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NOx Formation in Rotary Kilns for Iron Ore Pelletization 

 

RIKARD EDLAND 

Division of Energy Technology 
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Chalmers University of Technology 

Abstract 
 

The production of iron ore pellets is often performed in the so-called Grate-Kiln process. The 

aim of the process is to oxidize the magnetite (Fe3O4) to hematite (Fe2O3) and to sinter the 

pellets so they can be used in steel manufacturing. The heat required for this is produced by 

combusting a pulverized fuel in a rotary kiln, forming a suspension flame. Due to the need to 

oxidize the pellets, large amounts of air are introduced to the kiln. Relating the amount of air to 

the fuel, an air-to-fuel equivalence ratio of 4-6 is obtained. Furthermore, the air is pre-heated to 

above 1000°C. High temperatures and large amounts of excess air are known to promote NOx 

formation and NOx emissions from iron ore processing plants are in general high. 

 

The aim of this work is to describe the NO formation in the rotary kiln and to identify governing 

parameters that may be altered to reduce the emissions. The thesis contains results from 

experiments in a pilot-scale kiln and from modeling work based on the same experiments. In 

the experiments, four coals were tested as well as co-firing coal with biomass. In-flame 

measurements of temperature and gas concentrations were performed with the use of a suction 

pyrometer and FTIR spectroscopy (+paramagnetism). Different primary measures for NOx 

reduction were also tested. Overall, reducing the primary air flow in the burner and co-firing 

coal with biomass were the most effective measures for reducing NOx emissions, compared to 

the reference case. Using natural gas and oil resulted in three times the amount of NOx. 

Reducing the total amount of excess air only resulted in a small NOx reduction, and increasing 

the secondary air temperature resulted in slightly decreased NOx formation. 

 

The general assumption in rotary kilns is that NOx is mostly formed by the thermal NO 

mechanism due to the high temperatures involved. Although this is certainly true for the cases 

with gas and oil, the experimental results indicate that NOx formed from the fuel-bound nitrogen 

is dominating the total NOx formation when solid fuels are used. The results from the detailed 

reaction modeling show that the thermal NO formation is of minor importance. Instead, the 

reduction of NO by char appears to be remarkably low in the kiln and responsible for the high 

net conversion of fuel-bound nitrogen to NO. 
 

 

 

Keywords: Nitrogen oxides, combustion chemistry, NOx formation, emissions control, rotary 

kiln, Grate-Kiln process 
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1  Introduction 

The production of iron ore pellets, which is vital to the production of steel, is expected to be an 

important industry for many years to come. The pelletizing of iron ore is often performed in the 

‘Grate-Kiln’ process, in which the iron ore is heated, first on a traveling grate and then in a 

rotary kiln. The pelletizing process is energy-intensive and powered by combustion in the 

presence of large volumes of hot air (>1000°C), usually employing fossil fuels. NOx emissions 

from this combustion process are generally high, and these emissions will need to be controlled 

in order to comply with upcoming NOx legislation.  

In Europe, NOx emissions have decreased significantly over the last few decades thanks to strict 

NOx regulations combined with the development of NOx mitigation technologies. However, 

specific features of the Grate-Kiln process, e.g., the rotation of the kiln and the large volumetric 

gas flows, make conventional methods for NOx mitigation unfeasible. Therefore, it is important 

to understand and describe accurately the mechanisms governing NOx formation in order to 

identify and evaluate the mitigation possibilities. Recent targets set by the European Parliament 

to reduce emissions is a major motivating factor for this research. 

1.1 Aim and scope 

The overall aim of the work is to describe the NOx formation under combustion conditions that 

are relevant for the Grate-Kiln process. An important part is to identify governing parameters 

that are feasible to alter within the constraints of the pelletizing process in order to reduce the 

NOx emissions. The NOx chemistry is evaluated through a combination of pilot-scale 

experiments and combustion modeling. 

1.2 Outline of the thesis 

This thesis consists of a summary of the work and the three appended papers. Chapter 2 

provides the background related to the effects of NOx and current legislative measures, as well 

as a description of the Grate-Kiln process. The aim of this chapter is to set the thesis in an 

appropriate context. Chapter 3 presents the theoretical framework of the chemistry and the 

processes that govern NOx formation. Chapter 4 summarizes the previous research on NOx 

mitigation in rotary kilns. Chapters 5 and 6 describe the experimental and numerical methods 

used. Chapter 7 provides the results and a discussion. The thesis concludes with a summary and 

ideas for future work. 

Paper I is an experimental investigation of the impacts of fuel and combustion parameters on 

NOx formation in rotary kilns. Different coals, as well as co-firing of coal and biomass were 

tested. In-flame measurements of temperature and gas composition were performed with 

suction pyrometry and FTIR spectroscopy. Paper II evaluates the importance of the NOx 

formation mechanisms in iron ore rotary kilns using detailed reaction modeling. Paper III is an 

investigation of the gas-phase chemistry and how it depends on the combustion temperature 

and mixing of the fuel and air. 
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2 Background 

2.1 Nitrogen oxides 

A nitrogen oxide molecule is composed of nitrogen and oxygen atoms. There are several 

theoretical possibilities for the arrangement of these atoms, although the only relevant 

compounds in terms of atmospheric pollution are nitric oxide (NO), nitrogen dioxide (NO2), 

and nitrous oxide (N2O). The term “NOx” is a generic term for NO and NO2 (as they are closely 

related), whereas N2O is not usually included in this term. N2O is a potent greenhouse gas (more 

potent by orders of magnitude than CO2), although it is not directly hazardous to humans or the 

environment. In contrast, both NO and NO2 are inherently toxic and may cause lung injury in 

humans. NO is considered to less toxic but is the main precursor of NO2 and is, therefore, of 

equal importance. The main problems associated with NOx are however secondary effects, 

which result in the formation of tropospheric ozone and acid deposition. Tropospheric ozone 

(O3) represents ozone that is close to the ground (the troposphere). Although the ozone in the 

upper atmosphere (the stratosphere) is important for protecting the planet from UV-radiation, 

it is hazardous to humans as it harms the respiratory system and causes damage to vegetation 

and crops [1-3]. Ozone is responsible for many of the negative health effects associated with 

“smog”, which blights many urban areas around the world. Ozone may be formed by the 

reaction between an oxygen molecule (O2) and an oxygen radical (O). While natural 

concentrations of oxygen radicals are low, the decomposition of NO2 by sunlight increases this 

concentration, thereby increasing the level of ozone. The formation of ozone through NO2 is 

described by reactions R 2-1 and R 2-2 below, where hv is the energy from solar radiation. 

 𝑁𝑂2 + ℎ𝑣 → 𝑁𝑂 + 𝑂 R 2-1 

 𝑂 + 𝑂2 → 𝑂3 R 2-2 

The other major problem with NOx is acid deposition, in the form of either acid rain (wet 

deposition) or gas and particles (dry deposition). Once NOx is released into the atmosphere it 

can react with water vapor to form nitric acid (HNO3), which can be transported thousands of 

kilometers before being deposited as acid rain. The resulting acidification of the soil and 

waterways is harmful to the vegetation and aquatic wildlife, and has caused severe 

environmental problems in many parts of the world [4]. Emissions of sulfur oxide (SOx) also 

cause acid deposition (in the form of H2SO4). However, SOx emissions have been efficiently 

controlled during the last few decades by desulfurization and flue gas cleaning, and the problem 

of acid deposition has been resolved in many locations. Thus, in industrialized countries, acid 

rain is now mainly caused by NOx emissions. 

2.2 NOx legislation 

Although NOx may form naturally, e.g., during lightning [5], anthropogenic activity is the main 

cause of increased NOx levels in the atmosphere [6]. Most NOx originates from combustion 

processes in which nitrogen in the air or in the fuel reacts with oxygen to form NOx (discussed 

in detail in Chapter 3). In developed countries, NOx emissions originate essentially from the 
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transport sector and/or the industrial sector, and the regulatory frameworks for NOx emissions 

are important for these sectors. As this thesis deals with NOx emissions from an industrial 

process, the transport sector (i.e., road vehicles, ships, and airplanes) will not be considered in 

this work. 

In 1979, the Convention on Long-range Transboundary Air Pollution (CLRTAP) was signed 

by a group of 32 countries, which has today grown to include 51 countries worldwide [7]. The 

motivation for the convention was the rapid destruction of forests and entire ecosystems in 

European countries by acid rain from air pollution that originated thousands of kilometers away 

from the affected areas. The convention has been extended by several protocols, of which the 

Gothenburg protocol (1999) is the most recent [8]. This protocol aims by Year 2010 to reduce 

tropospheric ozone and the eutrophication and acidification of waterways by setting a limit on 

emissions of SOx, NOx, volatile organic compounds (VOC), and ammonia (NH3). The protocol 

was entered into force in Year 2003, and was revised in Year 2012 to achieve further reductions 

in these emissions by Year 2020. Within the European Union (EU), directives are launched to 

set limits as to how much each Member State may emit. The individual countries then regulate 

the emissions on a national level. The latest EU directive regarding air pollution is Directive 

2016/2284/EU [9], which entered into force on the 31st of December 2016; it states that NOx 

emissions should be reduced by 42% by Year 2020 and 63% by Year 2030, relative to the levels 

of emissions in Year 2015. Figure 1 shows the annual emissions of NOx and SOx for the EU-

15 countries and EU-28 countries, together with the limits set by EU directives to comply with 

the Gothenburg protocol [8-10]. The levels of NOx and SOx emissions have been reduced over 

the past 20 years, although the reduction of NOx levels has been less successful. It is also clear 

that further reductions in NOx levels are needed to reach the targets, while for SOx immediate 

action is less urgently needed. 

Apart from complying with national regulations to fulfil the targets set by Directive 

2016/2284/EU, combustion plants within the EU also need to follow other directives. Large 

combustion plants (≥50 MWth) are required to operate in accordance with the stipulations of a 

permit, which include an emission limit that is based on the use of best-available technologies 

(BAT) [11]. In practice, the processes are thereby obliged to implement BAT in order to be 

operational. However, it should be noted that the definition of BAT considers that the cost for 

controlling emissions should be proportionate to the environmental benefit. Medium-sized 

combustion plants (i.e., 1-50 MWth) operate under a directive (the Medium Combustion Plant 

Directive; MCPD) that entered into force in December of 2015. The limits set by MCPD should 

be reached by Year 2018 for new plants and by Year 2025 or Year 2030 for existing plants 

(depending on size) [12]. 
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Figure 1. NOx and SOx emissions per annum for the EU-15 and EU-28 countries [10]. The target goals for NOx 

and SOx emissions set by the EU [8, 9] are also shown indicated by the respective boxes. 

