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Abstract: This article focuses on how operator wellbeing can be assessed to ensure social 
sustainability and operator performance at assembly stations. Rapid technological advances 
provide possibilities for assessing wellbeing in real-time, and from an assembly system 
perspective, this could enable the assessment of physiological data in real-time. While technology 
is available, it has not been implemented or tested in industry. The aim of this paper was to 
investigate empirically how concurrent physiological measurement technologies can be integrated 
into an industrial application, in order to increase operator wellbeing and operator performance. A 
mixed method approach was used, which included a literature study, two laboratory tests, two 
case studies and a workshop. The results indicated that operator wellbeing could be assessed 
through electro-dermal activity, but that the data is perceived as difficult to interpret. For an 
industrial application, operator perception and data presentation are important and risks 
connected to personal integrity and IT-support need to be addressed. Future work includes testing 
how a combination of physiological measures and self-assessments can be used to assess operator 
wellbeing in an industrial context. 
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1. Introduction 

Rapid technological developments, such as Industry 4.0, have enabled smart measurement 
tools to emerge, and during the last five years, the use of wearables, such as smart-phones, glasses 
and bracelets, have increased [1,2]. These smart tools can collect data in real-time [3] and be 
analysed with intelligent software [4]. Examples of such sensors are commercial and 
semi-commercial health and fitness devices, which have big potential to assess wellbeing in 
industry, since they are capable and inexpensive [5–7]. Wearable healthcare devices are one of the 
fastest growing markets of this decade and since the technology is fast-growing, efforts are needed 
to ensure that wearable devices reach their full potential [8].  

This article focuses on how wearables can be used to assess operator wellbeing in a 
manufacturing environment. This is difficult, since wellbeing at work is “a summative concept that 
characterizes the quality of working lives, including occupational safety and health (OSH) aspects” 
[9], and a survey of wellbeing at work (performed within the European Union) showed no 
consensus of what wellbeing at work should include [10]. The most commonly used terms were job 
satisfaction, good/fair working conditions, quality of work and health at work [10]. A common way 
to assess psycho-social risks and ill-health is through self-report questionnaires [10,11]. When using 
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self-assessments or self-report questionnaires, it is important to report emotions close in time, and 
directly connected to, actual experiences—not in terms of a remembered utility (e.g., “how do you 
feel about what just happened?”) [12]. This is because past experiences are often connected to 
systematic biases (e.g., connected to a situation or a subjective reconstruction [13,14]). Schwarz et al. 
saw that when making judgments of how happy and satisfied people were with their lives, they 
relied on momentary affective states—if they felt positive or negative at that moment [15]. In 
addition, if they were unhappy, they tried to explain their state more than those who were in 
pleasant affective states [16]. Capturing real-time data is one way to minimize biases [12,17]. Smart 
devices, therefore, have the potential to increase job satisfaction, reduce complexity and errors, and 
influence behaviour by giving visible hints to the operator and matching the job to the person [18]. 
These smart devices are not only important from a wellbeing perspective; they can also be used to 
increase operator performance [19]. Psychological wellbeing and psychological health have been 
seen to correlate with performance at work [20,21]. High performance has been connected to having 
both a high job satisfaction and a high psychological wellbeing [22]. In addition, correlations 
between motivation and wellbeing have been seen—such as competence, autonomy and 
relatedness—which affect intrinsic motivation, self-regulation and wellbeing [23]. When these three 
are satisfied, they increase self-motivation and mental health, but when not satisfied, they instead 
diminish both motivation and wellbeing. With an increasingly diversified work force (due to 
demographic changes), it is important to further investigate how operator wellbeing can be 
increased from an individual perspective [24–27]. Since individuals have different knowledge and 
skills in their work situations, they will therefore often experience work-related stress when the 
work demand is not matched with their own abilities [26,27]; for instance, negative feelings such as 
boredom and under-stimulation affect operator performance [28]. 

