph representation of (a) Type-I BCCs, and (b) Type-II
BCCs of coupling memory m at time instant t.

referred to as Type-I and Type-II, with increased coupling
memory, m > 1.

The compact graph of Type-I BCCs is shown in Fig. 7(a)
for time instant t. The parity sequence vU

t is randomly divided
into m sequences vU

t,j , j = 1, . . . ,m, of the same length.
Likewise, the parity sequence vL

t is randomly divided into
m sequences vL

t,j , j = 1, . . . ,m. At time t, the information
sequence ut and the sequence (vL

t−1,1,v
L
t−2,2, . . . ,v

L
t−m,m),

properly reordered, are used as input sequences to the upper
encoder to produce the parity sequence vU

t . Likewise, a re-
ordered copy of the information sequence ut and the sequence
(vU
t−1,1,v

U
t−2,2, . . . ,v

U
t−m,m), properly reordered, are encoded

by the lower encoder to produce the parity sequence vL
t .

The compact graph of Type-II BCCs is shown in Fig. 7(b)
for time instant t. Contrary to Type-I BCCs, in addition to
the coupling of parity bits, for Type-II BCCs information
bits are also coupled. At time t, divide the information
sequence ut into m + 1 sequences ut,j , j = 0, . . . ,m
of equal length. Furthermore, divide the reordered copy of
the information sequence, ũt, into m + 1 sequences ũt,j ,
j = 0, . . . ,m. The first input of the upper and lower en-
coders are now the sequences (ut−0,0,ut−1,1, . . . ,ut−m,m)
and (ũt−0,0, ũt−1,1, . . . , ũt−m,m), respectively, properly re-
ordered.

V. DENSITY EVOLUTION ANALYSIS FOR SC-TCS OVER
THE BINARY ERASURE CHANNEL

In this section we derive the exact DE for SC-TCs. For
the three considered code ensembles, we first derive the DE
equations for the uncoupled ensembles and then extend them
to the coupled ones.

A. Density Evolution Equations and Decoding Thresholds

For transmission over the BEC, it is possible to analyze
the asymptotic behavior of TCs and SC-TCs by tracking

the evolution of the erasure probability with the number of
decoding iterations. This evolution can be formalized in a
compact way as a set of equations called DE equations. For
the BEC, it is possible to derive a exact DE equations for
TCs and SC-TCs. By use of these equations, the BP decoding
threshold can be computed. The BP threshold is the largest
channel erasure probability ε for which the erasure probability
at the output of the BP decoder converges to zero as the block
length and number of iterations grow to infinity.

It is also possible to compute the threshold of the MAP
decoder, εMAP, by the use of the area theorem [31]. According
to the area theorem, the MAP threshold3 can be obtained from
the following equation,∫ 1

εMAP

p̄extr(ε)dε = R ,

where R is the rate of the code and p̄extr(ε) is the average
extrinsic erasure probability for all transmitted bits.

B. Parallel Concatenated Codes

1) Uncoupled: Consider the compact graph of a PCC in
Fig. 2(b). Let p(i)U,s and p(i)U,p denote the average extrinsic erasure
probability from factor node TU to u and vU, respectively, in
the ith iteration.4 Likewise, denote by p(i)L,s and p(i)L,p the extrin-
sic erasure probabilities from T L to u and vL, respectively. It
is easy to see that the erasure probability from ut and vU

t to
TU is ε ·p(i−1)L,s and ε, respectively. Therefore, the DE updates
for TU can be written as

p
(i)
U,s = fU,s

(
q
(i)
L , ε

)
, (10)

p
(i)
U,p = fU,p

(
q
(i)
L , ε

)
, (11)

where

q
(i)
L = ε · p(i−1)L,s , (12)

and fU,s and fU,p denote the transfer function of TU for the
systematic and parity bits, respectively.

Similarly, the DE update for T L can be written as

p
(i)
L,s = fL,s

(
q
(i)
U , ε

)
, (13)

p
(i)
L,p = fL,p

(
q
(i)
U , ε

)
, (14)

where

q
(i)
U = ε · p(i−1)U,s , (15)

and fL,s and fL,p are the transfer functions of T L for the
systematic and parity bits, respectively.

3The threshold given by the area theorem is actually an upper bound on
the MAP threshold. However, the numerical results show that the thresholds
of the coupled ensembles converge to this upper bound. This indicates that
the upper bound on the MAP threshold is a tight bound.

4With some abuse of language, we sometimes refer to a variable node
representing a sequence (e.g., u) as the sequence itself (u in this case).
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2) Coupled: Consider the compact graph of a SC-PCC
ensemble in Fig. 5(a). The variable node ut is connected to
factor nodes TU

t′ and T L
t′ , at time instants t′ = t, . . . , t + m.

We denote by p
(i,t′)
U,s and p

(i,t′)
U,p the average extrinsic erasure

probability from factor node TU
t′ at time instant t′ to u and

vU, respectively, computed in the ith iteration. We also denote
by q̄

(i−1,t)
U the input erasure probability to variable node ut

in the ith iteration, received from its neighbors TU
t′ . It can be

written as

q̄
(i−1,t)
U =

1

m+ 1

m∑
j=0

p
(i−1,t+j)
U,s . (16)

Similarly, the average erasure probability from factor nodes
T L
t′ , t
′ = t, . . . , t+m, to ut, denoted by q̄(i−1,t)L , can be written

as

q̄
(i−1,t)
L =

1

m+ 1

m∑
j=0

p
(i−1,t+j)
L,s . (17)

The erasure probabilities from variable node ut to its
neighbors TU

t′ and T L
t′ are ε·q̄(i−1,t)L and ε·q̄(i−1,t)U , respectively.

On the other hand, TU
t at time t is connected to the set of

ut′s for t′ = t−m, . . . , t. The erasure probability to TU
t from

this set, denoted by q(i,t)L , is given by

q
(i,t)
L = ε · 1

m+ 1

m∑
k=0

q̄
(i−1,t−k)
L

= ε · 1

(m+ 1)2

m∑
k=0

m∑
j=0

p
(i−1,t+j−k)
L,s . (18)

Thus, the DE updates of TU
t are

p
(i,t)
U,s = fU,s

(
q
(i,t)
L , ε

)
, (19)

p
(i,t)
U,p = fU,p

(
q
(i,t)
L , ε

)
. (20)

Similarly, the input erasure probability to T L
t from the set

of connected ut′s at time instants t′ = t−m, . . . , t, is

q
(i,t)
U = ε · 1

m+ 1

m∑
k=0

q̄
(i−1,t−k)
U

= ε · 1

(m+ 1)2

m∑
k=0

m∑
j=0

p
(i−1,t+j−k)
U,s , (21)

and the DE updates of T L
t are

p
(i,t)
L,s = fL,s

(
q
(i,t)
U , ε

)
, (22)

p
(i,t)
L,p = fL,p

(
q
(i,t)
U , ε

)
. (23)

Finally the a-posteriori erasure probability on ut at time t
and iteration i is

p(i,t)a = ε · q̄(i,t)U · q̄(i,t)L . (24)

DE is performed by tracking the evolution of the a-posteriori
erasure probability with the number of iterations.

