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Introduction

The objective of this paper is to call attention to a significant
physical phenomenon, which is mostly disregarded in linear vibration
analysis up to date. The full analysis of that phenomenon is beyond
the limits of this paper, but may be found in [1,2].

There are no upper limits for making the analysis of vibration in-
creasingly more complicated. It may be considered an art, however, to
make the analysis as simple as possible, but still retain the ability
to monitor significant phenomena.

The most 81mple kind of analysis of mechanical vibration in discrete
systems comprises undamped, linear vibration. The system considered is
then described by the very well known set of linear, second order
ordinary differential equations, which, by using matrix notation,
could be written very compactly:

Md+Kd=0 ....Eq.

where d and its second time derivative d refer to an arbitrarily
chosen displacement vector with as many, say N, components, as there
are degrees of freedom in the system, M is the corresponding
symmetric inertia matrix, and K is a symmetric restoring matrix
(whereby the word restoring is used deliberately instead of the more
commonly used word stiffness, in order to remove a mental obstacle, ac
will be discussed later).

Complex systems with many degrees of freedom may be difficult to over-
view, if their motion is described in an arbitrary frame of reference,
which is the case for Eq. 1.

However, nowadays a standard procedure for easier understanding and
handling of the problem is to transform the descrlptlon of the motion
to a special, unique frame of reference, by using normal or modal

displacement coordinates, ¢;, which will result in simple, uncoupled
equations of motion:

mdg,+kq,=0 )

.........

myGy+kyqy =0

What has been stated so far, is basic knowledge in any modern textboo}l
on vibration.
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There is, however, a hidden difficulty i finding a simple but still
adequate restoring matrix K for arbitrary, discrete mechanical sys-
tems. A review of textbooks, handbooks and scientific reports will
reveal - with very few exceptions - that procedures given for compos-
ing K result in matrices, where each individual component is directly
proportional to some material stiffness/flexibility property, e.g.,
spring stiffness, modulus of elasticity, etc. If such a matrix would
be fully correct, then all vibration will vanish if the material
stiffness properties will decrease to zero (because K will vanish).
Also, the vibrational behavior will be nonsensitive to the loads act-
ing upon the system at equilibrium, i.e., the pre-loads (because the
content of mass and the material stiffness properties do not change
with the pre-loads).

Such conclusions are, however, in conflict with some basic pieces of
experience:

* a simple pendulum may oscillate-without containing any elasticity,

* a string may oscillate, whereby its natural frequencies are con-
trolled by the pre-tension, but not the elasticity.

We must conclude, therefore, that there are cases, where the restoring
matrix K must contain more information than just data comprising ge-
ometry and stiffness/flexibility, in order to be able to monitor some
well known physical phenomena.

It has been shown [1,2] that the basic equation, Egq. 1, could gene-
rally be given a more precise formulation:

Md+Kd = Md+aﬂﬂﬁd 0 = K=E+P ' ...BEq. 3
where E is the elasticity/stiffness/flexibility dependent contrlbu—
tion and P is the pre-load dependent contribution to the total
restoring matrix K, whereby the action of gravity and other similar
body loads can be expressed uniquely in terms of support pre-loads,
and do not have to appear explicitly in the equations of motion.

A proper modal analysis of discrete mechanical systems must thus be
based on such governing equations, where both types of the restoring
effect, i.e., due to stiffness and pre-loads, are initially consid-
ered, even if one of them later on, due to special pre-conditions, may
be excluded from the analysis.

A Conceptual Explanation

The derivation of the equations of motion, Eq. 1, might be based on
equilibrium considerations according to Newton-Euler (contrary to en-
ergy considerations according to Lagrange). The first term, Md, ac-
counts then for the inertial resistance to change of motion, and Kd
accounts for the restoring effects, i.e., the forces that - if posi-
tive - try to return the system to its equilibrium configuration.

