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abstract

Thermonuclear fusion is a potential candidate for providing a clean source of energy
and satisfying the high electricity demands of the future. The fuel in a typical reac-
tor is heated to a very high temperature forming a gas of charged particles known
as a plasma. The fusion reactions in the tokamak have to reach a self-sustaining
regime to minimise the input power required to drive the reactor. Reaching this
regime demands a sufficiently low transport of energy, which remains one of the
biggest challenges in plasma physics today. Turbulence driven by small scale in-
stabilities causes large heat and particle transport and is a major limiting factor of
current fusion devices. Above a critical value, the ion temperature gradient leads to
the growth of a microinstability – the ion temperature gradient mode – that often
dominates the ion energy transport.
It has recently been discovered that energetic ions generated by auxiliary heating
may reduce the growth of this instability. By applying the gyrokinetic formalism
and performing linear simulations using the local continuum gyrokinetic code GS2,
we explore the linear physics of this stabilising effect. In order to isolate important
effects due to the presence of fast ions, we make use of the flexibility of GS2 to
change the plasma and magnetic geometry parameters independently. We assess
the possibility to neglect magnetic geometry changes to simplify the analysis, by
investigating its contribution to the stabilising effect. For the cases studied we find
that the Shafranov shift and safety factor profile might have to be taken into account.
For fixed fast ion density and temperature a destabilising influence of their density
gradient is found, while the high fast ion temperature gradient is stabilising, both
as predicted by theoretical models. A large part of the observed stabilisation comes
from the fast ion contribution to the plasma β which is the ratio of the total thermal
to magnetic pressure. In addition, the effect of β is enhanced because of the large
density and temperature gradients of the fast ions. We investigate the role of hot ion
mass and charge in order to evaluate the stabilisation of different types of hot ions.
The charge enhances the destabilising effect of the hot ion density gradient, while
increasing the mass improves stability in general. Also the possibility of adjusting
the electron and ion profiles to account for the presence of fast ions without including
them as a kinetic species, is considered. We find the changes because of fast ions
accessible by modifying electron and ion profiles of comparable importance as the
fast ion gradients. Finally, quasi-linear theory is invoked for linking linear results to
saturated values of the nonlinear heat fluxes.

Keywords: fusion, turbulence, fast ions, ion temperature gradient mode, quasi-linear
theory

v





acknowledgements

There are many people who I would like to thank, and who have contributed to
this work directly and indirectly. First of all I would like to express my deepest
gratitude to my supervisor George for his patience in teaching me the fundamentals
of gyrokinetics, turbulence and fast ions. Throughout this work he has provided me
with clear and illuminating solutions to the various problems I have had, proposed
insightful interpretations, suggested interesting physical problems to tackle and di-
rectly influenced in making this thesis self-contained and interesting to read. He has
definitely inspired me to continue to explore this fascinating field of turbulence and
plasma physics.

I am also grateful for the time Edmund spent in answering the myriads of
questions I have had on various topics encountered during this work. A significant
part of this thesis, particularly the puzzling role of geometry, has relied on the tools
and data provided by Edmund not to mention the comprehensive discussions on this
subject.

To István for constantly being available to provide incredibly pedagogical and
insightful answers to my every question, be it in plasma physics, physics in general
or practically anything else.

Special thanks to George, István and Stefan for proofreading this thesis and
for their excellent comments which has improved this work significantly.

I also would like to thank Ian for his help, Ronald for providing the data
that has allowed me to verify and compare my results and Jonathan for providing
essential input files for the geometry chapter.

To Tünde, not only for inviting me to her team and giving me the opportunity
to work on a topic I am very fascinated about, but also for the extraordinary care and
support she has shown me and co-workers alike. To her and the rest of the plasma
theory group at Chalmers I want to thank for creating the perfect environment
for research, one that is characterised by collaboration, humour and where you are
motivated to perform at your best.

Finally, my warmest gratitude to my family for their concern, support and
encouragement. I am especially in debt to my wonderful sister Alexandra for her
selfless care and patience.

Aylwin Iantchenko, Gothenburg, June 2017

vii





Contents

1 Introduction 1
1.1 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Fast ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Global effects 9
2.1 Sources of fast ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Neutral beam injection . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Ion cyclotron resonance heating . . . . . . . . . . . . . . . . . 11
2.1.3 Alpha particles . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The global effects of fast ions: an overview . . . . . . . . . . . . . . . 12
2.3 Magnetic geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Parametrisation of the magnetic equilibrium . . . . . . . . . . . . . . 17

2.4.1 Miller parametrisation . . . . . . . . . . . . . . . . . . . . . . 17
2.5 The fast ion effect on the magnetic geometry . . . . . . . . . . . . . . 19

3 Studying turbulence and the ITG mode 23
3.1 The gyrokinetic formulation of turbulence . . . . . . . . . . . . . . . 24

3.1.1 The gyrokinetic equation . . . . . . . . . . . . . . . . . . . . . 26
3.2 A brief introduction to GS2 . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Physical input parameters to GS2 . . . . . . . . . . . . . . . . 28
3.2.2 Resolution parameters . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Microinstabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 The ITG instability . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Dispersion relation for describing the ITG mode . . . . . . . . 33
3.3.3 Effects of fast ions on the critical threshold . . . . . . . . . . . 37

4 Gyrokinetic simulations 41
4.1 Fast ion stabilisation of the ITG mode . . . . . . . . . . . . . . . . . 41

4.1.1 The role of β . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Contrasting fast ions with thermal impurities . . . . . . . . . 45
4.1.3 Isotope effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.4 Role of secondary effects . . . . . . . . . . . . . . . . . . . . . 51

4.2 Quasi-linear prediction of the nonlinear diffusion coefficients . . . . . 55

5 Summary and Discussion 59
5.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 63

ix



Contents

A Global effects I
A.1 Input Parameters to CHEASE . . . . . . . . . . . . . . . . . . . . . . . I
A.2 Effect of Miller parameters on the growth rates . . . . . . . . . . . . I

B Studying turbulence and the ITG mode V
B.1 Scan in the resolution parameters . . . . . . . . . . . . . . . . . . . . V

x



1Introduction

The ever increasing demand of energy and evidence of the negative environmental
impacts of current means of energy production calls for a sustainable energy resource
to be found in the near future. A possible solution is to use fusion.

In fusion reactions two nuclei fuse to generate a large amount of energy. The
easiest to initiate is the deuterium - tritium reaction generating a helium nucleus
(alpha particle) and a neutron [1]. The excess energy can be used to produce steam
which drives a turbine to yield electric power. To fuse, the two light particles have
to overcome the potential (Coulomb) barrier generated by electrostatic interactions
between the particles. This means that the fuel in a fusion reactor has to be heated
to a very high temperature in the order of ∼ 108K. At this temperature a gas of
charged particles is formed, known as a plasma.

To use fusion as a source of energy we have to produce more power than what
is required to drive the fusion reactor, that is, to heat the plasma. Ideally we want a
self-sustaining plasma, a plasma that heats itself using only the energy generated in
the fusion reactions. The critical point when the plasma becomes self-sustaining is
known as ignition. The condition for reaching ignition is given by the Lawson criteria
which for a given main ion density ni, temperature Ti and confinement time τE sets
a minimum value of the fusion triple product niTiτE. Here and throughout this work
we use subscript i as a label for main (deuterium) ions. For fixed ion temperature, if
the ion density is high the confinement time τE can be relatively low. This regime is
implemented in inertial confinement fusion [2]. Magnetic confinement fusion instead
uses low density and try to maximise the confinement time.

The confinement time τE is a measure of the time the energy stays in the
fusion plasma. It is equal to the ratio between the stored thermal energy and the
power loss. Making τE sufficiently high remains one of the biggest challenges in
plasma physics today. Confinement with walls is not possible since there is to date
no material which can withstand the high temperatures needed in a fusion reactor.
Instead, since the particles inside are charged, specially designed magnetic field
configurations can be used.

In the presence of a magnetic field B and an electric field E a particle of
charge Ze and velocity v is influenced by the Lorentz force

F = Ze

(
E + 1

c
v × B

)
, (1.1)

where c is the speed of light. Solving the equations of motion for E = 0 and constant
B leads to a circular motion perpendicular to the field as shown in Fig. 1.1. The
particle traces out a circle of Larmor radius ρ = vt/Ω and rotates with the gyration
frequency Ω = ZeB/cm known as the Larmor frequency. Here m is the mass and for
a temperature T the thermal speed is given by vt =

√
2T/m. All physical quantities
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introduction

in formulas in this work are written in Gaussian units. Actual values of temperature
are given in keV and the mass in units of the proton mass.

Figure 1.1: The motion of a charged particle in a spatially constant magnetic field
(Source [3]).

In mirror machines the parallel motion may be constrained by the straight
magnetic field, but the loss cone makes those devices strongly unstable [1]. In
other configurations straight magnetic fields will not be enough to constrain the
parallel motion of the particles, but the fields have to be bent to form a torus.
This magnetic topology may be achieved in variety of ways. In a stellarator [4]
the field line geometry is generated predominantly by external magnets that usually
have complicated non-planar structure to produce an optimised magnetic field. The
most recently built stellarator is the Wendelstein 7-X in Greifswald, Germany [5].
The current thesis focuses more on the tokamak concept where a twist of the toroidal
magnetic field is achieved by driving a toroidal current in the plasma. The toroidal
current generates the poloidal field which together with the toroidal magnetic field
creates the desired torus topology. The International Thermonuclear Experimental
Reactor (ITER), currently under construction in Cadarache, France, will be the
largest tokamak experiment yet. The aim of the experiment is to demonstrate the
physical feasibility of fusion energy production, by generating an output power ten
times the input power [6]. The plasma parameters considered in this thesis are from
The Joint European Torus (JET) [7] tokamak in Culham, UK which is currently
the largest tokamak in the world.

Even though these magnetic field configurations are designed to confine energy,
it may still escape confinement due to various transport mechanisms. In classical
transport theory energy and particles gradually move across field lines as a conse-
quence of Coulomb collisions between species. The process is further complicated
by various drifts arising from Eq. (1.1) when both spatially varying electric and
magnetic fields are considered. Additionally, some particles may become trapped in
which case their trajectories takes a banana shaped form. An example is depicted in
Fig. 1.2. Including these various effects and collisions is the basis of the well studied
neoclassical transport theory [8]. Although in the edge neoclassical transport can
play a more important role [9, 10], in the core of reasonable sized tokamak reac-
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Figure 1.2: The banana shaped trajectory of a trapped particle moving in a spa-
tially varying magnetic field inside the ITER reactor (Source [3]).

tors neoclassical theory predicts a tolerable level of heat transport [11]. The much
higher level of transport observed experimentally, is instead caused by a completely
different mechanism, namely turbulence [12].

1.1 turbulence

Turbulence is a phenomena we encounter every day: when we study currents in
water, the smoke from a chimney or stir milk into our coffee. We see it as the
unpredictable coherent structures which appear after disturbing a fluid or a gas.
Even in simple fluids, predicting the formation of these turbulent structures is a
very difficult task and turbulence in general remains one of the unsolved problems
of classical physics today. In fusion the picture is even more complicated since
we need to study turbulence in plasmas, involving chaotic fluctuations in density,
temperature, electric and magnetic fields, all interacting with each other.

Microturbulence consists of small scale fluctuations with wavelengths in the
order of the ion Larmor radius ρi. Ion or electron density and temperature gradients
may cause exponential growth in amplitude of perturbations in density, temperature
and fields. Nonlinear interactions between the fields saturate the growth of these in-
stabilities generating turbulence and saturates the heat flux Qs =

∫
ϵsfsvd3v where

ϵs = 1
2msv

2 is the energy of the particle species s with mass ms moving at a speed v.
The distribution function fs describes the probability of finding a particle at spatial
coordinate x and with a velocity v. The time evolution of this distribution function
is described by the Fokker-Planck equation which will be presented in Section 3.1.
Higher energy flux leads to power loss and therefore a shorter confinement time τE

making ignition more difficult to reach. The loss is given by the surface integral of
the

∫
∂Ωp

Q · dS, integrated over the plasma boundary ∂Ωp. To use fusion as a main
source of energy now or in the future, reduction of this heat flux and turbulence is
required. Recently it has been discovered that energetic ions generated by auxiliary
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heating or produced by the fusion reactions themselves may have such an impact
on the turbulence [13].

