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There’s Plenty of Room in Higher Dimensions

Nonlinear Dynamics of Nanoelectromechanical Systems

Axel Martin Eriksson

Department of Physics

Chalmers University of Technology

Abstract

Nanoelectromechanical systems (NEMS) couple the dynamics of electrons to
vibrating nanostructures such as suspended beams or membranes. These res-
onators can be used in for instance nanoelectronics and sensor applications.
NEMS are also of fundamental interest since electrons exhibit strong quantum
effects when confined in nanoobjects. Furthermore, NEMS such as graphene
resonators are strongly nonlinear, which opens the door for complex dynamical
response.

The operation of nanoresonators often rely on actuation of mechanical vi-
brations driven by an electric ac-field. The first part of this thesis theoretically
investigates high-frequency nonresonant actuation relying on electromechan-
ical back action (Papers I-II). The nonresonant phenomenon can be utilized
to study nonlinear dissipation and to selectively actuate different vibrational
modes, also asymmetric ones, even though the driving field is homogeneous
(Paper III). Another nonresonant actuation mechanism converts heat into me-
chanical energy and relies on electron-electron interaction in a movable quan-
tum dot (Paper IV).

Furthermore, parametric actuation of a nanoresonator can be used to gen-
erate a supercurrent through a superconducting weak link even though the
superconducting phase difference across the link is zero (Paper V). The ex-
citation leads to a spontaneous symmetry breaking, which allows for a new
possibility to switch between the two current directions.

Actuation of mechanical vibrations is also used to study nonlinear dynam-
ics and mode coupling in nanoresonators. The strength of nonlinearities and
vibrational frequencies can be tuned by electrostatic means (Paper VI). This
tunability and the low dissipation in nanoresonators make it possible to se-
lectively address individual or combinations of modes. Coupled modes allow
for much richer nonlinear dynamics, such as internal resonances (Paper VII),
due to the increased dimensionality of the relevant phase space. Furthermore,
exotic dynamical regions may be hidden and not observed in standard exper-
iments. However, bifurcation theory can help to construct maps which reveal
the hidden regions. A lot more is therefore to be expected from coupled mode
dynamics, since there’s plenty of room in higher dimensions.

KEYWORDS: NEMS, nonlinear dynamics, nonresonant actuation, quantum

dots, superconductivity, internal resonance.
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Chapter 1
Introduction

“There’s plenty of room at the bottom.”

Richard Feynman

Nanoelectromechanical systems (NEMS) combine electron dynamics
with mechanics, at the nanoscale. These systems often take the form
of mechanical resonators made from suspended membranes or beams
(Fig. 1.1). The reasons to study NEMS are many. To begin with, they
are of fundamental interest since they constitute an excellent platform
to explore the transition between classical and quantum physics. One
way to address this question is to cool down the system and study the
dynamics as the system comes closer and closer to its quantum ground
state [1]. This typically requires a temperature below 1 mK. Ultimately,
it allows for manipulation of single mechanical quanta [2]. Furthermore,
the quantized nature of charge becomes important at the nanoscale. To
enclose several electrons into a nanosized confinement often requires
large amounts of energy due to Coulomb repulsion and the electrons
can therefore block each other. As a result, single electron phenomena
such as Coulomb blockade are often observed and utilized in NEMS
devices [3].

From an application point of view, NEMS are interesting since they
can be used in nanoelectronics e.g. as electric filters [4], transmitters [5]
and receivers [6]. For these applications, nanostructures might be im-
portant since smaller components typically have larger sensitivity and
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Figure 1.1: Different types of suspended nanoelectromechanical structures. In
each example, one part of the structure is suspended and can vibrate mechani-
cally. The vibrating part is typically a beam or a membrane and can exchange
electrons with nearby conducting parts of the structure. Non-conducting ma-
terial (brown) act as support for the vibrating part and isolate it from a gate
electrode. The gate voltage can manipulate the charge on the suspended part
in order to operate the function of the device.

consume less energy [7], which saves battery time. Smaller and more
energy efficient components are also crucial to avoid overheating of in-
creasingly thinner and more component dense devices. Nanoresonators
are also promising for sensor applications. NEMS can be utilized to
measure charge [8] and tiny forces [9]. Furthermore, a mass spectroscopy
NEM-sensor with a sensitivity corresponding to one proton mass has
been reported [10]. The function of the sensor is based on the following
idea: when for example an air molecule lands on a vibrating NEMS, the
particle adds some mass to the resonator which shifts its vibrational fre-
quency. By detecting this shift and possibly also electronic changes, the
electromechanical resonators can ultimately be used as artificial noses
to detect for instance hazardous gases. The smallness of nanosystems

2



naturally gives them high sensitivity. Furthermore, smaller and lighter
structures also lead to higher vibrational frequencies, which may enable
faster technologies.

Material properties quantitatively affect the response of NEM res-
onators. Suspended graphene and carbon nanotubes have been exten-
sively used in experimental studies. Such carbon structures have several
favorable and extraordinary properties1. Most importantly, they have
widely tunable frequencies [11] and high quality factors2. A promising
parallel research activity for two-dimensional materials such as graphene
is to stack layers into heterostructures [12]. Such heterostructures have
been used as mechanical resonators [13]. These artificial materials ex-
hibit new properties which can be tailored by the stacking composition.
The success of these new materials will likely not be determined by how
they can improve existing technologies, but by which completely new
technologies the materials enable.

This compilation thesis treats the theoretical modeling of the non-
linear dynamics in suspended nanosystems as those in Fig. 1.1. In
contrast to cooling down the systems, as mentioned above, I will fo-
cus on actuation of mechanical vibrations and the response of strongly
driven resonators. To drive the mechanical motion in the systems of the
appended papers, we have utilized both resonant and nonresonant actu-
ation mechanisms. These mechanisms rely on the relatively strong in-
teraction between mechanical vibrations and charges in NEMS [14, 15].
When a mechanical resonator is strongly driven, nonlinear effects will
drastically influence its response. The nonlinearities in NEMS are often
of geometric or electrostatic origin. These nonlinearities not only affect
the single-mode response but also couple different vibrational modes
and ultimately make the dynamics chaotic. From an application point
of view, nonlinearities have generally been aggravating; linear systems
are easier to characterize and control. However, the advancing experi-
mental control of NEMS and increasing computational power have made
nonlinear nanomechanics a highly interesting topic. Nonlinear phenom-
ena are no longer unwanted complications which we try to limit. The
question for nonlinear NEMS is rather how we can make the nonlin-
earities stronger, tailor [16] and utilize them in applications [17]. One

1The electrical and mechanical properties of carbon materials will be further
discussed in the next chapter.

2The quality factor is a measure of how much energy is lost during one oscillation
compared to the energy stored in the oscillation.
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category of strongly nonlinear devices are graphene resonators due to
their exceptional thickness. Graphene resonators are therefore highly
interesting for studies of nonlinear dynamics.

The tunable frequencies and nonlinearities of NEMS in combina-
tion with their high quality factors enable access to exotic dynamical
regions3. However, to find and understand these regions by standard ex-
perimental techniques can be very time consuming. Furthermore, non-
linear dynamical features can be hidden due to the complexity of coupled
nonlinear systems. To experimentally find the hidden exotic dynamics
might therefore require special treatment. An important question is
how we can resolve such issues and advance the mastery of NEMS in
order to explore their full nonlinear dynamics4.

1.1 Aim of Thesis

The aim of this thesis is to introduce the reader5 to the field of nano-
electromechanical resonators. It also attempts to give a brief intuitive
explanation of the physics in the different papers: what the main mech-
anisms are and how they work. Understanding of these mechanisms
will make the reader better prepared to read the appended papers. The
interested reader is referred to these papers and their supplemental ma-
terials for more technical details, techniques and derivations. When
needed, complementary calculations and details will be presented in
appendices6. However, the main body of this thesis will focus on how
the appended papers fit together, how they relate to the research field of
NEMS, the most important physical mechanisms and the main results
of the papers.

1.2 Outline

In the next chapter, I will describe some important electrical and me-
chanical properties of suspended carbon structures and how the dynam-

3Such as codimension-two bifurcations which require simultaneous adjustment of
two parameters.

4An impatient reader may (cautiously) jump to conclusions (chapter 6), where I
discuss how the mastery of nonlinear NEMS might be accelerated.

5The reader is assumed to have some basic training in physics. However, to
(hopefully) make this introductory text more accessible, the amount of equations
and technical details have consciously been kept low.

6The appendices have been published in a slightly different form in my Licentiate
thesis [18].
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ics of nanostructures can be described by both classical and quantum
models. I will also discuss different resonant techniques of how mechan-
ical vibrations can be actuated and what basic response is typically
observed in nanoresonators.

In chapter 3, I extend the discussion of actuation mechanisms to
include nonresonant ones. These mechanisms rely on the delayed elec-
tromechanical back action in the system.

In chapter 4, I present an example of how actuated mechanical vi-
brations can be exploited. Namely, I describe how parametric actua-
tion of mechanical vibrations can be utilized to generate a supercurrent
between two superconducting leads, even though the phase difference
between the leads are zero.

In chapter 5, I continue on the topic of actuated mechanical vi-
brations by discussing nonlinear mode interaction. To begin with, I
describe the frequency tuning and strength of nonlinear mode coupling
for circular garaphene resonators. This tunability is then utilized to
tune two vibrational modes of a multi-layer graphene resonator into
a strong coupling regime, called internal resonance. The internal reso-
nance does not only strongly affect the driven response of the resonator,
but also drastically alter the dissipation of the modes.

5



6



Chapter 2
Nanoelectromechanics

“All models are wrong;
some models are useful.”

George Box

Nanoelectromechanical systems (NEMS) [19] combine mechanics and
electron dynamics at the nanoscale. In this thesis, I am mainly in-
terested in understanding electromechanical actuation mechanisms and
nonlinear mode interactions in nanosystems. The systems to have in
mind are suspended structures such as the schematic ones in Fig 1.1 and
the physical one in Fig. 2.1. The suspended parts can vibrate and are
electrically connected to electrodes so that electrons can be exchanged
between the components. Gate electrodes can both statically and dy-
namically adjust the charge of the vibrating parts.

To model these systems, several questions regarding the involved dy-
namics have to be addressed. How much can the dynamics be simplified
without losing the power to explain the interesting dynamical features?
What is the origin of the electromechanical coupling? Do some parts
have to be treated quantum mechanically? Are nonlinear effects im-
portant and, if so, what is the origin of the nonlinearity? Appropriate
mathematical models then have to be constructed which comply with
the requirements.

To simplify the theoretical description, phenomenological equations
are often used. When proposing a phenomenological model, it is impor-
tant to examine if the model parameters can be realized by existing ex-
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perimental methods. If not, new materials or measurement techniques
may be required to detect the predicted phenomena. In many situ-
ations, the carbon materials graphene and carbon nanotubes (CNTs)
have proven themselves to be good candidates for nanomechanical res-
onators1.

Figure 2.1: Scanning electron microscopy (false-color) image of a circular
graphene resonator. The mechanical resonator is coupled to a superconducting
cavity for sensitive displacement measurements [24]. Graphene resonators are
often called nanomechanical drums since their mechanical behavior is similar.
The figure was provided by Professor Adrian Bachtold.

Below, I will discuss some of the electrical and mechanical properties
of these carbon materials and introduce some models which we have in
our toolbox to describe the dynamics of NEMS. The different models
constitute building blocks which can be fitted together in a plethora of
ways in order to describe different kinds of dynamics in NEMS.

2.1 Electronic Properties and Models of Nanostructures

Graphene [25, 26] is a two-dimensional material constituted of a sin-
gle layer of carbon atoms. The electrical properties of graphene can
to a good approximation be deduced from p-orbitals perpendicular to
the graphene membrane. Tight-binding calculations for the dispersion
of the p-orbitals predict linear so called Dirac cones at each corner of

1Other materials such as aluminum [20], gallium arsenide [21], black phospho-
rus [22] and silicon nitride [23] are also being used but will not be discussed further
in this thesis.
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the hexagonal Brillouin zone. As a consequence, the Fermi velocity
in graphene is constant vF ≈ 106 m/s and the carrier type can easily
be controlled by electrostatic or chemical doping. The charge carri-
ers in graphene exhibit high charge carrier mobility which may exceed
106 cm2V−1s−1 [27]. There is no bandgap in graphene since the valence
and conduction bands touch at the Dirac points. However, several ways
to open a bandgap in graphene structures have been proposed since
many applications rely on semiconducting transport [28].

Properties of materials at the nanoscale can often be counterintu-
itive. As an example, graphene is an extraordinary good absorber of
light, yet it is almost completely transparent ∼ 98 % [29]. This is be-
cause graphene is only a single atom thick. Piling up several layers of
such a strong absorber quickly reduces the transparency of multi-layer
graphene.

The electrical properties of graphene can be drastically modified by
wrapping it into carbon nanotubes (CNTs) [30]. CNTs are typically a
micrometer long but only a few nanometers in diameter. The almost
atomistically short circumference of a CNT imposes strong quantization
of the electronic wave functions in this direction. CNTs are therefore
often referred to as one-dimensional objects. In contrast to graphene,
CNTs can be either metallic or semiconducting with a bandgap of up
to ∼ 1 eV, depending on the chiral angle and the diameter of the
tube [31].

The electronic properties of both graphene and CNTs make them
useful for transport of charge. Below, I will briefly summarize the mod-
els for charge transport used in the appended papers.

2.1.1 Equivalent Circuit Model

The equivalent circuit model is very useful to describe electronic trans-
port, mainly because of its simplicity. In the circuit model2, the dynam-
ics of the electronic subsystem is mapped to an electric circuit which
captures the qualitative features of the original system. This is done by
lumping the physical elements of the original system into their corre-
sponding electronic elements such as resistances and capacitors.

The procedure reduces the complexity of the interacting charge den-
sities and replaces the system with a simple effective circuit. For in-
stance, in Fig. 2.2 the insulating oxide layers between the graphene

2Also called lumped element model or capacitance model.
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membrane and the electrode leads can be modeled as resistors while
the membrane and backgate constitute an effective capacitor. The ap-
propriate values of the lumped elements can in principle be calculated
by considering the geometry and by solving Maxwell’s equations with
appropriate boundary conditions [32]. However, in practice the values
are extracted by fitting the theoretical model to experiments or by crude
order-of-magnitude estimations. One strategy is to view the graphene
membrane and the backgate as the two plates of a parallel plate capaci-
tor which gives the capacitance C = ε0A/d where ε0 is the permittivity
of vacuum, A is the area of the plates and d is the distance between
them.3 This strategy neglects the curvature of the membrane if it is
pulled towards the gate by an applied electric field.

Lead Lead

Gate

𝑉𝐺

𝐶

𝑅

𝑉𝐺

Figure 2.2: In the circuit model, the physical system (bottom) is replaced by
an effective electric circuit (top). In this case, the oxide layers between the
conducting leads and the graphene membrane have been modeled as a resistor.
The electrostatic interaction between the graphene sheet and the gate has been
modeled as a capacitance. The electric dynamics of the system has thereby
been reduced to a driven RC-circuit.

In the circuit model, the graphene sheet is assumed to be a good
conductor and the total resistance is therefore dominated by the oxide
layers. Hence, when charges enter the graphene membrane via the oxide
layers, they are assumed to immediately redistribute to cancel potential
differences within the membrane. Since we are not interested in biasing

3In our considerations the graphene membrane is assumed to be large, chemically
doped and suspended at a relatively large distance from the gate electrode so that
the electronic band structure can be disregarded.
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the two leads with different voltages, we may reduce the two contacts
to a single effective resistance R.

When the corresponding electric circuit has been formulated, the
dynamical equations are obtained by standard circuit analysis [33]. For
our simple system, the current through the oxide layers is directly ob-
tained by Ohm’s law

q̇ =
1

R

(
VG(t)− q

C

)
, (2.1)

where q is the charge on the membrane, VG(t) = V0 cos(Ωt) is the alter-
nating gate voltage and q/C is the potential drop over the capacitor.
The equation tells us that if the gate voltage is changed, the charge of
the membrane will reach its new equilibrium on a time scale given by
the RC-time τRC = RC.

2.1.2 Semiclassical Model of Charge Transport

In paper III, we will focus on externally driven charge oscillations within
the graphene membrane. We can therefore no longer view the mem-
brane as a lumped component as we did in the circuit model. To de-
scribe the driven oscillations of the distributed charge density, we will
instead adopt a simple semiclassical model of a suspended chemically
doped graphene sheet (Fig 2.3a).

As a start, let us assume that we apply a weak electric field Eext(x,t)
along the x-direction. The electrons will be accelerated4 by the external
field and result in a finite current density j(x,t). If the external field is
inhomogeneous, it will generate a slight separation of charges in different
regions, i.e., an inhomogeneous charge density %(x,t) (Fig. 2.3b). The
separation will give rise to an internal electric field Eint(x,t), as the
charges in the positively and negatively charged regions attract each
other with Coulomb forces. The internal field can be calculated by
summing up the fields from charged infinite wires placed next to each
other,

Eint(x,t) =
1

2πε0
P
∫ ∞
−∞

%(x′,t)

x− x′ dx
′ (2.2)

where ε0 is the vacuum permittivity and P denotes the principal value of
the integral. The internal field will counteract the separation of charges
and contribute to the total electric field E(x,t) = Eext(x,t) + Eint(x,t).

4For simplicity we assume the dynamics to be homogeneous in the y-direction.
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Figure 2.3: a Cross-section of a doped suspended graphene sheet. b An ex-
ternal electric field Eext is applied to the homogeneous charge distribution. c
The induced inhomogeneous current will polarize the membrane. The separa-
tion of charge then creates an internal electric field Eint which counteracts the
external field.

