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We study the process of dark matter particles scattering off 3;4He with nuclear wave functions computed
using an ab initio many-body framework. We employ realistic nuclear interactions derived from chiral
effective field theory at next-to-next-to-leading order (NNLO) and develop an ab initio scheme to compute
a general set of different nuclear response functions. In particular, we then perform an accompanying
uncertainty quantification on these quantities and study error propagation to physical observables. We find
a rich structure of allowed nuclear responses with significant uncertainties for certain spin-dependent
interactions. The approach and results that are presented here establish a new framework for nuclear
structure calculations and uncertainty quantification in the context of direct and (certain) indirect searches
for dark matter.
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I. INTRODUCTION

Convincing evidence for the presence of dark matter in
the Universe has been gathered over the past decades [1]. In
the standard paradigm of modern cosmology, dark matter is
a weakly interacting massive particle (WIMP) [2–4]. On
cosmological scales, it behaves like a dissipationless and
nonrelativistic fluid from the beginning of cosmological
structure formation until the present time [5]. The detection
of dark matter particles in a laboratory or in space is
currently a priority of astroparticle physics. The experi-
mental technique known as direct detection is expected to
play a key role in this context [6]. It searches for nuclear
recoil events induced by the nonrelativistic scattering of
Milky Way dark matter particles in low-background detec-
tors. Reliable nuclear physics input is therefore needed for
the interpretation of data from such experiments. However,
there is currently a gap between the treatment of the nuclear
physics input in the field of dark matter studies and the level
of sophistication that has been reached in modern theo-
retical nuclear physics. It is the main purpose of this work
to fill this gap and introduce a more systematic approach,
with a solid theoretical underpinning, that also allows us to
explore and quantify various sources of uncertainties. The
frameworks that will be used to achieve this goal are
effective field theories (EFTs) and nuclear ab initio many-
body methods.
Effective theory methods have already proven to be a

very powerful tool in the analysis of dark matter detection
experiments [7–9]. The main advantage of the effective
theory approach to dark matter is that it allows for a model-
independent analysis of available data. In contrast, signs of
important physical properties can be obscured when using a
simplistic model for dark matter interactions. At the same
time spurious correlations among physical observables can
be enforced through an inappropriately small number of
model parameters. Two main approaches have been used

when constructing an effective theory for WIMP-nucleus
scattering. In both cases the end result is an EFT with
nonrelativistic nucleon and WIMP fields as the relevant
degrees of freedom. Firstly, one can consider a specific set
of effective interaction terms at the quark level defined at
the hadronic scale and use chiral symmetry constraints to
estimate the hierarchy among one- and two-nucleon cur-
rents [10–15]. This approach is very appealing since similar
constraints are used in the construction of nuclear forces
[16–18]. However, the matching of standard model fields to
hadronic-level operators is an intricate problem; see e.g.
Ref. [19] with lattice QCD results and a brief discussion of
potential power-counting issues that are relevant for meson-
exchange current contributions to the WIMP-nucleus
interaction. The chiral EFT approach also allows, in
principle, a mapping to the parameter space of new-physics
models [15]. Such a mapping is not straightforward and
requires us to take into account the evolution of the WIMP
effective operators from the mediator mass scale to the low-
energy hadronic scale that is probed by direct detection
experiments [20].
Alternatively, one can integrate out the QCD dynamics

and construct directly an EFT in which nonrelativistic
nucleon and WIMP fields are the degrees of freedom [9].
This so-called NREFT generates the most general set of
WIMP-nucleon interactions based only on the requirement
of Galilean invariance and momentum conservation. In this
approach the connection to symmetries of QCD is lost, but
can be recovered by matching to the chiral EFT framework
discussed above. In this context we mention explicitly the
work by Hoferichter et al. [14] to present a common chiral
power-counting scheme and to match it to the NREFT
operator basis. Most importantly, however, the NREFT
framework is less restrictive with respect to the assumptions
on the underlying quark-level dark matter interactions and
the type of dark matter particle. There are possible dark
matter–quark interactions, such as e.g. a dimension-6
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tensor-tensor type [21], that have not yet been analyzed in
the chiral EFT framework and therefore may alter some of
its conclusions. At the moment there is no experimental
evidence that would favor any particular form of the
underlying dark-matter particle interactions and we will
therefore work within the general NREFT framework. We
stress, however, that the ab initio nuclear-physics method
that we present here can be applied to both EFT approaches
as its starting point is the interaction at the nucleon level.
The construction of the dark matter–nucleus interaction

is the next step in the effective-theory approach to dark
matter detection. Following Fitzpatrick et al. [9], eight
nuclear response functions can be generated in the dark
matter elastic scattering by nuclei. The interpretation of any
dark matter experiment probing the dark matter–nucleus
interaction is unavoidably affected by the uncertainties
within which these nuclear response functions are known.
In the simplest treatment, only spin-independent inter-
actions are considered and phenomenological nuclear
response functions—so-called “Helm form factors”—are
used. More recently, many additional responses have been
considered and more sophisticated nuclear-structure calcu-
lations have been performed using the shell model (SM)
[11–13,22–25]. The SM is arguably a very successful
phenomenological model for nuclear structure; see e.g.
Refs. [26,27] for general overviews. Its configuration space
comprises a relatively small number of “active” particles
outside a core of nucleons that are frozen in the lowest-
energy orbitals and not included in the calculation. This
significant truncation of the model space is often critical for
allowing any kind of solution to the many-body problem.
The residual valence-space interaction should, in principle,
incorporate effects from degrees of freedom that are not
explicitly included in the model space. In practice, its
construction typically corresponds to the introduction of
free fitting parameters that are tuned so that the model
reproduces (with an acceptable accuracy) energy spectra
and/or other observables in the region of interest. The
ability to quantify theoretical uncertainties associated with
predicted nuclear matrix elements, and consequently in the
constructed form factors, becomes severely restricted in
such an approach. Only very recently it was shown how to
obtain residual effective valence-space interactions starting
from the underlying microscopic internucleon interaction
in a systematic, nonperturbative framework using ab initio
methods [28–30]. However, it remains to be studied how
theoretical model uncertainties can be quantified.
In recent years, ab initio methods [31–36] have matured

to a level where precise nuclear many-body calculations
can be performed starting from nucleons as the relevant
degrees of freedom and using realistic internucleon inter-
actions. Furthermore, the use of EFTs for the description of
these nuclear interactions provides a systematic approach
that offers an estimate of the inherent model error.
Significant progress in the quantification of truncation

errors in EFT was reported recently [37–39] and also
employed to provide theoretical uncertainties in nuclear
structure calculations [39,40] by combining ab initiomany-
body methods and chiral EFT interactions. It is a specific
aim of this work to demonstrate how nuclear uncertainties
can be quantified, at least for selected proof-of-principle
cases, using ab initio methods and realistic internucleon
interactions.
Experiments whose analysis are affected by these