1.2 fast ions

The ignition criteria on the fusion triple product niTiτE essentially breaks down
the condition for fusion reactors into two separate parts. The first, is reaching a
sufficiently high thermal pressure pi = niTi. In a tokamak the density is relatively
small and the high pressure is mainly reached by increasing the temperature of the
ion population. This requires the plasma to be heated. Some of the heat comes
from the internal currents, but a large fraction is provided by means of auxiliary
heating such as neutral beam injection (NBI) and ion cyclotron resonance heating
(ICRH). These types of heating introduces small populations of particles that are
much more energetic than the thermal populations. These particles are known as
fast ions (here “fast” refers to the high temperature of this ion population). Even
with their low density the high temperature of the fast ion population leads to a
significant contribution to the total thermal pressure. Collisions transfer the energy
of the fast ions to the thermal species and leads therefore to an increase in the first
part of the fusion triple product piτE. This is their primary, and well known effect
of adding fast ions in the plasma. There is also a second, less studied benefit, which
is the increase in the second parameter, the confinement time τE.

An increase in the confinement time is equivalent to a reduced heat flux. In
Fig. 1.3 we illustrate the nonlinear heat flux generated from turbulent fluctuations
in a plasma. In the beginning the heat flux grows exponentially but as the time is
increased, it saturates around some steady state value. Citrin et al. [13] compared
the steady state heat flux generated in a plasma with and without fast ions, and
found a strong stabilising effect when the fast ions had been included. The effect was
particularly strong for the 73224 JET discharge [14]. A reduction in the heat flux is
equivalent with a decrease in the ion energy transport and therefore an increase in
the confinement τE. The effect is of particular interest for the fusion product in a
deuterium-tritium plasma, because of the fast fusion-born alpha particles. If these
particles have a suppressing effect on the turbulence a self-reinforcing loop might
arise. The alpha particles heat the plasma, triggering more fusion reactions which
generates more fast ions which in turn reduce the turbulent transport leading to
longer confinement time and an even hotter plasma. The benefit of alpha particles
increases the more fusion reactions that takes place. In ITER they may therefore
play an important role in increasing the confinement time and reaching ignition.

Information about the species and the magnetic geometry which describe the
fusion plasma in the simulations presented in this work, is taken from the 73224 JET
discharge [14]. The choice of this discharge is motivated by the strong reduction in
the heat flux reported by Citrin et al. [13].
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Figure 1.3: An illustration of the radial heat generated by turbulent fluctuations
in a plasma. Linear physics causes exponential growth of the heat flux which is
saturated at later times by nonlinear mechanisms.

While the reduction in the heat flux demonstrated by Citrin et al. is interesting
by itself, we wish to go one step further and explain why fast ions have this stabilising
effect. The most direct approach would be to evaluate the heat flux for different
fast ion characteristics, varying the density, temperature, charge etc. But there is
a caveat with this strategy, being the computational complexity in calculating the
nonlinearly saturated heat fluxes. This requires nonlinear physics to be included
leading to expensive and complex simulations that are difficult to interpret. Another
option to consider, is to exclude the nonlinear physics, and focus on the linear
mechanisms instead. In this case, the heat fluxes will not be saturated and reach
the steady state observed at later times in Fig. 1.3 but will grow exponentially
with some growth rate γ, corresponding to the initial peaks in the figure. These
phases of exponentially increasing fluctuation amplitudes correspond to a growth
of microinstabilities which are the aformentioned unstable modes with wavelengths
in the order of the ion Larmor radius ρi, driven by ion or electron temperature
and density gradients [15]. Since the equation describing the linear physics of these
instabilities is not explicitly dependent on time, the time evolution of a fluctuating
quantity ϕ may be written in normal mode expansion [1]

ϕ(t) = ϕ0e
−iω̃t. (1.2)

If the frequency of oscillation ω̃ = ω + iγ is purely real (γ = 0) the wave is simply
oscillating around some equilibrium. If it also contains an imaginary part (γ ̸= 0)
it will grow (or decay if γ < 0) in time, with a growth rate γ. On the other hand,
if different modes interact with each other, the dynamics of ϕ has to be described
by a nonlinear PDE and its time evolution cannot be constructed by independent
frequencies ω, as is done in Eq. (1.2).

A particular microinstability is believed to dominate the ion heat transport
in the core of a conventional tokamak. It is the ion temperature gradient (ITG)
mode [16], which above some critical point, is driven by the ion temperature gradient.
An example of the scaling of growth rates with the ion temperature gradient is shown
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in Fig 1.4. In the figure we see that the growth rates are zero until some critical
value of the ion temperature gradient is reached. Above this value the growth
rate scales roughly linearly with the ion temperature gradient. The increase of
ITG growth rates leads to the unwanted phenomenon known as profile stiffness.
This means that the temperature profile inside the fusion reactor cannot be made
significantly steeper by simply heating the main ions. More heating leads to larger
temperature gradients and therefore higher growth rates which in turn will lead to
larger heat fluxes, transporting the injected energy that heats the main ions, out
of the reactor. The size of a fusion reactor implies certain temperature gradients
required to sustain a high temperature in the core while minimising the temperature
load on the surrounding walls and for achieving efficient energy production. Profile
stiffness is therefore a major limitation in how small fusion reactors can be made.

No instability Growth of instability

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.02

0.04

0.06

a/LT,i

γ
[c
s
/a

]

Figure 1.4: Growth rates for increasing main ion temperature gradient. Simula-
tions have been performed using the gyrokinetic continuum code GS2 presented in
Chapter 3. Growth rates are presented in units of the ion sound speed cs =

√
Te/mi

over the tokamak minor radius a defined in the next Chapter. Here Te is the electron
temperature, and mi is the main ion mass. Also LT,i = − dlnTi/ dr is the main ion
temperature gradient length scale. No instability exists before a critical value of the
ion temperature gradient, after which a roughly linear scaling is seen.

Including only the linear physics, the simulations are made significantly cheaper
to run, and we can perform the desired scan in the fast ion parameters to evaluate
their role on the ITG growth rates. Still, in the end, the ultimate goal is to explain
the reduction in the heat flux, not the growth rates. We need therefore to link
the exponential growth of the fluxes, to their final, saturated values. This can be
achieved with quasi-linear theory.

Using the mixing-length argument for estimating the time until turbulent struc-
tures decorrelate and mix with the environment, the quasi-linear theory predicts the
nonlinear saturated heat fluxes to scale roughly as Q ∝ γ/k2

⊥ [17]. Here γ is the
growth rate of the unstable mode and k⊥ the perpendicular component (with re-
spect to the magnetic field) of the wave vector. Quasi-linear theory is used as an
important component in interpretive simulations of tokamak plasmas, to include the
transport because of turbulence, without having to run complex nonlinear simula-
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tions. An example is the code QuaLiKiz [18] which is using quasi-linear theory to
predict results from experiments.

Instead of running nonlinear simulations, we may evaluate the role of fast ions
on the growth of ITG, and then use the quasi-linear model to predict their role on
the saturated heat flux, in an attempt to explain the result shown by Citrin et al.
Recently, many studies have been done in the attempt of explaining similar figures.
These have both been of linear kind, where reduction in growth rates is investigated,
and nonlinear where the saturated heat and particle fluxes instead are considered.
See for example the work done by Citrin et al. [13], Liljeström et al. [19] and Garcia
et al. [20].

To properly understand the role of fast ions in stabilising the turbulence the
various global effects and changes in the plasma and magnetic geometry parameters,
have to be captured and understood. One of these parameters is β = 8πnT/B2

which is the ratio of the thermal to magnetic pressure. Here B is the magnitude
of the magnetic field and we have summed over all species in the plasma to obtain
the total thermal pressure p = ∑

j njTj, where nj and Tj are the species density and
temperature respectively. Fast ions contribute to β by increasing the total thermal
pressure p.

Bravenec et al. [14] have observed that increasing β is very effective in reducing
growth rates. It is observed that the stabilising effect of fast ions is strongest at
high β close to the point when another instability start to dominate over ITG. This
instability is the kinetic ballooning mode instability (KBM) [21] (note that beta
is unlikely to be sufficiently high to destabilize KBMs in tokamak cores, except in
plasmas with extended low magnetic shear regions, such as hybrid discharges [22]).
Citrin et al. [13, 23] claimed that this stabilising influence is enhanced by high
density and temperature gradients of the fast ions.

In a tokamak, the magnetic field “confines” the particles with magnetic fields
which constrains their thermal motion. A change in the pressure will lead to a
change in the magnetic field configuration required to balance the pressure force of
the particles. Therefore the fast ion contribution to the thermal pressure will affect
the magnetic configuration. In turn the changes in this configuration are known to
affect the stiffness of the temperature profiles [13]. Bravenec et al. [14] also showed
that NBI injected fast ions may generate a parallel velocity gradient (PVG) which
has a strong destabilising effect.

In this work we present a careful linear analysis on the role of fast ions on
the ITG turbulence. In our treatment we model the fast ions with a Maxwellian
distribution at a high temperature Tf . We neglect plasma rotation and perform our
analysis in a small region of the plasma such that variation of equilibrium quantities
can be expanded linearly in a radially local description.

The remainder of this thesis is organised as follows. First in Chapter 2 we
introduce the concepts of fast ions and discuss the main sources before exploring
the global effects they have on the plasma. Their high contribution to the pressure
leads to a change in the magnetic geometry, which we investigate using a numerical
tool to calculate the magnetic geometry for a given pressure profile. In Chapter 3
the concepts of turbulence and microinstabilities are presented. To study turbulence
and microinstabilities in plasmas, we employ the gyrokinetic formulation and solve
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the gyrokinetic equation for the fluctuating turbulent distribution function. The
theory takes advantage of the properties of turbulent fluctuations, to separate it
from both very rapidly varying quantities but also slowly varying equilibrium pa-
rameters. We use the gyrokinetic formalism and outline the main steps in deriving
the gyrokinetic equation. In this work we solve the equation numerically using the
gyrokinetic continuum code GS2 for which we show the relevant input definitions
and normalisations. We then focus on the most important microinstability for per-
pendicular ion heat transport: the ITG mode. For a two species plasma we derive
a dispersion relation for describing main characteristics of this mode. The effect
of fast ions is then also included. Although very approximate, we show that the
derived expression agrees well with corresponding results from GS2. In Chapter 4
we present a careful analysis on the effect of fast ions on the ITG turbulence. We
begin with a general overview and then explain the observed behaviour by isolating
the effect of temperature, density, their gradients, mass and charge of the fast ions.
We end this chapter by invoking the quasi-linear model and examine if our linear
results are sufficient to explain the strong nonlinear reduction in the heat flux, for
the modelled 73224 JET discharge. Finally in Chapter 5 we discuss and summarise
our findings.

Simulations were performed on the supercomputer Marconi, at CINECA in
Italy.

8



2Global effects

Before we attempt to explain the role of fast ions in stabilising ITG turbulence, we
have to take a step back and define what we mean with a “fast ion”. What are
the characteristics of these particles? This was done to some extent in the previous
chapter, but here we do this more thoroughly. Once we have outlined the properties
of this energetic species we have to understand, what kind of changes we have to
include to properly account for their presence in the fusion plasma. Their actual
main purpose is heating the plasma but we will consider other effects. Answering
these questions and clarifying the most important global effects of fast ions, is the
purpose of this chapter.

We begin with describing the sources of energetic ions focusing on neutral beam
injection (NBI) and ion cyclotron resonance heating (ICRH). We carefully examine
the most important changes that occur in the plasma because of fast ions. The pres-
sure is important in terms of the magnetic geometry which will be described in this
chapter. We define the concept of magnetic geometry in Section 2.3 by introducing
an equation describing the magnetohydrodynamic equilibrium, the Grad-Shafranov
(G-S) equation and discussing its implications.

Given a change in the pressure and current we use a numerical tool: CHEASE
to solve the G-S equation numerically. This will generate all necessary information
about the magnetic geometry. For quantitative comparison of geometry for a change
in pressure we present the Miller model for performing a local parametrisation of
the equilibrium. The model will reappear again in Chapter 4 where gyrokinetic
simulations of the turbulence will be performed. By implementing the described
tools and parametrisation, in Section 2.5 we investigate the changes in the magnetic
geometry because of fast ions.

