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Abstract

Background: The yeast AMPK/SNF1 pathway is best known for its role in glucose de/repression. When glucose
becomes limited, the Snf1 kinase is activated and phosphorylates the transcriptional repressor Mig1, which is then
exported from the nucleus. The exact mechanism how the Snf1-Mig1 pathway is regulated is not entirely elucidated.

Results: Glucose uptake through the low affinity transporter Hxt1 results in nuclear accumulation of Mig1 in response
to all glucose concentrations upshift, however with increasing glucose concentration the nuclear localization of Mig1 is
more intense. Strains expressing Hxt7 display a constant response to all glucose concentration upshifts. We show that
differences in amount of hexose transporter molecules in the cell could cause cell-to-cell variability in the Mig1-Snf1
system. We further apply mathematical modelling to our data, both general deterministic and a nonlinear mixed effect
model. Our model suggests a presently unrecognized regulatory step of the Snf1-Mig1 pathway at the level of Mig1
dephosphorylation. Model predictions point to parameters involved in the transport of Mig1 in and out of the nucleus
as a majorsource of cell to cell variability.

Conclusions: With this modelling approach we have been able to suggest steps that contribute to the cell-to-cell
variability. Our data indicate a close link between the glucose uptake rate, which determines the glycolytic rate, and
the activity of the Snf1/Mig1 system. This study hence establishes a close relation between metabolism and signalling.
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Background
Cells have developed an extensive network of signalling
pathways in order to mediate appropriate responses to
varying nutrient availability and concentrations in the sur-
rounding environment. Glucose, a rapidly fermentable
carbon source, is the preferred carbon source of Saccharo-
myces cerevisiae cells and regulates numerous nutrient
signalling pathways [1, 2]. Glucose is taken up by the yeast
cell through multiple hexose transporters, which have a
broad range of different affinities and transport capacities.
This enables the yeast cell to respond to a wide range of
glucose concentrations [3, 4]. Glucose sensing pathways

that employ membrane-localized receptors, such as in the
Snf3-Rgt2 pathway, are relatively well understood. How-
ever, the sensing mechanism of intracellular glucose or
metabolites of glycolysis is poorly explained [5, 6]. To
study how metabolism is connected to these signalling
pathways has proven to be a major challenge since it is
difficult to uncouple signalling from metabolism.
The AMPK/SNF1 system controls energy homeostasis

and is best known for its function in glucose signalling.
The SNF1 protein kinase complex, which consists of
three subunits, is activated by glucose depletion through
phosphorylation [7, 8]. It is not well known how metab-
olism is connected with the activity of the SNF1 com-
plex. When rapidly-fermentable sugars are available Snf1
becomes dephosphorylated. For the establishment of
glucose repression only uptake and phosphorylation of
glucose is required, but no further glucose metabolism
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[9]. Glucose repression is regulated, at least, at two dif-
ferent steps, i.e. control of Snf1 activation and its function
on downstream targets such as Mig1 [10]. It has been sug-
gested that the Snf1-Mig1 pathway works in a continuous
on-off manner [11]. However, evidence has emerged that
Mig1 shuttles in and out of the nucleus and shows transi-
ent behaviour at a single cell level [12, 13]. This indicates
that the dynamics of the Snf1-Mig1 at single cell level is
less simple than previously assumed.
To study the influence of glucose metabolism on the

complex single cell dynamics of the Snf1 pathway we de-
cided to control the uptake of glucose into the cell while
employing a microfluidic system to control the extracel-
lular glucose concentration. We show that glucose re-
pression is regulated by glucose flux rather than the
absolute glucose concentrations and that the Snf1-Mig1
system is closely regulated by glycolytic flux. In our ex-
periments we observed cell-to-cell variability. To explain
this variability, we developed a dynamical and nonlinear
mixed effect model. Dynamical models of signalling
pathways in yeast have previously been employed to de-
scribe the behaviour of populations of cells [14–19].
Nonlinear mixed effects (NLME) modelling is a theoret-
ical approach that provides a framework to account for
cell-to-cell variability [20]. NMLE modelling is tradition-
ally used in pharmacokinetic and pharmacodynamics
studies since it allows for the analysis of sparse and un-
balanced datasets [21, 22]. NMLE has been proposed
and used to model dynamic single cell data [20, 23]. Re-
cently, a simple phenomenological model describing the
Snf1-Mig1 pathway using NLME approach has been
constructed, capturing dynamics of Mig1 localization,
without taking into account parameter variabilities [24].
Our integrative approach reveals that the main source of
variability is linked to transport of Mig1 in and out of
the nucleus. Our experimental data indicate that rapid
degradation and cell size cause no or little contribution
to the cell-to-cell variability, while variation in expres-
sion and translation of the hexose transporters is a pos-
sible source of cell-to-cell variability.