It is supposed that the equilibrium state of the system is known, both
regarding geometry and loads, the latter here called pre-loads. The
restoring effects according to Newton-Euler are originated from dis-
turbed equilibrium of the system. The equilibrium itself, EQ, depends
on the two abovementioned main groups of system parameters: loads, L,
and geometry, G. If the operator & is introduced to indicate the
combined action of two groups of parameters, then this dependence
could be written as:

EQ=L&G ....Eq. 4
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The disturbed equilibrium could formally be written as d(EQ), which in
a first, linear approximation could be evaluated as:

Kd=0EQ)=0(L)&G +d(G)&L ....Eq. b
where the two right hand terms may be interpreted as:

AL)&G = the action of incremental load changes upon the initial
geometry of the system (assuming that the incremental
load change is linearly related to the incremental
change of geometry),

o(G)&L = the action of incremental changes in geometry upon the
initial loading state (pre-loads) in the system.

The first term, 9d(L)&G, corresponds to Ed in classical structural
mechanics, and is well understood and consistently handled in text-
books and handbooks.

The second term, dG)&L, corresponds to Pd, and is missing in most
texts on arbitrary, discrete mechanical systems, although it may be
found as the only term for restoring action in the specialized equa-
tions valid for specific problems, e.g., pendulums and pre-tensioned
strings.

The reason for the absence of the second term, Pd, in most texts on
arbitrary, discrete mechanical systems (as well as in structural me-
chanics in general) seems to be the desire to linearize the problem
around the unloaded state, where, by definition, the loads are zero
and thus also P=0. Doing so, the influence of pre-loads could subse-
quently be treated as a kind of second order effect for an initially
unloaded system. Such an approach will also work, but is less clever
than a linearization about the pre-loaded equilibrium configuration,
for which case Eq. 5 is valid.

It is obvious that both the restoring effects exist in parallel on the
conceptual level of the analysis. Due to special system characteris-
tics, e.g., symmetry, zero pre-load, zero flexibility, etc., one of
them may vanish completely. In most cases in practice, both terms ex-
ist, but one is quantitatively dominating, why the other could be nu-
merically neglected. There are, however, very realistic applications,
where both the terms contribute to the restoring effect with the same
order of magnitude. This is observed to be the case with multi-dimen-
sional, low-resonant systems, which are common at resiliant mounting
of machines, vehicles and apparatus.

The Key Issue: Model of Springs

Any arbitrary undamped discrete mechanical system consists of:

* rigid bodies

* massless supports and connectors
The second of the abovementioned groups could generally be modeled as
massless springs of zero/finite/infinite multi-dimensional stiffness.
Each spring is considered to belong to one specific body, the base
body, and the "free" or "upper" end of that spring is attached to
another rigid body, the connected body. The "free" or "upper" end of
the spring constitutes a unique interconnection point, identified by
its location as well as by the orientation of a thought, locally at-
tached frame of reference. At equilibrium, all interconnection points,

as well as the loads (forces, ﬁw, and moments, M’) transmitted through
fhese points, are assumed to be known.

The interconnection point for an arbitrary spring could be observed
from the related base body, which constitutes a logical frame of refe-
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rence. At the initial, equilibrium configuration the spring is loaded
by the pre-load. If then the interconnecting end of the spring is

given an incremental "elastic" displacement (both in translation, A,

and in rotation, ¢), the spring load at the displaced interconnection
point is changed to magnitude and orientation with reference to the
base body.

The new vectorial load is preferably defined and visualized as the sum

of the initial or pre-load vector, and the "elastic" load change vec-
el e, R

tor (F and.bl”, cf. Fig. 1:

0 =l _— T, el ....Eq. 6

F=F +F": M=M +M

Fig. 1: Spring in initial and displaced/deformed configuration

For a sufficiently small spring displacement from its original equi-
librium state (the initial deformation may, however, be large!), a
linear relationship will be found between the incremental displacement
and load change vectors, expressed as a six by six element symmetric
stiffness matrix §, if the vectors consist of three components each:

—g) —
F :S(é) ....Eq. 7

—M‘el 4)

Simple and reliable theoretical procedures for the evaluation of the
complete stiffné&ss matrix § are available only for a limited number of
types of pre-loaded springs, e.g., axially pre-loaded strings, beams
and helical springs. For other types and/or differnetly pre-loaded
springs the stiffness matrix may be obtained either experimentally or
analytically by using advanced finite element techniques.

