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A B S T R A C T

This paper focuses on modelling snap loads in mooring cables. Snap loads are a known problem for the established
oil and gas industry, and they pose a major challenge to robust mooring design for the growing industry of wave
energy conversion. We present a discontinuous Galerkin formulation using a local Lax-Friedrich Riemann solver
to capture snap loads in mooring cables with high accuracy. An hp�adaptive scheme is used to dynamically
change the mesh size h and the polynomial order p, based on the local solution quality. We implement an error
indicator and a shock identifier to capture shocks with slope-limited linear elements, while using high-order
Legendre polynomials for smooth solution regions. The results show exponential error convergence of order
p þ 1∕2 for smooth solutions. Efficient and accurate computations of idealised shock waves in both linear and
nonlinear materials were achieved using hp�adaptivity. Comparison with experimental data gives excellent re-
sults, including snap load propagation in a mooring chain. Application on a wave energy device using coupled
simulations highlights the importance of the touch-down region in catenary moorings. We conclude that the
formulation is able to handle snap loads with good accuracy, with implications for both maximum peak load and
fatigue load estimates of mooring cables.
1. Introduction

Snap loads are an important factor in the structural design of marine
cable installations. For example, they need to be considered during ma-
rine lifting operations (Bauduin et al., 2015) and they are known to cause
mooring line failure for floating oil production installations (Safetec,
2013). The snap phenomenon can result in high peak loads and increased
fatigue damage of cable installations. For the emerging field of wave
energy converters (WECs) that put larger demands on the mooring sys-
tem design and functionality (Johanning et al., 2007; Fitzgerald, 2009),
snap loads are potentially an even larger hazard to the design. Reports
show that snap loads can cause great damage in both experiments and
field tests of WECs (Hann et al., 2015; Thies et al., 2012; Harnois, 2014;
Savin et al., 2012). However, firm conclusions on snap load occurrence
and the resulting amplitude is difficult to reach from measurements only
(Harnois, 2014). It is therefore important that numerical methods used
for cable dynamics are able to handle snap loading events properly.

Snap loads are characterised by a discontinuity in tension magnitude
that propagates along the cable (Dhanak and Nikolaos, 2016). There are
three main mechanisms by which snap loads are generated in mooring
.
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cables. First, there is the shock wave build up due to nonlinear material
response. Tjavaras (1996) studied these shock conditions in highly
extensible fibre ropes using the method of characteristics and finite dif-
ferences. He showed how shocks form in fibre ropes with exponential
strain-tension behaviour. A second snap load generation mechanism
arises from sea-bed contact, predominantly in catenary slack moorings.
Triantafyllou et al. (1985) has showed that a snap is generated when the
touch-down point velocity of a chain exceeds the wave-speed in the
transverse direction of the cable. This was later observed in experiments
by Ref. Gobat and Grosenbaugh (2001) and computed with good results
by Ref. Gobat (2000) using finite differences and adaptive time-stepping.
The third and most common snap load is however associated with the
cable slack condition. The snap load amplitude is in this case dependent
on thematerial stiffness and the local strain rate of the cable at the instant
it re-enters the tensioned regime (Hennessey et al., 2005). The experi-
ments of Fylling and Wold (1979) investigated snap loads of this type.
They have been numerically studied by several authors, e.g. Shin (1991)
using a clipping model that showed that the snap amplitude decreased
with increasing free-falling velocity of the cable. Also Vassalos and
Kourouklis (1998) used the lumped mass method as described in
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Ref. Huang (1994) to compare with said experiments. Good results were
obtained for cases with smooth dynamic response, but errors up to 30%
were noted for cases with snap loads. We note that in the case of cable
slack at the contact point, these definitions overlap and the governing
mechanism for the snap is a mixture of the second and third types of snap
load generation.

There are a multitude of numerical cable formulations and models; see
e.g. Ref. Spak et al. for a good review andBrownandMavrakos (1999) for a
comparative benchmark test between different methods. A common cable
discretisation technique is to use discrete lumped masses. This was origi-
nally described byRef.Walton and Polachek (1959), and is frequently used
today (Orcina Inc, 2012; ANSYS Inc, 2013). In early work, a number of
investigations were also made using finite differences (Tjavaras, 1996;
Gobat and Grosenbaugh, 2001; Ablow and Schechter, 1983; Mavrakos
et al., 1996). Linear finite element formulations include the work of Aamo
andFossen (2000), and commercial solvers such asDeepC (DNVGL,2014).
AGalerkinmethodbased on cubic splineswas introduced byRef. Buckham
et al. (2004) as a starting point to higher order modelling of the cables. Of
particular importance to this work is the paper of Montano et al. (2007)
who formulated a mixed high-order finite element model for cables. The
position and velocity of the cableweremodelledusing continuousGalerkin
finite elements of high order, but the tension was an auxiliary discontin-
uous Lagrangianmultiplier constraint. Under the assumption of negligible
bending stiffness, they showed good results for very stiff and inextensible
cables.However, topropagate snap loadsweneed to resolve the time-scales
of longitudinal waves of tension. This was the aim of our previous study,
where we developed a local discontinuous Galerkin (LDG) method for
mooring cables (Palm et al., 2013). The LDG formulation required stabili-
sation penalty terms as expected (Cockburn and Shu, 2001), but showed
good results in convergence and validation tests. However, a constant
choice of fluxes made snap load capturing difficult, showing a need for a
more sophisticated numerical scheme.

The governing equation of mooring cable dynamics is hyperbolic
(Tjavaras, 1996; Montano et al., 2007), and shock waves in hyperbolic
conservation laws is a well studied topic. The theorems of Lax and
Wendroff (1960), and of Hou and Le Floch state that any converging
solution of a shock in a hyperbolic equation will only converge to the
correct (and unique) solution if the problem is formulated in conservative
form. Discrete representations of shocks are also subject to Ref. Godunov
(1959) theorem stating that all constant flux schemes of orders greater
than one will produce non-physical extrema (over/undershoots) in the
presence of discontinuities. The total variation diminishing (TVD) family
of flux-limiters (see e.g. Ref. Sweby (1984)) have been developed to
remedy the accuracy for second order finite volume simulations.

