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Abstract

We theoretically investigate graphene plasmons in the presence of alow density of adatoms on the
graphene surface. The adatoms can significantly modify the conductivity and plasmonic properties of
graphene and may produce a level splitting with the plasmon mode, resulting in two plasmon
branches. The high energy branch exhibits large losses and the low energy branch exhibits low losses.
Our model may also be considered as a simple model for molecules on graphene and we show that
graphene plasmons are sensitive to such changes in the environment. Our microscopic treatment of
plasmons and adatoms shows the sensitivity of plasmons and highlights the potential of graphene
plasmons for sensing purposes.

1. Introduction

Graphene has recently emerged as an attractive plasmonic material at terahertz and mid-infrared frequencies
[1-3]. Among the benefits of graphene as a plasmonic material are its tunable optical properties [4], low losses
[5], and large confinement of electromagnetic fields under the right conditions. Field localization by a factor of
up to 200 has been predicted [6] which facilitates strong light—matter interactions [7]. Considering that large
field localization leads to large plasmon losses, a more conservative estimate of the field localizationis 1/,
where o =~ 1/137 is the fine-structure constant [6, 8].

Recently, graphene plasmons have been studied using nanotips [9, 10], subwavelength gratings [11-13],
metal nanoantennas [14, 15] and nanoribbons [16]. Possible applications include label-free molecular sensing
[17, 18], photonic modulators [14, 19], as well as ultrafast photodetectors [20], showcasing the versatility of
graphene as a plasmonic material.

However, the quality of graphene still limits many proposed applications [21], and high quality graphene
devices are labor-intensive to fabricate. Even the cleanest graphene samples exhibit some momentum relaxation
[22], and thus a theoretical analysis of various loss mechanisms is of much interest [23—28]. The high frequency
relaxation is of fundamental importance since the plasmons of interest are in this regime. Graphene conductivity
in a relaxation time approximation [29, 30] was investigated by Rana [31] and by Jablan et al [ 5] who found
substantial plasmon losses for realistic relaxation times. This was also found in the experiments by Chen et al [9]
and by Feietal [10].

Graphene has previously been considered for sensing purposes, see for instance [32, 33], and the large
surface-to-volume ratio is one of the main advantages of graphene in this regard. Chemical sensing has been
explored in the mid-infrared part of the spectrum where plasmons have been exploited to detect changes in
refractive indices [34, 35] and vibrational states in biomolecules [ 18, 36]. These applications show much promise
for plasmonic-based sensing in the future. However, also electronic transitions in atoms and molecules can
couple to graphene plasmons but have so far not been analyzed in detail. Electronic properties of molecules and
atoms that adsorb on the graphene surface have been studied extensively using various computational methods
[37—42] and different substances have different coupling strengths and energy of the electronic levels. This
variability between substances makes it possible to consider graphene plasmonic-based sensors which have the
ability to selectively detect various compounds. We use these previous results to investigate adatom effects on the

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/aa7811
mailto:mikael.fogelstrom@chalmers.se
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa7811&domain=pdf&date_stamp=2017-07-25
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa7811&domain=pdf&date_stamp=2017-07-25
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 19 (2017) 073027 G Violaetal

)

it

Figure 1. Schematic view of the studied system. An infinite sheet of graphene is decorated by a dilute random distribution of adatoms,
coupled to graphene by tunneling. The adatoms, here represented by the red spheres, are described by three phenomenological
parameters: the energy level, €y, measured with respect to the Dirac point, an intrinsic lifetime §~!, and a matrix element f describing
the electron hopping between graphene and an individual adatom. The dielectric material on the two sides of the graphene have the
relative permittivities & and &,, respectively. The back gate V;,, makes it possible to tune the Fermi energy in the graphene. Inset: zoom
on the adatom with the hopping element represented with a red vertical bond.

plasmonic properties of graphene. Our approach is complementary to previous works on plasmonic-based
sensing in graphene as we study the plasmon response to microscopic degrees of freedom, rather than to changes
in the dielectric environment [35] or to vibrational modes [18, 36, 43].

In this article we develop and analyze a model for uncorrelated adatoms, coupled to the graphene surface by
tunneling (see figure 1). Since the adatoms are not the only imperfections in graphene we also include an
electron relaxation time which we include in a number conserving manner following the Mermin prescription
[5,29]. This relaxation time describes, phenomenologically, all sources of damping except the adatoms we are
investigating. We explore the effects of adatoms on the single-particle properties of graphene as well as on the
conductivity. We focus on the graphene surface plasmon mode and investigate its dispersion and the related
losses. We find that plasmons close to resonance with the transition from the adatom energy level to above the
Fermi energy become lossy. Furthermore, depending on the density of adatoms, their presence can split the
plasmon mode into two separate branches, one low energy branch which experiences low losses and one high
energy branch experiencing high degree of losses. We discuss how this can be used for ultra-sensitive sensing
under the right conditions.

The article is organized as follows: in section 2 we treat the graphene plasmon dispersion and the graphene
loss function. In section 3 we develop a manybody description of the system and derive an expression for the
nonlocal longitudinal conductivity o (¢, w). Finally, in section 4 we analyze the effects of the adatoms on
plasmons, in particular on the plasmon dispersion relation and damping. In appendix A we present a derivation
of two central equations in the article, equations (3) and (4). Appendix B gives details of the microscopic model
and in appendix C a simplified expression for the susceptibility tensor is derived, from which the conductivity is
obtained. Throughout the articlewe use /2 = ¢ = 1.

