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Abstract

Surface electromyography offers a low-cost, non-invasive method of predicting motor
intention for prosthetic device control. Conventional active prostheses use individual
muscle groups to trigger movement along one degree of freedom at a time, resulting
in an effective, but slow and counter-intuitive control scheme. Pattern recognition-
based approaches to decoding muscle signals allow for more advanced, intuitive
control, but at the cost of robustness to in-band noise and sensor faults. Signal
processing to increase the distinguishability of muscle signals is an active area of
research, but there has been little investigation in the implementation of a real-
time, portable system that is robust against common noise sources.
The aim of this work is to review the recent advances in electromyography signal
processing and to investigate the effectiveness of wavelet-based signal processing
and mean missing data imputing on the classification accuracy and controllability of
myoelectric pattern recognition-based upper-limb prosthetic devices. The proposed
algorithms were implemented on-board a standalone microprocessor to allow users
of pattern recognition-based prosthetic devices to operate without being fixed to a
PC.
Nine able-bodied subjects were instructed to perform a series of Motion Tests while
generating motion artifacts and electrode disconnect events. Four channels of untar-
geted forearm electromyogram signals were recorded and used for motor intention
prediction with and without the proposed routines active. The results for tests com-
paring wavelet-based transient artifact reduction and conventional filtering showed
no statistically significant change. Results for comparing missing data imputation
with standard processing also showed no statistically significant change.
Further tests were done using a recorded data set of 15 healthy subjects perform-
ing the same motion tests with artificially added pre-recorded motion artifacts and
electrode disconnect events. In order to observe the effect of a higher number of
episodes, further investigation was performed on a set of pre-recorded Motion Tests
from 15 able-bodied subjects with artificially added noise and sensor faults. The tests
with simulated interferences showed a statistically significant increase in classifier
accuracy, specificity, and sensitivity for wavelet processing. Results also showed an
increase in accuracy and specificity for data imputing, but at the cost of movement
completion rate. These results suggest that the proposed routines can be imple-
mented in real-time systems to improve prosthetic device controllability and that
they are viable for use in further studies.

Keywords: electromyography, wavelet, stationary, imputing, pattern, recognition,
signal, processing
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1
Introduction

1.1 Prosthetic Technology

Evidence of the use of prosthetic devices as both an assistive technology and for cos-
metic replacement of missing limbs extends into antiquity. Only relatively recently,
however, have commercial versions of these devices advanced beyond static objects
or simple cable-driven systems. Rapid advancements in robotics technologies have
begun to offer the real potential to truly replace missing functionality in disabled
people.
For powered prosthetics, myoelectric signals from vestigial muscles are used as a con-
trol source due to their direct correlation to motor intention and ease of non-invasive
detection [1]. There exists a significant discrepancy between the current mechanical
prosthetic technology and the fidelity of the signal acquisition and control systems,
resulting in limited controllability and frequent frustration from users [2]. One study
performed in 2007 showed 39 % of upper-limb amputees with myoelectric prostheses
do not use them regularly due to issues stemming primarily from low controllability
and functionality [3], though the relationship between lost functionality and user
requirements is complex and changes over time [4]. Artificial limb rejection rates
have not been dropping in recent years, despite advances in signal processing tech-
nology, the addition of proportional speed control, and the adoption of functional
hand grips by some manufacturers of upper-limb prosthetics [5, 6].
The vast majority of the consumer market for Myoelectric Controlled (MEC) de-
vices uses threshold-based control schemes, referred to as Direct Control, where each
independently controllable muscle group is linked to some movement. The of de-
grees of freedom (DoF) that the user can control simultaneously is limited by the
number of electrode sites available on the vestigial limb. If only one site is available,
referred to as Single Site control, two activity thresholds are used to code antago-
nist movements, e.g. opening and closing the hand depending on the strength of
the contraction [7]. If two are available, called Dual Site control, the two muscles
can code for antagonist movements on one DoF at a time, Fig. 1.1. These systems
use either physical switches or co-contraction of antagonist muscles to cycle through
the DoFs available in the prosthetic using a finite-state machine [8, 9]. While these
systems are robust against noise, the slow switching and sequential nature of using a
state machine makes control of the devices non-intuitive. High-level amputations in
particular suffer from this due to the number of DoFs the prosthetic has to replace
[10].
Significant clinical research has been done on using pattern-recognition to predict
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1. Introduction

Figure 1.1: Block diagram illustrating common prosthetic control paradigms in
commercial and clinical use.

motor intention using multi-channel surface Electromyogram (sEMG) recordings,
negating the need for switching between different DoFs and potentially allowing for
intuitive control, though the increase in functionality is offset by a large reduction
in robustness [11]. This is an important point, as an incorrect movement of the
prosthetic at any point has the potential to compromise an entire task [11]. En-
vironmental noise, signal artifacts caused by electrode movement, and missing and
corrupted signals due to loose electrode-skin contact are some of the most signifi-
cant factors affecting sEMG signal integrity, especially for pattern-recognition based
systems. Any systems that reduce the impact of these noise sources can have a sig-
nificant positive affect on the controllability and robustness of clinical prosthetics
[12].

1.2 Scope and Aim
The goal of this work is to investigate the implementation of signal processing and
machine learning algorithms in an embedded prosthetic controller. The main tasks
are listed as follows:

• analysis and summary of state-of-art technologies in the field
• implement at least one signal processing and one machine learning algorithm

in the embedded controller
• implement wavelet-based signal denoising and artifact reduction
• implement sensor fault detection and data imputation
• evaluate the improvement in functionality and potential sources of errors

Included in this work is a scientific article containing the results and analysis for the
proposed tests and routines.

2



1. Introduction

1.3 Limitations
This thesis will not be concerned on the development of the hardware itself, but in
the embedded software. As such, the ecological and ethical considerations of the
project will not be covered in detail. Ethical approval for this work was previous
obtained from the Regional Ethical Committee in Gothenburg, Sweden.
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2
Background

Intuitive control is currently one of the main limitations for an upper-limb prosthet-
ics in offering functional restoration of missing limbs [13]. Work done at Chalmers
University of Technology, Sahlgrenska University Hospital and Integrum AB, has
produced technology to interface an artificial limb to the patient’s bone, nerves,
and muscles. Analog and digital electronics have been combined to acquire and
process bioelectric signals, decode motor intention, and restore sensory feedback.
Several signal processing and machine learning algorithms have been developed for
this application, however these have been mostly tested using personal computers
instead of actual prosthetic devices [14]. Implementation of these algorithms in the
prosthetic devices has the potential to improve the functionality of the devices, and
thus the quality of life for the people that use them.
The end goal of any myoelectric pattern-recognition (MPR) system is to decode
motor intention based on EMG signal characteristics. It is up to the signal pre-
processing system to maximize the distinguishability of these features with respect to
the available movement set. Historically, this has been limited to using conventional
filters to attenuate signal frequency bands that are dominated by noise [15]. In
recent years, more advanced techniques have been applied to the process aimed at
decreasing the effect of noise on all signal bands [16]. One of these techniques,
namely wavelet denoising, has shown considerable promise in increasing the Signal-
to-Noise Ratio (SNR) of biological signals, and potentially the prediction accuracy
of MPR systems [17, 18].
The current literature, to the authors’ knowledge, is very limited on the use of
wavelet-based signal processing for real-time signal reconstruction. Much of the
research is focused on using subsets of the wavelet coefficients in pattern recognition
directly [19, 20, 21, 22]. Some work has been done using wavelet-based processing for
spike-sorting algorithms, but such a process typically requires high-density EMG or
targeted muscle reinnervation [23]. The literature that does exist for generic pattern-
recognition based approaches [18, 17] offers evidence on the possibilities of this
processing paradigm, but does not explore the possibility of having the algorithms
running with low latency on the prosthetic devices themselves.

2.1 Electromyogram

Electromyographic (EMG) signals are some of the most well understood and easily
recorded bioelectric signals in the human body. Their direct correlation to muscle
contractions and the availability of non-invasive recording mechanisms have made

5



2. Background

them the main focus of study for modern prosthetic control systems [1]. Despite this,
finding an optimal strategy for interpreting the signals remains an open question,
in no small part due to the noisy nature and large variability of biological systems
in general.

2.1.1 Physiological Mechanism
Surface EMG signals are a chaotic summation of action potentials generated by
discharges of motor units corresponding with the intended movement plus noise
[9]. The action potentials, and resulting muscle activations, contain a large range
of frequency components, but the higher-frequency components are filtered out in
sEMG recordings as they pass through the tissue and smear with other muscle
signals, Fig. 2.1. The dominant energy of the signal that reaches the surface of the
skin is band-limited to about 500 Hz, meaning a sampling rate of at least 1 kHz
with a low-pass filter at 450-500 Hz is sufficient for signal reconstruction [15]. The
resulting EMG signal is considered non-stationary and stochastic, but can generally
be treated as locally stationary for isometric muscle contractions on time windows
of up to 1500 ms [9, 24].

Figure 2.1: Generation of Motor Unit Action Potentials. Each muscle activation
smears and merges with other nearby signals as it passes through tissue, making it
difficult to identify individual activations [25].

2.1.2 Noise and Interference Sources
Noise inherent to the recording electronic equipment, power line noise, electrode
lead-off events, motion artifacts, and biological signal instability are the dominant
factors that degrade the SNR of sEMG signals [8]. Each noise source has different
characteristics, with power line noise being the easiest to define and remove. The
sEMG signal itself changes with respect to the changing distance between the skin
surface and the signal source and the lengthening and shortening of muscle fibers
during movements [11]. Changes in contraction strength result in a transient increase
in higher frequency components, and can be seen in the time domain as an overall
increase in the mean absolute value of the signal [7]. This property is exploited in

6



2. Background

some commercial prostheses for proportional control of either speed or force, but
has the potential to cause misclassifications in MPR systems [26]. Muscle fatigue
and electrode-skin impedance changes can also slowly alter the signal over time,
requiring occasional adjustment of direct control or pattern recognition parameters.
Transient changes in electrode impedance can be induced by contact artifacts, where
a physical disturbance affects the interface and the underlying tissue. These artifacts
are caused by temporary changes in capacitance, and are typically of much greater
magnitude than the desired sEMG signals [12]. Artifacts caused by cable motion are
common in many testing environments and have signal energy reaching up to around
50 Hz, making them difficult to remove without filtering out useful biological signals
[27]. Dry socket prosthetics also suffer from the potential for electrode lead-off events
(LOE), where a dry electrode becomes physically separated from the tissue as the
shape of the stump changes. During these events, the affected channels contain no
useful information, and have the potential to cause unintended movements based on
the ambient electromagnetic noise they pick up.
Using more electrodes has the potential to offset some of these issues, especially in
the case of transient noise or LOEs, where the issue may only affect one channel,
but this also increases the complexity of the system and is only useful if there
are enough active muscle sites on the vestigial limb [15]. The burden of detecting
and compensating for these noise sources then falls to signal processing. Ideally,
an algorithm to address the noise would increase the SNR while minimizing the
distortion caused by signal manipulation [19].

2.2 Signal Processing
The aforementioned noise sources add a great deal of stochasticity to sEMG signals
that must be reduced or, ideally, removed. Exactly how to achieve this remains an
open question, but there has been investigation into a number of methods.