Studies are needed to investigate how physiological measurements can be used in a 
manufacturing context. According to the work environment act, “the work environment must be 
satisfactory with regard to the nature of work and the social and technological developments in 
society. ...Working conditions must be adapted to people’s differing physical and mental aptitudes” 
(The Work Environment Act 2:1, 2015). Today, few assembly workstations are however designed 
with principles that support the operators’ mental capabilities [29–31], and self-assessments 
(NASA-TLX) have been used to assess cognitive load [32,33]. Self-assessments can, however, be 
connected to biases and take valuable time away from production, and cannot be used to support 
the operator in real-time. Some examples of physiological measurements have been seen, e.g., the 
perceived stress of robots in a shared working environment was assessed using Electro Dermal 
Activity (EDA) [34]. Also, in an attempt to better assess physical load, electromyography (measuring 
the electric activity of muscles) was used, together with body postures and movements [35]. EDA 
has also been proven useful for studying user satisfaction, as well as real-time affect assessments of 
the Human–Automation Interface [36].  

This paper aims to investigate empirically how concurrent physiological measurements can be 
integrated into an industrial application, in order to increase both operator wellbeing and 
productivity of the operator. A big challenge lies in the industrial application and the visualization 
of the data; so far only the vision of how that will be performed has been presented [37]. It is 
therefore important to investigate conditions that are associated with the use of physiological 
measurements; this is done by studying the following two questions:  

(I) Which physiological measurements can be used to assess operator wellbeing in real-time? 
(II) What risks and possibilities are connected to assessing operator wellbeing in real-time in 

industry? 

2. Materials and Methods 

A mixed method research approach was carried out to answer the two questions. This is useful 
since the questions are complex in nature and because a combination of quantitative and qualitative 
methods can be used to find deeper understanding of a phenomenon (how to assess operator 
wellbeing in industry) [38,39]. Since physiological measures in industry are uncommon and new 
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devices are developed continuously, long-term studies are not possible and therefore a more 
exploratory approach is suitable (such as mixed method). Triangulation is used to increase 
reliability, validity and interpretation of data, through collecting different types of data (e.g., by 
combining interview and laboratory results [39,40]). There are four basic types of triangulation that 
are used in this paper: data triangulation (different types of data, at different times), method 
triangulation (different methods), theory triangulation (a phenomenon is investigated using 
different research disciplines that are assumed to have equal value) and investigator triangulation 
(multiple researchers involved in the investigation) [41]. The mixed method design is presented in 
Table 1 and is connected to the research questions respectively.  

Table 1. Mixed method design used to answer research questions. 

Research Question Method Triangulation Type Aim 

Which physiological 
measurements can be used to 
assess operator wellbeing in 
real-time? 

Literature study, 
laboratory tests 
and case studies 

Data (literature and laboratory results), method 
(quantitative and qualitative), theory (different 
theories are combined in the literature study) 
and investigator triangulation (multiple 
researchers involved) 

Physiological 
measures are 
identified and 
tested 

What risks and possibilities are 
connected to assessing 
operator wellbeing in real-time 
in industry? 

Case studies and 
workshop  

Data (case study and workshop data), method 
(two types of qualitative data) and investigator 
triangulation (multiple researchers involved) 

Risks and 
possibilities are 
identified 

The methods used are described in the following sections. First, the literature study on 
physiological measures is presented.  

2.1. Literature Study: Identifying Physiological Measures 

In the introduction, several aspects were identified as important when assessing operator 
wellbeing, e.g., job satisfaction, motivation and operator emotion. Operator wellbeing is defined as a 
state characterised by job satisfaction and changes in motivation and operator emotion. This section 
describes how changes in operator emotion and motivation have been assessed.  

Individual difficulties in assessing and describing one’s own emotions have been noted by 
many researchers [42]. These difficulties suggest that emotions lack distinctive borders, which 
makes it hard for individuals to discriminate one emotion from another. However, correlations 
between different emotions have been found [13] and a model of affect states, which includes two 
dimensions of emotion—arousal and valence—has been suggested [43]. Here, arousal is connected 
to how activated you are feeling and valence to whether you perceive the emotion as pleasant or 
unpleasant (positive or negative). Even though it is hard to distinguish the valence of an emotion, 
this is often given by the situation or can be included through self-report measures, such as rating 
scales [11]. Furthermore, some researchers argue that a third dimension, dominance, is needed to 
describe affect [44,45]. Dominance is defined as the extent to which an individual feels free to act 
[45]; this can be translated to autonomy in the workplace, which was seen as an important 
connection to wellbeing and motivation [23]. 