Results
Single cell time-scale fluorescence microscopy enables dy-
namic studies of the Snf1-Mig1 pathway
A high control of the cell environment is needed in
order to study nutrient responses on single cells. A
microfluidics device allows for a fast and precise switch
between different media and enables the nutrients com-
position in the media to be kept constant. Here we used
a three inlet-channel microfluidics setup [25], to achieve
a high control of the cell environment and to study the
influence of glucose concentration on Saccharomyces
cerevisiae. Upon deactivation of Snf1, Mig1 is dephos-
phorylated and subsequently moves into the nucleus and

is therefore a suitable marker for real-time Snf1 activity
[26, 27]. The nucleo-cytosolic shuttling of the transcrip-
tion factor Mig1 fused to a Green Fluorescent Protein
(GFP) served as single cell readout (Additional file 1:
Figure S1).
In the wild type (WT) Mig1 localized to the nucleus

after being exposed to a glucose concentration of
2.75 mM (Fig. 1a and Additional file 2: Figure S2a). It
has been shown that Mig1 is phosphorylated in this
range of glucose concentration [28]. Following shifts to
higher glucose concentrations more cells respond to the
upshift and the Mig1 fluorescence intensity in the nucleus
is stronger indicating that higher glucose concentrations
result in a higher proportion of Mig1 molecules in the nu-
cleus (Fig. 1a). The Snf1-Mig1 system responds to expos-
ure to glucose and the degree of response is sensitive for
the absolute glucose level which the cell is exposed to.
These results are consistent with those of a similar study
in Saccharomyces cerevisiae with a different genetic back-
ground [12]. The response to increased glucose concen-
trations occurs rapidly after upshift, pointing to the fast
adaption of cells to nutrients in the environment.

Glucose uptake through only low affinity transporters
results in a strong response in the Snf1-Mig1 pathway
The data obtained from the wild-type strain raised the
question whether glycolytic flux correlates directly with
Snf1-Mig1 pathway activity. This would imply that the
Snf1-Mig1 pathway is controlled by glucose metabolism
by a quantitative sensor system. To address this question
we chose to control the flux through glycolysis via the
glucose uptake into the cell. A large set of isogenic
strains expressing only a single hexose transporter is
available [29]. We employed strains that express either a
low affinity or high affinity glucose transporter, respect-
ively, under the control of the promotor of a high affin-
ity transporter.
Hxt1 is a low affinity transporter that is normally

highly expressed under high glucose conditions; yeast
cells expressing only HXT1 displays a high glucose
transport capacity and a higher Vmax then the wild type
strain [28, 29]. The HXT1 cells already display Mig1
nuclear accumulation when they were exposed to an
upshift from 0 to 2.75 mM glucose as in the WT how-
ever the fraction of the whole population displaying nu-
clear localization never exceeds 50%. while for an
upshift to 11 mM glucose a higher fraction of cells dis-
play nuclear accumulation but this nuclear accumula-
tion never exceeds 80% (Additional file 3: Figure S3a).
While in the WT for both the upshift to 2.75 mM and
11 mM more than 80% of the population displays nu-
clear accumulation. For the other upshift to higher glu-
cose concentration nearly all cells display nuclear
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localization. The HXT1 strain displayed a large cell-to-
cell variability of cells either responding or not
responding to an upshifts of 2.75 mM, 11 mM, and
27.5 mM in glucose concentration in comparison with
the WT cells (Fig. 1b). Only after an upshift to
27.5 mM glucose almost all the cells of the population
show Mig1 localization in the nucleus. At higher glu-
cose concentrations, 55 mM or 220 mM glucose, a
higher proportion of Mig1 is localized in the nucleus
than at lower concentrations. The upshifts to 55 mM
and 220 mM result in a higher Mig1 nuclear accumula-
tion compared to the WT and displays a higher cell
variability compared to the other strains (Fig. 1b and
Additional file 3: Figure S3b). The response times of
Mig1 nuclear accumulation appear to be remarkably
similar for all responding cells under all glucose con-
centrations, after 1 min the max is reached for the
fraction of cells displaying Mig1 nuclear localization of
all strains and all upshift conditions (Additional file 3:
Figure S3a). Overall, the data shows that the response
characteristics of the Snf1-Mig1 system correlates well
with the kinetic characteristics of the Hxt1 transporter
as the Snf1-Mig1 strain displays low response at an up-
shift to low glucose concentration but a strong re-
sponse to upshift to high glucose concentrations.