The pre-loads, F and M , are generally finite (but may be zero as a
special case). They maintain their magnitude, but rotate with the ro-
tation of the base body. They act at the interconnection points be-
tween two bodies.

Displaced from their original points of application, the pre-loads,
sized and oriented as stated in the preceding paragraph, will produce
the positive or negative restoring action, which is reflected in the
matrix P.

The "“elastic" load changes could be kept arbitrarily small, when only
vibration of small amplitude is studied. Such "infinitely small" load
changes according to Eqg. 7, acting at the interconnection points (no
matter, if initial or displaced), will produce the "elastic" restoring
action, which is reflected in the matrix E.
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Finally it should be observed that the designation "elastic" inten-
tionally is given in quotes. The linear relationships between incre-
mental spring end displacements and load changes depend not only on
elastic properties, but also on the pre-loads, acting on the springs
considered. The pre-load influence on the stiffness is significant at
almost all helical spring applications, but less important at struc-
tural members of the type beams and rods. Actually, when analyzing the
stiffness of continua on the infinitesimal scale, there exists an par-
allel to the E and P matrices on the finite, discrete scale, which is
well understood in the analysis of axially pre-loaded beams and heli-
cal springs, cf. Eq. 12.

Thus, the pre-load influence on the linearized analysis of the restor-
ing action at discrete, mechanical systems is twofold: direct via the
matrix P, and indirect via the matrix E.

Axially Pre-loaded Symmetric Springs

Up to date the most comprehensive stiffness model of axially pre-
loaded symmetric springs is given by HARINGX [3]. .It covers explicitly.
helical springs, but by simple transformations prismatic bars with in-
variant cross sections are covered, as well. The model -includes the
effects of axial pre-load, cross-sectional shear flexibility and axial
variation of length.

The spring is treated as a one-dimensional continuum, which is origi-
nally straight and axially pre-loaded (positive in tension), Fig. 2a.
The analysis of incremental axial loading is trivial. The result of
incremental lateral loading is depicted in Fig. 2b.

FO

T T

Fig. 2: Axially pre-tensioned (a) and laterally loaded (b) spring

The total spring stiffness is related to four independent cross-sec-
tional stiffness properties: §, for elongation (tension/compression),

S, for torsion, S, for bending and S, for shear. For a cylindrical heli-

cal spring the stiffness properties are evaluated from the following
spring characteristics:

d = wire diameter

D = coil diameter

I, = length of unloaded spring (I = length of pre-loaded spring,

n = number of active coils .. cf. Eq. 10)
G = shear modulus

vV = Poisson’s ratio

F° = axial pre-load (positive in tension)
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which yield:

S = Gld*

* 8nD?

- 1 +wGld*

t 32nD ....Eq. 8
_(1+v)Gld*

> 16(2+V)nD

1+v)Gld*

§ =t
4nD?

The resulting axial spring stiffnesses (elongation/compression and
torsion) are both elementary:

S, Gd*
M—:T_gnp3 ....BEq. 9
b =S _(1+v)Gd'

L 32nD

and the pre-loaded spring length at the axial tensioning load F° is:
1=1+F°lk,, =1 +8F°nD*Gd* ....Eq. 10

The resulting lateral spring stiffnesses (lateral deflection and
rotation, cf. Fig.2) are mutually coupled and are defined as:

Fy=+kyA —k
1 Al A¢¢1 ....EBEq. 11

M, =—ky A+ kyd,

and introduced constants could be evaluated as functions of F° from:

_F° 1
A7 1—(1-F°S,)tanh k/x
kyy = (kpl —F°)12 ....Eq. 12
kayl F° 1 1
ky=—"-|1-|1——|-
o 2 ( ( Ss] KtanhK+tanh2K)
where
Fo Fo 12
KZ: 1——1] —. —
S, ) S, 4

The evaluation of the lateral stiffnesses requires special care, e.g.,
usage of series expansions and complex algebra, if the axial pre-load
is absent or is compressive, respectively.