Before we begin, it is convenient to introduce a suitable coordinate system for
describing the tokamak geometry. In Fig. 2.1 we present the poloidal cross-section
of a tokamak device, along with an illustration of flux surfaces (i.e. surfaces on
which the magnetic field lines lie). These will be defined in Section 2.3.

9
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R

R0 r

Z
ϕ

Figure 2.1: Definition of coordinates used in this chapter for describing the toka-
mak geometry. The radial coordinate from the vertical Z axis of symmetry is the
major radius R. Also shown are some example flux surfaces to be defined in Sec-
tion 2.3. These flux surfaces converge towards the magnetic axis located at R = R0.
The minor radius r is used to label the flux surfaces and ϕ is the toroidal (azimuthal)
angle with positive direction into the page.

The major radius R measures radial distance from the axis of symmetry, Z is
the vertical coordinate and ϕ is the toroidal angle describing a rotation around the
Z-axis, with positive direction into the page. The flux surfaces converge towards the
magnetic axis located at R = R0. The minor radius r is used to label these surfaces.
It is defined as the half-width of a flux surface at the height of the magnetic axis,
and is consequently, constant on a flux surface. We label the minor radius at the
last closed flux surface (LCFS) with a.

10
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2.1 sources of fast ions

For fusion reactions to take place the fusing particles needs to have enough energy
to overcome the Coulomb barrier. To reach these high energies the plasma has
to be heated. In a tokamak, some of the heating power is provided by the induced
current used to create the poloidal magnetic field. This is known as resistive (Ohmic)
heating and is dependent on the number of collisions occurring in the plasma. But
the plasma is a peculiar medium where the collision frequency reduces rather rapidly
with the temperature. The power from resistive heating can therefore only raise the
plasma temperature to T ≈ 3.3 keV. Ignition requires T ≈ 15 keV and therefore
additional auxiliary heating has to be provided [1]. This type of heating is the
source of fast ions. We will focus mainly on two types of auxiliary heating: neutral
beam injection (NBI) and ion cyclotron resonance heating (ICRH) which both create
fast ions of different characteristics.

2.1.1 Neutral beam injection

NBI is one of the popular choices of heating used in conventional tokamak devices.
In this scheme a beam of highly energetic atoms are injected in the plasma. Since
the plasma will deflect the motion of any charged particle because of the electric
and magnetic fields, the injected particles have to be neutral. After travelling some
distance collisions will ionise the neutrals in the beam. When the highly energetic
beam becomes ionised we will have a small fraction of fast particles constrained
by the fields in the plasma. After a short duration the fast ion population will
slow down by means of collisions and form a thermalised population at or close to
the bulk ion temperature. Transfer of the fast ion energy to the bulk species (i.e.
thermal population) raises the temperature of the thermal species. In the presence
of a constant source of NBI ions the new ion population will have a tail in velocity
space. It is this tail which we are interested in and which we will refer to as fast
ions. When created by NBI these fast ions tend to develop large density gradients
rather than large temperature gradients.

2.1.2 Ion cyclotron resonance heating

Instead of injecting fast particles in the plasma another choice is to have an antenna
inject radio frequency waves. If the frequency of these waves ω is a multiple of the
ion cyclotron frequency ω = kΩi, k = 1, 2, . . . , the wave may give up its energy to
heat these plasma ions. For k = 1 this is known as the first harmonic, k = 2 second
harmonic etc. Again a fast ion population is introduced which collide with colder
particles and gives up its energy to raise the temperature. What is different for
ICRH is that instead of injecting a density of new particles ICRH takes an existing
population and pushes it towards the higher velocity regime. These type of fast ions
will instead have a high temperature gradient.

Distinction between NBI and ICRH generated fast ions will be important in
the following chapters where the fast ion effects on the turbulence will be studied.
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We will explicitly make a distinction between ICRH heated fast ions from NBI by
considering either particles with a high temperature or density gradients.

2.1.3 Alpha particles

As we heat the plasma more and more using Ohmic and auxiliary heating, the num-
ber of fusion reactions increases. Each of these reactions creates an alpha particle
at 3.5 MeV. Since these are charged particles they will stay confined in a large1

plasma and give up their excess energy as they thermalise with the surrounding
population. Once sufficient temperatures are reached the heating power from the
alpha particles will start to dominate over possible losses and the fusion plasma will
become self-sustained. This is known as ignition [1].

Part of this thesis is aimed at understanding whether the effects on the ITG
turbulence obtained from NBI and ICRH heated fast ions works favourably for alpha
particles as well, that is, that they also stabilise ITG turbulence. A reduction in ITG
turbulence would imply a decrease in transport the more fusion reactions that occur.
Consequently ignition could then be reached more easily than without considering
the favourable effects of the fast ion populations. This is another motivation for
why fast ion effects are important to study.

Similarities in how the alpha particles are generated with NBI suggests that
these would also have a high density gradient. Their features, roughly speaking,
should therefore be similar to the NBI heated population, apart from possible ve-
locity anisotropies for NBI ions.

2.2 the global effects of fast ions: an overview

Imagine we have initiated a tokamak discharge and managed to create a plasma
consisting of only deuterium ions and electrons with densities nD, ne. For a certain
duration the NBI device is turned on, injecting fast ions, and then is turned off
again. The fast ion density is nf ≈ 0.05ne, where ne is the electron density. If
the total pressure in the plasma is measured, we would obtain something similar to
Fig. 2.2 where the time evolution of the total pressure (Fig. 2.2(a)), and its radial
distribution (Fig. 2.2(b)), is shown. Even with their small density nf = 0.05ne, their
high temperature leads to a significant increase in the pressure. As their purpose is
to heat the part of the plasma where fusion reactions occur, they are concentrated
close to the centre.

1The plasma volume has to be large since the alpha particles, because of their high energy, will
have very wide banana orbits. In a small plasma they would simply escape the plasma directly.
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Figure 2.2: Time evolution of the pressure at one radial coordinate ρc/ρc,m = 0.3
(left) and the corresponding full radial distribution of the pressure in the plasma
(right). Fast deuterium is injected in the 47-48 s time-slot. The radial coordinate
ρc/ρc,m is defined with ρc =

√
ΨtπB0 where B0 is the vacuum magnetic field at some

reference major radius Rc and Ψt is the toroidal magnetic flux. Then ρc,m is the
value of ρc at the last closed flux surface (to be defined in Section 2.3). We should
note that the time-evolution is also including all the initialisations. The discharge
itself lasts for only about six seconds (44-50 s). The data was generated using the
CRONOS suite [24].

The plasmas we consider here are quasineutral which means that the total
charge averaged over a macroscopic volume of the plasma is very close to zero. For
our case this means that the total charge contribution from all the electrons −ne,
main ions ZDenD and the fast ions Zfenf has to add up to zero. In addition to their
direct effect – the increase in the total pressure – they also change the densities of
the bulk species. Which of the two, electrons or deuterium ions, should be used to
satisfy quasineutrality is unclear. In NBI new electrons are introduced as the fast
ions are created from the ionisation of the neutral beam particles. For ICRH injected
fast ions a certain amount from the other colder ion population is taken while the
electron densities should stay more or less the same. In reality both the ion and the
electron profiles will change when heating is turned on. In our theoretical study we
can consider two extreme situations, when either the ion or the electron density is
kept constant. This should hopefully bracket the experimental situation. As seen
in Fig. 2.2 in this case the electron population has been increased to account for the
excess positive charge introduced by the fast ions. The shape of the ne profile has
also been modified in particular close to the centre (ρc/ρc,m = 0) where nf is the
largest.

In Fig 2.3 we distinctly see the high temperature of the fast ion population
(rescaled by a factor of ten). Although they have a small density they contribute
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Figure 2.3: Density (top) and temperature (bottom) profiles for a CRONOS model
of a plasma with only NBI heated fast deuterium ions. The temperature of the fast
particle has been rescaled by a factor of 10 for convenience. The radial coordinate
is same as in Fig. 2.2. Solid lines represent the case without any fast ions, while
dashed have small fraction of fast deuterium ions, modelling the presence of NBI
heating.

to a significant part of the total pressure as shown in Fig. 2.2. The profiles shown
in both Fig. 2.2 and in Fig. 2.3 have been generated with the CRONOS [24] suite of
numerical codes for interpretive simulations of tokamak discharges2.

To this point we have the following effects of fast ions: (1) redistribution of the
pressure and (2) radial distribution of either deuterium or electrons density profiles
because of quasineutrality which in turn also have an effect on the total pressure
and its shape.

2.3 magnetic geometry

The effects explained in the previous section are only a few of the numerous changes
introduced by the fast ions. We know that for a fusion plasma to be feasible the
charged particles should be confined. This is realised with a specially shaped mag-
netic field which exerts a force to restrict the charged particle motion and sustain a
stable macroscopic equilibrium. The more energetic the particle population is, the
higher velocity and therefore temperature. A higher temperature means a higher

2Thanks to E. Highcock for generating the CRONOS data and J. Citrin for the input files.
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pressure. If the pressure profile of the particles change, the magnetic field also has
to be modified in terms of magnitude and geometry to confine the motion. To char-
acterise the various possibilities of stable geometries one may solve the equilibrium
equations from the magnetohydrodynamic (MHD) model

J × B = ∇p, (2.1)

∇ × B = 4π
c

J , (2.2)

∇ · B = 0, (2.3)

derived under assumption of an equilibrium with parameters constant in time and
without equilibrium flow [1].

The pressure profile sets restrictions on the possible magnetic geometries which
are stable. The relationship between magnetic field and the pressure can be noticed
by taking the scalar product of B with Eq. (2.1) to obtain

B · ∇p = 0.

By definition of ∇p this implies that magnetic fields lines will lie on (flux) surfaces
that are contours of constant pressure. We label these flux surfaces with Ψ = RAϕ

where Aϕ is the magnetic vector potential in the azimuthal (toroidal) direction
related to the magnetic field via B = ∇×A [1] and R is the major radius previously
defined in Fig. 2.1. The type of magnetic geometry is often illustrated by the cross
section of these flux surfaces, describing one set of magnetic field lines.

If we evaluate the poloidal flux of the magnetic field going through a horizontal
plane D that goes through the magnetic axis, radially limited by R = R1 and R = R2
with R2 > R1, it can be observed that

∫
D

B · dS = 2π
∫ R2

R1
RBZdR = 2π

∫ R2

R1

1
R

∂

∂R
(RAϕ)RdR =

= 2π
(
Ψ(R2) − Ψ(R1)

)
,

(2.4)

where in the second equality we have used that the vertical component of the mag-
netic field is (B)Z = (∇ × A)Z = R−1∂Aϕ/∂R. Here ϕ is the azimuthal coordinate
from Fig. 2.1. Since the tokamak is a toroidally symmetric device, the derivatives
with respect to ϕ vanish. From Eq. (2.4) it is evident that Ψ is proportional to the
poloidal flux, hence the name: flux surface.

The shape of these flux surfaces characterises the magnetic geometry and rep-
resents the balance between the ∇p and the J × B force in Eq. (2.1). Example
shapes in the poloidal plane are shown in Fig. 2.4.
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Figure 2.4: Example of flux surfaces in the poloidal plane. The figure repre-
sents flux surfaces generated by the MHD equilibrium solver CHEASE presented in
Section 2.4. The closer we get to the centre, the more damped are higher order
corrections to the flux surface shape. In the end they become completely elliptical
(elongation penetrates down to the magnetic axis) as seen in the figure. The flux
surfaces converge towards one point. This is known as the magnetic axis located at
the radial coordinate R = R0.

