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Abstract

Aim

The aim was to determine if metabolomics could be used to build a predictive model for type

2 diabetes (T2D) risk that would improve prediction of T2D over current risk markers.

Methods

Gas chromatography-tandem mass spectrometry metabolomics was used in a nested case-

control study based on a screening sample of 64-year-old Caucasian women (n = 629). Can-

didate metabolic markers of T2D were identified in plasma obtained at baseline and the

power to predict diabetes was tested in 69 incident cases occurring during 5.5 years follow-

up. The metabolomics results were used as a standalone prediction model and in combina-

tion with established T2D predictive biomarkers for building eight T2D prediction models that

were compared with each other based on their sensitivity and selectivity for predicting T2D.

Results

Established markers of T2D (impaired fasting glucose, impaired glucose tolerance, insulin

resistance (HOMA), smoking, serum adiponectin)) alone, and in combination with metabolo-

mics had the largest areas under the curve (AUC) (0.794 (95% confidence interval [0.738–

0.850]) and 0.808 [0.749–0.867] respectively), with the standalone metabolomics model based

on nine fasting plasma markers having a lower predictive power (0.657 [0.577–0.736]). Predic-

tion based on non-blood based measures was 0.638 [0.565–0.711]).

Conclusions

Established measures of T2D risk remain the best predictor of T2D risk in this population.

Additional markers detected using metabolomics are likely related to these measures as

they did not enhance the overall prediction in a combined model.
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Introduction

The global pandemic of type 2 diabetes (T2D) is a major challenge for health care systems

globally and new tools are needed to reduce the burden of T2D. Prevention before the onset of

T2D, or recognising and treating the early stages is the most cost effective way to treat T2D,

before major systemic damage such as microvascular complications, retinopathy and nephrop-

athy occur [1]. Population-based screening for T2D could be a useful tool to aid in efforts for

prevention and early treatment, and number of diagnostic tools are available for early diagno-

sis of T2D risk, including impaired fasting glucose (IFG) test, impaired glucose tolerance

(IGT) test, combined glucose tolerance (CGT) test, insulin sensitivity indexes, and anthropo-

metric measurements. Many of these tools require a substantial investment of both patient and

clinical time. New tools are needed to complement current diagnostic measures for predicting

likely T2D incidence if population-based screening for T2D risk is to be carried out. Along

with the well-established measures of T2D, such as fasting glucose and glucose tolerance tests,

also non-glucose or insulin-related biomarkers for T2D exist, including low plasma adiponec-

tin concentration that has been found to be a strong predictor for future T2D development

[2,3]. This suggests that there is scope for establishing complementary biomarkers of T2D risk.

Emerging technologies, such as metabolomics, are increasingly popular in epidemiology [4]

to capture broad based information about large sample sets. The possibility to find novel asso-

ciations between disease risk and biochemical markers makes it an attractive tool not only for

categorising disease states but also for finding new predictive biomarkers. Metabolomics has

also proved useful in T2D research and has revealed new associations between metabolites and

T2D [5], most notably that elevated branched chain amino acids (BCAA) are associated with

hyperglycaemia and may be an early biomarker of T2D risk [6]. The involvement of BCAA

metabolism in development of hyperglycaemia has been confirmed in several follow up studies

[7,8], showing that it precedes diabetes development. Other potential metabolite biomarkers

of diabetes risk include dimethylglycine (DMG) [9], 2-amino adipic acid and glycine [10,11],

opening up not only new biomarker possibilities, but giving a broader view of T2D beyond

those mechanisms immediately involved in glucose metabolism. Overall there is now a consid-

erable body of research supporting metabolomics as a powerful tool for unravelling early meta-

bolome differences related to later T2D risk [12].

We hypothesised that by using metabolomics we would find biomarkers for T2D that

would improve current tools used to predict and diagnose T2D. For this we used gas chroma-

tography-tandem mass spectrometry (GC-MS/MS) metabolomics and built a new predictive

model of T2D development in a cohort of 64 year old women, and compared this with models

based on existing markers of T2D risk.

Materials and methods

Study participants

Both studies have been carried out in accordance with the Declaration of Helsinki and were

approved by the Regional Ethical Review Board in Gothenburg and all participants gave writ-

ten informed consent to participate.