2.2.1 Conventional Filtering
The term conventional filter is used in this work to describe linear, time-invariant
filters. They use a series of coefficients to describe a system with a response that
reduces the amplitude of frequency bands in a given signal while minimizing distor-
tion in the remainder. These are useful for anti-aliasing and to attenuate undesirable
signals when their frequency bands do not overlap with the useful signals, called out-
of-band noise.
High-pass filters with cutoff frequencies between 5 and 20 Hz are typical for sEMG
applications, as very little signal below that range reaches the surface of the skin
[15]. Notch filters can be used in certain circumstances to remove noise from small
frequency bands inside the desired signal range, like in the case of 50 or 60 Hz
power line filtering, at the expense of some signal distortion. While these filters are
useful in removing certain unwanted characteristics of sEMG signals, they are by
definition inflexible to time-varying changes in signal and noise sources and most
forms of in-band noise.

7



2. Background

Figure 2.2: Block diagram of adaptive, noise canceling filter with signal source,
x(n), signal noise, x1(n), reference noise signal, s2(n), and filtered output, x̂(n).

2.2.2 Adaptive Filtering
Adaptive filters operate in a similar fashion as conventional filters with the ex-
ception that the coefficients are continuously updated to reduce some given error
metric. They are of particular interest when an estimation of the noise is available,
like in the case of power-line interference or when removing interfering electrocar-
diogram (ECG) signals from sEMG recordings [28]. Electrocardiogram signals are
not typically an issue in standard upper limb prosthetics, but becomes a significant
source of interference with patients who have undergone targeted muscle reinnerva-
tion (TMR), where the new muscle signals are recorded from the chest area [29].
Adaptive processing in the removal of ECG signals from EMG recordings is a well-
researched field, and has been shown to be effective when working with TMR patients
[29], respiratory EMG signals [30], and back muscle signals [31, 32]. The basic idea
behind adaptive filtering is to iteratively update the filter coefficients by following
the gradient of the signal error with respect to the coefficients, Fig. 2.2.
For the purpose of decoding upper limb sEMG motor intention, adaptive filtering by
itself does not add significant value to the signal processing framework. Power line
noise can be removed using less computationally demanding methods, ECG signals
are only an issue with TMR patients, and since many of the noise sources cannot be
recorded independently of the sEMG signal (i.e. cable and electrode motion artifacts
and interfering biological signals), the noise reference required for adaptive filtering
is typically unavailable.

2.2.3 Time-Scale Processing
The complex, time varying nature of sEMG signals and the noise they come with in-
dicate a need for some statistical analysis that offers resolution in both the frequency
and time domain in addition to conventional filtering.

2.2.3.1 Short-Time Fourier Transform

The Fourier transform, where a time-domain signal is projected onto the frequency
domain, can be applied to arbitrarily small time windows. Using this property to an-
alyze the frequency components of discrete time windows of a given signal is referred

8



2. Background

to as the Short-Time Fourier Transform (STFT), and adds temporal localization to
the resulting coefficients. The time-domain resolution of this transform is inversely
proportional to the size of the window and, in the case of discretely sampled signals,
the frequency resolution is directly proportional to it. Using overlapping time win-
dows for analysis increases the analytic power on larger time windows. As the ratio
of window overlap to window size increases, though, it increases the computational
complexity with a very limited effect in its ability to describe rapid fluctuations in
the original signal [33]. Using highly-overlapping time windows to increase temporal
resolution requires the system to maintain and analyze a large number of windows.
Shrinking the window length reduces the memory and computational footprint, but
also reduces the frequency resolution and increases the affect of windowing artifacts.
A special case of this, called the sliding discrete Fourier transform, is a computa-
tionally efficient means of continuously separating time-domain signals into a small
number of frequency bins. To the authors’ knowledge, this technique remains en-
tirely unexplored in processing EMG signals. The Wavelet Transform (WT) has
been gaining popularity in overcoming the limitations inherent to STFT-based tech-
niques, and is explored further in this work.

2.2.3.2 Discrete Wavelet Transform

The basic idea behind the Discrete Wavelet Transform (DWT) is to split a signal into
compactly-represented time-domain signals along different frequency bands, allowing
for the simultaneous analysis of spectral and time-domain properties of a signal.
This is done by filtering the signal with a pair of quadrature mirror filters, whose
magnitude responses are symmetric about π/2, and decimating the results, Fig.
2.3. The filters themselves are derived from an affine transformation of a prototype,
or mother, wavelet. Based on the internal and mutual orthogonality properties of
quadrature mirror filters, the resulting mapping is an orthogonal transformation,
making it mathematically straight-forward to perform the inverse operation and
allowing for the theoretically perfect reconstruction of the original signal. A rigorous
proof and more detailed explanation can be found in [34].
The mapped values are referred to as the detail (high-pass) and approximation (low-
pass) coefficients of the transform. The approximation coefficients can be fed into
the algorithm again to provide the next level transform until either the desired level
is reached or until there is only one approximation coefficient remaining. The detail
and approximation coefficients represent the upper and lower half of the remaining
frequency band, respectively, meaning a signal sampled at 1000 Hz would be split
into detail coefficients that represent the 250-500 Hz frequency band and approxi-
mation coefficients that represent the 0-250 Hz frequency band on the first level of
the transform.
The DWT has gained significant popularity in recent years for analyzing and re-
ducing noise in biological signals, but research has been limited to offline analysis
on large time windows, leaving its efficacy in real-time applications in question
[24, 35, 28]. One of the main drawbacks to the DWT is that it contains limited
localization information at increased levels of the transform. A given position along
one level of the transform does not necessarily correspond to any integer position
on another level, making it difficult to perform multi-resolution analysis, Fig. 2.4.
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2. Background

Figure 2.3: Block diagrams for the Discrete (left) and Stationary (right) Wavelet
Transforms. The Stationary Wavelet Transform outputs remain undecimated, and
the filters for each level are upsampled versions of the previous level filters.

Figure 2.4: Fourth level discrete (left) and stationary (right) wavelet transform
coefficient mappings

This restriction can be addressed by calculating multiple DWTs with different start-
ing points for the decimation operator (referred to as an ε-decimated DWT), or by
performing the Stationary Wavelet Transform.

2.2.3.3 Stationary Wavelet Transform

The Stationary Wavelet Transform (SWT) is similar, in principle, to the DWT with
the exception that it forms an over-determined representation of the original data
that represents all possible ε-decimated DWT. It does this by, instead of decimating
the coefficients, upsampling the high- and low-pass filters at each stage, Fig. 2.3.
This affords a one-to-one correlation between each position along all levels of the
transform, shown in Fig. 2.4.

2.2.4 Fault Tolerance and Data Imputing
Accurate amplifier operation relies on having an input impedance significantly higher
than that of the target circuit. As the target circuit impedance grows, the signal
reaching the amplifier becomes attenuated, resulting in an increase affect of noise
sources on the signal features. This is especially true for sEMG signals, which require
high amplification to be effectively measured. Ag/AgCl gel electrodes fixed to the
arm typically have an impedance ranging from between 50-1000 kΩ, depending
on placement and skin preparation [36], and dry electrodes have an even greater
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Figure 2.5: Example of a linear ramp function. The lines represent each possible
classification other than rest and the y-axis represents the movement velocity of each
class at each prediction index.

variance, so sEMG amplifiers typically have an input impedance on the order of
hundreds of MΩs.
Existing classifiers that adapt to slow changes in signal characteristics have limited
usefulness in handling electrode lead-off events (LOE), where the electrode becomes
physically separated from the skin, as the noise generated by them is characterized
by the sudden and complete loss of EMG signal. One potential solution is to simply
train the classifier with each combination of channels having lead-off noise, but this
is very memory intensive depending on the number of features and channels, and is
not appropriate for embedded applications.
Majority voting and ramp functions are popular post-processing methods of increas-
ing the robustness of classifiers to signal transients [9, 37]. Majority voting takes
a sliding window of predictions and outputs the classification with the highest oc-
currence within that window. The ramp function uses a count of recent previous
classifications to determine the velocity of the predicted movement, allowing for pro-
portional control [37]. While this does not completely eliminate spurious movements
that would be removed by majority voting, it significantly reduces their effects, il-
lustrated in Fig. 2.5. It is a bit more flexible than majority voting, as the rising and
falling ramp functions can be specified to suit the data. The increase in robustness
both these methods offer comes at the cost of additional delay, as they increase
the amount of time between the first movement classification and full speed output
activation. This makes the size of the post-processing windows and ramp function,
if used, crucial factors for intuitive and responsive control.
It may not be necessary to stop classification or use a very robust classification
method, depending on the amount of redundancy contained in the remaining sensor
data [38]. Zhang et al. demonstrated that a Linear Discriminant Analysis classi-
fier tolerant to electrode faults results in increased classification accuracy, suggesting
that the loss of information during LOEs is a legitimate cause for concern [12]. Their
implementation used a fast retraining algorithm for the classifier that compensated
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for missing channels. While promising, it does not provide a generic solution appli-
cable across different machine learning algorithms.
Pelckmans et al. [39] suggested using a probabilistic model of missing data for
SVMs that approaches mean data-imputing in the case of a linear classifier [38].
While the research has not yet been applied to sEMG signals specifically, it offers a
generic solution that is computationally efficient on linear classifiers and theoretically
feasible on non-linear ones.

2.3 Feature Extraction
The data set required to train pattern recognition algorithms needs to be highly over-
determined, meaning there needs to be many more observations than dimensions in
the feature space [40]. This makes it difficult to feed even a highly-processed sEMG
signal directly into a classifier and expect anything useful in return. To accommodate
for this, the time-domain signals are typically windowed and a small set of signal
features are calculated on each window.

2.3.1 Data Windowing
The amount of information a given time window contains is directly proportional
to its length, but so is the controller delay it imposes on the system. Taking a
naïve approach to segmenting data leads to discrete time windows, where the data
in each window is unique. A deeper analysis of the problem, however, suggests using
windows with some overlap, Fig. 2.6. Doing this adds redundancy and robustness to
the classification system and increases the throughput. Combining this with a ramp
or majority voting scheme for prosthetic device control can significantly increase the
robustness of a given classifier without affecting the response time.

Figure 2.6: Examples of discrete (left) and overlapping (right) windowing methods.
Grey areas represent the processing time, and each tick mark along the x-axis denotes
a prediction. ∆w denotes the window length, ∆p denotes the processing time, and Pi
denotes the i-th prediction. Note that overlapped windowing produces predictions
with the greatest frequency.
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For sEMG control systems, using smaller, overlapping windows for feature extraction
is appropriate, as it reduces overall controller delay while maintaining a window large
enough to contain useful information. Selecting a window size that allows for total
data collection and processing time less than around 200-250 ms is recommended
to prevent the device from feeling sluggish [41]. Farrell et al. showed that windows
as small as 150 ms still perceptibly degrade the performance of prosthetic limbs,
but their experiments dealt with dual-site direct control along one DoF, meaning
they didn’t incorporate the affects of misclassifications in their analysis [42]. Some
research indicates controller delays of up to 400 ms are still considered responsive
[15, 43], but given that the minimum time between distinct muscle contractions is
closer to 200 ms, shorter time windows are typically chosen to prevent time windows
from containing signals from more than one motion [15].

