Eurographics Symposium on Rendering - Experimental Ideas & Implementations (2017)

P. Sander and M. Zwicker (Editors)

sLayer: a System for Multi-Layered Material Sculpting

C. Calabrese!, M. Fratarcangeli” and F. Pellacini

1

ISapienza University of Rome
2Chalmers University of Technology

{ ¢ y

Figure 1: Sculpts created with sLayer, our interactive sculpting tool. Left. Peeled plaster (640K triangles). Middle. Rusted metal (525K

triangles). Right. Tree bark (981K triangles).

Abstract

Many real world materials have a stratified structure, composed by the proximity and the interaction of multiple highly-detailed
layers. Example of these materials are peeling paint, old tree bark and rusted metals. While digital sculpting is particularly
well-suited to model these aged surfaces, the interaction between layers is not accounted for. We present a system for sculpting
multi-layers materials where collision between layers are handled interactively while brushing meshes that scales up to the
million of polygons necessary to model aged surfaces. We do so by observing that if the average mean edge length is maintained
constant throughout the modeling session, we can use a single data structure, namely a uniform grid, to accelerate all the
sculpting operations. We present a brush rasterization pipeline that uses this data structure for multi-layer editing. We also show
that by adding a few interface tools for layer creation and selection, we can create detailed surface similar to real-world ones.
To the best of our knowledge, our work is the first to show sculpting of highly-detailed, multi-layered materials in real-time.

1. Introduction

Modeling Multi-Layered Surfaces. Digital sculpting is widely used
in our industry to model highly detailed natural objects and char-
acters [Blel6,ZBr16, Pail6]. The models have complex materials
with fine details in both local deformation and reflectance. Many
real-world materials though present a stratified structure, composed
by many thin layers, rich of cavities and detached components. To
digitally sculpt these objects, an artist would have to manually avoid
interpenetration while radically deforming the shape and connectiv-
ity of each highly-tessellated layer. Furthermore, reflectivity editing
would have to be considered too, since most of these surfaces have
different reflectivities in close proximity.

System Desiderata. To be more specific, we are interested in
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a system targeting surfaces with small details, in the order of a
millimeter in length. This roughy translates to meshes in the or-
der of a million polygons for tabletop-sized objects. We consider
materials with multiple layers, where each layer can be formed by
multiple disconnected patches. To maintain detailed meshes during
modeling, we want to support edge refinement operations, as typi-
cally done in modern sculpting toolsets. During editing, sculpting
tools act on the material as a whole, handling any number of layers
while performing large but consistent deformations of the layers
stack. To remain consistent, we want our system to automatically
avoid interpenetration between of layers. We want to handle inter-
penetration in real-time, while the artist moves the digital brush,
to produce useful feedback during modeling. Finally, as we deform
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Figure 2: Sequence of editing operations. 1) a base layer. 2) and 3) patches are drawn as separate layers on the existing surface. 4) the
gap in-between the layers is deformed, including collision handling, and painted. 5) and 6) materials are painted directly on the layers with

per-vertex BRDFs.

the surface, we also want to define the BRDF at each location, since
surface deformations like scratches and bumps are often correlated
with reflectance changes. To the best of our knowledge, existing
solutions, including commercial systems, address only single as-
pects, and typically fail when handling million polygon shapes with
interpenetration avoidance during editing.

sLayer: Material Editing System. In this paper, we present
sLayer, a system for sculpting high-detailed multi-layered mate-
rials. In our system, we make one simplifying assumption, that
edge length is roughly constant for all polygons. The key insight of
our work is that this assumption leads to a relatively simple sys-
tem design that uses a single data structure to support all major
sculpting operations, namely rendering, mouse picking, brush ras-
terization, collision handling, and remeshing by edge refinement.
In particular, we represent material layers as index triangle meshes,
with per-vertex normals, tangents and BRDFs, and only addition-
ally maintain vertex—triangle and triangle—triangle adjacencies. To
accelerate all operations, we use a regular grid represented as a hash
table. This data structure is fast to update, scalable and allows most
operations to be trivially parallelized. Throughout the paper we will
motivate how we reached this design choices, and show how sLayer
supports all major editing operations interactively and scalably.

sLayer Editing Tools. While most of our efforts were focused
on the underlying sculpting system, creating the results shown in
this paper would not have been possible without a few, relatively
simple, editing tools that augment the typical scultping toolset to
handle multi-layer materials. In particular, we augment sculpting
brushes with the ability to modify any number of layers concurrently,
and introduce tools for creating new layers easily, by cutting and
duplicating other layers. Example of these operations are shown in
Fig. 2.