Shocks can be modelled accurately using discontinuous Galerkin (DG)
methods in conservative form. The DG method is essentially a finite
volume scheme with each cell approximated using finite elements. The
elements are connected via numerical fluxes, like in the finite volume
method. Shape functions of arbitrary polynomial order can be used to
achieve exponential convergence for smooth solutions (Karniadakis and
Sherwin, 2003), enabling engineering accuracy with only a few elements.
However, in the presence of shocks, the estimated amplitude will be
affected by overshoots and undershoots around the shock front of the
solution (Toro, 2001). There are many approaches to capture shocks,
where the main is through limiting the flux (or slope) of the solution as in
finite volume schemes, see e.g. Ref. Sweby (1984). Among other tech-
niques we note the artificial viscosity for sub-cell shocks by Ref. Persson
and Peraire (2006) and the moment limiters for high order meshes
(Krivodonova, 2007). These measures have in several studies been
combined with mesh adaptivity in element density (h) and/or poly-
nomial order of the expansion basis (p) (Berger and Colella, 1989; Bey
et al., 1996; Eskilsson, 2011), as well as with shock detection schemes
(Bernard, 2008; Krivodonova et al., 2004).

We present a high-order discontinuous Galerkin (DG) method for
cable dynamics with the purpose of capturing and resolving snap loads.
The problem is formulated in conservative form, including an
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approximative Riemann solver based on the local Lax-Friedrich flux.
Further, an hp�adaptive strategy based on the tension magnitude is
applied. The hp�adaptivity aims to utilise the desirable accuracy of high-
order elements in smooth regions, while returning to slope limited linear
elements around the discontinuities, to resolve the shocks. Computa-
tional results are compared with analytic results for three idealised test
cases. Further, we compare computational results with experimental data
from a mooring chain subjected to prescribed end-point motion.

The paper is organised as follows. First we present the governing
equations, recasted in conservative form, and the physical assumptions
made in the derivation (Section 2). This is followed by an eigenvalue
analysis of the model system (Section 3). Section 4 describes the details of
the numerical model implementation, with the hp�adaptive strategy pre-
sented in the following Section 5. Computational examples are then pre-
sented inSection6and thepaper endswithconcluding remarks inSection7.

2. Governing equations

For a cable of length Lc, we use the unstretched cable coordinate s 2
½0; Lc� to express the global coordinate position vector of the cable as
r ¼ ½r1ðsÞ; r2ðsÞ; r3ðsÞ�T. Under the assumption of negligible bending
stiffness, the equation of motion becomes

γ0€r ¼
∂

∂s
ðTt̂Þ þ f ; (1)

bt ¼ ∂r
∂s

����∂r
∂s

�����1

; (2)

where γ0 is the cable mass per unit length, T is the cable tension force
magnitude, bt is the tangential unit vector of the cable and f represents all
external forces. For notation we use _x ¼ ∂x

∂t to indicate time derivatives
and jxj ¼ ffiffiffiffiffiffiffiffi

xixi
p

to denote the L2 - norm of a vector quantity x, Vector
components are denoted by their index as xi; i 2 ½1;2;3�, and summation
over repeated indices is implied.

Written as a first order system in terms of the cable position r, its
spatial derivative q ¼ ∂r

∂s and its momentum density ν ¼ _rγ0, eq.
(1) becomes

_r ¼ ν

γ0
; (3)

_q ¼ ∂

∂s

�
ν

γ0

�
; (4)

_ν ¼ ∂

∂s
ðTbtÞ þ f ; (5)

where we have assumed that the cable mass is constant in time. In terms
of a state vector u ¼ ½r; q; ν�T the conservative form of the problem is
written as

_u ¼ ∂FðuÞ
∂s

þ QðuÞ ; (6)

with a flux function

FðuÞ ¼
�
Ø;

ν

γ0
; Tbt�T ; (7)

and a non-linear source term

QðuÞ ¼
�
ν

γ0
;Ø; f

�T
: (8)
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2.1. External forces

All external forces acting on the cable from the surrounding fluid are
grouped in the forcing term f of eq. (1). The total force is given by

f ¼ fA þ fB þ fC þ fD ; (9)

where fA is the added mass and Froude-Krylov forces, fB is the net force of
gravity and buoyancy, fC represent contact forces, typically from sea-floor
interaction, and fD is the drag force.

To describe the external forces, we introduce the tangential and
normal projection of a vector x respectively as

xt̂ ¼ x⋅̂t ; (10)

xn̂ ¼ x� x̂t : (11)

In terms of the fluid velocity vf, we also let the relative velocity and
acceleration of the fluid with respect to the cable be

v* ¼ vf � _r ; (12)

_v* ¼ _vf � €r : (13)

Then

fA ¼ Acρf

 
_vf þ CMn

_v*bn þ CMt
_v*bt
!

; (14)

fB ¼ g
ρc � ρf

ρc
γ0 ; (15)

fD ¼ 0:5ρf dc
ffiffiffiffiffiffiffiffiffiffiffi
1þ ε

p �
CDt

��v*bt ��v*bt þ CDn

��v*bn ��v*bn 	 ; (16)

where g is the gravitational acceleration, ε is the axial strain, CMn, CMt are
the added mass coefficients of the normal and tangential direction
respectively, and where CDn, CDt are the drag coefficients of the normal
and tangential direction. The drag forces and addedmasses are computed
using Morison's formulas (Morison et al., 1950) for a circular
cross-section with volume-preserving properties during axial strain.
Since the effects of cross-section contraction and axial elongation cancel
during uni-axial strain of a volume-preserving material, there is no strain
dependence on fA and fB. For fD however, the linear increase with
increasing strain (1þ ε) is not fully cancelled by the contraction factor for
the diameter ð ffiffiffiffiffiffiffiffiffiffiffi

1þ ε
p Þ�1.