2. Graphene plasmons

Longitudinal plasmons confined at a conducting interface between two dielectrics with relative dielectric
constants ¢ and &, satisfy the dispersion relation [5, 6]

€ € io(q, w)

+ 0, e))
k(g w)  Ka(g, w) weg

where 51 ,(g, w) = /q* — &, w?/c* and g is the vacuum dielectric constant. Here o (g, w) is the longitudinal
nonlocal conductivity of the graphene layer. The longitudinal conductivity describes the response to a
longitudinal electric field meaning that q and E are parallel and |q| = g. In the non-retarded limit,

q > Jasw/c,equation (1) reduces to the simpler expression

(61 + Ez) n iU(q, w) _
q [o1%%

0. (2)

This is a good approximation as long as the wavelength of the mode is much smaller than the free space
wavelength, which is the regime we are investigating.

In general equation (2) is a complex equation and for any given w it can be solved by allowing complex wave
vectors, g = g, + ig,. Physically this means that the corresponding oscillation of the mode is damped. For weak
damping, we can expand equation (2) in small g, /g,, and separating the real and imaginary parts of the

2
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conductivity, o (g, w) = 01(g, w) + i02(q, w), we obtain to lowest order in g,
B 4,02(q;, w) _
wey
2 Ul(ql) W) Ul(ql) L{J)

= = b (4)
4 ai(qlaz(ql, w)) go(a + e)w/q, + q,04,02(q), w)
qa

a+ & 0, 3)

under the assumption that no losses are present in the substrate, i.e. ¢ , are real. For a more detailed derivation of
equations (3) and (4), see appendix A. Equation (3) is identical to equation (2) with the assumption of no losses,
i.e. 0(q; w) = 0. The plasmon losses are given by equation (4) and in the second equality we have used

equation (2) to express 0,(¢q, w) on the plasmon mode. Equations (3) and (4) show explicitly that in the low-loss
limit the graphene plasmon dispersion is determined by o, (g, w) while the plasmon losses are given by the ratio

. . ¢ 09,02 (1> w)
he effective veloci — v 4 2%
01(g, w) to the effective velocity 1, " + a6t o)

plasmon phase velocity w/q, and a nonlocal correction given by the g, derivative of 0, (q;, w). The smaller the
effective velocity, the higher the dissipative loss.

An alternative way to describe plasmons is to analyze the imaginary part of the current—current correlation
function evaluated in the random-phase approximation. This is the spectral function of current fluctuations and
describes wherein g — w space it is possible to deposit energy. For this reason it is sometimes called the loss
function and it is defined as [30, 44]

1 1 woi (g, w)

$i.(q w) = ——1Im = e )
Vi e(q, w) ‘ 1 4 7@

weo(er + &)

times €y(g + &). The effective velocity is given by the

eq
) co(g + e)w?
as signatures of the plasmons [30].

The plasmon dispersion, i.e., solutions to equations (3) and (4) as well as the loss function are discussed in
section 4. First, the conductivity of graphene with adatoms needs to be calculated.

with v; = . Theloss function has peaks where equation (2) is satisfied and these peaks are interpreted

3. Microscopic model for graphene conductivity

The system considered consists of a pristine infinite graphene sheet [45, 46] where momentum relaxation is
added to model losses in graphene [5, 29]. We introduce the convention that clean graphene means graphene
with the finite momentum relaxation. To the clean graphene, we add a dilute distribution of identical adatoms
that are modeled as non-magnetic Fano-Anderson localized states [30] coupled to graphene by tunneling as
sketched in figure 1. When the coverage is dilute, correlations between adatoms are unimportant, and each
adatom can be considered independently. Here, dilute means n;,, < 1, where iy, is the fraction of adatoms
per lattice site. The total system can be described by a tight binding Hamiltonian that includes the tight binding
Hamiltonian of graphene, the Hamiltonian of the adatoms, and the hopping between graphene and adatoms.
Effective hopping Hamiltonians for different adatoms on graphene are obtained in [39—42], by use of DFT
modeling of the composed system. In the following we assume a spin degenerate system, where the spin degree
of freedom is included as a spin degeneracy factor g;= 2. An individual adatom is situated on the graphene atom
at site X connected to a single graphene lattice site by a hopping parameter 7. The adatom has a single energy
level at €y, measured relative to the charge neutrality point of clean graphene, and has an intrinsic lifetime 6.
These are phenomenological parameters that are inputs of the model and in this section we explore the general
features of the model for various adatom parameters. In section 4 we obtain parameters for hydrogen from [40]
to examine a simple adatom.

The Hamiltonian of the system with a single adatom is

A=cdd+ Y tody i+ 7 d ' + he, ©6)
(©i')

where d is the annihilation operator for the electron on the adatom and 7 is the annihilation operator of
graphene electrons on site i. The sum in equation (6) is over all nearest neighbor sites of the graphene lattice and
to is the corresponding hopping parameter. The Hamiltonian is quadratic in the operators and can be
diagonalized also for the case of a dilute density of adatoms, see appendix B for details.