The flux surfaces converge towards the magnetic axis, where the poloidal field is
zero. The boundary is given by the last closed flux surface and is usually denoted
by Ψ0. The equation describing the magnetic geometry and solves for Ψ(R,Z) is
known as the Grad-Shafranov equation. In toroidally symmetric systems such as
the tokamak it is given by [25]

∆∗Ψ = −4π
c
r2p′ − ff ′. (2.5)

On the right hand side is the pressure gradient p′ = dp/dΨ. The pressure is a
function of the poloidal flux alone with p ≡ p(Ψ). The same holds for the other
quantity f ≡ f(Ψ) with f = RBϕ where Bϕ is the magnetic field in the toroidal
direction. On the left hand side we have the operator ∆∗ = ∂2/∂Z2 −

(
1/R

)
∂/∂R+

∂2/∂R2. As such, the differential Eq. (2.5) has an interesting form: Ψ is both a free
variable on the RHS and is acted on by the differential operator ∆∗ on the LHS.
Since the fast ions change the pressure gradient, they will also change Ψ as stated in
the G-S equation. But since f and f ′ are functions of Ψ, the fast ions will in turn also
affect these quantities. This shows the nonlinearity of the equation which makes it
nontrivial to solve in the complicated magnetic geometry of a tokamak. Solutions of
the G-S equation corresponding to real experimental cases requires implementation
of numerical tools.
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In this work we have made use of the the Cubic Hermite Element Axisymmetric
Static Equilibrium (CHEASE) [26] code for solving the G-S Eq. (2.5) numerically. The
underlying principles of CHEASE are similar to standard finite element procedures.
First the G-S equation is rewritten in a variational form. The poloidal flux Ψ is then
expanded in a convenient choice of finite elements defined on a rectangular grid.
The result is a discretised nonlinear system of equations which is solved iteratively.
For solving the G-S equation CHEASE requires information of p′, ff ′ and boundary
conditions in form of the LCFS Ψ0. These can be specified in a variety of different
functional forms or through a set of data points as is done here. These sets of
data points have been obtained from running the tokamak discharge modelling tool
CRONOS [24]. In addition to this data CHEASE reads a namelist of variables where
other information, for instance specifications of the solver accuracy, are given. The
non-default values used in this work are presented in the Appendix A.1. For a full
description of the functionality of the code we refer to the complete user manual [26].

With CHEASE we may solve the Grad-Shafranov equation and obtain all the
necessary information to evaluate the effect of fast ions on the magnetic geometry.
Because of the often complex magnetic structure of the geometry this information
might be to detailed to be able to draw exact conclusions. Instead we seek a way
of summarising the information about the magnetic geometry in a few selected
parameters. This can be done by parameterising the equilibrium.

2.4 parametrisation of the magnetic equilibrium

All models for parametrising local properties of the MHD equilibrium should repre-
sent a solution to the G-S Eq. (2.5). A local parametrisation is generally performed
for some choice of flux surface Ψ and associated MHD equilibrium quantities are
evaluated in a neighbourhood of that flux surface. One of the simplest models
where all these parameters are specified is the shifted circle model [27]. Here all
the flux surface shapes are assumed to be of circular shape but incorporate also
possible radial shift of the flux surface centres R0(Ψ) known as the Shafranov shift.
The shifted circle model can be accurate in non-elongated plasmas for flux surfaces
close to the centre of the tokamak, where the aspect ratio A = R0/r is large. But
in many experimentally relevant scenarios A is often not small and the shapes of
the flux surfaces are far from circular. A more accurate model, even away from the
magnetic axis, is the Miller parametrisation often used in stability studies, which
also is the choice here.

2.4.1 Miller parametrisation

Miller [27] generalised the shifted circle model to be valid for finite A and incorporate
non-circular flux surface features. The model is based on the localised studies by
the Mercier-Luc formalism [27], and is characterised by a set of nine parameters
to describe a realistically shaped equilibrium: A, δ, κ, sδ, sκ, ∂r∆, q, ŝ, α. Five of
these determines the shape of the flux surfaces: the aspect ratio A, triangularity
δ, elongation κ and derivatives of these defined as sδ = a∂δ/∂r and sκ = a∂κ/∂r
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respectively.
The Shafranov shift ∆ = R0(Ψ) −R0(Ψ = 0) describes the shift of flux surface

centres as a function of the minor radius. In the Miller model the radial deriva-
tive of this quantity is specified. The safety factor q = ∂Ψt/∂Ψ essentially counts
the number of toroidal turns it takes for the field lines to perform a full poloidal
turn. Here Ψt is the toroidal flux. The parameter q is important for MHD stability
equilibrium [1] where q > 1 is desirable. Finally the model is complete with the
magnetic shear ŝ = r∂ ln q/∂r and α which is proportional to the pressure gradient.

A demonstration of the Miller parameters is shown in Figure 2.5, where the
flux surface obtained from a Miller parametrisation together with the numerical,
non-parametrised flux surface is shown. The equilibrium has been generated with
CHEASE. We see in the figure that the Miller parametrisation of the flux surface shape
agrees well with the corresponding numerical solution. Fig. 2.4 indicates that close
to the edge of the plasma the flux surface shapes may have complicated structure for
instance, up-down asymmetry, sharp variations close to an X-point etc. As we move
closer to the centre higher order shaping effects are damped and the shapes may be
well described by a triangularity (how “triangular” a flux surface is) and elongation
(how elongated along the vertical Z-axis a flux surface is). Even closer to the centre
also triangularity becomes negligible and the flux surface shapes become elliptical.
Therefore the accuracy in using the Miller parameters for describing experimental
flux surface shapes increases towards the core of the plasma, where higher order
corrections to the circular flux surface shapes are damped.

R[m]

Z
[m

] Numerical
Miller

Figure 2.5: Comparison between the flux surface shape obtained from a Miller
parametrisation and an actual flux surface obtained from the MHD equilibrium
solver CHEASE as explained in the text.

In this Chapter we use the Miller parameters for conveniently quantifying the
fast ion effects on the geometry. Later in Chapter 4 we will use the model in gyroki-
netic simulations to identify individual effects of fast ion parameters. To facilitate
future interpretation of the result it is important to understand the implication of
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the model and how it relates to using full numerical equilibrium.
For a change of the total pressure gradient from the G-S Eq. (2.5) we see

that the magnetic geometry then also has to be different. In order to be consistent
we therefore have to recalculate the equilibrium whenever the pressure gradient
is changed. This method is complicated because it has an effect on other local
parameters as well. We label this case as a global solution to the G-S equation since
in this case the magnetic geometry reflects the global changes in the pressure profile.
The boundary condition for this case is then the last closed flux surface Ψ0. We
should note that the global solution is representative for what is actually done in
experiments where global rather than local changes in the profiles are performed.

Another possibility is to use the Miller model to parametrise a local flux surface
Ψ which is included in the full global solution. We should point out that the Miller
parametrisation will not exactly correspond to Ψ which corresponds to the local
solution of the G-S equation for a given global pressure profile. Instead Miller yields
a local solution ΨM since it assumes the flux surface shape to be fully captured with
a triangularity δ and elongation κ which is an approximation of the actual shape. To
find optimal values of the triangularity, elongation and flux surface centre essentially
a fit of the global solution is performed. In a conventional tokamak plasma typically
ΨM will be an accurate description of the actual Ψ close to the centre of the plasma.

2.5 the fast ion effect on the magnetic geometry

We have now introduced all the tools for studying the effects of fast ions on the
geometry. The analysis is presented in terms of the pressure profiles generated by
CRONOS previously shown in Fig. 2.2. We separate these in two pieces. The first is
just before fast ions are injected at roughly 46 s which we will label as the “without
fast ion” case. Next we take a time average over the part of the profiles when
NBI has been turned on. This corresponds to the pressure peak between 46-48 s in
Fig. 2.2 which we labels as the case “with fast ions”. For each of these two cases
we utilise CHEASE and generate two sets of consistent global MHD equilibria from
which we compute the nine Miller parameters. The Miller parameters are computed
using a script that is part of the GENE code [28]. In this work only the part of
GENE used to calculate the Miller parameters is used, and not the entire code itself.
The Miller parameters are computed for minor radii 0.3 ≤ r ≤ 0.42 m, local to the
flux surface which is used later in our gyrokinetic simulations. We begin with the
parameters describing the shape of the flux surfaces. The fast ions in our case leave
the shape of the flux surfaces essentially unchanged as shown in Figs. 2.6(a) and
2.6(c). A slightly larger difference is obtained for the derivatives of κ (Fig. 2.6(b))
and δ (Fig. 2.6(d)).
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Figure 2.6: The calculated elongation (a), triangularity (c) and their derivatives
(b and d) respectively. Results are presented for the case with nf = 0.05ne (solid
orange) and without (dashed purple) fast ions.

The radial derivative of the Shafranov shift, i.e the change in the shift of the
flux surface centres is shown in Fig. 2.7. The radial derivative of the shift reduces
for larger values of the minor radius r. Adding fast ions reduces this parameter by
roughly 30%.

One of the most important quantities for both MHD stability and for sup-
pressing turbulence is the safety factor profile. This includes both q itself and its
derivative, the magnetic shear. The safety factor profile has a large influence on the
confinement time of a fusion device [29]. The influence of fast ions on the safety
factor and the magnetic shear are shown in Figs. 2.8(a) and 2.8(b). For our case we
note a small reduction in the safety factor q and a slight increase in the magnetic
shear.

Given the changes in the various geometrical parameters presented here we
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Figure 2.7: The change in the radial derivative of the Shafranov shift because of
fast ions. Results are presented for the case with (solid orange) and without (dashed
purple) fast ions.

now wish to answer the question: do we have to include the change in the magnetic
geometry in gyrokinetic simulations to properly account for the presence of fast
ions? Even for the slightest change, the corresponding effect on the ITG growth
rates could be significant. The influence of κ and δ has been studied by Waltz
et al. [30] where they discovered a decrease in the growth rate with increasing κ.
Growth rates first increase with triangularity until a peak is reached and after which
γ start to reduce. In their studies they included the effect of sheared flows. These
are flows of equilibrium scale and with steep gradients across the flux surfaces [31].
The shaping influences the value of the flow shear rate which if comparable to the
maximum γ may fully suppress the turbulence [30].

To complete our study of the magnetic geometry we choose to report the
effect on ITG growth rates. The results of the gyrokinetic simulations for the Miller
parameters can be found in Appendix A.2.

For the given change in the shaping parameters, we do not find the growth rate
to change much. The fact that we do not see an effect when modifying the shaping
parameters might seem alarming, since previous studies have found the shaping to
be of greater importance. As pointed out by Waltz et al. [30], the result very much
depends on the other quantities describing the equilibrium. For example elongation
κ has a stronger effect at low values of the safety factor q, and a much smaller effect
for higher q. What seems to be the key difference is that here we do not include flow
shear in the simulations. If the shaping parameters change the growth rate mainly
because of the flow shear, our results are not surprising.

In their study Jhowry et al. [32] found a varying dependence on the shift ∆.
Decreasing the shift can both have a negligible effect, may slightly increase or de-
crease the growth rate depending on values of elongation along with ion temperature
and density gradients. For the roughly 20% decrease in the derivative of the Shafra-
nov shift because of fast ions, we find a roughly 15% increase in the growth rates.
For larger fast ion densities the effect of Shafranov shift may therefore have to be
included to properly account for fast ions.

The magnetic shear ŝ is responsible for twisting the magnetic field lines from
one flux surface to the next. This leads to a large variation in the gradients of
quantities and may have a large influence on the stability. Low values of the magnetic
shear is known to stabilise the turbulence [33, 34]. For the roughly 20% increase
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Figure 2.8: The change in the safety factor (top) and the magnetic shear (bottom).
Results are presented for the case with (solid orange) and without (dashed purple)
fast ions.

in the magnetic shear, we find a slight destabilising effect indicated by a ∼ 14%
increase in the growth rates.

Later on in this work, we will perform further gyrokinetic simulations com-
paring plasmas with and without fast ions, to investigate their role on ITG growth
rates. A proper comparison between a case with and without fast ions might require
the magnetic geometry to be appropriately adjusted. We will use a much larger fast
ion density (nf = 0.13ne) compared to the value used here (nf = 0.05ne). Since
simulations in our case show a negligible effect on the growth rates even for larger
variations of the shaping parameters δ, κ, sδ, sκ, these can safely be kept constant
even for the larger fast ion density. This leaves the safety factor q, the magnetic
shear and the radial derivative of the Shafranov shift ∂r∆ which although here had
a relatively small effect, might be important for nf = 0.13ne. To properly account
for these parameters we need to recalculate these parameters of the Miller model,
whenever we change the fast ion density and/or temperature profiles. Including the
change in geometry whenever we modify any of the fast ion characteristics compli-
cates the analysis significantly since isolated parameter scans will be very difficult to
perform. To simplify future analysis we also choose to keep these Miller parameters
constant, in addition to the shapes of the flux surfaces. Given the results in this
chapter we should bear in mind that our findings may not be consistent with cases
where full numerical geometry has been used. In addition, the large reduction in the
heat flux reported by Citrin et al. [13] did not include the change in the magnetic
geometry. Clearly there are other, perhaps more important effects of fast ions to
study, which might be discovered even for a constant magnetic geometry. In the
following chapters we will therefore make the additional (and not entirely justified)
simplification and keep the magnetic geometry fixed.