The most common contact force, fC, in our application comes from the
sea floor interaction with the cable. Being a stiff point in the problem, the
implementation of the ground model has a potentially large influence on
the quality of the simulation. In this paperwe use a simple bi-linear spring/
damper model in the normal direction of the contact plane. The imple-
mentation is close to that used in Ref. Orcina Inc (2012). A tangential
friction model from (Lindahl, 1984) using dynamic friction is also imple-
mented. For ahorizontal seafloorwitha (x, y, z) coordinates corresponding
to vector index 1, 2 and 3 respectively, the contact force is computed as

fC ¼


Gbz þ Gbxy if ðzG � rẑÞ � 0 ;

0 otherwise ;
(17)

Gbz ¼ �KGdcðzG � rbzÞ � 2ξG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KGγ0dc

p
maxð_rẑ; 0Þ

�bz ; (18)

Gbxy ¼ μf
Bbz tanh�π _rbxyvμ

� _rbxy��_rbxy �� (19)

where indices cxy, and bz denote the horizontal and vertical projections of
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a vector respectively. Further, rbz is the vertical coordinate of the cable
position, zG is the vertical position of the ground, KG is the ground
stiffness, ξG is the ratio of critical damping for the ground–cable pair. The
coefficient of kinetic friction is in eq (19) denoted as μ, with a corre-
sponding velocity of maximum friction vμ.

Please notice that to model the ground interaction as described in eq.
(17), we need the position of the cable r as an independent variable,
which is why it is included as an independent variable in eq. (3).

3. Eigenvalue analysis

Returning to the model problem in eq. (6). It can be rewritten using
the chain rule as

_um ¼ Jmn
∂un
∂s

þ Qn ; (20)

Jmn ¼ ∂Fm

∂un
; (21)

where Jmn is the Jacobian matrix and m; n 2 ½1;2;…; 9�. As the flux
function F is independent on the cable position r, J is trivially 0 for
dependence on r. We therefore concentrate our analysis on a reduced six-
by-six matrix A, defined as a sub-matrix in the overall jacobian J

J ¼
�
Ø Ø
Ø A

�
: (22)

A includes the dependencies of F on q and ν, which by extension includes
a state dependence of the tension force magnitude T¼ T(u). This depends
in turn on the material model of the cable. For the purpose of the present
analysis, we let the tension force magnitude T be a differentiable function
of the engineering strain in the cable:

T ¼ TðεÞ ; (23)

εðqÞ ¼ jqj � 1 ; (24)

∂ε

∂qj
¼ qj

jqj ; (25)

so that

∂

∂qj

�
Tqi
jqj
�

¼ δij
T
jqj þ

�
∂T
∂ε

� T
jqj
�
qiqj
jqj2 : (26)

Thus, for i; j 2 ½1; 2; 3�, the six-by-six matrix A becomes

A ¼ γ0

0BBB@
Ø

δij
γ20

δijc2n þ
qiqj
jqj2

�
c2t � c2n

	
Ø

1CCCA ; (27)

where

c2n ¼
T

jqjγ0
; c2t ¼

∂T
∂ε

γ0
; (28)

are introduced as the cable celerities in the normal and tangential di-
rection respectively. These are also the eigenvalues of A:

λA ¼ ½ � cn; �cn; cn; cn; �ct; ct�T : (29)

As λA 2 R, we have confirmed that our system is indeed hyperbolic
provided that the tension is non-negative. Cables under negative tension
without bending stiffness makes the problem ill-posed (Triantafyllou
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et al., 1985). Physically we now expect six waves to propagate in the
cable: 4 transverse waves (2 left-going and 2 right-going) and 2 longi-
tudinal waves (1 left-going and 1 right-going).

4. Discontinuous Galerkin method

We apply eq. (6) on a cable domain Ω of unstretched coordinate
s 2 ½0; Lc�. Ω is discretised in to a set of N elemental regions Ωe of mesh
size he, within which an arbitrary function y(s, t) is approximated as a
Legendre polynomial of order p:

yðs; tÞ≈yeðs; tÞ ¼
Xk¼p

k¼0

ϕkðsÞeyekðtÞ : (30)

here eyek is the kth expansion coefficient corresponding to the basis func-
tion of order k, ϕk(s). The discontinuous Galerkin (DG) formulation of eq.
(6) is then�
ϕk;

∂ue

∂t

�
Ωe

¼
�
ϕk;

∂Fe

∂s

�
Ωe

þ ðϕk ;Q
eÞΩe ; ∀ k 2 ½0; p� ; (31)

using

ðaðs; tÞ; bðs; tÞÞΩe ¼ ∫
Ωe aðs; tÞbðs; tÞds ;

to denote the inner product operator on the elemental domain. An
integration by parts of the weak derivative term

�
ϕk;

∂Fe
∂s

�
Ωe
, allows eq.

(31) to be written�
ϕk;

∂ue

∂t

�
Ωe

¼ �
�
∂ϕk

∂s
;Fe

�
Ωe

þ ϕk
cFe
�seU
seL

þðϕk;Q
eÞΩe ; ∀ k 2 ½0; p� :

(32)

here seU and seL denote the elemental upper and lower bounds of the
unstretched cable domain coordinate s respectively. The key step of the
DG method is how the resulting boundary integral in eq. (32) has been

approximated with a numerical flux cFe . As the elements are discontin-
uous at the element boundaries, the numerical flux provides the coupling
between neighbouring elements. An additional integration by parts,
without a numerical approximation of the boundary term, recasts eq.
(32) ∀ k 2 ½0; p� as�
ϕk;

∂ue

∂t

�
Ωe

¼
�
ϕk;

∂Fe

∂s

�
Ωe

þ ϕk

�cFe � Fe
	 �seU

seL
þ ðϕk ;Q

eÞΩe : (33)

Finally we use the separation of time and space dependence defined
in eq. (30) to rewrite eq. (33) in terms of the modal coefficients of our
polynomial space:

ðϕk;ϕiÞ
∂~ue

∂t
¼
�
ϕk;