2.3.2 Signal Features
There are many signal features that can be used for classification, but time domain
features typically outperform time-scale and frequency domain features on steady-
state EMG signals and introduce less computational complexity [9].

2.3.2.1 Time Domain Features

The Time Domain (TD) feature set proposed by Hudgins et al. [43] contains some
of the most commonly investigated features, due to their very low computational
complexity and high descriptiveness of both time- and frequency-domain properties
of sEMG signals [24, 19]. A relative comparison of TD features suggests the use
of four features from this set [8, 44]: mean absolute value (MABS), zero crossings
(ZC), waveform length (WL), and signed slope change (SSC), defined in Equations
(2.1-2.4).

MABS = 1
N

N∑
i=1
|xi| (2.1)

ZC =
N−1∑
i=1

1, |xi − xi+1| ≥ MABS
0, otherwise

(2.2)

WL =
N−1∑
i=1
|xi+1 − xi| (2.3)

SSC =
N−1∑
i=1

1, sgn(xi − xi−1) · sgn(xi − xi+1) < 0
0, otherwise

(2.4)

where N ∈ N is the window length in samples, xi ∈ R is the sample at time index
i = 1, ..., N .

2.3.2.2 Autoregressive Coefficients

Autoregressive (AR) model coefficients can be used as EMG signal features and have
been shown to increase predictive power when used in addition to TD features [20].
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AR models are useful in general for approximating linear, time-varying, stochastic
systems. An p-th order AR system, denoted by AR(p), relies on a set of linear
coefficients, −→a ∈ Rp, and a white noise parameter, e, to estimate future values of a
system using past data:

xi =
p∑

k=1
aixk−i + ei, i = 1, ..., N, (2.5)

where xi denotes the recorded EMG signal. In the case of EMG feature extraction,
the coefficients are used to describe the signal, rather than predict future values.
AR(4) is commonly used in EMG signal processing, as it provides an acceptable
trade-off between descriptive power and computational complexity [45, 24].

2.3.2.3 Other Metrics

Information metrics, like entropy, offer a non-linear feature space that improves the
distinguishability of isometric contractions, but without special hardware, calculat-
ing these features is very computationally expensive [20]. A more comprehensive
description of commonly used features in EMG signal classification can be found in
[24].

2.4 Pattern Recognition
Pattern recognition systems, a subset of machine learning, recognize patterns in
the structure of the input data to either perform a regression or classification. The
systems used in this work are all supervised classification models, meaning they use
training samples with known classes to minimize the predictive error. One of the
advantages these systems have over direct control is that they are able to recognize
muscle synergies, meaning that the muscle cross-talk that is detrimental to direct
control schemes becomes useful information and increases predictive power of the
classifier [20].
The processing and memory requirements of many pattern recognition systems limits
the selection for real-time embedded applications to a small number of choices that
have low memory footprints and simplify to solving matrix and vector operations,
which modern digital signal processors are optimized for. Multi-Layer Perceptron
(MLP), Support Vector Machine (SVM), and Linear Discriminant Analysis (LDA)
all meet these constraints and demonstrate classification performance on par with
more advanced algorithms in sEMG applications in previous research [8].

2.4.1 Support Vector Machine
The basic principle behind the support vector machine (SVM) is to find the hyper-
plane that best separates two classes in a feature space using the set of data points
closest to the class boundary. Given a training data set (−→x 1, y1), ..., (−→x N , yN), where
−→x i is the i-th data point in the given feature space and yi ∈ {−1, 1}, representing
the class −→x i belongs to, it finds the parameters −→w and b such that the hyperplane
defined by:
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Figure 2.7: The maximum-margin linear hyperplane for a 2D, 2 class system. The
samples on either side of the margin with the filled circles are called support vectors,
as they determine the location of the hyperplane.

−→w · −→x − b = 0 (2.6)

maximally separates the nearest training data points between the two classes, Fig.
2.7. The resulting plane is referred to as the maximum-margin hyperplane. Predict-
ing the class, yp, of a new data point, −→x p is defined by the following equation:

yp = sgn(−→w · −→x p − b) (2.7)

This system can been extended to support nonlinear classification with the use of
a learned, nonlinear kernel function replacing the the hyperplane [46]. Regardless
of the hyperplane function, the SVM is by definition a binary classification system.
Multi-class support for the algorithm can be achieved by a few methods, the simplest
being a one-vs.-all approach. Bitzer and Van der Smagt demonstrated this to be
a reliable system in their work on decoding sEMG signals [47, 20]. For a k-class
system, k independent SVM classifiers are trained to distinguish each class from
the rest and are stacked, resulting in a matrix W ∈ Rk×q where q is the number
of features and a vector −→b ∈ Rk. Classifications are performed by finding the
maximum resulting value in each of the SVMs, or as a matrix operation:

yp = max(W−→x p −
−→
b ) (2.8)

2.4.2 Linear Discriminate Analysis
Linear discriminate analysis (LDA) approaches feature classification by creating a
decision boundary that separates the mean values of data in each class, rather than
the closest points to the boundary, weighted by the within-class covariance. The
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mean feature values, µ0 and µ1, and covariances, Σ0 and Σ1, are calculated for two
classes to form the parameters:

−→w = Σ−1
1
−→µ 1 − Σ−1

0
−→µ 0 (2.9a)

c = 1
2
−→µ T

1 Σ−1
1
−→µ 1 −−→µ T

0 Σ−1
0
−→µ 0 (2.9b)

where −→w represents the vector normal to the decision boundary separating the class-
specific means and c represents the location along that vector where the boundary
occurs. Classification is performed by thresholding along the projection formed by
the sample point −→x along −→w :

yp = sgn(−→w · −→x − c) (2.10)

Like the SVM classifier, LDA is a binary classification algorithm. The same system
described above can be used to effectively train a multi-class LDA system.

2.4.3 Multi-Layer Perceptron
Multi-Layer perceptron neural networks are a popular class of non-linear machine
learning algorithms. They are intended to roughly model the neural interactions us-
ing layers of units, called perceptrons, to form novel ways of interpreting data. MLP
networks form a fully connected acyclic directed graph, meaning all perceptrons in
each layer take in a weighted sum from all outputs from the previous layer before
feeding it into a non-linear activation function, Fig. 2.8. The number of perceptrons
in each layer, the number of layers, and the activation functions each layer uses are
all independent, and are tunable to fit the structure and complexity of the data.
The activation functions used in neural networks vary considerably, but monotonic,
continuously differentiable functions, like the hyperbolic tangent and the logistic
function, are popular for MLP networks:

φ(x) = tanh(x) and φ(x) = (1 + e−x)−1, x ∈ R. (2.11)

MLP networks can be trained by iteratively adjusting the perceptron weights to
minimize error of the system. This is typically done starting at the output per-
ceptrons and working backwards, called backpropagation. The activity of a single
perceptron in layer j, xj,k, subject to an activation function, φ(x), can be described
as follows:

xj,k = φ

 Ij∑
i=1

wj,k,ixj−1,i + bj

 (2.12)

= φ(vj,k), (2.13)

where Ij is the number of neurons in layer j = 1, ..., J and J is the total number of
layers in the neural network. Bias terms, bj are added to prevent the decision bound-
ary from being fixed at the origin. The neural network classifier is then trained by
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Figure 2.8: MLP Neural Network block diagram. The input layer consists of
the features fed into the classifier. Each hidden layer feeds a weighted sum of all
perceptrons in the previous layer into an activation function that feeds into the next
layer.

minimizing a cross-entropy function with a process called back-propagation. Back-
propagation calculates the gradient of the cross-entropy function with respect to
each weight on each iteration. The training process does not guarantee the global
minimum or even convergence, depending on the learning rate, but finding an ana-
lytic solution to a given MLP network becomes extremely difficult as the complexity
of the network grows [48].

2.4.4 Other Systems
While the machine learning approaches listed above are popular choices for EMG
applications, they are not without drawbacks. The assumption of linearly separable
data distributions that linear classifiers rely on are not always sufficient to describe
complex systems.. Nonlinear systems, like the MLP network, are susceptible to
overfitting and often have no way of guaranteeing a globally optimal solution [20].
Other methods exist that overcome these limitations, with drawbacks of their own,
some of which are detailed below.

2.4.4.1 K-Nearest Neighbors

The K-Nearest Neighbors (KNN) classification algorithm is possibly the most intu-
itive machine learning system. The naïve approach compares the Euclidean distance
between each item in the training set and the test sample. The k nearest training
points are then used in a majority vote to determine which class the new point is
most similar to. One of the primary drawbacks to KNN classifiers that limits their
applicability in real-time and resource constrained environments is the computa-
tional and memory complexity involved in storing and calculating metrics on the
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entire training set.
Using hyperplanes to partition the feature space, called Voronoi tessellation, and
various clustering and compression algorithms have been proposed to reduce this
overhead, but their applicability for myoelectric control has yet to be investigated
[49, 50, 51]. Alternative distance metrics, like the Mahalanobis distance, Manhattan
distance, and Chebyshev distance, are frequently used in KNN applications to re-
duce computational complexity or better describe the feature space [50], but to the
authors’ knowledge, have not been extensively investigated in EMG applications.

2.4.4.2 Fuzzy Networks

Fuzzy logic systems are robust against incomplete and contradictory data, which are
often present in EMG data and other biological signals. They also have the capability
to incorporate information on physiologically compatible movements and other a
priori knowledge of common tasks directly into their decision making algorithm
[19].
Fuzzy classifiers operate by mapping numerical variables into linguistic values that
describe a continuous range that feature may occupy, like high, medium, and low.
The equation that determines the degree to which a value falls in each of the ranges
is referred to as the input membership function. To fully describe a decision rule
set involving n features and M linguistic values, Mn rules are necessary. These
rules amount to a lookup table in computational terms, making them fast and
efficient to execute, but require increasing amounts of often counter-intuitive manual
configuration as the feature space grows.
Optimization of the values described by the linguistic variables and generating the
lookup table for classification can be automated by applying heuristic clustering and
neural network systems to fuzzy classifiers, respectively. The most common type of
clustering used for fuzzy classifiers is fuzzy c-means optimization [52]. Given a
number of clusters, c, it iteratively optimizes the following objective function to find
the optimal cluster locations, −→v , with respect to the matrix membership function,
U :

J(U,−→v ) =
n∑
k=1

c∑
i=1

ui,kd
2
i,k (2.14)

where di,k indicates the Euclidean distance between data point k and the i-th cluster
center, and ui,k represents the membership function applied to the same data point
and cluster center. After the cluster centers have been generated, back-propagation
(described in Multi-Layer Perceptrons) can be applied to optimize the output deci-
sion parameters to determine which input membership ranges correspond to which
classifier outputs. Such systems are referred to as neuro-fuzzy classifiers, and have
been demonstrated to show an accuracy equivalent to Bayes classifiers and nonlinear
discriminant functions [9].
Depending on how the output function is set up, fuzzy classifiers have the ability
to produce either crisp or fuzzy classifications, illustrated in Fig. 2.9. Using fuzzy
classifications offers an opportunity for simultaneous, proportional control in MEG
prostheses, but investigation into such a system has been largely left to speculation.
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Figure 2.9: Classification regions formed by three classes in a two dimensional
feature space with fuzzy (left) and crisp (right) classification regions. The dark areas
correspond to regions where the output is low for all classifications and indicates
that the description of the feature space is incomplete.
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3
Methods

This section contains an overview of the hardware and software used as well as the
methods and results for the selection of optimal wavelet processing parameters. It
serves as an expanded version of the methods listed in the attached article in ap-
pendix A. In addition to the items listed in this section, an efficient implementation
of a generic MLP classifier was written for the system, but was unused in this re-
search due to its poor performance for this application shown in the preliminary
analysis.