In the regime of dilute density of adatoms and in the Dirac approximation, the Green’s function of the
Hamiltonian is given by [47]

G(f(Pr €)= Z

R y
8o (P> ©) ( 1 Aelop)’ (7a)
—t 2

Aei? 1
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Figure 2. Left: linear energy bands of pristine graphene (solid magenta) and the momentum independent adatom energy level (dashed
magenta). Center: the real part of the Green’s function poles €3 (p) as function of momentum, inset the imaginary part. The adatoms
introduce a splitting of the positive energy graphene band. The splitting introduces a hybridization of the bare graphene and bare
adatom energy levels, resulting in the level repulsion between the states. Right: density of states for clean graphene in dashed magenta
and black solid line in the presence of the adatoms with p, = p(Ep). The peak in the density of states reflects the presence of the flat
adatom energy level. The parameters in all panels are €y = 0.8Eg, 6 = 0.001Ep and t = 0.1Ef.

R 1 px
2 (p, €) = , ¢, = arctan —=, (7b)
0, et — )‘EP _ mep(f) P py
t|? .
YR (e) = l—, €= e+ 10T, 7c
imp(€) (et — € + 1) (7e)

where [t]* = iy |7|? and 7y, is the fraction of adatoms per lattice site. The effect of the adatoms is captured by
the self-energy Zﬁnp(e). The poles of the single-particle Green’s function define the single-particle states and in
the presence of the adatoms the resulting single-particle bands are hybridized between the bare adatoms and
bare graphene single-particle energy bands AE,, where A = =+ is the graphene band index. The poles of the

retarded Green’s function and the renormalization factors are found to be

. AEy + € — i6 £ \J(AE, — € + i6)> + 4|1
6/\(P) - 2 5
E, — i
ZE@ =+ + P07 ,
2 2JOEp — €0 + i6)* + 4l

where the renormalization factors Zi(p) are the residues of the poles, i.e. Zif(p) = Res[GX(p, €)] |e£p)- The
energies € (p) are shown in the center panel of figure 2. Due to the hybridization between the graphene bands
and adatoms there is a level repulsion around €, close to which the hybridization is strong and gives rise to a
finite lifetime of the order 6! to the energy bands. Far from the level splitting, the energy states approach their
uncoupled behaviors. The right panel of figure 2 shows the total density of states of the coupled system which
exhibits a significant deviation close to the level splitting compared to the pristine graphene case. Specifically,
there is a significant increase in the density of states close to ¢, due to the coupling to the adatoms. The change of
the bands compared to pristine graphene opens up new possible electronic transitions that alter the conductive
and plasmonic properties of graphene, as discussed in the following.

The conductivity of the system can be computed using the Green’s function in equation (7a). This is
achieved by calculating the current response to an electric field E (x, t) = Eq el@Xx—w0 (tis time in this
paragraph, not to be confused with the coupling above). We restrict our analysis to the response to a longitudinal
electric field which in the temporal gauge, ¢ (x, ) = 0,isgivenby E(x, t) = —iwA (X, t). We set the electric
field, E, and the momentum, g, to be parallel to the x-axis. According to minimal substitution [30], the
perturbation given by the field E is (5ﬁx = evpA, ]; (q)el @~ where ]; (qQ) = evp Zp 17}1;, q0x 12}1, isthe
longitudinal current operator [45, 46, 48]. The diamagnetic current is zero in the Dirac approximation [48]. The
conductivity of the system can be obtained from the current—current response function (longitudinal
susceptibility) which relates the average value of the current to the vector potential to linear order
( ]; (g, w)) = x i.7. (@ w)Aq[30,49]. From this expression and the relationship between the vector potential and

the electric field, the conductivity can be seentobe o (q, w) = i Xj ;.(Q, w). The current—current response can
be expressed in terms of the Green’s function as

4
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Figure 3. The nonlocal conductivity o (g, w) asa function of frequency wwith g = |Er — €|/ v for different values of the hopping
parameter t. The plots are for a constant wave vector g = 0.2k, shown by the dashed line in the inset, where the white triangle shows
the Pauli blocked region for zero temperature. Real part of the conductivity is shown in the left panel and the imaginary part is shown
in the right panel. Note that the scale on the f axes is not linear. The deviation of the conductivity from the clean case is hardly visible
for t < kT, but for larger values of ¢ there are structures appearing that significantly modify the conductivity. The conductivity is
shown in units of oy = e?/(4/%).

iev? rdpd
} Ff (Iz’ﬂ)fTr[axG(f(p, o GE(p — @ € — w)

+ .Gy (p, )0 Gi'(p — @, € — W], (8)

ijjx(q’ LU) = gsgv

where g g, is the total spin-valley degeneracy factors, see appendix C for details. In pristine graphene,

Eﬁnp(e) = —i0%, the energy integral in equation (8) can be performed analytically to arrive at the expression
considered in [50-53]. In the temporal gauge the zero frequency component of the response is unphysical and
has to be removed to avoid having a response to a static vector potential [53]. In the following we present results
for electron doped graphene and when adatoms are present we take ¢, to be positive (with respect to the Dirac
point). However, our model can also be applied for hole doped graphene and/or negative .