∂ϕi

∂s

�eFe þ ϕk

�cFe � Fe
	 �seU

seL
þ ðϕk;Q

eÞΩe (34)

∀ k; i 2 ½0; p�

4.1. Local Lax-Friedrich flux

The numerical fluxes, cFe are for all internal element boundaries
evaluated by the local Lax-Friedrich (LF) flux as defined e.g. in (Ber-
nard, 2008):

cFe ¼ fFeg þ jλjmax½½ue� � on Γ 2 Ω : (35)

Notations fxeg and ½½xe� � are

fxeg ¼ 0:5
�
xþ þ x�

	
; (36)
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½½xe� � ¼ 0:5
�
nþx� þ n�xþ

	
; (37)

where xþ means taking the value from the internal side of the boundary
and x� from the neighbouring element. The normal vector n refers to the
outward pointing normal, defined for each element boundary as nþ ¼ �1
on seL and as nþ ¼ 1 on seR. The maximum eigenvalue needed in eq. (35) is
in this work chosen for each equation as:

jλjmax ¼


max

���cn�u�	 ��; ��cn�uþ	 �� 	 if u ¼ q
jctj otherwise

: (38)

This means that when T→0, the LF flux approaches a simple centred
scheme for the q-equation (4), while remaining upwinded for eqs. (3)
and (5).

4.2. Boundary conditions

Domain boundaries are separated into Dirichlet (D) and Neumann (N)
type. Dirichlet conditions control the position and the momentum (from
velocity conditions), and Neumann conditions affect the tension force
vector Tbt . On domain boundaries, the fluxes are chosen as

F� ¼
h
Ø; vD; ðTbtÞþ iT on ΓD; F� ¼

�
Ø;

νþ

γ0
; ðTbtÞN �T on ΓN (39)

u� ¼ rD; qþ; vDγ0�T on ΓD; u� ¼ rþ; ��qþ�� btN ; νþ �T on ΓN (40)

where again þ indicates taking the value from the internal side of the
boundary. We note that a prescribed tension force vector boundary
condition is weakly modelled in the q equation. The condition enforces
the correct direction of the force, but maintains the norm of the inner
field. The tension magnitude is instead enforced through the force flux in
the momentum equation.

4.3. Time integration

Eq. (34) is advanced in time with the strong-stability-preserving
third-order explicit Runge-Kutta scheme, as implemented in
Ref. Cockburn and Shu (2001). If ~uk is the solution set of modal co-
efficients at time tk, and Lð~uÞ ¼ ∂~u

∂t represents the semi-discrete operator
for the time derivative of the solution, then

~uð1Þ ¼ ~uk þ ΔtLð~ukÞ ;

~uð2Þ ¼ 3
4
~uk þ 1

4

�
~uð1Þ þ ΔtL

�
~uð1Þ
	 	

;

~ukþ1 ¼ 1
3
~uk þ 2

3

�
~uð2Þ þ ΔtL

�
~uð2Þ
	 	

;

where Δt ¼ tkþ1 � tk. ~uð1Þ and ~uð2Þ represent intermediate solutions of
the algorithm.

5. Adaptivity

The goal of the adaptive mesh refinement scheme is to limit the
discretisation error to below a pre-set tolerance level, ε*. To do this we
need an indicator of the relative error, a smoothness indicator to let us
knowwhich type of error that we observe, and a mechanism to efficiently
adapt the spatial discretisation to best fit the solution.

5.1. Error indicator

In this work, we use the tension force magnitude T as indicator var-
iable for the quality of the solution. Any other locally available variable
could theoretically be chosen, but the strong nonlinear impact of T on the
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solution, and the fact that it is scalar-valued, makes it a suitable and
computationally efficient choice. For smooth solutions, we expect a
convergence rate of O

�
hpþ1

	
, but close to discontinuities the solution

converges as O ðhÞ (Krivodonova et al., 2004). Several authors have
suggested to use the elemental jump of the solution as a measure of the
numerical error (Bernard, 2008; Krivodonova et al., 2004; Barter and
Darmofal, 2010). Barter and Darmofal (2010) used the relative jump

τ ¼
����½½T � �fTg

���� ;
at element edges to indicate regions of shocks. In this paper, we incor-
porate the relative jump into Bernard's estimation for the relative error
(Bernard, 2008) to get

εe ¼ 1ffiffiffi
8

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτeLÞ2 þ ðτeRÞ2

q
; (41)

where τeL and τeR are the relative jumps at the left and right elemental
borders respectively.

5.2. Shock detection

In order to decide on the nature of the error, i.e. locate regions of
sharp gradients or shocks, we follow Krivodonova et al. (2004) and use
an intermediate convergence rate h0:5ðpþ1Þ to establish a shock indicator
of element e. Computing

Ie ¼ max
�
τeL; τ

e
R

	
h�0:5*ðpþ1Þ ; (42)

which rapidly grows to infinity close to discontinuities and is small in
smoother regions, results in the shock criteria as Ie � 1 (Krivodonova
et al., 2004). In our case, we also need to treat specially the cable slack
condition, where T→0. When this happens, a snap load is expected to
occur in the near future, and we therefore treat it as a shock criteria.
Thus, we also introduce a low-tension criteria T*, that indicate shock
behaviour if minðTeÞ � T*, with minðTeÞ evaluated at the quadrature
points of element e. The shock criteria and detectors are combined into
the shock detecting function Se as

Se ¼
8<: 1 if Ie � 1 and εe � ε*

1 if minðTeÞ � T*

0 otherwise
(43)

Please note that the jump-based shock detector is only applied to
elements that have errors higher than the tolerance level, while the low
tension indicator is applied to all elements in the cable domain.

5.3. Adaptivity control

The adaptive strategy aims to take advantage of the superior
convergence of p-refinement compared to h-refinement for smooth re-
gions. In this work, we therefore let p-refinement have precedence over h-
refinement in all elements of smooth solution, with errors larger than the
tolerance. If shocks are detected, the mesh is forced into maximum h-
refinement and the order is reduced to linear approximation p ¼ 1. h-
refinement is restricted to splitting elements in half and merging two
equally sized elements with the same parent. The initial mesh h-resolu-
tion is not allowed to coarsen, and the splitting hierarchy of elements is
therefore confined to one element of the initial mesh.