Changes in emotion, motivation, habits and attitude have been successfully investigated by 
studying changes in the sympathetic branch of the Autonomic Nervous System (ANS) [11,36]; the 
sympathetic branch is connected to physical activity or mental work. Since ANS signals could be due 
to reactions to a situation (noise in the background, people walking by) and not to the task itself, 
differences in whether participants are passive or active during a measurement have been found 
[11,36]. If a person is active, like when giving a speech, the ANS results could be connected to the 
action of giving a speech (e.g., physiological changes while talking, producing a higher voice) and 
not the physiological response to the situation [11].  

ANS have been assessed by measuring EDA, Heart Rate Variability (HRV) and respiratory 
activities [46–49]. EDA is useful for assessing changes connected to emotional and cognitive states, 
since it is not affected by parasympathetic activity (e.g., the body’s unconscious actions such as 
digestion and salivation [50]) and is measured through current in the skin (which increases when an 
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operator is producing sweat) [36,46]. As the sensors are both cheap and can be measured reliably 
[11], EDA measures can also easily be conducted. HRV measures the time between heartbeats and is 
useful since when a person is exposed to stress, the autoimmune nervous system triggers stress 
hormones that change both the heart rate and HRV [51]. Studies show that HRV levels are high 
when a person does not feel stressed, while low HRV levels are an indicator of a higher perceived 
stress level [52]. Respiratory factors are interesting since breathing has been connected to 
emotions—negative emotions, such as anger, anxiety, disgust and surprise, as well as some positive 
emotions, such as contentment, happiness and joy [49]. 

EDA, HRV and respiratory factors have been identified as physiological measures that can be 
used to assess changes in operator emotion and motivation, Figure 1. 

 

Figure 1. Model for assessing changes in motivation and operator emotion adapted from the 
introduction, and ways to assess affect from Russell [43], Stamps [44], Mehrabian and Russel [45]. 

2.2. Devices Used to Assess Physiological Data 

Devices that were used in the laboratory tests, case studies and the workshop are presented in 
Table 2. These devices were chosen since they were easy to use and had software that could be 
connected to either a mobile device or a computer that could show physiological data in real-time.  

Table 2. Devices and physiological measurements used (connected to methods). 

Device (Developed by Company Name) Physiological Measurement Used in Method 

Qsensor (Affectiva) 
Electro Dermal Activity (EDA) and 

body temperature 
Laboratory Tests A and B 

Breathing activity device (Spire) 
Respiratory factors (by abdominal 

and chest movements) 
Laboratory Test B 

SmartBand 2 (Sony) Heart Rate Variability (HRV) Laboratory Test B 

Activity bracelet E4 (Empatica *) 
HRV, Blood Volume Pulse (BVP), 

EDA and body temperature 
Laboratory Test B, workshop 

and case studies A and B  

* The Qsensor was discontinued and the technology was further developed in the company Empatica. 

2.3. Laboratory Test Designs 

Two laboratory tests were carried out to test how physiological measures found in the literature 
study can be used to assess operator wellbeing. Details of the tests can be found in previous 
published articles, e.g., in Li et al. [27], Söderberg et al. [53], Mattsson et al. [19] and Mattsson et al. 
[5]. At the beginning of each test session, the participants were given a verbal description of the 
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experimental proceedings and were asked for oral consent to participate. To set a baseline for the 
arousal assessment, participants were asked to walk up and down a stair five times (as suggested in 
[11]).  