3.1 Microcontroller Setup

Existing firmware that included routines for signal acquisition, conventional filter-
ing, feature extraction, and LDA and linear SVM pattern recognition algorithms
was used in this experiment and modified where appropriate. The base firmware
was provided by Integrum AB working in conjunction with the Chalmers Biomecha-
tronics and Rehabilitation Laboratory.

3.1.1 Stationary Wavelet Transform
No microcontroller-compatible implementations of the stationary wavelet transform
or its inverse was found, so one was written in C and optimized for the Tiva C-Series
TM4C123G microcontroller. The implementation leveraged the publicly available
Cortex Microcontroller Software Interface Standard libraries [53].

3.1.2 Sensor Fault Detection
Electrode disconnect events create high impedance mismatch between the amplifier
and the leads. To detect this, a 6 nA DC current source was fixed to both the
positive and negative leads of each amplifier and the input impedance for each
amplifier is set to 500 MΩ, shown in Fig. 3.1. During normal operation, the signal
harmlessly dissipates through both the patient and the amplifier, but will saturate
the amplifier input when either or both leads are disconnected from the patient.
This saturation was addressed by applying hard thresholding to any signal outside
the 30-70% maximum value range of the amplifier, corresponding to approximately
±66 µV. Signals outside of this range were replaced with the mean value, which is
0 V for sEMG signals [15].
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Figure 3.1: Equivalent circuit for detection and simulation of lead-off events in
real-time.

3.1.3 Data Imputing

Mean data imputing for missing samples was chosen in this work due to its intuitive
affect on the signal and its computational simplicity. More advanced methods do
exist based on statistical analysis of previous data, applications of machine learning
algorithms in the prediction of new data, and template matching. Each of these offer
different advantages depending on the application at the cost of time and memory,
and may be worth investigation into the processing of sEMG signals if the proposed
approach is insufficient, but are out of the scope of the current work. An overview
of many of these methods can be found in [38].

3.1.4 Wavelet-Based Denoising

The sEMG signal and noise sources both have stochastic, time-varying properties
that overlap in the frequency domain, limiting the usefulness of conventional filtering
to treating out-of-band signals and power-line noise [8]. Statistical analyses of sEMG
signals in the time-scale domain can be used to dynamically shrink noise components
in a window-based approach based on a priori knowledge of the signal and noise
properties [54]. The frequency characteristics of sEMG signals depend on a number
of factors, but the dominant frequency band viable for wavelet analysis is in the 125-
250 Hz range [19], and components in the 250-500 Hz range are dominated by system
noise [15]. In this case, the system noise is treated as a locally-stationary additive
function based on the standard deviation of the first-level wavelet coefficients.

Algorithms to reduce system noise from wavelet coefficients were selected based on
reviews in previous literature with an emphasis on computational simplicity [18, 54,
55, 56, 57, 58]. Hard, soft, semi-hyperbolic, adaptive, and non-negative shrinkage
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methods were investigated in this experiment, defined as:

Hard : γ̂j,i =

γj,i, |γj,i| > λ,

0, otherwise,
(3.1)

Soft : γ̂j,i =

γj,i − λ, |γj,i| > λ,

0, otherwise,
(3.2)

Hyperbolic : γ̂j,i =

sgn(γj,i)
√
γ2
j,i − λ, |γj,i| > λ,

0, otherwise,
(3.3)

Adaptive : γ̂j,i = γj,i − λ+ 2λ
1 + exp(2.1γj,i/λ) , (3.4)

Non-Negative : γ̂j,i =

γj,i −
λ2

γj,i
, |γj,i| > λ,

0, otherwise,
(3.5)

where γj,i denotes the original wavelet coefficient at level j at time index i and γ̂j,i
denotes the denoised wavelet coefficient the same index.
The Daubechies 4 tap mother wavelet was chosen as the mother wavelet due to its
good performance in describing time and frequency components and its computa-
tional simplicity [17]. The noise threshold parameter, λ, for each routine was calcu-
lated using minimaxi threshold, intended to minimize the maximum mean squared
error against an ideal procedure [59, 17]:

λ = σ̂

(
0.3936 + 0.1829 · log(N)

log(2)

)
(3.6)

where σ̂ is the standard deviation of the system signal noise wavelet coefficients and
N is the window length in samples.
Zhou et al. [29] provided a comparison of wavelet-based hard thresholding against
conventional filtering, adaptive filtering, and other processing techniques on the
removal of corrupting ECG signals from EMG data. They found that wavelet-
based denoising effectively removes the ECG artifacts with minimal corruption of
the signal’s mean amplitude, though this work did not include analysis on the affect
of wavelet-based denoising on other signal features.

3.1.5 Wiener Wavelet Filtering
One of the documented effects of the WT is that it tends to concentrate the signal
energy into a relatively small number of high-valued coefficients [60]. Wavelet-
based denoising then reduces any sufficiently small coefficients (assumed to be noise)
towards zero, reducing the signal subspace (the number of non-zero coefficients used
to describe the signal). Combined with the fact that the WT provides rich spectral
characteristics on both the desired signal and the noise, this process lends itself to
Wiener filtering, expressed as γ̃j,i in:

γ̃j,i =
γj,i · γ̂2

j,i

γ̂2
j,i + s(γ̂1)2 , (3.7)
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where s(·) denotest the corrected sample standard deviation. This treats the desired
signal and the noise as locally stationary systems, which is appropriate for sufficiently
small windows, and provides a smoother system response than wavelet shrinkage
alone. It should be noted that the Wiener filtering coefficients can be calculated on
WT with a different transform level and mother wavelet selection than the original
data, Fig. 3.2, but this flexibility was foregone in this implementation in lieu of
better real-time performance.

Figure 3.2: Block diagram for generic wavelet-based Wiener filtering. Note that
the transforms for the Wiener coefficient estimation and for the signal filtering are
separate, allowing for use of different wavelet parameters in wavelet shrinkage and
Wiener filtering.

3.1.6 Artifact Reduction
Since most of the signal energy in motion artifacts of all types typically occurs at or
below 20 Hz [16], a fourth-order wavelet transform can cleanly separate the signal
bands without loss of information. In this implementation, it is assumed that any
strong signal in the approximation coefficients of the transform (corresponding to
the 31.25-0 Hz range) is a transient artifact. Hard thresholding is applied to each
signal band in the following manner to remove the corrupted portions of the signal:

thrk = µi(|γdom|) + k · si(γdom) (3.8)

γ̂A,i =

γA,i, if |γA,i| < thr1,

0, otherwise,
(3.9)

γ̂D,i =

γD,i, if |γA,i| < thr1 ∪ |γD,i| < thr0,

0, otherwise,
(3.10)

where γA,i is the i-th wavelet approximation coefficient, γD,i is the corresponding
detail coefficient at decomposition level D, γdom is the wavelet decomposition level
corresponding to the dominant frequency band, and µ(·) is the mean function.
A strong transient artifact can have components that smear across the entire fre-
quency spectrum, depending on how quickly the onset and offset of the artifact
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occur. The proposed method of artifact reduction aims to remove only the cor-
rupted portions of the signal from each of the frequency bands in the described
manner. The effect of this is illustrated in Fig. 3.3.

Figure 3.3: Examples of clean sEMG signal (top-left) and an artificially added
motion artifact (top-right) filtered with a conventional Butterworth filter (bottom-
left) and artifact reduction (bottom-right). The original signal is underlayed on each
window in gray. Artifact reduction decreases the effect of the corruption (presented
as MSE) much more than conventional filtering, and the signal distortion it imposes
only occurs during the artifact, where the filter distorts the entire signal.

3.1.7 MLP Classifier
A Multi-Layer Perceptron classifier was written in C and optimized for the Tiva
microcontroller using the CMSIS software library [53]. The predicted class value, ĉ,
is estimated using equations (3.11-3.17) from an input row vector, −→v I

−→v H
1 = σ(W I−→v I) (3.11)
−→v H

2 = σ(WH
1
−→v H

1 ) (3.12)
−→v H

3 = σ(WH
2
−→v H

2 ) (3.13)
· · · (3.14)
−→v H

N = σ(WH
N−1
−→v H

N−1) (3.15)
−→v O = σ(WO−→v H

N) (3.16)
ĉ = maxC(−→v O) (3.17)

where σ(·) denotes the element-wise activation function and W denotes the neuron
weight matrix for the input (I), hidden (H), and output (O) layers.

3.2 Parameter Selection
Some preliminary analysis was performed on the effectiveness of each of the pro-
posed denoising methods on the accuracy of the available classifications algorithms.

25



3. Methods

This analysis was used to determine which combination of the wavelet-based pro-
cessing methods and machine learning algorithms showed the greatest improvement.
While this limits the overall scope of this work, the number of possible parameter
combinations was deemed too high to reasonably expect subjects to perform during
the experiment.

3.2.1 EMG Data Acquisition
Data for the offline evaluation and selection of appropriate wavelet parameters was
performed on a publicly accessible data set of 20 subjects performing 10 wrist,
hand, and forearm movements recorded using 4 sets of untargeted bipolar electrodes
sampled at 2 kHz [61]. Data was decimated to 1 kHz, and the 4 movements not used
in the real-time analysis (side grip, fine grip, thumbs up, and pointer) were discarded
to better match the real-time evaluation of the proposed algorithms, leaving the
hand open and close, wrist flexion and extension, and arm pronation and supination
movements for analysis. White Gaussian noise with 0 dBW power was added to
each movement in the testing data and was scaled to 20% of one standard deviation
of the signal for the respective movement. Training was performed using 10-fold
cross validation on the data set; metrics were calculated on each parameter set 10
times using 90% of the data for training and 10% of the data for classifier testing.

3.2.2 Selection Metrics
Five metrics were used to compare the performance of each of the wavelet-based
signal processing algorithms: global accuracy, processing time, the Mean Squared
Error (MSE) between the original data and the filtered original data (MSErec), the
MSE between the noisy filtered data and the original data (MSEref), and the MSE
between the noisy filtered data and the filtered original data (MSEnoise). The MSE
metrics were used to measure the distortion from the original signal caused by the
proposed processing methods. For this experiment, lower values are better with zero
being the ideal case.