The inverse operation of coarsening the resolution follows the recipe
of Bernard (2008), assuming the error relation between the new and the
old mesh to be:

εe

ε*
¼ hpþ1

h*p
*þ1

; (44)
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where p* and h* denote the resolution parameters in the modified mesh.
Thus, for merging elements with constant order p, the criterion is: εe <
0.5pþ1ε*; and for lowering the polynomial order under constant h,
consequently: εe < hε*. Combining the above, we arrive at the hp-adap-
tive control algorithm

if Se ¼ 1 : p¼ 1; h¼ hmin

if Se ¼ 0 :

8>>>><>>>>:
p¼minðpþ1;pmaxÞ if εe � ε*

h¼maxð0:5h;hminÞ if εe � ε* and p¼ pmax

h¼minð2h;hmaxÞ if εe<0:5pþ1ε*

p¼maxðp�1;1Þ if εe<hε* and h¼ hmax

;

where Se is the shock indicator function explained in eq. (43). The
application of the control algorithm to pure h is straightforward, as we
simply skip the p-adaptation parts. For pure p refinement, we skip the h-
adaptation as well as the shock detection step. The adaptive scheme is
applied after a complete time step, so that all stages of the Runge-Kutta
scheme share the same spatial resolution.

5.4. Slope limiting

Having a working hp-adaptive scheme to properly resolve the snap
loads, we need to limit the unwanted overshoots close to these sharp
gradients. We apply the limiter as

~ue1 ¼ minMod
�
θl
~ue0 � ~ue�1

0

2
; θl

~ueþ1
0 � ~ue0

2
; ~ue1

�
; θl 2 ½1; 2� ; (45)

where ~ue0 is the mean value and ~ue1 is the linear slope of element e. The
min-mod function is defined as

minModða; b; cÞ ¼
8<:minða; b; cÞ if a; b; c>0

maxða; b; cÞ if a; b; c<0
0 otherwise

:

The value of θl blends the limiter between the classical min-mod for
θl ¼ 1 and the less restrictive, generalised min-mod from (Cockburn and
Shu, 2001) for θl ¼ 2. The limiter is applied after each stage of the
Runge-Kutta time-stepping scheme.

The limiter is active on all elements of order p ¼ 1 in the domain,
which for a pure h�refining simulation tends to dampen smooth extrema
(Cockburn and Shu, 2001). This problem is circumvented in our
hp�adaptive simulations, where p�refinement has precedence in regions
without shocks. This leads to that smooth extrema are resolved using few
elements of higher order, where the limiter is disabled by default.

6. Computational results

All results from computational test cases presented in this section are
using the Legendre polynomials as modal bases. For the convergence
studies, we use the L2 norm to quantify the errors of our solution. This is
defined by the element integral over the error at the Gauss-Lobatto-
Legendre (GLL) quadrature points. Seventeen quadrature points were
used for each element giving exact integration up to p ¼ 15 (Karniadakis
and Sherwin, 2003). Time step size is in this adaptive case conveniently
defined in fractions of the maximum allowed time step CFL number in the
mesh. The CFL of an element used in this work is defined by:

CFL ¼ 1
ct

8><>:
h

2pþ 1
if p<3

hp�2 otherwise

: (46)



Table 1
Convergence rates for the linear standing wave for variables position, r, and velocity, v.

variable p N ¼ 10 N ¼ 20 N ¼ 40

error error order error order

r 1 2.13 E-3 7.65 E-4 1.48 2.73 E-4 1.48
2 1.03 E-4 1.30 E-5 3.00 1.63 E-6 2.99
3 1.57 E-6 1.36 E-7 3.52 1.20 E-8 3.51
4 3.75 E-8 1.08 E-9 5.12 3.05 E-11 5.14

v 1 1.54 E-3 4.14 E-4 1.89 1.31 E-4 1.66
2 5.32 E-4 1.14 E-4 2.22 2.13 E-5 2.42
3 6.47 E-7 4.63 E-8 3.81 3.71 E-9 3.64
4 2.08 E-7 1.10 E-8 4.25 5.09 E-10 4.43
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6.1. Vibrating string: spatial convergence

The spatial convergence of the formulation is confirmed by a two-
dimensional benchmark. We studied the L2 error of position and veloc-
ity of a linear standing wave with fixed end points and constant tension
force magnitude T. No external forces were applied. The analytic solution
of this problem is taken from Ref. Greiner (2003):

rzðs; tÞ ¼ Acos
�
cuπ
Lc

t
�
sin
�
π

Lc
s
�

; (47)

with initial amplitude A ¼ 1 m and unstretched cable length Lc ¼ 100 m.
The celerity in the normal direction of the unstretched domain, cu, is here
computed from the cable mass per meter (γ0¼ 0.1 kg m�1), the pre-strain
(ε0 ¼ 0.1), and the tension force (T0 ¼ 1, 100 N) as

cu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T0

γ0ð1þ εÞ

s
¼ 100 ms�1 : (48)

The initial conditions of the cable was a constant prestrain in the
horizontal direction and an initial vertical displacement of

rzðs; 0Þ ¼ Asin
�

π
Lc
s
�
. The computed result after one full period of

oscillation was compared with the analytic values. Results of different
mesh resolutions of h and p are shown in Fig. 1 and in Table 1. For
p 2 ½1;4�, we used N ¼ 5, 10, 20, 40 elements respectively to establish
the convergence rate. In Fig. 1, results from p 2 ½1;15� on N ¼ 2 and
N ¼ 3 element meshes are also shown. The time step size was in this
case constant and was chosen sufficiently small not to affect the accu-
racy of the simulation. From Table 1, we conclude the convergence rate
to be p þ 1∕2. This gives confidence that the formulation is correctly
implemented, and that the discretisations in both time and space are
working as expected.