22



3Studying turbulence and the ITG mode

Transport of particle densities ns is often characterised by a diffusion coefficient
D ∼ step size2 × frequency. This measures how fast particles are transported out
from the plasma. Similarly the thermal diffusion coefficient χ is used to measure
the transport of heat.

In a plasma various mechanisms lead to a finite value of these diffusion co-
efficients and limits the confinement of particles and heat. Some contribution is
due to Coulomb collisions. As particles collide, the position of their guiding centres
is shifted and they are gradually transported outside the plasma. A more realistic
value of the diffusion coefficients is retrieved if one in addition to collisions also takes
the various drifts into account, as is done in neoclassical transport theory. It turns
out the value of the perpendicular transport of heat measured experimentally is still
far away even from the neoclassical prediction. The missing part is referred to as
anomalous diffusion and is a consequence of rapid fluctuations known as turbulence.
Fast ions may reduce this type of transport which implies a significant increase in
the confinement time τE.

We know from Chapter 2 that fast ions are introduced via ICRH and NBI
heating, and have seen their various global effects on the plasma such as a change
in the magnetic geometry. Without actually having introduced the concepts of
turbulence, growth of microinstabilities and how they can be simulated, we presented
the effect of geometry on growth rates of the ion temperature gradient mode. In
this chapter we clarify these various concepts and introduce the tools for studying
turbulence and calculating growth rates.

We will start with the general characteristics of turbulence which may be
described by the Fokker-Planck equation. The equation captures a very wide range
of effects, many of which we are not interested in studying here as for instance
electromagnetic wave propagation in the plasma. Under certain assumptions of
the turbulence characteristics we may separate the Fokker-Planck equation into a
slow equilibrium part and a rapidly fluctuating part. Since the fluctuations are
much slower than the gyration of plasma particles, this time scale separation can
be used to simplify the problem. We expand the Fokker-Planck equation and arrive
at the gyrokinetic equation for studying the turbulence. This equation is solved
numerically with the gyrokinetic continuum code GS2. An introduction to the code
including normalisations and calculation of input parameters relevant for this work
is given in Section 3.2.

The turbulence described here is driven by microinstabilities1. There are many
instabilities but we will focus on the ion temperature gradient mode (ITG), driven
by ion temperature gradients. Above some critical threshold the ion temperature
gradient generates an instability. This ITG instability grows exponentially in am-

1Subcritical turbulence [31] may exist even without instabilities, but is not treated here.
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plitude with some growth rate γ and generates exponential growth of the heat flux.
The exponential growth is captured by linear physics but nonlinear interactions are
required to obtain the saturated values of the heat flux leading to finite diffusion co-
efficients. We simplify the computational requirements by only including the linear
physics, allowing us to perform parameter scans and evaluate the fast ion effects on
the growth rates. The linear growth rates of the mode are related to the saturated
values of the heat flux and values of the diffusion coefficient with quasi-linear the-
ory [17]. One quasi-linear model predicts D ∼ γ/k2

⊥ where γ is the growth rate of
the unstable mode and k⊥ its perpendicular wavenumber. Reduced growth rates γ
are therefore directly related to reduced diffusion coefficients and reduced transport.

In Section 3.3 the physical principles behind the growth of the ITG instability
is presented. Given the gyrokinetic equation we derive a dispersion relation relating
mode frequencies ω̃ = ω+iγ to wavenumbers k. A positive imaginary part indicates
an instability which grows with the exponential growth rate γ. First we present
an expression of the ITG growth rate for a plasma consisting of only electrons
and singly charged deuterium ions. We consider then also a single species of fast
ions and investigate how the expression for the critical ion temperature gradient
leading to positive growth rates is modified. Finally, the theoretical predictions
are compared with actual gyrokinetic simulations of the ITG growth rates, and we
investigate the role of fast ion temperature and density gradients. For simplicity
only fluctuating electric fields are treated without including possible fluctuations in
the magnetic fields. For the gyrokinetic simulations this assumption is relaxed in
the next chapter.

3.1 the gyrokinetic formulation of turbulence

Turbulence in essence is described by rapid fluctuations on different scales in the
density, temperature, electric field, magnetic field and associated quantities. It
may be triggered by microinstabilities which disturbs the plasma and leads to the
formation of eddies at various scales. The eddies create local gradients which lead to
rapid anomalous diffusion of particles, energy and an evolution of the distribution
function fs for the species s. The equation which describes this evolution is the
kinetic or Fokker-Planck equation [35]

∂fs

∂t
+ v · ∇fs + Zse

ms

(
E + 1

c
v × B

)
∂fs

∂v
= C[fs], (3.1)

where the functional on the RHS is the collision operator that captures the effect of
collisions between particles.

Particles in a tokamak plasma have a fast and small scale gyration orbit while
slowly drifting across flux surfaces. An example is depicted in Fig. 3.1 where the
drifts create a banana shaped topology in the poloidal cross-section of the tokamak.
The turbulence we are interested have structures in the order of the ion Larmor
radius ρi but fluctuates on a much longer time-scale compared to the rapid gyration
of the particles. On the other hand, the fluctuations are much faster compared to
transport of particles and heat over the minor radius. This separation of scales is
used in the gyrokinetic formalism to simplify the Fokker-Planck equation.
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Figure 3.1: The motion of a charged particle in a ITER-like magnetic field, pro-
jected on a poloidal cross-section of the tokamak. The particle gyrates rapidly
around its guiding center while slowly drifting along a banana shaped trajectory
(Source [3]).

While drifting slowly across the flux surfaces, particles in a tokamak plasma
move very fast along field lines and consequently the response to possible parallel
perturbation is much quicker than perpendicular. The turbulent fluctuations will
be elongated along the field lines such that λ⊥/λ∥ = k∥/k⊥ ≪ 1, where λ is the
wavelength, k⊥, k∥ is the wavenumber perpendicular and parallel to the magnetic
field B respectively. If the tokamak is large enough, we would expect the size of the
turbulent fluctuations to be much smaller compared to the corresponding variation
in the equilibrium quantities.

We assume the full distribution function can be expanded, fs = Fs + δfs,
into a slowly varying part Fs in time and space, and rapidly varying part δfs such
that δfs/fs ≪ 1. Separating the fields in similar way we then impose the following
(gyrokinetic) ordering of the fluctuating quantities

|δφ|
|φ|

∼ |δB|
|B|

∼ |δfs|
|Fs|

∼
k∥

k⊥
∼ ω

Ωs

∼ ρs

a
= ρ∗, (3.2)

where ρ∗ ≪ 1.
Expanding Eq. (3.1) in orders of ρ∗ we may dismiss the variation in the slow

equilibrium parts and focus on the turbulence instead. In particular expanding to
ρ2

∗ will lead us to the gyrokinetic equation.
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3.1.1 The gyrokinetic equation

The derivation of the gyrokinetic equation has been extensively covered before and
here only the main assumptions and techniques used in the derivation are presented.
We follow the work done by Abel et al. [35] with the additional simplification of
neglecting equilibrium flow and toroidal rotation of the plasma.

Using the ordering postulated in (3.2), it will be convenient to expand the
mean part and the fluctuating part of the distribution function as follows

Fs = F0s + F1s + F2s + · · · ,
δfs = δf1s + δf2s + · · · ,

(3.3)

such that Fs ∼ fs, F1s ∼ δf1s ∼ ϵfs, etc. Note here that F0s, F1s, . . . are all slowly
varying and are seen as constant in time, while δf1s, δf2s, . . . are rapidly varying on
a small spatial and temporal scale. Expanding the kinetic equation (3.1) to first
order in ρ∗, one finds that the zeroth order distribution function F0s is a Maxwellian

F0s = ns

[
ms

2πTs

]3/2

exp
[
− εs

Ts

]
. (3.4)

In deriving Eq. (3.4) we have introduced a new coordinate system. The components
of this coordinate system are the gyrophase ϑ, guiding centre position Rs, the par-
ticle energy ε, the magnetic moment µs and the sign of the parallel velocity σ which
are defined as

Rs = r − b × v

Ωs

, ε = 1
2
msv

2,

µs = msv
2
⊥

2B
, σ =

v∥

|v∥|
,

(3.5)

where b = B/|B| is the unit vector in the direction of the magnetic field. As
mentioned in the introduction, the particles in the plasma will gyrate in circular
orbits with radius ρs and a gyration frequency Ωs. The guiding centre position Rs

is the centre of this orbit.
We define the average of a quantity g over the gyrophase (gyroaveraging) at

fixed Rs

⟨g⟩R = 1
2π

∫
dϑg(Rs,ε,µs,ϑ,σ), (3.6)

which will be denoted as ⟨g⟩R. Taking the first order expansion of the kinetic
Eq. (3.1), performing an averaging over fluctuations and a gyroaverage according to
Eq. (3.6) we obtain, from Eq. (3.2), the first order fluctuating distribution function

δf1s = −Zse

Ts

δφ(r)F0s + hs(Rs,µs,εs,t). (3.7)

Here hs = hs(t,Rs,µs,ϵs) is a constant of integration, and is the gyrophase inde-
pendent part of the first order fluctuations. By gyroaveraging we have reduced the
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six-dimensional Fokker-Planck equation to a problem in five dimensions instead. The
term hs captures the effect of turbulence and is the one we try to determine through
the gyrokinetic equation. Setting hs = 0 is referred to as an adiabatic response for
the species s. This means that the species will react very rapidly compared to the
characteristic time scale of the perturbation and is often a good approximation for
electrons.

Keeping only the fluctuating parts of the second order expansion of the Fokker-
Planck equation and gyroaveraging yields the gyrokinetic equation

∂hs

∂t
+
(
v∥b + V Ds +

⟨
V χ

⟩
R

)
· ∂hs

∂Rs

−
⟨
CL[hs]

⟩
R =

= ZseF0s

Ts

∂ ⟨χ⟩R

∂t
− ∂F0s

∂ψ

⟨
V χ

⟩
R

· ∇ψ.
(3.8)

In Eq. (3.8)
⟨
CL[hs]

⟩
R is the collision operator linearised about the zeroth order

equilibrium distribution function F0s [36]. Then

χ = δφ− 1
c
v · δA, (3.9)

is the fluctuating turbulent potential and
⟨
Vχ

⟩
R

= c

B
b × ∂ ⟨χ⟩R

∂Rs

,

V Ds = b

Ωs

×
[
v2

∥b · ∇b + 1
2
v2

⊥∇ lnB
]
,

(3.10)

where bar denotes the equilibrium part of the magnetic field, B = B + δB. In this
work we treat the linear gyrokinetic equation and therefore neglect the nonlinear
term

⟨
V χ

⟩
R

· ∂hs/∂Rs in Eq. (3.8). In Eq. (3.10) the second expression represents
the magnetic drift velocity. Integrating Eq. (3.7) and using quasineutrality we may
relate the electrostatic potential to hs using

∑
s

Z2
s e

Ts

δφ(r)ns =
∑

s

Zs

∫
d3v ⟨hs⟩r . (3.11)

The electromagnetic part is obtained by taking the fluctuating component of Am-
père’s law

∇2δA = 4π
c

∑
s

Zse
∫

d3v ⟨vhs⟩r , (3.12)

which includes both parallel δB∥ and perpendicular δB⊥ fluctuations. Intuitively
δB∥ can be understood as a compressional magnetic perturbation and δB⊥ as a
sheared magnetic perturbation. As will be demonstrated in Chapter 4 only δB⊥
will be important for the cases studied in this work.

Together with the gyrokinetic Eq. (3.8), Eqs. (3.11) and (3.12) form a closed
system which can be solved to investigate the evolution of the turbulent distribution
function hs.
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3.2 a brief introduction to gs2

To model the turbulence the gyrokinetic equation has to be solved for each species
independently. The species’ combined effect on the electrostatic and magnetic po-
tentials are then given from Eqs. (3.11) and (3.12). In this work we choose to do this
numerically using the gyrokinetic continuum code GS2 [37]. GS2 solves the linear set
of equations by an implicit algorithm, then has the possibility to add the nonlinear
terms and collisions.