C. Serially Concatenated Codes

1) Uncoupled: Consider the compact graph of the SCC
ensemble in Fig. 2(c). Let p(i)O,s and p

(i)
O,p denote the erasure

probability from TO to u and vO, respectively, computed in
the ith iteration. Likewise, p(i)I,s and p

(i)
I,p denote the extrinsic

erasure probability from T I to ṽO = (u,vO) and vI.
Both u and vO receive the same erasure probability, p(i−1)I,s ,

from T I. Therefore, the erasure probabilities that TO receives
from these two variable nodes are equal and given by

q
(i)
I = ε · p(i−1)I,s . (25)

The DE equations for TO can then be written as

p
(i)
O,s = fO,s

(
q
(i)
I , q

(i)
I

)
, (26)

p
(i)
O,p = fO,p

(
q
(i)
I , q

(i)
I

)
, (27)

where fO,s and fO,p are the transfer functions of TO for the
systematic and parity bits, respectively.

The erasure probability that T I receives from ṽO = (u,vO)
is the average of the erasure probabilities from u and vO,

q
(i)
O = ε ·

p
(i)
O,s + p

(i)
O,p

2
. (28)

On the other hand, the erasure probability to T I from vI is ε.
Therefore, the DE equations for T I can be written as

p
(i)
I,s = fI,s

(
q
(i)
O , ε

)
, (29)

p
(i)
I,p = fI,p

(
q
(i)
O , ε

)
. (30)

2) Coupled: Consider the compact graph representation of
SC-SCCs in Fig. 5(b). Variable nodes ut and vO

t are connected
to factor nodes T I

t′ at time instants t′ = t, . . . , t+m. The input
erasure probability to variable nodes ut and vO

t from these
factor nodes, denoted by q̄(i−1,t)I , is the same for both ut and
vO
t and is obtained as the average of the erasure probabilities

from each of the factor nodes T I
t′ ,

q̄
(i−1,t)
I =

1

m+ 1

m∑
j=0

p
(i−1,t+j)
I,s . (31)

The erasure probability to TO
t from ut and vO

t is

q
(i,t)
I = ε · q̄(i−1,t)I =

ε

m+ 1

m∑
j=0

p
(i−1,t+j)
I,s . (32)

Thus, the DE updates of TO
t are

p
(i,t)
O,s = fO,s

(
q
(i,t)
I , q

(i,t)
I

)
, (33)

p
(i,t)
O,p = fO,p

(
q
(i,t)
I , q

(i,t)
I

)
. (34)

At time t, T I
t is connected to a set of ṽO

t′s at time instants
t′ = t − m, . . . , t. The erasure probability that T I

t receives
from this set is the average of the erasure probabilities of all
ut′s and vO

t′s at times t′ = t−m. . . , t. This erasure probability
can be written as

q
(i,t)
O =

ε

m+ 1

m∑
k=0

p
(i,t−k)
O,s + p

(i,t−k)
O,p

2
. (35)
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Hence, the DE updates for the inner encoder are given by

p
(i,t)
I,s = fI,s

(
q
(i,t)
O , ε

)
, (36)

p
(i,t)
I,p = fI,p

(
q
(i,t)
O , ε

)
. (37)

Finally, the a-posteriori erasure probability on information bits
at time t and iteration i is

p(i,t)a = ε · p(i,t)O,s · q̄
(i,t)
I . (38)

D. Braided Convolutional Codes

1) Uncoupled: Consider the compact graph of uncoupled
BCCs in Fig. 2(c). These can be obtained by tailbiting BCCs,
as shown in Fig. 6, with coupling length L = 1. Let p(i)U,k and
p
(i)
L,k denote the erasure probabilities of messages from TU and
T L through their kth connected edge, k = 1, 2, 3, respectively.
The erasure probability of messages that TU receives through
its edges are

q
(i)
L,1 = ε · p(i−1)L,1 , (39)

q
(i)
L,2 = ε · p(i−1)L,3 , (40)

q
(i)
L,3 = ε · p(i−1)L,2 . (41)

The exact DE equations of TU can be written as

p
(i)
U,1 =fU,1

(
q
(i)
L,1, q

(i)
L,2, q

(i)
L,3

)
, (42)

p
(i)
U,2 =fU,2

(
q
(i)
L,1, q

(i)
L,2, q

(i)
L,3

)
, (43)

p
(i)
U,3 =fU,3

(
q
(i)
L,1, q

(i)
L,2, q

(i)
L,3

)
, (44)

where fU,k denotes the transfer function of TU for its kth
connected edge. Similarly, the DE equations for T L can be
written by swapping indexes U and L in (39)–(44).

2) Coupled: Consider the compact graph representation of
Type-I BCCs in Fig. 7(a). As in the uncoupled case, the DE
updates of factor nodes TU

t and T L
t are similar due to the

symmetric structure of the coupled construction. Therefore,
for simplicity, we only describe the DE equations of TU

t and
the equations for T L

t are obtained by swapping indexes U and
L in the equations.

The first edge of TU
t is connected to ut. Thus, the erasure

probability that TU
t receives through this edge is

q
(i,t)
L,1 = ε · p(i−1,t)L,1 . (45)

The second edge of TU
t is connected to variable nodes vL

t′ at
time instants t′ = t−m, . . . , t−1. The erasure probability that
TU
t receives through its second edge is therefore the average

of the erasure probabilities from the variable nodes vL
t′ that are

connected to this edge. This erasure probability can be written
as

q
(i,t)
L,2 =

ε

m

m∑
j=1

p
(i−1,t−j)
L,3 . (46)

The third edge of TU
t is connected to vU

t , which is in turn
connected to the second edges of factor nodes T L

t′ at time
instants t′ = t+ 1, . . . , t+m. The erasure probability that vU

t

receives from the set of connected nodes T L
t′ is the average

of erasure probabilities from these nodes through their second
edges. The erasure probability from vU

t to TU
t is

q
(i,t)
L,3 =

ε

m

m∑
j=1

p
(i−1,t+j)
L,2 . (47)