The environmental protection agency in Sweden (Naturvårdsverket) is the main authority 

responsible for reducing national emissions and they monitor the current status of emissions 

and evaluate possible improvements. They also provide information and support for legislation, 

which is finally decided upon by the Swedish Parliament. In 1992, a fee was imposed on NOx 

emissions from energy-generating plants, with the consequence that NOx emissions have 

decreased continuously since then [13]. The concerned companies are charged for their NOx 

emissions and the revenue from this charge is then redistributed to the concerned companies in 

accordance with how much energy they have produced [14]. Plants that are not producing 

power or district heating are not affected by this fee, although they still have to comply with 

national targets. In general, the Swedish targets are more ambitious than the EU targets. For 

example, the NOx limit for medium-sized combustion plants proposed by Naturvårdsverket is 

300 mg/m3
n (at 6% O2), as compared to the 650 mg/m3

n (at 6% O2) limit set by the EU in the 

MCPD [15]. The monitoring of regional emissions is performed by the county governments 

(Länsstyrelsen), which may propose even stricter targets. Länsstyrelsen report yearly to 

Naturvårdsverket, which in turn reports to the Swedish Government. 

Combustion-based power generation is relatively limited in Sweden, and most combustion 

occurs in other industrial processes or in car engines. In 1990, NOx emissions from the transport 

sector accounted for about 55% and the industrial sector accounted for about 17% of the 

national NOx emissions (the remainder is attributed to machinery, agriculture, and heat and 

power generation). In 2015, these values were 39% and 23%, respectively, although it should 

be noted that the absolute NOx emissions have been reduced in both sectors, albeit more so for 

the transport sector. The iron ore industry, which is the focus of this thesis, is a substantial 

emitter of NOx. The iron ore industry in Sweden typically has processing plants with a heat 

input of around 40 MW and will, therefore, most likely have to comply with the above-
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mentioned MCPD. However, limited research has been carried out on NOx mitigation measures 

for these plants. In these plants, the combustion conditions (which will be discussed later) differ 

from conventional combustion systems, and implementation of, for example, flue gas cleaning 

(SCR), is less efficient and more costly. With respect to iron ore pelletizing plants, the document 

that relates to BAT for iron and steel production [16] states that: “Due to high costs, the end-

of-pipe nitrogen oxide reduction of waste gas should only be considered in circumstances where 

environmental quality standards are otherwise not likely to be met”. The proportionate cost for 

the environmental benefit is thus still being discussed for this industry. Therefore, there is an 

incentive to develop cost-efficient means to reduce the NOx emissions from these plants. This 

necessitates an improvement of the current understanding of the relevant NOx formation 

mechanisms in rotary kilns. 

2.3 Iron ore production 

Global steel production has grown from 189 million metric tonnes in Year 1950 to 1630 million 

metric tonnes in Year 2016, with half of this growth having occurred since Year 2000 [17]. 

Since steel production requires iron ore, it is reasonable to assume that iron ore will continue to 

be an importance product, although its production has declined slightly since Year 2014 [18, 

19]. Australia is the leading producer of (useable) iron ore, followed by Brazil and China. 

Sweden produces around 1% of the world’s useable iron ore. 

Steel blast furnaces typically require iron ore that has an iron content of at least 58% and that 

is in a form that allows the formation of a bed through which gas can flow with low resistance. 

Therefore, the mined iron ore is often concentrated and shaped into spherical pellets. The 

concentration process for iron ore involves removing impurities through grinding, filtration, 

and the addition of chemicals. This results in a slurry that is then formed into soft pellets (so- 

called ‘green pellets’), which are heat-treated before shipping. The heat treatment, which 

includes drying, oxidation, sintering, and finally cooling of the pellets, can be performed either 

in a ‘Straight-Grate’ process or in a ‘Grate-Kiln’-process. In the Straight-Grate process, the soft 

pellets are heat-treated in a bed upon a moving grate. In the Grate-Kiln process, the pellets are 

first dried and strengthened on a moving grate before being sintered in a rotary kiln. The focus 

of the current work is on the Grate-Kiln process, a detailed description of which is given below. 

 

A schematic of the Grate-Kiln process is shown in Figure 2. While different plants may have 

slightly different configurations, the overall layout is similar. The green pellets are fed onto the 

grate where they are dried and preheated by the recirculated hot air flows from the cooler. The 

grate is divided into zones that receive air from a corresponding zone in the cooler. If the iron 

ore contains substantial amounts of magnetite (Fe3O4), a significant level of heat is released by 

the oxidation to hematite (Fe2O3), which begins in the later stages of the grate (TPH and PH). 

By the time they reach the end of the grate, the pellets are of sufficient strength to be introduced 

into the rotary kiln, where they are sintered. The kiln is slightly tilted, so that the pellets 

gradually move forward under gravity, and due to the kiln rotation the pellets are thoroughly 

mixed, so that uniformity of the final product is achieved. The heat required for sintering is 

transferred to the pellets by a flame, usually involving the combustion of coal, although oil and 

gas are also used. The hot sintered pellets then proceed to the cooler where they are cooled by 
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ambient air. The warm air that exits the cooler is used for preheating the pellets on the grate 

and as combustion air in the kiln. The air used in the kiln comes from the first part of the cooler 

(C1 in Figure 2) and may have a temperature of >1100°C, which is significantly higher than 

the temperature of the combustion air in heat and power generation plants. Although most of 

the oxidation of the pellets occurs on the grate, it is important to maintain high levels of oxygen 

in the kiln, to ensure a high degree of oxidation, and to prevent reduction back to magnetite. 

Thus, a large volumetric flow of air from C1 is needed. Relating the air flow to the fuel flow, 

an air-to-fuel equivalence ratio of 4-6 is obtained in the kiln, which is significantly higher than 

the equivalence ratio (approximately 1) in conventional solid fuel combustion.  

 

Figure 2. Schematic view of the Grate-Kiln process. The dotted lines indicate the air flows through the process.  
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3 Theory 

Combustion is a complex process that involves numerous chemical reactions. For simplicity, 

the written formulas often only include the initial reactants and final products. An example of 

this is the complete oxidation of methane: 

 𝐶𝐻4 + 2𝑂2 → 𝐶𝑂2 + 2𝐻2𝑂 R 3-1 

In reality, thousands of intermediate reactions occur, involving hundreds of intermediate 

species (CH3, OH, HO2, CO etc.). Some of these species are relatively stable (e.g., CO), while 

others are unstable (e.g., OH) and react rapidly with other compounds. The unstable species are 

mainly radicals (i.e., they have an unpaired valence electron), and they are crucial to 

understanding the progress of combustion. Radicals also govern the formation of NOx during 

combustion. The main elements of solid fuel carbon (C) and hydrogen (H) will end up as CO2 

and H2O regardless of how the combustion progresses, as long as combustion is complete. 

However, nitrogen (N) may be converted to NOx or N2 depending on the progress of the 

combustion process and the distribution of radicals. The composition of the radical pool is 

dependent upon the kinetics of the relevant reactions, which in turn are dependent upon the rate 

constants and the availability of reactants. The rate constant is commonly described by the 

modified Arrhenius expression: 

 
𝑘 = 𝐴𝑇𝑛𝑒−

𝐸𝑎
𝑅𝑇 Eq. 1 

 

where k is the rate constant, A and n are constants that describe the pre-exponential factor, T is 

the temperature, Ea is the activation energy and R is the gas law constant. For many reactions, 

n is assumed to be zero. Mathematically, this expression gives that the rate constant (and thus 

the reaction rate) increases exponentially with temperature, as long as the activation energy is 

not zero and the temperature is less than the value of Ea/2R. A high activation energy results in 

low rates at low temperatures. This expression is the most common way to express chemical 

reaction rates, although other expressions exist, for example, surface reactions. 

NOx is dominated by NO at the high temperatures involved in combustion processes. Therefore, 

research on NOx is concerned with the formation and destruction of NO rather than NO2. 

However, the emitted NO rapidly converts to NO2 at lower temperatures. This chapter describes 

the NO chemistry during combustion and discuss the influences of combustion parameters. The 

focus here is on solid fuel combustion, as solid fuels are the most commonly used in the Grate-

Kiln process. 

3.1 NO formation routes 

NO can be formed from either the nitrogen gas (N2) introduced with the air or the nitrogen 

introduced with the fuel (fuel-N). When firing gaseous or liquid fuels, it may be assumed that 

all the generated NO originates from N2, due to the absence or low level of fuel-N. In contrast, 

fuel-N is usually the main contributor to NO in solid fuel combustion [20]. Although NO 
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formation is complex and includes hundreds of intermediate reactions, it is – for pedagogic 

reasons – common to split the process into three mechanisms:  

 Thermal NO formation – reaction between N2 and O2 to form NO 

 Prompt NO formation  – reaction between N2 and fuel radicals to form NO 

 Fuel NO formation  – oxidation of fuel-N to form NO 

Thermal NO formation, as the name suggests, is important only at high temperatures, since the 

N2 molecule contains a strong triple bond that requires large amounts of energy to break. The 

mechanism is referred to as the Zeldovich mechanism [21]. Originally, it involved the two 

reactions R 3-2 and R 3-3 while the third reaction R 3-4 was added later. 

 𝑁2 + 𝑂 ↔ 𝑁𝑂 + 𝑁 R 3-2 

 𝑁 + 𝑂2 ↔ 𝑁𝑂 + 𝑂 R 3-3 

  𝑁 + 𝑂𝐻 ↔ 𝑁𝑂 + 𝐻  

 

R 3-4 

Thermal NO formation is limited by the forward reaction of R 3-2, and once activated, it fuels 

the other reaction by providing N-radicals. The activation energy of R 3-2 is approximately 318 

kJ/mol. Typically, the formation rate of thermal NO becomes significant, relative to other NO 

reactions, at around 1500°C, although the concentrations of O2 and N2 and NO are also 

important in determining the resulting rate. The gas residence times at these high temperatures 

are also important in terms of the total amount of NO produced via the thermal mechanism. 

Prompt NO formation converts N2 into NO through an initiating reaction between a 

hydrocarbon radical and an N2 molecule. The number of relevant reactions far exceeds the 

reactions involved in thermal NO formation, which means that prompt NO formation is 

significantly more complex. While prompt NO formation is rapid (hence its name), it is only 

active in the presence of short-lived hydrocarbon radicals. It can play an important role in 

hydrocarbon flames, although it has been shown to have a negligible role when fuel-bound 

nitrogen is present. This thesis focuses on solid fuel combustion (with fuel-bound nitrogen), so 

prompt NO will not be explicitly considered. 

Fuel-N conversion is discussed in detail in the next section. In summary, the fuel-bound 

nitrogen ends up either as NO or N2, depending on the local conditions during the combustion 

process. In particular, the air-to-fuel equivalence ratio, λ, is important for fuel-NO formation. 

Considerable progress has been made in understanding fuel NO formation. However, this type 

of formation includes many different processes and is, to say the least, challenging to describe. 

Empirical data are still needed to describe the formation, especially regarding the interaction 

between the solid and gaseous phases. 