The damped charge dynamics driven by the electric field can be
modeled by the semiclassical equation5 [34]

∂

∂t
j(x,t) + νRj(x,t) =

e2EF

h̄2π
E(x,t), (2.3)

where νR is the relaxation frequency mainly due to disorder [35] and
EF is the Fermi energy in the graphene sheet. Furthermore, the charge
density has to obey the continuity equation

∂

∂t
%(x,t) = − ∂

∂x
j(x,t) (2.4)

which assures conservation of charge.

2.1.3 Quantum Tunneling Models

Charge transport in nanostructures incorporating so called quantum
dots6 (QDs) may exhibit strong quantum effects and can then not be
described by classical models. The charge dynamics of a QD can be
reduced to include only a few quantum levels by shrinking its size, since

5The semiclassical equation can be obtained by a relaxation-time approach start-
ing from the Boltzmann equation and deriving hydrodynamic equations [34, 35].
Inter-band excitations have been neglected since these are suppressed at low temper-
ature kBT � EF and external field frequencies which are not too high h̄Ω < 2EF.

6Typically made of small metal or semiconductor grains.
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this increases the separation of the energy levels due to space quan-
tization. Furthermore, charging effects become very important when
electrons are confined into a small volume. For small structures, elec-
trostatic interaction significantly contributes to and rearrange the sepa-
ration between energy levels. The charging energy associated with con-
fining the charge q on a structure with capacitance C is EC = q2/(2C)
and therefore depends on the geometry of the QD. The structure will
operate as a few level quantum dot if the thermal energy kBT and the
energy accessible from other sources7 are comparable to or smaller than
the separation of electronic energy levels. Furthermore, quantum dots
are often coupled to other systems such as conducting leads, so that
electrons can be exchanged by quantum tunneling. In what follows, I
will describe three models for different kinds of quantum dots.

𝜇

a

𝜇

b

𝜇

d

𝜇

c

Figure 2.4: a The non-interacting single-electron energy levels (black bars) of a
quantum dot are in tunneling contact with a continuum of electronic states in a
nearby reservoir. The population of electrons in the reservoir is smeared due to
finite temperature as indicated by the color gradient. The tunneling coupling
allows electrons to tunnel (dashed arrow) from filled levels to empty levels. b
The energy levels can be adjusted by applying an electric field. An interesting
situation occurs if we tune one of the levels close to the chemical potential µ of
the reservoir. c If we decrease our energy sources such as temperature, we will
only access and be able to change the level closest to the chemical potential.
We can thereby “zoom in” on the relevant energy scale of the dynamics and
disregard the other energy levels.

7Such as voltage biasing energies eV or photon energies h̄ω.
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Single-Level Quantum Dots

An important kind of quantum dot is the single-level quantum dot (SL-
QD) where only one electronic level contributes to the electron dynamics
on the dot (Fig. 2.4). Single-level quantum dots can be achieved by
applying a static voltage to the QD in order to cancel the charging
energy associated with adding one electron to the dot. In that case, the
neutral state of the QD and its state with one excess electron can be
very close to degenerate. In such a situation, manipulation between the
empty and filled single-electron level can be achieved without involving
other electronic states. This is because the other states require access
to much larger energies.

The time-evolution of a quantum system is governed by the Liouville-
von Neumann equation

ih̄∂tρ̂ = [Ĥ,ρ̂], (2.5)

where ρ̂ is the density operator of the quantum system and Ĥ is its
Hamiltonian operator which corresponds to the energy of the system.
The Hamiltonian, which dictates the dynamics, can be built up by the
following reasoning.

Let us start with the uncoupled single-electron level of the QD and
denote its energy εDot counted from the chemical potential in reservoir.
If the level is occupied by an electron, we have to add εDot to the total
energy. In the language of second quantization [36] we can write the
corresponding term in the Hamiltonian as

ĤSL-QD = εDotd̂
†d̂ (2.6)

with creation and annihilation operators d̂† and d̂, respectively. For sim-
plicity, we disregard spin degeneracy which can be lifted by for instance
a magnetic field.

The QD is often coupled to a conducting lead which serves as a bulk8

reservoir for electrons. The leads are often so large that the discreteness
of their electronic levels can be neglected. The uncoupled reservoir is
described by the term

ĤLead =
∑
k

εk l̂
†
k l̂k (2.7)

8We will neglect surface effects such as localized states due to the edge and defects.
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where l̂k is the annihilation operator of an electron9 with energy εk in
the leads.

Electrons can tunnel to and from the QD and thereby change its
state. We can mathematically describe this by coupling the dot state
to the reservoir states via quantum tunneling with the term

ĤTunneling = −
∑
k

T
(
l̂†kd̂+ l̂kd̂

†
)
, (2.8)

where T is the tunneling strength. It represents the energy associated
with delocalization of the electron between the coupled states. The
tunneling strength T depends on the spatial overlap of the involved
wave functions in the uncoupled electron levels. As a consequence, T
typically decreases exponentially with distance x between the dot and
the reservoir, T ∝ exp(−x/λ). Here, λ is the characteristic tunneling
length10 which is usually on the order of 1 Å [37]. The operator l̂kd̂

† will
annihilate an electron in the reservoir state |k〉 and create an electron in
the dot state |d〉. In total, the number of electrons is conserved.

The Hamiltonian of the coupled electronic system constituted by
the single-level quantum dot, the lead and the tunneling coupling is
then given by summing up the contributions Ĥ = ĤSL-QD + ĤLead +

ĤTunneling.

Multi-Level Quantum Dots

In multi-level quantum dots (ML-QDs), there is at least one more elec-
tronic level which contributes to the charge dynamics. We will later
be interested in a two-level QD. To write down its Hamiltonian we
start by adding two non-interacting single-level quantum dots accord-
ing to Eq. (2.6). However, an important modification is usually needed
if the dot is occupied by two electrons simultaneously. Namely, the
doubly-occupied state is associated with the additional energy U due to
electron-electron interaction. The Hamiltonian for the two-level quan-
tum dot can be written in the form

ĤML-QD = E↑1 n̂↑ + E↓1 n̂↓ + Un̂↑n̂↓ (2.9)

9Or quasiparticle, i.e., a “dressed electron” where electron-electron interaction
within the lead has been taken into account.

10Simple scattering models show that the tunneling length depends on the work
function Uw of the material and the energy E of the electron as λ = h̄/

√
8me|E − Uw|

with electron mass me. However, the energy dependence can often be neglected since
Uw is typically on the order of electron volts [37], which for us is a huge energy scale.
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where we have labeled the two-levels with spin-arrows. The index “1”
refers to a non-interacting level. The number operator n̂σ gives a con-
tribution to the total energy if there is an electron of spin σ on the dot.
The two-level QD can be in four states; the charge-neutral state |0〉,
the single-populated states | ↑〉 and | ↓〉 with opposite spins, and the
double-populated state |2〉.

Interacting electrons are somewhat more complicated to describe
than non-interacting particles. In the non-interacting electron picture,
we see all electronic levels as independent and we can add and remove
electrons without changing the positioning of the levels. All we need is
to fulfill the Pauli exclusion principle, which states that two electrons
cannot occupy the same state (Fig. 2.5). However, if the electrons in-
teract, the independent-level language does not apply. Instead, we have
to consider the dynamics of the complete quantum states (Fig. 2.5c).
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Figure 2.5: a In the non-interacting electron picture we can represent the
(non-degenerate) electron levels as bars. The dynamics can be imagined as
electrons jumping in and out of an electronic reservoir without changing the
positions of the levels. However, for interacting particles the energy of an
electron depends on the population of other electronic states and the levels
will no longer be static. Instead of considering independent levels, we should
describe the complete states of the QD indicated by the circles in c. Note that
the circles describing the neutral and double-populated state are not electron
levels. As an example, let us assume that we have a non-interacting system in
the state | ↑〉 shown in a. If we add a spin-↓ electron to the dot, we arrive in
the double-populated state shown in b. However, if the electrons interact, the
process of adding a spin-↓ electron brings us from the lower circle, representing
| ↑〉, to the upper double-populated circle. In order to get there, we need to
pay the additional interaction energy U , which in this case brings us above
the chemical potential µ of the reservoir.
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Single-Cooper-Pair Quantum Dots

If a quantum dot is cooled to low temperatures it might become su-
perconducting depending on its material properties. In such a case,
electrons in the leads and dot condensate and form Cooper pairs. The
system will in some respects behave similar to a normal-conducting
junction, but the role of electron tunneling is replaced by tunneling of
Cooper pairs.

A simple case of a single-Cooper-pair quantum dot coupled to a
superconducting lead can be obtained by the following qualitative de-
scription11. Let us assume the dot to be properly tuned so that only its
neutral state |0〉 and state with one excess Cooper pair |1〉 are involved
in the dynamics. The energy of the charged state −2eV0 can be adjusted
by the gate voltage and corresponds to the Hamiltonian term

ĤCPB = −2eV0|1〉〈1|. (2.10)

One way to represent the condensed state of the superconducting
reservoir is by the coherent superposition

|φ〉 ∝
∑
N

eiNφ|N〉R , (2.11)

where N is a measure of how many Cooper pairs there are in the super-
conducting reservoir and φ is the superconducting phase of the reservoir.
In the same representation we can write the tunneling12 coupling for
Cooper pairs as

ĤTunneling = − h̄ωJ

2

∑
N ′

|N ′〉R〈N ′ + 1|R ⊗ |1〉〈0|+ Hermitian conjugate.

(2.12)
The term which is written out represents tunneling of a Cooper pair
from the reservoir to the dot. This process is associated with the Joseph-
son tunneling energy h̄ωJ.

Next, we will see how the superconducting system can be reduced
to a two-state Hamiltonian system. If we apply the tunneling Hamil-
tonian on the condensate state (Eq. (2.11)), we obtain terms of the

11For a more thorough description, the reader is referred to Ref. [3].
12In principle, excitation and tunneling of quasiparticles also take place. However,

these processes are heavily suppressed when avaiable energy scources such as thermal
fluctuations are much smaller than the superconducting gap 2∆ where ∆ is the
superconducting order parameter [3].
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form
∑

N ′ |N ′〉〈N ′ + 1||φ〉 = eiφ|φ〉. Hence, the condensate state is an
eigenstate to the tunneling operator and we can replace the tunneling
operator by the complex number eiφ. Therefore, we do not have to write
out the lead subsystem and can reduce the Hilbert space to a two-state
system [38]. We can simply view these tunneling processes as “picking
up” the superconducting phase φ.

𝑒𝑖𝜙𝐿

Phase
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Phase
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|0〉

|1〉

a b

Figure 2.6: a A single-Cooper-pair box between two superconductors. Tun-
neling of Cooper pairs to the dot (red arrows) brings the CPB from its neutral
to its charged state by picking up the phase of the involved superconducting
reservoir. b Suggestion for an experimental realization of the system.

Let us put our single-Cooper-pair quantum dot, also called single-
Cooper-pair box (CPB), in a junction between two superconductors
where Cooper pairs can tunnel between the leads via the box (Fig. 2.6).
Since only the phase difference between superconductors have physical
meaning, it is convenient to introduce the phase difference ∆φ and take
φL = −φR = ∆φ/2. The resulting Hamiltonian13 takes the form

Ĥ = −2eV0|1〉〈1|− h̄ωJ cos(∆φ/2)|1〉〈0|+ Hermitian conjugate. (2.13)

Hence, the dot and lead dynamics have been reduced to that of a two-
state Hamiltonian system. This is not possible in a normal-conducting
tunnel junction. The important difference is that in the superconduct-
ing case, the electrons in a lead form a condensate which is a single well-
defined state, while the electrons in the normal-conducting case are in
an incoherent mixture of states. A coherent superposition between the
reservoir states and the dot states is therefore only possible in the super-
conducting case. An important experimental advance was to coherently
manipulate the states of a single-Cooper-pair box [39, 40].

13For simplicity we assume the tunneling strength to the left and right supercon-
ductors to be the same.
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2.2 Nanomechanics of Suspended Structures

In this section, I will first comment on the mechanical properties of
carbon materials and then more generally discuss the mechanics of sus-
pended nanostructures.

The mechanical properties of graphene and carbon nanotubes (CNTs)
originate from the strong sp2-hybridised σ-bonds between the carbon
atoms [30]. These σ-bonds make the materials some of the stiffest14 ma-
terials known with a Young’s modulus of up to 1 TPa for CNTs [41].

Suspended carbon nanostructures have high vibrational frequencies15

due to their high stiffness and low mass. The vibrational frequency of
suspended graphene is typically on the order of 100 MHz. The fre-
quency of a suspended CNT is usually higher, due to its more rigid
structure. However, the frequencies heavily depend on the geometry,
type of clamping and tension T . An important case is the vibrational
frequency of the fundamental mode of a circular graphene drum, which
can be estimated by the frequency of a stressed membrane

ωm ≈ 2.4

√
T

ρ0R2
(2.14)

where R ∼ 1 µm is the radius and ρ0 = 0.75 mg/m2 [42] is the two-
dimensional mass density of graphene.

In experimental realizations, the parameters of a vibrational mode
can be difficult to calculate accurately since the geometries16 can be
complicated and the built-in stress from fabrication might be non-
uniform (Fig. 2.7). Furthermore, the structures may contain grain
boundaries and defects, which affect the elastic properties of the sus-
pended structure. To circumvent these complications, in theoretical

14Several times stiffer than steel. The stiffness of CNTs typically decreases with
increasing tube diameter which has been addressed to rippling effects [41].

15The high vibrational frequencies of NEMS are interesting for high frequency
electromechanical applications. High frequencies are also favorable when trying to
reach the ground state, since the thermodynamic energy kBT has to be much smaller
than the vibrational quantum h̄ωm.

16The geometry of graphene resonators are typically circular drums clamped
around the circumference or ribbons clamped at the suspension points. Graphene
ribbons often suffer from ill-defined modes along the free edges [43] which complicates
the dynamics and degrades the quality factor [44]. This problem is circumvented in
circular fully-clamped structures. Carbon nanotubes can be clamped at either one
or two ends. One benefit of the double clamped structure is that the two ends can
be voltage biased, allowing for charge transport through the suspended part.
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modeling, phenomenological equations for the vibrational modes are
often used where the parameters are fitted to experimental data.

Despite the extraordinary stiffness of the carbon materials, especially
graphene should be thought of as an elastic membrane rather than
as a stiff metal plate. This is because graphene is ultimately thin,
which results in an exceptionally low bending rigidity. Furthermore,
graphene can be stretched ∼ 10 % of its length before breaking [45],
which is remarkable since it is a one atom thick crystalline material, in
contrast to an elastic membrane of folded polymers. The possibility to
stretch the resonators without breaking them makes it possible to realize
tunable nanomechanical resonators. By applying an external load, for
example by an electric field, the tension in the resonating structure
can be increased, which then increases the vibrational frequencies. The
same phenomenon is used when the strings of a guitar are tuned.

Both graphene and carbon nanotubes have been modeled by contin-
uum elasticity theory with great success [46]. The general idea of the
theory is to write down expressions for the energy costs associated with
deformations and then derive dynamic partial differential equations for
the motion of the structure17. The first step to solve the resulting equa-
tions is to find the static solution where the stresses in the structure
cancel external forces. Furthermore, linear theory is sufficient if the
dynamics is restricted to small amplitude of oscillations and the equa-
tions are therefore linearized around the static deflection. The problem
is then reduced to finding the discrete frequencies and spatial mode
shapes of the suspended structure.

For higher vibrational amplitudes, nonlinear effects become impor-
tant. It is worth mentioning that the nonlinearities in graphene res-
onators are usually of geometric and electrostatic origin and not due to
nonlinear elastic forces between the carbon atoms. However, it is pos-
sible to reach the nonlinear elastic regime [45]. Nonlinearities will not
only influence the dynamics of single modes but also couple different
vibrational modes. The nonlinear dynamics of NEMS will be discussed
further in chapter 5. However, for many purposes, knowledge of the
full nonlinear dynamics of vibrational modes is not necessary. It is of-
ten enough to model the mechanical subsystem as a single harmonic
oscillator.

17The energy contributions are often separated into a stretching and a bending
component. The bending component is important for suspended CNTs but can
often be neglected for graphene resonators.
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Figure 2.7: The four lowest spatial modes for a gated membrane with the
geometry of the experimental drum in Fig. 2.1. The mode shapes were ob-
tained by Comsol Multiphysics simulations. The structure has a trench so that
the backgate can be contacted via a conducting wire. Another reason for the
trench is that it allows air to escape when the pressure is lowered. The spatial
profiles of the vibrational modes resemble the Bessel modes obtained for uni-
formly stressed circular membranes. However, the trench breaks the circular
symmetry and lifts the degeneracy of the second and third mode. The degen-
eracy is also lifted if the built-in stress is non-uniform. Such asymmetries can
complicate the identification of vibrational modes in experiments [47] but may
also give additional information about the structure. If a circular graphene
membrane is non-uniformly pre-stressed, the asymmetry can be tuned by elec-
trostatic gating [22]. Special designs for resonators can be achieved by utilizing
the tunable anisotropy [48].

It is not obvious that continuum elasticity theory, originally devel-
oped to describe macroscopic structures, is applicable to nanomaterials
where influences from the atomistic structure is easier to imagine. By
comparison, the electronic properties of nanostructures were drastically
changed from their three-dimensional bulk values. After all, graphene
is only one atom thick. However, it has been shown that continuum
elastic equations for a thin plate, the Föppl-von Kármán equations18,
can be recovered by starting from an atomistic model for graphene [49].
The main assumption is the long-wavelength approximation. Namely,
at a long enough length scale, the hexagonal lattice is approximately
isotropic [50] and the atomistic structure can be disregarded. Remark-
ably, the elasticity theory agrees well with both molecular dynamics
calculations [49] and experimental results [51] for graphene resonators
as small as a few tens of nanometers. Similar results were found by
numerical simulations of CNTs [52].