uncertainties are dark matter direct detection experiments,
with various detector materials, and neutrino telescopes
searching for neutrinos from dark matter annihilations in
the Sun and the Earth. In this work we concentrate on the
former ones, and in particular on detector designs with
sensitivities to the direction of nuclear recoils. Such designs
are currently in a research and development stage. They are
of particular interest for the present analysis in that helium,
and especially 3He, is one of the target materials explored
in this context [41,42]. For such a light target nucleus,
ab initio nuclear structure calculations are straightforward,
which allows a more robust uncertainty quantification.
Furthermore, the use of 3He for dark matter detection is
interesting for other reasons [43–45]: it is an ideal target
for the detection of light dark matter particles; neutron
rejection can easily be achieved through the process
nþ 3He → pþ 3Hþ 764 keV; it has no intrinsic x-ray
emission and a low natural radioactive background; it can
be polarized; and it allows us to probe the spin of the dark
matter particle. As far as 4He is concerned, its use for dark
matter detection has recently been considered in [46]. In
this investigation we will focus on hypothetical 3He and
4He detectors with directional sensitivity.
The article is organized as follows. In Sec. II we first

review the nonrelativistic effective theory of dark matter–
nucleon interactions (Sec. II A) and then introduce the
ab initio no-core shell model technique for the calculation
of nuclear matrix elements in a Jacobi, relative-coordinate
basis (Sec. II B). The nuclear many-body problem is solved
with chiral nuclear interactions as input and these will be
introduced in Sec. II C. Results are presented in Sec. III,
focusing on nuclear response functions in Sec. III A and on
rates of dark matter–nucleus scattering events at directional
detectors in Sec. III B. We conclude with an outlook in
Sec. IV.

II. METHODOLOGY

A. Dark matter–nucleon and nucleus interaction

Consider the nonrelativistic scattering of a dark
matter particle χ by a single nucleon N∶ χðkÞ þ NðpÞ →
χðk0Þ þ Nðp0Þ, where initial and final three-dimensional
momenta are denoted by k and p, and k0 and p0,
respectively. Three-dimensional momentum conservation
and Galilean invariance, i.e. the invariance under constant
shifts of particle velocities, constrain the transition
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amplitude, M, for this process. Momentum conservation
implies that only three of the four momenta k, p, k0 and p0
are independent. The momentum transfer q ¼ k − k0, k
and p form a possible set of independent momenta.
Galilean invariance implies that M cannot depend on k
and p separately, but only on a Galilean invariant
combination of them, for instance v ¼ k=mχ − p=mN ,
where mχ and mN are the dark matter particle and nucleon
mass, respectively. Here v is the dark matter–nucleon
relative velocity, and q is per se Galilean invariant.
We conclude that in general, M ¼ Mðq; v;Sχ ;SNÞ,
where Sχ and SN are the dark matter and nucleon spin,
respectively.
Next, we focus on the nonrelativistic quantum mechani-

cal Hamiltonian ĤχN underlying the scattering amplitude
M. At the quantum mechanical level, any interaction
operator describing the nonrelativistic limit of dark matter–
nucleon interactions can be expressed in terms of four
Hermitian operators [9]: iq̂, where q̂ is the momentum
transfer operator; the transverse relative velocity operator,
v̂⊥; and the dark matter particle and nucleon spin operators,
Ŝχ and ŜN , respectively. By construction v̂⊥ · q̂ ¼ 0.
Without further restrictions, ĤχN can in principle include
an infinite number of interaction operators: all scalar
combinations of iq̂, v̂⊥, Ŝχ and ŜN . However, when jqj
is small compared to the mass of the particle that mediates
the dark matter–nucleon interaction, ĤχN can be expanded
in powers of q̂. Truncating the expansion at second order,
only 14 independent Galilean invariant interaction oper-
ators arise if dark matter has spin less than or equal to 1=2
[24]. For spin 1 dark matter, two additional operators can be
constructed [47], although these are only relevant when
specific operator interference patterns are not negligible.
We list the interaction operators Ôj considered in this study
in Table I, using the notation introduced in [24] and an
index j to label them.

The operators in Table I define a nonrelativistic theory
called effective theory of dark matter–nucleon interactions
(NREFT). Initially formulated in [7–9,24,48], it has later
been developed in [10–12,21,47,49–64]. In this context, the
most general Hamiltonian density for nonrelativistic dark
matter–nucleus interactions is

ĤχA ¼
XA
i¼1

X
τ¼0;1

X
j

cτjÔ
ðiÞ
j tτðiÞ; ð1Þ

where A is the mass number of the target nucleus. The
matrices t0ðiÞ ¼ 12×2 and t1ðiÞ ¼ τ3, where τ3 is the third

Pauli matrix, are defined in the isospin space of the ith
nucleon. Isoscalar and isovector coupling constants are
denoted by c0j and c

1
j , respectively. They are linearly related

to the coupling constants for protons and neutrons1:
cpj ¼ ðc0j þ c1jÞ, cnj ¼ ðc0j − c1jÞ, and have dimension
½mass�−2. Equation (1) is valid under the assumption
that the dark matter–nucleus interaction is the sum of
dark matter interactions with the individual nucleons.
Corrections beyond this (impulse) approximation are dis-
cussed in [10–12,14,15,65].
We derive the differential cross section for dark matter–

nucleus scattering from the Hamiltonian density in Eq. (1):

dσ
dq2

¼ 1

ð2J þ 1Þv2
X
τ;τ0

" X
l¼M;Σ0;Σ00

Rττ0
l

�
v⊥2
T ;

q2

m2
N

�
Wττ0

l ðq2Þ

þ q2

m2
N

X
m¼Φ00;Φ00M; ~Φ0;Δ;ΔΣ0

Rττ0
m

�
v⊥2
T ;

q2

m2
N

�
Wττ0

m ðq2Þ
#
;

ð2Þ

where J is the target nucleus spin, v is from now onwards
the dark matter–nucleus relative velocity, and v⊥2

q ¼
v2 − q2=ð4μ2χAÞ. Here q≡ jqj and μχA is the dark matter–
nucleus reduced mass. The eight dark matter response
functions Rττ0

l and Rττ0
m depend on the isoscalar and

isovector coupling constants cτj, q2=m2
N and v⊥2

q . They
were first derived in [9,24] and are listed in the Appendix.
The eight nuclear response functions Wττ0

l and Wττ0
m in

Eq. (2) are given by

Wττ0
ABðq2Þ ¼

X
L≤2J

hJ; T;MT∥ÂL;τðqÞ∥J; T;MTi

× hJ; T;MT∥B̂L;τ0 ðqÞ∥J; T;MTi; ð3Þ

TABLE I. Interaction operators defining the effective theory of
dark matter–nucleon interactions. The operator 1χN is the identity
in the two-particle spin space. Here mN is the nucleon mass and
all interaction operators have the same mass dimension. For
simplicity, we omit the nucleon index i.