Laboratory Test A was carried out in 2014 to investigate which physiological measurements 
correlate with operator performance. Sixty participants were recruited primarily via campus 
message boards at Chalmers University of Technology. Participation was voluntary and each 
participant was studied separately (not studied in a group). Repeated experiments were performed, 
where participants assembled five + five Lego gearboxes (named 1st and 2nd assembly) during two 
different assembly times (A and B); A was 70 s long and B was 50 s long. To avoid experimental bias, 
they were divided into two randomized groups: Group AB and Group BA. To avoid plausible 
alternative causes, all other conditions were held constant. The assembly instructions were placed on 
a screen to the left, and the time was on the right. The component shelf was optimized for picking 
order. Operator emotion was assessed through EDA and subjectively-rated arousal, valence and 
dominance, using the Self-Assessment Manikin (SAM) [54] with Likert scales ranging from 1 to 5. 
Relationships between EDA, SAM and operator performance were assessed statistically with 
two-tailed Pearson’s tests, and EDA was measured using the Qsensor (Table 1) and analysed by 
comparing the number of Non-Specific Skin Conductance Responses (NSCR) per minute to 
operator performance [36]. Three types of NSCR peaks were calculated: down peaks, flat peaks and 
up peaks (see Figure 2). In a pre-test, flat peaks were seen when participants focused on their work, 
e.g., before assembling a new component or before filling out a survey. Therefore, flat peaks were 
defined and introduced as part of the experiment’s data collection. Flat peaks were defined as down 
peaks that were longer than 2 s. Operator performance was assessed as the number of parts 
assembled correctly (the gear box had 12 parts). All calculations involved multiple researchers to 
increase data reliability. After the assembly, an interview was carried out to validate findings. 
Between the first and second assemblies, an interviewer asked the participants how they perceived 
the assembly; this was also done after the second assembly (followed by other questions regarding 
their performance). Participants were then shown their EDA graph, but their view of the data was 
not captured. Therefore, a follow up test—Laboratory Test B—was designed.  

 
Figure 2. The three types of Non-Specific Skin Conductance Responses (NSCR) peaks assessed in 
Laboratory Test A: down peak, flat peak and up peak (from left to right in figure). 

In Laboratory Test B, participants assembled eight Lego gearboxes (the same gearbox as in A). 
The test was carried out at Chalmers Smart Industry lab in 2016. The aim was to test which was the 
most and the least preferred device and why, to allow further investigation about the use of EDA as 
a reliable measurement. Thirteen participants were recruited through email and wore three devices 
during the assembly: the Qsensor, Breathing Activity Device and SmartBand 2 (presented in Table 
1). In the experiment, covariation between operator emotion and performance was investigated and 
the number of flat peaks was also calculated; however, operators were not given a cycle time (half 
were told to assemble with as high quality as possible and half were told to assemble as fast as 
possible). The environment was also manipulated (randomized and structured) during the 
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experiment, but no correlations between manipulation and choice of device were seen. Presentation 
of the device data differed for the three devices; the presentation of the Qsensor was a graph, the 
Breathing Activity Device had a label and a minute stamp and the SmartBand 2 was displayed as a 
graph connected to a bar chart with three pre-defined bars (the pre-defined bars were low stress, 
average stress and high stress levels). In addition, participants were asked how the assembly felt 
(after the assembly). 

Participant data for the two designs are presented in Table 3. 

Table 3. Participant data for Laboratory Tests A and B. 

Laboratory Test A: Emotion Assessments B: Device Testing 
Number of participants 60  13 

Percentage Male/Female (no.) 
52% male (31) 70% men (9) 

48% female (29) 30% female (4) 
Average age 22 years 35 years 

Percentage education (no.) 
86% Bachelor level (52),  

Masters level 10% (6), Other 4% (2) 
Over-graduate 85% (11), 
Under-graduate 15% (2) 

Percentage experience in 
assembling (category, no.) 

56% novice (assembled Lego 8–15 years ago, 
33), 18% average (1–7 years ago, 11) and 26% 

experts (less than one year ago, 16) 

38% novice (5), 31% average (4) and 
31% experts (4) in assembling that 

gearbox 

2.4. Case Study Designs 

Two case studies were carried out at two different industrial environments (two companies) 
with five different operators. The aim was to assess how operators and company representatives 
perceived the output data and to investigate how physiological data could be presented. Two data 
types, EDA and Blood Volume Pulse (BVP), were analysed by studying the output graphs with the 
participants; Figure 3 depicts an example graph. 