Results. Through this paper, we show detailed materials mod-
eled by us entirely with sLayer, in between 20 and 90 minutes.
We tested our system with surfaces of a up to a million polygons,
shown in Fig. 1, demonstrating the scalability of our approach. The
supplemental video contains short screen capture of the modeling
sessions. For most results, we started from a real photograph, to test
how our system can let us model real-world detailed, organic and
non-organic, surfaces.

Contributions. Many single components of our system can be
already found in the literature. In our opinion, the main contribution
of our work is the overall system design, and its motivations, where

we show how to combine these components in a scalable, interactive
system for sculpting detailed real-world materials that were not
previously possible. To the best of our knowledge, this particular
system design has not been previously explored, nor we know of
any other tool with the same performance and scalability.

2. Related Work

To motivate the design choices at the core of our system, we first
review prior methods that address some of the corcerns treated in
sLayer.

There are many different methods for modeling highly-tesselated
single surfaces that exibit rich material details. For example,
[BGF15,ZGZJ16] rely on contructive solid geometry, in [SVJ15] a
shrinking and inflating approach is used to track intersections dur-
ing surface layer crafting, while [PBFJ05, ZHW*06] make use of
geometry instancing. Even though the final output model is accurate
and rich of subtle details, the computational cost of these techniques
is not suitable for the real-time editing of triangulated mesh with up
to million polygons, as achieved in our system.

There is a rather wide choice of interactive sculpting tools as-
sembling different parts and features to obtain novel surfaces (e.g.,
[SS08,SS10,CKGK11]). sLayer shares similarities with [SCCS13],
a free-form sculpting tool for closed surfaces able to handle remesh-
ing on the fly. While it preserves sharp features, that system does
not support the intersections between thin layers not high detailed
surfaces, which is expressly our goal. Furthermore, being based
on arbitrary triangulated meshes, sLayer can handle any orientable
layer, not only closed ones. This is necessary for materials such
as peeling paint. In another interactive, multi-layered sculpting tool
presented in [DPS15], successive layers are defined according to the
strokes of a brush in a sketch-based interface. Every newly defined
surface extrudes exactly the shape of the underlying layers limiting
the expressiveness of the tool, the possibility to further deform their
shapes, and the overall surface details. Additionally, such system
does not allow to change the connectivity of the meshes for tearing,
peeling and shredding of the layers while sculpting, often found in
real-world aged materials, which instead we support.

Most of these tools allow for changes in the topology of the
mesh with effective support for shape deformations, but no previous
method can handle many thin overlapping layers, supporting their
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composition in shape and reflectivity. This allows us to model a
category of materials which is not possible with other methods.

We want to stress that sLayer does not address a particular
geometrical or modeling problem. Rather, it is a system of in-
terconnected components, designed around few cores principles,
which together enable the real-time editing of detailed multi-layered
materials. Other frameworks, addressing very different problems
but with a similar design philosophy in mind, are becoming in-
creasingly popular in different contexts of the Computer Graphics,
e.g. [FH11,MMCKI14,BSL*16].

3. Multi-layer Material Editing System

Surface Representation. We seek to model detailed materials with
multiple overlapping non-continuous layers. Each layer is an indexed
triangle mesh that might have any number of disconnected patches.
Vertex data includes position, normals and BRDF parameters. To
handle strong abrasions, we impose no constraints on the edits of
each layers besides non-interpenetration. So patches from different
layers might interleave or change order in the physical stack. This
is necessary for materials like peeling paints. All operations in our
system are applied to individual vertices and triangles, with no spe-
cial handling between different layers. In fact, layers are only used
to allow artists to selectively apply operations in a manner similar
to image editing applications. This allows to model any multi-layer
materials without restriction imposed by the layers composition.

An alternative could have been to consider a volumetric represen-
tation, such as [WR16]. The main concern with this representation is
that precise collision detection during deformation would likely be
troublesome at interactive rates. Furthermore, to reach the desired
detail level, a hierarchical volumetric data structure would likely
be needed, with the burden of updating it efficiently during stroke
application.