Ô1 ¼ 1χN Ô9 ¼ iŜχ · ðŜN × q̂
mN
Þ

Ô3 ¼ iŜN · ð q̂
mN

× v̂⊥Þ Ô10 ¼ iŜN · q̂
mN

Ô4 ¼ Ŝχ · ŜN Ô11 ¼ iŜχ ·
q̂
mN

Ô5 ¼ iŜχ · ð q̂
mN

× v̂⊥Þ Ô12 ¼ Ŝχ · ðŜN × v̂⊥Þ
Ô6 ¼ ðŜχ ·

q̂
mN
ÞðŜN · q̂

mN
Þ Ô13 ¼ iðŜχ · v̂⊥ÞðŜN · q̂

mN
Þ

Ô7 ¼ ŜN · v̂⊥ Ô14 ¼ iðŜχ ·
q̂
mN
ÞðŜN · v̂⊥Þ

Ô8 ¼ Ŝχ · v̂⊥ Ô15 ¼ −ðŜχ ·
q̂
mN
Þ

½ðŜN × v̂⊥Þ · q̂
mN
�

1This definition of cpj and cnj differs by a factor of 2 with
respect to the one used in, e.g. [25]. This is consistent with Eq. (2)
and our normalization of the nuclear response functions. Our
response functions are a factor of 4 larger than those given in
output by the Mathematica notebook in [24].
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where ÂL;τ0 ðqÞ and B̂L;τ0 ðqÞ can each be one of the nuclear
response operators defined below in Eq. (5). There are six
independent nuclear response functions where A ¼ B and
two interference ones with B ≠ A. For B ¼ A, we simplify
the notation writing Wττ0

AA ¼ Wττ0
A . In Eq. (3), T and MT are

the nuclear isospin and associated magnetic quantum
number, respectively. Matrix elements in Eq. (3) are
reduced in the spin magnetic quantum number MJ accord-
ing to

hJ;MJjMLM;τjJ;MJi ¼ ð−1ÞJ−MJ

�
J L J

−MJ M MJ

�

× hJ∥ML;τ∥Ji: ð4Þ

The nuclear response operators in Eq. (3) admit the
following representation:

MLM;τðqÞ ¼
XA
i¼1

MLMðqρiÞtτðiÞ;

Σ0
LM;τðqÞ ¼ −i

XA
i¼1

�
1

q
∇⃗ρi ×MM

LLðqρiÞ
�
· σ⃗ðiÞtτðiÞ;

Σ00
LM;τðqÞ ¼

XA
i¼1

�
1

q
∇⃗ρiMLMðqρiÞ

�
· σ⃗ðiÞtτðiÞ;

ΔLM;τðqÞ ¼
XA
i¼1

MM
LLðqρiÞ ·

1

q
∇⃗ρi t

τ
ðiÞ;

~Φ0
LM;τðqÞ ¼

XA
i¼1

��
1

q
∇⃗ρi ×MM

LLðqρiÞ
�
·

�
σ⃗ðiÞ ×

1

q
∇⃗ρi

�

þ 1

2
MM

LLðqρiÞ · σ⃗ðiÞ
�
tτðiÞ;

Φ00
LM;τðqÞ ¼ i

XA
i¼1

�
1

q
∇⃗ρiMLMðqρiÞ

�
·

�
σ⃗ðiÞ ×

1

q
∇⃗ρi

�
tτðiÞ;

ð5Þ

where ρi is the ith nucleon position vector in the nucleus
center-of-mass (c.m.) frame and σ⃗ðiÞ denotes the Pauli
spin matrices. In Eq. (5) we define MLMðqρiÞ ¼
jLðqρiÞYLMðΩρiÞ and MM

LLðqρiÞ ¼ jLðqρiÞYM
LL1ðΩρiÞ,

where Ωρi represents azimuthal and polar angles of ρi;
YLM and YM

LL1 are spherical and vector-spherical harmon-
ics, respectively; and jL are spherical Bessel functions. The
nuclear response functionsWττ0

l and Wττ0
m in Eq. (3) depend

on q quadratically when single-nucleon states are expressed
in the harmonic oscillator (HO) basis.
The nuclear response operators in Eq. (3) arise from the

multipole expansion of nuclear charges and currents
produced in the scattering of dark matter by nuclei
[9,24]: MLM;τ arises from the nuclear vector charge;

Σ0
LM;τ and Σ00

LM;τ from the nuclear spin current; ΔLM;τ from

the nuclear convection current; and ~Φ0
LM;τ and Φ00

LM;τ from
the nuclear spin-velocity current. In the zero-momentum
transfer limit, a simple intuitive characterization for some
of the nuclear response operators in Eq. (3) is possible.
For a given target nucleus, M00;τ measures the nucleon
content, Σ0

1M;τ and Σ00
1M;τ the nucleon spin content,Δ1M;τ the

distribution of nucleon orbital angular momentum, and
Φ00

00;τ the nucleon spin-orbit coupling content.

B. Ab initio nuclear response functions

In this work we employ the ab initio no-core shell model
(NCSM) technique [31,66] to evaluate the various nuclear
response functions in Eq. (3). The starting point of NCSM
calculations is the nonrelativistic Hamiltonian for a system
of A nucleons interacting by realistic nucleon-nucleon
(VNN) and three-nucleon (VNNN) interactions:

H ¼
XA
i¼1

p̂2
i

2mN
þ
XA
i<j¼1

V̂NN;ij þ
XA

i<j<k¼1

V̂NNN;ijk; ð6Þ

where pi are the nucleon momenta. In NCSM, the total
wave function is expanded and the Hamiltonian is diagon-
alized in a fully antisymmetric many-body HO basis.
In the present study we focus on few-body nuclear

systems. In this case it is most efficient to formulate NCSM
in relative Jacobi coordinates [66]. Different sets of Jacobi
coordinates can be employed, one of which is particularly
suitable for the construction of the antisymmetrized HO
basis:

ξ0 ¼
ffiffiffiffi
1

A

r XA
j¼1

rj;

