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Abstract In this paper we discuss how configurational
forces can be computed in an efficient and robust manner
when a constitutive continuum model of gradient-enhanced
viscoplasticity is adopted, whereby a suitably tailored mixed
variational formulation in terms of displacements and micro-
stresses is used. It is demonstrated that such a formulation
produces sufficient regularity to overcome numerical diffi-
culties that are notorious for a local constitutive model. In
particular, no nodal smoothing of the internal variable fields
is required. Moreover, the pathological mesh sensitivity that
has been reported in the literature for a standard local model
is no longer present. Numerical results in terms of config-
urational forces are shown for (1) a smooth interface and
(2) a discrete edge crack. The corresponding configurational
forces are computed for different values of the intrinsic length
parameter. It is concluded that the convergence of the com-
puted configurational forces with mesh refinement depends
strongly on this parameter value. Moreover, the convergence
behavior for the limit situation of rate-independent plasticity
is unaffected by the relaxation time parameter.

Keywords Configurational forces · Gradient plasticity ·
Mixed formulation

1 Introduction

Strain gradient effects in metals become particularly impor-
tant in situations when the deformation localizes within a
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narrow band, whose width is small as compared to a repre-
sentative, problem-specific, length (e.g. the size of the plastic
zone ahead of a crack-tip). That such localization zones can
occur has been shown clearly in experiments, see e.g. the
torsion tests on thin copper wires in Fleck et al. [1], and
the indentation tests on single- and poly-crystal copper in
Nix and Gao [2]. Although gradient effects are related to
characteristics of the crystal lattice (microscopic scale), see
Ashby [3], attempts in the literature during the last three
decades focus a great deal on the derivation of constitutive
theories that can be fully defined by macroscopic measures
(such as the gradient of the plastic strain weighted by a mate-
rial length, i.e. ls[εp ⊗ ∇]). Important contributions towards
such phenomenological theories are found inAifantis [4] and
Zbib and Aifantis [5].

However, capturing the “right” physics related to size
effects is not the sole reason for employing the gradient
theory. In fact, regularization of otherwise non-smooth gra-
dient fields in order to provide robust numerical solutions is
another motivation behind the use of non-local theories in
general, see Bažant and Jirásek [6], and more specifically
gradient theories, see Svedberg and Runesson [7] and Liebe
and Steinmann [8]. The phenomenological strain gradient
theory introduced by Fleck and Hutchinson [9] is used in
Xia and Hutchinson [10] in order to derive closed-form solu-
tions for the near-tip fields, whereby it is required that the
near-tip fields obtained for strain gradient plasticity should
tend to the HRR fields from local theory (see Hutchinson
[11]) at a distance from the crack-tip that is larger than the
chosen internal length. In addition, Chen et al. [12], adopting
the gradient-enhanced theory in Fleck and Hutchinson [13],
compared the validity of the asymptotic near-tip fields with
full-field numerical solutions.

Configurational (or material) forces are the energetic driv-
ing forces (sensitivities) pertinent to evolving configurations
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in mechanics. Examples are the thermodynamic force on
a material inhomogeneity, cf. Eshelby [14], or the energy
release rate in fracturemechanics, cf. Griffith [15]. Computa-
tion of such forces for inelastic materials most often involves
the evaluation of spatial gradients of internal variables1. In
turn, the way this evaluation takes place is determined by
the “structure” of the variational problem at hand. Namely,
in conventional displacement-based formulations, values of
the internal variables are obtained from the solution of the
time-discrete evolution equations at the integration points,
i.e. only discrete values are available. In order to compute
the spatial gradient in such a case, it is natural to utilize some
sort of smoothing strategy. Such a strategy introduces further
discretization errors, especially in crack problems involving
steepgradients, seeTillberg et al. [16] andÖzenç et al. [17]. In
Özenç et al. [17] and Näser et al. [18], it is shown that path-
independence of the J -integral for inelasticity is achieved
only by including the material dissipation inside the contour.

In Menzel et al. [19], it is shown that shifting from a
conventional displacement-based variational formulation to
a mixed displacement–internal variable formulation adds
nothing to the accuracy of the measured configurational
forces-related quantities, while the conventional formulation
results in computationally more efficient schemes. Another
type of mixed formulations is studied in Liebe et al. [20],
where the displacements are coupled to an isotropic contin-
uum damage variable.

In the present contribution, configurational forces are
computed based on a gradient-enhanced constitutive the-
ory via a mixed-dual variational formulation. A previously
derived thermodynamically consistent definition of configu-
rational forces, developed by Tillberg et al. [16] is thereby
used. The coupled primary fields are the displacements along
with a so-called micro-stress2 field, the latter being the stress
measurewhich is energy-conjugated to the spatial gradient of
the internal variables. In this way, two interrelated goals are
accomplished. Namely, smooth gradient fields are obtained,
which together with the nodal values of the gradient field3,
obtained from the solution of the primary problem at hand,
provide a rational basis towards computation of configura-

1 The evaluation of spatial gradients of internal variables is performed
in order to compute the so-called material dissipation part of the total
configurational force, see e.g. Tillberg et al. [16].
2 The respective field, which is properly introduced in Sect. 2, is known
as “micro-stress” in the context of crystal plasticity, seeGurtin [21]. The
relation between the micro-stress and a Peach–Koehler type of force
(see Maugin [22]) is also shown in Gurtin [21]. The Peach–Koehler
force may be viewed as the configurational force acting on an elastic
dislocation.
3 The fact that nodal values of the gradient field are known already
from the solution of the primary problem essentially means that no
nodal smoothing of internal variables from computed values at the inte-
gration points is needed at the post-processing for the computation of
configurational forces.

tional forces that is more insensitive to the mesh resolution.
The gradient effects in the developed model are scaled by an
intrinsic length, which effectively acts as an internal regular-
ization parameter.

Earlier work on configurational forces in the context of
gradient-enhancedmodeling (damage) concern general com-
putational aspects, Frankenreiter et al. [23], as well as the
particular issue of mesh-adaptive procedures, Welschinger
andMiehe [24]. Theoretical aspects of configurational forces
for non-local elasto-plasticity are also discussed in Stumpf et
al. [25], with application to the evolution of fracture process
regions.

The paper is organized as follows: in Sect. 2, the gradient-
enhanced mixed-dual variational formulation is presented.
A brief outline of the configurational motion problem in
the local and the gradient-enhanced constitutive settings is
given in Sect. 3. Two numerical examples are investigated in
Sects. 4 and 5, whereby the solution of the primary problem
is validated, and the characteristics of configurational forces
are examined. Further reflections on results from the pri-
mary problem and the configurational motion problem are
discussed in Sect. 6. Finally, conclusions are presented in
Sect. 7.

2 A gradient-enhanced prototype model of perfect
viscoplasticity

2.1 Primal constitutive setting

As a prototype model, we consider perfect viscoplasticity
of the Bingham type which is enhanced by an appropriately
formulated gradient term. Assuming that the gradient effect
is energetically decoupled from the local effect, we propose
the free energy density

ψ(ε, εp, g) = ψ loc(ε, εp) + ψgra(g), (1)

where ε[u] = [u ⊗ ∇]sym is the strain4, εp is the plastic
strain (the single internal variable) and g[εp] = εp ⊗ ∇ is
the gradient variable. Henceforth, we denote εp as “internal
variable”, although it is a field variable in the non-local set-
ting. Square brackets [�] denote operational dependence of
the argument. Furthermore, we consider linear elasticity and
linear gradient hardening

ψ loc(ε, εp) = 1

2
[ε − εp] : Ee : [ε − εp],

ψgra(g) = 1

2
Hgl

2
s |g|2, (2)

4 The gradient operator ∇ always acts from the right, in order to keep
a consistent dyadic structure.
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where the modulus tensor Ee = 2G Isymdev + K I ⊗ I rep-
resents isotropic elasticity, whereas Hgl2s may be viewed as
a gradient hardening modulus. In this paper, Hg is taken as
constant, while the internal length ls may be viewed as a reg-
ularization parameter, i.e. ls = 0 corresponds to the classical
local model.

The “energetic” stresses that are conjugated to ε, εp and
g are given as

σ (ε, εp) = ∂ψ loc(ε, εp)

∂ε
= −∂ψ loc(ε, εp)

∂εp
= Ee : [ε − εp],

(3)

ξ(g) = ∂ψgra(g)

∂ g
= Hgl

2
s g. (4)

To complete the model, we introduce the (dual) dissipation
potential φ∗ in terms of the “dissipative” stress κdi represent-
ing Bingham viscoplasticity, as follows:

φ∗(κdi) = 1

t∗
η(F(κdi)), η(F) = 1

2

〈F〉2
σc

,

F(κdi) =
√
3

2
|κdi

dev| − σy, (5)

where η(F) is the overstress function and F is the (quasi-
static) yield function. (�)dev denotes the deviatoric part,
whereas 〈�〉 = 1

2 (� + |�|) defines the Macaulay bracket.
The material parameters are t∗ (relaxation time), σy (yield
stress) and σc (characteristic stress). The flow rule, i.e. the
evolution equation for εp, is thus given as

ε̇p = ∂φ∗(κdi)

∂κdi = 〈F(κdi)〉
t∗σc

√
3

2

κdi
dev

|κdi
dev|

. (6)

2.2 Balance equations in primal form

The strong format of the physical problem under quasi-static
conditions and in the absence of body forces reads: find the
fields u(x, t), εp(x, t) and κdi(x, t) that satisfy

−σ (ε[u], εp) · ∇ = 0 in � × R
+, (7)

−σ (ε[u], εp) + κdi − ξ(g[εp]) · ∇ = 0 in � × R
+, (8)

ε̇p − ∂φ∗

∂κdi (κ
di) = 0 in � × R

+, (9)

u = up on ∂�u, (10)

t = tp on ∂�t, (11)

p = pp on ∂�p, (12)

εp = ε
p
p on ∂�k. (13)

Equation (7) is the standard equilibrium under quasi-static
conditions, while Eq. (8) pertains to the “micro-force” bal-
ance equation, see e.g. Gurtin [21].