The stiffness values given above are directly applicable, when both
the ends of the helical spring are clamped to the two attached bodies,
i.e., the base body and the connected body. However, these basic
stiffness values could easily be modified to cover also those cases,
when either one or both of the spring ends are pinned, i.e., do not
carry any moments.

The three possible cases containing pinned ends are defined and de-
picted in Fig. 3.
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case * (a) case ** (b) case *** (c)
Fig. 3: Various combinations of pinned spring ends

Attached body pinned (case *):

In this case both M, and M, must be zero independent of the connecting

end rotation, and both forces F, and F/ must be related to the spring
end translation, only. This is obtained if the transformed stiffness

constants, k', as derived below, are used in Eq. 11:

*

M= T—kMA/ +ky$,=0 = O, = knfky - A, = Fy=(ky— kAzd/ kA, =

kna=kaes kg = (kg —kafky);  kp=ky=kyy=0 ....Eq. 13

Base body pinned (case **):

Another set of modified stiffness constants, &k, may be obtained for
this case by making use of the previous result, Eg. 13. The deformed
spring is studied, where the lateral deformations are assumed to be
sufficiently small and the axial pre-load to be non-negligible, using
the pinned base end as a frame of reference.

Geometric considerations then yield:
A;:I¢F_A1 (first order small lateral displacements)

and the equilibrium conditions require:

F°=F° (finite order axial forces)

FT*:_f7+¢Jw* (first order small lateral forces)
e * «_o% f' t+ 11 1

M, =IF +AF (first order sma lateral moments)

which are combined to

F = kz;Al - (k;!l -F 0)¢1 = kAtl‘Al - k;;¢1

M = (kg d = F*)A + (gl = FO) G, = kA + Koy

In the axial direction the uncoupled stiffness equations read:

F =k,A; M. =0
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From the derived relationships is found by identification:

haa =k ka=0i Ky =ky—kafky =k .Eq. 14

*

kny =kl —F%  ky = (kpl ~F) =kl
Both ends pinned (case **¥):

Apparent lateral stiffness, k™, is identified for this case, as well,
as a consequence of the definition of lateral load increments, cf.
Fig. 1.

From Fig. 3 (c¢) similar triangles yield:
AT=F"IF° =  F"=F.-A=k;A; F. =k.A,

and by identification is finally obtained:

*kk

b =kys  kn =FUlL ke =ky =key =0 ....Eq. 15

The lateral stiffness according to Eq. 15 is, for a specific spring,
obviously negative, when the pre-load is compressive. Such a negative
lateral stiffness makes sense only if the compressive load doesn’t
exceed the lowest Euler buckling load for the spring considered.

Other types of springs and supports:

The stiffness of an axially pre-loaded helical spring with four dif-
ferent sets of spring end conditions is described quite well by the
equations given in the preceding paragraphs. A number of other types
of springs could be successfully modeled, as well, by using the equa-
tions originally derived for helical springs.

Elastic beams, e.g., including those carrying axial pre-loads, could
be modeled by replacing the cross-sectional stiffnesses § with the
proper beam quantities, e.g., AE in bending. Beams are then modeled
beyond the second order Euler-Timoshenko-Berry theory, with the possi-
bility to account for the changed length of the beam, as well.

Various types of joints and bearings can be modeled by assigning some
spring stiffness components, k, zero values and others very high val-

ues, e.g., a spherical joint is modeled by ky, & ky = < and
koo =ky=ky=0.

An illustrative basic example

The basic ideas introduced in this paper as well as the powerfullness
of related computational methods or algotithms proposed are demon-
strated in the following basic example. The vibrating system investi-
gated consists of a rigid homogeneous sphere, hanging vertically and
symmetrically in an ordinary helical spring, the both ends of which
are clamped to the body and the supporting frame, respectively, cf.
Fig. 4.