ξi ¼
ffiffiffiffiffiffiffiffiffiffi
i

iþ 1

r  
1

i

Xi
j¼1

rj − riþ1

!
; ð7Þ

with ri being the coordinate of nucleon i ¼ 1;…; A. In this
set, graphically represented in Fig. 1 for A ¼ 4 nucleons,
the coordinate ξ0 is proportional to the c.m. coordinate of
the A-body system and the coordinates ξi, i ¼ 1;…; A − 1,
are proportional to the relative positions of nucleon iþ 1
with respect to the c.m. of the i-nucleon subcluster. When
the single-nucleon coordinates and momenta in the
Hamiltonian (6) are transformed into coordinates (7), the
kinetic term splits into a part depending only on the c.m.
coordinate ξ0 and an intrinsic part depending only on the
internal Jacobi coordinates fξigA−1i¼1 . Translational invari-
ance of VNN and VNNN interactions, i.e. independence of
ξ0, allows us to separate out the c.m. term and thus decrease
the number of degrees of freedom. Consequently, the
A-body HO basis states can be constructed as
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jð…ðα1; α2ÞJ3T3; α3ÞJ4T4;…; αA−1ÞJATAi; ð8Þ

where jαii≡ jniðlisiÞjitii are HO states, depending on
coordinates ξi, with radial ni, orbital li, spin si, angular
momentum ji, and isospin ti quantum numbers. The
parentheses in (8) represent angular momentum and isospin
coupling. The quantum numbers Ji and Ti (i ¼ 3;…; A)
are angular momentum and isospin quantum numbers of i-
nucleon clusters. The basis is truncated by restricting the
total number of HO quanta:X

i

2ni þ li ≤ Nmax; ð9Þ

which defines the size of the model space. NCSM calcu-
lations are thus variational and converge to exact results
with increasing Nmax. In the case of few-body systems, as
considered in this work, calculations with sufficiently large
Nmax can be performed to reach satisfactory convergence.
Before the diagonalization of the Hamiltonian (6) the

basis states (8) have to be antisymmetrized with respect to
the exchanges of all nucleons. The antisymmetrization
procedure with Jacobi-coordinate HO basis states is exten-
sively discussed in Ref. [66] and wewill only summarize its
main points here. The fully antisymmetric A-body HO
basis is obtained by diagonalization of the antisymmetrizer
operator ÂA between the basis states (8). The antisymmetr-
izer is defined as

ÂA ¼ 1

A!

X
π

sgnðπÞP̂π; ð10Þ

where the summation extends over all permutations π,
with parity sgnðπÞ, of single-nucleon coordinates realized
on the states (8) by permutation operator P̂π. The eigen-
vectors of the antisymmetrizer (10) span two eigenspaces—
one corresponding to eigenvalue 1 formed by physical
antisymmetric states and one corresponding to eigenvalue 0
formed by spurious states. The antisymmetrizer can be
represented as

ÂA ¼ ÂA−1
1

A
½1 − ðA − 1ÞP̂A−1;A�ÂA−1; ð11Þ

where the operator P̂A−1;A interchanges the coordinates of
nucleons A − 1 and A. Equation (11) provides the basis for
an iterative procedure to obtain fully antisymmetrized states
from states with a lower degree of antisymmetry. Explicit
expressions for the matrix elements of the antisymmetrizer
ÂA between the basis states (8) can be found e.g. in
Ref. [67]. The resulting states can be expanded in terms of
the original basis containing an antisymmetric cluster of
A − 1 nucleons and one nucleon as

jNAiAJATAi
¼
X

hðNA−1iA−1JA−1TA−1; αA−1ÞJATAjNAiAJATAi
× jðNA−1iA−1JA−1TA−1; αA−1ÞJATAi; ð12Þ

where the expansion coefficients obtained from the eigen-
vectors of the antisymmetrizer are the coefficients of
fractional parentage. Thanks to the important property of
the antisymmetrizer of being diagonal in the total number
of HO quanta NA the fully antisymmetric states (12) can be
classified by NA ¼ NA−1 þ 2nA−1 þ lA−1 (N2 ¼ 2n1 þ l1
for two-nucleon states) and the quantum number iA which
distinguishes different states with the same set of quantum
numbers NA, JA, TA.
To evaluate the matrix elements of two- and three-body

VNN and VNNN potentials in the Hamiltonian (6) between
the antisymmetrized many-body HO states one can recur-
sively make use of the expansion in Eq. (12). However, it is
more efficient to employ more suitable sets of Jacobi
coordinates together with the associated HO states con-
taining antisymmetrized states of A − 2 and two nucleons
or A − 3 and three nucleons [66].
To construct the nuclear response functions defined in

Eq. (3) we need to evaluate matrix elements of the various
operators in Eq. (5) between the ground-state wave func-
tions of the Hamiltonian. The nuclear matrix elements in
(3) can be further reduced in nuclear isospin and written as

hJπTMT∥
XA
i¼1

ÂLτðqρiÞ∥JπTMTi

¼ ð−1ÞT−MT

�
T τ T

−MT 0 MT

�

× hJπTjjj
XA
i¼1

ÂLτðqρiÞjjjJπTi: ð13Þ

The NCSM technology for computing such nuclear
matrix elements is analogous to standard SM calculations.
One-body transition densities (OBTD) are introduced so
that the many-body matrix elements of one-body operators
(reduced both in nuclear spin and isospin) can be expressed
as products of OBTD and single-particle matrix elements
[67]:

FIG. 1. Graphical representation of the relative Jacobi coor-
dinates defined in Eq. (7) for A ¼ 4 nucleons.

AB INITIO NUCLEAR RESPONSE FUNCTIONS FOR … PHYSICAL REVIEW D 95, 103011 (2017)

103011-5



hJπTjjj
XA
i¼1

ÂLτðqρiÞjjjJπTi

¼
X
αβ

ΨLτ
αβhαjjjÂLτðqρAÞjjjβi; ð14Þ

where jαðβÞi ¼ jnαðβÞðlαðβÞ 12ÞjαðβÞ 12i denote single-nucleon
HO states associated with Jacobi coordinate ξA−1 ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ðA − 1Þp

ρA. The OBTD ΨLτ
αβ is given by

ΨLτ
αβ ¼ A

X
hJπTjðNA−1iA−1JA−1TA−1; αÞJTi

× hðNA−1iA−1JA−1TA−1; βÞJTjJπTi

× Ĵ2ð−1ÞJA−1þLþJþjβ

�
JA−1 jβ J

L J jα

�

× T̂2ð−1ÞTA−1þτþTþ1
2

�
TA−1

1
2

T

τ T 1
2

�
; ð15Þ

where the terms in curly brackets are the Wigner 6j
symbols and we used expansion of the eigenstate in the
basis (12). In Eq. (14), the single-particle matrix elements
reduced in both angular momentum and isospin can be
simplified by using h1

2
∥tτ∥ 1

2
i ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2τ þ 1Þp
:

hαjjjÔLτðqρAÞjjjβi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2τ þ 1Þ

p
hαjjÔLðqρAÞjjβi; ð16Þ

where hα∥ÔLðqρAÞjjjβi are single-particle matrix elements
reduced in angular momentum only. In a HO basis these
matrix elements can be calculated analytically and are listed
e.g. in Ref. [9].