3.2.3 Preliminary Analysis
As this is a window-based processing routine, the delay it introduces depends on the
number of active channels and the length of the time window. Due to the nature of
the wavelet transform, the operations work most efficiently on time windows with
samples lengths that are a power of 2 [34]. For this experiment, a time window length
of 128 ms with 64 ms overlap was selected, which falls in the typical windowing
range for sEMG applications and still allows for some processing time before the
control algorithm begins to feel unresponsive [9, 15]. Time performance metrics
were collected for each of the proposed denoising algorithms on this window length
and are shown in Fig. 3.4.
Motion artifact reduction without the use of wavelet denoising was the only set
of parameters that indicated any statistically significant (p <0.05) global accuracy
improvement over the control, Fig. 3.5. It also showed the smallest overall signal
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Figure 3.4: Mean processing time required for proposed denoising algorithms on
1 channel with 128 sample length windows. The label ’SWT Only’ only includes
the SWT and its inverse transform, ’Motion’ includes the transforms and motion
artifact reduction, and all others include the transforms, artifact reduction, and the
listed routine.

distortion, Fig. 3.6. Adaptive thresholding showed possible improvement when
used with the LDA classifier, but the processing time to perform the algorithm was
prohibitively high, Fig. 3.4.

Figure 3.5: Mean offline accuracy change ± 1 SD compared with conventional
filtering. Motion artifact reduction using an LDA classifier without wavelet denoising
shows the only statistically significant (p < .05) improvement.

3.3 Experimental Evaluation
In this work, the wavelet-based signal processing and mean data imputing routines
were tested separately. A test set consisted of the patient performing a motion test
with the routine in question active, and another with the routine disabled.
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Figure 3.6: Mean offline MSE ± 1 SD compared with conventional filtering.
Motion artifact reduction caused the smallest amount of overall signal distortion
(p < .05)

All data collection, visual cueing, and pattern recognition training was controlled
by the BioPatRec software suite running in MATLAB 2016b [62]. EMG data ac-
quisition, signal processing, feature extraction, and movement prediction were all
implemented on the artificial limb controller hardware described in [63].

3.3.1 Training Protocol

The basic training procedure for each test set consisted of patients performing con-
tractions for each movement three times in sequence. Subjects were asked to perform
each contraction at 70-80% of maximum strength for three seconds with a three sec-
ond rest between each contraction. A live display of the EMG recordings was shown
to the subjects during training as a form of biofeedback.

3.3.2 Motion Tests

The Motion Test, originally proposed by Kuiken et al. [64], was used to evaluate the
effect of the proposed algorithms on the predictive capability of an LDA classifier.
Each trial of a motion test consisted of a total of three random permutations of
the entire movement set. Subjects were asked to perform the indicated movements
with 70-80% maximum strength until either 20 correct predictions were made by the
system or 10 seconds had elapsed. To offer biofeedback during the tests, subjects
were shown the currently predicted value by the system in real-time.
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3.3.3 Performance Metrics
Classifier accuracy, specificity, and sensitivity from the motion tests were used as
performance metrics for the rest of the analysis in this work in addition to selec-
tion time, completion time, and completion rate, defined in [64]. Specificity and
sensitivity were included to compensate for the inherent bias of global accuracy
and to account for the large impact misclassifications can have on task completion
when using prosthetic devices [41]. Data imputing tests employed an additional
metric referred to in this work as the rest rate, defined as the percentage of false
negative misclassifications resulting in no movement. This was used to show the
difference in unintended movements resulting from LOEs produced by the proposed
algorithm. All comparison between the proposed systems and the null hypotheses
were performed using two-way ANOVA tests without replication.

3.4 Real-Time Tests
For the real-time tests, the order of the routines tested and the order of the test
sets were both chosen at random to minimize any learning or fatigue affects on the
system performance. A few minutes of rest was allowed between each set of tests
to ensure the muscles were not fatigued. The electrodes were disconnected at this
time, so the training protocol was performed again after the break before starting
the next test set.

3.4.1 Participants
The participants for the real-time analysis of the proposed system were all healthy,
able-bodied subjects between 22 and 29 years old. The mean age was 25 with
a standard deviation of 2.5 years. Limb-deficient subjects were not preferentially
chosen in this study, as evidence suggests that there is little difference in pattern
recognition-based upper limb prosthetic controllability between limb-deficient and
able-bodies subjects [65].

3.4.2 EMG Data Acquisition
Data for real-time EMG tests were collected from four sets of Ag/AgCl bipolar
electrodes placed with approximately equal spacing around the proximal third of
each subjects’ dominant forearm. EMG signals were sampled at 2 kHz at 24-bit
resolution with 24 V/V gain. The recorded data was then decimated to 1 kHz and
filtered using a second order 20 Hz IIR high-pass filter and a 50 Hz IIR notch filter
to minimize common-mode signals and power-line noise, respectively.

3.4.3 Wavelet-Based Signal Processing
To evaluate the performance of the proposed artifact reduction routine, the patient
was instructed to perform two motion tests, one relying solely on the 20 Hz high-pass
and 50 Hz notch filters, and one with the addition of wavelet-based artifact reduction.
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Figure 3.7: Motion artifacts were generated in real-time by having the patient
bump their wrist against the table on either side of a small obstacle during each
contraction [66].

Subjects were instructed to start each contraction with their elbow resting on the
table and the forearm raised such that no electrodes were touching the table. They
were then instructed to bump their wrist against the table once on each side of a
small obstacle, pivoting on their elbow, while maintaining the contraction, illustrated
in Fig. 3.7. This action is intended to simulate the typical case for sEMG signal
transients where the user may bump the prosthetic against an object or shift the
appendage in the socket or electrode band.

3.4.4 Data Imputing

To test the efficacy of the lead-off detection and data imputing subsystem, two mo-
tion tests were performed, one with mean data imputation enabled, and one without
any extra processing. A single-pole double-throw continuity switch was fixed to each
lead pair, illustrated in Fig. 3.1, and operated manually using a random number
generator to indicate disconnect events. The generator indicated new events at a
pseudo-random interval with a 2 second mean time between events and a standard
deviation of 1 second. Disconnect events lasted for between approximately 0.2 and
0.5 seconds, and began occurring immediately after starting each test. Training data
for these tests were left uncorrupted, since classifier training typically either occurs
in a controlled environment or is repeatedly performed until satisfactory accuracy
is reached.
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3.5 Simulated Tests
To formulate robust statistics on the effectiveness of the proposed routines, an extra
set of tests were performed to see how they affected the accuracy and controllability
for exactly identical data sets. This was not feasible to do on live recordings, but
could be done by feeding previously recorded EMG signals from motion tests into
the microcontroller and recording the resulting classifications. It is referred to as a
simulated test, as it is not a true real-time test, but was still implemented on the
microcontroller in a similar fashion.

3.5.1 EMG Data Acquisition
The simulated tests for this experiment were performed on a subset of the data set
used in [14], where EMG signals were recorded from 15 able-bodied subjects per-
forming 10 wrist and forearm movements via 4 sets of bipolar electrodes placed with
roughly equal spacing across the proximal third of the dominant forearm. This data
set was recorded at 2 kHz with a second order digital high-pass filter at 20 Hz and a
notch filter centered at 50 Hz. The set contained the EMG signals corresponding to
both the pattern recognition training data and the full motion tests. The recorded
motion tests consisted of three trials of three repetitions of each of the ten trained
movements. As the EMG data for the tests were recorded using different time win-
dow parameters (resulting in a larger window incompatible with the current artifact
reduction routine), only the first 128 ms in each time window, after decimating to
1 kHz, was extracted to form the training and testing sets.
The ground-truth for the simulated tests was determined by running the classifier
against the recorded motion tests without simulated LOEs or motion artifacts and
saving the positions of the correct classifications. Any incorrect predictions made
in this situation are ignored, as the proposed algorithms are not assumed to signifi-
cantly increase the predictive power of the classifiers on clean data sets.

3.5.2 Artifact Reduction
Data for comparing the artifact reduction routing with conventional filtering were
modified with a set of pre-recorded motion artifacts available in the BioPatRec
software suite [62]. The available motion artifacts, examples of which are shown in
Fig. 3.8, were decimated and filtered to match the properties of the EMG signal.
For each time window in the motion test, random artifacts were added on random
channels at random offsets with magnitudes corresponding to between 1 and 10
times the standard deviation of the signal strength of that window.
Artifact reduction, when applicable, and pattern classification were performed on-
board the microcontroller using a pre-trained LDA classifier by providing each time
window over a serial connection and reading the resulting classifications. Artifacts
were not added to the training data, but to compensate for the non-linear effects the
motion artifact reduction routine has on the signal, seen in the offline analysis, the
routine was applied to both the training and testing data for that case, illustrated
in Fig. 3.9.
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Figure 3.8: Some examples of transient artifact signals that can occur in recordings.
From left to right: high-impedance, contact motion during contraction, and contact
motion during rest.

Figure 3.9: Block diagram showing the training and testing procedure used to
evaluate wavelet-based motion artifact reduction on pre-recorded motion tests.
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3.5.3 Data Imputing
Data for simulating lead-off events were taken from a recording of noise picked up
by a set of disconnected leads recorded with the same hardware and settings as the
motion test recordings listed above. The noise was then downsampled to 1 kHz and
separated into 128 ms time windows. Motion test data at random time indexes on
random channels on all time windows were replaced with either a random sample of
recorded noise (for conventional handling) or zeros (for mean data imputing).
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4
Conclusion

The offline results for the wavelet-based signal denoising schemes were not out of
line with previous research. While some literature indicated a relatively small MSE
between raw and processed sEMG data using the selected parameters on the MABS
feature [17], little investigation has been done on features that contain more fre-
quency information (i.e. ZC and SSC). The only other literature known to the
author that showed a statistically significant increase in classification accuracy used
an MLP classifier implemented with more neurons than what was considered feasible
for the real-time, microcontroller-based implementation used in this experiment [18].
The use of wavelet-based denoising has yet to be investigated using nonlinear kernel
functions for an SVM classifier or different neural network systems and represents
an avenue for future investigation.
The intention of the real-time wavelet-based processing experiment was to show any
obvious differences between the two processing methods, and none were shown. A
single motion artifact typically lasts up to 100 ms [18], and given the window size,
the test would show up to 6 windows corrupted by motion artifacts from hitting
the table, plus any that occurred during the transit of the forearm above the table.
Given that each test lasts up to 10 seconds (approximately 150 time windows), this
test may not be expected to show statistical significance. The varying amount of
time the processor spent on processing each time window also led to inconsistency
in the results. Similar logic applies to the small difference shown when comparing
conventional lead-off processing and mean data imputing.
The simulated processing tests were intended to show, at the expense of some
real-world applicability, the effectiveness of the proposed algorithms in a highly
reproducible setting. These results indicated statistically improved performance
(p < .001) on most metrics with the artifact reduction routines at both the proposed
wavelet levels, but greater improvement using the 3rd-level transform. Neglecting
the 4th-level reduces processing time (by requiring fewer filtering operations), so use
of the 3rd level routine showed the greatest potential. Simulated test results also
showed a statistically significant (p < .001) improvement on accuracy and specificity
using mean data imputing during lead-off events, but at the cost of completion rate.
These results are offset by the significant increase in the rest rate, indicating that
while the system completes fewer movements, the number of misclassifications result-
ing in unintended movements is effectively reduced. It is noteworthy to emphasize
that at least one channel was corrupted with a lead-off event on every time window,
so these results serve as a worst-case scenario, rather than a typical use-case. These
results suggest that mean data imputing is an effective strategy for handling LOEs
during continuous sEMG classification.
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4. Conclusion