∂Ωk tp

∂Ωp

∂Ωt

∂Ωu

n
pp

Ω

Fig. 1 Body occupying the domain �, surface tractions tp, micro-
tractions pp and normal n. Dual partitioning of the boundary is
introduced as ∂� = ∂�u ∪ ∂�t = ∂�p ∪ ∂�k

Remark 1 Wemay reformulate Eq. (8) as κdi = σ + ξ ·∇ =
“σ red”, whereby it appears that−ξ ·∇ plays the role of back-
stress in kinematic hardening for purely local theory. �	

All the possible boundary conditions on the surface ∂�,
where ∂� = ∂�u ∪ ∂�t and ∂� = ∂�p ∪ ∂�k, are intro-
duced in Eqs. (10)–(13), see also Fig. 1. Equations (10) and
(11) correspond to the “standard” Dirichlet and Neumann
boundary conditions on the displacements u and the trac-

tions t[σ ] def= σ ·n, respectively. Here, subscript “p” denotes a
prescribed quantity. Furthermore, Eq. (12) represents “free”

boundary conditions on the micro-traction p[ξ ] def= ξ · n,
while Eq. (13) denotes “hard” boundary conditions on the
(internal) variable εp.
Special case Assuming that no gradient effects are present,
i.e. ψgra(g) = 0, and consequently, ξ = 0 from Eq. (4), we
obtain κdi = σ from Eq. (8), and the “conventional” primary
problem is at hand,

−σ (ε[u], εp) · ∇ = 0 in � × R
+, (14)

ε̇p − ∂φ∗

∂κdi (σ (ε[u], εp)) = 0 in � × R
+. (15)

�	
2.3 Balance equations in mixed-dual form

Employing a Legendre transformation, we may replace g by
ξ as an independent variable in the expression of the free
energy. The pertinent transformation reads

ψ∗,gra(ξ) = sup
ĝ

[ξ ... ĝ − ψgra( ĝ)], (16)

where “
...” denotes the scalar product between third order ten-

sors.
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A semi-dual free energy denoted ϕ(ε, εp, ξ), can now be
defined as

ϕ(ε, εp, ξ) = inf
ĝ

[ψ(ε, εp, ĝ) − ξ
... ĝ]

= ψ loc(ε, εp) − sup
ĝ

[ξ ... ĝ − ψgra( ĝ)]

= ψ loc(ε, εp) − ψ∗,gra(ξ). (17)

For the specific gradient-enhanced viscoplastic material
model of Bingham type introduced in Eqs. (1) and (2), the
semi-dual free energy ϕ(ε, εp, ξ) in Eq. (17) becomes

ϕ(ε, εp, ξ) = 1

2

[
ε − εp

] : Ee : [ε − εp
]

︸ ︷︷ ︸
ψ loc(ε,εp)

− 1

2Hgl2s
|ξ |2

︸ ︷︷ ︸
ψ∗,gra(ξ)

.

(18)

Moreover, the constitutive equation for g(ξ) is obtained from
Eqs. (16) and (18) as

g(ξ) = ∂ψ∗,gra

∂ξ
= −∂ϕ

∂ξ
= 1

Hgl2s
ξ . (19)

As a result of this change of variables, we replace the set
of Eqs. (7)–(9) by the following mixed-dual format: Find the
fields u(x, t), ξ(x, t), εp(x, t), κdi(x, t) that satisfy

−σ (ε[u], εp) · ∇ = 0 in � × R
+, (20)

−σ (ε[u], εp) + κdi − ξ · ∇ = 0 in � × R
+, (21)

g[εp] − g(ξ) = 0 in � × R
+, (22)

ε̇p − ∂φ∗

∂κdi (κ
di) = 0 in � × R

+. (23)

The time-discrete version of Eqs. (20)–(23) is obtained using
the Backward-Euler time integration rule in the time interval
(tn, tn+1 = tn + 	t]. Thereby, all the field variables are
considered known at time tn , while their values at time tn+1

are sought.

2.4 Mixed-dual weak form

The time-discrete variational form of Eqs. (20)–(23) is given
next. Firstly, the appropriate trial and test spaces are intro-
duced,

U
def= {

u : u ∈ H
1(�), u = up on ∂�u

}
, (24)

X
def= {

ξ : ξ ∈ H
1
div(�), p[ξ ] = ξ · n = pp on ∂�p

}
, (25)

U
0def= {

u : u ∈ H
1(�), u = 0 on ∂�u

}
, (26)

X
0def= {

ξ : ξ ∈ H
1
div(�), p[ξ ] = ξ · n = 0 on ∂�p

}
, (27)

K
def= {

εp : εp ∈ L2(�)
}
, (28)

where L2(�) is the Hilbert space of square integrable func-
tions, H1(�) and H

1
div(�) are vector spaces with gradients

anddivergence, respectively, inL2(�). Themixed-dual weak
form of the time-discrete problem can now be stated as fol-
lows: Find u ∈ U, εp ∈ K, ξ ∈ X, and κdi ∈ K that solve

∫
�

σ (ε[u], εp) : ε[δu] d� = l(u)(δu) ∀δu ∈ U
o,

(29)∫
�

[−σ (ε[u], εp) + κdi − χ[ξ ]] : δεp d� = 0 ∀δεp ∈ K,

(30)∫
�

[−εp : χ [δξ ] − g(ξ)
... δξ ] d� = l(ξ)(δξ) ∀δξ ∈ X

o,

(31)∫
�

[
εp − 	t

∂φ∗

∂κdi (κ
di)

]
: δκdi d�

=
∫

�

n
εp : δκdi d� ∀δκdi ∈ K,

(32)

where χ [ξ ] def= ξ · ∇. Here, the upper left index n indicates a
quantity at t = tn , whereas the lack of temporal index refers
to the sought value at t = tn+1. The boundary terms on the
RHS of Eqs. (29) and (31) read

l(u)(δu) =
∫

∂�t

tp · δu d�, (33)

l(ξ)(δξ) = −
∫

∂�k

ε
p
p : p[δξ ] d�. (34)

The appropriate boundary conditions, as introduced already
in Eqs. (10)–(13), become apparent from the structure of the
linear forms Eqs. (33) and (34).

Alternatively, the resulting weak form Eqs. (29)–(32) may
also be derived as the stationarity conditions of the incremen-
tal pseudo-potential,

∗(u, ξ , εp, κdi) =
∫

�

[ [
ϕ(ε[u], εp, ξ) − nϕ

]

+ κdi : [εp − n
εp

] − εp : χ [ξ ]
]
d�

− l(u)(u) − l(ξ)(ξ). (35)

2.5 Global–local structure

Since there are no derivatives on the test functions, we are
able to satisfy Eqs. (30) and (32) in the strong sense, i.e.
in each spatial point x ∈ �. This leads to the “local” sub-
system
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− σ (ε[u], εp) + κdi − χ [ξ ] = 0, (36)

εp − 	t
∂φ∗

∂κdi (κ
di) = n

εp, (37)

which can be further simplified by elimination of κdi from
Eq. (37). Thus, we obtain the “local” residual

RL(u, ξ , εp)
def= εp−	t

∂φ∗

∂κdi (σ (ε[u], εp)+χ [ξ ])−n
εp = 0,

(38)

and it is possible to solve for εp fromEq. (38) for given “data”
in terms of values of χ [ξ ] and ε[u], i.e. εp = εp{ε[u],χ [ξ ]}.
It is noted that curly brackets {�} are used to denote implicit
dependence of the argument.

The corresponding global residual equations in Eqs. (29)
and (31) then become: Find u, ξ ∈ U × X that solve

Ru(u, ξ ; δu)
def=

∫
�

σ (ε[u], εp{ε[u],χ [ξ ]}) : ε[δu] d�
− l(u)(δu) = 0 ∀δu ∈ U

0, (39)

Rξ (u, ξ ; δξ)
def=

∫
�

[−εp{ε[u],χ [ξ ]} : χ[δξ ]

− g(ξ)
... δξ ] d� − l(ξ)(δξ) = 0 ∀δξ ∈ X

0,

(40)

where l(u)(δu) and l(ξ)(δξ) are defined in Eqs. (33) and (34).
In order to solve the system of Eqs. (39), (40) and (38),

the nested iterations strategy illustrated in Boxes 1 and 2 is
proposed.