The DE equations of TU
t can then be written as5

p
(i,t)
U,1 =fU,1

(
q
(i,t)
L,1 , q

(i,t)
L,2 , q

(i,t)
L,3

)
, (48)

p
(i,t)
U,2 =fU,2

(
q
(i,t)
L,1 , q

(i,t)
L,2 , q

(i,t)
L,3

)
, (49)

p
(i,t)
U,3 =fU,3

(
q
(i,t)
L,1 , q

(i,t)
L,2 , q

(i,t)
L,3

)
. (50)

The a-posteriori erasure probability on ut at time t and
iteration i for Type-I BCCs is

p(i,t)a = ε · p(i,t)U,1 · p
(i,t)
L,1 . (51)

As we discussed in the previous section, the difference
between Type-I and Type-II BCCs is that ut is also coupled
in the latter. Variable node ut in Type-II BCCs is connected
to a set of factor nodes TU

t′ and T L
t′ at time instants t′ =

t, . . . , t+m. The DE equations of Type-II BCCs are identical
to those of Type-I BCCs except for equation (45). Denote by
q̄
(i−1,t)
L,1 the input erasure probability to ut from the connected

factor nodes T L
t′ in the ith iteration. According to Fig. 7(b),

q̄
(i−1,t)
L,1 is the average of erasure probabilities from T L

t′ at time
instants t′ = t, . . . , t+m,

q̄
(i−1,t)
L,1 =

1

m+ 1

m∑
j=0

p
(i−1,t+j)
L,1 . (52)

Factor node TU
t is connected to variable nodes ut′ at time

instants t′ = t −m, . . . , t. The incoming erasure probability
to TU

t through its first edge, denoted by q(i,t)L,1 , is therefore the
average of the erasure probabilities from ut′ at times t′ =
t−m, . . . , t,

q
(i,t)
L,1 = ε · 1

m+ 1

m∑
k=0

q̄
(i−1,t−k)
L,1 (53)

= ε · 1

(m+ 1)2

m∑
k=0

m∑
j=0

p
(i−1,t+j−k)
L,1 .

Finally, the a-posteriori erasure probability on ut at time t and
iteration i for Type-II BCCs is

p(i,t)a = ε · q̄(i,t)U · q̄(i,t)L . (54)

VI. RATE-COMPATIBLE SC-TCS VIA RANDOM
PUNCTURING

Higher rate codes can be obtained by applying puncturing.
For analysis purposes, we consider random puncturing. Ran-
dom puncturing has been considered, e.g., for LDPC codes
in [32], [33] and for turbo-like codes in [34], [35]. In [33],
the authors introduced a parameter called θ which allows
comparing the strengths of the codes with different rates. In

5The DE equations of the original BCCs are obtained by setting m = 1 in
the DE equations of Type-I BCCs.
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this section, we consider the construction of rate-compatible
SC-TCs by means of random puncturing.

We denote by ρ ∈ [0, 1] the fraction of surviving bits after
puncturing, referred to as the permeability rate. Consider that
a code sequence v is randomly punctured with permeability
rate ρ and transmitted over a BEC with erasure probability
ε, BEC(ε). For the BEC, applying puncturing is equivalent
to transmitting v over a BEC with erasure probability ερ =
1 − (1 − ε)ρ, resulting from the concatenation of two BECs,
BEC(ε) and BEC(ερ). The DE equations of SC-TCs in the
previous section can then be easily modified to account for
random puncturing.

For SC-PCCs, we consider puncturing of parity bits only,
i.e., the overall code is systematic. The rate of the punctured
code (without considering termination of the coupled chain)
is R = 1

1+2ρ . The DE equations of punctured SC-PCCs are
obtained by substituting ε← ερ in (19), (20), (22) and (23).

For punctured SC-SCCs, we consider the coupling of the
punctured SCCs proposed in [34], [36]6, where ρ0 and ρ1
are the permeability rates of the systematic and parity bits,
respectively, of the outer code (see [36, Fig. 1]), and ρ2 is the
permeability rate of the parity bits of the inner code. The code
rate of the punctured SC-SCC is R = 1

ρ0+ρ1+2ρ2
(neglecting

the rate loss due to termination). The DE for punctured SC-
SCCs is obtained by substituting ε ← ερ2 in (36) and (37),
and modifying (35) to

q
(i,t)
O =

1

m+ 1

m∑
k=0

ε · p(i,t−k)O,s + ερ1 · p(i,t−k)O,p

2

and (33), (34) to

p
(i,t)
O,s = fO,s

(
q
(i,t)
I , q̃

(i,t)
I

)
, (55)

p
(i)
O,p = fO,p

(
q
(i,t)
I , q̃

(i,t)
I

)
, (56)

where q(i,t)I is given in (32) and

q̃
(i,t)
I =

ερ1
m+ 1

m∑
j=0

p
(i−1,t+j)
I,s . (57)

For both Type-I and Type-II BCCs, similarly to SC-PCCs,
we consider only puncturing of parity bits with permeability
rate ρ. The DE equations of punctured SC-BCCs are obtained
by substituting ε← ερ in (46) and (47) and the corresponding
equations for q(i,t)U,2 and q(i,t)U,3 .

VII. NUMERICAL RESULTS

In Table I, we give DE results for the SC-TC ensembles,
and their uncoupled ensembles for rate R = 1/2. In particular,
we consider SC-PCC and SC-SCC ensembles with identical
4-state and 8-state component encoders with generator matrix

6In contrast to standard SCCs, characterized by a rate-1 inner code and
for which to achieve higher rates the outer code is heavily punctured, the
SCCs proposed in [34], [36] achieve higher rates by moving the puncturing
of the outer code to the inner code, which is punctured beyond the unitary
rate. This allows to preserve the interleaving gain for high rates and yields a
larger minimum distance, which results in codes that significantly outperform
standard SCCs, especially for high rates. Furthermore, the SCCs in [34], [36]
yield better MAP thresholds than standard SCCs.

TABLE I
THRESHOLDS FOR RATE-1/2 TCS, AND SC-TCS

Ensemble states εBP εMAP ε1SC
CPCC/CSC−PCC 4 0.4606 0.4689 0.4689
CSCC/CSC−SCC 4 0.3594 0.4981 0.4708
CPCC/CSC−PCC 8 0.4651 0.4863 0.4862
CSCC/CSC−SCC 8 0.3120 0.4993 0.4507
Type-I CBCC 4 0.3013 0.4993 0.4932
Type-II CBCC 4 0.3013 0.4993 0.4988

G = (1, 5/7) and G = (1, 11/13), respectively, in octal
notation. For the BCC ensemble, we consider two identical
4-state component encoders and generator matrix

G1(D) =

(
1 0 1/7
0 1 5/7

)
. (58)

The BP thresholds (εBP) and MAP thresholds (εMAP) for
the uncoupled ensembles are reported in Table I. The MAP
threshold is obtained using the area theorem [9], [30]. We
also give the BP thresholds of SC-TCs for coupling memory
m = 1, denoted by ε1SC.