The high affinity transporter causes a weak Mig1
response to all glucose concentration upshifts
The Hxt7 high affinity transporter is highly expressed at
very low glucose concentrations. The HXT7 strain dis-
plays a lower glucose uptake capacity than the HXT1
strain. Therefore the glucose uptake capacity is saturated
at low glucose concentrations [28]. The majority of the
population shows Mig1 nuclear localization after the
cells are exposed to growth media containing glucose, in
contrast with the low fraction of responders in the
HXT1 strain (Fig. 1c and Additional file 2: Figure S2c).
However, unlike in the WT and the HXT1 strain the re-
sponse is very similar for all glucose concentrations, and
the intensity of Mig1 in the nucleus is the same for all
upshifts. Already at an upshift from 0 to 2.75 mM glu-
cose Mig1 has reached a maximum Mig1 nuclear
localization for the HXT7 strain. Hence, even in the
HXT7 strain the Snf1-Mig1 response characteristic cor-
responds to the properties of the transport system with
high affinity but low capacity.

Neither regulated degradation nor cell size is a major
contributor to cell heterogeneity
Cell-to-cell variability in Mig1 localization upon changing
glucose concentration has been reported [12, 13, 30].

Fig. 1 Localization of Mig1 over time expressed as nuclear fluorescence intensity divided by the cytosolic fluorescence intensity. Each graph depicts
the results of one experiment. The y axis is distributed logarithmically. Each grey line represents the trace of one single cell and the average of all cells
is represented with a thicker blue line. Between 22 to 41 cells were analysed in each experiment. The different strains are displayed vertically (wild type
(WT) (a), HXT1 (b), HXT7 (c)) and the different concentrations are displayed horizontally
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These studies however do not examine the source(s) of
the observed cell-to-cell variability, therefore we set out
to explore the source(s) of the variation. It is known
that the high affinity transporters Hxt7 and Hxt6 are
internalized and degraded when cells are exposed to
high concentration of glucose [31]. Degradation of
Hxt7 requires inactivation of TORC1 [32, 33]. Also
Hxt1 is actively internalized and degraded if glucose is
depleted, an effect possibly mediated by downregulation
of PKA [34]. Internalization of the hexose transporters
for catabolic degradation could lead to a decrease of
glucose import. We observed in the upshift experi-
ments to higher glucose concentrations a slight de-
crease of the median after the nuclear localization
reached its maximum value for all strains (Additional
file 2: Figure S2). Therefore, we reasoned that rapid ac-
tivity adjustments of the hexose transporters could im-
pact the Mig1-Snf1 pathway. Since this drop in Mig1
nuclear localization differed between cells this mechan-
ism could be a contributing factor to the observed cell-
to-cell variability. We exposed yeast cells expressing

Hxt7-GFP under the native promotor grown on 3% etha-
nol to 220 mM glucose and followed the localization of
Hxt7-GFP for 15 min (Fig. 2a, Additional file 4: Figure S4).
The data was quantified by measuring the fluorescence
intensity along an intersection through the cell. We ob-
served no significant change in the localization of Hxt7-
GFP during the experiment (Fig. 2b).
We next asked whether cell size could influence the

cell-to-cell variability. Fluctuations in cellular states,
such as cell size, can cause extrinsic noise which could
lead to the observed cell-to-cell variability [35]. We
therefore decided to test the influence of cell size by
plotting the response of the Snf1-Mig1 pathway over the
cell size. As measurement for the Snf1-Mig1 pathway we
used the Mig1 fluorescence intensity ratio 15 min after
the upshift. The final ratio for the HXT1-strain did not
show any correlation between the cell size and the Snf1-
Mig1 pathway activity (Fig. 2c). Instead, the final ratio
showed an even distribution around the average cell size
with the values for the upshifts towards higher glucose
concentration position higher along the y-axes. This