Although categorizing NO formation in this manner is convenient, these are not mutually 

exclusive mechanisms. An illustrative example is R 3-2, which ably describes thermal NO 

production as long as there are no other sources of NO. However, when NO is already present 

(from, for example, the oxidation of fuel-N) the equilibrium of this reaction will be shifted to 

the reactant side in line with Le Chatelier’s principle, thereby reversing the reaction. This is 
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mentioned in the review of Glarborg [22] with reference to the work of Pershing and Wendt 

[20], and temperatures as high as 2200 K could be required for thermal NO to contribute 

significantly when coal dust flames are used. Given these types of interactions, determining the 

contribution of each NO mechanism to the total NO formation is not a trivial task. 

3.2 Fuel-N evolution during solid fuel combustion 

A solid fuel particle undergoes several processing steps during combustion. In a pulverized fuel 

(PF) flame, the particle is heated through convection and radiation from the upstream flame as 

well as the walls, and the water contained in the particle starts to evaporate. For small particles, 

as in PF flames, this process occurs rapidly (takes a couple of milliseconds). Once the drying is 

completed, the particle temperature increases, the particle starts to decompose, and volatile 

compounds contained in the particle escape from the solid fuel matrix. This process is called 

‘devolatilization’ or ‘pyrolysis’, depending on whether oxygen is present or not. For bituminous 

coal particles, significant pressure builds up inside the particle, which causes it to swell or 

fracture. The products of devolatilization are volatiles and char. The volatiles, which comprise 

light-weight gases (such as CO and CH4) and tars (heavier hydrocarbons), react with oxygen to 

form a small flame envelope around the remaining particle. The processes of devolatilization 

and volatile combustion occur on a time-scale similar to that of the drying process. The solid 

fraction of the particle remains after devolatilization is called ‘char’, and it consists mainly of 

carbon and ash, although small amounts of other elements are also present. When the 

combustion of volatiles is complete and the flame envelope is gone, oxygen reaches the surface 

of the char and may diffuse into the pores. Heterogeneous reactions between the solid and the 

gaseous oxygen occur, and the products consist mainly of CO and CO2. The time-scale for char 

combustion is considerably longer than those of the previous processes, and usually takes 

hundreds of milliseconds to reach completion. 

The fuel-bound nitrogen is released either with the volatiles or with the char, and the conversion 

to NO or N2 will depend on the local conditions. The following sections will cover the 

partitioning of nitrogen between volatiles (vol-N) and char (char-N), followed by an 

examination of the formation of NO from vol-N and char-N. Thereafter, the reduction of NO is 

discussed. 

3.2.1 Nitrogen partitioning during pyrolysis 
The partitioning of nitrogen during pyrolysis is important for NO formation, since the 

combustion process and the possibility for NOx control differ substantially between volatile- 

and char-bound nitrogen. Different conditions yield different volatile products, and there is 

consensus regarding the importance of the pyrolysis temperature in dictating the amount of 

fuel-N that is retained in the char. Figure 3 presents the amounts of nitrogen that are lost with 

the volatiles during pyrolysis, based on the works of Zhang and Fletcher [23], Blair et al [24], 

Pohl et al [25], Solomon and Colket [26], and Kambara et al [27]. Even though there is a clear 

trend towards more nitrogen leaving with the volatiles at higher pyrolysis temperatures, there 

are considerable differences between the test series. Blair et al [24] also compared the release 

rate of nitrogen to the release rate of total mass (which also increases with temperature) during 
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pyrolysis, and concluded that nitrogen release is more sensitive than mass release to 

temperature. 

 

Figure 3. Nitrogen loss as a function of pyrolysis temperature. The data are taken from the indicated publications 

in the literature [23-27]. Trend lines are shown for each investigated coal. 

As seen from the wide range of data-points in Figure 3, the fraction of nitrogen that leaves with 

the volatiles is not predictable when it is based solely on the pyrolysis temperature. Kambara et 

al [27] have stated that it is impossible to predict the partitioning of volatile nitrogen based on 

proximate and ultimate analyses, as they found that two coals with the same levels of nitrogen 

and volatile matter yielded two different fractions. However, since then, several models have 

been developed with reasonable success to predict the composition and yield of volatiles based 

on the chemical structures of coals. Three commonly used pyrolysis models are FG-DVC [28], 

FLASHCHAIN [29], and CPD [30].  

3.2.2 Vol-N conversion 
The nitrogen-containing volatiles (vol-N) evolve mainly as light-weight nitrogen species (HCN 

or NH3), either directly from the coal matrix or indirectly from the tar formed during pyrolysis, 

and thereafter reacts with radicals to form either NO or N2. The conversion of light-weight 

nitrogen gas species to NO is largely dependent upon the availability of oxygen. The conversion 

varies from 0% to 100% depending on the local stoichiometry (i.e., oxygen-rich or oxygen-

lean) [25, 31]. Thus, if left uncontrolled, vol-N can be a significant contributor to total NO 

formation. Given that local stoichiometry has such a significant impact, it is beneficial to design 

burners and combustion equipment to achieve oxygen-lean combustion zones, so as to reduce 

net NO formation. Miller and Bowman [32] have provided a thorough assessment of the 

oxidation of light-weight nitrogen species, and the major reaction pathways for HCN and NH3 

have been confirmed: nitrogen atoms in HCN or NH3 end up as N radicals, which then react 

either with OH to form NO or with NO to form N2. In other words, when N radicals are formed, 
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the reactions with NO and with OH compete to form either N2 or NO. The rate constants of 

these reactions are usually of similar magnitude, and the yield of NO and N2 is, thus, a function 

of the ratio between the OH and NO concentrations.  

Several detailed reaction mechanisms have been proposed for the homogenous interaction 

between hydrocarbon combustion and NO formation. The best-known mechanism is the GRI-

Mech mechanism [33], which has been widely used and refined in more recent studies. Such 

detailed mechanisms are capable of describing the premixed gas flame chemistry with high 

accuracy. A common approach is to assume that all of the vol-N is released as HCN or NH3 

and thereafter converted to NO and N2, depending on the local gas-phase conditions. 

Nitrogen-containing volatiles that are not directly released from the coal matrix or from the tar 

will be incorporated into the soot (soot-N) formed by the tar. The reported values for the 

fractions of volatile nitrogen components trapped in the soot are generally low, even though 

they may reach up to 30% [34, 35]. The fate of soot-N is not well understood. Soot itself can 

effectively reduce the level of NO [36, 37], although incorporated soot-N means that there are 

lower concentrations of light-weight nitrogen gas species susceptible to primary NOx reduction 

measures. 

3.2.3 Char-N conversion 
Since it is possible to control the conversion of vol-N to NO using controlled mixing of the 

oxygen and fuel, the oxidation of char-N has grown in importance relative to NO formation. 

Phong-Anant et al [38] used a drop tube reactor at different temperatures and stoichiometric 

ratios, and found that under “normal” conditions for PF combustion (λ = 1.4, T = 1673-1773 

K), char-N contributed to around 40% of the total NO formation. In the case of fuel-rich 

combustion (λ < 1), the contribution of char-N was 60%-90%. Although char-N conversion has 

been extensively studied, the results are non-conclusive. A challenge is to differentiate between 

intrinsic char-N conversion, i.e., the selectivity of char-N towards NO (prior to reduction by the 

char), and apparent char-N conversion, i.e., the net conversion after NO reduction by char has 

occurred. As NO is usually measured when the combustion process has finished, data for 

apparent char-N conversion data are more common in the literature than data for intrinsic char-

N conversion. Table 1 presents several char-N conversion values obtained under conditions 

relevant to flame combustion. The values vary in the range of 10%-100 %. Different authors 

have provided different reasons for this variability. Most of the experimental studies [39-43] 

have noted an increase in char-N conversion with increasing level of oxygen, the magnitude of 

the observed increase varies between studies. Jensen et al [44] found that the conversion of 

char-N to NO was close to 100% when very small samples of char (<1 mg, to minimize the 

NO-char reduction) were combusted at 1323 K and 1423 K, whereas for combustion at 1123 K 

the conversion of char-N to NO was 65%. The conversion rate decreased rapidly when the 

sample size was increased. The availability of O2 did not affect the conversion rate for small 

samples. These results imply that the intrinsic char-N conversion is 100%, and that NO 

reduction by char is responsible for the lower values of char-N conversion. Molina et al [42] 

also found a decrease in char-N conversion when the char sample size was increased (≈4.5-21.0 

mg). Furthermore, they performed two types of experiments that resulted in two significantly 

different levels of char-N conversion. In the first (Type I) experiment, the char was first injected 
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into a helium atmosphere and pyrolyzed (low levels of NO and CO exited the char) for 60 s, 

and then an O2/He mixture was injected to facilitate combustion. In the second (Type II) 

experiment, the char was injected directly into a stream of O2/He. The Type I experiments 

resulted in char-N conversion values in the range of 10%-15%, while the Type II experiments 

gave values in the range of 40%-55%. The authors attributed this difference to the lower local 

stoichiometry used in the Type I experiments leading to an increase in the homogenous 

reduction mechanism that involves HCN. The importance of HCN for char-N conversion is not 

established, although modeling conducted by some groups (see for example [45, 46]) have 

shown that assuming HCN to be the primary product from char-N provides good results. 

Another common approach is to use NO as the primary product obtained from char-N, with 

subsequent reduction by char.  

Additional combustion issues are discussed by Shimizu et al [47], who showed that the 

conditions during char production affect the final conversion of char-N to NO, and Spinti and 

Perching [40] have taken this as an explanation for the differences observed in the literature. 

Jensen et al [45, 46] have shown that NO-char reduction is significantly faster directly after 

pyrolysis than when the char has been prepared separately, as is the case in most NO-char 

reduction studies. 

Table 1. Experimental values for char-N conversion to NO relevant to PF combustion, as taken from the literature.  

Authors Apparatus Set temperature [K] Char-N conversion (%) 

Perching and Wendt [41] Combustor  10-15 

Spinti and  Perching [40] Combustor  40-60 

Nelson et al [43] Combustor  35-80* 

Song et al [39] EFR 1250-1750 20-35* 

Molina et al [42] EFR 1698 10-55 

Phong-anant et al [38] EFR 1273-1873 30-50 

Pohl et al [25] EFR 1500 1-20* 

Wang et al [48] EFR 1273 10-45 

Jensen et al [44] Fixed bed 1123-1423 10-100 

* Only values for λ>1 are taken. Lower values were obtained when λ was <1. 

   EFR: Entrained Flow Reactor (includes drop tube reactors). 

As char-N conversion is closely linked to char conversion, a brief overview of char combustion 

is presented here. Char combustion may be divided into three zones based on the limiting rate. 