Box 1 Outer loop of the nested iterations strategy for the solution of
the global residual equations

1. Assume known values of (u(k), ξ (k)) and stored (converged) val-
ues of nεp at the integration points.

2. Solve Eqs. (39), (40) for u(k+1), ξ (k+1) via Newton–Raphson
iterations:

(a) Inner loop: Solve the local constitutive problem Eq. (38)
for εp in each integration point, see the “inner loop” in
Box 2.

(b) Compute Ru(u(k), ξ (k); δu) and Rξ (u(k), ξ (k); δξ).

(c) If convergence, (u(k), ξ (k)) is the solution. Else, goto step
2d.

(d) Compute the update (u(k+1), ξ (k+1)):

u(k+1) = u(k) + 	u(k), (41)

ξ (k+1) = ξ (k) + 	ξ (k) , (42)

where 	u(k) and 	ξ (k) are computed from the lineariza-
tion of the continuous system defined by Eqs. (59)–(62)
in Appendix A.

Box 2 Inner loop of the nested iterations strategy for the solution of
the local residual equation

1. Assume given values of u, ξ and εp( j), with εp(0) = nεp.

2. Solve Eq. (38) for εp( j+1) via Newton–Raphson iterations:

(a) Compute R( j)
L = R( j)

L (u, ξ , εp( j)).

(b) If convergence, εp( j) is the solution. Else, goto step 2c.

(c) Compute the update εp( j+1):

εp( j+1) = εp( j) + 	εp( j), (43)

	εp( j) = − J( j)−1
R( j)
L (in principle), (44)

where J( j) def= dRL
dεp

∣∣∣
εp( j)

reads

J( j) = I + 	t ∂2φ∗
∂κdi⊗∂κdi (σ + χ) : Ee. (45)

3 Configurational forces

3.1 Configurational motion

The continuummechanics setting applied in the presentwork
follows Runesson et al. [26]. The standard quasi-static equi-
librium problem can be stated as that of analyzing the motion
of a body initially occupying the (material/Lagrangian)
domain �. In response to the acting physical forces, the
body will deform into the spatial (Eulerian) domain ω(t),
which is time-dependent in general. The mapping between
Lagrangian and Eulerian domains is y = ϕ(x, t), while the

pertinent deformation gradient is defined as F
def= ϕ ⊗ ∇.

The small strain setting used in Sect. 2 can be identified upon
defining u = y − x, whereby ε = [F − I]sym.

Configurationalmotion can nowbe introduced as a change
in the material domain with time, i.e. � = �(t). To this end,
a reference absolute/fixed configuration �ξ , parametrized
in ξ5, is introduced, from which it is possible to describe
changes in the initial domain � (e.g. a crack advance), see
Fig. 2. Finally, a compositemappingmay be defined between
the fixed and Eulerian configurations, y = x + u = ϕ̂(ξ , t).

We are now in the position to describe the configurational
motion as	t x, often denoted configurational velocity, where
	t� = ∂

∂t

(�|ξ
)
is the time derivative6 for fixed coordinates

ξ ∈ �ξ . Finally, in order to define discrete forces in sub-
sequent sections, we may parametrize the configurational
velocity in terms of a discrete velocity Dt a and a scalar field
W (x) as 	t x = W (x)Dt a. Here, we evaluate W (x) = 1 at
the crack-tip, defining the crack propagation. The invariance
to how W is chosen inside � will be discussed in Sect. 3.2.

5 The symbol for the absolute/fixed configuration “ξ” should not be
confused with the respective symbol “ξ” used throughout this study to
denote the micro-stress.
6 The material time derivative is denoted Dt� = ∂

∂t (�|x).
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ξ

x

y

Φ̌(ξ, t)

ˆ(ξ, t)

(x, t) F (x, t)

Ωξ fixed

Ω(t)

ω(t)

Fig. 2 Mappings between the absolute/fixed, �ξ , the material, �(t)
and the spatial, ω(t), configurations

3.2 Rate of mechanical dissipation and configurational
forces

For the isothermal case, the total mechanical dissipation for
a given finite body that is subjected to loading such that it
deforms and, at the same time, undergoes configurational
changes may be expressed as

D =
∫

∂�(t)
t · Dt y d� − d

dt

(∫
�(t)

ψ d�

)
. (46)

We shall henceforth assume that the configurational velocity
is non-zero only on the part of ∂� where the tractions van-
ish. Now, adopting the free energy of a gradient-enhanced
dissipative material in the small strain setting according
to Eq. (1), thereby introducing the functional dependence
ψ = ψ(ε, εp, g), we may split the total mechanical dissi-
pation in Eq. (46) in two parts, i.e. D(	t x,	tε

p,	t g) =
DCONF(	t x) + DMAT(	tε

p,	t g), where the respective
parts read

DCONF(	t x) =
∫

�

[−� : [	t x ⊗ ∇]] d�, (47)

DMAT(	tε
p,	t g) =

∫
�

[σ : 	tε − 	tψ] d�

=
∫

�

[
− ∂ψ

∂εp
: 	tε

p − ∂ψ

∂ g

... 	t g
]
d�.

(48)

In Eq. (47), the Eshelby energy momentum tensor is identi-

fied as �
def= ψ I − [u ⊗ ∇]T · σ .

Following the commonly adoptedmodel that internal vari-
ables are “frozen” in the material domain, i.e. εp(x, t) and
g(x, t) are unaffected by the configurational velocity 	t x,
cf. Runesson et al. [26], we obtain the sensitivities

δ	tε
p = [εp ⊗ ∇] · δ	t x, δ	t g = [g ⊗ ∇] · δ	t x,

(49)

for a change in the configurational velocity δ	t x. The direc-
tional derivative of D with respect to an arbitrary change
δ	t x, followed by the parametrization δ	t x = W (x)δDt a,
result in the generalized configurational force

G def= −∂D
∂ ȧ

=
∫

�

−(∇W ) · � d�
︸ ︷︷ ︸

GCONF

+
∫

�

bmatW d�
︸ ︷︷ ︸

GMAT

, (50)

where

bmat = − ∂ψ

∂εp
: [εp ⊗ ∇] − ∂ψ

∂ g

...
[
g ⊗ ∇]

= σ : g − ξ
...
[
g ⊗ ∇]

. (51)

The last equality in Eq. (51) follows from the constitutive
relations in Eqs. (3) and (4) and the definition of g[εp] in
Sect. 2.1.

In fracture mechanics, the crack driving force acting on a
crack-tip can be obtained by projecting G onto the tangential
direction of the undeformed crack. The pertinent projection
is commonly known as energy release rate (see Griffith [15]),
and is equivalent to the J-integral introduced byRice [27] (for
linear elasticity). In contrast to the latter scalar-valued quan-
tities, the benefits of formulating the configurational motion
problem in terms of a vectorial quantity (such as the config-
urational forces) are summarized in Steinmann [28].

Remark 2 (Invariance of W ) Any configurational motion
that only lives in the interior of the domain (i.e. vanishes
on ∂�) will not affect the dissipation. This can also be iden-
tified by the balance of material/configurational forces, since

−� · ∇ = bmat. (52)

As a result, the choice of W (x) in the interior of � will
affect only the numerical approximation of G, and not its
continuous counterpart. We note that the decomposed con-
tributions GCONF and GMAT may still vary with respect to
the choice of W (x) in the interior of �, however, their sum
is path-independent. �	

3.3 Computation of configurational forces

Consider a body with an embedded discontinuity (e.g. a
crack) occupying the domain �, as shown in Fig. 3. We
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Fig. 3 Recovery of nodal value
of the plastic strain, εpa , from
values of εp at the integration
points, over a patch of finite
elements
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discretization &
FE-solution
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of plastic strain

int. point
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will examine the computation of the material dissipation
part of the configurational force, GMAT, for local theory and
a displacement-based variational formulation, as compared
to the gradient-enhanced mixed-dual formulation proposed
here. The computation of the configurational part, GCONF,
from Eq. (50) is performed in the same way for the consid-
ered variational formulations.

Assuming local theory and a displacement-based varia-
tional formulation, and employing the definition of configu-
rational forces in Eq. (50), we conclude that bmat takes the
form

bmat = σ (ε, εp) : [εp ⊗ ∇]︸ ︷︷ ︸
g[εp]

, (53)

where the fields σ and εp are computed at the integration
points. Thereby, in order to compute g[εp] at the integration
points, a scheme of the form

εp ≈
m∑

a=1

Naε
p
a, (54)

g[εp] ≈
m∑

a=1

ε
p
a ⊗ (∇Na), (55)

is necessary, see Fig. 3. In Eqs. (54) and (55), Na are nodal
shape functions and m is the total number of nodes in a
finite element discretization. For the general inelastic case,
the equations for the variation of εp in the near-tip region are
not known. Conventionally, it is assumed that it suffices to
obtain the nodal values ε

p
a via an L2-projection of the known

values of εp at the integration points onto the space of first or
higher order polynomials. In the case of inelastic response,
nodal smoothing techniques such as the aforementioned L2-
projection may turn out insufficient for capturing the steep
gradients occurring in the near-tip region, contributing to the
“pathological” FE-mesh sensitivity reported in e.g. Tillberg
et al. [16].