A population-based cohort was initiated by inviting all 64-year-old women from the Goth-

enburg region to participate in a screening examination for T2D [13]. The screening examina-

tion included fasting capillary whole blood glucose measurements in women with overt

diabetes and repeated oral glucose tolerance tests (OGTTs) [2,13] in women without overt dia-

betes. The definition of IGT and diabetes were based on WHO criteria [14]. The means of the

two oral glucose tolerance tests were used in the classification of IGT at baseline. From this
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initial screened cohort, cases with diabetes (9.5%), and impaired glucose tolerance (IGT)

(14.4%) and a random sample of healthy subjects with normal glucose tolerance (NGT) were

included in a nested case–control study, which included a baseline and a follow-up examina-

tion after 5.5 years. The baseline examination included anthropometry, assessment of lifestyle

factors, fasting blood glucose, oral glucose tolerance test, plasma insulin and serum adiponec-

tin [2]. With the exception of adiponectin, these examinations were also carried out at follow-

up. The characteristics of the study subjects are shown in Table 1. In total, 629 women partici-

pated in the first examination and samples from 614 subjects were analysed by GC-MS/MS

metabolomics (T1D n = 14, T2D n = 202; IGT, n = 203; NGT, n = 188) [2]. T1D was defined

as serum GAD antibody level�4.6.

The re-examination was performed after 5.5 years in 500 women with diabetes (n = 159),

IGT (n = 174) or NGT (n = 167) according to the classification at baseline. The remaining 129

women from the original study did not participate in the re-examination because of death

(n = 23), severe disease (n = 3), because they were no longer living in the area (n = 12) or were

unwilling to participate (n = 91) [2].

GC-MS/MS metabolomics analysis

GC-MS/MS metabolomics was performed as previously described [15] using plasma extracted

with methanol:water, derivitised using methoxymation followed by silylation. Samples were

injected onto a Shimadzu GCMS TQ-8030 GC-MS/MS (Shimadzu Europa GmbH, Duisberg,

Germany) and both scan and multiple reaction monitoring data was collected for further data

analysis.

Metabolomics data processing

A MATLAB (Mathworks, Natick, MA, USA) script and database developed at the Swedish

Metabolomics Centre (Umeå, Sweden) was used for targeted analysis of the full scan data [16].

Internal standard normalisation of raw data was performed using the method of Jonsson et al

[16]. Internal standard variables from each sample were scaled to unit variance and modelled

together using principle components analysis (SIMCA+, Umetrics AB, Sweden) to describe

overall variation in multivariate space. Vectors from the first component were then used to

Table 1. Baseline characteristics of the 64-year-old women.

No diabetes at follow-up T2D (n = 202) New T2D at follow-up (n = 69)

NGT(n = 188) IGT(n = 203)

Family history of T2D, n (%) 38(19) 81(40) 67(33) 29(42)

Smoking, n (%)

Never 79(42) 89(44) 91(45) 24(35)

Previous 73(39) 77(38) 64(32) 30(43)

Current 36(19) 37(18) 47(23) 15(22)

Alcohol consumption, g/day 8.8(8.0) 7.2(7.1) 8.3(8.8) 7.7(8.0)

Waist circumference, cm 88(9) 92(12) 97(11) 95(13)

Systolic blood pressure, mm Hg 136(16) 149(17) 151(18) 148(17)

Serum adiponectin, μg/mL 17.5(7.1) 14.1(6.7) 12.5(6.2) 12.4(6.8)

HOMA IR (pmol/L)・(mmol/L) 1.2(0.6) 1.8(1.3) 2.7(1.5) 2.2(1.4)

IGT, n (%) 48(70)

IFG, n (%) 19(28)

All values are mean(+/-standard deviation) if not otherwise stated

https://doi.org/10.1371/journal.pone.0177738.t001
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correct for analytical variation between samples. The multiple reaction monitoring (MRM)

data was processed and normalised as described earlier [15]. The two data sets, full scan and

MRM, were then merged for statistical analyses.

Biochemical analysis

Blood glucose, insulin and adiponectin measurements were performed using standard clinical

chemistry techniques at the clinical laboratory of the Sahlgrenska University Hospital, Gothen-

burg, as previously described [2].

Data analysis strategy

We used baseline data in order to explore potential metabolomics markers of T2D after exclu-

sion of medicated T2D cases and the 69 participants who developed T2D during follow-up.

These subjects were used for testing of the prediction models. The candidate markers for

detection of incident T2D were tested on those subjects who developed T2D during 5.5 years

of follow-up. Sixty of the 69 women who developed T2D during the follow up period had IGT

at baseline. The subjects with T1D at baseline were not included in the analysis.