In Zone I, the char conversion rate is kinetically controlled and increases rapidly with 

temperature. In Zone III, the rate is controlled by the mass transport of oxygen to the char and 

is less dependent upon the temperature. Zone II represents conditions in which both kinetic and 

oxygen transport rates are important. High temperatures move the combustion towards Zone 

III, since the chemical reaction rates increase, making mass transport the limiting factor. In 

contrast, using small particles moves the combustion towards Zone I, as the specific diffusive 

mass flux to the particle is increased, thereby promoting more rapid mass transport. High 

temperatures and small particles are present in pulverized coal combustion, and these systems 

are generally well represented by the conditions characteristic of Zone II [49]. Due to the 

abovementioned factors, it is clear that it is complicated to describe char oxidation over a wide 

range of temperatures and combustion conditions, especially with respect to the partial pressure 
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of oxygen. In general, neither global power-law kinetics nor semi-global Langmuir-

Hinshelwood kinetics describe with sufficient accuracy the temperature dependence. Instead, 

more complex models are required, some of which attempt to maintain the dependence on just 

temperature and concentrations [50], while others include dimensionless numbers and specific 

coal parameters [51]. 

3.2.4 NO reduction 
Since it is most common to report the values for apparent char-N conversion, which is primarily 

a function of NO reduction by char if the intrinsic char-N conversion is 100%, it is worthwhile 

to discuss the NO reduction mechanisms. It is convenient to divide the NO reduction process 

during solid fuel combustion into reduction by volatiles and reduction by char, as these 

reactions occur on different time-scales. NO reduction by volatiles is important and is the main 

reason why air staging achieves significant reductions in NO, i.e., by prolonging the zone in 

which NO can interact with the radicals formed by the volatile compounds. This mechanism is 

also used when fuel staging is applied, i.e., introducing a fuel (e.g., natural gas) downstream of 

the initial combustion zone. The reduction of NO may occur by reaction with N-containing 

species (such as NHi) or N-free species (such as CHi) [52]. In those combustion systems in 

which fuel staging is not applied, NO reduction by volatiles only affects the NO formed during 

the early stage of combustion, while the NO formed subsequently is not affected.  

In contrast, the reduction of NO by char affects a larger fraction of the formed NO, since the 

char reactions occur on a longer time-scale. Many studies have been conducted on NO reduction 

by char and carbonaceous materials, and several of those studies have suggested a decrease in 

the apparent NO conversion as the background NO level is increased, i.e., the (NOout-

NOin)/char-N ratio decreases significantly as the initial NO concentration increases [40, 42, 45, 

53]. Some of these studies have even observed negative rates of apparent conversion of char-

N, i.e., more NO is reduced by the char than is formed by the char-N [40, 45]. This reduction 

appears to be enhanced in the presence of CO [46]. Aarna and Suuberg [54] have reviewed the 

studies on NO-char kinetics in the literature and averaged the rates; the resulting rate constant 

is shown in Figure 4 along with selected constants. Most of the rates found in the literature are 

within one order of magnitude of the Aarna and Suuberg rate. However, most of the studies 

have used chars that have been prepared prior to the experiments. Jensen et al [44] have shown 

that the rate of NO-char reduction decreases continuously in the time-span after pyrolysis, due 

to some deactivation mechanism, and that the rate directly after pyrolysis is significantly higher 

than that usually reported in studies in which the chars have been prepared separately. The rate 

reported by Song [55] is included in the figure, since it was obtained from experiments 

performed in the temperature range relevant to the conditions in a rotary kiln. The rate reported 

by Jensen et al [44] is shown for comparison, and this rate is also applied in the modeling of 

this thesis. While it is significantly higher than the average rate provided by Aarna and Suuberg 

[54], it is derived in one of the few studies in which the char was produced in situ with NO-

char reactions proceeding directly afterwards. The rate described by Chan [56] was obtained at 

lower temperatures. Nonetheless, it is recommended by Visona and Stanmore [46] for 

pulverized fuel combustion carried out at around 1750 K. Extrapolating this rate to higher 

temperatures results in a rate similar to that found by Jensen and co-workers. Finally, it should 
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be mentioned that Molina et al [45] increased by one order of magnitude the rate of Aarna and 

Suuberg, to achieve fitting to their experimental data, which further indicates that the NO-char 

rate is higher than what is usually found in the literature, and that the rate reported by Jensen et 

al [54] is a strong candidate for describing the NO-char reduction in a PF flame.  

 

Figure 4. Arrhenius plot of the NO-char reaction. The rates (in m3/kg/s) are derived from Song et al. [55] and 

Aarna and Suuberg [54] assuming a char surface area of 150 m2/g. An area of 530 m2/g was used for the Chan rate 

[56]. The rate of Aarna and Suuberg is an average rate and does therefore not include any symbols. 

3.3 General NOx mitigation strategies 

3.3.1 Air staging 
The most commonly used measure to reduce NOx is to control the mixing of the air and the fuel 

to create an oxygen-lean zone during vol-N conversion, thereby yielding a lower rate of NO 

formation from volatile nitrogen. Mixtures that are overly oxygen-lean may, however, result in 

flame extinction. Burners are typically built with two registers for air: primary and secondary. 

The primary air may be premixed with the fuel or mixed rapidly. The secondary air is usually 

added through an outer register and is most often swirled, creating a reverse aerodynamic flow 

in the flame. Due to this reverse flow, hot (O2-lean) gases are recirculated to the early part of 

the flame, which is beneficial for NO reduction. Swirling may also be applied to the primary 

air. There tends to be an optimal NOx emission level with regard to swirling, as a low rate of 

swirling will not result in a significant recirculation zone, while a too-high rate of swirling will 

mix the air with the fuel too rapidly and NOx formation will increase. Staging air through burner 

design is called ‘internal staging’. It is also possible to stage the air externally by adding enough 

air through the burner to ignite the fuel, and adding the remainder at a later stage through 

separate ports (often called ‘over fire air’, OFA) (e.g., along the wall), to ensure burnout. For 

rotary kilns, OFA is not possible due to the rotation of the kiln. 
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3.3.2 Fuel staging 
Introducing part of the total fuel input at a later stage in the combustor enables the formed NO 

to be reduced by, for example, hydrocarbon radicals (CHi). The mechanism is called 

‘reburning’, and it has proved to be an efficient way to reduce NOx. The reburn fuel is typically 

natural gas, although solid fuels may also be used as long as they ignite readily and mix well. 

The reburn zone is generally sub-stoichiometric and additional air has to be added after this 

zone. Although fuel staging is generally performed externally, it is also possible to apply 

internal fuel staging using burners with different fuel registers.  

3.3.3 Fuel switch 
Since fuel-N is a significant contributor to NO formation in PF flames, a simple measure that 

is often used is to switch to a fuel that contains less nitrogen. Switching from a solid fuel to a 

gaseous fuel tends to decrease significantly the NOx emissions. However, the linkage between 

the fuel-N content in solid fuels and NO emissions is weak, as fuel-N conversion depends on 

many other aspects. Thus, changing to a solid fuel with a lower nitrogen content does not 

guarantee a lower level of NOx formation. The content of volatiles has, for example, been shown 

to play a significant role. In unstaged flames, a higher volatile content leads to higher NO 

emissions, whereas for staged flames the opposite trend is observed. The reason for this is that 

a fuel that has a high content of volatiles is likely to release more volatile nitrogen, and if air 

staging is achieved it will affect a larger fraction of the total fuel-bound nitrogen. Other fuel 

properties, such as particle size and ash content, can also play important roles, so it is difficult 

to predict the effect on NO of a fuel swap. 

Another possibility is to co-combust the fuels. Apart from reducing the amount of incoming 

fuel-N, the interaction between the two fuels has the potential to create NO reduction by 

forming additional, local O2-deficient zones. In theory, a volatile fuel with low nitrogen content 

could be manipulated so that a reducing zone is formed at an optimum location, thereby 

reducing the fuel-N conversion from the other fuel [57]. Co-combustion also facilitates the 

combustion of certain fuels that may be difficult to ignite. Using a small amount of gaseous fuel 

can, for example, stabilize a solid fuel flame. 

3.3.4 Other primary measures 
The relationship between stoichiometry and NO formation is clear; a lower stoichiometry 

(air/fuel) results in a lower level of NO formation, which means that decreasing the overall 

excess of air an effective measure. Although it is always the local stoichiometry that determines 

the level of fuel-N conversion, the global stoichiometry controls the ease with which local O2-

lean zones can be created. The stoichiometry in the early part of combustion can, as mentioned, 

be controlled effectively through burner design, whereas the stoichiometry in the later stages is 

less sensitive to such changes. However, decreasing the global stoichiometry lowers the O2 

levels post-flame inherently. 

Another possibility is to recirculate the O2-lean flue gases through the burner. This has three 

potential benefits for NO reduction: the reduction in O2 concentration leads to decreased 

oxidation of fuel-N, as well as a lower temperature (reducing the thermal-NO mechanism), and 

the recirculation enables a reduction in the NO levels through reburning. Substantial reductions 



18 

 

in  NO levels have been attained in oil- and gas-fired boilers owing to the decrease in thermal-

NO formation, while this strategy has proven to be less effective for solid fuels [58]. 

3.3.5 Secondary measures 
If NOx emissions cannot be reduced effectively using primary measures, flue gas cleaning may 

be necessary. This is performed by adding ammonia (NH3), which reacts with NO to form N2. 

Urea [CO(NH2)2] is also used, since it decomposes to NH3 but is safer to handle. The reaction 

between NO and NH3 is highly temperature-dependent, and it is most efficient at temperatures 

in the range of 900°-1100°C. At higher temperatures, the oxidation of ammonia becomes more 

prominent, which can result in increased NO emissions, while at lower temperatures, the 

reaction may not proceed to completion and ammonia may be emitted (so-called ‘ammonia 

slip’). 

The reduction of NO by NH3 is possible at lower temperatures (200°-500°C) if a catalyst is 

present. This is selective catalytic reduction (SCR), and it can provide significant NOx 

reduction. The reduction without a catalyst is called selective non-catalytic reduction (SNCR) 

and is less common in industrial systems. 

3.4 Units of emission measurements 

Several units for quantifying NOx emissions are used depending on application. A common unit 

in research is the volumetric gas fraction of NOx given in ppm as it is the unit employed by 

most measurement instruments. The volumetric gas fraction is equivalent to the molar gas 

fraction and proportional to the partial pressure and concentration. The latter is, however, 

dependent on system conditions like pressure and temperature. The concentration and partial 

pressure are useful units as they determine the rate of reactions. It may also be of interest to 

look at the ratio of emitted NOx to introduced fuel-N, since this relates to the performance of 

the combustion process with regard to NOx emission. The NOx to fuel-N ratio is used in Papers 

I and II.  

Neither of these units directly quantifies the amount of NOx formed in the process as they 

depend on the flue gas flow. A common approach to avoid this is to correct NOx fraction to a 

certain base oxygen level. This correction is performed according to: 

 𝑥𝑁𝑂𝑥,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥𝑁𝑂𝑥
∗

𝑥𝑂2,𝑜𝑥 − 𝑥𝑂2,𝑏𝑎𝑠𝑒

𝑥𝑂2,𝑜𝑥 − 𝑥𝑂2

 Eq. 2 

where 𝑥𝑁𝑂𝑥,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 is the corrected molar NOx fraction, 𝑥𝑁𝑂𝑥
 is the measured molar NOx 

fraction, 𝑥𝑂2
 is the measured molar O2 fraction, 𝑥𝑂2,𝑜𝑥 is the oxygen molar fraction in the 

oxidizer (≈0.21 for air), and 𝑥𝑂2,𝑏𝑎𝑠𝑒 is the base oxygen fraction to which the emission should 

be corrected (0.06 for solid fuels within the EU).  