One of the complications in solving the gyrokinetic equation is the complex
magnetic field configuration present in a typical fusion device but also the resolution
required to resolve the turbulent structures. To simplify the problem of geometry
and relax the requirement on the resolution GS2 implements a set of field-line fol-
lowing coordinates. This set takes advantage of the anisotropy in the turbulent
structures and reduces the required parallel resolution. The gyrokinetic equation
is solved in a small region of the plasma local to some flux surface. In addition
to the assumption done in deriving the gyrokinetic equation, GS2 assumes that the
gradients of the equilibrium quantities are constant in this small region. This is
called the local approximation.

The aim with this section is to outline the input and properties of GS2 of
relevance for this work. A more detailed documentation can be found in for exam-
ple [31].

3.2.1 Physical input parameters to GS2

The physical parameters describe the magnetic geometry, species and plasma com-
position used in the GS2 simulations. All input quantities to GS2 are dimensionless
and normalised to some reference value. The reference length, density, mass, tem-
perature and magnetic field used in this work are all given in Table 3.1.

Table 3.1: The reference density, temperature, length, magnetic field and mass,
used in this work. All GS2 parameters are normalised by these values.

nref [1019/m3] Tref [keV] a = Lref [m] Bref [T] mref [amu]
2.95 3.2 0.96 3.4 2.014

The physical input parameters in the gyrokinetic simulations are often repre-
sentative of an experimental discharge. All simulations performed to this point have
used the physical parameters of the 73224 JET discharge, presented in Table 3.2 and
are based on the values reported by Bravenec et al. [14]. The choice is motivated
by the large reduction in the nonlinear heat fluxes presented by Citrin et al. [13]
as a consequence of a high fast ion density. The 73224 JET discharge contains five
species. The thermal species are electrons, deuterium ions, carbon impurities and
the energetic species are fast deuterium (FD) and fast helium-3 (He). The fast
deuterium has a high density gradient. In line with the discussion in Chapter 2
these fast ions are the result of NBI heating. Fast helium-3 has a high temperature
gradient instead and represents ICRH heating. In the analysis later in Chapter 4
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Table 3.2: Parameters for the 73224 discharge studied in detail in this work ob-
tained from Bravenec et al [14]. Note that here we have specified sδ and sκ using
their GS2 definitions. Also this discharge had a non-zero flow shear, but for simplicity
this term has been dropped which is indicated by the bold value of γE×B.

r[m] 0.36 Ti/Te 1.0 a/Ln,He3 0.5028 ŝ 0.523

a[m] 0.96 Timp/Te 1.0 a/LT,i 3.56 κ 1.26

ne[1019m−3] 2.95 TFD/Te 9.8 a/LT,e 2.23 sκ 0.08

Te[keV] 3.2 THe3/Te 6.9 a/LT,imp 3.56 sδ 0.088

ni/ne 0.648 a/Ln,i 0.006 a/LT,FD 1.0326 δ 0.030

nimp/ne 0.025 a/Ln,e 0.422 a/LT,He3 7.4074 βe 0.0033

nF D/ne 0.06 a/Ln,imp 0.422 q 1.74 Zeff 1.9

nHe3/ne 0.07 a/Ln,FD 4.7228 ∆ = dR0/dr -0.14 γE×B[a/cs] 0

R0/a 3.12

many scans will be performed by changing the characteristics of both FD and He
particles simultaneously. At one point, however, we will make a distinction between
these fast ions and investigate their separate effects on the growth rates.

The profiles of the discharge were presented earlier in Fig 2.3 but there without
the contribution from the He ions and a slightly smaller density of FD (nf = 0.05ne

instead of nf = 0.06ne). The total fast ion density in this discharge is significantly
larger nf = 0.13ne.

The GS2 tool supports a wide range of models for specifying the magnetic
geometry. In this work the Miller model presented in the previous chapter, is imple-
mented. The Miller parameters for the 73224 discharge are computed at the radial
position r = 0.36 m specified in GS2 with normalised radius ρ = r/a.

Rotational flow shear may be included in the simulations and originally the
JET discharge had non-zero rotational flow shear. For simplicity we neglect this
parameter throughout this work. Simulations with GS2 can be both electrostatic,
without including fluctuations in the magnetic field, or electromagnetic. In the latter
case an additional parameter has to be considered in the GS2 input, which is the
thermal to magnetic energy ratio

β = 8πnT
B2

ref
. (3.13)

The β quantity is related to the efficiency of the confinement, expressing “how well
the magnetic field confines the motion of the particles”. This parameter is specified
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for the reference species which is then automatically used to compute the total β. For
a given value of the reference βref, the total β is equal to β = βref/nrefTref

∑
s nsTs.

By default the JET discharge uses βref = 0.0033. Electrostatic simulations are
equivalent to β = 0 obtained by assuming infinitely “stiff” magnetic field lines and
taking the limit Bref → ∞. The pressure gradient of the species in the plasma enters
through the radial derivative of β : dβ/ dr =

(
β/p

)
∂p/∂r, where the magnetic field

is seen as constant.
Collisions in GS2 are implemented with an approximate form of the Fokker-

Planck collision operator, derived by Abel et al. [36]. Collisions are specified for each
species separately and includes ion-ion, electron-ion and electron-electron collisions.
For a species s colliding with s′ the collision frequency is calculated with [8]

νss =
√

2πnsZ
2
s e

2 ln Λ
√
msT

3/2
s

, (3.14)

where ln Λ denotes the Coulomb logarithm that is a parameter in the range 15-20
for the plasmas of interest. Computation of collisions between electrons and ions
are simplified since in this case the collision operator is independent of the ion mass.
The influence of all ions on the collision frequency is given by some fictive species
with an effective charge

Zeff =
∑

j ̸=e njZ
2
j∑

j ̸=e njZj

, (3.15)

where the sum runs over all species, excluding the electrons [8].
In addition to these input parameters, GS2 requires the selection of a number

resolution parameters. These are presented in the next section.

3.2.2 Resolution parameters

A complete description of the turbulent fluctuations is given by Fourier modes with
radial kx and poloidal ky wavenumbers. The linear gyrokinetic equation is then
further simplified since it may be solved for each Fourier mode separately. In this
work we will, unless otherwise stated, only look at kx = 0 which implies that ky = k⊥
(at θ = 0 where θ is the poloidal angle). In the poloidal ky direction mainly the
most unstable mode associated to the dominant growth rate γ is considered. We
will find ky ∼ 0.4/ρi corresponding to wavelengths of a microinstability λ ∼ 15ρi .

As mentioned earlier an important subtlety which has to be dealt with is the
resolution of the algorithm for the base case presented in Table 3.2. By choosing
field-line following coordinates and doing simulations local to some flux surface, the
requirement is relaxed. Nevertheless the parameters responsible for the resolution
still have to be selected carefully to resolve the physical mechanisms of interest. In
linear simulations we deal with six parameters describing the parallel resolution, the
velocity-space grid and the resolution in time. In Table 3.3 we present the resolution
parameters used in this work.

Each of the parameters in Table 3.3 specify different kinds of resolution. The
length in the parallel direction along the field line is selected with nperiod. This
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length is divided into ntheta×nperiod number of grid points. The number of trapped
and untrapped pitch angles ξ ≡ v∥/v sets the velocity space resolution. Trapped
pitch angles are automatically calculated based on the value of ntheta. The number
of untrapped pitch angles in velocity space is given by 2 ∗ ngauss and negrid sets
the number of energy grid points ϵ. Finally delt is simply the time step in units of
a/vt,i and omegatol is the accuracy of the converged growth rates.

Table 3.3: Values of the seven resolution parameters used in the simulations.

nperiod omegatol delt
[
a/vt,i

]
ntheta ngauss negrid

11 2e−4 0.03 58 8 36

In selecting these parameters the following procedure has been carried out.
For a given scan in kyρi we select a default case with relatively low resolution, and
identify the value of kyρi which is most difficult to resolve. This is demonstrated
in Fig. 3.2 where growth rates for a scan in kyρi are shown for two cases. One
with low resolution, and a second using higher resolution. At high scales (kyρi <
0.4) the parameters do not change the result much. As smaller scales are reached
(kyρi ≥ 0.4) the values of the growth rates is more sensitive for a change in the
resolution parameters. We pick kyρi = 0.7 as a representative case for the region
in the figure, which is most difficult to resolve. Using this value of kyρi we proceed

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.05

0.1 Resolution ok

Not well
Resolved

kyρi

γ
[c
s
/a

] Low Res.
Higher Res.

Figure 3.2: Scan in kyρi for two cases. One with low resolution using nperiod =
3, ntheta = 16, delt = 1.0 a/vt,i, omegatol = 2e−4, ngauss = 8, negrid = 9 (orange
circles) and a second (purple pentagons) with the resolution parameters presented
in Table 3.3. When increasing the resolution, growth rates at small scales (high
kyρi) change the most and are therefore most difficult to resolve. We will find that
these small scales are particularly sensitive to delt, nperiod, ntheta and negrid.

by increasing one resolution parameter at a time until the simulated growth rate
does not change too much. Ideally the growth rate should be constant, but here we
relax this requirement by stating that growth rates should not change more than
±15% when the resolution parameters are increased by a sufficient amount, defined
as follows. For ngauss, nperiod this increase is two units (since they can only take
certain discrete values), ∆delt ∼ 50% and for negrid, ntheta the increase is at least
25%. The latter two have been selected based on the variation of the growth rates
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observed when the resolution parameters are increased. The result of the simulations
for each of the resolution parameters can be found in Appendix B.1. The results
show that the number of untrapped pitch angles, controlled by ngauss does not
change the growth rates much, motivating the low value presented in Table 3.3. The
number of energy grid points, negrid seems to be relatively well converged around
negrid = 36. Next, nperiod first decreases the growth rates substantially but seems
to saturate around nperiod = 11 and beyond. Since ntheta is closely related to
nperiod we consider variation in ntheta at nperiod = 11. We find ntheta = 58
correspond to relatively well converged growth rates. Finally an appropriate value
for the time step delt is found. This parameter is important to resolve fast processes
which might affect the growth rate. As the time step is decreased the growth rate
increases rapidly at first, but then seem to saturate around delt = 0.03 a/vt,i.

It is important to stress that the resolution parameters obtained in this pro-
cedure are by no means ideal. They are merely a “good” choice to obtain relatively
well resolved growth rates while keeping a tolerable computational time (30-50 CPU
hours per simulation). However, we should note that in this work we are mostly
concerned with general trends in the growth rates, which we have confirmed, remain
the same if the resolution is further increased.

3.3 microinstabilities

Microinstabilities are instabilities with wavelengths comparable to the ion Larmor
radius ρi and take the free energy available in a fusion plasma to drive turbulent
fluctuations. In the category of small scale instabilities there are many candidates for
driving the turbulence, but regarding the turbulence causing perpendicular transport
of ion heat, the ion temperature gradient mode has been recognised as being the
most important [16].

3.3.1 The ITG instability

Particles in a typical fusion plasma are subject to various drifts. In the presence of
non-zero electric and magnetic fields the E × B drift is given by

V E = 1
c

E × B

B2 . (3.16)

In the presence of spatially inhomogeneous magnetic fields we also have a ∇B-drift

V ∇B = v2
⊥

2Ω
B × ∇B

B2 . (3.17)

Electrons and ions will move in opposite direction following from the charge depen-
dence in Ω. Consider the boundary between a hotter and a colder region in the
plasma. Imagine there is a temperature perturbation in this boundary as shown
in Fig. 3.3(a). The gyrating particles in the hotter region have a higher perpen-
dicular velocity v⊥ and consequently the ∇B drift as given by Eq. (3.17) will also
be larger compared to the drift of particles in the colder region. The temperature
perturbation creates a longitudinal density wave in the direction of the ∇B drift,
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alternating between a dense and a sparse region of charged particles. The difference
in charge density generates an electric field depicted in Fig. 3.3(b). If ∇T is aligned
and points in the same direction as ∇B the E × B drift in Eq. (3.16) will increase
the temperature perturbation leading to an exponentially growing instability. If on
the other hand ∇B points in the opposite direction of ∇T the E × B will sta-
bilise the temperature perturbation instead. These two regions of ∇B are known
as favourable or unfavourable curvature regions corresponding to the inboard and
outboard side of the tokamak respectively [1]. In Fig. 3.3 the magnetic field and its
gradient are oriented such that the E × B drift enhances the instability. This is an
example of unfavourable curvature.