The prospects of myoelectric control systems continually improves as the discrepancy
between signal processing and analysis and robotic systems decreases. Investigation
into the efficient, low-cost implementation of these control systems is crucial to the
development of EMG-based assistive devices, as without the mobility offered by
small, low-power control systems, the applicability of advanced processing methods
and control strategies is severely limited. As such, while the MLP classifier did not
prove useful in evaluating the performance of wavelet-based denoising, having an
efficient implementation of it working on the microcontroller enables the use of it
in future analysis. Wavelet denoising has already been demonstrated to be useful
in spike-sorting schemes, so the system may prove to be useful for TMR recipients
[23].
Wavelet-based artifact reduction and mean data imputation have been shown in this
work to be effective at increasing the robustness of pattern recognition-based, upper-
limb EMG control systems. No attempt has been made, yet, to investigate whether
the proposed system would increase overall controllability and end-user trust in
daily activities. Integrating these algorithms on a portable system compatible with
existing robotic hands has been a critical step in allowing the appropriate tests to
be conducted.
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Stationary Wavelet Processing and
Data Imputing in Myoelectric Pattern Recognition

on a Low-Cost Embedded System
Adam Naber, Enzo Mastinu, Student Member, IEEE, Max Ortiz-Catalan, Member, IEEE

Abstract—Surface electromyography offers a low-cost, non-
invasive method of decoding motor intention for prosthetic
control. Pattern recognition-based approaches to decoding muscle
signals allow for advanced, intuitive control, but at the cost of
sensitivity to in-band noise and sensor faults. The controllability
and robustness of such systems can be improved with wavelet-
based signal processing and data imputing. Research has largely
focused on offline analysis of recorded data using these processing
algorithms, and no attempt has been made to investigate the
feasibility of executing them on a portable system in real-time.
The aim of this work was to investigate the feasibility of low-
latency wavelet-based signal processing and data imputing on an
embedded device capable of controlling upper-arm prostheses.
Nine able-bodied subjects were asked to perform Motion Tests
in the presence of transient in-band noise and sensor faults. Mi-
nor differences were found between conventional and advanced
processing due to the low number of disturbance episodes. In
order to observe the effect of a higher number of episodes,
further investigation was performed on a set of pre-recorded
Motion Tests from 15 able-bodied subjects with artificially added
noise and sensor faults. The tests with simulated interferences
showed a statistically significant increase in classifier accuracy,
specificity, sensitivity, and precision for wavelet processing as
well as an increase in accuracy, specificity, and precision for
data imputing. These results suggest that the proposed routines
can be implemented in real-time systems to improve prosthetic
device controllability and that they are viable for use in further
studies in daily life activities.

Index Terms—prosthetic limbs, myoelectric pattern recogni-
tion, stationary wavelet transform, data imputing, signal de-
noising

I. INTRODUCTION

ELECTROMYOGRAPHY (EMG) signals from vestigial
muscles are the most common control source for powered

prostheses, due to their direct correlation to motor intention
and ease of non-invasive detection [1]. There is a significant
discrepancy between the current mechatronic prosthetic tech-
nology and the fidelity of the signal acquisition and control
systems. This results in limited controllability and frequent
frustration from users [2]. A study performed in 2007 showed
39 % of upper-limb amputees with direct control myoelectric
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prostheses did not use them regularly due to issues stemming
primarily from low controllability and functionality [3], though
the relationship between lost limb functionality and user
requirements is complex and changes over time [4]. Artificial
limb rejection rates have not decreased, despite the addition
of proportional speed control and the adoption of functional
hand grips by many manufacturers [3], [5], [6]. This suggests a
more intuitive control mechanism is required to address patient
needs.

Using myoelectric pattern recognition (MPR) to predict
motor intention from multi-channel surface EMG (sEMG) is
a more intuitive alternative to direct control. MPR removes
the need for switching between different degrees of freedom
and allows for more natural motion. The increased function-
ality MPR systems provide is offset by a large reduction in
robustness. This is an important consideration, as an incorrect
movement of the prosthetic at any point can compromise an
entire task [7]. The clinical translation of such technology has
been hindered by the lack of robustness. Environmental noise,
signal artifacts caused by electrode movement, and missing
and corrupted signals due to loose electrode-skin contact have
the greatest negative impact on MPR systems using sEMG [8],
[9]. Methods that reduce their impact can have a significant
positive affect on the controllability, robustness, and eventual
adoption of clinical prostheses.

The aforementioned noise sources have wide-band and non-
stationary characteristics, making them difficult to remove with
FIR or IIR filters without also removing useful signal compo-
nents. Using more electrodes can offset some of their effects
in cases of transient noise or lead-off events, where the issue
may only affect one channel, but this also increases the system
complexity and is only useful if there are enough available
myoelectric sites. The burden of detecting and compensating
for these noise sources then falls to more advanced signal
processing.

Wavelet-based signal analysis has been gaining significant
popularity in treating complex, noisy biological signals. Sev-
eral works have been published on using subsets of wavelet
transform coefficients directly in sEMG pattern recognition
systems that demonstrate an increase in classification accuracy
[9], [10]. Other works have focused on using the wavelet
transform to dynamically reduce noise across the time and
frequency domains based on a priori knowledge about the
signal and noise sources, referred to as de-noising [11]–
[15]. The latter approach produces a cleaned version of the
original signal, providing a more direct correlation between
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the result and motor intention, and allowing for straightforward
integration in existing systems. To the authors’ knowledge, no
investigation has been made into determining the feasibility of
implementing a real-time signal de-noising routine on an mi-
crocontroller operating independently of a PC. Demonstrating
the feasibility of executing such algorithms in real-time and
in an embedded system is the next logical step towards more
robust pattern recognition-based control in limb prostheses.

The aforementioned algorithms do not address the situation
where electrodes lose their electrical coupling with the body,
which is another potential complication on myoelectric pros-
theses. Little is known on the occurrence of such situations
in daily use, but their effects are significant enough for lead-
off event (LOE) detection circuitry to be included in many
bio-potential amplifiers. The result of an LOE is a complete
loss of EMG often coupled with strong transients as electrodes
disconnect and reconnect with the skin.

Existing classifiers that adapt to slow changes in signal
characteristics have limited usefulness in handling LOEs, but
it may not be necessary to stop classification depending on the
amount of redundancy contained in the remaining sensor data
[16]. Zhang et al. demonstrated that a Linear Discriminant
Analysis-based classifier tolerant to electrode faults results
in increased classification accuracy. This suggests that the
signal corruption and loss of information during LOEs is
a cause for concern [17]. Their implementation used a fast
retraining algorithm for the classifier that compensated for
missing channels. While promising, it does not provide a
generic solution applicable across different machine learning
algorithms.

Pelckmans et al. [18] suggested using a probabilistic model
of missing data for support vector machines that approaches
mean data imputing in the case of a linear system [16].
While the research has not been applied to sEMG signals
specifically, it offers a generic solution that is computationally
efficient. Since this operates directly on the signal during pre-
processing, it can be implemented in a modular fashion on an
existing embedded system without significant modifications.

In the present study, we investigated signal de-noising and
data imputing algorithms to enhance the robustness of pattern
recognition against noise and sensor faults during continuous
sEMG classification. We evaluated classification accuracy on
three common classifiers and signal distortion with respect to
de-noising algorithms, demonstrated the feasibility of execut-
ing these algorithms in real-time and in an embedded system,
and demonstrated an increase in classifier controllability from
wavelet-based processing and data imputing. Our system was
implemented on a low power microcontroller, allowing for
further clinical translation.

II. METHODS

A. Wavelet-Based Signal De-Noising
The characteristics of sEMG signals depend many factors,

but the dominant frequency band viable for wavelet analysis
is in the 125-250 Hz range [9], with components in the
250-500 Hz range dominated by system noise [19]. For
this application, the system noise was treated as a locally-
stationary additive function based on the standard deviation

TABLE I
WAVELET SHRINKAGE RULES EVALUATED IN THIS EXPERIMENT.

Rule Formula

Hard γ̂j,i =

{
γj,i, |γj,i| > λ

0, otherwise

Soft γ̂j,i =

{
γj,i − λ, |γj,i| > λ

0, otherwise

Hyperbolic γ̂j,i =





sgn(γj,i)
√
γ2j,i − λ, |γj,i| > λ

0, otherwise
Adaptive γ̂j,i = γj,i − λ+ 2λ

1+exp(2.1γj,i/λ)

Non-Negative γ̂j,i =




γj,i − λ2

γj,i
, |γj,i| > λ

0, otherwise

γj,i := original wavelet coefficient at level j at time index i
γ̂j,i := de-noised wavelet coefficient at level j at time index i

of the first-level (250-500 Hz) wavelet detail coefficients.
Algorithms to reduce system noise from wavelet coefficients
were selected based on reviews in previous literature with an
emphasis on computational simplicity [12], [20]–[24]. Hard,
soft, semi-hyperbolic, adaptive, and non-negative shrinkage
methods were investigated in this experiment, defined in Tab.
I. The Daubechies four tap wavelet was chosen as the mother
wavelet due to its ability to effectively describe both time and
frequency signal components and its low filter order [13]. The
noise threshold parameter, λ, for each routine was calculated
using the minimax threshold defined in (1):

λ = σ̂ ·
(

0.3936 + 0.1829 · log(N)

log(2)

)
(1)

where σ̂ is the standard deviation of the system signal noise
wavelet coefficients and N is the window length in samples.
This is designed to minimize the maximum mean squared error
against an ideal procedure [25].

B. Wiener Correction Factor
The wavelet transform concentrates the signal energy into

a relatively small number of high-valued coefficients [26].
Wavelet-based de-noising then reduces the sufficiently small
coefficients (assumed to be noise) towards zero, reducing the
signal subspace (the number of non-zero coefficients used to
describe the signal). This property, combined with the fact
that the wavelet transform provides rich spectral characteristics
on both the desired signal and the noise lends the process to
Wiener filtering, expressed as γ̃j,i in:

γ̃j,i =
γj,i · γ̂2j,i

γ̂2j,i + s(γ̂1)2
, (2)

where s(·) denotes the corrected sample standard deviation.
This treats the desired signal and the noise as locally stationary
systems, which is appropriate for sufficiently small windows
on isometric contractions [27], and provides a smoother system
response than wavelet shrinkage alone. The Wiener filtering
coefficients can be calculated on a different transform level
and mother wavelet selection than the original data, Fig. 1, but
this flexibility was foregone in the implementation to minimize
processing time.
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Fig. 1. Block diagram for generic wavelet-based Wiener filtering. The
transforms for the Wiener coefficient estimation and for the signal filtering are
separate, allowing for use of different wavelet parameters in wavelet shrinkage
and Wiener filtering.