It is also common to use the unit mgNO2/m
3

n instead of the molar fraction. This unit is equivalent 

to the molar fraction and the conversion is obtained by applying the ideal gas law and assuming 

that all the NO is converted to NO2. Correction to a base oxygen level might still be necessary, 

and it is also performed using Eq. 2. 
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Another common practice is to relate the emitted NOx to the energy input, i.e., mgNO2/MJfuel. 

An advantage of using this unit system is that correction to a certain oxygen level is not needed. 

It does, however, depend on accurate measurements of the flue gas flow and the fuel feed, 

which are not always available. Attention must also be paid to the specific heating value (lower 

or higher) on which the unit is based. 

For the Grate-Kiln process, use of the molar fraction or mgNO2/m
3
n corrected to a certain oxygen 

level should be avoided, as the product (the pellets) absorb a certain amount of oxygen, thereby 

introducing an error when attempting to correct the NOx measurement (see Appendix A for 

proof). Nonetheless, this approach is used in Paper I for comparison with European emission 

legislation, as there were no pellets present in the pilot-scale kiln used in the experiments. A 

unit that is commonly used in industrial production processes is NOx/unit of production. In the 

Grate-kiln process, this is expressed as gNO2/tonne pellets, and it may be advantageous because 

it incorporates the production efficiency of the plant. It is, however, difficult to compare NOx 

emissions across different industries using this unit system. 

Units corrected to a certain oxygen level or related to the energy input are often used in 

legislation aimed at industrial applications; the review of Baukal and Eleazer [59] provides 

more details. Finally, it should be noted that these units indicate the environmental performance 

of individual plants, and that using them in designing legislation incentivizes the use of BAT. 

The environmental impact on a regional or global level is, however, more sensitive to the 

absolute amount of NOx emitted than to the concentrations in flue gases, i.e., for evaluating the 

degree of pollution, kgNO2/year is superior to mgNO2/m
3

n. The Gothenburg protocol and 

Directive 2016/2284/EU use units of ktonNO2/year. 
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4 Previous work on NOx in rotary kilns 

In addition to their application in iron ore manufacturing, rotary kilns are used in cement 

production, lime manufacturing, lightweight aggregate manufacturing, reduction of oxide ore, 

and waste incineration [60]. The most common application is in the cement industry, and most 

of the research on combustion in kilns has been performed using cement kilns. This section 

provides an overview of the research on cement kilns and on the iron ore kiln. It should be noted 

that although both industries use rotary kilns, there are significant differences in terms of their 

design and use: sintering cement clinker requires a bed temperature of about 1450°C and the 

flue gas oxygen concentration is 2%-4%, whereas iron ore is sintered at around 1300°C and 

employs a level of excess air equivalent to 15%-17% oxygen in the flue gases.  

4.1 Cement industry 

Among the various studies of NOx control in cement manufacturing, there is a consensus that 

thermal NO formation dominates NO formation in the rotary kiln, and intensive efforts have 

been made to reduce the levels of NOx in other parts of the process (specifically, the 

precalciner). However, emissions-related legislation has motivated research also on the kiln. 

Vaccaro [61] reviewed NOx campaigns conducted in industrial cement kilns and concluded that 

significant NOx reductions could be achieved through the use of low-NOx burners. In kiln 

systems, these burners have two primary air inlets (one is swirling and one is axial) and one 

fuel inlet. The amount of primary air used was considered to be especially important. The NOx 

emission levels could be reduced by 45% (compared to a mono-channel burner) by lowering 

the amount of primary air while maintaining stable operation. Further reductions could be 

achieved (up to 54%), although this entailed unstable operation. In a review performed by 

McQueen et al [62], decreasing the level of primary air was shown to have the potential to 

reduce NOx levels by 30%. Other primary measures were found to contribute NOx reductions 

of 15%-30%, while the use of SNCR and SCR could reduce NOx levels by 40%-70% and 70%-

90%, respectively.  

Both the European Union and the US Environmental Protection Agency have published 

documents on NOx control in the cement industry that include several proposed measures [63, 

64]. One measure that is unique to rotary kilns is a fuel switch from gas to coal. A gas-fired 

cement kiln could achieve a decrease of up to 70% in NOx emissions by switching the fuel to 

coal [63]. Reducing the amount of excess air (i.e., the flue gas oxygen concentration is reduced 

from 2% to 1%) was shown to decrease the levels of NOx by 15%. An innovative NOx strategy 

that has been discussed is fuel staging by means of “mid-kiln firing”, which entails the use of a 

fuel inlet through the wall half-way along the rotary kiln. This allows slow-burning fuels, such 

as whole tires, to be introduced once per rotation of the kiln. Since the energy input by the kiln 

inlet can be reduced by this measure, the combustion is dispersed and the level of NOx is 

reduced by as much as 50%. The use of low-NOx burners does not always yield reductions in 

NOx, but the reported values are up to 35%. 
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4.2 Iron ore industry 

A limited amount of research has been performed on the emissions performance of iron ore 

rotary kilns, and many aspects are assumed in the literature to be shared with cement rotary 

kilns. In rotary kilns, firing with natural gas has been shown (as in cement kilns) to produce 

more NOx than firing with solid fuels [65], which underlines the importance of thermal NO 

formation. Similar to cement kilns, the high levels of NOx emissions produced during solid fuel 

combustion are assumed to be the result of the dominance of thermal NOx formation. As will 

be shown from the results in Chapter 7, this thesis questions this assumption and suggests that 

fuel-N contributes significantly more. 

The modeling of a gas-fired rotary kiln for iron ore production performed by Davis [66] 

revealed a minimum level of NO production at a certain secondary air flow. A low level of 

secondary air flow resulted in a high level of NO formation due to the long residence times and 

high peak temperature (i.e., high thermal NO formation), while a high secondary air flow also 

resulted in high-level NO formation due to the increased O2 levels, although the temperatures 

were reduced. Apart from this study and some general emission reports [67, 68], not much 

research is available on NOx in rotary kilns for iron ore production. 

Papers I and II of this thesis are the first published reports that specifically investigate NOx 

formation in iron ore rotary kilns using solid fuels and in-flame measurements. However, 

previous (unpublished) work has been performed by LKAB in a project called ULNOx (Ultra 

Low NOx) using the same test facility as in Paper I, as well as full-scale experiments. Similar 

to the previously mentioned results, the NOx emissions were significantly higher when natural 

gas was tested in pilot scale, as compared to the use of solid fuels. Burning oil resulted in 

emissions similar to those seen with natural gas. An issue with the project is that the pilot-scale 

kiln generally produced higher levels of NOx than the full-scale kiln, which raises difficulties 

with transferring the results from the pilot-scale kiln to the full-scale kiln. Table 2 presents a 

summary of the tested NOx reduction measures and their effect in pilot scale as well as in full 

scale (if tested). NOx reduction of 25% was observed in the pilot kiln by using a low NOx burner 

but significantly lower NOx reduction was observed when applying it to full scale. 

Modifications to the inlet (called hood) of the secondary air have been performed both in pilot 

scale and in full scale but any significant NOx reduction in full scale has not been achieved. 

Switching fuel has also been investigated in pilot scale (Paper I is the latest of these trials). Out 

of all alternative coals tested, lowest NOx emission has always been achieved with the reference 

coal (Coal A). Co-combusting propane and coal did not increase NOx. Heating of primary air, 

heating of coal, addition of water to the process and replacing the primary air with inert gases 

did not result in any NOx reduction in pilot scale. Decreasing the secondary air temperature by 

about 100°C was shown to decrease NOx emission by about 40% in pilot scale. The feasibility 

of isolating this parameter in full scale is however not straight-forward since the secondary air 

temperature is dependent on the cooling of the pellets. 
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Table 2. Tested primary measures in the ULNOx project 

Primary measure 
Description NOx reduction 

pilot scale 

NOx reduction 

full scale 

Low NOx burners 12 different burners 

were tested 

20-25% 0-12% 

Kiln hood modifications Less intensive mixing of 

secondary air 

10-25% <10% 

Decrease in secondary air 

temperature 

From 1080°C to 970°C 40% Not tested 

Heating of primary air 170°C 0% Not tested 

Heating of coal 85°C 0% Not tested 

Propane co-fire  0% Not tested 

Reducing excess air 7.5% reduction 

55% reduction 

72% reduction 

Not tested 

17% 

33% 

8.5%* 

Not tested 

Not tested 

Reducing primary air 87% reduction 8.5%** Not tested 

Increasing transport air 

velocity 

 0% 0-16% 

Primary air partly replaced 

by steam, N2 or Ar 

 0% Not tested 

Addition of water sprays 

around burner 

 0% Not tested 

Addition of water to the 

secondary air 

 0% Not tested 

Switching to gas  ≈ -250%† Not tested 

Switching to oil  ≈ -250%† 25%*** 

* resulted in pellet quality problems 

** using the reference burner. Larger reduction were seen with other burners 

*** Oil is only used during startup and when operation issues occurs, which results in a high 

uncertainty of this value 
† i.e. an increase in NOx emission 

  



24 

 

 

  



25 

 

5 Experimental equipment 

This section describes the experimental facilities that are the basis of Paper I, as well as the 

measuring equipment used. 

5.1 Experimental Combustion Facility 

The experimental work in this thesis has been performed using LKABs pilot-scale kiln, known 

as the Experimental Combustion Facility (ECF). In Year 2013, the heat input of the ECF was 

400 kWfuel but this was increased in Year 2015 to 580 kWfuel and a cooling system was added 

to the bottom part of the kiln, to simulate the heat sink of pellets. Figure 5 is a schematic side-

view of the Year 2015 ECF, which is the version that will be referred to hereinafter. The kiln is 

designed to replicate the combustion conditions in a full-scale rotary kiln. It is scaled down 

from approximately 40 MWfuel with constant velocity scaling and has a diameter of 65 cm the 

first 4 meters. The length of the entire facility is 14 m, and after the first 4 m the diameter 

expands to 80 cm. The reason for extending the furnace is mainly to be able to perform e.g. 

slagging measurements. The rotation of the kiln, as well as the pellets is not included in the 

ECF. The ECF is equipped with both horizontally and vertically arranged access ports, which 

were used during the campaigns for in-flame measurements of temperature, concentrations, 

radiation, and heat flux. The temperature and concentration measurements in Paper I were 

obtained at four measurement ports (MH0, MH1, MH3 and MH7). 