B ∇B

v∇B

v∇B

(a).

E

E

E
E × B

E × B

E × B

(b).
B ∇B

Figure 3.3: Illustration of the ITG instability. A temperature perturbation be-
tween a hot and a cold region in the plasma generates a charge separation because
of different ∇B drifts between the two regions (a). This creates an electric field and
an E ×B drift which for the given direction of ∇B works to enhance the instability
(b).

3.3.2 Dispersion relation for describing the ITG mode

From the gyrokinetic ordering in Section 3.1 we recall that turbulent fluctuations
are strongly elongated along the field lines and their characteristic frequency ω is
lower compared to the ion gyrofrequency Ωi. The quasineutrality condition holds
therefore for the fluctuating density as well, ∑s Zsδns = 0. With the gyrokinetic
Eq. (3.8) in Fourier space and quasineutrality condition for the fluctuating density
we can derive a dispersion relation relating ω̃ = ω + iγ to wavenumbers k. Given
this relationship useful information on the characteristics of the ITG wave can be
retrieved including how possible unstable growth scales with various species and
plasma parameters. In this section a calculation for a plasma with only electrons and
singly charged ions, is presented. In Section 3.3.3 we consider then the modification
in the dispersion relation as a consequence of adding a single species of fast ions in
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the plasma. In addition to the above assumptions, we neglect magnetic fluctuations
and collisions for simplicity. These effects will be retained later in the numerical
treatment presented in Chapter 4.

Derivation of the dispersion relation has been demonstrated before. See the
work done by Beer [38] and Farid et al. [39] for some examples. In this section we
follow closely the derivation presented by Hammet [40].

In what follows we will make frequent use of the Fourier transform [41] and
write the fluctuating quantities as a superposition of plane waves. For a function
f(x,t) we make a transformation from real space in x, t coordinates to the coordi-
nates k, ω with

F
[
f(x,t)

]
(ω,t) = 1

(2π)4

∫
d3x

∫
dtf(x,t)e−i(k·x−ωt). (3.18)

For our case all derivatives are with respect to the guiding centre position Rs and we
use Rs instead of x in the plane wave decomposition in Eq. (3.18). Given Eq. (3.18)
the Fourier transform of time and spatial derivatives of hs becomes

F

[
dhs

dRs

]
= ikF [hs] , F

[
dhs

dt

]
= −iωF [hs] . (3.19)

The starting point for finding a dispersion relation is to Fourier transform the
gyrokinetic Eq. (3.8)

i
(
−ω + v∥k∥ + ωdv

)
hs = F

[
RHS

(
Eq. (3.8)

)]
, (3.20)

where Eq. (3.18) has been invoked for the derivatives. We have introduced the drift
frequency ωdv as the Fourier transform (Eq. (3.18)) of V Ds · dhs/ dRs in Eq. (3.10).
On the outboard side we get ωdv = ωd

(
v2

∥ + v2
⊥/2

)
/v2

t,s, with ωd = −ρskyvt,s. Only
linear physics are considered so the nonlinear term

⟨
V χ

⟩
R

· ∂hs/∂Rs is neglected.
ITG is an electrostatic mode in the sense that it is appears in the solution of the
gyrokinetic equation, even when δB fluctuations are ignored. In this case the drift
and fluctuating terms reduce to

χ = δφ,
⟨
Vχ

⟩
R

= c

B
b × ∂ ⟨δφ⟩R

∂Rs

. (3.21)

Taking the Fourier transform of
⟨
Vχ

⟩
R

in Eq. (3.21) we obtain

F
[⟨
Vχ

⟩
R

]
= −iω∗

eJ0(kyρi)δφ
Ts

· Ln,i,

where ω∗ = ωdR/Ln,i. The density gradient scale length Ln,i is defined 1/Ln,i =
− dlnni/ dr. The zeroth order Bessel function J0(kyρi) represents the gyroaveraging
operation in Fourier space. Often one simply sets J0 = 1 which is equivalent to
neglecting Larmor orbit effects. In this simple treatment we make this assumption.
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Evaluating ∇F0 and using the fact that in the linear equation, ⟨φ⟩R is fluctu-
ating with the same frequency ω as hs, the RHS in Eq. (3.20) reduces to

F
[
RHS

(
Eq. (3.8)

)]
= i

(
ωT

∗v − ω
)
ZseδφF0s/Ts, (3.22)

where ωT
∗v = ω∗

[
1 + ηi

(
v2/v2

t − 3/2
)]

and ηi = Ln,i/LT,i where 1/LT,i = − dlnTi/ dr
is the inverse temperature gradient scale length. Combining Eqs. (3.20) and (3.22)
yields the total Fourier transform of the gyrokinetic equation

i
(
−ω + v∥k∥ + ωd

)
hs = i

(
ωT

∗v − ω
) ZseF0s

Ts

δφ =⇒

hs = ω − ωT
∗v

ω − v∥k∥ − ωd

ZseF0s

Ts

δφ.

(3.23)

To this point the response in Eq. (3.23) is valid for any species. In what follows
we will assume a plasma consisting of only electrons and singly charged ions. The
ITG mode has a high frequency compared to the parallel ion response, but is much
slower than the parallel response of electrons which are assumed to be adiabatic.
The frequency of interest is v∥k∥ ∼ k∥vt,i ≪

(
ω, ωT

∗v

)
≪ k∥vt,e, where vt,i/e is the

ion/electron thermal velocity. The ion response simplifies to

hi = ω − ωT
∗v

ω − ωd

eF0i

Ti

δφ. (3.24)

The ion and electron response are linked with Eq. (3.11) and we obtain

eδφ

Te

ne = −eδφ

Ti

ni +
∫
hid3v, (3.25)

again with adiabatic electrons (he = 0) and J0 = 1 for the long wavelength result.
In the cold plasma approximation ω ≫ ωd and we can approximate the fraction in
Eq. (3.24) to second order

ω − ωT
∗v

ω − ωd

≈ 1 − ωT
∗v

ω
+ ωd

ω
− ωT

∗vωd

ω2 + ω2
d

ω2 . (3.26)

Retaining up to second order terms in Eq. (3.26) and using Eq. (3.25) we obtain

eδφ

Te

ne = −eδφ

Ti

ni+

eδφ

Ti

(∫
d3vF0i −

∫
d3vF0i

ωT
∗v

ω
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∫
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ωd

ω
−
∫

d3vF0i
ωT

∗vωd

ω2 +
∫

d3vF0i
ω2

d

ω2

)
.

(3.27)

Each integral in Eq. (3.27) involves moments of the Maxwellian distribution function
which may be evaluated using the identity

∫
d3vF0,i/n0,iv

2l
x = v2l

t (2l−1)(2l−3)(2l−
5) · · · 5 · 3 · 1 [40] for the spatial coordinate x. Evaluating each integral for both x
and y components a dispersion relation is found

1
τ

= −ω∗

ω
+ 2ωd

ω
− ωdω∗2(1 + ηi)

ω2 + 7ω2
d

ω2 ,
(3.28)
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where τ = Te/Ti. The imaginary part of Eq. (3.28) gives the growth rate

γ = τ

2

√
4ω2

d − 4ωd

τ
(2ηiω∗ − 7ωd + 2ω∗) − 4ω∗ωd + ω2

∗. (3.29)

The term proportional to the temperature gradient, obtained by taking the high
temperature gradient limit, gives

γ ∝
√
τηi2ω∗ωd =

√
τ

2
kyρi

vt√
LT,i

. (3.30)

In Eq. (3.30) the increase in the growth rates with the ion temperature gradient is
evident. For simplicity we take the flat density limit (Ln,i → ∞) such that ω∗ → 0.
Solving the equation γ = 0 for the ion temperature gradient we obtain the threshold
for instability

R

LT,i

= 1
2

(7 + τ) . (3.31)

Below this threshold this simple derivation predicts γ = 0 and the ITG mode is
stable. For higher temperature gradients the mode becomes unstable and grows
with the growth rate γ (Eq. (3.29)). If the critical value of the ion temperature
gradient leading to positive growth rates is increased, the plasma can sustain a higher
temperature gradient without driving ITG unstable and generate large turbulent
heat fluxes. The term stiffness is often used in the literature and refers to the scaling
of the heat flux with 1/LT,i, but may linearly be thought of the corresponding scaling
with the growth rate γ in Eq. (3.29). A stiff profile will lead to a high γ for a small
increase in 1/LT,i.

The scaling of the growth rates with the ion temperature gradient in Eq. (3.30)
and the critical threshold predicted by Eq. (3.31) are the two main characteristics
of ITG which distinguishes it from other modes in a similar frequency range. These
theoretical predictions can be contrasted with numerical results obtained from run-
ning GS2 for the JET discharge 73224 case presented in Section 3.2. Growth rates
for varying ion temperature gradients are shown in Fig. 3.4.

The growth rate is zero until a/LT,i ≈ 2.1 where a roughly linear increment of
γ with the ion temperature gradient is seen. For τ = 1, R = 3.12 m and a = 0.96 m
the prediction from the analytical model in Eq. (3.31) is a/LT,i,crit ≈ 1.24, below
the numerical result. If increased further (not shown) the growth rate follows a
square-root dependence on a/LT,i as predicted by the theory.

The presence of a peak growth rate is clearly seen in Fig. 3.5 where growth
rates and real frequencies are shown for a scan in kyρi. The results are verified with
a comparison of corresponding results obtained from GENE and GYRO as reported by
Bravenec et al. [14]2. In this case both fluctuations in the electric and magnetic field
have been included. All codes solve the same gyrokinetic equation, but because
of different numerical algorithms and implementations, some deviation is possible.
For the frequency, the GS2 output has been multiplied by a minus sign to match

2Thanks to R. Bravenec for providing the GENE and GYRO data.
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Figure 3.4: Growth rates for a scan in the main ion temperature gradient. Above
some critical value of the ion temperature gradient the ITG mode grows unstable
as indicated by positive growth rates γ. Only electrostatic fluctuations have been
included.

the definition of ω∗ (and the definition used in deriving the dispersion relation in
Eq. (3.28)). The result is in good agreement between the codes even though flow
shear was included in the GENE and GYRO simulations. These are also less resolved
compared to our GS2 simulations.

The quantity kyρi is the wavelength of the fluctuations, decreasing to the right
in the figure. At kyρi ∼ 1 the wavelength are in the order of the ion Larmor radius.
A peak growth rate at kyρi ∼ 0.4 can be seen. We should note that the theoretical
model in Eq. (3.30) wrongly predicts a linear scaling with kyρi without a peak in
the growth rate. The reason is most likely that we dropped finite Larmor orbit
effects and used J0 = 1. All simulations will unless stated otherwise be performed
at kyρi ∼ 0.4 for the peak growth rate. In some cases the location of this peak might
be shifted to kyρi ∼ 0.5 instead and in that case, all simulations will be modified
accordingly.

3.3.3 Effects of fast ions on the critical threshold

The expression for the critical threshold in Eq. (3.31) was derived for a plasma
consisting of electrons and ions only. We want to investigate how the fast ions
change this expression.

The fast ions enter through the quasineutrality condition

eδφ

Te

ne = (1 − nf/ni)
(

−eδφ

Ti

ni +
∫
hid3v

)
+ nf/ni

(
−eδφ

Tf

nf +
∫
hfd3v

)
,

(3.32)

and are again singly charged and where nf is the fast ion density. Given Eq. (3.32)
Liljeström [19] derived a modified expression for the critical threshold at low nf/ni.
In deriving this expression Liljeström have assumed ω/ωDf ≪ 1 which is valid
since the fast ion population has a very high temperature Tf/Te ≫ 1. They have
also neglected Larmor orbit effects, although the fast ions, because of their high
energy, will have a large Larmor radius such that kyρi ∼ 1 and the zeroth order
Bessel function will be far from one. To examine the consequences of the various
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Figure 3.5: Comparison of linear growth rates (top) and frequencies (bottom)
for GS2 and corresponding results from GENE and GYRO. The latter two include flow
shear, while in GS2 this term has been neglected. Also the GS2 simulations use much
higher values of the resolution parameters as presented in Table 3.3. The simulations
have included both electrostatic and magnetic fluctuations.

simplifications we compare the analytical findings with numerical results.
Growth rates as a function of the main ion temperature gradients, for several

fast ion densities are shown in Fig. 3.6. A linear fit of the results has been made to
illustrate stiffness and the value of the critical ion temperature gradient threshold.
Only electrostatic fluctuations have been included. Higher fast ion densities leads
to higher value of the critical threshold. We note that the slope of the line which
we interpret as the stiffness of the temperature profile, does not change much. The
main effect is instead the shift in the threshold and therefore the result derived by
Liljeström is of particular interest.