C. Wavelet-Based Artifact Reduction

Motion artifacts are characterized by strong, transient signal
interference at low frequencies [8]. A third- or fourth-order
wavelet transform should cleanly separate the artifacts into
the approximation coefficients, corresponding to the 0-62.5 Hz
and 0-31.25 Hz ranges, respectively. In this implementation,
it was assumed that any sufficiently strong signal in the
approximation coefficients of the transform was caused by a
transient artifact. Hard thresholding was applied to each signal
band (4-5) to remove the corrupted portions of the signal to
produce the cleaned approximation and detail coefficients γ̂A,i

and γ̂D,i, respectively:

θk = µi(|γdom|) + k ∗ si(γdom) (3)

γ̂A,i =




γA,i, if |γA,i| < θ1

0, otherwise
(4)

γ̂D,i =




γD,i, if |γA,i| < θ1 ∪ |γD,i| < θ0

0, otherwise
(5)

where γA,i is the i-th wavelet approximation coefficient, γD,i

is the corresponding detail coefficient at decomposition level
D, µi(·) is the mean value operator, and γdom is the wavelet
decomposition level corresponding to the dominant sEMG
signal frequency band. The effect of this proposed algorithm
is illustrated in Fig. 2.

D. Wavelet Processing Implementation

At the time of the experiment, the authors were unaware of
any microcontroller compatible implementation of the SWT
algorithm and its inverse. The appropriate routines were
written in C, leveraging the Cortex Microcontroller Software
Interface Standard for optimization of filtering operations [28].
The de-noising and artifact reduction routines were performed
immediately prior to feature extraction on each sample win-
dow. Signals were reconstructed by recursively averaging all
possible shifted, decimated inverse discrete wavelet transforms
on each wavelet level, referred to as the average basis inverse
[29].

Fig. 2. Examples of clean sEMG signal (top-left) and a superimposed motion
artifact (top-left) filtered with a conventional Butterworth filter (bottom-
left) and artifact reduction (bottom-right). The original signal is underlayed
on each window in gray. Artifact reduction decreases the effect of the
corruption (presented as MSE) much more than conventional filtering, and
signal distortion it imposes only occurs during the artifact, where the filter
distorts the entire signal.

Fig. 3. Mean processing time required for each algorithm on one channel
with 128 sample length windows. The label ’SWT Only’ only includes the
SWT and its inverse transform, ’Motion’ includes the transforms and motion
artifact reduction, and all others include the transforms, artifact reduction, and
the listed routine.

Due to the nature of the wavelet transform, the operations
work most efficiently on time windows with samples lengths
that are a power of 2. For this work, a time window of 128 ms
with 64 ms overlap was selected, which falls in the typical
windowing range for sEMG applications and still allows for
some processing time before the control algorithm begins to
feel unresponsive [1], [30]. Time performance metrics were
collected for each of the proposed de-noising algorithms on
this window length and are shown in Fig. 3. The processing
time was found to grow approximately linearly with the
number of active channels and the length of the channels.

E. Lead-Off Detection and Data Imputing Implementation

Electrode disconnect events create high impedance mis-
match between the amplifier and the leads. The analog front-
end used in this study detects these events by adding a 6 nA
DC current source to both the positive and negative leads of
each bipolar terminal and setting the input impedance for each
amplifier to 500 MΩ, illustrated in Fig. 4. During normal
operation, the current is harmlessly dissipated through both
the patient and the amplifier, but saturates the amplifier input
when either or both leads are disconnected from the patient.
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Fig. 4. Equivalent circuit for detection and simulation of lead-off events in
real-time.

Hard thresholding was applied to any signal outside the 30-
70 % maximum value range of the amplifier, corresponding to
approximately ±66 µV. Signals that are outside of this range
were replaced with 0. This was not expected to increase the
overall controllability of the system, but rather to decrease
the chance of misclassifications resulting in movement when
insufficient data is available for decoding motor intention.

F. Feature Extraction and Classification

The Time Domain feature set proposed by Hudgins et al.
contains some of the most commonly investigated features in
EMG applications due to their low computational complexity
and high descriptivenes. [31]. A relative comparison of these
and other common features suggests the use of this set
(composed of mean absolute value (MABS), zero crossings
(ZC), waveform length (WL), and signed slope change (SSC))
is adequate for MPR [32], [33].

The processing and memory requirements of many pattern
recognition systems limits the selection for real-time embed-
ded applications. Multi-Layer Perceptron (MLP), Support Vec-
tor Machine (SVM), and Linear Discriminant Analysis (LDA)
are all commonly used for EMG classification [34] and meet
the constraints for real-time implementation in an embedded
system. We implemented multi-class SVM and LDA classifiers
using a "one-vs-all" scheme. The MLP classifier used one layer
of 16 hidden neurons using the hyperbolic tangent activation
function and the softmax activation function on the output
neruons. The NetLab 3.3 Neural Network library was used
for MLP classifier training on a PC [35]. The signal detection
threshold was calculated using the average MABS feature
value across all rest signal windows in the training data. Any
signals with a MABS feature smaller than this value bypassed
the classifier and were considered a rest state.

G. Training Protocol

The training data sets for the pattern recognition algorithms
consisted of recordings of three, three second contractions
for each movement with each contraction separated by three
seconds of rest. Patients were asked to perform contractions
at 70-80 % of their maximum voluntary contraction strength.
The dynamic portions of each contraction were discarded such

that only the center 75 % of the data in each contraction was
preserved. Data for training the rest classification and floor
noise were obtained from the center 50 % of each of the
rest periods in the recordings. EMG data were separated and
concatenated into arrays corresponding to the signal in each
movement. The data arrays were then windowed, and signal
features calculated from those windows were used to construct
training, testing, and validation sets for the classifiers. Visual
cueing for contractions, signal recording, and feature extrac-
tion for classifier training were all performed using BioPatRec
running on MATLAB 2016b [36].

H. Experiment I. Offline Wavelet Parameter Selection

The sEMG recordings for evaluation and selection of ap-
propriate wavelet parameters were obtained from a publicly
accessible data set of 20 subjects performing 10 wrist, hand,
and forearm movements [36]. The signals were recorded using
four sets of untargeted bipolar electrodes sampled at 2 kHz.
Data were decimated to 1 kHz and the four movements not
used in the real-time analysis were discarded. Hand open and
close, wrist flexion and extension, and arm pronation and
supination movements were used for analysis. White Gaussian
noise with 0 dBW power was added to each movement in the
testing data and was scaled to 20 % of one standard deviation
of the signal magnitude for the respective movement. Classifier
training data was composed of a random selection 90 % of the
feature windows in each movement, and testing and validation
data was pooled together in the remaining 10 %. 10-fold data
cross-validation was used to generalize the classifier accuracy
results.

Four metrics were used to compare the performance of
each of the wavelet-based signal processing algorithms: global
accuracy, the Mean Squared Error (MSE) between the original
data and the filtered original data (MSErec), the MSE between
the filtered noisy data and the original data (MSEref), and the
MSE between the filtered noisy data and the filtered original
data (MSEnoise). To reduce the burden of subject testing to a
reasonable level, only the best performing model in this test
was considered for the remainder of the experiment.

I. Experiment II. Real-Time

Real-time EMG signals were collected from nine able-
bodies subjects fitted with four sets of Ag-AgCL bipolar
electrodes placed with approximately equal spacing around
the proximal third of each subject’s dominant forearm. EMG
signals were sampled at 2 kHz, 24-bit resolution, and 24 V/V
gain. The EMG signals were then decimated to 1 kHz and
filtered using a second order 20 Hz IIR high-pass filter and a
50 Hz IIR notch filter [37].

To evaluate the performance of the proposed wavelet pro-
cessing routine, the patients were instructed to perform two
Motion Tests, described in section II-K, one relying solely on
the 20 Hz high-pass and 50 Hz notch filters, and one with the
addition of wavelet processing operating on the fourth-level
transform. Subjects were instructed to start each contraction
with their elbow resting on the table and the forearm raised
such that no leads were touching the table. They were then
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Fig. 5. Motion artifacts were generated in real-time by having the patient
bump their wrist against the table on either side of a small obstacle during
each contraction [38].

instructed to bump their wrist against the table once on each
side of a small obstacle, pivoting on their elbow, once during
each contraction, illustrated in Fig. 5. This action was intended
to simulate the typical case for sEMG signal transients where
the user may bump the prosthetic against an object or shift the
appendage in the socket or electrode band.

To test the efficacy of the lead-off detection and handling
subsystem, two Motion Tests were performed, one with mean
data imputing enabled, and one without any extra processing.
A single-pole double-throw continuity switch was attached
to each lead pair, Fig. 4, and operated manually using a
random number generator to indicate disconnect events. The
generator indicated new events at a pseudo-random interval
with a two second mean time interval between events and
a standard deviation of one second. Disconnect events lasted
for between approximately 0.2 and 0.5 seconds, and began
occurring immediately after starting each test.

J. Experiment III. Simulated Real-Time

To formulate robust statistics on the effectiveness of the
proposed routines, an extra set of tests were performed to see
how they affected classifications for identical data sets. This
was not feasible to do on live recordings, but could be done
by feeding previously recorded EMG signals from Motion
Tests into the microcontroller and recording the resulting
classifications.

The simulated tests were performed on a data set where
EMG signals were recorded from 15 able-bodied subjects
performing 10 wrist and forearm movements via four bipo-
lar electrodes placed with roughly equal spacing across the
proximal third of the dominant forearm [36]. This data set was
recorded at 2 kHz with a second order digital high-pass filter at
20 Hz and a notch filter centered at 50 Hz, and contained EMG
data from both the pattern recognition training and the full
Motion Tests. We utilized 15 Motion Tests consisting of three
trials of three repetitions of each of the ten trained movements.
As the EMG data for the tests were recorded using different
time window parameters, only the first 128 ms in each time

Fig. 6. Examples of transient artifact wave forms that can occur. From left to
right: high-impedance, contact motion during contraction, and contact motion
during rest.

window, after decimating to 1 kHz, was extracted to form the
training and testing sets.

The EMG data used for comparing wavelet processing with
conventional filtering were modified with a set of recorded
motion artifacts [12]. The artifacts, examples of which are
shown in Fig. 6, were decimated and filtered to match the
properties of the test EMG signal. For each time window in the
Motion Test, random artifacts were added on random channels
at random offsets with magnitudes corresponding to between
1 and 10 times the standard deviation of the signal strength
of that window. Wavelet processing, when applicable, and
pattern classification were performed on the microcontroller
using a pre-trained LDA classifier by providing each time
window over a serial connection and reading the resulting
classifications. This test included wavelet-based artifact reduc-
tion using the third- and fourth-level transforms in addition to
conventional filtering.

Noise recorded from a set of disconnected leads using the
same setting as the Motion Tests was used as a data source
for simulating lead-off events. The noise was then decimated
to 1 kHz and separated into 128 ms time windows. Motion
Test data at random time indexes on random channels on all
time windows were replaced with either a random sample of
recorded noise (for conventional handling) or zeros (for mean
data imputing).

Neither artifacts nor lead-off events were simulated for the
training data, but to compensate for the non-linear effects
wavelet processing has on the data, the appropriate routine
was applied to both the training and testing data for that case,
illustrated in Fig. 7. The ground truth for the simulated tests
in both cases was determined by running the classifier against
the recorded Motion Tests without simulated LOEs or motion
artifacts and saving the positions of the correct classifications.
Any incorrect predictions made in this situation were ignored,
as the proposed algorithms were not assumed to significantly
increase the predictive power of the classifiers on clean data
sets.