Fig. 2 Study of the cell-to-cell variability observed in the Snf1/Mig1 system. (a)(b) Hxt7-GFP before and following a switch from ethanol media to media
containing 220 mM glucose. (a) Time lapse microscopic images, upper images show HXT7-GFP, the lower images show brightfield. (b) Fluorescence
intensity along an intersection through the yeast cells. The fluorescence intensity is higher at the points the intersection line crosses the cell membrane
and does not change over time. The result of only one cell is displayed but multiple cells were analyzed and none of the cells showed a decrease in
membrane localization of the Hxt7 transporter after 15 min following the shift to glucose media. (c) The ratio 15 min after glucose upshift plotted over
the cell size for the HXT1 strain. The cell size is plotted on the x-axes. As a measurement for the Mig1-Snf1 pathway response we chose the Mig1
nuclear/cytosolic ratio. Upshifts to higher glucose concentration; 0 to 220 mM (blue diamonds), 0 to 55 mM (red squares) and 0 to 27.5 mM glucose (green
triangle) result in higher final ratio while upshifts to lower glucose concentration 0 to 11 mM glucose (purple crosses), 0 to 2.75 mM (blue stars) and 0 to
0 mM glucose (orange dots) display a lower final ratio. (d) Hxt7-GFP pregrown overnight in 3% ethanol media. Upper image shows the bright field image,
lower image shows the cellular distribution of Hxt7-GFP
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result excludes cell size as a major determinant for the
cell-to-cell variability on the relatively short time frame
of the experiments.

Stochastic expression is a plausible cause of cell-to-cell
variability in the Mig1-Snf1 system
Cell-to-cell variability in dynamic adaptation responses
might be caused by, among others, stochastic transcrip-
tion activity [36]. Therefore, we reasoned that the ex-
pression pattern of the hexose transporters could lead to
the cell-to-cell variability. We therefore grew a strain ex-
pressing Hxt7-GFP on 3% ethanol and followed the
population distribution of Hxt7-GFP. The fluorescence
intensity of Hxt7-GFP differed significantly between the
cells (Fig. 2d). The lowest observed Hxt7-GFP fluores-
cence intensity was only 10% of the maximal observed
fluorescence intensity of Hxt7-GFP. The amount of
Hxt7 transporter molecules within each single cell varies
and can therefore be a major contributor to the ob-
served cell-to-cell variability. These results show that,
under our experimental conditions it is likely that ex-
pression and translation of hexose transporters is a
major contributor to the observed cell-to-cell variability.

A mixed effect model suggests Mig1 dephosphorylation
as a new regulatory step
To better understand the effect of glucose upshift on the
Snf1-Mig1 pathway we developed a mathematical model
of glucose flux which controls Snf1 phosphorylation and
consequently Mig1 localization (Fig. 3a). The aim was to
investigate if glucose uptake was able to regulate Mig1
localization by controlling only one step in the Snf1-