 

Figure 3. Example graph showing the output data from the activity bracelet: Electro Dermal Activity 
(EDA), Blood Volume Pulse (BVP), Heart Rate (HR), temperature and time (from top to bottom). 

The assembly tasks were simple, with few components to assemble. In Case Study A, the 
activity bracelet usefulness was tested in a manual assembly cell with five stations (which included 
small set-ups of machines, details in Korneliusson et al. [55]). Two participants with different 
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experience levels—an experienced operator, but novice with the specific product and an operator 
with great experience with the product and assembly—participated in the study. In Case Study B, 
the physiological aspects of a collaborative working environment between a human and a cobot 
(co-existing robot) were studied (details in Jacobsson and Nilsson [56]). In the study, the cobot and a 
human shared the station but did not assemble at the same time. The station contained ten tasks, of 
which the robot performed four tasks and the human six. Three operators were studied with varied 
levels of experience.  

2.5. Workshop on Risks and Possibilities with a Prototype Assessing Operator Wellbeing in Real-Time 

In order to understand how the device could be used in industry, a workshop was conducted 
with participants from industry and academy. The activity bracelet (measuring HRV, EDA, BVP and 
temperature, example in Figure 3) was built into a prototype and experts within the “People in 
Production Systems” from the Swedish strategic innovation programme, Produktion2030 

(Production2030 is a strategic innovation programme supported by VINNOVA, Swedish Energy 
Agency and Formas), were invited to participate in a workshop to evaluate the prototype. The 
workshop was held in 2016 with 15 participants (eight researchers, three company representatives 
and four project participants). Workshop participants were divided into three groups to perform a 
Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis, based on Kotler [57] and Osita 
et al. [58]. The prototype was an interface in which physiological data and four work environmental 
measurements (temperature, carbon dioxide level, light and sound levels) were presented in 
real-time (see Figure 4). The field below the work environment indicators was a comment field, 
where suggestions were given to the operator if threshold limits had been exceeded, e.g., if the 
temperature was above 23 degrees, a message was given together with a suggestion of what to 
change.  

 
Figure 4. Prototype evaluated in workshop. 

3. Results 

First, findings regarding the physiological measurements that can be used to assess operator 
wellbeing are presented; then risks and possibilities connected with a real-time assessment in 
industry are given.  

• Assessing operator wellbeing through physiological measurements 

EDA, HRV, BVP and respiratory factors were identified as potential physiological 
measurements that can be used to assess operator wellbeing. They were tested empirically in 
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laboratory and case studies. The usefulness of EDA, HRV and BVP were supported; findings are 
summarized in Table 4.  

Table 4. Summarized findings. 

Physiological 
Measurements 

Research Methods Findings Sources 

EDA Literature Study  
EDA was identified as being useful for assessing 
stress, changes in emotion and motivation 

Literature data 

 Laboratory Study A 
Weak correlation with operator performance 
(significant correlation) 

Quantitative data 

EDA and HRV Laboratory Study B 
50% of the participants thought it was the most 
reliable, 50% preferred HRV 

Qualitative data 

EDA and HRV Case Study A Participants were positive about the graphs Qualitative 

EDA and BVP Case Study B  Project leader thought it was crucial for 
understanding interaction 

Qualitative 

In Laboratory Test A, a weak–moderate positive relationship was seen between operator 
performance and the EDA flat peaks (r(45) = 0.43 (p < 0.01)) in the first assembly. Overall, it was seen 
that the six top-performing participants had average of 688 flat peaks per minute while the six 
bottom-performing participants had an average of 243 flat peaks per minute. This means that 
operators who assembled with a high performance also had a higher number of flat peaks, and that 
operators with lower performance rates, in general, had a lower number of flat peaks. No other 
significant correlations were found (including interaction effects), i.e., the flat peaks were not 
dependent on the cycle time (time A or B). The covariance results could be due to reactivation—the 
participants in the first assembly had to concentrate, to be able to learn, and to handle the stressful 
situation (thereby producing flat-peaks before reactivation). Because the reactivation of skin 
conductance has been connected to increased stress [59,60], some support for this was seen in the 
interviews, where, in general, the first assembly was perceived as stressful (40%) and difficult (28%) 
while the second was seen as better (35%) and less stressful (22%). The cause of the relationship, 
however, could not be seen in the experiment (e.g., the cause could be due to cognitive or physical 
reactivation). Because a relationship between operator performance and flat peaks was found, EDA 
was identified as a promising parameter that can be used in conjunction with other measurements to 
assess operators; this was investigated further in Laboratory Test B.  