As expected, PCC ensembles yield better BP thresholds than
SCC ensembles. However, SCCs have better MAP threshold.
The BP decoder works poorly for uncoupled BCCs and the
BP thresholds are worse than those of PCCs and SCCs. On
the other hand, the MAP thresholds of BCCs are better than
those of both PCCs and SCCs. By applying coupling, the BP
threshold improves and for m = 1, the Type-II BCC ensemble
has the best coupling threshold.

Table II shows the thresholds of TCs and SC-TCs for several
rates. In the table, for the ensembles CPCC/CSC−PCC, ρ2 is the
permeability rate of the parity bits of the upper encoder and
the lower encoder. For example, ρ2 = 0.5 means that half of
the bits of vU and vL are punctured (thus, the resulting code
rate is R = 1/2). Note that ρ2 corresponds to permeability
ρ defined in Section VI. Here, we use ρ2 instead to unify
notation with that of SCCs. For the ensembles CSCC/CSC−SCC

(based on the SCCs introduced in [34], [36]), for a given code
rate R the puncturing rates ρ0, ρ1 and ρ2 (see Section VI)
may be optimized. In this paper, we consider ρ0 = 1, i.e., the
overall code is systematic, and we optimize ρ1 and ρ2 such that
the MAP threshold of the (uncoupled) SCC is maximized.7

Note that, if ρ0 = 1, for a given R the optimization simplifies
to the optimization of a single parameter, say ρ2, since ρ1
and ρ2 are related by ρ1 = 1

R − 1− 2ρ2.8 Rate-compatibility
can be guaranteed by choosing ρ1 and ρ2 to be decreasing
functions of R. In the table, we report the coupling thresholds
for coupling memory m = 1, 2, 3, denoted by ε1SC, ε2SC, and
ε3SC, respectively. The gap to the Shannon limit is shown by
δSH = (1−R)− εMAP.

For large enough coupling memory, we observe thresh-
old saturation for both SC-PCCs and SC-SCCs. The value

7We remark that nonsystematic codes, i.e., ρ0 < 1, lead to better MAP
thresholds. In this case, the optimum is to puncture last the parity bits of the
inner encoder, i.e., for R < 1/2 ρ2 = 1 and for R ≥ 1/2 ρ0 = 0, ρ1 = 0
and ρ2 = 1/2R.

8Alternatively, one may optimize ρ1 and ρ2 such that the BP threshold of
the SC-SCC is optimized for a given coupling memory m.
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TABLE II
THRESHOLDS FOR PUNCTURED SPATIALLY COUPLED TURBO CODES

Ensemble Rate states ρ2 εBP εMAP ε1SC ε3SC ε5SC mmin δSH
CPCC/CSC−PCC 1/3 4 1.0 0.6428 0.6553 0.6553 0.6553 0.6553 1 0.0113
CSCC/CSC−SCC 1/3 4 1.0 0.5405 0.6654 0.6437 0.6650 0.6654 4 0.0012
CPCC/CSC−PCC 1/3 8 1.0 0.6368 0.6621 0.6617 0.6621 0.6621 2 0.0045
CSCC/CSC−SCC 1/3 8 1.0 0.5026 0.6663 0.6313 0.6647 0.6662 6 0.0003
CPCC/CSC−PCC 1/2 4 0.5 0.4606 0.4689 0.4689 0.4689 0.4689 1 0.0311
CSCC/CSC−SCC 1/2 4 0.5 0.3594 0.4981 0.4708 0.4975 0.4981 5 0.0019
CPCC/CSC−PCC 1/2 8 0.5 0.4651 0.4863 0.4862 0.4863 0.4863 2 0.0137
CSCC/CSC−SCC 1/2 8 0.5 0.3120 0.4993 0.4507 0.4970 0.4992 7 0.0007
CPCC/CSC−PCC 2/3 4 0.25 0.2732 0.2772 0.2772 0.2772 0.2772 1 0.0561
CSCC/CSC−SCC 2/3 4 0.25 0.2038 0.3316 0.3303 0.3305 0.3315 6 0.0018
CPCC/CSC−PCC 2/3 8 0.25 0.2945 0.3080 0.3080 0.3080 0.3080 1 0.0253
CSCC/CSC−SCC 2/3 8 0.25 0.1507 0.3326 0.2710 0.3278 0.3323 7 0.0007
CPCC/CSC−PCC 3/4 4 0.166 0.1854 0.1876 0.1876 0.1876 0.1876 1 0.0624
CSCC/CSC−SCC 3/4 4 0.166 0.1337 0.2486 0.2155 0.2471 0.2486 5 0.0014
CPCC/CSC−PCC 3/4 8 0.166 0.2103 0.2196 0.2196 0.2196 0.2196 1 0.0304
CSCC/CSC−SCC 3/4 8 0.166 0.0865 0.2495 0.1827 0.2416 0.2488 8 0.0005
CPCC/CSC−PCC 4/5 4 0.125 0.1376 0.1391 0.1391 0.1391 0.1391 1 0.0609
CSCC/CSC−SCC 4/5 4 0.125 0.0942 0.1990 0.1644 0.1968 0.1989 7 0.0011
CPCC/CSC−PCC 4/5 8 0.125 0.1628 0.1698 0.1698 0.1698 0.1698 1 0.0302
CSCC/CSC−SCC 4/5 8 0.125 0.0517 0.1996 0.1302 0.1885 0.1982 8 0.0004
CPCC/CSC−PCC 9/10 4 0.055 0.0578 0.0582 0.0582 0.0582 0.0582 1 0.0418
CSCC/CSC−SCC 9/10 4 0.055 0.0269 0.0996 0.0624 0.0930 0.0988 8 0.0012
CPCC/CSC−PCC 9/10 8 0.055 0.0732 0.0761 0.0761 0.0761 0.0761 1 0.0239
CSCC/CSC−SCC 9/10 8 0.055 0.0128 0.0999 0.0384 0.0765 0.0931 16 0.0001