Hot secondary air enters through two channels located above and below the centrally positioned 

burner (through which the primary air and fuel are introduced). The burner is shown in Figure 

6 and has six registers: two for primary air, and four for fuel. One primary air register is swirled 

(N4), while the other register introduces air axially (N1). Different fuel registers may be used 

depending on which full-scale plant the ECF simulates. In Paper I, the central fuel register (N6) 

was the most frequently used, although when co-combusting coal and biomass, coal was fed 

through N3 and biomass was fed through N2. 

 

 

Figure 5. Side view of the ECF, showing the distances from the burner to the measurement ports. Source: Paper I 
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Figure 6. The burner orifice showing all six registers. Left: Photograph. Right: Schematic view with register 

annotations. 

5.2 In-flame measurements 

Performing in-flame measurements to map PF flames is challenging. Due to the turbulence of 

the flame, data are collected at each measurement position for a certain amount of time (several 

minutes) in order to get a representative average. Obtaining a good spatial resolution is thus 

time-consuming and difficult due to the unstable operating conditions disturbing the flame. 

Fluctuations in the fuel feed and processes that take a long time to stabilize, such as the wall 

temperatures (which may affect the flame), are parameters that are often difficult to keep stable.  

Another challenge is to measure a property at a certain point with minimum disturbance of the 

flame. The most common forms of in-flame measurements are intrusive, i.e., a probe is inserted 

at the desired location and measures a property, either directly or by extracting gas or particles 

to be analyzed in external instrument. These probes need to be cooled due to the high flame 

temperatures, and the cooling itself affects the flame. The extent to which the flame is affected 

by the cooling is, however, difficult to establish. Ideally, one would want to perform 

measurements that are non-intrusive, which is becoming increasingly possible with the use of 

modern laser techniques. These are optical techniques that typically involve sending beams into 

the flame and measuring different occurrences with the use of detectors. Although there are 

many advantages and possibilities associated with such techniques, they usually require optical 

access at several sites, and it is not always clear how, for example, the laser beams affect the 

flame. Lasers themselves can also be large and require several fine adjustments, and it may be 

inconvenient to move them to, for example, another measurement port. Therefore, in terms of 

mobility and flexibility, intrusive measurements are more convenient to use. Nevertheless, there 

are optical measurement techniques that are portable and easy to use, e.g., IR cameras.  

5.2.1 Temperature measurements 
Temperature plays a central role in combustion and is an important parameter to measure if a 

comprehensive understanding of the flame is to be obtained. Measurements are performed with 

a thermocouple, which is a device that produces a temperature-dependent voltage from which 
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the temperature can be obtained. In theory, the thermocouple can be inserted directly into the 

flame and will be heated by convection to the temperature of the flame. Unfortunately, it is 

challenging to measure accurately, as the wall temperatures are lower than the flame 

temperatures and this causes a significant radiative cooling effect on the thermocouple, which 

results in a measurement error. This cooling effect can be reduced by shielding the 

thermocouple with a ceramic shell. The shielding also protects the thermocouple from physical 

damage by particles. Another measure that can be taken is to increase the convective heat 

transfer from the flame by applying suction around the thermocouple, which reduces the relative 

importance of the radiative loss. The gas velocity around the thermocouple should be around 

200 m/s, so as to increase sufficiently the convective heat transfer. A drawback of applying 

suction is that the volume of gas that is sucked out of the flame makes the measurement less of 

a point measurement. 

For the measurements performed in Paper I, a triple-shielded thermocouple of type B (suitable 

for T<1800°C) was mounted on a cooled probe with suction. The probe was then traversed 

across the flame. Even when the convective heat transfer was increased by suction, a waiting 

period of around 4 minutes was required for the thermocouple to stabilize at each measurement 

point. Figure 7 shows a schematic view of the suction pyrometer as well as a picture of the 

ceramic shield after an in-flame measurement. 

 

 

Figure 7. Top panel: Schematic of the probe showing how the thermocouple is protected by ceramics. Courtesy 

of Adrian Gunnarsson [69]. Bottom panel: Photograph of the protective ceramic around the thermocouple. The 

gas inlet is on the other side and is therefore not visible in this shot. Hot coal particles adhere to the ceramics after 

the measurements. 
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5.2.2 Gas composition measurements 
There are several ways to measure the concentration of a specific gas in a gas mixture. A 

common approach is to force the gas mixture through a cell and direct light of a set wavelength, 

commonly infrared (IR) or ultraviolet (UV), through the cell towards a detector. If the gas 

mixture contains a gas that absorbs light of the set wavelength this will be detected by the 

detector and the attenuation of the light can be used to determine the actual concentration. A 

standard IR gas analyzer typically measures 1-3 gases simultaneously. 

A technology that can effectively measure more gases simultaneously is Fourier Transform 

Infrared (FTIR) spectroscopy, which scans a wider range of wavelengths in the IR spectrum. 

Instead of using a light source that has only one wavelength (monochromatic), FTIR 

spectroscopy uses a light source with multiple wavelengths (polychromatic). The light from 

this source enters a so-called Michelson interferometer (Figure 8) where it encounters a beam 

splitter, which splits the beam into two beams, one of which is refracted to a fixed mirror and 

one of which is refracted to a moving mirror. The beams are reflected back to the beam splitter, 

where destructive and constructive interference occur depending on whether the wavelengths 

are in phase, which in turn is dependent upon the distances between the mirrors and the beam 

splitter. The resulting beam enters a sample cell that is filled with the gas mixture, where 

absorption of certain wavelengths occurs depending on the gases present in the mixture. The 

remaining beam is measured with a detector. Since one of the mirrors is moving, different 

distances between the mirror and beam splitter are achieved, and thus different wavelengths 

experience constructive/destructive interference, which means that the light entering the sample 

cell varies. The result is a so-called interferogram, which is transformed to a spectrum with the 

use of Fast Fourier Transform. A computer then compares this spectrum with a reference 

spectrum (typically an N2 spectrum) and analyzes which wavelengths have been absorbed and 

to what extent. Knowing which wavelengths are relevant for which gases, it calculates the 

concentration of each gas. An issue with FTIR gas analyzers is that although every gas can be 

associated with a unique set of absorption wavelengths, a gas may share individual wavelengths 

with other gases, which may result in an error. For example, if gas A absorbs wavelengths x 

and y, which are also absorbed by gases B and C, it may appear that gas A is present even 

though only gases B and C are present. It is therefore necessary to have some idea as to which 

gases could be present. Another drawback is that FTIR spectrometers do not detect symmetrical 

diatomic gases (e.g., O2), since these molecules lack a dipole moment and, therefore, will not 

interact with the electric field of the light. In the case of O2 measurements, it is possible to use 

a paramagnetic instrument that relies on the magnetic property of O2. 
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Figure 8. Schematic view of the Michaelson interferometer which is central in FTIR spectroscopy. 

For the gas concentration measurements performed in Paper I, the in-flame gases were extracted 

by suction and analyzed using FTIR spectroscopy and paramagnetism. The gas was suctioned 

through a filter, to protect the measurement equipment from particles, and was lead through an 

electrically heated tube (≈190°C) to avoid condensation. The gas was assumed to experience 

instantaneous quenching. A schematic of the probe tip is depicted in Figure 9. A potential 

problem with these measurements is clogging of the filter by particles, which may cause 

unwanted heterogeneous reactions when the gas is suctioned through the filter. This can also 

cause unwanted pressure drops in the measurement equipment. Figure 9 also shows a 

photograph of the probe tip before measurements. 

 

 

 

 
Figure 9. Top panel: Schematic side-view of the gas probe. Courtesy of Adrian Gunnarsson [69]. Bottom panel: 

Frontal view of the gas probe before any measurements. 
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6 Modeling 

6.1 Overall modelling considerations 

As described in the theory section, NO formation from solid fuel combustion is dependent on 

the pyrolysis process, volatile combustion and char combustion. The model developed in this 

work incorporates these processes to describe the NO formation, and the processes that relate 

to the combustion are treated as boundary conditions. Table 3 presents how the model treats the 

kinetics and the boundary conditions, such as mixing, heat release, heat transfer, species 

concentrations, temperature, and fuel characteristics, all of which all important and 

interconnected. The NO fractions that originate from vol-N and char-N are treated separately, 

and a major output from the model is the NO contribution from each of these two sources. Tars 

are not included in the model, and the pyrolysis process is assumed to be instantaneous. In the 

case of an iron ore rotary kiln, there could be interactions between the pellets and the 

combustion, e.g., thermal radiation and catalytic reactions. Such effects are however not 

included in the current model. 

Table 3. Summary of ways in which combustion characteristics are treated in the modeling. 

Combustion characteristic(s) Treatment in the modeling 

Kinetics  Detailed homogeneous reaction kinetics are used for the 

volatiles 

 Apparent kinetics are used for the heterogeneous kinetics 

Mixing  Mixing is defined by how fast air is added to the fuel in the 

axial direction 

 Mixing on  smaller scale (e.g., eddies and vortexes) is not 

considered 

Heat release, heat transfer, and 

temperature 

 The energy equation is not solved. Instead, the temperature 

profile is given as an input from the measurements (or 

CFD) 

Fuel composition  The volatiles are assumed to consist of CH4, CO, H2 and 

HCN 

 Char and Char-N are modeled as C2(s) and N2(s) only 

converted through irreversible heterogeneous oxidation 

 Ash is treated as a fully inert component 

 Water is assumed to be in the form of vapor from the start 

Particle characteristics  Properties related to the solid particles, such as porosity, 

surface area, fragmenting, and swelling, are neglected 

6.2 Model description 

The model describes the combustion chemistry and NO formation during combustion of a fuel. 

In theory, it could be used as a predictive model, although for this the model would require 

information on heat losses, to calculate the temperature profile, as well as an estimation of the 

mixing of the fuel and oxidizer, since the momentum equation is not included. Instead, 

providing the model with a temperature profile (from, for example, measurements) and fitting 
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the mixing profile to existing O2 and CO concentrations avoids these uncertainties and provides 

a detailed description of the combustion conditions in a given process. Analysis of the reaction 

pathways and the governing reaction mechanisms may then be performed. Figure 10 presents 

a schematic overview of the model. 

 
Figure 10. Illustration of the model structure with the inputs and outputs. 

6.2.1 Mixing and kinetics 
The in-flame combustion chemistry is modelled using a plug flow reactor (PFR) description, 

and mixing is described using a Zwietering approach [70]. The fuel is added at the main inlet 

to the PFR and the air is introduced in a staged manner. The staged insertion of air represents 

the mixing of the fuel and air. The air is divided into primary air and secondary air, with the 

primary air being injected more rapidly. The mixing rate is dependent upon the total flow of air 

and the share of the flow introduced at a given distance in the PFR (defined by the user). Mixing 

occurs rapidly if most of the air has been inserted at a short distance. The combustion chemistry 

is described by the detailed reaction kinetics proposed by Mendiara and Glarborg [71] for the 

homogeneous reactions, and the apparent kinetics are described by Jensen [72] for the 

heterogeneous reactions. The detailed homogeneous reaction mechanism involves 97 species 

and 779 reactions. In addition, three heterogeneous reactions with apparent kinetics are 

included: (i) the conversion of char into CO (R1); (ii) the oxidation of char-N to NO (R2); and 

(iii) the reduction of NO by char (R3&R4). The reduction of NO by char is described by two 

reactions in order to fit Chemkin’s reaction arrangement. Table 4 presents the reactions and the 

corresponding kinetics. The mechanism assumes full conversion of char-N to NO. Thus, the 

reduction of NO by char, which depends on the local conditions, describes the apparent 

conversion. 