18The Föppl-von Kármán equations will be further discussed in chapter 5.
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So, if macroscopic models can be used to also describe nanomechan-
ical systems, why are NEMS interesting from a scientific point of view?
To begin with, the mechanics in nanostructures can be coupled to elec-
tronic degrees of freedom which can be dominated by quantum effects in
contrast to classical systems. Furthermore, nonlinear effects are strong
in graphene resonators and one aim is to study nonlinear mechanics in
the quantum limit. Another advantage of nanomechanical resonators
is their exceptionally high quality factors Q which can exceed 106 in
for instance CNT [53]. Quality factors surpassing one million were
recently demonstrated (Paper VII) also for multi-layer graphene res-
onators. The high quality factors in NEMS give extremely sharp res-
onances, which makes it possible to selectively address modes or com-
binations of modes. Furthermore, the large separation of time scales
(due to the high Q) makes room for exotic nonlinear physics where well
separated time scales are required. An example of such dynamics is the
internal resonance studied in Paper VII, which will be further discussed
in chapter 5.

The dissipation mechanisms which limit Q in NEMS are still not
fully understood. Different possible mechanisms such as thermoelas-
tic damping [54] and clamping losses [55, 56] have been proposed. It is
likely that several mechanisms are active simultaneously. If the different
dissipation mechanisms can be viewed as independent “linear” dissipa-
tion channels, they can be added according to Matthiessen’s rule. The
total dissipation rate then becomes γtot =

∑
i γi where the sum includes

all mechanisms. However, Matthiessien’s rule is often violated19 when
a resonator is driven far from equilibrium, where nonlinear dissipation
mechanisms kick in [58, 59]. How linear and nonlinear dissipation can be
modeled mathematically is briefly described in appendix A. Although
dissipation ultimately originates from interaction with the environment,
the internal structure of the system can drastically change the route of
dissipation as shown in Paper VII.

19Matthiessien’s rule is also violated for electrons in graphene [57]. The dissipation
of a nonequilibrium electron distribution in graphene is first thermalized by electron-
electron scattering into a hot Fermi sea on the time scale ∼ 100 fs. However, to
dissipate the energy from the electronic system, electron-phonon scattering is needed
which typically takes place on the time scale ∼ 1 ps. Hence, to reach equilibrium,
both processes are needed and the time to get there is therefore in this case set by
the slower time scale.
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2.3 Origins of Nanoelectromechanical Coupling

The fundament of nanoelectromechanics is the coupling between the
mechanical and electronic subsystems. The electromechanical coupling
can be both strong and tunable [14] and can have different physical
origins.

First of all, there is a capacitive coupling between the suspended
structure and the gate electrode20, since the capacitance depends on
the distance between the components. Hence, if the structure deflects
or vibrates it will affect the charge dynamics. At the same time, a
charged structure will experience an electrostatic force21 towards the
gate given by

F = − ∂

∂x

q2

2C(x)
, (2.15)

where the derivative should be calculated for constant charge [32]. As
a consequence, the system exhibits electromechanical back action, since
the mechanical deflection will influence the charge on the structure
which in turn exerts a force acting back on the mechanical deflec-
tion.

Another electromechanical coupling is found in the position depen-
dent tunneling coefficient T ∝ exp(−x/λ) [37], as presented in the
previous section. This interaction is important when the tunneling rate
between two bodies can be changed by mechanical deflection. As in the
case of capacitive coupling, the suspended structure will experience an
attractive force towards the conducting structure. This is because the
energy of the system can be lowered by decreasing the distance between
the objects. The tunneling coupling not only results in a mechanical
force but also affects the electronic subsystem by changing the tunneling
rate when the body is deflected. In contrast to the capacitive force, the
force due to delocalization of charge via tunneling is a purely quantum
mechanical phenomenon with no classical analogue. Coupling between
mechanical and electrical degrees of freedom can be achieved in several
other ways, but will not be discussed further in this thesis.

20A similar coupling can be achieved without a gate if the charge and mechanical
deflection is coupled by an external electric field. We will investigate this case further
in section 3.1.3

21The force can be viewed as a result of Coulomb attraction due to induced mirror
charges in the conducting gate.
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2.4 Basic Response in Nanoelectromechanical Resonators

In what follows, I will briefly describe what kind of basic response we
can expect in electromechanical resonators such as the graphene drum
in Fig. 2.8. As a starting point, let us set up a simple model where we
combine the equivalent circuit model Eq. (2.1) with the fundamental
building block — the damped anharmonic oscillator — to describe
the mechanical deflection. Furthermore, let us describe the electrome-
chanical coupling with the capacitance model Eq. (2.15).

a

𝑑
𝑥

𝐿b

Figure 2.8: a Circular graphene resonator. b Geometrical variables of the
graphene resonator. The distance to the gate d is typically 100 nm whereas
the diameter L of the resonator is typically a few µm.

In many cases, the electron dynamics follows the mechanical vibra-
tions adiabatically. This is because the dynamics of the electronic degree
of freedom typically takes place on a much faster time scale than the
time scale of mechanical oscillations. As a consequence, the electronic
subsystem has time to relax to its equilibrium state, given by the me-
chanical configuration. The electronic subsystem will therefore follow
the mechanical deflection adiabatically whilst the mechanical resonator
slowly moves. We can therefore set q̇ = 0 in Eq. (2.1) as long as we do
not apply any fast electric fields, i.e., on the time scale τRC .

To investigate the force terms which are relevant for small drive am-
plitudes, we linearize the adiabatic equations around the flat membrane
configuration22 and assume that the drive voltage Vd is much smaller
than the static voltage Vst, which is typically the case in experiments.
Our model then simplifies to

ẍ+ γẋ+ ω2
mx+ ηx3 =

1

2m

∂C

∂x

(
Vst + Vd(t)

)2

≈ C0Vst

2m

(
Vst + Vst

x

d
+ 2Vd cos(Ωt) + 2Vd cos(Ωt)

x

d

)
, (2.16)

22The equations should be linearized around its equilibrium position, which is
shifted by the electrostatic force, but that is of minor importance for the qualitative
analysis we want to carry out here.
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with mechanical damping γ, effective mass of the mechanical resonator
m and strength η of the so called Duffing nonlinearity [60]. The elec-
trostatic force (second line of Eq. (2.16)) contains four terms which will
give qualitatively different response in the resonator.

The time-independent force will pull the equilibrium position of the
membrane closer to the gate. The second force term, which is propor-
tional to V 2

stx, can be absorbed into the left hand side and renormalize
the vibrational frequency. By doing so, we see that the electrostatic
coupling will decrease the vibrational frequency. The reason is that,
as the resonator moves closer to the gate, the resonator becomes more
charged and will therefore be more strongly attracted to the gate. On
the other hand, as the resonator moves away from the gate, the capac-
itance decreases and the force towards the gate is weakened. This will
effectively reduce the stiffness of the mechanical restoring force, which
decreases the vibrational frequency. This phenomenon is therefore often
referred to as softening.

However, the mechanical frequency will also stiffen due to increased
tension when the membrane is stretched towards the gate by the static
field. This effect is not taken into account in Eq. (2.16). In general, the
frequency tuning can be a complicated combination of softening and
stiffening effects, which is strongly dependent on the pre-stress induced
during fabrication (Fig. 2.9). The electrostatic softening typically dom-
inates for strongly pre-stressed graphene membranes and small gate
distances d� L.

Besides the frequency tuning, another basic response observed in
NEMS is the snap-to-contact phenomenon. It occurs when the mem-
brane is pulled so strongly towards the gate that the electrostatic force
overcomes the mechanical restoring force and the suspended equilib-
rium becomes unstable. The membrane therefore snaps into the gate,
which often destroys the device. At the snap-to-contact point, the vibra-
tional frequency tends to zero which is illustrated in Fig. 2.10. Hence,
a rapidly decreasing vibrational frequency warns us when we are close
to the snap-to-contact point.

The electrostatic driving terms ∝ Vd cos(Ωt) in Eq. (2.16) can ac-
tuate mechanical vibrations. The so called direct driving [62], gener-
ated by the periodic force independent of x, actuates the membrane by
pumping energy into the system at constant rate. When the oscillation
is pumped to increasingly higher amplitudes, the intrinsic dissipation
of energy also increases. Hence, the linear mechanical damping satu-
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Figure 2.9: a Experimentally measured vibrational frequencies, as a function
of static gate voltage Vst, of the circular graphene drum studied in Paper VII.
The fundamental (first) mode is dominated by electrostatic softening, while
the second mode is stiffened. Strong drive voltage is often required to detect
high vibrational modes. The reason is that the coupling between the gate and
the membrane depends on the spatial overlap between the geometry of the gate
and the profile of the vibrational mode. Generally, higher modes have more
complex profiles, which typically leads to a reduced coupling with the gate
and therefore a higher effective mass. If the gate is perfectly symmetric and
the mode is anti-symmetric there is no coupling at all. Hence, devices often
exhibit modes which cannot be read out by the gate and they are therefore
called “dark modes”. To circumvent this, multi-gate structures [61], seen in b,
can be used to access more complex modes. A dark mode is likely the reason
for the anti-crossing observed on the tuning of modes four and five in a.
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rates the amplitude of oscillations when the dissipation rate equals the
constant pumping rate. The amplitude response to the direct drive is a
Lorentzian function of the detuning ∆ω = Ω− ωm between the driving
frequency and the natural mechanical frequency.
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Figure 2.10: Explanation of the snap-to-contact phenomenon. The static posi-
tion of the membrane is determined by the potential (solid line) resulting from
the competition between mechanical and electrostatic forces. a The vibra-
tional frequency of the fundamental mode is given by the effective parabolic
potential (dashed line) close to the local potential minimum. b The frequency
is tuned (here softened) by an increased static gate voltage. c At a critical
voltage, the suspension becomes unstable and the membrane snaps into the
backgate. Simultaneously, the frequency goes to zero since the local minimum
becomes a saddle point and then disappears. In Fig. 2.9, the steepening fre-
quency tuning of the fundamental mode for |Vst| > 3 V is an indication that
the system approaches the snap-to-contact point.

Another way to actuate mechanical vibrations is by parametric reso-
nance [62] due to the term proportional to Vd cos(Ωt)x. The parametric
driving is strongest for the condition Ω = 2ωm. The energy pumped
into the system by the parametric drive increases with amplitude, in
contrast to the direct driving. This can be understood by the fact that
the parametric force term is proportional to x, i.e., the amplitude of
the oscillations. As a consequence, when the parametric drive strength
is strong enough to overcome the intrinsic dissipation, the amplitude
starts to increase exponentially. To saturate the vibrations above the
instability point, nonlinear effects must be included in the model.

Two phenomenological ways to saturate a system driven above its
instability point is illustrated in Fig. 2.11. Firstly, a nonlinear damp-
ing mechanism can enhance the dissipation at larger amplitudes and
overcome the pumping, which will saturate the vibrations. Another
possibility is that nonlinear effects decrease the efficiency of the pump-
ing mechanism at larger amplitudes so that it can be balanced by the
linear damping, as we will see in chapter 4. The nonlinear response
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of more strongly driven resonators will be discussed in more detail in
chapter 5.

Despite the simplicity of the model discussed here, it captures two
very important ways of actuation commonly used to excite vibrations
in NEMS [43, 14, 63, 64]: the direct and the parametric driving. Both
are resonant phenomena, since the level of actuation heavily depends
on the frequency detuning between the driving field and the vibrational
mode. In the next chapter, I will extend the discussion to nonresonant
actuation mechanisms.
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Figure 2.11: Nonlinear stabilization of excited mechanical vibrations. The
amplitude of oscillations, in a system driven above its instability point, may
be saturated by (a) nonlinear damping which takes over at large amplitudes
and (b) a pumping mechanism whose efficiency decreases with increasing am-
plitude. A stationary oscillation is reached (dots) when the pumping is com-
pensated by the damping.
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Chapter 3
Nonresonant Actuation of
Mechanical Vibrations

Intuitive understanding is nothing more than the
confidence generated by experience.

“We have purposely trained him wrong, as a joke.”
Master Tang

Mechanical actuation of suspended nanostructures often relies on ex-
ternal periodic forces of electrical or optical origin. In many cases, the
applied force is in direct or parametric resonance with the vibrational
mode frequency [43, 14, 63, 64], as discussed in the previous chapter.
However, in this chapter I will focus on nonresonant actuation of me-
chanical vibrations. The actuation of a resonator will be referred to as
nonresonant if the actuation mechanism is insensitive to the relation be-
tween the applied drive frequency and the vibrational frequency.

An example of a nonresonant actuation mechanism is the shuttle
instability [65, 66, 67], which is the nanoelectromechanical analogue of
the Gordon-Franklin bell [68]. When a movable conducting particle on
a cantilever is situated between two voltage biased electrodes, the sta-
tionary position of the particle becomes unstable and it starts to shuttle
charge between the electrodes. Mechanical so called self-oscillations of
the particle is thereby actuated at its natural frequency, even though
the much lower frequency (often equal to zero) of the drive voltage is
far out of resonance.
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In optomechanical devices, nonresonant actuation can be achieved
by utilization of time-delayed radiation pressure1 [69] or photothermal
forces2 [70]. The detuning of the drive frequency with respect to the
optical cavity influences the effective damping of the mechanical os-
cillator. This phenomenon was demonstrated for graphene resonators
where the graphene sheet was both cooled and mechanically actuated
by a laser [71].

A similar nonresonant phenomenon (Fig. 3.1) is achieved if the role
of the optical cavity is replaced with an electric LC-circuit [72, 73].
The resonator can then be driven by applying a frequency close to the
relatively high LC-frequency. The mechanical oscillator will be non-
resonantly driven if the system is in the so called unresolved sideband
regime, where the line width Γw of the LC-circuit exceeds the vibra-
tional frequency.

3.1 High-Frequency Actuation by Delayed Back Action

The nonresonant high-frequency actuation mechanisms [69, 72, 73] men-
tioned above are controlled by the detuning of the drive frequency with
respect to a high-frequency resonance in the optical cavity or resonant
electric circuit. In Papers I-II, the considered systems were not cou-
pled to such an external resonance. On the contrary, the mechanical
vibration was coupled to a purely dissipative electronic subsystem. Nev-
ertheless, nonresonant mechanical actuation could still be achieved by
utilizing the electromechanical back action in the system.

1Radiation pressure is the momentum transferred when a body is exposed to
electromagnetic radiation. This can be used in Fabry–Pérot cavities where one of
the reflecting mirrors can move. The force on the mirror is modulated by its position,
which can be used to actuate or cool the mechanical vibrations of the movable mirror.
In a Fabry–Pérot cavity where the movable mirror is constituted by a graphene sheet,
the force caused by radiation pressure is typically very small. This is because of the
high transparency of graphene, which gives the Fabry–Pérot cavity a very low finesse,
i.e., too much of the radiation leaks out of the cavity. However, photothermal forces
can be utilized instead.

2Photothermal forces are caused by the heat-induced tension when a material
absorbs light. Similar to radiation pressure, photothermal forces can be used to
actuate the movable mirror.
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Figure 3.1: Nonresonant actuation by coupling a mechanical resonator to an
external LC-circuit. The mechanical vibrations are pumped if the drive fre-
quency Ω is larger than the natural frequency ωLC of the resonant circuit. This
can be understood by viewing the interaction as exchange of quanta between
harmonic oscillators. First of all, we describe the driving field and mechanical
vibration as two ideal harmonic oscillators with energy quanta h̄Ω and h̄ωm,
respectively. On the other hand, the LC-oscillator is coupled to the environ-
ment and the LC-resonance is therefore broadened with width Γw. We can
take this into account by viewing the LC-oscillator as a continuum of harmonic
oscillators with a Lorentzian mode density (solid line). The LC-oscillator(s)
can therefore not only be excited by energy quantum h̄ωLC , but by any quan-
tum h̄ω. However, the transition amplitude, for exchange of quanta between
the subsystems, depends on the mode density and will therefore decrease with
increasing |ω − ωLC |. Consider the case in which the coupling mechanism re-
quires a mechanical quantum to either be created or annihilated when we drive
the LC-oscillator with a quantum h̄Ω. Hence, when we drive at frequency Ω
and create a mechanical quantum, we will have the energy h̄(Ω− ωm) to feed
the LC-oscillator with. The situation is analogous if we instead would have
annihilated a mechanical quantum. To conserve energy, we have to find an os-
cillator in the LC-mode density with the corresponding energy h̄(Ω−ωm). For
blue-detuned drive (Ω > ωLC), the transition in which a mechanical quantum
is created is more likely than the transition in which a mechanical quantum is
annihilated. This is because the mode density is higher for frequencies closer
to ωLC . As a consequence, in net we will pump energy into the mechanical
vibration. In the unresolved sideband regime, Γw � ωm, the pumping of me-
chanical quanta will be insensitive to the relation between Ω and ωm. The
phenomenon is therefore nonresonant in the context of this thesis.
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3.1.1 Delayed Back Action in the Circuit Model

In Paper I, we studied nonresonant actuation of a suspended graphene
sheet (Fig. 3.2). The actuation mechanism relies on the time-delayed re-
sponse in the electronic subsystem, as derived in the paper. The aim of
the following paragraphs is to complement the mathematical derivation
in Paper I with a (hopefully) more intuitive explanation of why actu-
ation can be achieved. To this end, I will here describe a qualitative,
simplified version of the circuit model used in the paper.

𝐸(𝑡)
𝑑

𝑥

Figure 3.2: Suspended mechanical resonator controlled by the electric field
from the gate.