C. Chiral nuclear interactions

The theory of nuclear forces has a long history—starting
with the seminal meson-exchange hypothesis of Yukawa.
The current state of the art involves the use of chiral EFT
and has opened the door for a description of atomic nuclei
consistent with the underlying symmetries of QCD.
Nuclear interactions from chiral EFT are based on the
use of nucleons and pions as the relevant degrees of
freedom, but employ symmetries and the pattern of
spontaneous symmetry breaking of QCD [16–18]. In this
approach, the exchange of pions within chiral perturbation
theory yields the long-ranged contributions of the nuclear
interaction, while short-ranged components are included as
contact terms. Regularization is needed to deal with
divergent momentum-space integrals. The interaction is
parametrized in terms of low-energy constants (LECs) that,
in principle, can be connected to QCD predictions.
However, the currently viable approach to accurately
describe atomic nuclei in chiral EFT requires that the
LECs are constrained from experimental low-energy
data. The bulk of this fit data traditionally consists of
cross sections measured in nucleon-nucleon scattering

experiments. The interactions from chiral EFT exhibit a
power counting in the ratio Q=Λ, with Q being the low-
momentum scale that is characteristic for the nuclear
observable under consideration and Λ the EFT breakdown
scale, which is of the order of 1 GeV. In this approach,
three-nucleon forces enter at next-to-next-to-leading order
(NNLO). Both regulator independence and an accurate
power counting scheme are crucial ingredients for the EFT
approach to nuclear forces. In combination these properties
allow for order-by-order improvement with decreasing
truncation error, where the magnitude of such errors can
also be quantified.
In this work, the nuclear interaction enters in the many-

body Hamiltonian (6) that is diagonalized in a basis to yield
the nuclear wave function. In order to capitalize on recent
developments in the quantification of uncertainties of
nuclear forces [39,68–70] we employ the family of 42
different interactions at NNLO (labeled NNLOsim) that was
constructed by Carlsson et al. [39]. These potentials are
optimized to simultaneously reproduce NN as well as πN-
scattering data, the binding energies and charge radii of
2;3H and 3He, the quadrupole moment of 2H, as well as the
β-decay half-life of 3H. Utilizing such a large set of
interactions allows us to better explore the systematic
uncertainties. Each NNLOsim potential is associated
with one of seven different regulator cutoffs ΛEFT ¼
450; 475;…; 575; 600 MeV. In addition, the database of
experimentalNN scattering cross sections used to constrain
the respective interaction was also varied. It was truncated
at six different maximum scattering energies in the labo-
ratory system Tmax

Lab ¼ 125;…; 290 MeV. It should be
pointed out that for all NNLOsim interactions an equally
good description of the fit data is attained and that all LECs
are of natural size. See Ref. [39] for a complete description.
In this work we are mainly interested in the nuclear wave
functions of 3;4He. We note that the binding energy of 3He
is accurately described for all these interactions since it is
included in the pool of fit data. Predictions for Eð4HeÞ vary
within a ∼2 MeV range around the experimental binding
energy.

III. RESULTS

The main focus of this work is to quantify the impact of
systematic nuclear structure uncertainties on the interpre-
tation of data from dark matter searches. In the present
study we consider only light nuclear systems that can be
calculated reliably and accurately without uncontrollable
approximations. In particular, we performed ab initio
NCSM calculations of 3He and 4He and constructed all
relevant nuclear response functions that appear in elastic
dark matter–nucleus scattering. The generated response
functions were then employed to explore the sensitivity
of selected physical observables to nuclear-structure
uncertainties.
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A. Nuclear response functions of 3He and 4He

In this section we present the nuclear response functions
defined in Eq. (3). In order to evaluate the nuclear matrix
elements in Eq. (14) and construct the nuclear response
functions we performed ab initio NCSM calculations of
3He and 4He ground-state wave functions using the com-
plete family of all 42 NNLOsim chiral nuclear Hamiltonians.
The NCSMmodel spaces used in these calculations are very
large, Nmax ¼ 40ð20Þ for 3Heð4HeÞ, so that both energies
and wave functions are fully converged. The systematic
uncertainties in the determination of the underlyingNN and
NNN interactions are probed through the use of a large
family of interactions. These uncertainties propagate into
the set of calculated nuclear wave functions and thus
manifest themselves as uncertainties in the determination
of the nuclear response functions. The types of the nuclear
responses generated by a particular nucleus depend on the
total nuclear ground-state angular momentum and isospin
as well as on the details of the nuclear structure.
In the case of 4He most of the response functions are

identically zero due to the J ¼ 0 and T ¼ 0 ground-state
quantum numbers. The only nonvanishing nuclear response
functions are the isoscalar spin-independent W00

M , W00
Φ00 and

W00
Φ00M responses, which are shown in Fig. 2 as functions of

the transferred (recoil) momentum q. All NNLOsim chiral
nuclear Hamiltonians were used to calculate a 4He ground-
state wave function and to evaluate the response functions.
These different curves turn out to be evenly distributed in
regions that are then represented by shaded bands in the
figures. In that way, the response functions calculated with
the ab initio NCSM technique reflect the systematic
uncertainty in the underlying nuclear interaction. The
nuclear-structure uncertainties affect the various response
functions very differently. While the dominant nuclear
response W00

M is determined fairly accurately, the W00
Φ00

and W00
Φ00M responses suffer from large uncertainties, in

particular in the region of low recoil momenta q ≈ 0 GeV.
It is to be noted thatW00

Φ00 andW00
Φ00M appear suppressed by a

factor of q2=m2
N in the scattering cross section (2) and the

large uncertainties are thus suppressed in the physical
observables, as will be demonstrated in Sec. III B. The
large uncertainties found in the W00

Φ00 (and consequently
W00

Φ00M) response compared to W00
M can be understood by

examining the long-wavelength limit (q → 0) of the lead-
ing multipoles of the corresponding nuclear operators [9].
In this limit we have

M00;0ðqÞ→
q→0 1ffiffiffiffiffiffi

4π
p

XA
i¼1

1ðiÞ; ð17Þ

which implies that the W00
M ðq → 0Þ response is propor-

tional to A2 independent of the nuclear dynamics. On the
other hand, since

Φ00
00;0ðqÞ→

q→0 −1
3
ffiffiffiffiffiffi
4π

p
XA
i¼1

σðiÞ · lðiÞ; ð18Þ

the W00
Φ00 ðq → 0Þ response is proportional to the square of

the expectation value of the nucleon spin-orbit coupling
in the nuclear ground state. This quantity is difficult to access
experimentally and its value is therefore not constrained.
Consequently, the q → 0 behavior of the W00

Φ00 and W00
Φ00M

responses are predictions of the nuclear model, clearly very
sensitive to the underlying nuclear Hamiltonian.
Furthermore, the functional dependence of the nuclear

response functions on the recoil momentum q can be
understood from expressions (3) and (14). In a HO basis
the single-particle matrix elements in Eq. (14) can be
evaluated analytically, yielding an expression of the form
PðyÞe−y, where PðyÞ is a polynomial [9] and y ¼ ðqb=2Þ2
a dimensionless quantity with b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmNωÞ
p

the HO
length. Since the one-body transition densities are inde-
pendent of q, the nuclear response functions follow this
exponential suppression and their absolute uncertainties
decrease with q. On the other hand, the relative uncertain-
ties in the response functions increase for larger values of
recoil momentum. For comparison, also shown in Fig. 2 is
the W00