Mig1 regulatory system. We assumed this step to be de-
phosphorylation of Snf1, since several publications iden-
tified this step to be controlled by the ADP/ATP ratio
[37–40]. The ADP/ATP ratio is indirectly determined by
glucose uptake and glycolysis, therefore the binding of
ADP to the SNF1 complex could be the connection be-
tween glycolysis and the Snf1-Mig1 system. NLME mod-
elling was implemented in order to simulate the
dynamics of Mig1 localization for different yeast strains
in various experimental conditions (Additional file 5:
Figure S5). The model captures the characteristics of our
experimental data (Fig. 1). By simulating parameters for
multiple cells we could produce a distribution of the pa-
rameters and we compared this distribution between the
Wild type, HXT1 and HXT7 strains (Additional file 6:
Figure S6). The model predicts that the Vmsi, the par-
ameter for Snf1 dephosphorylation, increases with up-
shifts to increasing glucose concentrations (Additional
file 6: Figure S6a). However, there is no significant differ-
ence between the different strains. The model suggests
Snf1 dephosphorylation to be active immediately after
glucose is imported into the cell, but this process is in-
fluenced neither by glucose concentration nor by the
strain it was simulated in. This suggests that Snf1 de-
phosphorylation is regulated more in an on/off fashion
rather than in a dynamic fashion. However, the param-
eter for Mig1 dephosphorylation, Vmd, did display the
characteristics of the different strain (Additional file 6:
Figure S6b). At low glucose upshift the simulated Vmd
parameters of the HXT7 strain were higher than the
HXT1 parameters. Only at the higher upshift concentra-
tions the Vmd parameters simulated for HXT1 strain

Fig. 3 Dynamic and NLME modelling of the Snf1/Mig1 pathway. a Schematic representation of the model. The model consists of three main parts,
namely the activity of glucose, the activity of Snf1 and the activity of Mig1. b Simulation of the distribution of the random parameters for the HXT1
strain. The columns indicate the extracellular glucose concentration, ranging from 0, 11, 55 to 220 mM which are illustrated from the left to the right in
the figure. Each heat map is generated by drawing 50 mixed effect random terms, that is η ∼N(0, σ), corresponding to the parameter vectors from the
generated parameter distributions for the various strains and glucose concentrations. The heat map displays various parameters on the y-axis, the
individuals on the x-axis and the magnitude of the random terms are indicated by the colour scale shown above the figure. The colour scale ranges
from 0 to 2 where a red colour corresponds to a high random term and a blue colour correspond to a low value of the random term. The white fields
correspond to the parameters connected to the hexose transporters that are not active in HXT1 strains
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where much higher than the Vmd parameters simulated
for HXT7 strain. From this, the model suggested Mig1
dephosphorylation as a regulatory step which is con-
trolled by glucose flux.

A mixed effect model identifies hypothetical sources of
variability in the Snf1-Mig1 regulatory module
Since our model takes cell-to-cell variability into ac-
count we could use it to identify which parameters dis-
play highest cell-to-cell variability and under which
conditions. The wild type strain displayed increasing
variance with upshift to the higher glucose concentrations
55 mM and 220 mM (Additional file 7: Figure S7). The
highest variability was observed in the HXT1 strain with
the upshift to the higher glucose concentrations (Fig. 3
and Additional file 7: Figure S7). The HXT1 transporter
strain displayed a large cell-to-cell variability following
shift to high glucose but a small cell-to-cell variability after
upshift to low glucose. The simulated variance of the
HXT7 strain was lower in comparison with the wild type
and HXT1 strains and did not increase with upshift to
higher glucose levels (Additional file 7: Figure S7). The
simulated variance is in correlation with the observed vari-
ance seen in the experimental data (Additional file 3:
Figure S3b). The model also allows us to predict the most
important parameters that are the major contributor to
the cell-to-cell variability. We compared the magnitude of
perturbation of each parameter for the simulation of the
wild type strain in the upshift from 0 to 220 mM glucose
(Additional file 8: Table S1). A parameter which displays a
higher perturbation error has a higher variability in that
parameter. Parameters involved in dephosphorylation
events have been ranked as low significance (Additional
file 8: Table S1), suggesting that the dephosphorylation of
Mig1 and Snf1 after glucose upshift is a minor contributor
to the observed cell-to-cell variability. The parameters
which display the highest variance are Kex2 and Kim2,
which account for transport of Mig1 in and out of the nu-
cleus. The respective perturbation errors for these two pa-
rameters are in the order of 10−3 while the other
parameters have perturbation errors in the order of 10−7

and smaller. Indeed, it has been shown that movement of
Mig1 in and out of the nucleus shows considerable vari-
ability between cells [12]. Those data suggest that variabil-
ity in the nucleocytoplasmic transport of Mig1 would be
the major contributor to cell-to-cell variability and not the
dephosphorylation events following glucose upshifts.