In the model, the charge on the membrane is driven by the alternat-
ing gate voltage,

q̇ = − q

RC
+
Vd cos(Ωt)

R

(
1 +

x

d

)
. (3.1)

Here, we have taken into account that the influence of the gate voltage
increases slightly if the membrane is mechanically bent towards the
gate. The charge can adjust to external variations on the time scale RC
which is typically much faster than the mechanical vibrations. When
the membrane is charged, the electric field from the gate will exert a
force on the mechanical resonator according to

ẍ+ γẋ+ ω2
mx =

Vd cos(Ωt)

meffd
q. (3.2)

There is an electromechanical back action in the system, since the me-
chanical deflection alters the charge which in turn acts back onto the
mechanical deflection. Furthermore, the interaction is modulated by
the drive field.

To see if actuation is possible, we need to investigate the force which
acts back on the mechanical resonator. Actuation is achieved if the
back action force pumps energy into the vibration and overcomes the
mechanical damping. This is the case for a dynamic force component Fd

proportional to ẋ, since it will perform the work
∫ T

0 dt ẋFd 6= 0 during
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one period T of the oscillation. We therefore want to understand if such
a force component exists. If it does, will it perform work on the vibration
or extract work from it, i.e., induce additional damping? As we will see,
both pumping and damping can be achieved if we account for the time-
delayed response in the electronic subsystem. We can therefore not
assume that the electronic subsystem follows the mechanical vibration
adiabatically, as we did in section 2.4.

The instantaneous charge, at a given time t, depends on the history
of the drive field and the mechanical deflection according to

q(t) =

∫ t

−∞
dt′e−(t−t′)/RC Vd cos(Ωt′)

R

(
1 +

x(t′)

d

)
. (3.3)

The electronic subsystem has a finite “memory” on the time scale RC,
due to relaxation of charge. As a consequence, the charge at some time
t depends exponentially less on the previous variations of the drive field
and the past of the drive field is “forgotten”. The accumulated charge
q(t) can therefore be viewed as an exponential-weighted average of the
history of the drive, i.e., what the charge does remember.

Before trying to understand the actuation mechanism, we will see
how the back action force leads to softening of the mechanical resonator.
We will then build on this reasoning and the memory analogue. To begin
with, we approximate the relatively slow mechanical deflection to be
constant during the memory of the electronic subsystem (Fig. 3.3a). In
this case, the charge on the membrane will simply be the well known [33]
time-delayed response of an RC-circuit driven by a periodic field,

q =
VdC√

1 + (ΩRC)2

(
1 +

x

d

)
cos(Ωt− φ), (3.4)

where φ = arctan(ΩRC) < π/2 is the phase shift of the delayed os-
cillation relative to the drive. For slow drive frequencies (ΩRC � 1),
the charge has time to adjust to the slowly varying drive (Fig. 3.3a).
In the language of the analogue, the memory of the charge is too short
for it to remember any significant changes of the drive. However, for
fast drive frequencies (ΩRC � 1), the accumulated charge will not have
time to fully load before the drive field is reversed. This both suppresses
and delays the response. In other words, for fast drive frequencies, the
accumulated charge starts to remember that the drive field has been
oscillating and the weighted average, i.e., the charge, will be reduced.
Hence, the amplitude of the charge oscillation will be suppressed and
the RC-circuit will operate as a low-pass filter.

33



D
ri

v
e 

fi
el

d

Time 𝑡′ 𝑡

𝑥 𝑡′ ≈ 𝑥 𝑡  𝑥(𝑡)(𝑡 𝑡′)

𝑥(𝑡)

Δ𝑡 𝑡𝑡′Time 𝑡′ 𝑡

R
es

p
o
n

se

- -

a b c

Figure 3.3: a Charge response (dashed) for a drive field with stable amplitude
(solid). If ΩRC = 0.1 (black), the charge has time to adjust. However,
if ΩRC =

√
2 (green), the drive is reversed before the charge has time to

fully load. b The drive field for a stationary membrane (red) and the drive
field for a membrane which is slowly approaching the gate (blue), i.e., with
increasing amplitude. c Zoom in of the drive fields. Due to the exponentially
decaying memory of the charge system, we can to first approximation treat
the membrane position as a linear function increasing with slope ẋ(t).

For any drive frequency, the mechanical resonator will experience
softening due to the back action force F . The force F ∝ qE(t) is pro-
portional to the charge on the membrane acted upon by the oscillating
electric field E(t) ≈ Vd cos(Ωt)/d which gives

F ∝
(

1 +
x

d

)
cos(Ωt+ φ) cos(Ωt) =

(
1 +

x

d

) [cos(φ) + cos(2Ωt+ φ)]

2
.

(3.5)
The mechanical resonator does not have time to adjust to the rapid
force components oscillating on the time scale 1/2Ω and we neglect this
component by averaging over fast oscillations [74]. However, the slow
component will influence the resonator. More importantly, the ampli-
tude of the charge oscillation (and therefore the strength of the force)
depends on the deflection of the mechanical resonator. As a result, the
mechanical vibrations will be softened by the back action force, since
the phase shift in an RC-circuit is restricted by 0 ≤ φ < π/2. This is
similar to the electrostatic softening described in section 2.4.

This softening force term does neither pump nor damp the resonator.
For such a phenomenon, we have to take into account that the resonator
is in fact moving. Let us first consider the case when the drive frequency
is slower than the relaxation rate so that the charge almost has time
to adjust; its memory is short. We also assume that the mechanical
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resonator slowly moves towards3 the gate. The simple expression in
Eq. (3.4) will then overestimate the accumulated charge. This is be-
cause it does not take into account that the amplitude of the drive
field was weaker further back in time (Fig. 3.3b). We can qualitatively
compensate for this overestimation by reducing the charge by a small
component which will be proportional to the velocity, ẋ, of the res-
onator. The faster the resonator moves, the bigger the overestimation.
This compensation is reasonable since the membrane moves slowly. Its
speed is approximately constant during the memory of the electronic
subsystem4. When we subtract the compensatory charge component
it results in a slow frequency back action force proportional to −ẋ. In
conclusion, the resonator experiences the electronic subsystem as a “vis-
cous” medium which extracts energy from the oscillating resonator. As
long as the charge (almost) has time to adjust to the drive field, it will
induce additional damping of the mechanical vibration.

On the other hand, if the drive frequency is slightly faster than the
relaxation rate, we will pump the mechanical vibration. To understand
this case is more demanding since the delay in the charge response is
significant. The phase shift of the main charge component (Eq. (3.4))
is restricted by π/2, i.e., it will never be out of phase with the drive
field and thereby stiffen the resonator. However, the phase shift of the
compensatory term can exceed π/2. This is because the deviation be-
tween a constant amplitude drive and the drive amplitude for a moving
membrane gets successively worse (Fig. 3.3). We can view this as a
memory function exp[−(t − t′)/RC](t − t′)/RC, biased to remember
what happened around t′ = RC in the past. The phase shift of this
component will therefore exceed π/2 when it is biased to remember that
the drive field had opposite direction. This happens for drive frequen-
cies Ω ≈ 1/RC. As a result, this charge component gives a back action
force proportional to +ẋ, which pumps energy into the mechanical vi-
bration. As a last case, if the drive frequency is very high, the charge
does not have time to respond at all and the drive field has no effect on
the system (Fig. 3.4).

In Paper I, we studied the nonresonant high-frequency actuation
mechanism in a more extensive model including a parasitic capacitance
which reduces the effect of the actuation mechanism. We also discussed

3The situation is analogous when the resonator moves in the other direction and
will result in the same conclusions.

4This correspons to approximating x(t′) ≈ x(t)− (t− t′)ẋ(t) in Eq. (3.3).
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the possibility of using the nonresonant actuation mechanism to study
nonlinear dissipation in NEMS, since the nonlinear dissipation typically
saturates the nonresonant action. This is in contrast to the commonly
occurring Duffing nonlinearity5. Such a nonlinearity shifts the effective
frequency of the vibration and can therefore saturate actuation due
to a resonant mechanism by pulling the mechanical frequency out of
resonance. However, frequency pulling would typically not have any
qualitative effect on a nonresonant actuation mechanism.
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Figure 3.4: Experimental observations, by Barois et al. [75], of the effective
quality factor Q due to the time-delayed back action mechanism suggested in
Paper I. The experimental measurements (dots) are in good agreement with
the theory (solid) of Paper I. The mechanism increases the damping of the
mechanical vibration when the drive frequency is slow compared to the charge
relaxation rate 1/RC. Hence, in this regime the effective quality factor is lower
than the intrinsic quality factor (dash-dotted). However, if the drive frequency
is increased above the relaxation rate, the mechanism results in pumping of
the mechanical motion and the effective quality factor exceeds the intrinsic
one. For drive frequencies much faster than the relaxation rate, the charge
oscillations are heavily suppressed and the quality factor is unaffected. Barois
et al. also showed that mechanical vibration can be actuated if the induced
pumping overcomes the intrinsic damping. The figure was provided by Dr.
Anthony Ayari.

Our paper stimulated Barois et al. [75] to study the nonresonant
high-frequency actuation mechanism experimentally (Fig. 3.4). They
found the mechanism appealing since it reduces the complexity of the
system — the resonator does not need to be coupled to an external
resonance such as a resonant electric circuit [72, 73]. They also argued
that the nonresonant mechanism can be utilized to simultaneously ac-

5The Duffing nonlinearity is further discussed in chapter 5.
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tuate several different resonator structures with the same drive field.
This is because the frequency range for actuation is relatively large in
comparison to resonant actuation of high Q resonators. However, a
drawback with the mechanism is that the dissipation in the electronic
subsystem heats the structure considerably [75]. The reason for this is
that the majority of the energy absorbed from the drive field will be dis-
sipated in the electronic subsystem and not be converted to mechanical
energy.

3.1.2 Playing with the Effective Density of States of a
Quantum Dot

Will the nature of the nonresonant actuation mechanism change if the
quantization of charge is pronounced so that a continuum model of the
charge dynamics is no longer feasible? This was studied in Paper II ,
where we investigated a movable single-level quantum dot (Fig. 3.5).
The quantum dot is in tunneling contact with an electronic reservoir
described by the model from section 2.1.3. The dot is coupled to the me-
chanical vibrations of a CNT since the energy level6 εDot of the station-
ary dot is shifted when the CNT deflects in the electric field E cos(Ωt).
The shifts amounts to eE cos(Ωt)x̂, where x̂ is the position operator.
Note that the electrons are only coupled to the mechanical vibration if a
field is applied. Now, what happens if we try to mimic the classical case
considered in the previous chapter and drive the system nonresonantly,
well above the mechanical resonance frequency, at the time scale of the
electronic dynamics?

To begin with, what is the time scale of the electron dynamics? To
address this question, let us begin by disregarding the weak electrome-
chanical coupling and focus on the interaction of the quantum dot and
the electronic reservoir. Due to the tunneling interaction, the dot state
is no longer an eigenstate of the electronic Hamiltonian. The dot state
will hybridize with the reservoir states and form new eigenstates corre-
sponding to the creation operators ψ̂†k. As a consequence, if we put an
electron in the dot state7 it will start to evolve according to quantum
mechanics (Eq. (2.5)) and “escape” out to the reservoir. The tunneling
rate of escape Γ = πT 2νDoS/h̄ depends on the tunneling strength T
and the density of states (DoS) νDoS in the reservoir. We approximate

6Counted from the chemical potential in the reservoir.
7I.e., a superposition of hybridized states.
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the DoS to be constant since it does not vary significantly on the en-
ergy scale of interest. Analogously to the classical case in the previous
section, the charge on the vibrating structure can be filled and emptied
on the time scale 1/Γ.

𝑉st + 𝑉d cos(Ω𝑡)

𝑉st − 𝑉d cos(Ω𝑡)

Figure 3.5: A suspended CNT quantum dot in tunneling contact with an
electron reservoir constituted by the two leads. In many applications the leads
to the left and right have to be treated as two distinct reservoirs typically held
at different voltages. However, we are only interested in tunneling to and from
the QD and not in charge transport through the structure. Hence, we treat
the two leads as a single reservoir. The system is tuned into a single-level
quantum dot by the static voltage Vst (degeneracy for spin can be lifted by a
magnetic field) and then driven by the harmonic modulation Vd cos(Ωt). Two
gates are used in order to reduce the Joule heating in the system.

Now, let us take a look at the type of processes which are induced
by the driving electromechanical coupling term Ĥi = eE cos(Ωt)x̂d̂†d̂.
It describes four different types of processes illustrated in Fig. 3.6. To
see this, let us write the interaction term in the basis of the hybridized
electronic eigenstates,

Ĥi =
eEa0

2

∑
k,k′

χkχ
∗
k′
(
eiΩt + e−iΩt

)
(ĉ† + ĉ)ψ̂†kψ̂k′ (3.6)

with χk = T exp(−iarccot[(εk − εDot)/h̄Γ])/
√

(εk′ − εDot)2 + (h̄Γ)2 and
zero-point amplitude of oscillation a0 =

√
h̄/2mωm. Reading the in-

teraction term Eq. (3.6) from the right, each process will annihilate an

electron (ψ̂k′) in a state with energy εk′ and create an electron (ψ̂†k)
in a state with energy εk. Each process will also either absorb (ĉ) or
emit (ĉ†) a quantum to the mechanical vibration and either absorb or
emit a quantum8 to the drive field with energy h̄Ω (Fig. 3.6). However,

8Note that we have described the drive field as a classical field which is unaffected
by the absorption of a few photons.
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the processes where quanta are emitted back to the drive field will be
strongly suppressed at low temperature of the reservoir T � h̄Ω/kB,
since there are (almost) no empty states below the chemical potential
to put electrons in. The main contribution will be to absorb a quan-
tum from the drive field and use the energy to lift an electron from
below to above the Fermi surface and simultaneously emit or absorb a
mechanical quantum.
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𝛺
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−𝜔m

a b c Energy

Figure 3.6: The four processes described by the interaction Hamiltonian
Eq. (3.6) at temperature T = 0. The two processes in a describe absorp-
tion of a drive field quantum which lifts an electron from the dark gray region
to the light gray region. When doing so, a mechanical quantum is either anni-
hilated or created. Hence, the two processes will lift electrons with a difference
in energy of 2h̄ωm. The processes which absorb a mechanical quantum has ac-
cess to more energy and can therefore reach deeper into the Fermi sea. The
two processes in b are the Hermitian conjugated processes. These will be sup-
pressed at low temperatures due to the lack of electrons above the chemical
potential which otherwise would have been pulled down below the surface. The
effective density of states, depicted in c, is localized around the Fermi surface
if εDot = 0. For a typical case (red arrows), the process which creates one
mechanical quantum (−ωm) is more likely than annihilation of one quantum
(+ωm), due to the larger effective density of states close to the Fermi surface.
However, this effect has to compete with the fact that processes (black arrows)
annihilating a mechanical quantum (and thereby collecting more energy to the
electronic subsystem) can reach deeper into the Fermi sea. In conclusion, the
allowed processes which create a mechanical quantum are relatively more likely
but fewer than the processes annihilating a mechanical quantum. Both damp-
ing and pumping can be achieved depending on the relation between the drive
frequency Ω and the “width” Γ of the effective density of states.

To actuate mechanical vibrations, the rate at which mechanical quanta
is created (Γ+) has to overcome the rate at which mechanical quanta
is absorbed (Γ−). These rates coincide with the rates given by Fermi’s
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golden rule, which was not derived in Paper II . However, a derivation
can be found in Appendix B. More importantly, from the derivation, we
can identify the effective density of states νeff

DoS ∝ 1/((ε−εDot)
2+(h̄Γ)2),

see Fig. 3.6c. The creation and absorption rates can be interpreted in
terms of the induced processes weighted with the effective density of
states. In Paper II it was concluded that the mechanical vibrations are
in net pumped when the drive frequency slightly exceeds the relaxation
rate of the electronic system (Fig. 3.7a), similarly to the classical case.
However, in contrast to the simple circuit model, the quantum model
naturally accounts for temperature (Fig. 3.7b). Furthermore, the quan-
tum model also shows that this nonresonant mechanism does not lead
to cooling even though Γ− > Γ+. This is a clear example that damp-
ing (Γ− > Γ+) is not the same as cooling9. The mechanical vibrations
become unstable when the pumping overcomes the intrinsic mechanical
damping. The vibrations will then be saturated by “nonlinear” i.e.,
multi-phonon processes, as shown in the complementary calculations to
Paper II in Appendix C.
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Figure 3.7: Pumping rate normalized with Γ0 = ωm(eEa0/h̄Γ)2. The me-
chanical oscillator is damped for drive frequencies smaller than ∼ Γ. For drive
frequencies slightly above Γ, the induced processes effectively pump the me-
chanical vibration. The influence of the induced processes diminishes with
temperature when T > h̄Γ/kB. b The effect is also diminished if the dot level
is detuned away from the chemical potential.

9Remark: An inconsistent comparison is made in the last paragraph of section 3
in Paper II , which leads to the incorrect conclusion that cooling can be achieved.
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To play with the effective density of states is a cornerstone in op-
tomechanics. However, optomechanics usually plays with the effective
DoS of a photonic subsystem coupled to the mechanical mode whereas
electromechanics utilizes properties of the electronic density of states.
Paper II shows an example of how a resonance in the effective density
of states is not a requirement for actuation. The lack of a resonance
makes the response more subtle and not as straightforward as in the
resonant case (cf. Fig. 3.1). Furthermore, the nonresonant actuation
mechanism studied here can only convert a small portion of the energy
absorbed from the drive field into mechanical energy. A considerable
amount of the energy needs to be dissipated in the electronic subsys-
tem. However, the possibility of achieving a mechanical instability and
thereby actuating a mechanical mode is not excluded, even though the
mode is coupled to a strongly dissipative electronic subsystem.