Brush Application. The main operation performed in a sculpt-
ing system is the application of brush strokes. Brush application
is summarized in Alg. 1 for a standard sculpting system (e.g.,
[AWCO06,SCCS13,DPS15]). Each brush stroke is represented as an
appropriately sampled polyline of 3D positions. For each of these
positions, we apply a deformation by selecting the vertices within
the brush influence, and apply a weighted linear transform to each
of them. In a standard brushing application, we now move the vertex
positions to the newly computed ones. After each brushed stroke
position, we remesh the parts of the surface that have moved to keep
a good surface sampling. Remeshing might also be performed after
processing each polyline vertex for higher accuracy.

Our system is built on the same brush application pipeline with
the major difference that vertex movement are constrained by col-
lisions between layers and self-collision within the same layer. To
handle collisions, we determine set of vertices which collide with
the surface after computing their predicted location. Since the poly-
lines are sampled very finely, we consider the vertex trajectories to
be linear for each polyline stroke. For all non-colliding vertices, we
update the positions as in standard sculpting. For colliding vertices,
we compute a safe position that is intersection free and update the
vertex position with this one. This is also illustrated in Alg. 1.
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forall the stroke positions p do
// select influenced vertices {v;} tracking all updated in S

{v;} « select(p,radius); S «— SU{v;}

/I compute deformed positions by applying brush transform
forall the selected vertices v; do V; — trunsform(vg, M)

// update positions

if no collision handling (standard sculpting) then v; « v;

if collision handling (sLayer) then
/l compute collisions

C « collisions({v; — v}, layers);
forall the non-colliding vertices v; ¢ C do v; « v;
/[ collision response
forall the colliding vertices v; € C do
Vi < collide(v; — vi,layers) // safe position
Vi < Vi
end

end

end
// remesh triangles adjacent to all updated vertices
remesh(S)

Algorithm 1: Brush application with and without collision han-
dling.

Reflectance Editing. We edit reflectance by painting BRDF pa-
rameters per vertex. The editing toolset does not depend on the spe-
cific BRDF model. In our preview renderer we support microfacet
BRDF with the Phong distribution. Material applications is similar
to the application of deformation, and in fact integrated with it. At
each brush stroke, BRDF parameters are a weighted sum between
the layer BRDFs and the brush one. To do so, we use a linearized
BRDF model so that linear weighted sums maintain their semantic.
In our case, we choose the AppIm [DRCP14] linear parametriza-
tion that works well when editing microfacet BRDFs and geometry
together. We support the standard brush texturing interface, which
we augment with full BRDFs, that allows us to transfer detailed
materials on the surface just like stencils.

Edge Length Assumption. In our system, we make the funda-
mental design choice of maintaining the mean edge length constant
during the editing sessions. While this is not strictly necessary, it
has the main advantage of maintaining a well-behaved triangulation
while ensuring that deformations are sampled uniformly over the
mesh surface. At the same time, the required remeshing operation
is computationally significant for detailed meshes. For this reason,
many sculpting systems do not provide such a feature. In our case
though, this choice has the major advantage of simplifying signif-
icantly collision detection. In a way, we shift computation from
collision handling to remeshing and we believe this tradeoff works
really well.

One way to think about the mean edge length is that it measures
the resolution of the material we can represent, since both local
geometry and BRDFs are sampled on vertices. Based on this obser-
vation we make a second major design choice and set the accuracy
for collision handling to be of the same order as the mean edge
length. A higher accuracy would not be useful since the layers are
sampled at the edge length resolution anyway.
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Figure 3: Example of collisions handling during user interaction.
The blue layer is pushed against the green one, picking up details
from the lower features.

Collision Handling. Collision detection and response are well
studied problems in our field with many known solutions with
tradeoffs that differ substantially in terms of data representation,
scalability and accuracy. Choosing which tradeoffs are acceptable
depends stricktly on the application domain [TKH*05, YKH*10].

One major difference between collision handling solutions is
whether they use a mesh data structure or an alternate geometric
representation, e.g. signed distance fields [XB14] or [MCKM15].
Since we need to handle million of polygons that are updated dynam-
ically in real-time, we excluded these solutions that work typically
well for static object or lower polygon ones. We settle on perform-
ing self-intersection directly on the mesh representation, using a
broad-phase/narrow-phase design.