M response function taken from Ref. [25] in which
SM calculations were performed for a number of light
elements in the context of dark matter–nucleus scattering.
In the particular cases of 3;4He, the interaction that was used
in that work did not allow coupling between the 0s1=2 shell
and higher-lying orbits. As a consequence, the ground-state
configuration is a single Slater determinant with all four
nucleons in the 0s1=2 shell implying that the results

FIG. 2. Isoscalar nuclear response functions W00
M , W00

Φ00 and
W00

Φ00M of 4He as functions of the transferred momentum q,
calculated within ab initio NCSM (shaded regions) and the
noninteracting shell model (NI-SM) (dashed line).
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correspond to a noninteracting shell model (NI-SM). Even
though this situation is an extreme limiting case for the SM
it is worth pointing out the main differences and new
features of ab initio calculations. In general, the W00

M
response functions generated within the SM approach
using phenomenological interactions and the NCSM
approach using chiral EFT interactions will match for
recoil momentum q ¼ 0 GeV, due to the A2-normalization,
and for large values of q, where the response must vanish.
Except for these limits, the results will differ. In particular,
for 4He the NI-SM give larger values of W00

M compared to
NCSM calculations. Moreover, it is to be stressed that W00

M
is the only nonzero nuclear response function resulting
from the NI-SM calculation, as it includes only one
single-particle orbital. In general, SM calculations with
residual valence space interactions will employ a very
restricted single-particle basis. The calculation of the
nuclear response should therefore be made with operators
that have been properly renormalized to act only within this
truncated model space. In contrast, the nuclear responses in
Fig. 2 calculated within the NCSM methodology were
obtained employing a substantially larger model space. The
NCSMmethod allows us to systematically increase the size
of the model space. For these calculations a truncation of
Nmax ¼ 20 was used to reach full convergence with the use
of bare operators. The NCSM model space is able to
accommodate details of the nuclear structure that are
crucial to expose the full complexity of the nuclear
response. This difference becomes even more evident for
the W00

Φ00 response, which is evaluated as zero in the
restricted Nmax ¼ 0 (0s1=2) model space but is nonzero
in the NCSM as it receives contributions from nucleons that
occupy higher orbitals.
Similar conclusions hold for the nuclear response func-

tions of 3He as shown in Figs. 3 and 4. In this case there are
more nonvanishing response functions due to the J ¼ 1

2
and

T ¼ 1
2
ground-state quantum numbers. In particular, among

all the response functions in Eq. (3) only the Wττ0
~Φ0 response

vanishes, since it contributes for nuclei with total angular
momentum J ≥ 1. The dominant nuclear responses of 3H,
resulting both from ab initio NCSM calculations and the
NI-SM [25], are the spin-independent responses Wττ0

M ,
shown in Fig. 3, and the spin-dependent response functions
Wττ0

Σ0 andWττ0
Σ00 , shown in the left panel of Fig. 4. The nuclear

structure uncertainties in the determination of the Wττ0
M

response are negligibly small, making the corresponding
bands in Fig. 3 almost invisible. As in the case of 4He, the
ab initio NCSM Wττ0

M response functions are smaller than
the ones from the NI-SM over the whole range of relevant
recoil momenta, except for q → 0 where they must agree
due to the A2-normalization. The spin-dependent responses
Wττ0

Σ0 andWττ0
Σ00 are generated by the Σ0

LM;τ and Σ00
LM;τ nuclear

operators whose leading multipoles are proportional to the

total nuclear spin operator in the q → 0 limit [9]. Similarly
as for the Φ00

LM;τ operator, the ground-state expectation
value of the nuclear spin, 1

2

P
A
i¼1 σ⃗ðiÞ, is not imposed as a

strict constraint and its value can vary for different nuclear
Hamiltonians. However, the nuclear uncertainties affect
these response functions only moderately. The ab initio
NCSM calculations generate additional nuclear responses
not appearing in the NI-SM, namely the Wττ0

Φ00 and Wττ0
Δ

response functions. These, in turn, generate the interference
responsesWττ0

Φ00M andWττ0
ΔΣ0 . Finally, the leading multipole of

the nuclear response operator ΔLM;τ is proportional to the

total nuclear angular momentum,
P

A
i¼1 l⃗ðiÞ [9], and its

expectation value is also not imposed as a constraint on the
nuclear Hamiltonian. Consequently, as shown in Fig. 4, all
these response functions exhibit large systematic uncer-
tainties that are, however, suppressed in physical observ-
ables by a factor of q2=m2

N . Furthermore, isovector
responses are generally smaller in magnitude since they
result from a proton-neutron difference rather than a sum of
proton and neutron contributions.

B. Impact on dark matter searches

Nuclear physics uncertainties in the response functions
affect the interpretation of data from dark matter search
experiments. In this subsection we quantitatively address
this matter in the context of directional dark matter
detection for which detectors with 3;4He target materials
are currently in a research and development stage. The aim
is to assess the impact of nuclear physics uncertainties for
these isotopes on physical observables.
We start by reviewing the basic concepts of directional

dark matter detection. The Earth’s motion in the galactic

FIG. 3. Nuclear response functions Wττ0
M of 3He as functions of

the transferred momentum q, calculated within the ab initio
NCSM (shaded regions) and the NI-SM (dashed, dashed-dotted
and dotted lines).
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rest frame induces a flux of dark matter particles across the
surface of the planet. If dark matter interacts with nuclei,
low-background experiments might be able to detect
nuclear recoils induced by the scattering of dark matter
particles in a target material [71]. The angular distribution
of such nuclear recoil events is expected to be anisotropic,
as the Earth’s motion in the galactic rest frame selects a

preferred direction in the sphere of recoil directions [72].
Depending on the interaction operator in analysis, recoil
events are mainly expected in the direction opposite to the
observer’s motion, or in a ring around it [60,61]. In order to
exploit this information, directional dark matter detectors
have been designed. They search for anisotropies in the
distribution of nuclear recoil events in low-background