Discussion
It is well established that the Snf1-Mig1 system and
hence the nuclear accumulation of Mig1 are controlled
by the level of glucose in the growth medium. We have
previously reported that glucose derepression senses glu-
cose concentration in a highly dynamic fashion [12]. But

it remained unclear whether the observed dynamics
were correlated with adaptations of sugar transport and
glycolytic metabolism. Previous modelling approaches
have suggested the importance of the kinetics of the
glycolytic flux in signalling of glucose [41]. To elucidate
the influence of sugar transport on the Snf1-Mig1 path-
way we studied the response of three different S. cerevi-
siae strains with different glucose uptake capacity when
exposed to an upshift in glucose concentration. Our data
show that yeast cells response rapidly to changes in glu-
cose concentration and that there is little to no cell-to-
cell variability in response time. Even between the strains
and between glucose concentrations we observed no sig-
nificant difference in response time. This indicates that
yeast cells are programmed and determined to rapidly
respond to a change in glucose concentration. This
behaviour allows yeast cells to rapidly adapt to new en-
vironmental conditions and thereby to potentially out-
compete other species. Although single yeast cells
induced a response at almost the same time, there was
difference between the cells in the magnitude of their re-
sponse. Our data showed that the Mig1 localization pat-
tern after glucose upshift correlates well with the
glucose uptake characteristics of the respective yeast
strains. It has already been shown that establishment of
glucose repression is driven by sensing of an intracellular
metabolite rather than extracellular glucose [42, 43].
Our single cell data confirms that glucose repression is
sensed through an intracellular metabolite rather than
extracellular glucose. It has been shown that in the
strains we tested the reduced glucose uptake capacity re-
sults in reduced glycolytic rate [41]. The data indicate a
closer link between the glucose uptake rate, which deter-
mines the glycolytic rate, and the activity of the Snf1/
Mig1 system than previously anticipated. This indicates
that the signal which originates from the glycolytic flux
is very dynamic in response to the changing glycolytic
rate. A source for this signal might be the ADP/ATP ra-
tio [37, 38, 40]. Since, it has been reported that ADP
binds to the regulatory subunit Snf4 and this binding
leads to protection of the catalytic subunit Snf1 from de-
phosphorylation, which leads to increased Snf1 activity
[38]. The turn-over of ADP to ATP or vice versa could
be a sensor for the glycolytic rate. Also Hexokinase 2, an
enzyme part of the glycolytic pathway, has been sug-
gested to serve as a sensor for internal glucose by serv-
ing as a threshold for the interaction between Mig1 and
Snf1 [44, 45].
Our data showed a considerable cell-to-cell variability

in glucose sensing. This variability could have consider-
able impact on the Snf1/Mig1 pathway. We investigated
the causes of the cell-to-cell variability that was observed
in our initial experiments. Our results indicate that this
behaviour is not caused by the size of the cell or rapid

Welkenhuysen et al. BMC Systems Biology  (2017) 11:59 Page 6 of 10



activity adjustments of the hexose transporters. A large
variation is observed between the concentrations of
Hxt7 in the cells and hence the high cell-to-cell variabil-
ity can be caused by the expression and/or translation of
hexose transporter Hxt7. In a yeast single cell study of
the shift between sulphur sources it was observed that
the transcriptional adaptation displayed a large cell-to-
cell variability [36]. The variability in expression and
translation of hexose transporters may cause a different
uptake capacity within a population and consequently
variability in further glucose metabolism. Such variability
in glycolysis might lead to cells responding differently to
nutritional changes and different subpopulations. Sys-
tems to restore unbalanced dynamics in glycolysis have
already been reported [46].
Data obtained by single cell techniques coupled with

mathematical modelling offer an opportunity to under-
stand the variability within a population of cells. This
work employs NLME Modelling in larger dynamical
models providing a framework to deeper investigate and
identify source of cell-to-cell variability in Snf1-Mig1
signalling pathway.
The variability in our model corresponded to that