Before analyzing the conductivity in the presence of the adatoms it is useful to examine the conductivity for
pristine graphene. In the pristine case there exists a Pauli blocked triangle, inside which plasmon losses vanish at
zero temperature due to the real part of the conductivity being identically zero [3, 6, 50, 51]. This triangle in
(g, w)-spaceis shown in the inset of figures 3 and 4. For non-zero temperatures or when momentum relaxation
isincluded, e.g. through a finite relaxation time, the triangle is no longer completely lossless but for moderate
temperatures and relaxation times it is still the region where plasmons with low losses are expected to exist [5]. In
this article we take the momentum relaxation time (I'"!) to be 1 ps, as reported in [54]. This relaxation time
accounts for all intrinsic relaxation channels of the graphene and we include this in a number conserving way
following the Mermin prescription [5, 29]. As already introduced, we refer to graphene with the finite relaxation
time as clean graphene to distinguish from graphene together with the adatoms (and also a relaxation time).

The calculated conductivity in the presence of adatoms is shown in figure 3 for various values of the hopping
parameter tand an impurity energy fixed at ¢, = 0.8EF, i.e., the energy level of the adatoms is close the Fermi
energy. The presence of adatoms with energies close to the Fermi energy has an effect on the conductivity for
frequencies close to the transition frequency |Er — €| between the adatom energy level and the Fermi energy. In
particular there are peaks that appear inside the originally lossless triangle, which will give rise to larger plasmons
losses, see equation (4). The imaginary part of the conductivity is also changed which will lead to changes in the
plasmon dispersion as can be seen from equation (3).

Figure 4 shows the conductivity for an increasing adatom energy level detuning from the Fermi energy and a
fixed density of adatoms. As the energy level moves further from the Fermi energy the conductivity becomes
more and more like the conductivity of clean graphene and the effect of the adatoms becomes negligible. From
this we conclude that for the adatoms to have a large effect, the energy level of the adatoms needs to be close to
the Fermi energy.

The new features that are present in the conductivity, as shown in figures 3 and 4, arise from the modification
of the graphene bands caused by the presence of adatoms which is visible in figure 2. This modification of the
conduction band around ¢, changes the possible electronic transitions and in particular the allowed intraband
transitions within the conduction band. These new transitions start playing a role around energies
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Figure 4. The effects of the detuning |[Er — | on the conductivity. The figure at the left shows 03 (q, w) versus wwhile the figure at the
right shows 0, (g, w) versus w. Different lines correspond to different values of the adatom energy level (¢p) and g = |Er — €| /v.
The corresponding cuts in the ¢ — w plane are shown in the inset, and the upward arrows indicate the point where w enters the Pauli
blocked triangle. The effect of the adatoms is reduced with increased distance between Epand €. The thin magenta lines correspond
to 01(q, w) for clean graphene. The conductivity is shown in units of oy = €2/(4%).

w ~ |Ep — €, which is where there is enough energy for electrons to transition from the modified part of the
band to unoccupied parts of the band above E. This is the frequency around which the changes in conductivity
start occurring.

4. Graphene plasmons in the presence of a dilute density of adatoms

For concreteness, in this section we set the adatom parameterstobe f = 7.5 eV, ¢y = 0.16 ¢V,and § = 107°E,
see appendix B for more details. These parameters are extracted from [40] for hydrogen adsorbed on graphene.
The individual hopping parameter, 7, is large compared to the other energies but in the dilute adatom case the
relevant parameter 2 = ;7 2 is small for the densities we consider. Hydrogen is chosen since it is a simple
atom and can serve as a typical atom adsorbed on the graphene. We emphasize that our model can be applied for
other types of atoms and even simple molecules as well.

As stated previously, the loss function exhibits peaks where the dispersion equation has solutions. Figure 5
shows the loss function for an adatom density on the graphene of 71y, = 10~ per graphene lattice site
(approximately 300 adatoms per ym?). The magenta line shown in figure 5 is the plasmon dispersion obtained
by solving equation (3) for clean graphene. The peak of the loss function and the solution to the dispersion
equation are in good agreement. The exception is close to the gray dashed line where the deviation is significant
and a level splitting occurs. The level splitting between the bare plasmon and the bare adatom is caused by the
coupling of adatoms to the graphene surface. The energy around which the level splitting occurs is represented
in the figure as the horizontal dashed gray line. This energy represents the energy needed to excite an electron
from the adatom energy to above the Fermi energy.

To examine the effect of adatoms on the plasmons in more detail, the left panel of figure 6 shows a zoom of
the loss function from figure 5 which is centered on the splitting. The red dashed line in the figure is the solution
to the dispersion equation, equation (3), for the same density of adatoms as the loss function and the solid red
line is the obtained loss, q,, from equation (4). The level splitting is accompanied by large plasmons losses and an
emergence of two separate plasmon branches. The low energy plasmon branch exhibits low losses and the high
energy branch has a large amount of accompanying loss. The larger loss in the upper branch can be understood
by considering the Fermi golden rule, a new loss channel is opened for the plasmons in this branch. The loss
channel is the excitation of a single electron around the adatom energy (of which there are many, see the DoS in
figure 2) to above the Fermi energy where there are unoccupied electron states. The plasmons in the low energy
branch do not have enough energy to lose energy through this channel. On resonance with this transition there is
avery pronounced plasmons loss which separates the plasmon branches.