In the context of the gradient-enhanced mixed-dual varia-
tional formulation described in Sect. 2, the vectorial quantity
bmat in Eq. (51) takes the form

bmat = σ (ε, εp) : g(ξ) − ξ
...
[
g(ξ) ⊗ ∇]

= [ε − εp] : Ee : 1

Hgl2s
ξ − ξ

...
1

Hgl2s
[ξ ⊗ ∇], (56)

where the last equality follows from the constitutive relations
inEqs. (3) and (19) and the assumption that thematerial prop-
erties are uniform within the body. In contrast to Eq. (53),
a pronounced advantage of the mixed-dual formulation pro-
posed here is that all quantities required for the computation
of Eq. (56) are known already from the solution of the pri-
mary problem for (u, ξ ). Namely, ε[u], ξ and ξ ⊗ ∇ are
known explicitly from the FE-approximation, whereas εp is
evaluated at the Gauss-points.

In the following sections, the computation of config-
urational forces for the gradient-enhanced formulation is
evaluated in two problems: (a) virtual expansion of a smooth
interface, see Sect. 4, and (b) virtual extension of a dis-
crete crack, see Sect. 5. The main goal of these investiga-
tions is to examine whether the proposed gradient-enhanced
mixed-dual formulation provides sufficient regularity for
the computation of configurational forces. In addition, we
seek to identify conditions that allow for the configurational
forces obtained from the proposedmixed-dual formulation to
approach those obtained by a “conventional” displacement-
based variational formulation based on local theory.

4 Numerical example: smooth interface

4.1 Problem description

The problem of a square plate with a centric hole is exam-
ined, see Fig. 4a. The plate is subjected to prescribed vertical
displacement of the upper edge u2 = 0.1mm, while the
displacement is fully restrained at the bottom edge, i.e.
u1 = u2 = 0.0mm. The prescribed displacement varies
linearly in time from 0mm to its peak value from t = 0 s
to t = 0.05 s, which is the final time of the simulation.
Plane strain conditions are assumed. The continuous domain
is discretized in triangular elements with piecewise linear
approximations of displacements u and micro-stresses ξ , see
Appendix C. The FE-mesh is structured, graded towards the
hole, as shown in Fig. 4b, so that the steep gradients closest to
the hole region are adequately resolved. The material param-
eters that enter the gradient-enhanced perfect viscoplasticity
model of the Bingham type in both examples outlined in
Sects. 4 and 5 are given in Table 1.

In accordance with the discussion on boundary conditions
occurring from Eq. (8) in Sect. 2.2, two possible choices are
examined. Namely, either “hard” boundary conditions are
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Fig. 4 Description of the
example of the plate with centric
hole. (a) Geometry and
Dirichlet boundary conditions
on the displacements. (b)
Structured, coarse FE-mesh,
graded towards the centric hole
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Table 1 Material parameters that enter the gradient-enhanced vis-
coplastic constitutive model

Material parameter

Young’s modulus, E (GPa) 200

Poisson’s ratio, ν 0.3

Yield stress, σy (MPa) 200

Characteristic stress, σc (MPa) 200

Gradient hardening modulus, Hg (GPa) 20

Relaxation time, t∗ (s) 0.01

imposed on the plastic strain, εp = 0, or, “free” boundary
conditions are prescribed on the micro-traction, p = ξ · n =
0, along the entire boundary. In the first case, the pertinent
external source term in Eq. (34) vanishes. In the second case,
only the components of ξ parallel to the outward pointing
unit normal n on the boundary vanish, for the boundaries
that are parallel to one of the axes of the coordinate sys-
tem introduced in Fig. 4a. As for the ξ -degrees-of-freedom
that “live” at the hole boundary, imposing “free” boundary
conditions necessitates the appropriate transformation of the
micro-stress tensor ξ from the global coordinate system of
Fig. 4a to a local system at each point on the hole boundary,
with the “x-axis” being the outward pointing unit normal n
in the specific point.

4.2 Model validation and influence of boundary
conditions

In Fig. 5, the distribution of the independent7 plastic strain
components over the entire domain is illustrated for a suf-
ficiently fine mesh, at the last incremental loading step (i.e.
for u2 = 0.1mm, see Fig. 4a), for the “hard” boundary con-

7 The number of independent, non-zero components in the plastic
strain tensor (and other tensors) in each spatial point may, in gen-
eral, vary depending on the application. A rather generic computational
framework on how to work irrespective of the number of independent
components that need to be considered in each tensor, is outlined in
Appendix C.

ditions, εp = 0 and for finite value of the internal length,
ls = 0.02m. From the pertinent images, it is evident that
the plastic strain components tend to vanish along the entire
boundary of the domain, as it is expected from the specific
choice ofweakly prescribed boundary conditions on the plas-
tic strain.

A mesh convergence study of the plastic strain compo-
nents ε

p
11, ε

p
22 along the line A–A′ (see Fig. 4a) is shown in

Fig. 6 for ls = 0.002m. Results for four meshes of increas-
ing resolution, labeled as Mesh 1–4, are shown here. The
meshes feature a characteristic8 element length of 0.53, 0.36,
0.19, and 0.13mm, respectively. The respective curves for
Mesh 3 and 4 are in close agreement. In particular, the pre-
scribed “hard” boundary conditions, εp = 0, are being better
captured as the mesh resolution becomes finer. It should be
noted that since the plastic strain field is known only at the
integration points, the curves shown in the latter figure corre-
spond to smoothed nodal values obtained via L2-projections
of the known values of the plastic strain at the integration
points. Details on the computation of the L2-projections can
be found in e.g. Hinton and Campbell [29]. The mesh con-
vergence of the plastic strain field along the same line for a
model based on local (visco)plasticity theory is also included
for comparison, see Fig. 7. It is verified that, unlike the case
of the gradient-enhanced model under “hard” boundary con-
ditions, the plastic strain field converges to a finite non-zero
value in the case of local (visco)plasticity theory. This is
also known from theory, since the hole boundary comprises
a smooth interface, thus no singularity effects are present.
Such singularity effects occur in cases where sharp cracks
are embedded in an elastic (see Irwin [30]) or elastoplastic
(see Rice and Rosengren [31]) continuum.

At this point, it should be noted that the curves labeled
as “local” throughout this study have been obtained via a
local viscoplastic material model (i.e. the free energy of the
model is ψ = ψ loc(ε, εp), where ψ loc(ε, εp) is defined

8 The characteristic element length throughout the whole study was
chosen as the average over all finite elements of the maximum distance
from the centroid of each element to any of the three element nodes.
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Fig. 5 Distribution of plastic
strain components for
ls = 0.02m and “hard”
boundary conditions, εp = 0,
for a sufficiently fine mesh, at
the last incremental loading
step. (a) ε

p
11. (b) ε

p
22. c ε

p
12

Fig. 6 Variation of plastic
strain components along the line
A–A′ (see Fig. 4a) for
ls = 0.002m and “hard”
boundary conditions, εp = 0, at
the last incremental loading
step. (a) ε

p
11. (b) ε

p
22
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Fig. 7 Variation of plastic
strain components along the line
A–A′ (see Fig. 4a) for local
theory, at the last incremental
loading step. (a) ε

p
11. (b) ε

p
22
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by Eq. (2)a), based on a “conventional” displacement-
based variational formulation. The respective local model
is equivalent to the gradient-enhanced model introduced in
Sect. 2 for vanishing gradient effects (i.e. for ψgra(g) →
0 in Eq. (1)). The use of a local viscoplastic model
imposes certain characteristics and limitations, which are
discussed further in Sect. 6. The most prominent is that

for such a formulation, no boundary condition on the plas-
tic strain or the micro-traction can be, nor need to be,
imposed.

The influence of the boundary conditions, pertinent to
micro-force balance equation (8), is examined next. The
resulting plastic strain fields for the specific “hard” and “free”
boundary conditions employed in this example are depicted
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Fig. 8 Variation of plastic
strain components (normalized
by the respective average plastic
strain ε̄

p
11 or ε̄

p
22) along the line

A–A′ (see Fig. 4a) for “hard”
boundary conditions, εp = 0, at
the last incremental loading step.
(a) Normalized component εp11.
(b) Normalized component εp22
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Fig. 9 Variation of plastic
strain components (normalized
by the respective average plastic
strain ε̄

p
11 or ε̄

p
22) along the line

A–A′ (see Fig. 4a) for “free”
boundary conditions, p = 0, at
the last incremental loading step.
(a) Normalized component εp11.
(b) Normalized component εp22
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in Figs. 8 and 9, respectively, for different values of the inter-
nal length ls.

More specifically, from the normalized plastic strain fields
in Fig. 8, it becomes evident that, due to the “hard” boundary
conditions, εp = 0, the respective curves for the gradient-
enhanced models are “weakly” forced to vanish close to the
hole boundary. However, for the model that follows the local
theory, the pertinent curve converges to a finite non-zero
value, as shown in Figs. 7 and 8. In sharp contrast, the curve
for the lowest value of the length ls = 0.0002m in Fig. 9,
which corresponds to “free” boundary conditions, p = 0,
approaches to a large extent the behavior of the “local” curve.
Thus, it may be argued that “free” boundary conditions on
the micro-traction p is a more appropriate choice, if the goal
is to approximate the response of the local theory.

4.3 Configurational forces

4.3.1 Analysis of convergence with respect to the FE-mesh
size

In this section, we investigate the mesh sensitivity of the
configurational forces. The configurational forces are com-
puted according to Sect. 3, based on the “equilibrium fields”
defined by the solution of the primary problem described
in Sect. 4.1. The material model defined in Sect. 2 and the

respective material parameters outlined in Table 1 are also
adopted for these numerical investigations.