In the screening analyses the NGT and IGT groups, excluding the 69 women who devel-

oped T2D during follow up, were compared with the T2D group in two pairwise comparisons

(NGT vs. T2D and IGT vs. T2D). Logistic regression adjusted for analytical batch was used to

identify potential metabolic markers. Metabolites found to be significant in both of the com-

parisons were considered as potential predictive metabolites. To avoid statistical overfitting of

the prediction models the number of metabolites used for prediction of incident T2D was

restricted to the nine that separated T2D at baseline with the highest statistical difference.

In total eight different prediction models (Table 2) were tested for detection of the subjects

that developed T2D (n = 69). The rationale for constructing these models was an attempt to

delineate the importance of the metabolomics markers in the present study in relation to estab-

lished predictors of future T2D (see Table 2): Model 1 –based on established non-invasive data

indicating increased T2D risk [17]; Model 2 –same as Model 1 and the candidate metabolomic

markers in the present study (Table 3); Model 3—serum adiponectin, HOMA IR, smoking,

IGT, IFG, which are well established invasive risk markers of T2D [2]; Model 4 –Model 3 and

candidate metabolic markers; Model 5 –the present candidate metabolic markers; Model 6 –

was developed to determine if the 9 metabolites used in the metabolomics model could be

Table 2. Models used for prediction of incidence of type 2 diabetes with abbreviations and variables included in the models.

Model [ref] Abbreviation Variables

1: Non-invasive [2,17] NI waist circumference, alcohol consumption, smoking, systolic blood pressure, family history of T2D

2: Non-invasive+metabolomics NIMet AM + sorbitol, galacticol, mannose, galactose, uric acid, oxalic acid, glucaric acid-1,4-lactone,

3-methyl-2-oxopentanoic acid, 2-hydroxybutyric acid

3: Adiponectin [2] AdM serum adiponectin, HOMA IR, smoking, IGT, IFG

4: Adiponectin + metabolomics AdMMet AdM + sorbitol, galacticol, mannose, galactose, uric acid, oxalic acid, glucaric acid-1,4-lactone,

3-methyl-2-oxopentanoic acid, 2-hydroxybutyric acid

5: Metabolomics model Met sorbitol, galacticol, mannose, galactose, uric acid, oxalic acid, glucaric acid-1,4-lactone, 3-methyl-

2-oxopentanoic acid, 2-hydroxybutyric acid

6: Optimized metabolomics OMet galacticol, mannose, galactose and 2-hydroxybutyric acid

7: Adiponectin without glucose

measures

AdM2 serum adiponectin, HOMA IR, smoking

8: Optimized metabolomics with

glucose measures

OMet2 IFG, IGT, galacticol, mannose, galactose and 2-hydroxybutyric acid

https://doi.org/10.1371/journal.pone.0177738.t002
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reduced with minimal loss of prediction to make an optimised metabolomics model; Model 7

—serum adiponectin, HOMA IR, smoking, without prediabetic blood glucose concentrations;

Model 8 –Model 6 and IFG, IGT, which are strong predictors of T2D, in order to test the sug-

gestion that these are the strongest predictors of T2D risk in this cohort.

Statistical analysis

All statistical tests were performed using the R statistical environment (version 3.0.2). Data

was checked for normal distribution and skewed variables were log transformed. Multivariate

logistic regression models were used for pair-wise comparisons between the different groups

(see Data Analysis Strategy). To put equal statistical weight for all metabolites, each metabolite

was scaled to have a mean of zero and a standard deviation of one. Correction for multiple test-

ing was done using the Benjamini-Hochberg method [18]. Metabolomics data results were

reported as odds ratio (OR) for 1 standard deviation change in concentration of metabolite for

significant metabolites. Area under the receiver operating characteristics curve (AUROC) was

used to assess the discriminating power of the prediction models. AUROC was calculated with

the trapezoidal rule using the R-package pROC (version 1.8). Using the same R-package the

different ROC curves were tested for significant differences using a non-parametric compari-

son as described earlier [19]. Model reduction for the 9 significant metabolites was done by

finding the optimal model using R package glmulti [20]. Akaikes information criterion (AIC)

was used to evaluate goodness of fit of the models [21]. P-values corrected for false discovery

rate (Pcorr) and differences between ROC curves were considered significant at P<0.05.

Results

The characteristics of the patients included in the analysis are shown in Table 1.