Table 4. Reactions and kinetics of the heterogeneous mechanism. 

 Reaction A [cm3/mol/s] Ea [cal/mol] 

R1 C2(s) + O2(g) -> 2 CO (g) 2.24E11 29,400 

R2 N2(s) + O2(g) -> 2 NO (g) 2.24E11 29,400 

R3 NO(g) + C2(s) -> CO(g) + CN(s)* 1.46E11 29,400 

R4 2 CN(s) -> C2(s) + N2(g)* 1.00E20 0 

*The overall reaction NO(g) + ½ C2(s) -> ½ N2(g) + CO(g) is implemented as a two-step reaction, with R3 as the 

controlling step. 
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6.2.2 Fuel properties 
The contents of volatiles, moisture, and ash, as well as the elemental composition of the fuel 

are given as inputs to the model. Moisture in the fuel is modeled as water vapor, i.e., the impact 

of vaporization is not included, and the ash is modeled as an inert component that does not 

interact with the combustion process. The char is represented as C2(s), and the volatiles are 

assumed to consist of CH4, H2, and CO. The split between the volatile components is 

determined by the elemental balances for C, H, and O: 
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Eq. 5 

where Yi is the mass fraction of species i in the volatiles, Mj is the molar mass of element j, and 

Xk is the fuel mass fraction of element k in the fuel (dry, ash-free basis). The system of equations 

is then solved to obtain Y for CH4, H2, and CO. This approach is a simplification of the approach 

suggested by Thunman et al [73].  

The nitrogen content of the fuel is split between the volatiles and char, i.e., a certain share is 

released with the volatiles as HCN, while the remainder is released with the char as N2(s). 

Assuming that the share is 50/50 and using Eqs. 3-5, the composition of a modeled fuel is 

obtained, as shown in Table 5 compared to the coal that it represents. 

Table 5. Fuel composition of a coal used in the pilot-scale kiln [74] (Coal A) and the corresponding modeled fuel 

composition. The percentages are given on a wet basis. 

Actual composition  Modeled composition  

Fixed carbon* mass-% 64.6 C2 (s) mass-% 63.9 

Ash mass-% 13.1 Ash mass-% 13.1 

H2O mass-% 0.9 H2O (g) mass-% 0.9 

Volatile mass-% 21.4 CO (g) mass-% 8.2 

C mass-% 75.4 CH4 (g) mass-% 11.1 

H mass-% 3.9 H2 (g) mass-% 0.79 

O mass-% 5.9 HCN (g) mass-% 1.32 

N mass-% 1.37 N2 (s) mass-% 0.68 

O2-demand m3
n/kgfuel 1.59 O2-demand m3

n/kgfuel 1.58 

*Calculated by difference (100-Volatiles-Ash-H2O). 

 

 

 

 



34 

 

6.2.3 Reaction analysis 
The Chemkin solver calculates the rates of all reactions at each step in the PFR using the law 

of mass action: 

 𝑟𝑎𝑡𝑒 = 𝑘 ∏ 𝑐𝑖
𝜈𝑖 Eq. 6 

 

where k is the rate constant (see Eq. 1), ci is the ith reactant in the reaction, and νi is the 

stoichiometric coefficient for the ith reactant. Reverse reactions are calculated with the use of 

thermodynamic data. The resulting rate at each step in the PFR is in mole/cm3/s. Since the 

purpose of the model is to evaluate NO formation under combustion, each rate has to be 

integrated in order to evaluate its overall importance. This can be done either over volume or 

residence time, depending on the desired outcome. The net formation of NO (in mol/s) in the 

PFR is obtained by integrating the net NO formation rate over the volume of the reactor. 

Likewise, the level of NO production from char-N and the level of NO reduction by char are 

calculated by integrating R2 and R3, respectively. The thermal NO formation is usually 

described by reactions R3-2 - R3-4 but due to the fact that the reverse reaction of R3-2 and the 

forward reaction of R3-4 are central to the net conversion of vol-N to NO, these reactions cannot 

simply be integrated to obtain the thermal NO formation. Instead, only the forward reactions of 

R3-2 and R3-3 are considered to be part of the thermal NO formation mechanism. Although it 

is possible to integrate the remainder of the homogeneous NO reactions to obtain a value for 

NO formation from vol-N, it becomes slightly misleading due to circular reactions (such as 

NO→HONO→NO2→NO), which make volatile formation and reduction reactions appear 

more prominent than they actually are. Instead, the net amount of NO formed from the volatiles 

is calculated as the difference between the total net NO formation and the net level of NO 

formation from the processes of char-N formation, thermal NO formation, and NO reduction 

by char. In order to compare NO formation between combustion of different scale, the NO 

formation is divided by the fuel input (in MWfuel). The resulting value is then in units of mol/MJ. 

Furthermore, since combustion processes use different fuels with different contents of nitrogen, 

this unit is in turn divided by the nitrogen content of the fuel (kgN/kgfuel). The final unit is 

displayed as mol/MJ/N, where N stands for the nitrogen content. 
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7 Results and discussion 

The results are presented in two parts. First, the impacts on NOx emission levels of the fuel and 

combustion parameters, based on the inputs and outputs of the ECF from the experimental 

campaign in Paper I, are presented. Previous results from a measurement campaign conducted 

in Year 2013 are also included. Second, the experimental results are evaluated through 

modeling, and the contributions of different formation mechanisms are analyzed. The 

evaluation concludes regarding the governing chemistry and the contribution from thermal NO, 

as well as regarding the conversion of vol-N and char-N.  

7.1 NOx performance 

Figure 11 presents the levels of NOx emissions detected in the ECF for the fuels tested in the 

Year 2013 and Year 2015 campaigns. The reference coal (Coal A) had approximately the same 

levels of NOx emission in the two campaigns when the burner conditions were similar. Natural 

gas and oil produced significantly more NOx than did the solid fuels, which is in agreement 

with previous work on rotary kilns [63-65]. Furthermore, the NOx emissions from the solid 

fuels were high compared to those from conventional combustion – they reached levels that 

were 3-times the NOx limit in the MCPD (shown in Figure 11). In both campaigns, Coal A 

produced the lowest amount of NOx amongst the coals tested. Co-firing coal with biomass 

slightly reduced the level of NOx compared to burning only Coal A (under similar combustion 

conditions). In the Year 2015 campaign, it was also shown that reducing the amount of primary 

air reduced the NOx emissions significantly, and that even lower levels of NOx were reached 

for Coal A (albeit still remarkably high), as compared to when co-firing was employed. Even 

though the levels of emissions were high, the solid fuels contained enough nitrogen to account 

for the emitted NOx, and thermal NO did not necessarily predominate, as is usually assumed. 

Figure 12 presents the NOx emissions and the ratio of outlet NOx to inlet fuel-N flow (on a 

molar basis) as functions of the nitrogen contents of the solid fuels. The ratio varied between 

0.8 and 0.4. A lower level of conversion to NO was obtained for fuels with a high content of 

nitrogen, even though the absolute level of NOx emissions increased with nitrogen content. The 

trend that higher N-content leads to a lower ratio of outgoing NOx to ingoing fuel-N has been 

observed in earlier studies of combustion [75]. 

In the Year 2015 campaign, the secondary air temperature varied within the range of 965°-

1020°C, the outlet gas temperature varied within the range of 1200°-1300°C and the in-flame 

measurements yielded peak temperatures in the range of 1300°-1675°C (solid fuels only). The 

upper end of the range of the measured peak temperatures is clearly sufficiently high for thermal 

NO to be significant in terms of the kinetic rate constant, although the residence times at these 

temperatures, as well as the gas concentrations (e.g., N2, O, and NO) are also crucial parameters. 

Figure 13 presents the NOx emissions plotted against the measured peak temperature. Due to 

the low number of data-points, and the fact that the fuels vary in terms of nitrogen content, it is 

not possible to draw any definite conclusions from the figure. However, the spread seen in the 

figure (at least for ECF 2015) is an indication that thermal NO may not be dominating. Coal A 

was used in four experiments and appeared to produce less NOx when higher peak temperatures 
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were measured. A similar observation in the Year 2015 campaign was that increasing the 

temperature of the secondary air decreased slightly the outgoing NOx emissions. NOx emissions 

are also clearly related to the nitrogen content of the fuel, which indicates the importance of 

fuel NO rather than thermal NO. Furthermore, it is known that increasing the air-to-fuel ratio 

increase fuel-N conversion, and even though there is a shortage of data for the high air-to-fuel 

ratio used in iron ore rotary kilns, similar conversion values have been reported (see for example 

Pohl et al [25]). These facts point towards high fuel-N conversion being important, rather than 

high thermal NO formation. 

 

Figure 11. NOx emissions for the fuels tested during the Year 2013 and Year 2015 campaigns. Coal A is the 

reference coal, which is used at full scale. *, Lower amount of primary air. ', Different burner configuration (not 

the same in years 2013 and 2015). Blue dashed line: the MCPD limit. 
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Figure 12. Levels of NOx emissions and the ratios of outlet NO to inlet N (on a molar basis) as functions of the 

nitrogen content of the fuel. 

 

 

Figure 13. NOx emissions compared to measured peak temperature for both measurement campaigns. 

 

7.2 Contributions of thermal NO and fuel NO formation mechanisms 

In order to propose measures for NOx reduction in iron ore rotary kilns, it is important to 

estimate the different contributions of the NO-forming mechanisms. This is especially 

interesting because the experimental results indicate that the general assumption – that thermal 

NO formation predominates in iron ore rotary kilns – may not be valid. There is, however, not 

a clear cut between the contributions of thermal NO and fuel NO to total NOx formation, since 
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the respective formation mechanisms are not completely exclusive. The main connection 

between the two mechanisms is reaction R 3-2, since the forward reaction is the rate-limiting 

step for the thermal reaction, while the reverse reaction is the main reaction for homogeneous 

reduction of NO, which is central to the chemistry governing the conversion of vol-N. 

As mentioned, lower levels of primary air resulted in lower levels of NOx emissions in the 

campaign conducted in Year 2015. Figure 14 presents the temperature profiles for the two cases 

with different levels of primary air (Coal A and Coal A* in Figure 11), as obtained by both 

suction pyrometry and the use of an IR-camera. As can be seen, the temperatures are 

significantly higher when low levels of primary air are used. Figure 15 presents the center line 

in-flame measurements of NO and O2, together with the fitted model described in Section 6.2. 