3.1.3 Selective Mode Actuation

In Paper III, we studied how the nonresonant back action mechanism
can be utilized to actuate vibrations of an isolated suspended graphene
resonator (Fig. 3.8a). Since the graphene sheet is not even connected
to an electronic reservoir, the electron dynamics is determined by the
internal dynamics within the sheet. Hence, the equivalent circuit model
is too crude to describe the dynamics. On the other hand, the graphene
sheet is so large that individual energy levels cannot be resolved and
a quantum model would therefore be superfluous. A good level of de-
scription is instead provided by the semiclassical model (section 2.1.2),
which is able to describe the response in the inhomogeneous charge
distribution when driven by an external electric field.a

𝑦

𝐸(𝑡)

𝐛

𝐜

𝐚

𝑥
𝐿

𝑢(𝑥, 𝑡)

Figure 3.8: a An isolated graphene resonator, i.e., not in electronic contact
with any reservoir or conducting elements. b When a vertical electric field
(red) is applied, a field component (black) will be induced along the graphene
sheet when it is deflected from its flat configuration. c The induced field profile
mimics the spatial profile of the vibrational mode.
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The isolated graphene sheet exhibits a similar back action force as
discussed above. The external field has an inhomogeneous compo-
nent along the graphene sheet if it is deflected from its flat position
(Fig. 3.8b-c). As a consequence, the field component will distort the
charge distribution and charge the suspended resonator. The external
field will then pull in the excess charge and exert a vertical back action
force on the mechanical deflection. Separation of charge into an inho-
mogeneous profile is a consequence of a spatial gradient in the electric
field. The external field component Eext(x,t) along the membrane is in-
deed inhomogeneous for a non-flat sheet since the field depends on the
deflection u(x,t) of the membrane Eext(x,t) = E(t)∂u(x,t)/∂x where
E(t) = Ed cos(Ωt) is the homogeneous drive field.

A dynamical equation for the charge can be obtained by combining
the continuity equation (Eq. (2.4)) with the equation for the conduc-
tivity (Eq. (2.3)) which gives10

∂2

∂t2
%(x,t)+νR

∂

∂t
%(x,t)+

1

2πε0L
∂

∂x
P
∫ ∞
−∞

%(x′,t)

x− x′ dx
′ = −E(t)

L
∂2

∂x2
u(x,t).

(3.7)
where L = πh̄2/e2EF. Equation (3.7) resembles a driven and damped
oscillator where the internal electric field due to separation of charge

10This equation can similarly to the circuit model be analyzed by the Green’s
function technique which gives

G(q,ω) = − 1

ω2 − |q|
2ε0L

− iωνR
.

The back action force term on mechanical mode n with u(x,t) = un(t)fn(x/l) can
be approximated as (see Paper III for details)

Fn(t) =
E2

0ε0π

ρml

∫ t

−∞
dt′ Gn(t− t′) cos

(
Ω(t− t′)

)un(t′)

l
.

The back action force depends on the history of the mechanical amplitude, drive field
and charge response

Gn(t− t′) = ωp

∫ ∞
−∞

dQ
e−νRt/2 sin

(
(t− t′)

√
4ω2

p|Q| − ν2R/2
)

√
4ω2

p|Q| − ν2R/ωp

Q2|〈eiπξQ,fn(ξ)〉|2

with ωp = e
√
EF/(2ε0l)/h̄ and spatial overlap of the charge wave and the mechanical

mode profile fn(ξ) which is normalized 〈fn(ξ),fn(ξ)〉 = 1,

〈eiπQξ,fn(ξ)〉 =

∫ 1/2

−1/2

dξ eiπQξfn(ξ).
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acts as a restoring force. The drive term in the right hand side is
proportional to the second spatial derivative of the membrane deflection,
i.e., the curvature of the membrane. The curvature for the vibrational
modes in a suspended graphene sheet is especially large close to the
clamping, since graphene has an exceptionally low bending rigidity11.
A crude approximation of the drive term is therefore to view it as two
point sources at the clamping points.

A qualitative picture of the actuation mechanism can be described
as follows: The two point sources generate charge waves from each side
of the trench. The waves propagate out in the suspended part and
interfere. For specific drive frequencies, the wavelength of the charge
waves matches the width L of the trench and creates a standing wave.
The profile of the standing wave has a considerable overlap with a spe-
cific mechanical mode shape. As a consequence, the drive field couples
strongly to the corresponding mechanical mode with the same wave-
length. In this respect, the studied phenomenon is a geometrical reso-
nance in space. However, the phenomenon is nonresonant in the time
domain since there is no explicit relation between the drive and vibra-
tional frequency.

The charge wave will be time-delayed and able to both damp and
pump the mechanical motion (Fig. 3.9), in analogy with the results dis-
cussed in the previous two sections. Interestingly, the mechanical modes
can be pumped selectively if the charge waves are underdamped. To
selectively pump a mode, the drive frequency has to be tuned to achieve
geometrical resonance for each mode respectively. One drawback with
this actuation mechanism is that it requires comparably strong drive
fields. In Paper III, we estimated the required drive field to be roughly
100 times larger than the strong field of ∼ 1 V/µm used in the exper-
iment in Paper VII. On the other hand, the pumping force increases
quadratically with mode number n. This is in contrast to standard
resonant actuation mechanisms where the pumping strength typically
decreases with mode number for a homogeneous drive field. The rea-
son for the decreased pumping strength is the decreased spatial overlap
between the mechanical mode and the drive field (Fig. 2.9). The non-
resonant pumping mechanism described by the semiclassical Eq. (3.7)
does not suffer from this effect but is at the same time not applica-
ble to high mode numbers, since it relies on local equilibrium of the
charge carriers. The drive frequency is therefore limited by the electron-

11The full distributed model of the deflection u(x,t) is found in Paper III, Eq. 1.
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Figure 3.9: Scaled induced mechanical damping for different mechanical mode
numbers n and damping ratios νR/ωp of the charge waves with characteristic

plasma frequency ωp = e
√
EF/(2ε0l)/h̄. a For overdamped charge oscillations

(here νR/ωp = 3) the induced damping resembles the one observed in the
capacitive (Fig. 3.4) and quantum (Fig. 3.7) models. b The damping ratio has
been decreased to νR/ωp = 1. c Selective actuation of modes can probably be
detected for underdamped charge waves (here νR/ωp = 1/3) since the pumping
peaks are separated. The separation is limited by the geometrical resonance.
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electron scattering time which is typically some hundreds of femtosec-
onds [76, 77, 57]. Furthermore, actuation of anti-symmetric modes typi-
cally requires multi-gate structures. However, the actuation mechanism
discussed here can also drive anti-symmetric mechanical modes, even
though the drive field is homogeneous.

3.2 Delayed Back action Based on Interaction of Elec-
trons

In Paper IV, we no longer utilize an external alternating field to actu-
ate mechanical vibrations. Instead, we take advantage of a tempera-
ture difference between two reservoirs and convert heat to mechanical
energy. The system therefore resembles a nanoelectromechanical heat
engine.

Similar actuation mechanisms which are based on either a static
voltage bias [65, 66, 78, 79, 80] or a temperature drop [81] have been
studied. These mechanisms are based on a back action force where
the mechanical vibration generates oscillations of the average charge
(spin) on the suspended resonator. These charge oscillations modulate
the back action force, which pumps the mechanical vibration. The
mechanisms studied in [65, 66, 78, 79, 80, 81] require transfer of electrons
from one reservoir to another. If the flow of electrons is blocked, the
mechanisms no longer function. In the system studied in Paper IV,
such electron flow is blocked. Furthermore, the mechanical vibration
does not even generate time variations in the average charge on the
suspended structure. Nevertheless, actuation is still possible.

A prototype system which exhibits the actuation mechanism is il-
lustrated in Fig. 3.10. A CNT suspended over a trench constitutes a
four state quantum dot. It can be either unoccupied, populated by one
electron with either spin, or doubly populated by two electrons with
opposite spin. Electrons with spin-↓ can tunnel to and from the leads
which constitute a single spin-polarized12 reservoir. Similarly, spin-↑
electrons can tunnel to and from the tip which is spin-polarized for op-
posite spins. As a consequence, an electron from the leads can tunnel
to the CNT but not continue to the tip since the tip does not contain
any spin-↓ states. Even though there is no tunneling through the sys-
tem, the reservoirs still interact due to the electron-electron interaction

12Spin polarized so called half-metals contain only spin-σ states (σ =↑ , ↓) close
to the Fermi surface [82].
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in the quantum dot. Furthermore, the external forces on the CNT are
assumed to be dominated by the capacitive force towards the gate. As
we will see, the electron-electron interaction allows for a heat flow be-
tween the two reservoirs which are kept at different temperatures. More
importantly, the interaction also mediates a delayed back action force
which can pump the mechanical vibration.

Figure 3.10: The CNT is suspended over a gate and acts as a four-state quan-
tum dot. Electrons can tunnel to and from the dot, but not to a reservoir with
opposite spin polarization. The reservoirs have different temperatures which
constitute the energy source for the pumping mechanism. Both the capaci-
tive force towards the gate and the tunneling rate to the tip depend on the
mechanical deflection.

To understand how heat is transferred between the reservoirs, let us
consider the positioning of the electronic states as depicted in Fig. 3.11.
If we assume the tip to have a high temperature while the leads are cold,
the electron dynamics can be reduced to a four-step cycle described in
Fig. 3.12. During one cycle a spin-↑ electron leaves the tip with energy
E↑1 + U , where U is the electron-electron interaction energy. However,

when it comes back, it only brings the energy E↑1 . Conversely, a spin-↓
electron with energy E↓1 leaves the leads and comes back with energy

E↓1 +U . Hence, during one cycle, the energy U has been transferred from
the hot to the cold reservoir due to the electron-electron interaction. By
this means, we have access to a thermodynamic energy source which
potentially could pump the mechanical vibration.

To understand the nature of the back action pumping mechanism, we
will characterize the electron dynamics by the probabilities13 P0, P↑, P↓

13In the supplemental material of Paper IV, we derive the rate equations for the
probabilities from the Liouville-von Neumann equation by following Refs. [83, 84].
The rate equations are valid for high temperatures kBT↑,↓ � h̄ωm, h̄Γ↑, h̄Γ↓.
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and P2 to be in either of the four states. The capacitive force on the
mechanical resonator can then be described by

F = − ∂

∂x

e2

C(x)
(P↑ + P↓ + 4P2) = − ∂

∂x

e2

C(x)
(n↑ + n↓ + 2P2) . (3.8)

This force is the average contribution of the forces in the different
states14. An alternative form of the force is given by introducing the
probabilities nσ = Pσ + P2 to have an electron with spin σ =↑,↓ on the
dot, regardless of whether an electron of the opposite spin is present or
not. As will be argued later, the probabilities nσ are constant in time
and will therefore not contribute to a dynamic back action force.

2

0

Figure 3.11: Energy diagram of the four dot states. The two singly-occupied
states are below the chemical potential µ of the reservoirs. Without electron-
electron interaction, we could use the independent-electron model and the
energy for the doubly-populated state would be |E↑1 | + |E↓1 | below µ. How-
ever, due to electron-electron interaction, the doubly-populated state contains
the additional interaction energy U , which brings the doubly-populated state
above the chemical potential. The occupation of electrons in the reservoirs
are indicated by the gradual filling, which reflects the reservoir temperatures.
This figure was provided by Dr. A. Vikström [85].

14The force in the doubly-populated state is two (electrons) squared i.e., four times
stronger than the singly-populated states.
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A cycle starts with a spin-↓ electron tun-
neling from the leads to the empty dot,
bringing the dot to the singly-occupied
spin-↓ state. After the tunneling event,
the empty state left in the leads relaxes
quickly due to internal processes.

The spin-↓ electron is now stuck on the
dot since there are almost no empty
states in the lead with energy E↓1 . On the
other hand, a high-energy spin-↑ electron
can overcome the additional interaction
energy U and tunnel to the dot (bringing
it to the doubly-occupied state). Then
the empty state in the tip relaxes.

The electron tunneling has at this stage
brought the energy E↑1 + E↓1 + U to the
dot. Since the doubly-occupied state has
relatively high energy, the spin-↓ electron
can now tunnel back to the leads. It will
leave the dot in the spin-↑ state with en-
ergy E↑1 and return to its lead with en-
ergy E↓1 + U .

Finally, the spin-↑ electron may tunnel
back to the hot tip since there are a con-
siderable amount of empty states it can
tunnel to. The dot is then empty and a
new cycle can begin. This cycle only de-
scribes the average dynamics (the prob-
abalistic nature of the equations include
reverse processes).

Figure 3.12: The heat transfer cycle caused by the electron-electron interac-
tion. Tunneling processes are indicated by dashed arrows. Each tunneling
process brings the dot from one of its states to another, indicated by the solid
arrows. Note that some tunneling arrows (dashed) are not horizontal, which
reminds us that the energy diagram depicts the four energy states and not in-
dependent energy levels. These figures were provided by Dr. A. Vikström [85].
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The back action mechanism is described in Fig. 3.13. A crucial com-
ponent in the actuation mechanism is that the electron-electron energy
depends on the mechanical deflection so that it generates a force. Both
the magnitude and the sign of the back action force can be controlled
by the temperature difference of the reservoirs. In particular, soften-
ing and damping of the vibration can therefore also be achieved, if the
temperatures of the reservoirs are switched.
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Figure 3.13: Explanation of the back action mechanism which leads to actua-
tion of mechanical vibrations. a If the CNT is static, the flow of probability
between the four states will equilibrate to a stationary counterclockwise flow
(see Fig. 3.12). Hence, the flow of probability in and out from each state are
equal. b If the CNT deflects towards the tip, the tunneling rate for spin-↑
electrons increases which enhances the corresponding probability flows (indi-
cated by thicker arrows for these flows). The unchanged tunneling rate for
spin-↓ electrons then becomes a bottleneck in the cycle. As a consequence,
occupation probability will accumulate in the P2 and P0 states, whilst the
P↑ and P↓ states will be drained with an equal amount. Hence, the average
numbers nσ = Pσ + P2 of spin-σ electrons are unchanged. c Conversely, if
the CNT deflects away from the tip, the tunneling of spin-↑ electrons will be
suppressed and become a bottleneck, again without changing nσ. Since nσ
is constant, the two first force terms in Eq. (3.8) cannot generate dynamic
back action. However, dynamic back action is still possible since the capac-
itive force depends on the square of the charge, e2[n↑ + n↓ + 2P2(t)], which
varies in time even though the average charge, −e[n↑ + n↓], does not. Hence,
we can focus our attention on what happens with the probability of being in
the doubly-occupied state P2. The back action force can now be understood
as follows: The CNT deflects towards the tip which increases the occupation
of the doubly-occupied state due to the bottleneck effect. As a consequence,
the capacitive force down towards the gate increases and stiffens the vibra-
tions. Furthermore, the back action force will be delayed and therefore not
only stiffen but also pump the mechanical vibration. This figure was provided
by Dr. A. Vikström [85].
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Chapter 4
Exciting Supercurrents

The chimpanzee Washoe learned sign
language, then she taught her son.

Speaking of the impact of ideas.

In this chapter, I will describe one example of how actuated mechani-
cal motion can be useful. The example corresponds to Paper V, where
we studied a nanomechanical resonator coupled to coherent transfer of
Cooper pairs through a Josephson junction. A Josephson junction is a
weak link between two superconducting leads which allows Cooper pairs
to tunnel between them. In an ordinary Josephson junction, a ground
state supercurrent flows through the junction if the leads have different
superconducting phases. If the phases are equal, no supercurrent flows.
However, in Paper V we showed that by inserting and parametrically
actuating a movable Cooper-pair box (CPB), see Fig. 4.1, a supercur-
rent can be generated even though the superconducting phase difference
is zero.

To generate such supercurrents has attracted considerable attention
during the last decade. The literature contains several proposals of how
to modify Josephson junctions in order to break the underlying sym-
metries which prevent the supercurrent to flow at zero phase difference.
Modified junctions which support a ground-state supercurrent despite
zero phase difference are called ϕ0-junctions. Theoretical proposals of
ϕ0-junctions include ferromagnetic structures [90, 91], quantum point
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a

b c

Figure 4.1: a A sketch illustrating the theoretical model. A Cooper-pair box
(gray sphere) which is attached to anharmonic symmetric (virtual) springs can
oscillate in the gap between two superconducting leads (gray blocks). Cooper
pairs can tunnel from one lead to the other via the Cooper-pair box. An alter-
nating gate voltage modulates the charge on the CPB, leading to a parametric
excitation of horizontal mechanical vibrations. b and c show two suggestions
for realization of the system. In b, the CPB is constituted by a supercon-
ducting grain (gray sphere) on a bendable nanowire. In c, the CPB (gray
rectangle) is instead attached to a suspended nanobeam which can oscillate
laterally. (Brown components are made of insulating material.) To my knowl-
edge, these structures have not yet been experimentally realized. However,
related systems have been constructed, such as a suspended CPB [20], a su-
perconducting mechanical resonator embedded in a SQUID [86], as well as
mechanical resonators coupled to superconducting qubits [87, 2, 88, 89].
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contacts [92], topological insulators [93, 94], quantum dots [95, 96, 97]
and quantum wires [98, 99, 100]. However, only recently has a ϕ0-
junction been realized experimentally by combining an external mag-
netic field and spin-orbit coupling [101].

The system proposed in Paper V1 (Fig. 4.1) is a movable single-
Cooper-pair box attached to an anharmonic mechanical resonator in
the gap between two superconducting leads with zero phase difference.
Cooper pairs can tunnel through the junction via the CPB. Due to
symmetry, the net tunneling to the left and right cancel each other out
and no net current will flow if the superconducting phases of the leads
are equal. However, by applying an alternating potential to the gate,
we showed that the CPB position can be parametrically excited. The
mechanical vibrations are automatically synchronized with the charging
and decharging of the CPB, which establishes a supercurrent through
the junction2.