TABLE III
THRESHOLDS FOR PUNCTURED BRAIDED CONVOLUTIONAL CODES

Ensemble Rate states ρ2 εBP εMAP ε1SC ε3SC ε5SC δSH
Type-I 1/3 4 1.0 0.5541 0.6653 0.6609 0.6644 0.6650 0.0013
Type-II 1/3 4 1.0 0.5541 0.6653 0.6651 0.6653 0.6653 0.0013
Type-I 1/2 4 0.5 0.3013 0.4993 0.4932 0.4980 0.4988 0.0007
Type-II 1/2 4 0.5 0.3013 0.4993 0.4988 0.4993 0.4993 0.0007
Type-I 2/3 4 0.25 – 0.3331 0.3257 0.3315 0.3325 0.0002
Type-II 2/3 4 0.25 – 0.3331 0.3323 0.3331 0.3331 0.0002
Type-I 3/4 4 0.166 – 0.2491 0.2411 0.2473 0.2484 0.0009
Type-II 3/4 4 0.166 – 0.2491 0.2481 0.2491 0.2491 0.0009
Type-I 4/5 4 0.125 – 0.1999 0.1915 0.1979 0.1991 0.0001
Type-II 4/5 4 0.125 – 0.1999 0.1986 0.1999 0.1999 0.0001
Type-I 9/10 4 0.055 – 0.0990 0.0893 0.0966 0.0980 0.0010
Type-II 9/10 4 0.055 – 0.0990 0.0954 0.0990 0.0990 0.0010

mmin in Table II denotes the smallest coupling memory for
which threshold saturation is observed numerically. Interest-
ingly, thanks to the threshold saturation phenomenon, for
large enough coupling memory SC-SCCs achieve better BP
threshold than SC-PCCs. We remark that SCCs yield better
minimum Hamming distance than PCCs [22].

Comparing ensembles with 8-state component encoders and
ensembles with 4-state component encoders, we observe that
the MAP threshold improves for all the considered cases, since
the overall codes become stronger. For PCCs, the BP threshold
also improves for 8-state component encoders, but only with
puncturing, i.e., for R > 1/3. For SCCs, on the other hand,
the BP threshold gets worse if higher memory component
encoders are used. Due to this fact, a higher coupling memory
mmin is needed for SC-SCCs with 8-state component encoders
until threshold saturation is observed, and this effect becomes

more pronounced for larger rates. However, the achievable BP
thresholds of SC-SCCs are better than those of SC-PCCs for
all rates.

In Table III, we give BP thresholds for Type-I and Type-II
SC-BCCs with different coupling memories and several rates.9

As for PCCs, ρ2 is the permeability rate of the parity bits of
the upper encoder and the lower encoder. We also report the
BP threshold and MAP threshold of the uncoupled ensembles.
Almost in all rates, the BP decoder works poorly for uncoupled
BCCs and the BP thresholds are worse than those of PCCs
and SCCs (an exception are SCCs with R = 1/3). This is
specially significant for rates R ≥ 2/3, for which the BP
thresholds of uncoupled BCCs are very close to zero. On the

9The BP threshold of the Type-I BCC with m = 1 corresponds to the BP
threshold of the original BCC.
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TABLE IV
THRESHOLDS FOR RATE-1/2 TCS, SC-TCS, LDPC AND SC-LDPC

CODES

Ensemble states εBP εMAP ε1SC
LDPC (3, 6) - 0.4294 0.4881 0.4880
LDPC (4, 8) - 0.3834 0.4977 0.4944
LDPC (5, 10) - 0.3415 0.4994 0.4826
CPCC/CSC−PCC 4 0.4606 0.4689 0.4689
CSCC/CSC−SCC 4 0.3594 0.4981 0.4708
CPCC/CSC−PCC 8 0.4651 0.4863 0.4862
CSCC/CSC−SCC 8 0.3120 0.4993 0.4507
Type-I CBCC 4 0.3013 0.4993 0.4932
Type-II CBCC 4 0.3013 0.4993 0.4988

other hand, the MAP thresholds of BCCs are better than those
of both PCCs and SCCs for all rates. As for SC-PCCs and SC-
SCCs, the BP thresholds improve if coupling is applied. Type-
II BCCs yield better thresholds than Type-I BCCs and achieve
threshold saturation for small coupling memories. In contrast,
for the coupling memories considered, threshold saturation is
not observed for Type-I BCCs.

For comparison purposes, in Table IV we report the εBP,
εMAP, and ε1SC for three rate-1/2 LDPC code ensembles. As it
is well known, by increasing the variable node degree, the
MAP threshold improves, but the BP threshold decreases.
Similarly to TCs, applying the coupling improves the BP
threshold. Among all the ensembles shown in Table IV, the
(5, 10) LDPC ensemble has the best MAP threshold. However,
for this ensemble the gap between the BP and MAP thresholds
is larger than that of the other LDPC code ensembles and
the coupling (with m = 1) is not able to completely close
this gap, therefore ε1SC is worse than that of other two SC-
LPDC code ensembles. Among all codes in Table IV, the best
εBP is achieved by the Type II BCC ensemble. Similar to the
(5, 10) LDPC code ensemble, the gap between the BP and
the MAP threshold is relatively large for BCCs. However, for
BCCs the BP threshold increases significantly after applying
coupling with m = 1. In addition, the only way to increase the
MAP threshold of the LDPC codes is to increase their variable
node degree, but in TCs the BP threshold can be improved by
several different methods, e.g., increasing the component code
memory, selecting a good ensemble, or increasing the variable
node degree.

Fig. 8 shows the bit error rate (BER) for SC-SCCs with
L = 100 and m = 1 on the binary erasure channel for
two different rates, R = 1/4 (solid blue line) and R = 1/3
(solid red line). Here, we consider the coupling of SCCs with
block length K = 1024, hence the information block length
of the SC-SCC ensemble is K = 101376. In addition, we
plot in the figure the BER curves for the uncoupled ensemble
(dotted lines) with K = 3072. For comparison, we also plot
the BER using a sliding window decoder with window size
W = 3 and K = 1024 (dashed lines) which has a decoding
latency equal to that of the uncoupled ensemble. For both rates,
the BER improves significantly applying coupling and the
use of the window decoder entails only a slight performance

0.5 0.6 0.7 0.8 0.9 1
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Fig. 8. BER results for SC-SCCs with L = 100 and m = 1 on the binary
erasure channel.

degradation with respect to full decoder 10. We remark that
the comparison between SC-TCs and other types of codes is
a new and ongoing field of research. In [38] the authors have
compared BCC and SC-LDPC codes for rate 1/2 and under
the assumption of similar latency for both. The results in [38]
show that the considered BCC ensemble outperforms the SC-
LDPC code ensemble.