6.2. Propagating shock: linear material

A one-dimensional test case with a discontinuous initial condition is
used to test the adaptive scheme described in Section 5. A L ¼ 100 m
cable is horizontally suspended over 115 m in the absence of external
forces. The cable mass is γ0 ¼ 1 kgm�1 and the cable material is linear-
elastic with axial stiffness EA ¼ 10 kN. The cable is initially at rest
with a discontinuous pre-strain:
Fig. 1. The error in the L2 norm of the cable position after 1 full period of oscillation as a
function of degrees of freedom in the discretisation. Shown in logarithmic scale.
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ε0 ¼


0:1 if s<0:5L
0:2 if s>0:5L

:

The evolution of the shock front over the first second is shown
in Fig. 2.

Fig. 3(a) shows the initial step tension, plotted at the quadrature
points of an h-adapted mesh from N ¼ 10, p ¼ 1 elements in 5 levels.
Fig. 3 shows that both the adapted solution and the equivalent static
resolution of N ¼ 320, p ¼ 1 are capable of capturing the shock well. The
accuracy is strictly dependent on the finest mesh size, and the results
show very small differences between the static and the adapted mesh,
both for cases with and without limiter applied. Although no difference
in accuracy, the h-adapting mesh is around 5 times faster to compute for
this simplified case, as can be seen from Table 2. Of course, the code
structure is not optimal for a static mesh, and we treat this more as an
upper limit on the speed-up potential for this case. Further, Fig. 3(b)
clearly demonstrates the benefits of the generalised minMod limiter of
Cockburn and Shu (2001) over the standard minMod and the interme-
diate θl ¼ 1.5 solution, which are much more diffusive. Simulations were
made with time step size of 0.9 CFL for all meshes.
6.3. Propagating shock: nonlinear material

In the case of a nonlinear material response, two important features
change in relation to the linear case above. Primarily, the speed of sound
is no longer constant, but dependent on the local strain ct ¼ ctðεÞ, and
secondly, the shock amplitude is no longer preserved during reflection at
fixed Dirichlet boundaries. To verify that the correct shock speed and
reflection amplification are obtained in the numerical simulations, we
implement a nonlinear material response of exponential form,

TðεÞ ¼ Kðeaε � 1Þ ; (49)

so that the cable celerity is given by

ctðεÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1
γ0

∂T
∂ε

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
Ka
γ0
eaε

s
: (50)

We now study a longer cable in one dimension, Lc ¼ 1, 000 m, with
K ¼ 581.9767 N, a ¼ 10. γ0 is still 1 kg/m. Starting at a static strain
εs ¼ 0.1, corresponding to a Ts ¼ 1 kN static force, the cable is fixed in
position at the left end (s ¼ 0), and loaded with a prescribed force at the
right end (s¼ Lc). An initial step tension is imposed on the right boundary
at t ¼ 0, creating a left-going, initial shock with amplitude
δTi ¼ TðεiÞ � TðεsÞ, where εi is the strain associated with the loading
boundary tension Ti. The theoretically predicted shock speed, S, is
given by

S2 ¼ 1
γ0

δT
δε

; (51)

where δT is the shock tension amplitude and δε is the size of the strain
discontinuity across the shock. After reflection, the shock amplitude δTr is



Fig. 2. Shock appearance during the first second of simulation, sampled every 0.1 s from the N ¼ 320 case. (a) shows t 2 ½0;0:4� s and (b) shows t 2 ½0:5; 1:0� s, after reflection at the
boundaries. The arrows indicate the direction of propagation of the shock front.

Fig. 3. Shock front appearance. (a): Initial condition of tension, also showing the h-adapted mesh in 5 levels with markers on quadrature points. (b) Shock front after 1 return period for
different values θl on 320 static linear elements, and the 5-level h�adapted solutions indicated by markers.

Table 2
Relative computational times for different mesh settings. Simulations where made with a
constant CFL condition of 0.9.

Type N p DoF θl relative time

static 160 1 320 NA 0.174
static 160 1 320 2.0 0.254

static 320 1 640 NA 0.675
static 320 1 640 2.0 1.000

h-adapting 48 1 96 NA 0.192
h-adapting 43 1 86 2.0 0.208
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theoretically predicted from the strain relations across the reflection, as
derived by Ref. Tjavaras (1996):

Ψ ðεrÞ ¼ 2ΨðεiÞ � ΨðεsÞ ; (52)

Ψ ðεÞ ¼ ∫ ε

0ctðεÞdε ¼
ffiffiffiffiffiffiffi
K
aγ0

s � ffiffiffiffiffiffi
eaε

p � 1
	
; (53)

δTr ¼ TðεrÞ � TðεiÞ : (54)

Fig. 4 shows simulation results with two different initial shock am-
plitudes, δTi ¼ 1 kN and δTi ¼ 2 kN respectively. The numerical results in
this section were obtained using hp�adaptive meshes with maximum 5
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levels of h�refinement on a N ¼ 20 element base mesh. Time step size is
adaptive and chosen from the minimum of 0.9 CFL in the domain. Again,
the θl ¼ 2.0 limiter was applied to avoid overshoots of the solution.

The results in Fig. 4 are compared with the analytical shock profiles of
both the initial shock and the reflected shock, each after 800 m of
propagation from their respective point of origin. Upon returning to the
right edge, the shock is transformed to a rarefaction wave in the reflec-
tion on the Neumann boundary. The third time state shown in Fig. 4
shows how the rarefaction widens the shock as the leading edge propa-
gates faster than the trailing edge (ct(εr) > ct(εi)). The rarefaction is not a
shock wave in itself, meaning that each characteristic propagates with
the local speed of sound ct (ε) and not with the shock speed S from
eq. (51).