The number of degrees of freedom and expected natural frequencies is
generally six for one rigid body. In the special case studied, it
might be understood from symmetry that the motion about and along the
vertical axis of symmetry is uncoupled in each of the two modes of
motion, and that the lateral motion is described by the same equations
of motion regardless of the orientation of the lateral direction. The
motion is described by two coordinates, e.g., the lateral translation
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of the center of the sphere, A, and the rotation about a horisontal
axis, ¢. The equations of motion will be coupled and yield two natural
frequencies of the system.

The system will thus have four numerically different natural frequen-
cies, the two axial uncoupled ones are independent of the axial pre-
load in the spring and might be obtained by using elementary methods.
The two lateral modes and natural frequencies are influenced consider-
ably of the pre-load: partly due to the contribution from the matrix
P, cf. Eq. 3, partly via the pre-load dependent spring stiffnesses,
c.f. Egq. 12.

The lateral motion is described by just one general set of two coupled
equations, yilelding two natural frequencies and mode vectors. The lat-
ter might be used to perform the modal transformation, decoupling the
two equations of lateral motion. The general set of equations is easi-
ly modified to predict the natural frequencies when:

* either one or both of the spring ends are pinned,
* the pre-load is absent, e.g., as in space (F’°=0),
* the system is a rigid pendulum (G = e; F°=mg).

System data:

Spring:

free length = 0.1 (m)

diam. of wire = 0.004 (m)

diam. of coil = 0.034 (m)

number of coils = 8.7

material = steel

Sphere:

radius = 0.2 (m)

mass = 11.56 (kqg)

moment of inertia = 0.231 (kg*m*m)

Fig. 4: Configuration of and data on an illustrative basic example

F'f&

g

AAR
X

base = frame (a) base = sphere (b)
Fig. 5: Configuration of the laterally deformed system
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Derivation of equations of motion

The equations of lateral mction are derived in two versions: (a) the
supporting frame is considered to be the base body, and (b) the sphere
is considered to be the base body.

Case a:

The displacement of the sphere gives rise to the following lateral
deformations of the spring, cf. Fig. ba:

A,=A—r¢; (1),:(1)

which gives rise to spring forces according to Egs 11 and 12 (where
the obvious subscript / is omitted).

Combined with the inertial resistance to motion in terms of the gener-
alized d’Alembert forces and the action of gravity, as is shown in
Fig. 5a, the lateral equilibrium of the sphere yields the following
equations of motion:

A k —kpy 1k
tn (UG%+_ A A¢ ;'A fﬁzo ....BEq. 16
0 I)\Q) \—ky+rky kot 2k +r'ky,+mgr \0

Case b:

The displacement of the sphere gives here rise to other lateral
deformations of the opposite end of the spring, cf. Fig. 5b:

A=(r+Do—A; o, =0

Proceeding in the same way as in the preceding case, another set of
equations of motion is obtained for the description of the lateral
motion:

.+ ky— 2k, (r +1)+ [)=O ....Eq. 17
(0 Ij(q)] kpg—kalr +1) +mg (+k (‘;+ 1)2A¢)—mg(r+l)] 0 | q

The second part of the left side of Egs 16 and 17, which corresponds
to the total restoring action in the system, cf. Eq. 3, looks
different, when the equations are compared, although both equations
are valid for the same physical system. They could, however, be

brought to a uniform shape, if ky, as given in Eq. 12, is eliminated.
For the basic case (no ends pinned) is then obtained:

(m 0)[?‘2}( b “A<’+”2>+mg/2j(A)=o ....Eq. 18
o I)\¢ —k(r+112)+mg/2 ky+kyr(r+1) (0]

Spring stiffnesses can be evaluated for modified spring end conditions
according to Egs 12 through 15 and the eigenvalue problem, as stated
in either one of Egs 16 or 17, can be solved, yielding two values for
the circular eigenfrequency ® for each set of spring end conditions.