The particular configurational motion considered here is
uniform expansion of the hole, as shown in Fig. 10. The posi-
tion vectors that describe the relevant motion are depicted in
Fig. 10a, and the length of those vectors is illustrated via iso-
lines in Fig. 10b. In turn, the isolines correspond to values of
the scaling functionW in Eq. (50) at the nodes that define the
isolines. The total energy release rate for a (virtual) increase
of the hole radius can thus be obtained from a radial pro-
jection of Eq. (50) integrated along the circumference. More
specifically,

G =
∫

�

[−(∇W ) · � + bmatW
] · er d�, (57)

where er is a unit vector defining the radial direction from the
center of the hole. In Figs. 11 and 12, the energy release rates
are depicted for “hard” boundary conditions, εp = 0, and
“free” boundary conditions, p = 0, respectively. We note
that G is the total energy release rate (as defined in Eq. (57)),
which is comprised of the configurational part, GCONF, and
the material dissipation part, GMAT.

The mesh sensitivity of the global response in terms of
the total vertical reaction force at the upper edge due to the
prescribed displacement of that edge, see Fig. 4a, for different
values of the internal length, is depicted in Fig. 11f for “hard”
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Fig. 10 Configurational motion
(expansion) of the hole. (a)
Expansion of the domain
varying linearly from 1 at the
hole boundary, to 0 at the
exterior. (b) Isolines denoting
nodes that exhibit the same
amount of configurational
motion
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boundary conditions, εp = 0. It is evident that the response
of the gradient-enhanced model approaches that of the local
theory, as the internal length tends to zero. Higher values of
the pertinent force for increasing internal length highlight the
significantly hardened global response due to the additional
gradient hardening contribution, see Eqs. (1) and (2).

As regards energy release rates, the gradient-enhanced
model proposed here results in computable quantities for
both the total rate, G, as well as the configurational and the
material dissipation parts, GCONF, and GMAT, see Fig. 11a–
c, respectively. Moreover, we introduce the decomposition
GMAT = GMAT,term1 + GMAT,term2, where the two terms
stem from the two terms of bmat in Eq. (56). The mesh sen-
sitivity of these terms can be viewed in Fig. 11d, e. That
the magnitude of these terms is almost identical is notewor-
thy.

In addition, the curves shown in Fig. 11a–e do not appear
to be ordered with respect to the value of the internal length,
neither for the total, nor for the configurational and the mate-
rial dissipation parts. The interpretation of this state of affairs
is addressed later in this section. The sensitivity of the total
vertical reaction force, due to prescribed displacement of
the upper edge, is studied in Fig. 12f, for “free” boundary
conditions, p = 0. As was also observed in Fig. 11f, the
global response of the gradient-enhanced model converges
to the one from local theory as the internal length ls decreases
towards zero.

Focusingon themesh sensitivity of the energy release rates
for “free” boundary conditions, p = 0, we note that conver-
gence is obtained for all the considered quantities, namely
G, GCONF, and GMAT, see Fig. 12a–e. As is also the case for
“hard” boundary conditions, εp = 0, convergence appears
to be “slower” for smaller values of the internal length. This
behavior is expected, since the models with lower values of
the internal length result in less regularized (smooth) gradient
fields, εp and g, which, in turn, requires finermesh resolution
for resolving these gradients.

Concerning the response for “free” boundary conditions,
p = 0, it is clear from Fig. 12b, c that the depicted curves are
ordered with respect to values of the internal length. This is
in accordance with the discussion on the choice of boundary
conditions for the gradient problem in Sect. 4.2. Namely, in
Fig. 8 it was shown that prescribing “hard” boundary condi-
tions, εp = 0, results in the solution of a different primary
problem in terms of e.g. the plastic strain field, as compared
to the one for local theory. In contrast, prescribing “free”
boundary conditions, p = 0, results in plastic strain fields
that are able to capture the response from local theory for
decreasing ls, see Fig. 9. Moreover, according to the theory
and as verified by the local model employed in this study,
the plastic strain at the hole boundary converges to a finite
non-zero value, see Fig. 7. The facts that (a) only by pre-
scribing “free” boundary conditions, it is possible to capture
the plastic strain distribution from the local theory near the
hole boundary, and (b) the maximum value of the configura-
tional motion takes place at the hole boundary (see Fig. 10),
provide sufficient explanation as to the particular ordering of
the curves in Fig. 12b, c.

4.3.2 Analysis of convergence with respect to the internal
length

In Sect. 4.3.1, the mesh sensitivity of the energy release
rates was examined, where it was shown that the proposed
gradient-enhanced mixed-dual variational formulation leads
to computable rates. It was also shown that finer mesh res-
olution is required for the models with lower values of the
internal length to converge. The convergence error of GMAT

with respect to the ratio of the internal length to the charac-
teristic element length, ls/h, is depicted in logarithmic scale
for both axes, in Fig. 13a, b for “hard” boundary conditions,
εp = 0, and “free” boundary conditions, p = 0, respectively.
In the latter figures, the relative error in GMAT is computed
according to the expression
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Fig. 11 Energy release rates at
the last incremental loading
step, obtained via local and
gradient-enhanced constitutive
theories. Case of “hard”
boundary conditions, εp = 0.
(a) G. (b) GCONF. (c) GMAT. (d)
GMAT,term1. (e) GMAT,term2. (f)
V TOTAL
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e =
∣∣∣∣∣
GMAT − GMAT

h

GMAT
h

∣∣∣∣∣ , (58)

where the “exact” solution, denoted here as GMAT
h , is taken

as the value of GMAT for the finest mesh, see Figs. 11c and
12c. The observed rates are approximately quartic for “hard”
boundary conditions, εp = 0, and quadratic for “free” bound-
ary conditions, p = 0.

The variation of G, as the internal length ls tends to zero, is
illustrated in Fig. 14a, b for “hard” boundary conditions, εp =

0, and “free” boundary conditions, p = 0, respectively. The
depicted curves correspond to values ofG for the finest mesh,
see Figs. 11a and 12a for ls = 0.0002m, 0.002m, 0.02m.
The value of G from local theory is also marked with dashed
line. It is observed that, for “free” boundary conditions, the
behavior of the local theory is approached by the gradient-
enhanced model, as ls tends to zero. In the case of “hard”
boundary conditions, the limit value of G from the gradient-
enhanced model converges to a finite value, which is much
larger than the value of G from local theory.
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Fig. 12 Energy release rates at
the last incremental loading
step, obtained via local and
gradient-enhanced constitutive
theories. Case of “free”
boundary conditions, p = 0. (a)
G. (b) GCONF. (c) GMAT. (d)
GMAT,term1. (e) GMAT,term2.
(f) V TOTAL
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5 Numerical example: discrete crack

5.1 Problem description

The problem of a single edge-cracked specimen under plane
strain loading is examined next. The specimen is subjected
to a prescribed displacement u2 = 2.4mm of the upper
edge, while both degrees-of-freedom (dof) at the bottom
boundary are fixed, i.e. u1 = u2 = 0.0mm, see Fig. 15a.
The simplest FE-approximation for both fields (u, ξ ) is
employed here, i.e. triangular elements with piecewise lin-

ear approximations of displacements u and micro-stresses
ξ , see Appendix C, Fig. 22. Five unstructured FE-meshes
are used in this investigation, graded towards the crack-
tip (see Fig. 15b), featuring a characteristic element length
of 34.0mm, 19.0mm, 10.5mm, 6.3mm, 4.7mm. Regard-
ing boundary conditions pertinent to micro-force balance
equation (8), the same alternatives are examined here, as for
the problem with the smooth interface outlined in Sect. 4.
Namely, either “hard” or “free” boundary conditions are
imposed along the whole boundary.
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Fig. 13 Convergence error of
GMAT with ls/h, for different
values of ls. (a) “Hard”
boundary conditions, εp = 0.
(b) “Free” boundary conditions,
p = 0

ls = 0.0002 m ls = 0.002 m ls = 0.02 m
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Fig. 14 Variation of G with
respect to the internal length ls.
(a) “Hard” boundary conditions,
εp = 0. (b) “Free” boundary
conditions, p = 0

(a)

10−7 10−6 10−5 10−4 10−3 10−2 10−1
0

1

2

3

×105

Internal length [m]

G
J/

m
2

gradient
local

(b)

10−7 10−6 10−5 10−4 10−3 10−2 10−1
0

1

2

3
×104

Internal length [m]
G

J /
m

2

gradient
local

Fig. 15 Description of the
example of the single
edge-cracked specimen. (a)
Geometry and Dirichlet
boundary conditions on the
displacements. (b) Example of a
“coarse”, unstructured FE-mesh,
graded towards the crack-tip

(a) u2(t)

x1

x2

0.5 m

1.0 m

2.
0

m

(b)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

5.2 Configurational forces

5.2.1 Analysis of convergence with respect to the FE-mesh
size

Based on the “equilibrium fields” obtained by the primary
problem described in Sect. 5.1, in principle, the same quan-

tities are measured here as for the smooth interface problem
in Sect. 4.3. In this case, the energy release rates correspond
to projections of the previously defined configurational force
Eq. (50), onto the tangent to the undeformed9 crack-tip direc-

9 The undeformed crack-tip direction pertains to the direction of the
crack-tip defined by the intersection of the crack faces in Lagrangian
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Fig. 16 Definitions related to the configurational motion problem. (a)
Isolines denoting nodes that exhibit the same amount of configurational
motion over the integration domain of the configurational forces. (b)
Definition of tangential and perpendicular components of the configu-
rational force

tion, as depicted in Fig. 16b. These projections correspond to
the J-integral for elasticity, see also Sect. 3.2. Stated in terms
of configurational motion, unit crack advance that is tan-
gential to the crack-tip direction is examined. The pertinent
configurational motion is scaled here, linearly, according to
Fig. 16a. The values depicted in the figure denote the values
of the scalar-valued function W in Eq. (50). For the straight
edge-crack studied here, the projection of the configurational
force in the direction tangential to the undeformed crack-tip
corresponds to the tangential component of this force, as
measured in the coordinate system introduced in Fig. 15a.
The perpendicular component of the configurational force
is not examined here, as it is shown in the literature to be
path-dependent, even under elastic material response, see
e.g. Brouzoulis and Ekh [32]. The mesh sensitivity of the
energy release rate G‖ and its constituents, GCONF‖ and GMAT‖ ,
is examined in Figs. 17 and 18 for “hard” and “free” boundary
conditions, respectively.