Significantly lower concentrations of O2 were measured early on in the case with low levels of 

primary air (Coal A*), which indicates the presence of a pronounced reducing zone. Therefore, 

a reduction in the conversion of vol-N to NO is thought to be the reason for the lower level of 

NOx emissions.  

 

Figure 14. Measured temperature profiles for a case with a low level of primary air (Coal A*) and a case with a 

high level of primary air (Coal A). The temperatures were obtained with both a suction pyrometer and an IR-

camera. For the suction pyrometer measurements, only the three centre-line measurements are included. 
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Figure 15. In-flame measurements of O2 and NO for a case with a low level of primary air (Coal A*) and a case 

with a high level of primary air (Coal A). The O2 concentrations are shown on a dry basis, and the NO 

concentrations on a wet basis. Symbols: Measurements. Line: Model. Source: Paper II. 

In Paper II, modeling was used to evaluate Coal A and Coal A*. As a reference point, the model 

was also applied to previous measurements carried out in a 100-kWfuel facility that combusted 

lignite [76]. This case will be referred to as ‘Lignite’. Figure 16 presents a comparison of the 

gas profiles of O2, NO, CO, and CO2 after fitting the model to the experiments. Since the lengths 

of the two combustion facilities are different, the x-axis in Figure 16 is normalized. The 

combustion process can be assumed to be complete when the concentrations have stabilized. 

Figure 17 presents the resulting levels of NO formation/reduction. Three main conclusions are 

drawn from Figure 17: 

 Thermal NO appears to be negligible 

 The increased conversion of vol-N to NO is responsible for the higher formation of 

NOx seen for Coal A, as compared to Coal A* 

 The level of NO reduction by char is low in rotary kilns, as compared to the 

corresponding level in the 100-kW combustor, i.e., apparent char-N conversion is high 

in rotary kilns and is responsible for the high levels of NOx emissions 

The first and second points are in accordance with the indications from the experimental results. 

The third point constitutes perhaps the main conclusion of this thesis:  high apparent conversion 

of char-N is the main reason for the high levels of NOx emissions in iron ore rotary kilns. Since 

the intrinsic rate of char-N conversion to NO is modelled as 100%, the reduction of NO by char 

is the governing mechanism. The reduction reaction (R3) requires both NO and char, so high 

concentrations of these components are beneficial. However, the high air-to-fuel ratio employed 

in iron ore rotary kilns counteract this, since both components are diluted by the large gas flow, 

and the high concentration of O2 in the burnout zone (i.e., after volatile combustion) leads to 

rapid consumption of char. With the used kinetics, the ratio of the NO reduction rate (R2) to 

the rate of char consumption by O2 (R1) gives an indication of the effectiveness of the NO 

reduction mechanism. The ratio between these rates becomes: 
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 𝑅3

𝑅1
=

𝐴3

𝐴1

[𝑁𝑂]

[𝑂2]
 

Eq. 7 

 

An increased ratio of NO to O2 indicates that the char may reduce a larger amount of NO before 

being consumed by O2. As can be seen in Figure 16, the O2 levels are significantly higher in 

the rotary kiln cases, while the NO levels are similar. The result is low NO reduction by char.  

 

Figure 16. Gas profiles derived in the model for the three cases. Coal A* and Coal A are based on the ECF Year 

2015 cases shown in Figure 11. The Lignite case was not performed in a rotary kiln. Source: Paper II 

 

 

Figure 17. Calculated formation/reduction contributions for the three cases. Coal A* and Coal A are based on the 

ECF Year 2015 cases shown in Figure 11. The Lignite experiment was not performed in a rotary kiln. Source: 

Paper II 

As char combustion occurs further away from the burner than volatiles combustion, it is less 

dependent upon the burner design. Modifying the air-to-fuel ratio is one way to increase the 

NO/O2 ratio after volatile combustion, thereby influencing the conversion of char-N. However, 



41 

 

drastically reducing λ from 4.2 to 2.8 (brought about by reducing the oxygen content in the 

secondary “air”, while keeping the same volumetric flow), as tested in an experiment (Paper I), 

decreased the conversion to NO (NOout/Nin) from 0.67 to 0.59, which is a rather small reduction. 

This is also not a particularly attractive measure to apply in full-scale kilns, since the partial 

pressure of O2 is important for pellet quality. 

A possible measure to reduce the ratio of O2 to NO without reducing the amount of excess air 

is to recirculate the flue gases. However, achieving significant reductions in the O2 

concentrations would require high levels of gas recirculation due to the high levels of O2 post-

combustion (15%-16% without recirculation). An alternative approach is to enhance the 

combustion through oxygen addition, thereby achieving the level of oxygen required for 

combustion and pellet oxidation while reducing the dilution effect of NO (since less N2 is 

added). This latter approach is briefly evaluated in Paper II and appears to have potential, 

although it is unclear how the temperature profile would be affected.  

The second bullet point obtained from Figure 17 is simply a consequence of the amount of 

available oxygen during vol-N conversion. This is controlled by the mixing rate of air to the 

fuel, as well as the point of fuel ignition. The latter is strongly temperature-dependent, and 

achieving a high initial temperature is beneficial for rapid ignition. In Paper III, an investigation 

of the homogenous chemistry during volatiles combustion was performed by setting up an 

isothermal PFR with a fuel inlet that consisted of CH4 and HCN, with a staged insertion of air. 

The total residence time was set to 1 s, independent of the conditions used. Figure 18 presents 

the ratio of outgoing NO to ingoing vol-N as functions of temperature and mixing rate 

(described as the time that elapses until mixing is complete). At low temperatures (<1000°C), 

the ratio is low due to incomplete combustion, which leads to a low rate of conversion of vol-

N. At high temperatures (>1600°C), the ratio is greater than unity due to the onset of thermal 

NO formation. Between these regimes, vol-N conversion exhibits a step change that is 

dependent upon the mixing rate and temperature. This characterizes a shift from transport-

controlled to kinetics-controlled conversion. A case in which the mixing is rapid and the 

temperature is low leads to significantly higher vol-N conversion than a case in which the 

temperature is high (but <1600°C) and mixing is slow. In other words, if the addition of oxygen 

through mixing is faster than the consumption of oxygen by reactions, NO formation increases 

significantly. Figure 19 presents a reaction pathway analysis for a transport-controlled case and 

a kinetics-controlled case. Only the most important species and reaction pathways are shown. 

The main difference between the cases is that the formation of NO from NCO and NH is 

important in the kinetically controlled case, while in the mixing-controlled case, NO is mainly 

produced by the reaction between the N-radical and OH. In addition, in the kinetically 

controlled case, the reduction of NO by the N-radical is negligible. 
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Figure 18. Ratio of outgoing NOx to ingoing vol-N as a function of temperature and mixing time (equivalent to 

the mixing rate). Based on Paper III. 

 

Figure 19. Reaction analysis of a kinetically controlled case and a transport-controlled case. The thickness of each 

line indicates the relative importance of that reaction step. Source: Paper III 

Since char-N conversion may be difficult to control without reducing the equivalence air-to-

fuel ratio close to unity, and since vol-N conversion can be reduced through burner staging, 

measures to control the fuel-N that is released with the volatiles rather than the char might 

represent the best alternative amongst the primary measures. In theory, this could be achieved 

by increasing the pyrolysis temperature. However, a prerequisite for this is a better description 

of the pyrolysis process than we have in the current model, and the practical feasibility of this 

has to be evaluated in further studies.  
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8 Summary 

This thesis presents an investigation of the formation of NOx in iron ore rotary kilns that 

combust solid fuels. The impact of changing to alternative coals, as well as that of co-

combusting coal and biomass were investigated. The effects of changing combustion settings 

were also examined. The research involved experiments in a pilot-scale kiln (580kWfuel), 

combined with modeling work that focused on the combustion chemistry. 

The experimental investigation shows that the amount of primary air has a significant impact 

on NOx emissions. A case with a low level of primary air emitted significantly less NOx than a 

case in which the level of primary air was high. In-flame measurements revealed that the 

temperature was actually higher in the case with a low level of primary air, even though amount 

of NOx formation was reduced. The measurements also revealed the presence of an O2-lean 

zone in front of the burner when the level of primary air was low. This zone was absent in the 

case with a higher level of primary air. The main reason for the reduction in NOx formation is 

thought to be decreased conversion of vol-N to NO. Other measures that reduced NOx emissions 

included the co-combustion of coal and biomass, reducing the air-to-fuel ratio, and increasing 

the secondary air temperature. 

The results from the modeling confirm that the conversion of vol-N to NO is significantly 

increased when an O2-lean zone is absent. The reaction analysis shows that under highly 

oxidizing conditions, vol-N conversion becomes kinetically controlled rather than transport-

controlled, which promotes significant NO formations. When comparing the contributions of 

char-N and vol-N to the total NO formation under iron ore rotary kiln conditions to that 

employed in more conventional combustion, it is clear that the apparent conversion of char-N 

to NO is significantly higher in the rotary kiln. This high level of conversion is attributed to a 

high O2/NO ratio, which promotes an oxidizing environment and a low efficiency of NO 

reduction by char. Furthermore, thermal NO formation appears to be negligible in all 

investigated cases. 

Given the difficulties associated with controlling the conversion of char-N to NO, plans to 

create conditions in which the fuel-N is released with the volatiles rather than the char appear 

to be an avenue for future research. 
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9 Future work 

 

The results from the modeling work indicate that exploring the possibility of increasing the 

fraction of nitrogen released with the volatiles might be a solution for reducing NOx formation 

in iron ore rotary kilns. A detailed investigation of the pyrolysis process would thus be a logical 

continuation of this thesis. There exist available pyrolysis models with the inclusion of nitrogen 

species on the web, which might be a first step. Furthermore, since the results indicate that the 

solid-gas reactions are of utmost importance, the model needs to cover this in more detail. In 

particular, the importance of mass transfer has to be evaluated and ways to describe the process 

when mass transfer is limiting the combustion process. Some kind of particle model could be 

developed to complement the current model.  

Apart from investigating the pyrolysis process further, there are three experimental paths 

forward. The first is to perform more experiments in LKABs pilot kiln, similar to those that 

Paper I and Paper II are based on. More focus on burner settings as well as modifications of the 

secondary air would be interesting from a NOx perspective. The second possibility is to attempt 

to apply the lessons learned from the pilot scale to full scale. A problem encountered in previous 

attempts to reduce NOx is that the results from the pilot kiln did not transfer to the full scale 

kiln, and it would be interesting to see if the new modifications to the pilot kiln changes this.  

Apart from an environmental and economic perspective, there is thus also a scientific desire for 

more research on the NO formation in iron ore rotary kilns. The combustion of pulverized fuel 

at elevated temperatures and at higher-than-normal partial pressures of oxygen has received 

attention in recent years due to the development of oxy-fuel combustion, but the impact on NO 

formation when N2 is present is not well documented. A path forward is to apply laser 

technology to measure e.g. OH radicals and soot concentrations. This can provide valuable 

information of the combustion chemistry and flame structure.  
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