Metabolomics

The pairwise comparisons between the glucose tolerance groups found 48 metabolites that dif-

fered significantly (Pcorr<0.05) between NGT and T2D subjects and 17 when comparing sub-

jects with IGT to subjects with T2D. The two lists were compared to find those that were

significant in both comparisons, and the nine metabolites with the lowest average corrected P-

values were selected for the overall metabolomics model. These metabolites were sorbitol,

galacticol, mannose, galactose, uric acid, oxalic acid, glucaric acid-1,4-lactone, 3-methyl-

2-oxopentanoic acid and 2-hydroxybutyric acid (Table 3), which were all positively associated

with IGT and T2D.

Table 3. Metabolites used in prediction of incident T2D with average P-value, false discovery rate (FDR), odds ratio (OR) and 95% confidence inter-

val (95% CI) from the pairwise comparisons of the NGT and IGT groups to the T2D group.

Metabolite P-value FDR OR 95% CI

Sorbitol 7.54E-13 1.86E-11 11.15 6.06–22.65

Galacticol 4.85E-10 7.37E-11 6.56 3.90–11.95

Mannose 3.72E-08 2.66E-08 3.89 2.52–6.35

Galactose 9.95E-06 4.56E-05 2.44 1.68–3.69

Uric acid 1.10E-08 5.20E-08 3.22 2.21–4.89

Oxalic acid 2.19E-05 2.70E-07 2.56 1.79–3.79

Glucaric acid-1,4-lactone 8.68E-07 3.29E-09 3.80 2.47–6.16

3-Methyl-2-oxopentanoic acid 4.18E-06 1.74E-05 2.96 1.90–4.98

2-Hydroxybutyric acid 3.32E-06 5.61E-05 3.40 2.17–5.75

https://doi.org/10.1371/journal.pone.0177738.t003
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Prediction of type 2 diabetes incidence

To investigate if the baseline concentrations of the selected metabolites could be used for pre-

diction of incident T2D after 5 years and/or add value to the more traditional predictors, dif-

ferent ROC curves were constructed and compared with each other. AUC values for the

different models with 95% confidence intervals and the change to the AUC by addition of the

metabolomics model (%) are presented in Table 4 and p-values for the model comparisons in

Table 5. From the eight models the combination of the adiponectin model and metabolomics

provided the best sensitivity and selectivity (AUC = 0.8078[0.7491–0.8666]) for detecting the

cases developing T2D after 5 years. However, the increase of 1.7% in AUC when compared

with the adiponectin alone model was not significant (P = 0.74) suggesting that the addition of

the metabolomics set does not improve sensitivity and selectivity of the detection of the sub-

jects at risk of developing T2D compared to the adiponectin model alone. The combination of

the metabolomics model with the non-invasive model increased AUC by 9.7% (AUC = 0.6377

[0.5645–0.7108] and 0.6997 [0.6261–0.7733], respectively), though this was not significant

(P = 0.24). The combination of the metabolomics model to the non-invasive model numeri-

cally increased the AUC and, thus, also sensitivity and selectivity of the prediction, though not

significantly. The metabolomics model alone provides similar prediction to the non-invasive

model (P = 0.73).

To further evaluate if the variables in the metabolomics model can be further reduced to

simplify data acquisition we tested if optimization of the model against AIC criteria can pro-

vide a model with fewer variables and similar prediction. The optimization further reduced

the number of metabolites in the model from nine to four with an AUC of 0.6562 [0.5789–

0.7335] for the optimized metabolomics model, a difference of only -0.0004 (P = 0.98) com-

pared with the original metabolomics model. This model included galacticol, mannose, galac-

tose and 2-hydroxybutyric acid as predictors of T2D.

We further investigated if prediction of the adiponectin model was driven by the non-fast-

ing glucose measurements and found that when IGT and IFG classifications were removed

from the model its AUC decreased by 21.2% (P = 0.003). There was no difference between the

adiponectin model without the glucose measures IGT and IFG when compared to the metabo-

lomics and non-invasive models (P = 0.97 and 0.75 respectively). This led us to conclude that

the glucose measures IFG and IGT were driving the prediction model. This was further

explored by testing if addition of IFG and IGT in the optimized metabolomics model (OM2)

Table 4. AUC values with 95% CI for each model and the % change in AUC where applicable.