VIII. THRESHOLD SATURATION

The numerical results in the previous section suggest that
threshold saturation occurs for SC-TCs. In this section, for
some relevant ensembles, we prove that, indeed, threshold
saturation occurs. To prove threshold saturation we use the
proof technique based on potential functions introduced in
[4], [7]. In the general case, the DE equations of TCs form
a vector recursion. However, we show that, for some relevant
TC ensembles, it is possible to rewrite the DE vector recursion
in a form which corresponds to the recursion of a scalar
admissible system. We can then prove threshold saturation
using the framework in [4] for scalar recursions. Since the
proof for scalar recursions is easier to describe, we first address
this case, and we then highlight the proof for the general case
of TCs with a vector recursion based on the framework in [7].

Definition 1 ( [4], [5]): A scalar admissible system (f, g),
is defined by the recursion

x(i) = f
(
g(x(i−1)); ε

)
, (59)

where f : [0, 1]× [0, 1]→ [0, 1] and g : [0, 1]→ [0, 1] satisfy
the following conditions.

1) f is increasing in both arguments x, ε ∈ (0, 1];
2) g is increasing in x ∈ (0, 1];
3) f(0; ε) = f(x; 0) = g(0) = 0;
4) f and g have continuous second derivatives.

10In this work, we are focusing on the BER of TC and SC-TC ensembles
in the waterfall region. However, spatial coupling does also preserve, or even
improve, the error floor performance. For example, the minimum distance
of each SC-TC ensemble is lower bounded by the minimum distance of the
corresponding uncoupled TC ensemble. This can be shown by extending the
results for BCCs derived in [37].
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In the following we show that the DE equations for some
relevant TCs form a scalar admissible system.

A. Turbo-like codes as Scalar Admissible Systems

1) PCC: The DE equations (10)–(15) form a vector recur-
sion. However, if the code is built from identical component
encoders, i.e., fU,s = fL,s , fs, it follows

p
(i)
U,s = p

(i)
L,s , x(i).

Using this and substituting (12) into (10) and (15) into (13),
the DE can then be written as

x(i) = fs(εx
(i−1), ε), (60)

with initialization x(0) = 1.
Lemma 2: The DE recursion of a PCC with identical

component encoders, given in (60), forms a scalar admissible
system with f(x; ε) = fs(ε · x, x) and g(x) = x.

Proof: It is easy to show that all conditions in Definition 1
are satisfied for g(x) = x. We now prove that f(x; ε) satisfies
Conditions 1, 3 and 4. Note that f(x; ε) is the transfer function
of a rate-1/2 convolutional encoder. According to equation (1),
this function can be written as f(p1, p2), where p1 = ε ·x and
p2 = ε. Using Lemma 1, f(p1, p2) is increasing with p1 and
p2, therefore f(x; ε) is increasing with x and ε and Condition
1 is satisfied.

To show that Condition 3 holds, it is enough to realize
that for ε = 0 the input sequence can be recovered perfectly
from the received sequence, i.e., f(x; 0) = 0, as there is
a one-to-one mapping between input sequences and coded
sequences. Furthermore, when x = 0, the input sequence is
fully known by a-priori information and the erasure probability
at the output of the decoder is zero, i.e., f(x; 0) = 0.

Finally, f(x; ε) is a rational function and its poles are
outside the interval x, ε ∈ [0, 1] (otherwise we may get infinite
output erasure probability for a finite input erasure probabil-
ity), hence it has continuous first and second derivatives inside
this interval.

2) SCC: Consider the DE equations of the SCC ensemble
in (25)–(30), which form a vector recursion. For identical
component encoders, fI,s = fO,s , fs and fI,p = fO,p , fp.
Using this and q(i)I , x(i), by substituting (26)–(30) into (25),
the DE recursion can be rewritten as

x(i) = ε · fs

(
εg(x(i−1)), ε

)
, (61)

where

g(x(i)) =
fs

(
x(i), x(i)

)
+ fp

(
x(i), x(i)

)
2

, (62)

and the initial condition is x(0) = 1.
Lemma 3: The DE recursion of a SCC with identical

component encoders, given in (61) and (62), form a scalar
admissible system with f(x; ε) = ε · fs(ε · x, ε) and

g(x) =
fs(x, x) + fp(x, x)

2
.

Proof: The proof follows the same arguments as the proof
of Lemma 2.

3) BCC: Similarly to PCCs and SCCs, the DE equations of
BCCs (see (42)–(44)) form a vector recursion. With identical
component encoders, due to the symmetric structure of the
code, fU,k = fL,k , fk and p(i)U,k = p

(i)
U,k , x

(i)
k for k = 1, 2, 3.

Using this, (42)–(44) can be rewritten as

x
(i)
1 = f1

(
ε · x(i−1)1 , ε · x(i−1)3 , ε · x(i−1)2

)
(63)

x
(i)
2 = f2

(
ε · x(i−1)1 , ε · x(i−1)3 , ε · x(i−1)2

)
(64)

x
(i)
3 = f3

(
ε · x(i−1)1 , ε · x(i−1)3 , ε · x(i−1)2

)
. (65)

The above DE equations are still a vector recursion. To write
the recursion in scalar form, it is necessary to have identical
transfer functions for all the edges which are connected to
factor nodes TU and T L. This is needed because all variable
nodes in a BCC receive a-priori information. In order to
achieve this property, we can apply some averaging over the
different types of code symbols. In particular, we can randomly
permute the order of the encoder outputs v(l)τ , l = 1, . . . , n. For
each trellis section τ the order of these n symbols is chosen
indepently according to a uniform distribution. Equivalently,
instead of performing this permutation on the encoder outputs
we can define a corresponding component encoder with a
time-varying trellis in which the branch labels are permuted
accordingly. Then, it results x(i)1 = x

(i)
2 = x

(i)
3 , x(i) and

all transfer functions are equal to the average of the transfer
functions f1, f2, f3,

fave =
f1 + f2 + f3

3
.

Using this, the DE equations can be simplified as

x(i) = fave(ε · x(i−1), ε · x(i−1), ε · x(i−1)). (66)

Lemma 4: The DE recursion of a BCC with identical com-
ponent encoders and time varying trellises, given in (66), form
a scalar admissible system with f(x; ε) = fave(ε ·x, ε ·x, ε ·x)
and g(x) = x.

Proof: The proof follows the same arguments as the proof
of Lemma 2.

B. Single System Potential

Definition 2 ( [4], [5]): For a scalar admissible system,
defined in Definition 1, the potential function U(x; ε) is

U(x; ε) =

∫ x

0

(
z − f(g(x); ε)

)
g′(z)dz (67)

= xg(x)−G(x)− F (g(x); ε),

where F (x; ε) =
∫ x
0
f(z; ε)dz and G(x) =

∫ x
0
g(z)dz.

Proposition 1 ( [4], [5]): The potential function has the
following properties.