The right panel of figure 6 shows the evolution of aloss function cut at q/kr = 0.013 as the density of
adatoms is varied. This particular cut is chosen to show the loss function evolution for this particular adatom
species (hydrogen) as clearly as possible. For small values of adatom density, there is only one plasmon peak
visible, but as the density increases, the splitting into two branches is visible in the two emergent peaks. The
separation between the two peaks grows as the adatom density is increased even further.
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Figure 5. The loss function S; (g, w) with a density of adatoms together with the dispersion relation for clean graphene, shown by the
magenta line. The peak of the loss functon is in good agreement with the clean dispersion except in the low energy, low g corner. The
results in this figure are calculated for Er = 0.2 eV, T=30K, adatom density 300 yum~2,and g = & = 1. The solid gray line shows
the edge of the Pauli blocked triangle and the dashed gray line shows the value of w ~ |Er — €| + /2 around which thereisalevel
splitting.
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Figure 6. Left: small ¢ — w corner zoom of figure 5 that highlights the level splitting of the plasmon mode. The red dashed line shows
the plasmon dispersion obtained by solving equation (3) and the red solid line shows the losses obtained from equation (4). The color
scale shows the value of the loss function for the same parameters as the dispersion in order to enhance the splitting effect. Right:
vertical cuts of the loss function for different adatom densities to show the evolution of the splitting. The cut is taken for g/kr = 0.013
for maximal visibility of the splitting in the different curves. The blue dotted line is a cut from the loss function in the left figure. The
other curves show how the splitting vanishes for small adatom densities and the emergence of the two branches for large densities.

To explore the adatom effect on plasmons in a large frequency range, figure 7 shows the plasmon
propagation length along the dispersion until it crosses into the single-particle continuum. The plasmon
propagation length (defined as the distance covered until the intensity of the plasmon falls by e~! [6]) in units of
the plasmon wavelength, L, /A,, can be obtained from the ratio q, /¢, in equation (4)as L, /A, = q, /(47q,).
Note that the plasmon wavelengthis A, = 27 /g;.

Both panels of figure 7 show the plasmon propagation length as a function of frequency for different adatom
densities on the graphene. The left panel is calculated for Er = 0.2 eV (kr ~ 1/(3.3 nm)) and the right panel is
calculated for Er = 0.4 eV (kr ~ 1/(1.65 nm)). The propagation lengths for clean graphene in both cases are
shown in figure 7 as the magenta lines. The reason for the different propagation lengths in the two panels is that
the relevant parameter for damping in the clean case is I' / Ep. The plasmons are significantly affected by the
presence of adatoms, in particular the damping is increased for energies above the transition frequency to excite
electrons from the adatom energy level to above the Fermi energy. In the left panel of figure 7, this energy is
roughly 0.2E, which corresponds to ¢y = 0.16 eV (hydrogen), and Er = 0.2 eV. By changing the Fermi energy,
the energy needed to make a transition to an unoccupied state changes. Therefore the energy at which the
propagation length shows a step is different in the left and right panels of figure 7. For large enough densities, this
step is where the plasmon is split into two branches.
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Figure 7. Plasmon propagation length, L, /\,, computed using equations (3) and (4), versus /i for different adatom densities. The
left panel is calculated for Er = 0.2 eV and the right panel for Er = 0.4 eV. The magenta lines represent clean graphene, green line
Mimp = 1077, orange line #1jmp = 10~,and blueline 71y, = 10~°. This corresponds to approximately 3 ym~2, 30 yum2,and

300 m~2 respectively. The sharp drop around 1.3E is due to the plasmon dispersion crossing into the particle-hole continuum
where the plasmon becomes heavily damped.

The left and right panel of figure 7 are obtained for identical parameters except for the Fermi energy. The left
panel clearly shows a larger effect for the same density of adatoms compared to the right panel. The conclusion is
that for sensing purposes the Fermi energy should be tuned close to the adatom energy level for the sensitivity to
be large.

5. Discussion

In this article we have focused on the graphene plasmon properties and how they are influenced by small
densities of adatoms on the graphene surface. The induced plasmon losses and the level splitting that we find can
be probed by for example light scattering in a grating environment [11], or on patterned graphene microribbons
[1]. For a properly dimensioned grating or microribbon array, it would be possible to perform a laser frequency
sweep and measure optical signatures of the presence of the adatoms as seen in figure 6. For the doping levels
considered in this article, the typical dimension of the grating periodicity or the microribbon arrays needed are
on the order of a few hundred nanometers. An alternative route to investigate the plasmons is by nanotip
experiments such asin [9, 10], where the number of plasmon oscillations are measured. Obtaining such data for
different frequencies could reveal the presence of small amounts of adatoms and their energy levels.