observed in our experimental data. Therefore, we can
conclude that the implemented model can in fact ac-
count for the cell-to-cell variability of the nuclear/cyto-
plasmic Mig1 ratio. Our approach classifies certain
parameters as low significant, having very small perturb-
ation errors indicating that they could potentially be
neglected without losing the predictive capability of the
model (Additional file 8: Table S1). This partly explains
that the simplified model proposed by Almqvist and col-
leagues [24] can capture the dynamics of the Mig1
localization, but fails to provide more information about
the relationship between the parameters. To our know-
ledge, this is the first Mixed Effect Model which is
complex enough to allow identification of sources of
cell-to-cell variability in signalling pathways. Our model
suggested a new regulatory step at the level of Mig1 de-
phosphorylation and this step would be controlled by
glycolytic flux. It is known that Mig1 is dephosphory-
lated upon glucose addition leading to glucose derepres-
sion [28]. However, the glucose activated process which
dephosphorylates Mig1 has not yet been clearly iden-
tified. For instance, it is unclear if Mig1 dephospho-
rylation is regulated by glucose or by a constitutive
phosphatase counteracting Snf1 activity. Our computa-
tional approach suggests that Mig1 dephosphorylation is
regulated and therefore probably an active step. The
model suggest that dephosphorylation of Snf1 is regu-
lated by absolute glucose concentrations while Mig1 de-
phosphorylation is regulated in a more dynamic way
related to glucose flux. We were able to identify import
and export of Mig1 in and out of the nucleus as a

possible source for cell-to-cell variability. Both Mig1 im-
port and export are regulated by glucose through phos-
phorylation and dephosphorylation of Mig1 [27]. Mig1
shuttles in and out of the nucleus regardless of the glu-
cose concentration and FLIP/FRAP experiments have
shown that there is a considerable cell-to-cell variability
in Mig1 nuclear translocation [12]. Therefore, it is not
entirely unexpected that this step is predicted to encom-
pass a high cell-to-cell variability.

Conclusions
This work links the glucose flux to Snf1-Mig1 signalling.
Although the control of the Snf1-Mig1 regulatory module
is complicated by crosstalk with other glucose sensing
signalling systems, we suggest that glycolytic metabolic
reactions are playing a major role in the regulation of
Mig1 localization. We show that the initial response time
of Snf1-Mig1 pathway displays no cell-to-cell variability.
We further developed and presented a modelling ap-
proach which can model the cell variability observed in
the data. Most importantly, we demonstrate the close cor-
relation between glycolytic metabolism and glucose signal-
ling metabolism.

Methods
Yeast strains
The strains employed were transformed with GFP-
KanMx and mCherry hphNT1 using standard methods
for yeast genetics and transformation: Yeast strains were
grown to mid-log phase at 30 °C in YNB synthetic
complete medium containing 1.7 g/l yeast nitrogen base,
5 g/l ammonium sulphate, 670 mg/l complete supple-
ment mix and supplied with 3% ethanol. For the glucose
upshift serial dilutions of a stock of 220 mM glucose
YNB complete medium were made in order to ensure
final glucose concentration ranging between 220 mM
and 2.75 mM. A complete overview of the used strain
can be found in Additional file 9: Table S2.

Microfluidics
We employed Nrd1-RFP, a nuclear RNA-binding pro-
tein, as a nuclear marker. The ratio of Mig1-GFP within
the nucleus to the Mig1-GFP throughout cells was used
a quantifiable measure of Mig1 localization [47]. Strains
were first pregrown in 3% ethanol, loaded on the micro-
fluidic device and exposed to an upshift in glucose con-
centration, from 0 mM to 0 mM, 2.75 mM, 11 mM,
27.5 mM, 55 mM or 220 mM glucose which corre-
sponds to respectively 0 to 0%, 0.05, 0.2, 0.5, 1 or 4%.To
control the spatial and temporal changes of extracellular
glucose concentration in the environment of the yeast
cell we applied a three-channel microfluidic system that
merge into one single channel [25]. We attached single
cells to the surface of the single channel. By maintaining
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a constant flow of media through one of the three inlet
channel we could expose the yeast cells to a certain con-
centration of glucose while acquiring time-lapse images.
By analysing individual cells in these images with the Cell-
stat and CellStress software [48, 49], we could track the
nuclear localization dynamics of Mig1 over time. For more
details in on the microfluidics, imaging and data analysis
see Bendrioua et al., 2014 [12] and Additional file 10.

Data analysis
The boxplots, fraction and experimental coefficient of vari-
ation plots were generated in Matlab (MathWorks, MA).