1) U(x; ε) is strictly decreasing in ε ∈ (0, 1];
2) An x ∈ [0, 1] is a fixed point of the recursion (59) if

and only if it is a stationary point of the corresponding
potential function.

Definition 3 ( [4], [5]): If the DE recursion is the recursion
of a BP decoder, the BP threshold is [4]

εBP = sup
{
ε ∈ [0, 1] : U ′(x; ε) > 0, ∀x ∈ (0, 1]

}
.
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Fig. 9. Potential function of a PCC ensemble.

According to Definition 3, for ε < εBP, the derivative of the
potential function is always larger than zero for x ∈ (0, 1], i.e.,
the potential function has no stationary point in x ∈ (0, 1].

Definition 4 ( [4], [5]): For ε > εBP, the minimum unstable
fixed point is u(ε) = sup

{
x̃ ∈ [0, 1] : f(g(x); ε) < x, x ∈

(0, x̃)
}

. Then, the potential threshold is defined as [4]

ε∗ = sup
{
ε ∈ [0, 1] : u(x) > 0, min

x∈[u(x),1]
U(x; ε) > 0

}
.

The potential threshold depends on the functions f(x; ε) and
g(x).

Example 3: Consider rate-1/3 PCCs with identical 2-state
component encoders with generator matrix G = (1, 1/3). For
this code ensemble,

fs(ε · x, ε) =
xε2(2− 2ε+ xε2)

(1− ε+ xε2)2
.

Therefore,

Fs(x; ε) =
xε2

1− ε+ xε2
,

and

U(x; ε) =
xε3 + (1− ε− 2ε2)x2

2(1− ε+ xε2)
.

4
Example 4: Consider the PCC ensemble in Fig. 2(b) with

identical component encoders with generator matrix G =
(1, 5/7). The DE recursion of this ensemble is given in (60),
where fs is the transfer function of the (1, 5/7) component
encoder. The corresponding potential function is

U(x; ε) = x2 −G(x)− Fs(x; ε) =
x2

2
− Fs(x; ε) , (68)

where Fs(x; ε) =
∫ x
0
fs(ε · z, ε)dz and G(x) =

∫ x
0
g(z)dz =

x2

2 . The potential function is shown in Fig. 9 for several values
of ε. As it is illustrated, for ε < 0.6428 the potential function
has no stationary point. The BP threshold and the potential
threshold are ε = 0.6428 and ε = 0.6553, respectively (see
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Fig. 10. Potential function of a SCC ensemble.
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Fig. 11. Potential function of a BCC ensemble.

Definitions 3 and 4). These results match with the DE results
in Table II. 4

Example 5: The potential function of the SCC ensemble in
Fig. 2(c) with identical component encoders with generator
matrix G = (1, 5/7) is shown in Fig. 10. The BP threshold
and the potential threshold are ε = 0.689 and ε = 0.748,
respectively, which match with the DE results in Table II. 4

Example 6: Consider the BCC ensemble in Fig. 2(d) with
identical component encoders with generator matrix given in
(58) and time-varying trellises. The potential function of this
code is depicted in Fig. 11. The BP threshold and the potential
threshold are ε = 0.5522 and ε = 0.6654, respectively.
Note that these values are slightly different from the values
in Table III. This is due to the fact that we considered an
ensemble with time-varying trellises, which can be modeled
by means of a scalar recursion. The ensemble considered in
Table III needs to be analyzed by means of a vector recursion.
4
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C. Coupled System and Threshold Saturation

Theorem 1: Consider a spatially coupled system defined by
the following recursion at time t,

x
(i)
t =

1

1 +m

m∑
j=0

ft+j

( 1

1 +m

m∑
k=0

g(x
(i−1)
t+j−k); ε

)
. (69)

If f(x; ε) and g(x) form a scalar admissible system, for large
enough coupling memory and ε < ε∗, the only fixed point of
the recursion is x = 0.

Proof: The proof follows from [4].
In the following we show that the DE recursions of SC-

TCs (with identical component encoders) can be written in the
form (69). As a result, threshold saturation occurs for these
ensembles.

1) PCCs: Consider the SC-PCC ensemble in Fig. 5(a) with
identical component encoders. Due to the symmetric coupling
structure, it follows that (cf. (16) and (17))

q̄
(i,t)
U = q̄

(i,t)
L , x

(i)
t .

Now, using x(i)t in (18) and (21), we can write

q
(i,t)
L = q

(i,t)
U = ε · 1

m+ 1

m∑
k=0

x
(i−1)
t−k . (70)

Finally, by substituting (70) into (19) and (20) and the results
into (16) and (17), the recursion of SC-PCCs can be rewritten
as

x
(i)
t =

1

1 +m

m∑
j=0

fs,t+j

( ε

m+ 1
·
m∑
k=0

x
(i−1)
t+j−k, ε

)
. (71)

Note that the recursion in (71) is identical to the recursion in
(69).

2) SCCs: Consider the SC-SCC ensemble in Fig. 5(b) with
identical component encoders. Define x(i)t , q

(i,t)
I (see (32))

Now, use it in (33)–(36). Finally, by substituting the result in
(32), the recursion of a SC-SCC an be rewritten as

x
(i)
t =

1

1 +m

m∑
j=0

ε ·fs,t+j

( ε

m+ 1
·
m∑
k=0

g(x
(i−1)
t+j−k), ε

)
, (72)

where g(x) is shown in equation (62). The recursion in (72)
is identical to the recursion in Theorem 1.

3) BCCs: Consider a coupling for BCCs slightly different
from the one for Type-II BCCs. At time t, each of the
parity sequences vU

t and vL
t is divided into m+ 1 sequences,

vU
t,j , j = 0, . . . ,m, and vL

t,j , j = 0, . . . ,m, respectively
(in Type-II BCCs they are divided into m sequences). The
sequences vU

t−j,j and vL
t−j,j are multiplexed and reordered,

and are used as the second input of the lower and upper
encoder, respectively. Note that in this way of coupling, part
of the parity bits at time t are used as input at the same
time instant t. Now, similarly to uncoupled BCCs, consider
identical time-varying trellises. Let x(i)t denote the extrinsic
erasure probability from TU

t through all its edges in the
ith iteration. The erasure probabilities to TU

t through all its

incoming edges are equal and are given by the average of the
erasure probabilities from variable nodes vt′ , t′ = t−m, . . . , t,

q
(i)
t =

ε

1 +m

m∑
k=0

x
(i−1)
t−k .

Thus, the erasure probabilities from TU
t and T L

t are identical
and equal to fave,t(q

(i)
t , q

(i)
t , q

(i)
t ). Finally, the recursion at time

slot t is

x
(i)
t =

1

1 +m

m∑
j=0

fave,t+j(q
(i)
t+j , q

(i)
t+j , q

(i)
t+j). (73)

The recursion in (73) is identical to (69).