K. Real-Time Performance Evaluation (Experiments II-III)

A modified version of Kuiken et al.’s Motion Test [39]
was used in each experiment to generate data for the real-
time evaluation used in this work. Patients were visually cued
to perform two trials of three random permutations of the
movement set for each test. They were asked to hold the cued
contractions at 70-80 % of maximum voluntary contraction
strength until the system made 20 correct predictions or
for up to 10 seconds. Signal recording, data visualization,
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Fig. 7. Block diagram showing the training and testing procedure used to
evaluate wavelet-based motion artifact reduction on pre-recorded Motion Tests

classifier training, and visual cueing were all controlled using
the BioPatRec software suite running on MATLAB 2016b
[36]. The mean accuracy, specificity, sensitivity, and precision
across all classes were used as performance metrics for all
tests in addition to completion time, selection time, and com-
pletion rate. Specificity, sensitivity, and precision metrics were
included to compensate for the inherent bias of global accuracy
and the disproportionately detrimental effect of false positive
classifications on the controllability of prosthetic devices [40],
[41].

Data imputing tests employed an additional metric referred
to in this work as the rejection rate, defined as the percentage
of class-wise false negative misclassifications resulting in no
movement. This was used to show the difference in unintended
movements resulting from LOEs produced by the proposed
algorithm. For instance, if an LOE occurred during a close
hand movement, the system would reject data from the affected
electrodes, reducing the chance of interpreting an unintended
open hand or wrist rotation until the electrodes regained
connectivity. Two-way ANOVA tests were used on subject-
specific means on each metric for statistical analysis.

Classifier training and artifact reduction on the training
data were performed on a PC, and all other processing steps
for the testing data, including digital filtering, wavelet-based
processing, feature extraction, and pattern classification, were
implemented on the microcontroller to allow for independent
and mobile operation in prosthetic devices. Pattern recognition
algorithms were trained using a data set recorded prior to each
set of comparative tests. Embedded processing was performed
on a Texas Instruments ARM Cortex-M4 processor; a full
description of the hardware can be found in [37].

III. RESULTS

A. Wavelet Parameter Selection

Motion artifact reduction with the LDA classifier with-
out wavelet de-noising was the only set of parameters that
indicated any statistically significant (p < .05) global

accuracy improvement over conventional filtering, Fig. 8a. It
also showed the smallest overall signal distortion, Fig. 8b.

B. Real-Time Test Results

Real-time test results for global classification accuracy
showed no significant change between conventional filtering
and wavelet-based artifact reduction, Fig. 9a Real-time data
imputing tests showed a decrease in precision (p < .01) of
12.9 pp, but showed no other significant differences between
data imputing and conventional filtering, Fig. 9b. A full
summary of the results is reported in Tab. II.

C. Simulation Test Results

Simulation test results showed a statistically significant im-
provement (p < .05) in all measured metrics except selection
time for both third- and fourth-level wavelet transforms, Fig.
10a. Both levels of the artifact reduction algorithm increased
the selection time, indicating that the system took longer
to register a movement was being attempted. The third-
level wavelet processing performed best on all other metrics
with an improvement in accuracy over conventional filtering
(p < .001) by 2.0 percentage points (pp), in sensitivity by
3.1 pp, in specificity by 1.9 pp, and in precision by 6.7 pp.
Data imputing showed an increase (p < .01) in accuracy of
4.0 pp, in specificity of 5.4 pp, and in precision of 3.5 pp, but
a reduction in sensitivity of 9.2 pp, Fig. 10b. A full summary
of the results is reported in Tab. II.

IV. DISCUSSION

Phinyomark et al.’s work on wavelet de-noising showed
significant noise reduction, but the investigation was limited to
the MABS feature, leaving its effect on other signal features
in question [13]. The only literature found investigating the
effect of de-noising on overall classifier accuracy only showed
a relatively small increase for the MLP classifier and was
implemented with more neurons than considered feasible for
real-time implementation in this experiment [12]. Wavelet-
based de-noising may have an unseen positive effect on
noise sources that more closely match real-world use, but
our experiments showed it degraded performance compared to
conventional filtering when presented with sEMG signals cor-
rupted with Gaussian noise. The processing time for wavelet-
based signal processing was found to increase roughly linearly
with the number of active channels, which potentially limits
its applicability in real-time processing on systems with a high
number of channels.

The real-time experiments showed little effect from either
artifact reduction or data imputing, however this was poten-
tially a result of the testing procedure rather than due to
the proposed algorithms. The motion artifacts corrupting the
EMG the Motion Tests were on the order of 100 ms. With a
window overlap of 64 ms, up to six windows could have been
corrupted by motion artifacts from hitting the table, plus any
that occurred during the transit of the forearm above the table.
Given that an evaluation per movement lasts up to 10 seconds
(approximately 150 time windows), the motion artifacts could
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(a) Global classification accuracy change (b) Mean squared error comparison

Fig. 8. Experiment I. Offline accuracy change and Mean Squared Error comparison of wavelet-based processing vs. conventional processing. Bars shown are
mean value with indicators at ± 1 SD. Motion artifact reduction using LDA classifier showed the only significant accuracy improvement with p < .05

(a) Artifact reduction (b) Data imputing

Fig. 9. Experiment II. Real-time accuracy, sensitivity, specificity, and precision metrics comparing the proposed routines with conventional signal processing.
Data shown are mean values ± 1 SD. The wavelet processing algorithm used a fourth-level transform, meaning motion artifacts were assumed to have their
dominant energy in the 0-31.25 Hz frequency band.

only affect a small portion of the total predictions. This
was found insufficient to cause a major difference in the
Motion Test outcomes, and hence the need of the simulated
experiments where the signals were artificially corrupted more
frequently. Similar logic applies to the small difference found
when comparing conventional filtering to mean data imputing,
as the lead-off events lasted between 0.2 and 0.5 seconds. In
daily use and out of controlled environments, the number of
episodes in which such artifacts could frustrate the user is
unknown and difficult to estimate. Factors related to prosthetic
fitting, such as hardware, activity level, and stump condition,
would influence susceptibility to artifacts and their incidence.

The simulated experiments were expected to make more
repeatable and comparable measurements than the real-time
tests. Results showed a statistically significant improvement on
all measured metrics, except selection time, for artifact reduc-

tion. Artifact reduction using a third-level wavelet transform
showed the better performance than the fourth-level transform
(p < .001), indicating frequency components in the motion
artifacts extended past the 31.25 Hz boundary addressed
by the fourth-level approximation coefficients. Clancy et al.
suggested cable motion artifacts can extend up to around 50 Hz
[42], which was corroborated by our result. Using a decreased
transform order also reduces the computational complexity
and memory requirements of the artifact reduction routine.
Results for the simulated data imputing tests were more mixed,
showing an improvement in accuracy and specificity, but with
a drastically lower completion rate. These results are offset by
the significant increase in the rejection rate, indicating that
while the system completes fewer movements, the number
of misclassifications resulting in unintended movements is
effectively reduced. It is noteworthy to emphasize that at least
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(a) Artifact reduction (b) Data imputing

Fig. 10. Experiment III. Simulated real-time accuracy, sensitivity, specificity, and precision metrics comparing the proposed routines with conventional
signal processing. Data shown are mean values ± 1 SD. Wavelet processing algorithms using both a third- and fourth-level transform were compared with
conventional filtering.

TABLE II
SUMMARY OF REAL-TIME AND SIMULATED RESULTS. VALUES ARE MEANS ± 1 SD.

Artifact Reduction Data Imputing
Conventional Third Level Fourth Level No Imputing Mean Imputing

Real-Time (n=9)
Accuracy (%) 91.7 ± 4.21 91.7 ± 5.99 87.2 ± 4.20 86.8 ± 4.88

Sensitivity (%) 79.3 ± 8.49 80.2 ± 14.3 59.5 ± 14.6 62.2 ± 13.8
Specificity (%) 94.6 ± 2.81 94.6 ± 3.99 90.9 ± 2.60 91.4 ± 3.01

Precision (%) 71.0 ± 11.4 81.6 ± 15.0 49.5 ± 9.10 36.6 ± 3.99 **
Completion Rate (%) 54.6 ± 14.0 53.7 ± 16.0 39.8 ± 9.42 38.0 ± 14.4
Selection Time (ms) 832 ± 347 898 ± 284 2000 ± 432 1750 ± 405

Completion Time (ms) 2930 ± 572 3540 ± 725 * 4210 ± 811 4170 ± 709
Rejection Rate (%) 12.7 ± 15.6 21.3 ± 19.4
Simulated (n=15)

Accuracy (%) 87.1 ± 1.18 89.1 ± 1.40 *** 88.6 ± 1.29 *** 85.1 ± 1.38 89.0 ± 0.456 ***
Sensitivity (%) 24.2 ± 2.42 27.3 ± 2.60 *** 25.7 ± 2.54 16.1 ± 2.79 6.93 ± 1.37 ***
Specificity (%) 94.1 ± 1.35 96.0 ± 1.45 *** 95.6 ± 1.34 *** 92.7 ± 1.78 98.2 ± 0.617 ***

Precision(%) 49.1 ± 4.57 55.8 ± 9.38 *** 52.1 ± 8.86 39.3 ± 5.41 42.8 ± 3.90 **
Selection Time (ms) 243 ± 198 446 ± 210 *** 368 ± 179 * 152 ± 181 1040 ± 321 ***
Rejection Rate (%) 21.6 ± 20.2 82.0 ± 6.09 ***

(*) indicates statistical significance from null hypothesis at p < .05
(**) indicates statistical significance from null hypothesis at p < .01
(***) indicates statistical significance from null hypothesis at p < .001

one channel was corrupted with a lead-off event on every time
window, so these results serve as a worst-case scenario, rather
than a typical use-case. These results suggest that mean data
imputing is an effective strategy for handling LOEs during
continuous sEMG classification.

Having effective implementations of artifact reduction and
data imputing on a mobile processing platform allows for more
rigorous investigation into their effects on prosthetic control-
lability. The Assessment for Capacity of Myoelectric Control
[43], the Activities Measure for Upper Limb Amputees [44],
and the Southampton Hand Assessment Procedure [45] all
provide advanced insight into prosthetic controllability with
respect to functional tasks in real-world environments. Until

now, these were infeasible for investigating wavelet-based
signal processing or data imputing, due to the complexity
involved with having subjects bound to a PC for processing.

V. CONCLUSION

In this work, we investigated the feasibility and effective-
ness of implementing wavelet-based signal processing and
data imputing for continuous sEMG classification on a self-
contained prosthetic system. We proposed a novel and efficient
method for EMG signal imputing and modifications to existing
wavelet de-noising and artifact reduction routines to allow for
their implementation on a wearable prosthesis. Wavelet de-
noising proved ineffective for removing wide-band, Gaussian
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noise. Real-time tests failed to show any effect using the
proposed routines, but more statistically robust simulations
showed a significant improvement in classifier usability from
both artifact reduction and mean data imputing. Having these
systems implemented for real-time classification on a self-
contained prosthesis allows for more realistic assessment,
and it porentially brings pattern recognition-based prosthetic
devices closer to clinical implementation.
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