The system was mathematically modeled as an anharmonic mechan-
ical oscillator coupled to a single-Cooper-pair box (described in sec-
tion 2.1.3) via position dependent tunneling. The corresponding Hamil-
tonian is

Ĥ =

(
p̂2

2m
+
mω2

mx̂
2

2
+
η

4
x̂4

)
− 2eVd cos(Ωt)|1〉〈1| (4.1)

− h̄ωJ

2

(
e−x̂/λ|1〉〈0|+ ex̂/λ|1〉〈0|+ H.c.

)
,

where η is the mechanical anharmonicity. The neutral state and state
with one excess Cooper pair are denoted |0〉 and |1〉, respectively. The
energy of the charged state is controlled by the harmonic driving field
with frequency Ω. The strength of the driving field is assumed to be
small compared to the tunneling coupling eVd � h̄ωJ.

1The paper builds on the idea, put forth by Gorelik et al. [102, 103], that Cooper
pairs can be coherently transferred from one superconducting lead to another by
moving a single-Cooper-pair box back and forth between the two leads. The state of
the box evolves due to an applied electric potential as the box moves. The transport
of Cooper pairs through the junction can be controlled by reversing the potential
when the box is moved in the other direction. By proper switching of the potential
and movement of the CPB, it is possible to establish a direct supercurrent through
the junction although the superconducting leads have the same superconducting
phase. In contrast to ϕ0-junctions, the phenomenon studied by Gorelik et al. is a
nonequilibrium effect.

2Similar automatic synchronization to establish a net current was predicted by
Milton et al. [104] in normal-conducting systems.
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In Paper V, we showed that the supercurrent takes the form

J̄ ≈ 1

T

∫ T/2

−T/2
dtTr

[
p̂

2mλ
q̂ρ̂

]
, (4.2)

when the amplitude of vibrations is small compared to the tunneling
length λ and where Tr denotes trace with respect to both subsystem.
The supercurrent is averaged over one oscillation of the driving field to
extract only the direct component of the supercurrent. From Eq. (4.2) it
is evident that to have a finite direct supercurrent we need correlation
between the movement of the box (corresponding to the operator p̂)
and the charge of the dot (corresponding to the operator q̂). As we will
see, such a correlation exists and leads to a supercurrent through the
junction.

To qualitatively understand how the supercurrent is established, we
can reason as follows. Assume that the CPB is deflected to the left from
its symmetric resting position. The mechanical springs will then exert
a force on the resonator, which tries to pull the CPB back to the center
position. However, the resonator will also experience a softening force
due to the tunneling coupling, as discussed in section 2.3. Furthermore,
the softening force depends on the state of the electronic system, which
is modulated by the driving voltage. As a consequence, the softening
force on the mechanical resonator is modulated and therefore able to
parametrically excite mechanical vibrations. The parametric excitation
can be described as an effective energy landscape for the mechanical res-
onator (Fig. 4.2). The two minima of the energy landscape correspond
to two stable mechanical states oscillating with the driving frequency3 Ω
but with phase shifts ±π/2 with respect to the driving field. Similarly,
the charge in the CPB oscillates as q ≈ −e[1 + 2 cos(Ωt)eV0/h̄ωJ]. As a
result, the mechanical oscillation will be synchronized with the charging
and decharging of the Cooper-pair box. The two resulting electrome-
chanical states can be viewed as “chiral states” (Fig. 4.3), which carry
supercurrent in opposite directions.

The resulting direct supercurrent increases with amplitude A of the
mechanical oscillation and is approximately4 given by

J̄± ≈ ±eΩ
A

λ

eV0

2h̄ωJ
. (4.3)

3In the considered system, the parametric excitation is strongest when the driving
frequency is close to resonant with the mechanical frequency Ω ≈ ωm.

4In the analysis we have used a perturbation approach where we have considered
the parameters A/λ and eV0/h̄ωJ to be small.
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In the paper, we estimate the direct current to be on the order of 0.1 pA,
which is a moderate current since currents down to a few fA can be
measured in tunnel-junction structures [105].

Figure 4.2: The effective energy landscape g(P,X) of the mechanical resonator
in the frame rotating with the electric driving field (in the rotating wave ap-
proximation [106]). The variables X and P are the so called quadratures of
the motion, which are related to the amplitude and phase of the oscillation
(see Paper V for details). Due to dissipation, the system will relax down to
one of the two stable states at the bottom of the effective energy landscape. In
these states, the mechanical resonator performs synchronized oscillations with
the electronic subsystem, which we refer to as the “chiral states” of the sys-
tem, see Fig. 4.3. These chiral states carry supercurrent in opposite directions.
Small fluctuations may at rare instances induce transitions between the two
states [106] and thereby change the direction of the supercurrent. The typi-
cal rate at which the transitions occur increases exponentially with increasing
temperature.

The mechanical amplitude will be saturated by the anharmonicity
in the restoring force of the resonator. This is because the effective dis-
tance between the vibrational energy levels of the mechanical oscillator
will be altered by the anharmonicity as more energy is pumped into the
mechanical oscillation. As a result, the mechanical vibration is pushed
out of resonance with the driving field and the efficiency of the pumping
mechanism diminishes.

The results presented in Paper V are interesting for several reasons.
First of all, the earlier suggestions [90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100, 102, 103], of how to generate a supercurrent through a junction with
zero phase difference, utilized explicit symmetry breaking. However, in
Paper V, the symmetry of the system is broken spontaneously by the
parametric excitation. This fundamentally different way to generate the
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supercurrent results in two coexisting chiral states for the system, which
carry current in different directions. It is therefore possible to switch the
direction of the current by intentionally perturbing the system from one
chiral state to the other. Such manipulation could be interesting for ap-
plications5. This is in contrast to other zero-phase-difference junctions
where the current direction is set by the system parameters. Further-
more, the automatic synchronization of the mechanical and electronic
subsystems makes the fabrication of the device and the experimental
detection of the phenomenon less demanding compared to the system
in Ref. [65].

q

x

q

x

a b

Figure 4.3: The parametric excitation automatically synchronizes the dynam-
ics in charge (q) and position (x) to “chiral states”. The charge oscillates in
phase with the driving field whereas the parametrically excited mechanical os-
cillation is approximately ±π/2 out of phase with the driving field. As a result,
the time-evolution of the electromechanical state in the charge-position space
is clockwise (in a) or counterclockwise (in b). These chiral states coherently
transfer Cooper pairs through the junction in opposite directions.

5It should be noted that such switching between the chiral states is here modeled
as semiclassical, in contrast to coherent manipulation of a qubit.
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Chapter 5
Mode Coupling and Internal
Resonance

[In the film “Winnie the Pooh”, Pooh, Rabbit, Owl, Eeyore, Kanga
and Roo are trapped in a hole and Piglet gets a rope — only to cut
it up into six pieces.]

Piglet: And six! There! Now we can ALL get out!
Pooh: How very thoughtful you are, Piglet.
Rabbit: Good grief! Tie them together, Piglet! Can you tie a knot?
Piglet: I cannot.
Rabbit: Ah, so you CAN knot.
Piglet: No. I cannot knot.
Rabbit: Not knot?
Pooh: Who’s there?
Rabbit: Pooh!
Pooh: Pooh who?
Rabbit: No! Pooh... eh... Piglet, you’ll need more than two knots.
Piglet: Not possible.

In a parallel two-dimensional world.

In the previous chapters, I described how mechanical vibrations can be
coupled to the dynamics of electrons in order to actuate mechanical vi-
brations and how to utilize the mechanical actuation to excite nontrivial
supercurrents.

57



Another important direction of NEMS research is to not only couple
vibrational modes to external fields and charge dynamics, but to couple
vibrational modes to each other. Experimental control of interacting
modes is rapidly advancing. For instance, modes can be tuned into
a strong coupling regime1 [61, 107]. An important advancement was
the demonstration of coherent control and manipulation of the modes
by pulse techniques [108, 109]. Coherent control is crucial in informa-
tion processing applications. Furthermore, driven coupled modes can
exhibit very rich nonlinear dynamics, such as multiple hysteresis2 fea-
tures [110] and a plethora of coexisting satellite resonances [111]. Mode
interaction not only strongly affects the driven response but also in-
fluences the dissipation of the modes when the drive is turned off and
the system “rings down”. Energy can be stored in one mode, which
then feeds a second mode during ringdown. The amplitude and fre-
quency of the second mode can thereby be kept steady even after the
drive is turned off [112]. However, for a very similar system, namely
the one studied in Paper VII, the decay rate of the other mode is not
reduced but enhanced due to the mode coupling, as will be described
later. The completely different behaviors of these two systems highlight
the richness of nonlinear dynamics in mechanical resonators.

For a long time, nonlinearities have been considered unwanted from
the point of view of applications. This is partly because the nonlineari-
ties can mediate amplitude fluctuations into frequency fluctuations. For
instance, frequency fluctuations are devastating for the performance of
filters, since stable frequencies are crucial in order to not lose the sig-
nal3. Such amplitude induced frequency fluctuations are usually present
in an anharmonic (Duffing) oscillator, since the amplitude generates an
effective shift of the frequency4. However, nonlinearities can in fact be
utilized to stabilize the frequency of a vibrational mode by coupling it
to another mode [113]. Such nonlinear frequency stabilization is a con-
crete demonstration of the usefulness of nonlinear mode interaction in
applications.

1In the strong coupling regime studied in [61, 107], the coupling constant g (which
is proportional to the frequency splitting of the anti-crossing, see Fig. 5.4) is much
larger than the decay rates of the coupled modes.

2Hysteresis in the frequency response of NEMS is explained in 5.7.
3NEMS filters are also typically very sensitive to changes in temperature since it

can change the frequency of the device. This makes high performing NEMS filters
difficult to achieve for every day use.

4See Fig. 5.7
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The frequency-stabilization mechanism utilizes an important type of
mode interaction called internal resonance (IR). This coupling mech-
anism is very sensitive to the relation between the frequencies of the
involved modes. A small change in for instance the static gate volt-
age, which slightly shifts the frequencies, can pull the system out of
an internal resonance. Comprehensive knowledge of both the nonlinear
coupling constants and frequency tuning is therefore important.

In this chapter, I will address this issue by discussing nonlinear mode
coupling and frequency tuning in circular graphene resonators (Paper
VI). I will then describe the phenomenon of internal resonance and how
it can drastically influence both the driven response and the ringdown
of a graphene resonator (Paper VII).

5.1 Nonlinearities and Frequency Tuning

In Paper VI, we investigated the nonlinearities and frequency tuning of
the vibrational modes of a circular graphene resonator (Fig. 5.1). We
did this by starting from the Föppl-von Kármán equations discussed in
section 2.2,

ρ0ür −
[
∂rσrr + r−1∂φσrφ + r−1(σrr − σφφ)

]
= 0,

ρ0üφ −
[
∂rσrφ + 2r−1σrφ + r−1∂φσφφ

]
= 0, (5.1)

ρ0ẅ + κ∆2w − r−1 [∂r(rσrr∂rw + σrφ∂φw)+

+∂φ
(
σrφ∂rw + r−1σφφ∂φw

)]
= Pst(r,φ) + Pd(t,r,φ).

They describe the motion of the displacement field

u(r,φ) =
(
w(r,φ),ur(r,φ),uφ(r,φ)

)
(5.2)

of the membrane5 (Fig. 5.1b) under the external load P (t,r,φ). The
stress tensor σij relates to the displacement field via Poisson’s ratio6

ν ≈ 0.15 and the two-dimensional elastic modulus Eh ≈ 340 N/m [42].
In the stress regime of interest, graphene can be considered as a linear-

5Counted from its flat and stress-free configuration
6Poisson’s ratio is defined as the negative ratio between the transverse and axial

strain ν = −εtrans/εaxial. When you stretch graphene in one (axial) direction it gets
longer in this direction by the amount εaxial. However, it also gets contracted in the
transverse direction by εtrans. The same effect can be observed if you stretch a strip
of rubber or a balloon.
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elastic material7. However, a heavily stressed graphene sheet may be-
have as a nonlinear-elastic membrane [45], but with the imminent risk
that the tension will destroy the resonator.

𝑅𝑟 𝜙

𝑑

 𝑤(𝑟)
𝑤0

𝑤(𝑟, 𝜙)

a

c

b

𝒖(𝑟, 𝜙)

Figure 5.1: a Circular graphene resonator with radius R. b The displace-
ment field u(r,φ) describes how the graphene sheet is deformed (black) from
its unstretched flat configuration (light gray). This figure was provided by
Professor Andreas Isacsson. c The static deflection w̄(r) is due to external
loading from the backgate with maximum deflection amplitude w0. The mem-
brane performs small oscillations δw(r,φ) = w(r,φ) − w̄(r) around the static
configuration.

Before finding the vibrational modes and the corresponding frequen-
cies of the circular resonator, we make two important approximations.
Firstly, we neglect the extraordinarily low bending rigidity κ ≈ 1.5
eV [42] of the suspended graphene sheet. This so called membrane
approximation reflects the fact that graphene is an exceptionally thin
material which only requires tiny forces to bend the bonds between the
carbon atoms.

Secondly, we assume that the in-plane motion follows the out-of-
plane motion adiabatically. This is motivated by the lowest in-plane
vibrational modes having much higher frequencies than the out-of-plane
modes. The in-plane and out-of-plane frequencies are on the order

7The stress σij can be approximated as linear in ur and uφ and quadratic in w
due to the geometric nonlinearity given by the Pythagorean theorem, see Paper VI
for details.
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fin-plane ≈
√

Eh

ρ0R2
∼ 10 GHz � fout-of-plane ≈

√
T

ρ0R2
∼ 100 MHz,

(5.3)
for typical resonators with radius R = 1 µm and two-dimensional mass
density ρ0 ≈ 0.75 mg/m2 [42]. Hence, a small damping of the in-plane
motion will relax it to follow the out-of-plane vibration adiabatically.
The adiabatic approximation lets us set ür = üφ = 0 in Eq. (5.1). The
in-plane displacement can then be solved by treating the instantaneous
out-of-plane displacement as a static input. We did this by introducing
the Airy stress function [114, §101] which can be seen as a potential to
the stress field [50, §7]. When the adiabatic in-plane problem is solved,
the dynamics is reduced to a nonlinear partial differential equation for
the out-of-plane vibrations. The equations are nonlinear in w since the
stress σij depends on the out-of-plane deformation. This is due to the so
called geometric nonlinearity of the system. Another origin of nonlinear
out-of-plane motion is the electrostatic coupling to the backgate, which
results in a nonlinear force, see Eq. (2.15).

To solve the out-of-plane problem, we performed the mode expansion
for the flexural vibrations given by

w(t,r,φ) = w̄(r) +
∞∑
α=1

Rqα(t)Ψα(r,φ), (5.4)

with dimensionless amplitudes qα and mode shapes Ψα(r,φ), around
the static deflection8 w̄(r). The mode expansion in Eq. (5.4) allows
us to reformulate the dynamics described by the Föppl-von Kármán
equations as an infinite set of Duffing oscillators9

∂2

∂τ2
qα + Λαqα +

∞∑
β=1

∞∑
γ≥β

Qαβγqβqγ +

∞∑
β=1

∞∑
γ≥β

∞∑
η≥γ

Cαβγηqβqγqη = (5.5)

∫ R

0

dr

R

∫ 2π

0
dφ Ψ∗α(r,φ)

R

T
Pd(t,r,φ),

8The static solution was obtained by adopting the ansatz w̄(r) = w0[1− (r/R)2]
for the static deflection and solving the in-plane static configuration self-consistently
according to Eq. (5.1). The free energy [114, §97] was then minimized [115, §92] for
the center deflection w0 (Fig. 5.1) under an external parallel-plate-capacitor load.

9The dimensionless time τ = t
√
T/ρ0R2. Hence, the vibrational frequency

fα =
√

ΛαT/ρ0R2/2π.
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with frequencies fα =
√

ΛαT/ρ0R2/2π. The Duffing oscillators are
coupled by the quadratic Qαβγ and the cubic Cαβγη coupling constants
(Fig. 5.2), which account for the geometric nonlinearity.
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Figure 5.2: Coupling constants for radially symmetric modes (n = 0), where
the composite mode index α = (n,k) consists of an angular component n and a
radial component k. (Coupling constants for asymmetric modes are calculated
in Paper VI.) The relative importance of the cubic nonlinear coupling terms
compared to the linear terms are proportional to Eh/T where T is the uniform
tension in the graphene. Hence, larger tension makes the membrane behave
more linear. The quadratic coupling terms are zero for an unloaded membrane
but increase linearly with the deflection of the membrane. The magnitude of
both symmetric and asymmetric nonlinearities typically increase with mode
number.

To describe the dynamics of the membrane as interaction between
different vibrational modes has important advantages. The reason is
that the modes can be treated as independent, at least for low drive
amplitudes where the nonlinear coupling can be neglected. It is there-
fore often enough to consider only a single mode at a time, which dras-
tically reduces the complexity of the dynamics. Furthermore, different
vibrational modes have different frequencies10. Hence, if one mode cou-

10Obvious exceptions are degenerate modes. However, in a real system, degenera-
cies are often lifted by imperfections in the fabrication.
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ples to another mode, their average interaction will be very small due
to the mismatch in frequency — the interaction averages out. This re-
lies on the high quality factors in NEMS, which make the resonance of
each mode extremely narrow. As a consequence, vibrational modes can
be very selectively addressed. However, the same fact also reduces the
possibility of making modes interact when desired.

The vibrational frequencies fα can be tuned by applying a load to the
membrane (Fig. 5.3). A uniform parallel-plate-capacitor load will both
enhance the uniform tension and introduce a non-uniform tension11.
Interestingly, the non-uniform tension introduces frequency crossings
(inset of Fig. 5.3 and Fig. 5.4) where the frequencies of two modes in-
tersect. Such crossings do not occur in a uniformly stressed membrane.
Modes can therefore be tuned in and out of internal resonance with
each other. To conclude, modes can not only be selectively addressed,
but also, the interaction between modes in an internal resonance can
be precisely tuned by for instance varying the gate voltage.