D. Random Puncturing and Scalar Admissible System

In the following, we show that the DE recursion of punc-
tured TC ensembles can also be rewritten as a scalar admis-
sible system for some particular cases. Then, threshold satu-
ration follows from the discussion in the previous subsection.

1) PCC: Consider the PCC ensemble with identical com-
ponent encoders and random puncturing of the parity bits with
permeability rate ρ. The DE recursion can be rewritten as,

x(i) = fs(εx
(i−1), 1− (1− ε)ρ).

The above equation is a recursion of a scalar admissible system
and satisfies the conditions in Definition 1, where g(x) = x
and f(x; ε) = fs(ε · x, 1− (1− ε)ρ).

2) SCC: Consider random puncturing of the SCC ensemble
with identical component encoders. Assuming ρ0 = ρ1 (i.e.,
we puncture also systematic bits of the outer code), we can
rewrite the DE recursion as

x(i) = ερ1 · fs(ερ1x
(i−1), ερ2),

where ερ1 = 1−(1−ε)ρ1 and ερ2 = 1−(1−ε)ρ2. The above
equation is the recursion of a scalar admissible system, where
f(x; ε) = ερ1fs(ερ1 ·x, ερ2) and g(x) is obtained by equation
(62).

3) BCC: Consider random puncturing of the BCC en-
semble with identical time-varying trellises. Assume that the
systematic bits and the parity bits of the upper and lower
encoders are punctured with the same permeability rate ρ.
Then, the DE recursion can be rewritten as (66), where ε
should be replaced by ερ = 1− (1− ε)ρ.

E. Turbo-like Codes as Vector Admissible Systems

In general, the DE recursions of TCs are vector recursions.
In this case, it is possible to prove threshold saturation using
the technique proposed in [7] for vector recursions. The proof
is similar to that of scalar recursions, albeit more involved.
In the following, we show how to rewrite the recursion of
punctured PCCs as a vector admissible system recursion.
Then, following [7], we can prove threshold saturation. Using
the same technique, it is possible to prove threshold saturation
for SCCs and BCCs as well.

Consider the DE equations of the PCC ensemble in (10)–
(15). To reduce the number of the equations, substitute (12)
and (15) into (10) and (13), respectively. Consider random
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puncturing of information bits, upper encoder parity bits and
lower encoder parity bits with permeability rates ρ0, ρ1 and
ρ2, respectively. By considering x

(i)
1 , pU,s and x

(i)
2 , pL,s,

the DE recursion can be simplified to

x
(i)
1 = fU,s(ερ0 · x(i−1)2 , ερ1)

x
(i)
2 = fL,s(ερ0 · x(i−1)1 , ερ2).

The above equations can be written in vector format as

x(i) = f(g(x(i−1)); ε), (74)

where, x = [x1, x2], f(x; ε) = [fU,s(ερ0 · x1, ερ1), fL,s(ερ0 ·
x2, ερ2)] and g(x) = [x2, x1]. Is it easy to verify that the
recursion in (74) satisfies the conditions in [7, Def. 1], hence
(74) is the recursion of a vector admissible system. For this
vector admissible system, the line integral is path independent
in [7, Eq. (2)] and the potential function is well defined. So,
we can define (see [7]) D = I2×2, G = x1 · x2 and

F =

∫ x1

0

fU,s(ερ0 · z, ερ1) dz +

∫ x2

0

fL,s(ερ0 · z, ερ2) dz.

It is possible to show that the DE recursion of SC-PCCs can
be rewritten in the same form as [7, Eq. (5)] and by using [7,
Th. 1], threshold saturation can be proven.

IX. CONCLUSION

In this paper we investigated the impact of spatial cou-
pling on the BP decoding threshold of turbo-like codes. We
introduced the concept of spatial coupling for PCCs and
SCCs, and generalized the concept of coupling for BCCs.
Considering transmission over the BEC, we derived the exact
DE equations for uncoupled and coupled ensembles. For all
spatially coupled ensembles, the BP threshold improves and
our numerical results suggest that threshold saturation occurs if
the coupling memory is chosen sufficiently large. We therefore
constructed rate-compatible families of SC-TCs that achieve
close-to-capacity performance for a wide range of code rates.

We showed that the DE equations of SC-TC ensembles
with identical component encoders can be properly rewritten
as a scalar recursion. For SC-PCCs, SC-SCCs and BCCs we
then proved threshold saturation analytically, using the proof
technique based on potential functions proposed in [4], [5].
Finally, we demonstrated how vector recursions can be used
to extend the proof to more general ensembles.

A generalization of our results to general binary-input mem-
oryless channels is challenging, because the transfer functions
of the component decoders can no longer be obtained in
closed form. Even a numerical computation of the exact
thresholds is difficult, but Monte Carlo methods and Gaussian
approximation techniques could be helpful tools for finding
approximate thresholds. EXIT charts, for example, have been
widely used for analyzing uncoupled TCs and may be use-
ful for estimating the thresholds of SC-TCs. A connection
between EXIT functions and potential functions of spatially
coupled systems is given in [6]. An investigation of SC-TC
ensembles along this line may be an interesting direction for
future work. The simulation results for SC-BCCs over the
AWGN channel in [23] and [38] clearly show that spatial

coupling significantly improves the performance, suggesting
that threshold saturation also occurs for this channel.

The invention of turbo codes and the rediscovery of LDPC
codes, allowed to approach capacity with practical codes.
Today, both turbo-like codes and LDPC codes are ubiquitous
in communication standards. In the academic arena, however,
the interest on turbo-like codes has been declining in the
last years in favor of the (considered) more mathematically-
appealing LDPC codes. The invention of spatially coupled
LDPC codes has exacerbated this situation. Without spatial
coupling, it is well known that PCCs yield good BP thresholds
but poor error floors, while SCCs and BCCs show low
error floors but poor BP thresholds. Our SC-TCs, however,
demonstrate that turbo-like codes can also greatly benefit from
spatial coupling. The concept of spatial coupling opens some
new degrees of freedom in the design of codes on graphs:
designing a concatenated coding scheme for achieving the
best BP threshold in the uncoupled case may not necessarily
lead to the best overall performance. Instead of optimizing
the component encoder characteristics for BP decoding, it
is possible to optimize the MAP decoding threshold and
rely on the threshold saturation effect of spatial coupling.
Powerful code ensembles with strong distance properties such
as SCCs and BCCs can then perform close to capacity with
low-complexity iterative decoding. We hope that our work
on spatially coupled turbo-like codes will trigger some new
interest in turbo-like coding structures.
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