Our analysis is restricted to the presence of a single kind of adatom, i.e., all the adatoms on the surface are
characterized by the same ¢, 7, and 6. In our model, the values of ¢, 7, and the adatom density determine the
characteristic level splitting that separates the two plasmon branches, see figures 6 and 7. Also, the sensitivity of
the plasmons to the adatoms is found to be large when the adatom energy is close to the Fermi energy. Hence, by
measuring the plasmonic properties and taking advantage of the tunability of Ex offered by graphene, it is
possible to determine ¢ and thus discriminate between different adatoms. We stress that different adatoms
exhibit different values of ¢j as indicated by DFT calculations, see [37—42, 55], and that our model is general
enough to handle various adatoms and simple molecules. Our model thus enables selective sensing of various
adatoms and molecules by probing the plasmonic properties of graphene. It should be noted that the adatom
densities involved, 30-300 ;#sm~2, is enough to increase plasmon losses and create a level splitting, making
sensing of minute amounts of substances possible using graphene plasmons coupled to electron energy levels of
adatoms. This is an increase of 2—3 orders of magnitude in sensitivity compared to experimental results for
biomolecules obtained in [36], where plasmon coupling to vibrational modes of molecules was utilized for
sensing. In our model, the adatom densities needed to produce a measurable plasmon response depends on the
adatom coupling strength, 7, which is considered as an input in our model. Thus, the sensitivity of the proposed
sensing scheme is different for different adatoms. Adatoms that couple strongly to graphene will give rise to
larger plasmon response for a given density than weakly coupled adatoms.

In this article we have taken a view towards sensing of the adatoms on the graphene surface. However, the
adatoms may also be considered as imperfections on the graphene that impedes electron propagation by
allowing the electrons to tunnel onto the adatom. For the purpose of plasmonics, long propagation lengths are
often sought after and such damping is unwanted. We find that even small amounts of adatoms may have a
significant effect on the plasmon damping. This is potentially one of several mechanisms that induces the large
plasmon damping found in experiments [9, 10].
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6. Conclusions

We have investigated how graphene plasmons are affected by adatoms by comparing plasmons in realistic
quality graphene with and without adatoms. We found that adatoms with energy levels close to the Fermi energy
induces a strong level splitting between the bare plasmon mode and the adatom energy level. This level splitting
is accompanied by large plasmon losses and depending on the adatom density may separate the plasmon mode
into two separate branches, one low energy branch and one high energy branch. The low energy branch is
virtually unaffected by the presence of the adatoms, whereas the high energy branch experiences larger losses.
This is due to a new plasmon decay channel opening up, namely the excitation of an adatom electron to an
unoccupied state above the Fermi energy.

Furthermore, we studied the sensitivity of the plasmon losses to the presence of adatoms. As a typical atom,
we considered hydrogen and we found that a density of 300 adatoms per ;#m? is enough to give rise to a
significant level splitting, and already 30 adatoms per m? is enough to damp the upper branch. These effects
could be measured in various light scattering experiments using dielectric gratings as well as using nanotips,
making it possible to envision ultra-sensitive devices that measure the plasmon dispersion and losses to infer the
presence of adatoms and molecules on the graphene surface.

Our results highlight the sensitivity of graphene plasmons to microscopic degrees of freedom and the
possibility to use this effect in applications. Microscopic models for coupling various degrees of freedom to the
plasmons is a very rich field and has the potential to further increase the already large sensing potential of
graphene plasmons.
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Appendix A. Derivation of equations (3) and (4) in the main article

This appendix details the derivation of equations (3) and (4) starting from equation (2). Equation (2) defines the
plasmon dispersion relation in the non-retarded limit. In the presence oflosses, the dispersion relation is
obtained by allowing complex wave vectors, g = g, + ig,, hence equation (2) becomes

(g, + 1q,)0(q; + iq), w) _
EoWw

(61 + 52) +

0. (A1)

Under the assumption of low loss, g, /g, is small, and equation (A.1) can be expanded to first order in ¢, /g, and
gives rise to:

(a+e)+ ;(ql + iq,)
Eow

X[o1(q), w) + i02(q), w) + 19,04 (01(q), W) + i02(q;, W))] = 0. (A.2)

The real part and zeroth order in g, /g, of equation (A.2) is exactly equation (3), while the imaginary part and
first order in g, /g, of equation (A.2) gives equation (4).

Appendix B. Fano-Anderson model in graphene

This appendix gives details on the microscopic model used in the main text. In particular the full Green’s
function in equation (7a) is derived.

We first consider pristine graphene, described in [45, 46, 48], coupled to adatoms by tunneling. The adatoms
are modeled here as Fano-Anderson localized states [30] as described in the main text. To solve the system in the
case of many adatoms, the following approximations are used: (i) all the impurities are identical, i.e., all of them
are characterized by the same parameters ¢;, 6 and 7, (ii) the adatoms are uncorrelated and far apart so an
average on position can describe the system. These assumptions are also used in the T-matrix formalism for
weakly interacting electron systems in the presence of low densities of impurities [30].

In the main text the Hamiltonian of graphene and a single adatom is presented in equation (6). The
Hamiltonian for many adatoms is [45, 48]
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H= Z fodl dl + Z[)‘EPCPACP)\ + Z tlp,/\d Cp,)\ + h.c.|, (B.1)
pA

where p is the momentum, 1, , = Afe*, A = +is the graphene band index and x; is the position of the /th
impurity. Hence, for many impurities with vanishing hopping between them, the total Hamiltonian is obtained
by adding single impurity contributions which is performed by the sum on /.