Model description
The presented model (Fig. 3a) consists of three modules:
(1) activity of glucose, (2) the activity of Mig1 and (3)
the activity of Snf1. The activity of Glucose includes the
import of extracellular Glucose (Gex) into the cell and
the degradation of intracellular Glucose (Gin) through
the events of metabolism. The activity of Mig1 consists
of the import and export of Mig1 into and out of the nu-
cleus and the phosphorylation and dephosphorylation of
Mig1. This activity is an irreversible cycle in which the
Mig1 alternates between four different forms namely
cytosolic Mig1 (cMig1), phosphorylated located in the
cytosol Mig1 (cMig1p), Mig1 located in the nucleus
(nMig1) and phosphorylated Mig1 located in the nucleus
(nMig1p). The activity of Snf1 is divided into two sube-
vents, firstly the phosphorylation and desphosphoryla-
tion of cytosolic Snf1 (cSnf1) resulting in phosphorylated
cytosolic Snf1 (cSnf1p) and secondly the import and ex-
port of phosphorylated Snf1 located in the nucleus
(nSnf1p). The set of Ordinary Differential Equations
(ODEs) describing the dynamics of the system is listed
below. Note that in Eq. (1), the three scalars HXT1a,
HXT4a and HXT7a are introduced in order to account
for the three data sets: HXT1, the HXT7 and the WT.
They are represented as binary variables, where the
value of 1 indicates their presence in the given reaction
and 0 otherwise (for details see Additional file 10).

dGin

dt
¼ ðHXT1a⋅r1iÞ þ ðHXT4a⋅r4iÞ þ ðHXT7a⋅r7iÞ− r4

ð1Þ
dcSnf1

dt
¼ r5 − r6 ð2Þ

dcSnf1p
dt

¼ r6 − r5 − ðr7a − r7bÞ ð3Þ

dnSnf1p
dt

¼ r7a − r7b ð4Þ

dcMig1p
dt

¼ r1 − r2 ð5Þ

dcMig1
dt

¼ r2 − r3 ð6Þ

dnMig1
dt

¼ r3 − r8 ð7Þ

dnMig1p
dt

¼ r8 − r1 ð8Þ

The collection of all the parameters, their connection
to their respective reaction and the meaning of each re-
action is listed in Additional file 11 Table S3.

Non-linear mixed effect modelling
The dynamical model consists of 8 species, 12 reactions and
18 parameters. The vector consisting of these 18 parameters
represents the overall dynamics of the entire population of
cells and is denoted as fixed effect vector θ

−
∈R18

þ . However,
in order to account for the individuality we constructed a
lognormal distribution from which each parameter vector
θ ∈R18

þ representing the dynamics of an individual cell is
drawn from. Thus by introducing a multivariate normally
distributed variable, denoted as mixed effect vector η ∈ℝ18

with zero mean and the corresponding covariance matrix
σ ∈ℝ18 × 18 (η ∼N(0, σ)), it is possible to construct the
lognormal distribution which is summarized in Eq. 9:

θ ¼ θ
−
⋅ exp ðηÞ; η ∼ N ð0; σÞ ð9Þ

Parameter estimation
For parameter estimation a continuous optimization method
was implemented and has been conducted using the
AMIGO toolbox [50] a software package within MATLAB
that utilizes the built in function fmincon in combination
with a multiple shooting technique [50]. For more informa-
tion about the parameter estimation see Additional file 10.

Parameter perturbation
Each parameter in the fixed effect parameter vector θ

�

has been perturbed individually by multiplying the par-
ameter of interest with a scalar of the value exp(s2), de-
noted as θ

�
peri where i = 1 , … ,18 is the index of the

parameter that is being perturbed. Given the above nota-
tion, a measure of the change in the output in response
to the perturbation in the model is given by

ei ¼
∣∣ŷ ðθ−Þ− ŷ ðθ−periÞ∣∣

l
; i∈f1;…; 18g ð10Þ

where ei is the mean perturbation error of parameter i
and l is the number of time points for which the output
has been measured. Thus, a larger value of ei would cor-
respond to a greater significance of parameter i in the
vector θ in terms of explaining the spread of the mea-
sured output.
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