Grid-Based Broad Phase. In the broad phase, we maintain a spa-
tial partitioning data structure that allows us to prune collision tests.
Many of these data structures have been proposed, ranging from grid
cells, object or axis aligned bounding boxes and n-polytopes [Eri04].
All these solutions have tradeofts between pruning accuracy, build
times and the type of meshes that they can handle well. We chose a
regular grid, stored as a hash table [THM*03], since it can be very
efficiently updated, even in parallel [ASA*09]. A uniform grid be-
comes efficient only when the edge length is homogeneoues, which
in our case we ensure during remeshing. In our particular context,
the sides of the grid cells are set to the average edge length of input
surface and we insert vertex references in the grid itself. This ensure
that the number of reference for each grid cell remain small and can
be quickly updated during interaction. On the other hand, this only
allows us to test vertex movements of at most the mean edge length,
to ensure that all triangles are properly considered for intersection.

Proximity-Only Narrow Phase. In the narrow phase, the trade-
off depends on whether proximity queries are sufficient, or more
complex continuous collision detection is necessary. The decision
here depends on the amount of movement for each brush application
and the desired precision. In our case, we observe that the accuracy
required during collision handling, namely the mean edge length, is
relatively large compared to the amount of vertex movement during
each rasterization step. The reason for this is that sculpting sys-
tems require a high stroke polyline resolution to ensure that the
brush stroke is well sampled. This implies that only relatively small
movements happen when handling each polyline location. For these

// rebuild the grid G
G « rebuild_grid(layers)
forall the brush strokes do

forall the stroke positions p do
// split deformation due to p into steps of maximum

edge length ¢;

forall the edge length steps do
/1 select influenced vertices using the grid

{vi} « select(p,radius,G); S «— SU{v;}
/I compute deformed positions
forall the selected verts v; do
v «transform(v;, M)
// insert updated positions in the grid
G «—insert(G, {vl’.})
// compute possible vertex—triangle pairs with the
grid
forall the selected vertices v; do

\ C—Cu broad_phase(v;,G)
end
/I compute actual collision and their locations
forall the possibly colliding vertices v; € C do

C « CUnarrow_phase(v;,layers)
v « collision_location(v;,layers)

end
forall the non-colliding vertices v; ¢ C do
Vi < V]
// push colliding vertices an edge-length e; away
forall the colliding vertices v; € C do

| Vi< clamp(vi > V¢ ep)
end
// update the grid by removing old vertices

G « remove(G,{vi})

end

end

// remesh triangles adjacents to all updated vertices
S’ =remesh(S)

// insert updated positions in the grid

G « insert(G,S’)

end

Algorithm 2: sLayer’s brush application pipeline.

reasons, we used standard vertex—triangle proximity queries [Eri04].
For more accuracy we could include edge-to—edge tests without
changing the overall system design, but in our current prototype
we found them not necessary. This is common in many animation
applications too. Finally, we considered the use of continuous col-
lision detection and tested the solution presented in [Wan14]. This
solution though did not perform significantly better in our testing
then the simple one, so we settle on the simplest design.

sLayer Brush Application. Alg. 2 shows the sLayer brush ap-
plication pipeline. Before each stroke, we build a regular grid with
all vertices inserted. We choose to fully rebuild the grid since large
deformations might have happened during the last user interaction.
Then, for each stroke location, we perform standard stroke applica-
tion aided by the grid. Since we insert just the vertices into the grid,
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Figure 4: Remesh example. Left. Initial surface. Right. Surface
remeshed after deformation.

rather than whole triangles, we handle each stroke location with
multiple steps where the maximum vertex translation is the edge
length, i.e. the grid cell side.

In each step, we quickly select affected vertices by rasterizing a
sphere into the grid, centered at the brush location and with radius
equal to the brush radius; we pick all the vertices for the intersected
cells. We compute the new vertex location by applying the brush
deformation with a standard method. We then insert the new vertex
location in the grid, in order to track all new vertex positions during
intersection handling, and find all vertex—triangle pairs that are
closer than the mean edge length, pruning the tests first with the
grid. All vertices that have no collision are simply moved to the
transformed locations. For the colliding ones, we place the vertices
one edge length away from the collided triangle in the direction of
motion. This can be considered as our collision response. We finally
remove the old vertex locations from the grid. To update the grid
data structure efficiently, for both insertion and deletion, we maintain
a list of vertex-to-cell correspondences and swap references when
possible. This minimizes memory allocation during editing.

It should be noted that different collision responses could have
been employed in this context and recent works address this issue
particularly in the context of shape modelling, e.g. [HPSZ11]. We
chose to simply lock the vertex, rather than perform a physically-
sound response, since we want to maintain user edits exactly and
introduce no deformation which is not directly controllable by the
brush.