Model2 AUC Change in AUC (%)1

1: NI 0.6377 (0.5645–0.7108)

2: NIMet 0.6997 (0.6261–0.7733) +9.7

3: AdM 0.7941 (0.7382–0.8500)

4: AdMMet 0.8078 (0.7491–0.8666) +1.7

5: Met 0.6566 (0.5771–0.7361)

6: OMet 0.6562 (0.5789–0.7335) -0.1

7: AdM2 0.6550 (0.5800–0.7290)

8: OMet2 0.7760 (0.7130–0.8390)

1Change in AUC after addition of metabolomics into the prediction model
2Model 1: Non-invasive, Model 2: Noninvasive + metabolomics, Model 3: Adiponectin, Model 4: Adiponectin

+ metabolomics, Model 5: Metabolomics, Model 6: Optimized metabolomics, Model 7: Adiponectin without

glucose measures and Model 8: Optimized metabolomics with glucose measures

https://doi.org/10.1371/journal.pone.0177738.t004
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can provide similar prediction to that of the original adiponectin model (AdM). There were

no significant differences observed between OM2 and AdM (P = 0.68) confirming that non-

fasting measures of glucose metabolism (IFG and IGT) were responsible for better prediction

of T2D rather than adiponectin alone.

Discussion

In this study we evaluated if using metabolomics can add value to the prediction of the onset

of T2D over the already established T2D predictors in older Swedish women. The results

found that the adiponectin model previously described for this cohort [2] was the strongest

predictor of development of T2D, while the metabolomics model performed similarly to the

non-invasive model, with 17% lower AUC value than the adiponectin model. The association

between circulating adiponectin levels, insulin resistance and T2D is strong and has been pre-

viously found to be a good predictor of T2D [22,23]. However, when removing IFG and IGT

measures from the adiponectin model, all models performed similarly for prediction of T2D,

suggesting that these direct measures remain the strongest predictors of T2D risk in this

cohort. This is not surprising given that diabetes stems from elevated glucose concentrations

and is diagnosed based on these measures. A further observation is that there is no support for

the concept that genetically low circulating adiponectin levels might be causally associated

with increased risk of diabetes [22].

Metabolomics

The objective of this work was to find predictive markers of T2D rather than look for mecha-

nisms behind development of T2D, though these metabolites may provide information on

potential mechanisms. The high number of sugars that were predictive is perhaps not so sur-

prising given the overall effects of T2D on glucose metabolism and activation of the polyol

pathway [24,25] which in the present work was seen as increased circulating levels of sorbitol, a

reduction product of glucose, and galacticol, a reduction product of galactose. An advantage of

applying predictive modelling to the metabolomics data is that these predictive metabolites are

selected in an unbiased manner, bringing attention to potential links between some metabolites

that hitherto have not been linked to the development of T2D. Such methods could later be

used to build targeted methods measuring the wide range of biomarkers found to be predictive

of T2D in earlier studies [26]. This could lead to a method for predicting diabetes development

Table 5. Comparison of the different ROC-prediction models based on known markers of type 2 diabetes risk and those derived using metabolo-

mics. Numbers are P-values and the ones highlighted in grey are significantly different at P<0.05.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Model 1 x 0.2419 0:0009 0:0004 0.7313 0.7330 0.7486 0:0050

Model 2 x x 0:0456 0:0247 0.4363 0.4248 0.4007 0.1212

Model 3 x x x 0.7406 0.0057 0:0047 0:0035 0.6780

Model 4 x x x x 0:0028 0:0023 0:0016 0.4729

Model 5 x x x x x 0.9764 0.9733 0.2094

Model 6 x x x x x x 0.9789 0:0184

Model 7 x x x x x x x 0:0147

Model 8 x x x x x x x x

Model 1: Non-invasive, Model 2: Noninvasive + metabolomics, Model 3: Adiponectin, Model 4: Adiponectin + metabolomics, Model 5: Metabolomics, Model

6: Optimized metabolomics, Model 7: Adiponectin without glucose measures and Model 8: Optimized metabolomics with glucose measures

https://doi.org/10.1371/journal.pone.0177738.t005
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that accounts for a far broader range of factors beyond the well-defined symptoms of elevated

fasting and post-prandial glucose concentrations.

Comparability to earlier studies

A number of studies have used mass spectrometry based metabolomics for both discovering

metabolites associated with glucose tolerance and for prediction of the disease when prospec-

tive data has been available [5,6,10,27–30]. Mass spectrometry based metabolomics have also

been applied in prediction of other diseases, such as breast cancer [31], and the overall use of

the method in epidemiology has been reviewed recently [4]. In the current literature studies

utilizing prospective data and metabolomics AROC values for prediction of incident T2D

range between 0.52 and 0.912 depending on the use of different variables and metabolomics

data [10,11,28,32]. The present findings are comparable to the earlier studies and the sensitiv-

ity and selectivity of the prediction models are within the range of reported AROC values.