The numerical examples match the analytical predictions very well.
Both initial and reflected shock amplitudes and speeds of propagation are
captured by the numerical scheme. The width of the rarefaction wave
front is also correct in the simulations. The numerical results of reflected
shock amplitude, δTr, are shown in Table 3 together with the analytical
predictions. The amplification of the reflected shock amplitude exem-
plifies the intricate coupling between the impact of a snap load and the
material in which it propagates.
6.4. Catenary chain dynamics: validation

To validate the formulation, we compare against experimental mea-
surements on a single catenary chain with characteristics as described in



Fig. 4. Shock front appearance in the nonlinear case, studied at two target positions s ¼ 200 m and s ¼ 800 m respectively. The snapshots in (a) and (c) correspond to analytically predicted
arrival times of the shock. (b) and (d) show the tension time histories of the two target points. Further, (a)–(b) correspond to the δTi ¼ 1 kN load case, and (c)–(d) correspond to the
δTi ¼ 2 kN case.

Table 4
Computational settings used to validate the cable model. Values are taken from
Ref. Bergdahl et al.. See Section 2 for a full description of the labels. * The axial stiffness of
the cable is set to 0 when the strain becomes negative.

Label Value Unit Description

γ0 0.0818 kg/m mass per meter
dc 0.0022 m link diameter
Lc 33 m cable length
Kc 10 kN axial stiffness*
CMt 0 – tangential added mass.
CMn 3.8 – normal added mass
CDt 0.5 – tangential drag
CDn 2.5 – normal drag
KG 3 GPa/m ground stiffness
ξG 1 – ground damping
μ 0.3 – ground friction coeff.
vμ 0.01 m/s friction velocity
Δt 0.45CFL s adapting time step size
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Ref. Bergdahl et al.. A 33 m chain is suspended in a 3 m deep water tank,
with one end anchored to the concrete floor of the tank. If the anchor
point is the origin (PA ¼ ½x; z� ¼ ½0;0�), the other end (fair-lead) is
initially located at PB ¼ ½32:554; 3:3�m. The cable end-point is subject to
a circular motion around PB of radius 0.2 m and with two different period
times: T1.25 ¼ 1.25 s and T3.5 ¼ 3.5 s respectively. The chain properties
are summarised in Table 4. The cable material response is modelled as
bilinear, with no compressive loads allowed. Consequently

T ¼


Kcε if ε>0
0 otherwise

(55)

Fig. 5 shows the hp-adaptive results compared with experimental
measurements of the fair-lead tension. Overall there is an excellent
agreement between the experimental and computed results. The step-
wise increase in fair-lead tension of the T1.25 case, is studied in more
detail in Fig. 6(b), where five instants in time (labelled 1–5) are high-
lighted. Fig. 6(a) shows the corresponding tension along the unstretched
cable coordinate s for each of these times. At 1, the snap has just been
generated. This is in agreement with (Triantafyllou et al., 1985; Gobat
Table 3
Comparison between analytical and numerical results of reflected shock amplitude. Index
notations used for strain and shock amplitude are a: analytical, and n: numerical. The
relative error in reflected tension amplitude is computed from εδTr ¼

�
δTn

r � δTa
r

	
∕δTa

r .

δTi
(kN)

εs (-) εi (-) εar (-) δTa
r

(kN)
εnr (-) δTn

r

(kN)
εδTr (-)

1.0 0.1 0.1490 0.1883 1.2437 0.1883 1.2449 0.0004
2.0 0.1 0.1817 0.2396 2.8061 0.2397 2.8171 0.0019
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and Grosenbaugh, 2001) who showed that snap loads occur when the
transverse motion velocity of the touch down point (TDP) exceeds the
transverse wave speed of the cable (cn). In this case, where T ¼ 0, cn ¼ 0
the snap criterion is of course met for any transverse motion of the TDP.
We also note some numerical oscillations in the low tension region as the
cable has been completely slack. The tension at times 2–4 shows how the
snap load is propagating back and forth in the cable, which matches the
experimental times very well. The shock amplitude is continuously
decreasing as the shock propagates. This is mainly due to the dynamic
friction force from the ground and not the hydrodynamic damping from
drag. At 5, the peak shock has just been reflected at the fair-lead, and



Fig. 5. hp�adaptive results of the fair-lead tension magnitude compared with experimental data. The T1.25 and T3.5 simulations were made with 5 and 4 levels of h�refinement
respectively, from an initial mesh of N ¼ 10 elements.

Fig. 6. Explanation of the dynamic properties of the fair-lead tension time history. (a) shows 5 snap shots of the cable tension along the cable length. Graph no. 1 shows the formation of
the shock, at t ¼ 10.15 s and numbers 2–5 show the tension force evolution between t ¼ 10.15s and t ¼ 10.45 s, sampled every 0.1 s. The right figure (b) is a temporal zoom of Fig. 5(a),
with the times of the snap shots marked by black circles.
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although the peak force matches very well, we note that the shock
contribution at the peak is larger in the numerical results than in the
experiments. Overall however, Fig. 6 shows that the complicated dy-
namic behaviour of the cable during the upstroke motion is very well
captured by the numerical model.

6.5. Catenary chain dynamics: application

As a final example, we present mooring results coupled to a linear
radiation-diffraction model of a generic wave energy converter (WEC).
The device is taken from Ref. Fitzgerald (2009) as a truncated cylinder,
moored with four steel chains. The mooring layout can be seen in
Fig. 7(a). In this case, the moorings have a strong impact on the dynamic
response of the device, increasing the draft by 13.4 percent in equilib-
rium. The linear hydrodynamic coefficients for added mass and radiation
damping are collected from Nemoh (Babarit and Delhommeau, 2015).
The dynamic motion of the moored device was simulated in Wec-Sim
(NREL and Sandia Corp, 2015) with an additional coupling module
developed for Moody. As we resolve the time-scale of the longitudinal
waves in the mooring cables, we have two time-scales in the coupled
problem: one for the mooring cables and one for the WEC motion. In
between two large time steps of the WEC solver, intermediate mooring
boundary conditions for the fair lead positions are generated using a
staggered quadratic interpolation of the fair lead position. The coupling
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and the interpolation procedure are described in detail in Ref. Palm et al.
(2016), where coupled CFD simulations with moorings were validated.
The device is also connected to a linear power take off in the heave di-
rection, with constant damping factor b33 ¼ 15 kNs/m. The physical
properties of theWEC and the mooring cables are summarised in Tables 5
and 6 respectively. The initial position of the attachment point of cable 1
was P1 ¼ [�1.863, 0, �5] m, and the anchor was placed at
A1 ¼ [�76.663, 0, �50] m. The attachment points and anchor place-
ments of cables 2, 3 and 4 are obtained from rotating P1 and A1 about the
z-axis with 90, 180, and 270� respectively. The horizontal span of each
mooring cable was thus 74.8 m. As in Section 6.4, the material model of
the cable was bilinear and follows eq. (55).