The global response of the gradient-enhanced model for
different values of the internal length is compared with the
response obtained from local constitutive theory in Fig. 17f,
for “hard” boundary conditions, εp = 0, and Fig. 18f, for
“free” boundary conditions, p = 0. In both cases, the global

Footnote 9 continued
coordinates. In turn, in the present context, the material domain may
vary if crack propagation is applicable. In such a case, the unde-
formed crack-tip direction would be continuously updated along with
the Lagrangian domain.

response of the gradient-enhanced model approaches that of
local theory as the internal length is reduced.

It can be argued from Figs. 17a and 18a, that the pro-
posed gradient-enhancedmixed-dual variational formulation
results in a computable quantity G‖. Convergence for finite
values of the length ls is obtained for a relatively coarse
FE-discretization, while smaller values require a finer mesh
resolution. This behavior is similar to the mesh sensitivity
of the energy release rates for the smooth interface problem
outlined in Sect. 4.3.

Examining the constituents of G‖, namely GCONF‖ and

GMAT‖ , we observe that the pertinent curves are ordered with
respect to the values of the internal length, see Figs. 17b,
c and 18b, c for “hard” boundary conditions, εp = 0, and
“free” boundary conditions, p = 0, respectively. For the
depicted values of ls, the behavior of the gradient-enhanced
model approaches that of local theory for decreasing values
of the internal length, irrespective of the choice of “hard” or
“free” boundary conditions. However, the employed mesh
resolutions do not allow for drawing a definite conclu-
sion regarding the value of G‖ for infinitesimal ls , see
Sect. 5.2.2.

Unlike the example of the smooth interface (cf. Fig. 11d,
e), the constituents of GMAT‖ , i.e. GMAT,term1

‖ and GMAT,term2
‖ ,

are not of the same order of magnitude, see Figs. 17d, e and
18d, e.

5.2.2 Analysis of convergence with respect to the internal
length

How the relative error of GMAT‖ reduces with the ratio of the
internal length to the characteristic element length, ls/h, is
studied in Fig. 19a, b, for “hard” boundary conditions, εp =
0, and for “free” boundary conditions, p = 0, respectively.
The relative error is computed according to Eq. (58). The
value ofGMAT‖ for the finestmesh is taken as the “exact” value

GMAT‖,h in this analysis, see Figs. 17c and 18c. It is observed
that the error reduces with quadratic or higher rate with ls/h,
irrespective of the choice of boundary conditions. This is
similar to the rate of convergence of GMAT for the smooth
interface problem for “free” boundary conditions, p = 0, cf.
Fig. 13b.

The variation of G‖, as ls tends to zero, is illustrated in
Fig. 20a, b, for “hard” boundary conditions, εp = 0, and for
“free” boundary conditions, p = 0, respectively. The value
of G‖ from local theory is also marked with dashed line. The
depicted curves pertain to values of G‖ for the finest mesh,
see also Figs. 17a and 18a for ls = 0.02m, 0.2m, 1.0m. It is
therefore emphasized that, for infinitesimal ls and especially
for the local theory, the depicted values of G‖ in Fig. 20
have not fully converged for the considered FE-mesh sizes
in Figs. 17a (and 18a). From Fig. 20a, b, it is observed that
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Fig. 17 Energy release rates at
the last incremental loading
step, obtained via local and
gradient-enhanced constitutive
theories. Case of “hard”
boundary conditions, εp = 0.
(a) G‖. (b) GCONF‖ . (c) GMAT‖ . (d)

GMAT,term1
‖ . (e) GMAT,term2

‖ . (f)
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the choice of “hard” or “free” boundary conditions has little
influence on the limit value of G‖ obtained from the gradient-
enhanced model.

5.2.3 Rate-independent plasticity as a limit case of
viscoplasticity

In this section, the convergence properties of the config-
urational forces, as computed by the proposed gradient-
enhanced mixed-dual formulation, are investigated for dec-
reasing values of the relaxation time, t∗ = 0.1 s, 0.056s,
0.01 s, 0.001s. The pertinent decrease corresponds to a tran-
sition of the gradient-enhanced prototype model of perfect

viscoplasticity defined in Sect. 2.1, from a viscous to a
rate-independent (t∗ → 0) material response. All the other
material parameters given in Table 1 are kept constant for
this numerical investigation.

In Fig. 21a, b, GCONF‖ and GMAT‖ are depicted for fixed
value of the internal length, ls = 0.02m, and for “hard”
boundary conditions, εp = 0. Similar convergence behavior
is observed, irrespective of the choice of the relaxation time.
In addition, the behavior of the gradient-enhanced model
approaches that of rate-independent plastic response, as the
relaxation time diminishes. As expected, lower values of t∗
lead to higher amount of material dissipation, represented by
GMAT‖ , due to a more pronounced inelastic response.
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Fig. 18 Energy release rates at
the last incremental loading
step, obtained via local and
gradient-enhanced constitutive
theories. Case of “free”
boundary conditions, p = 0. (a)
G‖. (b) GCONF‖ . (c) GMAT‖ . (d)

GMAT,term1
‖ . (e) GMAT,term2

‖ . (f)
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Fig. 19 Convergence error of
GMAT‖ with ls/h, for different
values of ls. (a) “Hard”
boundary conditions, εp = 0.
(b) “Free” boundary conditions,
p = 0
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Fig. 20 Variation of G‖ with
the internal length ls. (a) “Hard”
boundary conditions, εp = 0.
(b) “Free” boundary conditions,
p = 0
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Fig. 21 Energy release rates at
the last incremental loading step,
obtained via gradient-enhanced
constitutive theory, for different
values of the relaxation time, t∗,
and fixed internal length,
ls = 0.02m. Case of “hard”
boundary conditions, εp = 0.
(a) GCONF‖ . (b) GMAT‖
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6 Discussion

In the present contribution, it has been shown that it is possi-
ble to obtain gradient fields with sufficient regularity for the
computation of configurational forces, see e.g. Figs. 11, 12,
17 and 18. As expected, this comes at the “cost” of requiring
a fine mesh resolution for small value of the internal length.
It was shown in Sect. 5.2.3 that the proposed formulation
results in similar convergence behavior for fixed values of
the internal length ls irrespective of the value of the relax-
ation time t∗.

Next, the possible choices regarding the value of the inter-
nal length are reviewed. In particular, if the internal length
is viewed as a model parameter that needs to be calibrated,
its value is determined by the characteristic dimension of an
underlying substructure (such as the size of the grains in the
near-tip region). If, on the other hand, the internal length is
viewed as a regularization parameter, the limit case ls → 0
is of interest. In such a case, an optimal value of the internal
length is chosen, which comprises a compromize between (a)
the proximity to the gradient fields obtained from the pure

local constitutive theory and (b) the regularity of the gradient
fields at hand.

The behavior of G as ls tends to zero for the problem of the
smooth interface is depicted in Figs. 14a and 14b, for “hard”
boundary conditions, εp = 0, and “free” boundary condi-
tions, p = 0, respectively. The limit value of G is different,
depending on the choice of boundary conditions related to
micro-force balance equation (8), while considering that no
such choice can be made for the “standard” displacement-
based formulation. More specifically, the limit value of G
from the gradient-enhanced model converges to the value
obtained from local theory, only for “free” boundary con-
ditions. For “hard” boundary conditions, G converges to a
finite value which is much larger than the value from local
theory. The highlighted difference in the limit value of G for
the two choices of boundary conditions is linked to the effect
this choice has on the resulting plastic strain fields already at
the primary problem, cf. Figs. 8 and 9 for “hard” and “free”
boundary conditions, respectively. In addition, the choice of
“hard” boundary conditions seems as the least physically
sound (for both the considered problems), since under that
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choice, the hole (or the crack-tip) is forced to remain elastic,
when it is known that it is there where most of the stress
concentration takes place.