Remeshing. Among the many known remeshing schemes (see
[AUGAOS] for a survey), we peform isotropic remeshing using the
approach described in [DVBB13] based on successive iterations of
mesh edge improvements followed by vertex repositioning. Fig. 4
shows an example. We chose this method based on its performance
and relative simplicity.

The remeshing method requires adjacency information that
would be provided by a complex data structure such as half-edges.
Our concern with maintain such data structures it that they add
complexity to the system, but do not improve any other part of the
pipeline. For this reason, we settle on augmenting our index triangle
meshes with explicit adjacency stored for vertex—vertex, vertex—face
and face—face and reconstruct all other adjacies from here.

Discussion. In the end, our material editing system remains rel-
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atively simple given the combination of three design choices. First,
the constant mean edge choice was crucial in our system design.
It allowed us to use a single, easily updatable, grid for vertex se-
lect and broad-phase collision. In the narrow phase, the assumption
translated into using simple proximity queries and a trivial collision
response, like shown in Fig. 3. The tradeoff is to use more complex
remeshing that it is forced to be executed once per stroke, rather
than one for stroke’s polyline location. Second, representing layers
as indexed triangle meshes, with possibly disconnected patches, al-
lows us to represent all orientable surface configurations while still
leading to a fast and reliable collision handling, when combined
with constant edge length. Both of these were surprising for us and
in fact we prototype other more complex solutions first, but found
this combination to be the key for a reliable and scalable system.
Finally, we chose to avoid separate texture and vertex sampling for
reflectance. This makes sure that reflectance edits are easily aligned
with geometry deformation just like they are on real-world surfaces.
Obviously, a mesh simplification method that used textures for re-
flectance and normal maps for geometry might be applied once the
model is completed to achieve faster reproduction during rendering.

4. Results

We implemented sLayer as a multicore CPU application and gather
testing results using a Intel i7-6700k CPU with 4 physical cores
running at 4.0 Ghz, and 16 GB of RAM.

Editing Tools. Fig. 5 shows an example sequence created with
the editing tools in our interface. The bulk of the modeling was
done with brushes similar to [Ble16]’s ones, augmented with col-
lision handling. Material painting was implemented as in cSculpt
[CSTP16]. The major additional difference is that the artists can
select which layer group the brush is active on, leaving the others
undeformed, but still participating in collision handling. For layer
creation, we used three different operations. The simplest one is the
offsetted duplication of selected parts of a layer, similar to [SVJ15].
The second one is to draw a closed stroke onto a surface and create
a new layer from it using discrete coons patches. The last one is to
cut a layer along a stroke. While high fidelity cuts can be imple-
mented [MSF*15], we use a simpler implementation that snaps the
stroke to existing triangle edges, similarly to [NvdS04], given our
short edge length and the fact that vertices and then remodeled with
brushing.

Materials and Performance. The main strengths of sLayer are
its interactivity and its scalability. This enabled us to model complex
materials, as depicted in Fig. 1 and Fig. 6, where we demonstrate
the expressiveness of our approach.

We choose three stratified materials of different nature: a piece
of peeled plaster and rusted metal, each one composed by more
than half a million of polygons, and a portion of tree bark. The final
model of this latter is composed by approximately 940 thousands
of triangles; during the modeling session, before deleting some of
the fragments of the bark, we reached 1.2 millions of polygons.

During our tests, the tool always remained interactive (> 10fps)
as demonstrated by the data reported in Table 1, including when a
portion of a layer is deformed and collides with another layer, and
remeshing is carried out on the fly. We are not aware of any existing
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Figure 5: Representative editing interactions offered by our system. From left to right: (1) plain surface; (2) adding patches; (3) deforming
bottom layers against the one on top; (4) adding cuts on the top surface; (5) deforming and deleting some detached components (6) final

result. Images renderer with raytracing.

Figure 6: Rendering of the test materials to highlight the high frequency details. In the bottom row, some details are magnified 2X.

sculpting tool able to deliver such complex cases interactively, and
sLayer handles this very well.

5. Conclusions

In this paper we present sLayer, a system for sculpting editing multi-
layer materials capable of handling interactively detailed, million-
polygons, surfaces with collision handling and remeshing. In the
future, we plan to investigate how to model subsurface scattering
with a brush like interface including the creation of holes and cracks
within the volume.
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Time for Brush Application
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Table 1: Statistics gathered over the modeling sessions of the materials in Fig. 1 and Fig. 6. All values are averaged over all brush strokes.
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