5.2 Internal Resonance

The phenomenon of internal resonance12 (IR) is not restricted to the
case where the involved frequencies coincide, as discussed in the previ-
ous section. Internal resonance may also occur when the ratio between
two modes is (close to) a rational number [60]. To understand why,
it is again beneficial to think about the system quantum mechanically
and apply the rotating wave approximation13 (RWA). Consider a gen-
eral interaction term in the Hamiltonian proportional to qn1 q

m
2 , with

amplitude qi → (ĉ†i + ĉi) of mode i and integers n, m. This interaction
term describes processes with n (bosonic) creation and/or annihilation
operators for mode 1 with energy quantum h̄ω1 and m operators of
mode 2 with energy quantum h̄ω2. We have to create and annihilate
quanta in a way which conserves energy. This introduces conditions
for the frequencies as shown in Fig. 5.5. Furthermore, if a resonator is
not fiercely driven, only relatively low-power nonlinearities are impor-

11The influence of the non-uniform tension can approximately be calculated by
first order perturbation theory [116, p. 286].

12Also called autoparametric resonance.
13The same reasoning holds for the “classical” rotating wave approximation

where we write q1 ∝ a1(t) cos(Ωt) + a2(t) sin(Ωt) and q2 ∝ a3(t) cos(nΩt/m) +
a4(t) sin(nΩt/m) and expand the nonlinearities with trigonometric relations to find
the slow dynamics of ai(t) in the rotating frame.
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Figure 5.3: Frequency tuning for the lowest vibrational modes with their
corresponding mode shapes illustrated on the right. The scaling factor
f0 =

√
T0/ρ0R2 with pre-stress T0 and the circles correspond to COMSOL

Multiphysics simulations. The non-uniform tension introduces frequency cross-
ings (inset). The crossings are mainly due to the modes with radial mode num-
ber k = 1 (dashed) being less stiffened by comparison to other modes. These
less stiffened modes are the ones with only one circle in the mode shapes. The
frequencies can cross since there is no “linear coupling” between the modes.
If such linear coupling existed, the modes would instead exhibit an avoided
crossing (Fig. 5.4). Avoided crossings are not present for the perfectly circular
membranes shown here, due to rotational symmetry. However, if the symme-
try is broken, for instance due to imperfect fabrication, such coupling might
be introduced.
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tant. The easiest internal resonances to observe are therefore typically
of the kind n “to” 1, commonly written as n : 1, with ratio between the
involved frequencies n = ω2/ω1.
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Figure 5.4: a Frequency tuning of two modes exhibiting a frequency crossing.
b If we add a small linear interaction between the modes they will hybridize
into two new modes. However, the hybridization is only pronounced close to
the crossing point, where the interaction is comparable to the separation in
frequency. Far away from the crossing point, the interaction can be neglected.
As a consequence of the interaction, the two frequency branches repel each
other in a so called avoided crossing, also known as anti-crossing. The height
of the avoided crossing is proportional to the interaction.

So, what will happen with the dynamics if we couple two modes in
an internal resonance? One important phenomenon is that energy can
be transferred between the modes, as described in Fig. 5.5. We can
therefore expect a drastic influence on the dissipation of the modes,
depending on if they are in or out of the IR. This is indeed what was
observed in Paper VII, where we investigated a 3:1 IR in a multi-layer
graphene drum similar to the one in Fig. 2.1. We could also expect
the driven response to be richer close to the internal resonance. This
chapter aims to describe the basics of nonlinear modeling of mechani-
cal resonators and to understand qualitative features in the dynamical
response.

To theoretically study the 3:1 IR, we modeled the two interacting
modes as Duffing oscillators. The frequency ratio of 3 indicates that
the nonlinear term in the Hamiltonian ∝ gq3

1q2 is probably most impor-
tant14. The coupled equations are therefore

14For a review on nonlinear dynamics in NEMS see Ref. [117]. Especially, it
describes how general nonlinear mode equations can be reduced to effective ones.
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Figure 5.5: Mode interaction for two modes with ω2 = 3ω1. a The coupling
term q3

1q2 induces processes where three quanta in mode 1 are annihilated and
turned into one quantum in mode 2. Mode 2 is thereby pumped by mode
1 (the reverse process is also induced). b The dispersive term q2

1q
2
2 couples

the two modes but cannot transfer energy from one mode to the other (and
conserve energy at the same time). However, the dispersive coupling can
induce a shift in frequency of the other mode. Assume that mode 2 oscillates
with constant amplitude A2. In the spirit of the averaging technique, we can
effectively set q2

1q
2
2 ≈ q2

1A
2
2/2, which is just a frequency shift of mode 1 (cf.

the Hamiltonian term ω2
1q

2
1). c To illustrate the nonlinear dispersive effect,

assume that mode 1 is weakly driven but mode 2 is not. Mode 1 will respond
with a moderate amplitude to a resonant drive field Ω1 = ω1. d If we start to
strongly drive mode 2 at its resonance, the nonlinear dispersive coupling will
pull the frequency of mode 1 out of resonance with its drive field (the mode
density of mode 1 has been shifted in frequency). By this means, the energy
in mode 1 can be controlled by mode 2, even though no energy is transferred
between the modes.
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q̈1 + γ1q̇1 + ω2
1q1 + α1q

3
1 + 3gq2

1q2 = f cos(Ωt), (5.6)

q̈2 + γ2q̇2 + ω2
2q2 + α2q

3
2 + gq3

1 = 0, (5.7)

where we drive the fundamental mode close to its natural frequency
ω1 ≈ Ω and both oscillators are weakly damped.

In practice, the system parameters have to be fitted to experimental
data, since the response is very sensitive to the values of the parameters.
Theoretical estimations, which assume idealized conditions, only give a
crude estimate of the parameters. However, if the theoretical estimate
differs significantly from the experimentally extracted values, it might
indicate that the measured response has another physical origin.

An important reason for the sensitivity of the parameters is that
even very small changes in the parameters can drastically change the
qualitative dynamics of the system. At these special parameter values,
the system is said to undergo a bifurcation. For instance, the number of
stationary states can change and oscillatory motion can bifurcate (be
initiated) from the boundary between qualitatively different parameter
regions. Different parameter regions are mapped out in a so called
bifurcation diagram, which is an important tool to understand complex
dynamics in nonlinear systems. As seen in Fig. 5.6, the response of
the device is indeed complex. The question is: can we understand
qualitative features of the behavior, despite its complexity? With the
aim to understand the dynamics at the IR, let us start by looking into
the dynamics as if the modes were uncoupled.

When the modes are uncoupled (g = 0), the amplitude response
of mode 1 is only affected by its Duffing nonlinearity, as explained in
Fig. 5.7a. A positive Duffing nonlinearity tilts the Lorentzian linear
response to the right, whereas a negative Duffing nonlinearity tilts the
linear response to the left. The corresponding bifurcation diagram,
which is important to understand for the remainder of this chapter,
is described in Fig 5.7b. Being reminded of the single mode Duffing
response by these figures, we now add the second mode but still assume
that they are uncoupled. If we simultaneously drive mode 2 with a term
f2 cos(3Ωt), the combined bifurcation diagram would qualitatively be as
in Fig. 5.8a, if mode 2 is slightly red tuned i.e., ω2/3 < ω1, and has
a positive Duffing nonlinearity. For a downward frequency sweep, each
mode would follow its Duffing response, unaffected by what happens to
the other mode, see Fig 5.8c.
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Figure 5.6: Amplitude response of mode 1 for downward frequency sweep.
Curves correspond to drive voltages ranging from 4.0 mV to 120 mV. Theo-
retical model (solid) fits well with the measured response (dots) presented in
Paper VII. a For high drive, the amplitude response drops down to a plateau.
b For low drive, the ordinary Duffing response (Fig. 5.7) is observed. When the
drive is increased to moderate strength (∼ 20 mV), the frequency at which the
amplitude drops to the low-amplitude branch saturates. This happens when
the effective frequencies ωeff

i (due to Duffing frequency shift) of the two modes
come into internal resonance [17]. IR can therefore be achieved in at least
two ways. Either, we can drive one mode strongly and utilize the frequency
shift due to the Duffing nonlinearity to achieve ωeff

2 = nωeff
1 or we can tune the

frequencies into IR by static means.
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Figure 5.7: a Amplitude branches of a driven Duffing oscillator for fixed drive
amplitude Vd. The negative Duffing nonlinearity softens the natural vibra-
tional frequency ω1 if the vibration is driven to a large amplitude. As a
consequence, the system exhibits a stable (solid) large amplitude branch be-
low ω1, where the drive frequency Ω is (close to) resonant with the effective
mechanical frequency. The system is therefore partly bistable and will exhibit
hysteresis since the response will depend on the sweep direction (arrows). b
Bifurcation diagram of the driven Duffing oscillator. The solid line separates
the monostable and bistable regions. The dotted line corresponds to the am-
plitude response in a, with bifurcation points A and B as indicated. b (inset)
To the right of bifurcation point B, the system is monostable. If the frequency
is changed to the left of B, one stable and one unstable limit cycle are created
at small amplitude. If the frequency if further decreased, the unstable limit
cycle grows and annihilates the large amplitude state at A, cf. a.
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the bifurcation diagram in Fig. 5.10. The modeled amplitude response and
bifurcation diagrams were calculated with MATCONT [118].
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However, when mode 2 is driven not externally but by mode 1 via
the coupling term gq3

1, the modes will interact. As a consequence, the
upward jump in amplitude of mode 2 at point C (Fig. 5.8c) will affect
the response of mode 1 and push it down a little bit in amplitude, as
seen in Fig. 5.9a. Naively, this can be explained by the fact that the
high-amplitude state of mode 2 will lead to increased dissipation15 of
mode 2. To support the higher amplitude state of mode 2, energy has
to be transferred to it at a faster rate from mode 1. As a consequence,
the amplitude of mode 1 will be suppressed. This is what explains the
sudden disappearance of the stable amplitude branch to the right of the
plateau in Fig 5.6a.

Interestingly, there is no stable amplitude state to drop to in the
frequency interval B-C (Fig. 5.9a). Instead, the resonator relaxes to-
wards an amplitude-modulated state. Depending on the parameters,
the amplitude-modulated state is typically a variation of a torus state
(see Fig. 5.10b) but may even be chaotic. In the measurement, the
modulation of the amplitude is averaged out, which is the reason for
the flat plateau16 response between B and C. Numerical simulations
indicate that the amplitude-modulated state makes complicated transi-
tions from torus states (Fig. 5.10) via period doubling bifurcations17 to
chaotic states. Similar transitions have been observed in nanomechani-
cal resonators under other conditions [120].

Furthermore, the system does not continue on the high-amplitude
branch of mode 1 and drops down as expected at point A’ (Fig. 5.8c).
Instead, the system drops down in amplitude at B, where the system
usually jumps up in amplitude for an upward frequency sweep. This
is probably because of large fluctuations (Fig. 5.11) in the amplitude-
modulated state, which kick the system into the basin of attraction of
the low-amplitude state when it emerges. The high-amplitude branch
close to A’ is therefore inaccessible by this experimental procedure. To
experimentally study the IR by approaching it from the high-amplitude
branch closer to A’ requires a non-trivial preparation of the system.

For instance, we can try to get to the high-amplitude state close to A’
by shifting the static gate voltage so that mode 1 becomes red detuned
away from the IR. There, we can get up to the high-amplitude branch

15The damping is modeled to increase linearly with the amplitude.
16A similar plateau has been observed in a 2:1 IR [119].
17During a (supercritical) period doubling bifurcation, the period of the dynamics

is doubled.
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Figure 5.10: a Bifurcation diagram for the IR model, including limit points
of cycles (LPC) (solid) and Neimark-Sacker (NS) (dashed) bifurcations. At
an LPC bifurcation, two periodic orbits are born (cf. Fig. 5.7b). The NS
bifurcation is here a consequence of the interaction between the two modes. b
At a (supercritical) NS, a stable (black) limit cycle becomes unstable (red) and
the resonator performs small oscillations on a torus (the “shell of a donut”)
around the unstable limit cycle. The motion will then generally become quasi-
periodic. This is a higher-dimensional analogue of the (supercritical) Hopf
bifurcation, which is when a stable fixed point becomes unstable and gives
birth to a stable limit cycle. c In the RWA, the dynamics of the system is
“reduced by one oscillation”. For instance, in the RWA, a stable limit cycle is
characterized by its amplitude and phase, i.e., a fixed point and not a periodic
orbit. Hence, in the RWA, the NS is reduced to a Hopf bifurcation. At some
special points, the Hopf curve (dashed) undergoes a Bogdanov-Takens (BT)
bifurcation and continues as a neutral saddle, which is not a bifurcation. This
can occur where a Hopf curve tangents a curve of limit points. The reader
is encouraged to find candidates for the BT bifurcation in the bifurcation
diagram above and see illustrations of the bifurcations at scholarpedia.org.
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of mode 1 and then turn the static voltage back to the IR. Similar
non-trivial paths to access dynamical regimes have been proposed in
Ref. [121].
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Figure 5.11: Fluctuation induced transition. Noise can induce a transition
from one state to another state, even though no bifurcation is passed. For
instance, as we slowly sweep the drive frequency downwards, fluctuations may
kick the resonator out of the high-amplitude state, so that it falls down to
the low-amplitude state before bifurcation point A’ is reached. During exper-
iments, it is therefore important to not sweep the frequency so slowly that
there is a considerable risk that noise kicks the system out of its state. On the
other hand, bifurcation points might be passed unnoticed if the frequency is
swept too quickly. Such noise induced transitions and unnoticed bifurcations
complicate the interpretation of experimental data.

So far, I have only discussed the interplay between the two modes
during driven response. How does the IR affect the ringdown of the
vibrating modes if the drive is turned off? The procedure of a ring-
down experiment is explained in Fig. 5.12a. In the case of uncoupled
resonators, each mode decays individually with its decay rate γ1 and
γ2, respectively. However, when the modes are coupled in the IR, they
can become hybridized. This takes place when the effective coupling
geff is strong in comparison with the difference in dissipation rates
and effective detuning between the modes18. The effective coupling
geff ∝ gE(n−1)/2 increases with increasing total (Manley–Rowe) mode
energy E. As a consequence, the coupling becomes strong when the vi-
brations are strongly driven and the modes hybridize. When the drive
is turned off, the energy decays freely from the hybridized state as a
whole. As the energy decreases, so does the nonlinear coupling be-

18See Paper VII for details.
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tween the modes and eventually the modes decouple. This results in
a crossover in the ringdown trace for the fundamental mode amplitude
(Fig. 5.12b). Internal resonance is therefore one important origin for
nonlinear dissipation in NEMS.
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Figure 5.12: a Procedure of a ringdown experiment. The vibrations are first
driven to large amplitudes and possibly into a hybridized state. The drive is
then suddenly switched off and the free decay of a mode is measured, here with
a simple exponential decay. b Average ringdown for mode 1 from a hybridized
high-amplitude-modulated state to low amplitudes, presented in Paper VII. As
the energy dissipates from the hybridized state, the coupling becomes weaker
and the modes eventually decouple. In this experiment, the decoupling takes
place at ∼200 pm. As the modes decouple, the dissipation rate changes from
approximately (γ1 + γ2)/2 to γ1.
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Chapter 6
Outlook and Conclusions

“Happy, happy”

Lars-Johan Åge

Our experimental dexterity with NEMS are rapidly advancing and ex-
hibit maturing coherent control. Nanomechanical resonators are built
to interact with external objects in ways which connect diverse fields of
physics. Strong nonlinear effects are being explored and utilized, even
tailored. These experimental advances raises the ambitions of the field
of nonlinear dynamics in NEMS. Their extraordinary parameters make
it possible to access and study exotic parameter regions with complex
dynamical response. The next step is to master the nonlinear effects in
the lab and to apply them in new ways. However, mastering the effects
is not enough, a huge amount of creative work lies ahead in order to
achieve novel applications. The success of nonlinear NEMS will likely
not be determined by how they can improve existing technologies, but
by which completely new applications they enable.

Even to master the nonlinear effects is a demanding task. The world
of nonlinear dynamics in NEMS is huge, due to the large accessible pa-
rameter space. Experimental examination of a device can therefore be
overwhelming and the results can be hard to interpret and explain. At
the same time, from the theoretical side, it makes little sense to simu-
late the whole parameter space numerically for a general device without
restrictions. Furthermore, theoretical models for exotic, but less robust,
features in special regions are difficult to realize experimentally. This
is because it is still very challenging to tailor all parameters in order
to reach a specific nonlinear regime of a theoretical model. For faster

77



advances towards mastering relevant observable features, both the ex-
perimental and theoretical efforts need guidance — a map to navigate
with in the nonlinear world.

Bifurcation diagrams can serve as the maps we require. Bifurcation
diagrams may not only reveal where the device exhibits exotic dynamics,
they could also tell us how to get there. This is important, since exotic
nonlinear dynamics can be hidden and only accessed if non-trivial tuning
paths through parameter space are followed. The common experimental
technique of using cascades of frequency sweeps might not be enough.
Without a map, such regimes would probably be forever lost treasures.
Knowledge is what makes creativity possible.

One important question to address is: how to draw such a map? It
has to correspond to the nonlinear world of the device at hand. To draw
a crude map, for instance for a two-mode IR, we could start by charac-
terizing the low-amplitude basic response of each mode. We have then
drastically reduced the relevant parameter space. A standard cascade of
frequency sweeps can then be performed to get an estimate of the cou-
pling coefficient. The parameters can be adjusted to the cascade data
in order to have a reliable map of the local nonlinear landscape. This is
basically what was done in Paper VII and shown in Fig. 5.10a. However,
the theoretical work could then be extended since the fitted equations
contain a lot of information. By extracting this information through
the procedures of bifurcation theory, several exotic dynamical regions
were predicted, as shown in the refined bifurcation diagram in Fig. 6.1a.
The map is now ready for experimental treasure hunting.