The behavior of G‖ as ls tends to zero for the single
edge-cracked specimen is depicted in Fig. 20a, b, for “hard”
boundary conditions, εp = 0, and “free” boundary condi-
tions, p = 0, respectively. Unlike the problem of the smooth
interface, the choice of “hard” or “free” boundary conditions
appears to have little influence on the limit value of G‖. The
fact that the choice of boundary conditions does not affect
the limit value of G‖ is attributed to the extent of the plastic
zone size in the specific problem, which corresponds to an
infinitesimal region closest to the crack-tip. The correspond-
ing region in the problem of the smooth interface spans a
much larger portion of the domain, near the hole bound-
ary.

Aspects of computational efficiency are discussed next.
Specifically, choosing a sufficiently large value for the inter-
nal length ensures convergence even for coarse FE-meshes,
see e.g. Fig. 18a. The latter choice of length implies that
gradient effects are influencing a much larger portion of
the domain. This results in numerical models which are
computationally more “expensive” as compared to formu-
lations with less pronounced gradient effects for the same
FE-discretization. Therefore, the gains originating from the
coarser FE-meshes required for finite internal lengths to be
resolved, should be weighted by the loss stemming from the
“heavier” primary problems at hand for finite values of the
internal length.

For the proposed mixed formulation, additional dof per
node for the gradient field are introduced in addition to the
displacement dof. Hence, to reduce the computational cost,
more flexible schemes may be constructed. For example, as
regards single edge-cracked specimen, it may be sufficient to
introduce the proposed gradient-enhanced formulation only
within a region closest to the crack-tip, where the gradients
are “steeper”. In the remaining part of the domain, “conven-
tional” displacement-based variational formulation and local
constitutive theory may be used. Regarding the boundary
conditions on the interface between the gradient-enhanced
and local formulations, the different extremes “free” or
“hard” could be considered. The specific boundary condi-
tions may serve as an indication of the distance from the
crack-tip that the gradient-enhanced formulation needs to be
considered. Beyond that distance, the influence of the bound-
ary conditions should clearly vanish.

Furthermore, the proposed mixed-dual formulation is
comprised of displacements and micro-stresses, which may
have different orders of magnitude. This implies that the
global tangent stiffness matrix may become ill-conditioned.
Proper scaling of the stiffness matrix should be a good rem-
edy, however, further detailing is outside the scope of this
paper.

7 Conclusions

Configurational forces have been computed via a gradient-
enhanced mixed-dual variational formulation. An internal
length was used as a regularization parameter. A significant
advantage is that no nodal smoothing of internal variables
is required at the postprocessing. Investigation of the mesh
sensitivity related to the computed configurational forces has
highlighted that the pertinent formulation results in com-
putable quantities for both types of problems examined in the
paper: a smooth interface and an edge crack. The discretiza-
tion error was found to decrease with quadratic or higher rate
with respect to the ratio of the internal length to the charac-
teristic element length ls/h.

The configurational forces computed by the proposed
gradient-enhanced formulation were also compared to con-
figurational forces obtained from a “conventional”
displacement-based variational formulation for local consti-
tutive theory. It was found that, (a) for the smooth interface,
the proposed gradient-enhanced model resembles the behav-
ior of the local theory as the internal length tends to zero,
only when homogeneous boundary conditions are imposed
on the micro-traction, and (b) for the edge crack, the choice
of homogeneous boundary conditions on the plastic strain or
the micro-traction has little influence on the response of the
gradient-enhanced model at the limit of vanishing internal
length.

In conclusion, adopting the gradient-enhanced model
allows for numerically well-behaved evaluation of the con-
figurational force, at the cost of solving a more “expensive”
problem than that for classical local theory. Depending on
boundary conditions, the converged result may (or may not)
be strongly affected by the introduced material length scale.
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AAppendix: Linearization of the continuous system

The linearization of the continuous system defined by the
residual Eqs. (39) and (40) is performed in this section. The
directional derivatives of the aforementioned residual equa-
tionswith respect to arbitrary changes in their arguments read
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R′
u,u(�; δu, δv) =

∫
�

ε[δu] : L(uu)
at : ε[δv] d�, (59)

R′
u,ξ (�; δu, δξ) =

∫
�

ε[δu] : L(uξ)
at : χ[δξ ] d�, (60)

R′
ξ,u(�; δξ , δu) =

∫
�

χ[δξ ] :
[
− ∂εp

∂ε

]
: ε[δu] d�, (61)

R′
ξ,ξ (�; δξ , δξ̃) =

∫
�

[
χ[δξ ] :

[
− ∂εp

∂χ

]
: χ[δξ̃ ] + δξ

.

.

. L(ξξ)
at

.

.

. δξ̃

]
d�,

(62)

where the terms ∂εp/∂ε and ∂εp/∂χ are determined from
the linearization of the local residual, see Eqs. (71) and (72).
The algorithmic tangent stiffnesses L(uu)

at
10, L(uξ)

at and L(ξξ)
at

in Eqs. (59)–(62) are explicitly determined by differentiat-
ing the expression for the semi-dual free energy Eq. (18), as
follows:

L(uu)
at = ∂2ϕ

∂ε ⊗ ∂ε
+ ∂2ϕ

∂ε ⊗ ∂εp
: ∂εp

∂ε
, (63)

L(uξ)
at = ∂2ϕ

∂ε ⊗ ∂εp
: ∂εp

∂χ
, (64)

L(ξξ)
at = ∂2ϕ

∂ξ ⊗ ∂ξ
. (65)

As is evident from Eq. (38), the plastic strain εp is implicit
function of ε and χ . Therefore, the linearization of the local
residual RL with respect to perturbations dε, dχ and dεp

provides explicit expressions for ∂εp/∂ε and ∂εp/∂χ which
enter the expressions for the linearized residuals Eqs. (59)–
(62). The pertinent linearization takes the form

RL(ε + dε,χ + dχ , εp + dεp) = 0 ⇒
R′
L,ε(�; dε) + R′

L,χ (�; dχ) + R′
L,εp(�; dεp) = 0. (66)

Performing the differentiations described in Eq. (66) gives

C: dεp = A: dε + B: dχ , (67)

where C, A and B are determined by

C = I + 	t
∂2φ∗

∂κdi ⊗ ∂κdi
: ∂κdi

∂σ
: ∂2ϕ

∂εp ⊗ ∂εp
, (68)

A = −	t
∂2φ∗

∂κdi ⊗ ∂κdi
: ∂κdi

∂σ
: ∂2ϕ

∂εp ⊗ ∂ε
, (69)

B = 	t
∂2φ∗

∂κdi ⊗ ∂κdi
: ∂κdi

∂χ
. (70)

Considering Eq. (67), we are now able to state explicitly the
expressions that determine ∂εp/∂ε and ∂εp/∂χ , provided
that εp is symmetric and the “operator”11 C is invertible.

10 Clearly, Eq. (63) is exactly the algorithmic tangent stiffness in case
of local plasticity theory, defined by ξ = 0.
11 The term “operator” is used here to highlight the fact that the fourth
order tensor C can be viewed as an operator that transforms dεp into
the equivalent expression on the RHS of Eq. (67).

Consequently, the resulting partial derivatives can be written
as

∂εp

∂ε
= C−1 : A , (71)

∂εp

∂χ
= C−1 : B . (72)

Remark 3 (Symmetry of the global tangent stiffness matrix)
Symmetry of the global tangent stiffnessmatrixmay be high-
lighted in twoways. First, it can be shown that the variational
formulation defined by Eqs. (39) and (40) stems from the
potential stated in Eq. (35), which yields the stiffness matrix
symmetric ab initio. The other way is to exploit explicit
expressions for those algorithmic tangent stiffness tensors
that enter Eqs. (59)–(62), see Appendix B. �	

B Appendix: Explicit symmetry of the global tan-
gent stiffness matrix

As mentioned on Remark 3, symmetry of the global tangent
stiffness matrix may be shown explicitly via the expressions
for the algorithmic tangent stiffnesses that enter the direc-
tional derivatives in Eqs. (59)–(62). Accounting for Eqs. (68)
and (69), Eq. (71) can be written as

∂εp

∂ε
=

[
I + 	t

∂2φ∗

∂κdi ⊗ ∂κdi
: ∂2ϕ

∂εp ⊗ ∂εp

]−1

:
[
−	t

∂2φ∗

∂κdi ⊗ ∂κdi
: ∂2ϕ

∂εp ⊗ ∂ε

]
. (73)

Using the property B−1 : A =
[
A−1 : B

]−1
, Eq. (73)

becomes

∂εp

∂ε
= − G−1 : ∂2ϕ

∂εp ⊗ ∂ε
, (74)

where G reads

G =
[
	t

∂2φ∗

∂κdi ⊗ ∂κdi

]−1

+ ∂2ϕ

∂εp ⊗ ∂εp
. (75)

Clearly, G is symmetric, which yields ∂εp/∂ε in Eq. (74)
also symmetric.