We introduce the notation P = (p, A\)and Ep = AE,,. H is quadratic so it can be diagonalized by a unitary
transformation & = >, Ap ;& and c?l = 37 By ;& with A and Bmatrices such that H = 3 g d}L 4y and
{&y, d},} = ¢;,y. To find the matrices A and B one can compute commutators using the expression in
equation (B.1) obtaining

[d, A = eodi + > tiple = €0 Y Biydy + > t1p > Apdy, (B.2)
P J P ]

[cp, I:I] = Epép + Z t,i"PaAll = Ep ZApJéq + Z tlikPZ Bl’]d], (B.3)
P J 1 J

where the second equality in both equations is obtained by substituting the expressions for & and d; above. The
same commutators computed using the diagonal expression of the Hamiltonian gives

[d, H] = Z E&yByy,
[&, H] = Z EréuAp;
I
and by matching with the previous expressions we obtain equations for Ap ; and B; ;. However, these equations

still contain the operator &;. This can be removed by performing additional commutations with &, giving

(&, [di, 11 = By + > tipApy = EpByy,
P

[6)[¢p, H11 = EpApy + Y tioBiy = EpApy
1
from which

(B — co)Byy =) tipApy, (B.4)
P

(B — Ep)Apy = > t/%By). (B.5)
1

A formal solution to these equations is

Z 88, cot,PAP
pYEpetl, )] B B
By="="""—" 4+ Z 11005,
E — € P
¥ %
thl,PBlJ(SE/,EP

Apy ==L
YR B

A -
+ Z ZPJ tl:PéE/)EP’
1

where ZA/® are unknown coefficientsand §,, = 1 — §, . Now, substitute these solutions into equations (B.4)
and (B.5) we obtain

tl’ B] ]65 E
(B — e)By = Z fp Y| e+ Zibtr pO5 5 |, (B.6)
14 E] - EP
t1,prApr jOF,
(E; — Ep)Apy = Z thZ(Eilfo + Zpi, P AP 65 ¢ | (B.7)
P’ 7T — €0

To proceed further we take advantage of the assumption of identical impurities and we may thus perform the
sums on I. We assume that the positions of the impurities are independent and randomly distributed, so the
average on the impurity position is tl*Pty p = L|i‘~ |26p,pr 61,115 O

> tl*Ptl p = N |12 6p,pr = MimplE|*0p,p = 26p pr. Nimp is the number of impurities while 7y, is the number of
impurities per lattlce site. This is standard procedure in T-matrix formalism for low density impurities [30].
Applying this average to perform the sums on /in equations (B.6) and (B.7) gives

Z ”impltlzBl,]SE/,Ep

(E; — e)By; = —
P E —Ep

+ Zjlt 65,y (B.8)
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|t1>Ap 65,
(B — Ep)Apy = ———2= + Zj|t1P 65 e, (B.9)

T — €0

|t| 6}2}50

From equation (B.9) we get F; = Ep + + Z3ltP 65, , and hence the self energy for the graphene states

|t| 6E]eg

is obtained: Zlmp(E]) =

the bare adatom energy so 6 Ene = Oand Z4,drops out of the equation.

+ Z4) t| (‘5 Ep.c,- Dueto level repulsion the new eigenenergies are different from

The matrices A and B, can be found by imposing the conditions [dl, dl/T] =y = > B, ]BIT) 7 and

[éps 6;,] = Opp = > Ap, ]A;,',‘ yand [¢p, ﬁ;] =0=3}B, ,A;,’ ; For our purposes, it is not necessary to find the
values of A, B and Z. The existence of the unitary matrices A and B is enough to write down the Green’s
function. Indeed, we know that the Green’s function in the frequency domain is GR (w) = & /(w + in" — E))
since the Hamiltonian is diagonal in &', & .Hence

B ory
GR(w) =" Ap AL (Tay(t) ey (0)) =S ApyAl, , —— 2
’ ; " ; )
_ 5P,P’ _ 5p,p/
W+in —E) (i — B — Z{,E)
and from here equations (7a) follow.
Below we give further details on our model. The density of states p(¢) = f% Tr Im (G (p, €))p> Tristhe

trace on the sublattice indexes and (-),, is the momentum averaged Greens function defined as

_ 2
<G§(P: 5)>p = A, fdPGo (p,e)=1 2E2 In |:E2 (Zzz)z:l)
C c

dpdp,

e and E_is the

where 1 is the unit matrix, z = € —

lmp(6) A_.is thearea of the unit cell in the lattice, dp =
cut-off energy corresponding to the graphene bandwidth.

Even though the present model treats the electron hopping non-perturbatively, the Coulomb interaction
between the adatom and graphene charge is up to now omitted. A full treatment of this interaction is beyond the
aim of this work. Nevertheless, we consider the Coulomb interaction in the presence of charge fluctuations
induced by the tunneling. This effect introduces a further relaxation channel, i.e., a finite lifetime to both the
adatom states, 6!, and the electron states in the graphene I'; . Following a method similar to [56], we evaluate
themtobe T}, =~ 107Eg, § = 10~2Ey at T= 0. Furthermore, we include a finite relaxation time for the graphene
electrons which is caused by imperfections and phonons in the graphene lattice. From good quality graphene
this number can be inferred to be approximately 1 ps, see [54]. For realistic doping levels of graphene, this
relaxation time completely dominates I", ' which is neglected. These values are used throughout the paper and
the total relaxation time is included following the Mermin prescription [5, 29].