FIG. 4. Nuclear response functions of 3He as functions of the transferred momentum q calculated within ab initio NCSM (shaded
regions) and NI-SM (dashed and dashed-dotted lines).
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underground experiments. Here we consider hypothetical
detectors made of 3He or 4He.
Let us now focus on physical observables. The double

differential rate of nuclear recoil events per unit detector
mass is given by

d2R
dq2dΩ

¼ α

Z
d3vδðv · w − wqÞfðv þ v⊕ðtÞÞ

× v2
dσðv2; q2Þ

dq2
; ð19Þ

where α ¼ ρχ=ð2πmχmAÞ, ρχ ¼ 0.4 GeVcm−3 [73] is the
local dark matter density, mA the target nucleus mass,
w a unit vector pointing in the nuclear recoil direction,
wq ¼ q=ð2μχAÞ the minimum velocity required to transfer
a momentum q in the scattering, and v⊕ðtÞ the time-
dependent Earth’s velocity in the galactic rest frame. From
now onwards, we assume azimuthal symmetry around the
direction of v⊕ðtÞ, i.e. dΩ ¼ 2πd cos θ, and measure the
angle θ with respect to v⊕ðtÞ. We approximate the velocity
distribution fðv þ v⊕ðtÞÞ with a Gaussian function trun-
cated at an escape velocity of 533 km s−1, and assume a
local standard of rest of 220 km s−1 [74,75]. The velocity
integral in Eq. (19) is a Radon transform. In the Gaussian
approximation, it has been evaluated analytically for all
operators in Table I in Ref. [60]. The key physical
observable for the present analysis is the differential rate
of nuclear recoil events per unit detector mass. This can be
calculated from Eq. (19) as follows:

dR
d cos θ

¼ 2π

Z
q2>q2th

d2R
dq2dΩ

dq2; ð20Þ

where Eth ≡ q2th=ð2mAÞ is the detector energy threshold.
Here we set Eth ¼ 0, and assume infinite energy and
angular resolution.
We now evaluate Eq. (20) for selected interaction

operators, namely, Ô4, Ô5, Ô9, Ô10, Ô12 and Ô15. The
operator Ô4 is the standard spin-dependent interaction. It
arises as the leading interaction operator from the non-
relativistic reduction of renormalizable Lagrangians for
spin 1=2 or 1 dark matter interacting with nucleons through
the exchange of a heavy spin-1 particle. The operator Ô5

can only be generated as the leading interaction operator if
dark matter has spin 1 and interacts with nucleons through
the exchange of a heavy spin-1 particle. In contrast, the
operator Ô10 can arise for all dark matter particle spins,
including spin 0. Finally, the operator Ô12 is always
generated in association with the operator Ô1. We refer
to [47] for a comprehensive list of scenarios. Some of
the considerations above might be affected by operator
evolution [76,77].

In the following we will focus on the contribution of the
isoscalar (τ ¼ 0) or isovector (τ ¼ 1) component of a
single operator Ôjtτ at a time by setting only the corre-
sponding coupling constant cτj different from zero. In this
case the value of the coupling constant is cτj ¼ 10−3=m2

V ,
where mV ¼ 246.2 GeV is the electroweak scale. The
value 10−3=m2

V is arbitrary and corresponds to the refer-
ence WIMP-nucleon cross section ðμ2χN=m4

VÞ=ð4πÞ∼
7×10−45 cm2 at mχ¼50GeV, with μχN the WIMP-nucleon
reduced mass. Since the rate depends quadratically on the
coupling constants, the results can be easily rescaled to
other values of cτj.
Figure 5 shows the differential rate of nuclear recoil

events, Eq. (20), as a function of the recoil direction cos θ.
In the figure we focus on the isoscalar component of
selected interaction operators, and consider 3He as a target
material. The dark matter particle mass has been set to
mχ ¼ 10 GeV and the coupling constants of the three
operators in the legend to the reference value as specified
above. For the nuclear response functions needed in this
calculation, Eq. (3), we consider two distinct choices,
corresponding to lower and upper boundary of the asso-
ciated nuclear physics uncertainty band found in Sec. III A.
This produces the colored bands reported in the figure.
They describe the impact of nuclear physics uncertainties

FIG. 5. Differential rate of nuclear recoil events as a function of
the recoil direction. We focus on the isoscalar component of the
interaction operators listed in the legend and consider 3He as a
target material. We set mχ ¼ 10 GeV and the isoscalar coupling
constants to the reference value as detailed in the text. For the
nuclear response functions needed in this calculation, Eq. (3), we
consider two distinct choices, corresponding to the lower and
upper boundaries of the associated nuclear physics uncertainty
band found in Sec. II B. This produces the colored bands in the
figure, which therefore account for the nuclear physics uncer-
tainties in the recoil rates.
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on the physical observable considered in this investigation.
Specifically, in Fig. 5 we consider the following inter-
actions: the operator Ô4, which generates theWττ0

Σ0 andWττ0
Σ00

responses; the operator Ô5, which generates Wττ0
M as the

leading response; and, finally, the operator Ô15, which as
the leading response generates Wττ0

Φ00 . In agreement with

Sec. III A, nuclear physics uncertainties are large for Ô15,
moderate for Ô4, and small for Ô5. For a given interaction
operator, the leading response function can be determined
from Eq. (A1) and the results in Sec. III A.
Figure 5 also shows that nuclear physics uncertainties are

more pronounced at cos θ ¼ −1, where nuclear recoil rates
are large. Around this direction the integral in Eq. (20) is
dominated by small values of q, and in the q → 0 limit
uncertainties in the response functions grow. We conclude
that physical observables are particularly sensitive to the
large uncertainties we have found in the q → 0 limit of
some of the nuclear response functions in Eq. (3). This is
one of the key results of the present analysis.
Figure 6 shows the differential rate of nuclear recoil

events as a function of cos θ for a 4He detector and the
interaction operators Ô5 and Ô15. We do not consider the
interaction operator Ô4, since the nuclear response func-
tionsWττ0

Σ0 andWττ0
Σ00 are identically zero for 4He. Dark matter

particle mass and coupling constants are set as above. As in
the case of 3He, we find that nuclear physics uncertainties
are large for Ô15, which generates the Wττ0

Φ00 response. They

are negligible for Ô5, which generates the Wττ0
M response.

Figure 7 illustrates results analogous to those reported in
Fig. 5, but now for the isovector component of the operators
in the legend. For isovector dark matter–nucleon couplings,

nuclear physics uncertainties are only moderate. From the
experimental perspective, we therefore conclude that this is
the most favorable particle physics scenario.
In Fig. 8 we compare two independent calculations of the

differential rate of nuclear recoil events, Eq. (20). The first
calculation is the one we perform here in the ab initio
NCSM approach; the second one has been performed in

FIG. 6. Same as for Fig. 5, but now for a 4He detector. Here we
do not consider the interaction operator Ô4 since the nuclear
response functions Wττ0

Σ0 and Wττ0
Σ00 are identically zero for 4He.

FIG. 7. Same as for Fig. 5, but for the isovector component of
the operators in the legend.