Similarly, symmetry of ∂εp/∂χ may be shown via
Eq. (74), which in conjunction with Eqs. (68), (70) and (72)
give

∂εp

∂χ
= G−1. (76)

In turn, replacing Eqs. (73) and (76) in Eqs. (63)–(65),
yields
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L(uu)
at = ∂2ϕ

∂ε ⊗ ∂ε
− ∂2ϕ

∂ε ⊗ ∂εp
: G−1 : ∂2ϕ

∂εp ⊗ ∂ε
, (77)

L(uξ)
at = ∂2ϕ

∂ε ⊗ ∂εp
: G−1, (78)

L(ξu)
at = G−1 : ∂2ϕ

∂εp ⊗ ∂ε
(= [L(uξ)

at ]T). (79)

Finally, noting from Eq. (65) that L(ξξ)
at is also symmet-

ric, it is concluded that the global tangent stiffness matrix is
symmetric. �	

Reduced-Voigt format of mixed-dual problem in
continuous and discrete spatial domains

In Sect. 2, a gradient-enhanced mixed-dual variational for-
mulation was proposed, in terms of displacements and
micro-stresses, (u, ξ ), in small strain setting. The resulting
weak form is defined by Eqs. (39), (40). If standard Voigt
notation is adopted, the latter equations (neglecting the exter-
nal work) may be rewritten as

Ru(u, ξ ; δu) =
∫

�

σTδε d� = 0, (80)

Rξ (u, ξ ; δξ) =
∫

�

[
−εpTδχ − gTδξ

]
d� = 0, (81)

where � denotes the Voigt format of tensor �, i.e. a column
matrix containing all cartesian components of the tensor.

In Voigt notation, the following relations between the ten-
sors and the respective conversion matrices may be written:

σ = Aσ σ v, (82)

ε = Aεε
v, (83)

εp = Aεpε
p,v, (84)

χ = Aχχv, (85)

g = Ag g
v, (86)

ξ = Aξ ξ
v, (87)

where Aσ , Aε , Aεp , Aχ , Ag , Aξ (Aξ = Ag) are conversion
matrices that convert the stored values of σ v, εv, εp,v, χv,
gv and ξv, from a “reduced-Voigt format”, to their full (3D)
tensor equivalents in Voigt notation, which would read 9× 1
and 27×1 components for a second- and a third-order tensor,
respectively. Explicit forms of all the entries inEqs. (82)–(87)
are provided later in this section.

Replacing σ , ε, εp, χ , g and ξ in Eqs. (80) and (81), by
the equivalent expressions in Eqs. (82)–(87), results in

Ru(u, ξ ; δu) =
∫

�

σ vTAT
σAεδε

v d� = 0, (88)

Rξ (u, ξ ; δξ) =
∫

�

[
−εp,vTAT

εpAχδχv − gvTAT
gAξ δξ

v
]
d� = 0,

(89)

where δεv ≡ εv[δu] and δχv ≡ χv[δξ ].
Without loss of generality, the reduced-Voigt format for

a plane strain problem is discussed next. In view of this
assumption, the non-zero independent components in σ and
ε reduce to 4 and 3, respectively. As regards εp, it should be
noted that the pertinent tensor is symmetric and deviatoric,
therefore the independent components that need to be stored
in each integration point reduce to 3. The latter properties
of εp simplify also the computation of g (and consequently
also of ξ ), a fact that stems from the definition of g, namely
g = εp⊗∇, which yields g (and ξ ) symmetricwith respect to
its first two “legs”. Therefore, it suffices to store only 6 com-
ponents of g in each integration point (cf. 27 components for
the full (3D) tensor and 10 for a plane strain problemwithout
accounting for the facts that εp is symmetric and deviatoric).
Symmetry of εp yields χ symmetric, thus 4 non-zero com-
ponents for χ need to be accounted for, under the considered
plane strain setting. In turn, the independent components of
σ , ε, εp, χ , g, ξ are stored in vectors σ v, εv, εp,v, χv, gv and
ξv, respectively. The latter vectors with stored values at the
integration points enter Eqs. (88) and (89). Their independent
entries read

σ v = [σ11 σ22 σ33 σ12 ]T, (90)

εv = [ ε11 ε22 γ12 ]T, (91)

εp,v= [ εp11 ε
p
22 ε

p
12 ]T, (92)

χv = [χ11 χ22 χ33 χ12 ]T, (93)

gv = [ g111 g221 g121 g112 g222 g122 ]T, (94)

ξv = [ ξ111 ξ221 ξ121 ξ112 ξ222 ξ122 ]T, (95)

where γ12 = ε12 + ε21, while noting that ε12 = ε21.
Combining Eqs. (82)–(87) and (90)–(95) fully defines the

entries in the conversion matrices Aσ , Aε , Aεp , Aχ , Ag ,
namely

Aσ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Aε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 0
0 0 1/2
0 0 0
0 0 0
0 0 0
0 0 1/2
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (96)
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and

Aεp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0

−1 −1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Aχ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ag =
⎡
⎣ Aεp 09x3
09x3 Aεp

09x3 09x3

⎤
⎦ .

(97)

Next, the discretization of the field variables u and ξ is
performed, alongwith the equations that fully define the con-
tinuous system, i.e. Eqs. (88)–(89). The primary variables are
approximated according to

u(x) ≈ uh(x)= Nu(x)au, (98)

ξv(x) ≈ ξ
h
(x)= Nξ (x)aξ , (99)

where Nu(x), Nξ (x) are matrices of nodal shape func-
tions, and au , aξ are nodal values. Note that under the
proposed gradient-enhanced mixed-dual formulation, FE-
approximations of different order for u(x) and ξ(x) may
generally be used. Similarly, the test functions δu, δξ are
approximated as

δu(x) ≈ δuh(x)= Nu(x)δau, (100)

δξv(x) ≈ δξ
h
(x)= Nξ (x)δaξ , (101)

which is in accordance with Galerkin’s method, in which
the same shape functions are employed for both the primary
variable and the test function. In addition, the fields ε(x) and
χ(x) are discretized according to

εv(x) ≈ εh(x) = Bu(x)au, (102)

χv(x) ≈ χ
h
(x)= Bξ (x)aξ . (103)

For the plane strain problem discussed here, the simplest pos-
sible finite element for the considered mixed FE-problem
is the 3-node triangular element, i.e. with linear approxi-

u6

u5

u4

u3

u1

u2

ξ(e)1

ξ(e)2

ξ(e)3
3

1

2

Fig. 22 First-order gradient-enhanced finite element

mations of both the displacement and micro-stress fields.
In Fig. 22, the relevant mixed finite element is shown,
where the nodal dof have been introduced, i.e. u(e) =
[ u1 u2 u3 u4 u5 u6 ], and ξ (e) = [ ξ (e)

1
ξ (e)
2

ξ (e)
3

], where
ξ (e)
i

= [ ξi,1 ξi,2 ξi,3 ξi,4 ξi,5 ξi,6 ]. The number of indepen-
dent nodal ξ -dof that need to be accounted for is 6, in
accordance with the preceding discussion pertaining to the
independent components of g.

The global residual equations in reduced Voigt format,
Eqs. (88) and (89), may also be written in discrete form by
replacing the continuous fields u, ξv, δu, δξv, εv andχv from
Eqs. (98)–(103). The pertinent equations read

Ru(uh, ξh; δau) = δaTu

∫
�

BT
uA

T
ε Aσ σ v d� = 0, (104)

Rξ (uh, ξh; δaξ ) = δaTξ

∫
�

[
−BT

ξ A
T
χAεpε

p,v − NT
ξ A

T
ξ Ag g

v
]
d� = 0,

(105)

where in the frames of the plane strain setting and the con-
sidered number of independent components in the relevant
tensors, the FE-matrices Bu , Bξ and Nξ take the form

Bu =
⎡
⎢⎣

∂Nu,1
∂x 0 ∂Nu,2

∂x 0 · · · ∂Nu,n
∂x 0

0 ∂Nu,1
∂y 0 ∂Nu,2

∂y · · · 0 ∂Nu,n
∂y

∂Nu,1
∂y

∂Nu,1
∂x

∂Nu,2
∂y

∂Nu,2
∂x · · · ∂Nu,n

∂y
∂Nu,n

∂x

⎤
⎥⎦ ,

(106)

Bξ =

⎡
⎢⎢⎢⎢⎣

∂Nξ,1
∂x 0 0 ∂Nξ,1

∂y 0 0 · · · ∂Nξ,n
∂x 0 0 · · ·

0 ∂Nξ,1
∂x 0 0 ∂Nξ,1

∂y 0 · · · 0 ∂Nξ,n
∂x 0 · · ·

− ∂Nξ,1
∂x − ∂Nξ,1

∂x 0 − ∂Nξ,1
∂y − ∂Nξ,1

∂y 0 · · · − ∂Nξ,n
∂x − ∂Nξ,n

∂x 0 · · ·
0 0 ∂Nξ,1

∂x 0 0 ∂Nξ,1
∂y · · · 0 0 ∂Nξ,n

∂x · · ·

⎤
⎥⎥⎥⎥⎦ , (107)
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Nξ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Nξ,1 0 0 0 0 0 · · · Nξ,n 0 0 0 0 0
0 Nξ,1 0 0 0 0 · · · 0 Nξ,n 0 0 0 0
0 0 Nξ,1 0 0 0 · · · 0 0 Nξ,n 0 0 0
0 0 0 Nξ,1 0 0 · · · 0 0 0 Nξ,n 0 0
0 0 0 0 Nξ,1 0 · · · 0 0 0 0 Nξ,n 0
0 0 0 0 0 Nξ,1 · · · 0 0 0 0 0 Nξ,n

⎤
⎥⎥⎥⎥⎥⎥⎦

, (108)

with n being the total number of nodes.
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