However, there are at least two aggravating circumstances which
have to be taken into account when drawing and using a bifurcation
map. Firstly, it is not always clear which kinds of interactions are most
important for the behavior of a specific system. A tough question is
therefore: which nonlinear equations should be used in the theoretical
model? To find an appropriate answer, a combination of qualified guess-
work and complementary experimental investigations are most likely
required. Secondly, what is the influence of fluctuations? This question
has only been briefly touched upon in this thesis, but it is an important
issue in the field of NEMS. Fluctuations may blur the dynamics, caus-
ing special dynamical points to be difficult to study. For this reason,
slightly larger devices, i.e., microelectromechanical systems, might be
more suitable since they typically contain less noise but still offer widely
tunable parameters with well separated time scales.
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Figure 6.1: a The bifurcation diagram is a map of the nonlinear world of a
device which can be used to guide experimental investigations. This map is a
refined bifurcation diagram (still heavily simplified) of the device in Paper VII.
The map reveals several exotic dynamical regions (GPD – Generalized period
doubling, GH – Generalized Hopf, CH – Chenciner generalized Hopf, SN-H
– Saddle-node Hopf, BT – Bogdanov-Takens). Some of the regions might be
hidden and can only be accessed by non-trivial adjustments of parameters
(illustrated by the dashed paths through parameter space), which are also
predicted by applied bifurcation theory. b Bursting — can it be observed in
NEMS?
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Bifurcation analysis is, of course, often used to understand experi-
mental results and to propose new experiments from scratch. However,
many nonlinear systems are very sensitive to the system parameters and
it is in practice still very difficult to simultaneously tailor several nonlin-
ear coefficients. It is therefore crucial to have direct feedback between
the experimental and theoretical designs of experiments. A synergistic
procedure of constructing and following bifurcation maps will not only
help us find the dynamics which the systems were designed for, but
much more importantly: such a procedure will help us find what we did
not originally expect. This procedure is in no way limited to NEMS,
but may be fruitful in a vast number of nonlinear systems in physics,
chemistry and biology.

Furthermore, due to the general applicability of bifurcation theory
and nonlinear dynamics, different scientific fields can often inspire one
another. Perhaps this is another opportunity. In neuroscience, a phe-
nomenon called bursting is commonly observed in neuron activity. In
the bursting state, a neuron first repeatedly fires signals, which are
followed by a “quiet” period, before the next burst of firing occurs
(Fig. 6.1b). Bursting neurons typically require well separated dynam-
ical time scales, at least a three-dimensional phase space and several
possibilities to switch between oscillatory and “steady” motion. The
conditions resemble the situation of the internal resonance in NEMS. A
tickling question arises: can we achieve bursting NEMS?

To conclude, fascinating and useful nonlinear dynamics can be achie-
ved by making mechanical modes interact with external structures and
each other. When two or more modes interact, the increased dimen-
sionality of the relevant phase space allows for much richer dynamics
than the two dimensions of a single mode. The system may burst, even
be chaotic; “knots can be knot”. To accelerate the understanding and
applicability of the rich nonlinear dynamics of coupled modes, close
collaborations between experts in both theoretical and experimental
physics are required. One valuable tool to achieve synergistic effects is
the above described construction and utilization of bifurcation diagrams
— the maps of nonlinear dynamics. An exciting and prosperous future
lies ahead if we can tame the complexity of high-dimensional nonlinear
mode dynamics. Or in other words:

There’s plenty of room in higher dimensions.
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Appendix A
Models for Dissipation in
Mechanical Oscillators

In this appendix, I briefly describe the most straightforward ways to model
dissipation in classical and quantum mechanical oscillators.

Classical Model

We can model linear and nonlinear dissipation in a classical oscillator by adding
the right hand side of

ẍ+ ω2
mx = −

(
γL + γNL

(x
l

)2
)
ẋ (A.1)

in the equations of motion for the mechanical oscillator. The strength of
linear and nonlinear damping is given by γL > 0 and γNL > 0, respectively.
The right hand side describes friction, which counteracts the motion of the
oscillator. At small amplitudes, x � l, the linear damping dominates. If
the amplitude increases, the nonlinear dissipation increases in efficiency and
dominates at large amplitudes. Nonlinear dissipation of this form has been
used successfully to model nonlinear damping in CNTs [59].

Quantum Model

One common dissipation operator in bosonic systems is the Lindblad super-
operator

LL(ρ̂) = γL

(
(n̄+ 1)

(
ĉρ̂ĉ† − 1

2
{ĉ†ĉ,ρ̂}

)
+ n̄

(
ĉ†ρ̂ĉ− 1

2
{ĉĉ†,ρ̂}

))
(A.2)

with coupling strength γL, average number of bosons in the thermal bath n̄
given by the Bose-Einstein distribution and anti-commutator {Â,B̂} = ÂB̂ +
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B̂Â. The Lindblad superoperator can be derived from Liouvillian dynamics
of the total system fulfilling the Liouville-von Neumann Eq. (2.5) [122]. The
Lindblad superoperator describes dissipative single-quantum processes where
one vibron is added or annihilated at a time. If no external forces bring
the subsystem out of equilibrium, it will thermalize due to these processes
and adjust to the temperature of the environmental bath. Such single-vibron
interaction gives rise to “linear dissipation” of the mechanical motion with
respect to the amplitude of actuation.

Multi-vibron processes can be described by the superoperator [123]

LNL(ρ̂) =

γNL

[
(n̄+ 1)

(
ĉĉρ̂ĉ†ĉ† − {ĉ

†ĉ†ĉĉ,ρ̂}
2

)
+ n̄

(
ĉ†ĉ†ρ̂ĉĉ− {ĉĉĉ

†ĉ†,ρ̂}
2

)]
(A.3)

with coupling strength γNL. It describes processes where two vibrons are either
created or annihilated at the same time. Multi-vibron processes give rise to
“nonlinear dissipation” of the mechanical motion with respect to the amplitude
of actuation.
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Appendix B
The Rate Equation

In this appendix, I derive the rate equation of the dynamics in Paper II. The
movable QD is coupled to an electronic reservoir and the energy of the QD
state is modulated by a harmonic external field. The dynamics of the density
operator ρ̂ for the coupled system is governed by the Liouville-von Neumann
equation

ih̄
∂

∂t
ρ̂ =

[
Ĥ0 +

(
eiΩt + e−iΩt

)
Ĥi,ρ̂

]
(B.1)

where Ĥ0 contains the non-interacting hybridized electronic and mechanical
subsystems (see Paper II), whereas the electromechanical coupling has been

written as Ĥint = Ĥi(e
iΩt + e−iΩt) where Ĥi = eEa0(ĉ† + ĉ)d̂†d̂/2.

We will assume the electronic subsystem to always be in its equilibrium
distribution at temperature T due to fast relaxation by processes not governed
by Eq. (B.1). Hence, the density operator of the electronic subsystem takes
the form

ρ̂el = Z−1 exp

(
−
∑
k

εkψ̂
†
kψ̂k/kBT

)
(B.2)

with the partition function given by the trace over the electronic states

Z = Trel

[
exp

(
−
∑
k

εkψ̂
†
kψ̂k/kBT

)]
, (B.3)

satisfying
[
Ĥ0,ρ̂el

]
= 0. The density operator of the full system can then be

separated into the form ρ̂(t) = ρ̂m(t)⊗ ρ̂el, where ρ̂m(t) is the density operator
of the mechanical subsystem.

We expand the mechanical density operator ρ̂m(t) =
∑∞
n=−∞ ρ̂n exp(inΩt)

where ρ̂n =
∑∞
k=0 ρ̂

(k)
n and ρ̂

(k)
n ∝ ε|n|+2k with the small drive strength param-

eter ε = eEa0/(2h̄Ω)� 1. This gives an infinite set of coupled equations, one
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for each frequency nΩ. To continue the analysis we choose to truncate the cou-
pled dynamics at order ε2, which results in the closed set of equations

0 =
[
Ĥi,ρ̂

(0)
+1 ⊗ ρ̂el

]
+
[
Ĥi,ρ̂

(0)
−1 ⊗ ρ̂el

]
, (B.4)

∓h̄Ωρ̂
(0)
±1 ⊗ ρ̂el =

[
Ĥ0,ρ̂

(0)
±1 ⊗ ρ̂el

]
+
[
Ĥi,ρ̂

(0)
0 ⊗ ρ̂el

]
, (B.5)

where we have assumed the stationary term ρ̂
(0)
0 and ρ̂

(1)
0 to be diagonal in the

|n〉 basis, due to dephasing processes not governed by (B.1).
Using the residue theorem we can express the operators

ρ̂
(0)
±1 ⊗ ρ̂el = − 1

2πi

∫
dε Ĝ+(ε∓ h̄Ω)

[
Ĥi,ρ̂

(0)
0 ⊗ ρ̂el

]
Ĝ−(ε), (B.6)

with

Ĝ±(ξ) =
1

Ĥ0 − ξ ± iδ
(B.7)

where δ → 0 and Ĝ+(ξ)
(
Ĝ−(ξ)

)
has a pole in the upper (lower) complex

plane and satisfies the identity

δ(Ĥ0 − ξ) = 2πi
(
Ĝ−(ξ)− Ĝ+(ξ)

)
. (B.8)

We substitute Eq. (B.6) into Eq. (B.4) in order to obtain a closed equation

for the stationary density operator ρ̂
(0)
0 ⊗ ρ̂el. Eq. (B.4) contains eight terms,

due to the two nested commutators. Two of these terms (one from each nested
term) are

χ = − 1

2πi

∫
dε
(
ĤiĜ−(ε+ h̄Ω)Ĥiρ̂

(0)
0 ⊗ ρ̂elĜ+(ε)...

+ ρ̂
(0)
0 ⊗ ρ̂elĜ−(ε− h̄Ω)ĤiĜ+(ε)Ĥi

)
. (B.9)

We shift the argument of the last term ε− h̄Ω→ ε. One of the Ĝ-operators in
each term can be substituted by a Dirac delta-function according to Eq. (B.8).
This is because the integral along the real axis, with poles only in the upper
or the lower complex plane, is zero. We then have

χ =

∫
dε
(
ĤiĜ−(ε+ h̄Ω)Ĥiρ̂

(0)
0 ⊗ ρ̂elδ(ε− Ĥ0)...

− ρ̂
(0)
0 ⊗ ρ̂elδ(ε− Ĥ0)ĤiĜ+(ε+ h̄Ω)Ĥi

)
. (B.10)

Since our next aim is to trace over the electronic states we may cycle ρ̂
(0)
0 ⊗ ρ̂el

and the delta functions. Combining the remaining Ĝ-operators to delta func-
tions and using the integral representation

δ(ω) =
1

2π

∫ ∞
−∞

dte−iωt (B.11)
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brings us to the form

χ =
i

h̄

∫ ∞
−∞

dt eitΩeitĤ0/h̄Ĥie
−itĤ0/h̄Ĥiρ̂

(0)
0 ⊗ ρ̂el. (B.12)

Calculating the interaction picture of the first interaction Hamiltonian and
substituting all operators give

χ =
(eEa0)2

4h̄

∫ ∞
−∞

dt
∑
k1

∑
k2

∑
k3

∑
k4

bk1
b∗k2
bk3
b∗k4
×

eiΩt
(
ĉ†eiωmt + ĉe−iωmt

) (
ĉ† + ĉ

)
ei(ε1−ε2)t/h̄ψ̂†k1

ψ̂k2
ψ̂†k3

ψ̂k4
ρ̂

(0)
0 ⊗ ρ̂el, (B.13)

where

bξ =
T

εξ − ε0 + ih̄Γ
. (B.14)

The trace over the electronic subsystem of χ can be calculated by using
the commutation relations for the fermionic operators and successively moving
one operator around one whole cycle. The result is

Trel

[
ψ̂†k1

ψ̂k2
ψ̂†k3

ψ̂k4
ρ̂el

]
= δk1,k2

δk3,k4
fk1

fk2
+δk1,k4

δk2,k3
fk1

(
1−fk3

)
, (B.15)

where f is the Fermi-Dirac distribution function. Two of the sums in Eq. (B.13)
take out the Kronecker deltas in Eq. (B.15) and the integral over t gives a delta
function for energy conservation. The contribution from the other six terms
in Eq. (B.4) can be calculated in an analogous manner. The rate equation
for the diagonal elements of the stationary mechanical density operator then
becomes

Γ−
(
ĉρ̂stĉ

† − ĉ†ĉρ̂st

)
+ Γ+

(
ĉ†ρ̂stĉ− ĉĉ†ρ̂st

)
= 0 (B.16)

with Γ± = Γ±ωm

+Ω + Γ±ωm

−Ω and

Γ±ωm

±Ω =
(eEa0)2

2πh̄2Γ

∫
dε1dε2f(ε1)

(
1− f(ε2)

) (h̄Γ)3δ(ε2 − ε1 ± h̄Ω± h̄ωm)

|ε1 − ε0 + ih̄Γ|2 |ε2 − ε0 + ih̄Γ|2
.

(B.17)

By comparing this with the linear Lindblad superoperator in Eq. (A.2), it is
evident that they have the same structure under the diagonal condition of ρ̂.
We add the dissipative superoperator terms to Eq. (B.16), at zero temperature
for simplicity. By projecting Eq. (B.16) on the diagonal state 〈n|...|n〉 we get
the rate equation

γNL(n+ 1)(n+ 2)Pn+2 + (Γ− + γL)(n+ 1)Pn+1 + Γ+nPn−1

−
(
γNLn(n− 1) + (Γ− + γL)n+ Γ+(n+ 1)

)
Pn = 0 (B.18)

for the stationary occupation probabilities Pn = 〈n|ρ̂(0)
0 |n〉.
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Appendix C
Average Number of Quanta

The aim of this appendix is to derive an expression for the stationary average
number of vibrational quanta N governed by the rate equation derived in
Appendix B,

γNL(n+ 1)(n+ 2)Pn+2 + (Γ− + γL)(n+ 1)Pn+1 + Γ+nPn−1

−
(
γNLn(n− 1) + (Γ− + γL)n+ Γ+(n+ 1)

)
Pn = 0. (C.1)

To do this, let us introduce P(z) =
∑∞
n=0 z

nPn, where z is a complex number
inside the unit circle. The probabilities Pn have to sum up to 1, which gives
P(1) = 1 and P(−1) has to be absolute convergent. The trick is to multiply
Eq. (C.1) by zn and sum over

∑∞
n=0. The first term in Eq. (C.1) can then be

manipulated as

∞∑
n=0

zn(n+ 1)(n+ 2)Pn+2 =
∂2

∂z2

∞∑
n=0

zn+2Pn+2 =

=
∂2

∂z2
(P(z)− P0 − zP1) =

∂2

∂z2
P(z). (C.2)

Similarly, the third term in Eq. (C.1) can be manipulated by using P−1 = 0,
there is no probability to occupy negative numbers of vibrational quanta,

∞∑
n=0

znnPn−1 =

∞∑
m=0

zm+1(m+ 1)Pm = z
∂

∂z

∞∑
m=0

zm+1Pm =

= z
∂

∂z

(
zP(z)

)
= z

(
1 + z

∂

∂z

)
P(z). (C.3)

The other terms can be manipulated in an analogous manner. Summing all
terms in Eq. (C.1) and excluding the common factor of 1 − z result in the
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homogeneous second order differential equation

(1 + z)
∂2

∂z2
P(z) +

Γ− + γL

γNL

∂

∂z
P(z)− Γ+

γNL

(
1 + z

∂

∂z

)
P(z) = 0. (C.4)

We can rewrite it as

∂

∂z

(
(1 + z)

∂

∂z
P(z)

)
− ∂

∂z
P(z) +

Γ− + γL

γNL

∂

∂z
P(z)− Γ+

γNL

∂

∂z

(
zP(z)

)
= 0.

(C.5)
This equation can be integrated trivially one time in z, yielding a non-homogeneous
first order differential equation

∂

∂z
P(z)− h(z)P(z) = g(z), h(z) =

(
1− Γ−+γL

γNL
+ Γ+

γNL
z
)

1 + z
, g(z) =

C1

1 + z
(C.6)

where Ci, i = 1,2... are constants of integration. The homogeneous solution is
Ph(z) = exp(f(z)) where f ′(z) = h(z). The particular solution can be written
as Pp(z) =

∫ z
−1

dz′ exp(f(z)− f(z′))g(z′). If we write

f(z) = (1− (Γ+ + Γ− + γL)/γNL) ln(1 + z) + (1 + z)Γ+/γNL + C2, (C.7)

the full solution (with new constants C3 and C4) takes the form

P(z) =C3(1 + z)

(
1−Γ++Γ−+γL

γNL

)
...

+ C4

∫ z

−1

dz′
(

1 + z′

1 + z

)(
Γ++Γ−+γL

γNL
−1

)
e

Γ+

γNL
(z−z′)

1 + z′
. (C.8)

To satisfy the absolute convergence criteria at z = −1 of P(z) the constant C3

has to be zero. Finally, we integrate by parts to obtain the solution

P(z) = C5

1 +
Γ+

γNL

∫ z

−1

dz′
(

1 + z′

1 + z

)(
Γ++Γ−+γL

γNL
−1

)
e

Γ+

γNL
(z−z′)

 (C.9)

where the constant C5 is given by the condition P(1) = 1,

C5 =

1 +
Γ+

γNL

∫ 1

−1

dz′
(

1 + z′

2

)(
Γ++Γ−+γL

γNL
−1

)
e

Γ+

γNL
(1−z′)

−1

. (C.10)

The stationary average number of vibrational quanta N is then given by the
relation N = ∂zP(z).
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