FIG. 8. Differential rate of nuclear recoil events computed
within the ab initio NCSM approach (this work) compared with
the NI-SM rate found in [60]. We focus on the isoscalar
component of the interaction operators listed in the legend and
consider 3He as a target material. We set mχ ¼ 10 GeV and the
coupling constants to the reference value given in the text. The
comparison is performed considering for each ab initio nuclear
response function the upper boundary of the corresponding
nuclear physics uncertainty band found in Sec. III A.
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[60] using the nuclear SM technique. Results are presented
for the isoscalar components of selected interaction oper-
ators, setting mχ and associated coupling constants as
above, and focusing on 3He as a target material. The
comparison is performed considering for each ab initio
nuclear response function the upper boundary of the
corresponding nuclear physics uncertainty band found in
Sec. III A. In Fig. 8 relative differences are moderate:
30% or less for all recoil directions. The ab initio calcu-
lation performed here predicts lower rates of recoil events
for interaction operators which generate single nuclear
response functions, such as the Ô9 and Ô10 operators.
However, there are cases in which the ab initio calculation
predicts three nuclear response functions different from
zero, while the phenomenological approach predicts only
two. This is the case of the operator Ô12, for which ab initio
and phenomenological calculation predictWττ0

k ≠ 0 for k ¼
Σ0;Σ00;Φ00 and zero otherwise, and Wττ0

k ≠ 0 for k ¼ Σ0;Σ00

and zero otherwise, respectively. In these cases, ab initio
rates are larger than phenomenological rates in a wide range
of recoil directions.

IV. DISCUSSION AND OUTLOOK

In this work we have developed an ab initio framework
for computations of nuclear response functions for dark
matter scattering off atomic nuclei. Our nuclear-structure
calculations have been performed with the NCSM method,
and applied to the study of light nuclei. However, our
approach can be generalized to other ab initio methods and
extended to heavier isotopes.
In particular we have quantified the uncertainties of

nuclear response functions that result from the remaining
freedom in the construction of realistic nuclear interactions.
Furthermore, we have quantified the impact of such
nuclear-physics uncertainties on physical observables that
are relevant for dark matter searches. Particular emphasis
has been placed on the rate of dark matter–nucleus
scattering events at directional detection experiments. We
have performed this calculation for a variegated set of dark
matter–nucleon interactions. Depending on the type of
nuclear response that is considered, relative uncertainties
on the scattering rate can be as large as a factor of 5 for
nuclear recoil directions antiparallel to the Earth’s motion
in the galactic rest frame (see Fig. 6). For comparison,
current uncertainties on the local dark matter density are at
the 30% level [78], or smaller if knowledge of the baryonic
mass density profile is assumed [73]. Uncertainties on the
local dark matter velocity distribution can be significantly
larger, but only affect results obtained for dark matter
particle masses below 20 GeV or so [74]. We have also
compared scattering rates computed using the NI-SM with
those from the ab initio NCSM approach. For 3;4He most
differences are moderate or small, although with a clear
dependence on the nuclear recoil direction. However,

certain response functions that are evaluated to zero in
the NI-SM approach can appear when allowing more
freedom in the nuclear many-body model space.
Consequently, we have identified scenarios in which the
expected dark matter signal is larger when ab initio nuclear-
structure input is used.
In this work we have used the NREFT description of the

WIMP-nucleon interaction. However, it should be straight-
forward to implement also the alternative framework in
which QCD constraints, imposed by chiral symmetry, are
used to obtain the WIMP-nucleon interaction from an
underlying interaction at the quark level. Such an extension
would become relevant for the matching of parameters to
new physics models, but also for an improved under-
standing of the relative importance of many-body currents
in nuclei with larger mass numbers.
Further applications of the ab initio scheme that we have

developed include improved calculations of (i) the rate of
dark matter capture via scattering by nuclei in the Earth and
in the Sun; (ii) the nuclear response functions for 19F, which
is used in the direct detection experiment PICO [79] and in
directional detection experiments [42]; and (iii) the nuclear
response functions for 16O, that is used in the direct
detection experiment CRESST-II [80]. In order to maintain
reasonable nuclear-physics uncertainties for predictions
involving these heavier isotopes one might have to calibrate
the chiral nuclear interaction differently from what has been
done in this work. In particular, rather than staying
exclusively in the few-body sector one might explore the
alternative strategy of informing the nuclear-force model
about low-energy many-body observables [81,82]. In
addition, one could consider to include information on
various electroweak observables, which would provide
additional constraints on the relevant response functions.
Furthermore, medium-mass and heavier closed-shell

nuclei can be within computational reach using nuclear
structure methods that have a gentler scaling with the
number of nucleons. In addition, such methods can be used
to compute effective valence-space interactions for use in
standard SM calculations [28,29]. A key point would be
that such valence-space interactions will be constructed
directly from the underlying NN interaction using non-
perturbative methods. With corresponding advances in SM
technology, this approach opens the path towards ab initio
studies of nuclear responses for germanium and xenon
isotopes with quantified uncertainties.
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APPENDIX: DARK MATTER RESPONSE
FUNCTIONS

Dark matter response functions introduced in Eq. (2) and
used in Sec. III B:
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Rττ0
~Φ0

�
v⊥2
q ;

q2

m2
N

�
¼ JχðJχ þ 1Þ

12

�
cτ12c

τ0
12 þ

q2

m2
N
cτ13c

τ0
13

�
;

Rττ0
Σ00

�
v⊥2
q ;

q2

m2
N

�
¼ q2

4m2
N
cτ10c

τ0
10 þ

JχðJχ þ 1Þ
12

�
cτ4c

τ0
4

þ q2

m2
N
ðcτ4cτ

0
6 þ cτ6c

τ0
4 Þ þ

q4

m4
N
cτ6c

τ0
6

þ v⊥2
q cτ12c

τ0
12 þ

q2

m2
N
v⊥2
q cτ13c

τ0
13

�
;

Rττ0
Σ0

�
v⊥2
q ;

q2

m2
N

�
¼ 1

8

�
q2

m2
N
v⊥2
q cτ3c

τ0
3 þ v⊥2

q cτ7c
τ0
7

�

þ JχðJχ þ 1Þ
12

�
cτ4c

τ0
4 þ q2

m2
N
cτ9c

τ0
9

þ v⊥2
q

2

�
cτ12 −

q2

m2
N
cτ15

��
cτ

0
12 −

q2

m2
N
cτ015

�

þ q2

2m2
N
v⊥2
q cτ14c

τ0
14

�
;

Rττ0
Δ

�
v⊥2
q ;

q2

m2
N

�
¼ JχðJχ þ 1Þ

3

�
q2

m2
N
cτ5c

τ0
5 þ cτ8c

τ0
8

�
;

Rττ0
ΔΣ0

�
v⊥2
q ;

q2

m2
N

�
¼ JχðJχ þ 1Þ

3
ðcτ5cτ

0
4 − cτ8c

τ0
9 Þ: ðA1Þ

For definitiveness, we assume Jχ ¼ 1=2, where Jχ is the
dark matter particle spin.
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