In Laboratory Test B, 50% of the participants thought that EDA was the most reliable 
physiological measurement and that HRV data was the least reliable. The other 50% thought that 
HRV data was the most reliable and that the Breathing Activity Device and the EDA data were the 
least reliable. Participants said that they preferred one device over the other based on their personal 
experiences, e.g., participants who did not sweat or who were very aware of their pulse thought that 
HRV was more reliable, and participants who had a low pulse thought that EDA was more reliable. 
The participants stated that the EDA data was reliable since it was detailed; however, they did not 
understand exactly what it measured. One reason that the Breathing Activity Device was not 
perceived as reliable was that its sample rate was too low (it did not show differences fast enough 
and could be more suitable for long-term assessments). These results indicate that both EDA and 
HRV are needed to assess operator wellbeing. In Laboratory Test B, no relationship between 
operator emotion and performance was found (including a relationship between flat peaks and 
operator performance) which could be because participants did not perceive the assembly as 
stressful or difficult. Fifty-four percent said that the second assembly was better and 31% said that 
the first assembly was good. Twenty-three percent said that it was stressful (in Laboratory Test A, 
40% stated that it was stressful).  

In the case studies, several physiological measurements were assessed (through the Empatica 
device). In Case Study A, operators perceived the logging of the physiological data positively and in 
Case Study B, the data was perceived as useful for the company, since it showed how the interaction 
affected the operators. This type of assessment had not been possible before, and therefore the 
physiological data could generate new insights (according to the project leader). The combined data 
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(EDA and HRV, EDA and BVP) was used to discuss differences between the operators’ experience 
levels. The Case Study B results were used to start a new project that will assess operator emotion in 
human–cobot collaboration.  

In conclusion, the results indicated that EDA could be used in combination with HRV or BVP to 
assess operator wellbeing.  

• Risks and possibilities with assessing operator wellbeing in real-time in industry 

Workshop participants identified risks and possibilities with the prototype, using a SWOT 
analysis (assessing EDA, BVP, HRV, temperature and four environmental data). The main identified 
risks were that the data was difficult to interpret and that there could be issues regarding personal 
integrity that need to be considered, e.g., who should have access to the data and who should 
interpret it. For instance, the assessments could be given to the company doctor (or similar) and not 
directly to the team leader. The possibilities were that the prototype was flexible, mobile-based and 
could be connected to many data types. It was considered to be the first step towards an increased 
awareness in operator wellbeing at the workplace. The results are presented in Figure 4.  

 
Figure 4. Results from the Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis. 

Further, risks connected to data presentation were seen in the case studies. One of the 
operators thought that it would be inconvenient to see the data in real-time and that he would 
rather see the data after the order was completed, or in his free time. If physiological measurements 
were used at the station, operators thought that it should be voluntary to use them. Also, operators 
thought that if they were aware of their own stress levels, this would contribute to additional stress. 
In addition, they wanted notifications through either symbols or pre-selected text. Although the 
sample sizes of the case studies were small, the feedback from the operators are important. To 
design a system according to what the operators think can improve interaction and operator 
performance [61,62] and usability [63–68]. A number of questions were raised during the workshop, 
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such as, who will support the device interface and whether data from devices were enough to 
assess operator wellbeing. 