The basic sets of equations, i.e., Eg. 16 or 17 with four combinations
of spring end conditions, can also be used to investigate some special
conditions.
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The gravity g may decrease continuously to zero from the terrestrial
reference value g,. Zero gravity simulates the celestal conditions at

free orbiting in space and demonstrates also clearly the pre-load in-
fluence.

The stiffness of the helical spring may increase continuously to in-
finity by letting the modulus of elasticity (or the modulus of shear)
increase from its normal value to infinity. If then at least one of

the spring ends is pinned, the system transfers to a rigid pendulun.

Numerical values of the two related circular eigenfrequencies have
been computed for all the various cases described in the preceding
paragraphs. The values are given in Fig. 6, from which the following
conclusions can be drawn:

I. The influence of the pre-load is considerable, and relatively
stronger for the lower mode compared to the higher mode.

II. For the celestal case some eigenfrequencies decrease to zero, oth-
ers remain finite. The number of vanishing eigenfrequencies is in
agreement with the expected characteristics at various spring end con-
ditions. :

III. For the terrestrial pendulum case some eigenfrequencies increase
to infinity, others remain finite. The number of finite eigenfrequen-
cies, as well as their numerical values, is in agreement with the well
known characteristics of single and double pendulums.

Complex discrete systems

The principles used in the analysis of the basic example in the pre-
ceding section have been developed further to cover any system com-
prising arbitrarily arranged rigid bodies and arbitrarily intercon-
nected massless linear springs and/or various types of joints and sup-
ports. Details are given in [1,2]. For complex systems it is possible
to predict theoretically all the effects demonstrated in the basic
example, i.e., celestal conditions, rigid terrestrial pendulums, etc.

Experimental evidence

An experimental structure as shown in Fig. 7 has been developed to
demonstrate the pre-load influence as an isolated phenomenon. Two rig-
id bodies are constrained to vibrate in one plane, only. Damping is
eliminated almost completely by using aerostatic bearings for con-
straining the motion.

By tilting the supporting plane about a horisontal axis, the system
pre-load is changed without changing any component of the systemn.

The system has six unconstrained modes of motion. Two of them are
axial, and due to symmetry, the axial modes are decoupled from the
remaining modes and are not influenced of the pre—load.

There are four degrees of freedom for lateral motion. All of these
modes are mutually coupled.

The natural frequencies for the system have been determined experimen-
tally by a sweeping excitation technique for various angles of tilt.
Some significant results are shown in Fig. 8. The natural frequencies
of axial motion were almost constant for the whole range of tilt.

Fig. 8 demonstrates a considerable influence of pre-load. The influ-
ence is strongest at low natural frequencies.
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Fig. 6: Computed values of lateral frequencies



Contribution to Modal Testing & FEM Seminar in Arhus by Mart Magi, page 13, 1988-02-17

Supported by
aerostatic bearings

Second bedy and Springs
could be removed

® t11 L 02
@/ g’ sin& 51 0
1 05 o a5 = 4 -5 O os 1 - -o5 o 05 1
i by Double body system () Double body system
(a) Single body system (b) bouble body < ©) nohest {

lowest f
B EXPERIMENTAL POINTS
———P=0 AND COMPLETE S

———— (COMPLETE THEORY
— —— ELEMENTARY THEORY

Fig. 8: Experimental data on lateral frequencies

The natural frequencies of the experimental system have also been pre-
dicted theoretically. Two different types of analysis have been used:
one complete theory, including the influence from both the matrix P
and the pre-load sensitive spring stiffness §, and the other disre-
garding the influence from the matrix P, but considering the pre-load
sensitivity of the helical springs. The influence from the matrix P

is dominant at low natural frequensies, whereas the spring stiffness
sensitivity is dominant at higher natural frequencies.

The quoted experiments are reported in more detail in [4,5].
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Conclusions

The significance of the pre-loads has been demonstrated clearly both
theoretically and experimentally. The phenomenon has been given a con-
septual explanation. Analytical procedures have been developed, which
automatically take into account both the elastic and pre-load depen-
dent restoring effects in linear multi-dimensional discrete systems,
no matter which one that happens to be the quantitatively dominating
restoring source.
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