Appendix C. Derivation of equation (8) and simplified expression for the conductivity

In this appendix we give some details on the derivation of equation (8) and we report a simplified expression for
the one-spin, one-valley susceptibility. Before proceeding, an observation needs to be pointed out. In the context
of plasmons, it is common to describe the purely longitudinal electric field, along the x axes, with a potential

ox, t) = (bqeiq"‘*i”t q = g¥and A = 0 with Eq = iq¢, [30,49-51]. Thelinear response of the system is then
encoded in the density—density response function (polarisability y,,) that expresses the density fluctuation
induced by the potential as (p(q, w)) = x oo (D W) ¢qx. In the standard situation, the continuity equation relates
X,,, to the conductivity. However, in the presence of the adatoms, the total charge density includes both the

charge density in the graphene and on the impurity states D, (@) = p(Q) + Dy With Py, = ed'd. Also the
last term, p;,, , needs to be included to fulfill the continuity equation i9;p,, (@) = —iq - j(q) which makes this
approach more involved. Therefore, it is more convenient to evaluate the longitudinal current—current response
function, X ; (g, w),in the temporal gauge since the adatoms carry no in-plane current so it is possible to avoid
including terms related to the adatoms.
. . > AT ) .

Here we compute the average value of the longitudinal current j (q, w) = evr}_, ¥, _q0xp, Where oy is the
first Pauli matrix, in presence of the perturbation 6Hy = evpA,j, (q)e'™*“*. For E = 0 and in equilibrium, the
values of currents and density deviation are vanishing. In Keldysh formalism, the current to linear order in the
perturbation is written ]; (q, w)) = — %Tr [0.6GX (q, w)]. Asshownin [57]
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6G(q, w) = (GyobH, o Go)(q, w)

dpde - .
- f ‘2’7: Go(, €) - T8H, - Go(p — g, € — w) (C.1)

(7 = 0, in Keldysh space). Gy is the unperturbed Green’s in Keldysh space and ostands for the sum on all
internal degrees of freedom. The substitution of §G(q, w)in (] (q, w)) gives

iev? rdpde
i@ =T [T a6 e, 0GR - .- v €2
+ 0.Gy (P> €)0: G (p — q, € — )] (C.3)

which is identical to equation (8). The Keldysh component of the Green’s function at equilibrium is GX (p, ¢) =
FEGRp, €) — GMp, ) with f(e) = 1/(1 + 7)), (g (p, €)* = g;'(p, €),and (G*(q, €))* =
GR(q, €). Substituting these relations and performing the trace in equation (C.2), the integrand becomes
Tr[f (€ = w)o:Gy (P, €)ox(Gy (P — @ € = w) = Gg'(p — @, € — w))
+f(€)ox(Gy (s €) = Gi (P )Gy (p — @ € — )]
=[f(e— wg P &P —qe—w) — gl P —q e—w)

+ (O @ ) — &' g ® — & € — WIEX" (@ ), (C4)
where
AN (pcos26 — qcosb)

lp —q

is the square of the matrix element of the longitudinal current operator.
Tosimplify x; ; (q, w) one may proceed to first perform the integral on €. Note that in the clean case this

FX¥(q,p) =1+ (C.5)

integral can be performed following [30] to arrive at the corresponding expression used in [50, 51, 53]. The
present case is more involved due to the finite self-energy but the integrand in equation (C.2) has known poles.

The poles may come from the Green’s function, i.e., from gOR/ A (p, €), or from the Fermi distribution f (¢), they

are denoted 6i\t’R/ A(p)and 6, = ikgTr 2m + 1) 4+ p (m integer), respectively. The € integral on the real axes
in (C.2) can be closed in the complex plane in such a way that as few Green’s function poles as possible are
included inside the path. Splitting the integral in two parts, the path of the term proportional to f (¢ — w) (first
term in equation (C.4)) is closed in the upper half plane, to avoid the poles of g's. Vice versa the integral of the
term proportional to f (¢) in equation (C.4), is closed in the lower half plane, to avoid the poles of g4s. Of course,
all the poles of the Fermi distributions can not be avoided since they lie on both sides of the real axis. The energy
integration therefore has two contributions x ii. (q,w) = ijx (q, w) + X]ijx (q, w) with

o2

2
X @w =2 ZVF [ aplf it - )2 — 9gl (i@ — @) + w p)

AN,
+ F (SR N Zi g (€52 ®) — w, p — DIEYY (g, ), (C.6)

X (@ w)=ksTevi D > fdp[g(ﬁ(fznﬂ + W, P&y — &) (€anst, P — Q)
AN n=1

—g® = g1 P — DgH(E-20-1 — w, P — QIFN"(q, P)- (C.7)

Here x* and " are given by the poles of the Green’s function and Fermi function respectively. We underline
that to separate y i, (q, w) in these two terms, the only assumption is that the self-energy is a smooth function of
€. Hence, it can be extended to include also other contributions to the electronic self-energy such as the phonon
and electron—electron interaction. We underline that the susceptibility contributions in equations (C.6) and
(C.7) are for one valley and one spin and thus needs to be multiplied by g g, as is done in the main text, to obtain
the total result for graphene.

The momentum integrals in XE.)]. and XJT]' are performed numerically using standard integration routines.

It turns out that | XJT is less than 1% of | XE)]' | for the parameter range of interest. In particular, for w < ¢,

Je |
T | < 1073y . |and is therefore omitted in the analysis in the main text.
X X 4
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