4. Discussion 

The aim of this article was to investigate empirically how concurrent physiological 
measurements can be integrated in an industrial application, in order to increase both operator 
wellbeing and the productivity of the operator. The following research question was first 
investigated—which physiological measurements can be used to assess operator wellbeing in 
real-time? EDA was considered reliable and useful for assessing operators’ wellbeing at work; this 
was seen both in the experiments and the case studies. Although participants considered EDA to be 
reliable and useful, interpretation of the data was perceived as difficult (by participants in 
Laboratory Test B and the workshop). The EDA data is difficult to interpret since the physiological 
measures are connected to several activities (both cognitive and physical) [11,36]. EDA does not 
measure one exact emotion, but instead serves as a general indicator for arousal, attention, 
habituation, preferences and cognitive effort [11,36]. However, although EDA is perceived as 
difficult to understand by participants, the measurement is relevant because it can show otherwise 
hidden processes—such as how people make decisions [11]—and provide information about an 
emotion before it is conscious to the participant (thereby preceding a reaction) [69,70]. We suggest 
that EDA should be combined with other physiological measurements, such as those exemplified in 
the case studies (BVP or HRV), and that further studies are needed to identify the relationships 
between EDA, BVP, HRV and operator performance. The advantages of combining different types 
of data have been seen in several studies (e.g., EDA, HRV, self-ratings, behaviour and personality 
traits can be used to detect anomalies [71–73]). Apart from the already suggested measurements (i.e., 
EDA, HRV, respiratory factors and BVP), physiological measurements, such as eye-monitoring 
and/or pupil dilation could be further investigated. To capture operator wellbeing assessments, 
real-time assessments should also be combined with assessments of job satisfaction and motivation. 

The second research question—What risks and possibilities are connected to assessing operator 
wellbeing in real-time in industry—was investigated with a workshop and case studies. The main 
risks were connected to data interpretation and personal integrity, which was identified in a similar 
SWOT analysis, e.g., the use of smart wearables was connected to personal integrity and support of 
the devices [8]. Regarding personal integrity, a technological solution, for an industrial application 
would also need to be integrated with current systems, which need interoperability with industry 
standards [74]. An Internet-centric solution, described by Li et al. [75], would be ideal for this type of 
measurement. The next generation of cellular networks, 5G, promises several advantages and 
should help solve many issues regarding mobility and security. The results showed that there are 
many possibilities connected to physiological measurements in real-time (e.g., wearables could 
increase health and safety as well as the attractiveness of the company (workshop results) [76]), 
which were also supported by the case study findings. In comparison with the SWOT analysis of 
wearables, similar findings in terms of opportunities were seen, (e.g., improved health and increased 
awareness [8]). 

Although this research is exploratory, the findings are both relevant and useful for testing and 
designing future industrial applications. The empirical tests of physiological data are relevant 
results in themselves since today, operator wellbeing is often assessed through self-assessments 
(which takes time and is connected with bias). The results presented are seen as a first step in finding 
a suitable way to assess operator wellbeing in manufacturing. The data collection was carried out in 
a structured way (i.e., it can be repeated) which increases the reliability of the findings [77,78]. Since 
triangulation was used, the validity of the findings is increased [40,41,77].  

The interpretation and combination of physiological data is an important topic for future 
research. More studies are needed to investigate how real-time assessments should be designed and 
how physiological data could be used in industry. Specifically, a social sustainability perspective 
that supports demography changes is needed, so that the developed smart technologies become 
efficient and support the operators’ physical and cognitive abilities [79–81]. Also, to ensure that 
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wearable devices are implemented in a successful way, health regulations and standards are needed 
[8]. Future work includes further testing on how the activity bracelet can be combined with 
self-assessments to assess operator emotions in industry.  

5. Conclusions 

This study shows that reliable data can be collected, and several data types can be combined, to 
assess operator wellbeing in real-time. In this paper, EDA, BVP and HRV were identified as 
promising physiological measurements for assessing operator wellbeing in an industrial context. 
When implementing physiological measurements in industry, there are still many obstacles, e.g., 
standards and regulations are needed to ensure an efficient and secure implementation. Doing so 
will enable more informed, aware and safe operators, e.g., in terms of improved wellbeing at work, 
decreased cognitive load, increased social sustainability and increased operator performance.  
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