Much of the variation in the predictions in these studies can be due to the different cohorts

used for the studies as more diverse cohorts will give poorer prediction while more homoge-

nous cohorts will have better prediction. Although previous studies have highlighted aromatic

and branched chain amino acids (BCAA) to be associated with T2D development in other

cohorts [6,28,33], these were not found among the nine most significant biomarkers used for

prediction of T2D in this study, though the BCAA were still found to be associated with glu-

cose tolerance.

Insulin and glucose, in combination with anthropometric and lifestyle related variables are

the main diagnostic tools for T2D, and have been also used to predict the onset of T2D [5],

though their use remains primarily diagnostic. Recently studies utilising metabolomics have

reported additional selectivity and/or sensitivity in the prediction models of T2D after inclu-

sion of metabolomics data in their prediction models [10,11,28], in line with our findings of

metabolomics being able to add value to some of the existing prediction models. However,

more advanced prediction models, such as those including measurements of diabetes status

(e.g. IFG and IGT) and related compounds such as insulin and adiponectin were not signifi-

cantly improved by the addition of metabolomics data. There was also no significant difference

when comparing the optimized metabolomics model with the addition of IFG and IGT classi-

fication to the adiponectin model. As the diagnosis of T2D is based on fasting and 2-hour

glucose, early measurements of these are by nature explanatory for later T2D. This makes

prediction models complicated to build because patients could be close to the threshold of

diagnosis and a simple measurement imprecision (199 mg/dl vs. 201 mg/dl) could change

their status from IGT to T2D. Such small differences might have large impact on diagnosis

but little impact on possible predictive biomarkers. Thus, finding the perfect prediction bio-

marker or perfect set of biomarkers based on metabolomics alone might be more complex

than apparent at first glance and the standard classification tools, IFG and IGT, remain use-

ful tools for T2D prediction.

Applicability of the results

With the increasing burden of non-communicable diseases in the healthcare systems world-

wide, using population-wide prediction of the onset of diseases, such as T2D, is an intriguing

solution to counter the rise in T2D incidence. In this study the traditional measures of T2D,

insulin and OGTT are among the strongest predictors for future T2D, which is expected as

these form the basis of T2D diagnosis. We found that the use of metabolite markers deter-

mined by metabolomics could achieve similar prediction to these measures, as well as other

established risk factors including adiponectin and anthropometry. In order to have useful
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biomarker-based prediction of T2D it is necessary to have tests that can be quickly and easily

carried out to minimise cost and patient time. Prediction based on a single sample is less of a

burden for both patients and clinical staff, provided it has adequate precision, and can also be

applied in population based cohorts for mapping of diabetes risk in larger groups. Our finding

that four metabolites detected using metabolomics can predict T2D risk at a similar rate to

established measures suggests that there is a future scope for adding new measures of T2D

risk. Although the method used to discover these markers is advanced, mass spectrometers are

now common in clinical laboratories and methodology for measurement of the best biomark-

ers identified using metabolomics should not be a barrier to implementation after further vali-

dation in other cohorts. Ultimately a combination of different markers that reflect different

risk factors and mechanisms behind T2D development could be used to get not only a measure

of T2D risk, but also an indication of what is inducing dysregulation of glucose metabolism,

which will be more instructive for clinicians treating people at risk of T2D.

The limitations of the present study are that we only studied women at the age of 64 and

that the sample size of around 600 subjects, while adequate for detecting differences in glucose

tolerance, there may not have been enough new T2D cases over five years for building a robust

general prediction model based on metabolomics data only. Women at this age have a high

and rising incidence of diabetes [34], making this an important target group for prediction of

T2D. In this population diabetes is often undiagnosed for many years unless an oral glucose

tolerance test is performed. In the present study the majority of cases with T2D at baseline

were newly diagnosed and had no treatment that might have interfered with the metabolomics

measurements. Selection of this specific population, while limiting the generalisability of the

results, also removes variation due to gender and age, making the cohort suitable for explor-

atory work on T2D.

Conclusions

We have established a set of metabolites that can predict T2D risk in 64-year-old women with

similar precision to established predictors of T2D risk. These metabolites do not improve on

current prediction models but can be used as an alternative method for screening purposes

that could be more applicable for larger population based studies. The results suggest that in

this population, commonly used clinical tools provide adequate prediction of future T2D.

Thus, finding suitable tools to predict T2D is lesser of an issue than implementing widespread

screening programmes to identify people at risk of T2D.
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