Results from a 100 s simulation of a regular wavewith a T¼ 5 s period
time and a H ¼ 0.976 m wave height is presented in Fig. 7. The wave
direction is aligned with the x-axis, propagating in the positive direction.
Fig. 7(b) shows how the largest forces are found in cable 1, the sea-ward
cable, as a result of the larger z-displacements of the end point position,
see Fig. 7(d). This behaviour is explained by the superposition of the
pitch and heave motions, being constructive for cable 1, destructive for
cable 3, and essentially decoupled for cable 2 and 4.

We also notice high-frequency oscillations in the tension force. This
type of oscillations have a direct implication on the fatigue life estimate
of the cable, as it has a significant effect on the number of load cycles,
Yang et al. (2016). In this case, they are due to the cable interference with



Fig. 7. Results of coupled simulations. (a): Three-dimensional view of layout at t ¼ 100 s (b)–(d): Time histories in the last 25 s of simulation for: (b) tension force, (c) attachment point x-
coordinate, and (d) attachment point z-coordinate. ci is cable i for i 2 ½1; 2;3; 4�.

Table 5
Physical properties and computational settings used to simulate the wave energy converter
(WEC) in the coupled simulation. Physical properties are adopted from Fitzgerald (2009).
hwec corresponds to the draft at the unmoored equilibrium position, from which the total
mass can be computed.

Label Value Unit Description

dwec 5 m diameter of WEC
Hwec 7.5 m total WEC height
hwec 5 m draft of WEC

Ið1Þwec
1.24 E6 kg m2 moment of inertia (roll, pitch)

Ið2Þwec
0.47 E6 kg m2 moment of inertia (yaw)

ρw 1025 kg/m3 density of water
Δtwec 0.05 s time step size in coupling
τwec 50 s impulse response function cut off time

Table 6
Physical properties and computational settings used to simulate the moorings in the
coupled simulation. Physical properties are adopted from Fitzgerald and Bergdahl (2008).

Label Value Unit Description

γ0 61 kg/m mass per meter
dc 0.05 m link diameter
Lc 100 m cable length
Kc 100 MN axial cable stiffness
CMt 0 – tangential added mass.
CMn 3.8 – normal added mass
CDt 0.5 – tangential drag
CDn 2.5 – normal drag
zG -50 m vertical coordinate of ground
KG 3 kPa/m ground stiffness
ξG 10 – ground damping
μ 1.0 – ground friction coeff.
vμ 0.01 m/s friction velocity for the ground
Δt 0.45CFL s adapting time step size
N 10 – number of elements per cable
p 1-8 - p-adaptive simulation
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the ground. The results are therefore dependent on the local sea-bed
properties, and how they are modelled. This simulation was made with
a soft and highly dissipative ground model, to simulate sand-bottom
conditions. Less dissipative sea-beds may give rise to larger tension
response. We conclude that the effects of the ground and how it is
modelled are large for this simulation, and that further validation studies
on ground model implications are needed to separate numerical and
physical effects on the cable tension history.

The mooring response is in this case smooth, and the simulation is
made with a N ¼ 10 element mesh with p-adaptive elements. The ele-
ments were limited to a maximum of p ¼ 8.

7. Concluding remarks

We have presented a conservative hp�adaptive DG method for the
275
dynamics of mooring cables with negligible bending stiffness. As the
finite element space is discontinuous and the formulation is in conser-
vative form, the numerical model provides the necessary prerequisites for
correct snap-load propagation. In smooth regions, exponential p þ 1∕2
convergence was verified, see Fig. 1, and few elements of high-order can
provide accurate and computationally efficient solutions. An
hp�adaptive control algorithm with shock identification was imple-
mented to decrease the element size h and revert to linear slope-limited
elements locally around identified shocks, while retaining a high poly-
nomial order in smoother regions. The scheme was showed to be both
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accurate and computationally effective for idealised cases, see Fig. 3.
Further, the conservative formulation also shows the correct shock
propagation speed and shock reflection coefficients for a nonlinear ma-
terial, as shown in Fig. 4. Very good agreement with experimental data,
including snap loads (Fig. 5) was also achieved. Finally, to demonstrate a
practical application, the software was used in coupled mode to simulate
the motion of a moored wave energy converter.

Correct snap load modelling is not only important to get the
maximum load in a cable for ultimate limit state design (ULS). Fatigue
limit state (FLS) is also very much affected as it is estimated from the
tension force history. This is clearly seen in Fig. 5(a) and (b), where the
number of load cycles in the tension time history are noticeably higher in
5(a) due to the propagation of the snap load. Note also that each snap can
be responsible for several load cycles due to repeated reflections in the
cable. Therefore, it is not only the initial snap amplitude that is important
to capture, but also the propagation of the tension shock.

In this paper, we have computed the dynamic response of mooring
chains of catenary shape in both model scale and full scale. This is the
traditional soft mooring solution and is the most widely used mooring
concept. We see that the influence of the sea floor has an impact on the
solution, introducing high-frequency content in the tension force time
history. As high-frequency load cycles are introduced, the FLS design of
the cables is affected. Further work and in-depth validation of ground-
modelling is needed to separate physical ground-interaction effects
from numerical noise generated from the touch-down region disconti-
nuity. The numerical model presented in this paper provides a platform
for further analysis of the implications of numerical modelling choices
with regard to both ULS and FLS design of mooring cables subjected to
snap loads.
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