The fast ions are characterised by either high density (NBI) or temperature
(ICRH) gradients. Liljeström suggests the fast ion temperature gradient should
increase the critical main ion temperature gradient threshold and is therefore sta-
bilising. Increasing the density gradient is instead destabilising since the threshold
for instability occurs at smaller values of the ion temperature gradient. This agrees
well with simulations presented in Fig. 3.7(a) and Fig. 3.7(b) where growth rates
for varying main ion temperature gradients are shown. While the theoretical model
presented by Liljeström predicts both temperature and density gradients to change
the magnitude of the growth rate equally, it is clear from the numerical results in
Fig. 3.7 that this is not the case. With regard to the absolute change in the criti-
cal threshold in Fig. 3.7 it seems the fast ion temperature gradient has a stronger
influence compared to the fast ion density gradient. The fast ion density gradient
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Figure 3.6: Scan of the growth rate γ in a/LT,i for no (orange diamonds), inter-
mediate (cyan pentagons) and high (purple circles) values of the fast ion density.
Only electrostatic fluctuations have been included.

has to be increased more compared to the fast ion temperature gradient, to obtain
a similar change in critical threshold.
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Figure 3.7: Scan in a/LT,i for no (orange squares), intermediate (purple pentagons)
and high (cyan circles) values of the fast ion temperature (left) and density gradient
(right) respectively.

In generating Fig. 3.7 we changed the fast ion temperature gradient of fast
helium only, while keeping the other parameters, including the fast ion temperature
gradient of fast deuterium, fixed. Then, for the density gradient we vary instead
only the fast deuterium density gradient, while keeping all the other parameters
including the fast ion density gradient of fast helium, fixed. A difference between
these two species is their charge. Based on the model developed by Liljeström, we
expect that any stabilising or destabilising effect by either increasing the fast ion
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density, density gradient or temperature gradient should be amplified by a factor of
Z. This might explain the difference (in magnitude) change of the growth rates for
an equal variation in the fast ion temperature and density gradients. Fast helium is
doubly charged, while fast deuterium has Z = 1. The role of their gradients might
still be of equal importance, but the effect is amplified by the fast ion charge leading
to a stronger change in the growth rate when the fast helium temperature gradients
has been modified.

We may examine the separate role of NBI (fast deuterium) and ICRH (fast
helium) generated fast ions. Given the theoretical and numerical results observed to
this point we predict fast deuterium to be less stabilising compared to fast helium,
indicated by a smaller value of the critical ion temperature gradient leading to pos-
itive growth rates. A simulation comparing critical threshold of only fast deuterium
or only fast helium is shown in Fig. 3.8. It is clear that fast helium is far better at
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Figure 3.8: Comparison of growth rate and mode frequency for two cases: (1) only
including fast deuterium in the simulations (orange circles) and (2) only fast helium
(cyan pentagons). Also shown is the growth rates when fast ions have been removed
entirely from the list of species (dashed black line) in Table 3.2. Fast deuterium
is slightly destabilising and increases the growth rates because of the large density
gradient.

stabilising the ITG mode as compared to fast deuterium. This is indicated by the
significantly larger values of the critical ion temperature gradient leading to positive
growth rates. Also shown are the growth rates when fast ions have been removed
entirely from the list of species in Table 3.2. Including only fast deuterium leads to
a slight decrease in the critical ion temperature gradient threshold and increases the
slope of the linear fit. Overall this indicates that adding fast deuterium is leading to
larger growth rates compared to not having any fast ions at all. In other words, fast
deuterium is destabilising the ITG mode instead of stabilising it. We should remind
that these simulations and the theoretical models have assumed only electrostatic
fluctuations while neglecting possible fluctuations in the magnetic field. In the next
chapter we focus on numerical solutions of the gyrokinetic equations and consider
the modification in the role of fast ions when magnetic fluctuations are included.
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Using the tools presented in earlier chapters we may now turn to the question we
wish to answer with this work: what is the role of fast ions in stabilising ITG
turbulence? In this chapter we perform linear gyrokinetic simulations with GS2 to
explain the role of fast ions in stabilising the ITG mode. Our reference case consists
of the physical parameters of the JET discharge and the resolution parameters,
both presented in Section 3.2. The analysis is organised as follows. Directly in the
beginning of Section 4.1 the changes in ITG growth rates as a consequence of adding
fast ions with varying density, are presented. We show how the fast ions reduce the
peak growth rates and how they increase the critical value of the ion temperature
gradient. Also, we present how they enhance the already strong finite β stabilisation.
We proceed with explaining the role of individual fast ion parameters in the observed
reduction of the growth rates. In Section 4.1.1 the interaction of the fast ion density
and temperature gradients with plasma β, is analysed. The previous chapter ended
with the electrostatic effects of the gradients, but here we investigate this further
by including also magnetic fluctuations. In Section 4.1.2 a separate, electrostatic
study of the large temperature of the fast ion population, is done. Then we continue
in Section 4.1.3 with examining the role of fast ion mass and charge in reducing
the growth rates. We summarise our findings by presenting the differences between
using NBI and ICRH generated fast ions. In Section 4.1.4 the role of secondary
effects, is investigated. These are the change in electron density profile because of
quasineutrality, the fast ion contribution to β and its radial derivative. Including
only secondary effects is more commonly known as dilution. Before ending this
chapter we link back to the introduction and attempt to use the quasi-linear model
for explaining the large reduction in the nonlinearly saturated heat flux.

4.1 fast ion stabilisation of the itg mode

The gyrokinetic simulations are performed using three different densities of fast
ions: nHe = nFD = 0.0 (nf = 0), nHe = nFD = 0.03ne (nf = 0.06ne) and nHe =
0.07ne, nFD = 0.06ne (nf = 0.13ne). The last is the reference case presented in
Table 3.2. For each change in fast ion density we modify the electron density profile
to account for quasineutrality, plasma β (Eq. (3.13)) along with its gradient, the
effective charge Zeff (Eq. (3.15)) and the collision frequencies (Eq. (3.14)). The
geometry is fixed in order to isolate other effects of fast ions. The previous chapter
ended with some examples of gyrokinetic simulations of the fast ion effects on the
ITG growth rates, including only fluctuations in the electric field. In this section
the magnetic field fluctuations are retained.

A kyρi spectrum for each of the three fast ion densities is shown in Fig. 4.1.
The spectrum has a parabolic shape with a peak at roughly kyρi = 0.5. Without fast
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ions the peak growth rate is γ ∼ 0.25 cs/a which decreases when the fast ion density
is increased, reaching γ ∼ 0.1 cs/a at nf = 0.13ne and kyρi ∼ 0.4. For the plasma

nf = 0
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Figure 4.1: kyρi spectrum of growth rates. Scans are performed for fast ion den-
sities nHe = nFD = 0.0 (nf = 0, orange circles), nHe = nFD = 0.03ne (nf = 0.06ne,
cyan pentagons) and nHe = 0.07ne, nFD = 0.06ne (nf = 0.13ne, purple triangles).
The last is the reference case presented in Table 3.2.

regime described by the reference parameters in Table 3.2 the ITG instability is the
dominant instability, creating the growth rates seen in Fig. 4.1. The instability is
driven by the main ion temperature gradient, example of which we have already seen
in Section 3.3. In Fig. 4.2 we make a scan in the main ion temperature gradient for

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.05

0.1

0.15

a/LT,i

γ
[c
s
/a

]

nF I = 0.0
nF I = 0.06ne

nF I = 0.13ne

Figure 4.2: Scans in the ion temperature gradient for varying fast ion density.
Simulations are performed for the peak growth rates at kyρi ≈ 0.4 as seen in Fig. 4.1.
Due to the computational cost of performing these simulations, only a few points
are shown. A linear fit is then used to demonstrate the approximate value of the
critical threshold. If we compare with the electrostatic results in Fig. 3.6 we note a
significant increase in the critical threshold.

the peak growth rate (kyρi = 0.4) of the three cases with varying fast ion densities
shown in Fig. 4.1. In all simulations that follow kyρi = 0.4 will be used by default.
We see that the effects of fast ions is to increase the threshold of instability. A linear
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fit is also presented to demonstrate the approximate value of the critical threshold.
In contrast to Fig. 3.6 where only electrostatic fluctuations were considered, the
increase in the critical ion temperature gradient threshold because of fast ions, is
much bigger. Clearly the stabilising effect of fast ions is enhanced when magnetic
fluctuations are included. We will see that the large increase in the critical ion
temperature gradient is due to the large fast ion contribution to total β. In Fig. 4.2
also a slight decrease in the slope of the linear fit can be noticed for large fast ion
densities (nf = 0.13ne).

4.1.1 The role of β

Recall that the thermal to magnetic pressure ratio β in Eq. (3.13) separates elec-
trostatic from electromagnetic simulations. To examine the role of electromagnetic
effects a scan in β is appropriate. We remind that in GS2 variation in the total β is
achieved by modifying the reference value βref.

In Fig. 4.3 the growth rates (Fig. 4.3(a)) and mode frequencies (Fig. 4.3(b)) for
different values of reference βref are shown. The general characteristics of this figure
are the following. Electrostatic simulations are equivalent to setting βref = 0. For
non-zero values there is a strong suppression of the growth rates with a maximum
reduction at βref ≈ 0.01. This strong reduction is believed to be due to the coupling
of the ion acoustic wave with the shear Alfvén wave demonstrated for example in
Ref. [42]. Above this value the growth rates instead increase very rapidly. Looking
at the corresponding mode frequencies in Fig. 4.3(b) we see a high jump for similar
values of reference β indicating a change in the dominant mode, most likely to
the kinetic ballooning mode (KBM) [23]. If ITG is dominating up to β ≈ 0.01
KBM is more important for βref > 0.01. This thesis is limited to study only the
dynamics of ITG and we focus therefore on βref ≤ 0.01 where KBM is less important.
Introducing fast ions makes several improvements. At βref = 0, the electrostatic
case, the difference between no fast ions and fast ions with a density nf = 0.13ne

(the reference case) is a reduction in the growth rate by roughly a factor of 25%.
This difference increases with β before the threshold of the next instability. The
stabilising effect can be separated in two stages. First is an enhanced effect of β
measured by the steeper slope when fast ions are added. For a given increase in β
the reduction in the growth rates is larger with fast ions compared to without fast
ions. Second is a left-shift of the threshold such that lower growth rates are reached
for the same value of β (before the threshold of instability). It is also interesting
to see the order of this effect: first a steeper slope, then a shift in the threshold as
the fast ion density is increased. Fig. 4.3 makes it clear that the effect of fast ions
is stronger in electromagnetic simulations, compared to electrostatic, in agreement
with the larger increase in the critical ion temperature gradient threshold seen in
Fig. 4.2. In the following sections we will investigate which of the fast ion parameters
causes the enhanced β stabilisation.

Before beginning with the analysis, recall that the magnetic fluctuations can
be separated into compressional (parallel) perturbations δB∥ and sheared (perpen-
dicular) perturbations δB⊥. In Fig. 4.4 we perform a scan in βref for two cases.
One includes only δB⊥ fluctuations and another including also δB∥ fluctuations.
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Figure 4.3: Growth rates (top) and mode frequencies (bottom) for a scan in the
reference β for varying fast ion density. Again with kyρi ≈ 0.4 and fast ion densities
as shown previously in Fig. 4.1: nf = 0 (cyan pentagons), nf = 0.06ne (orange
triangles) and nf = 0.13ne (purple circles).

At low values of βref, δB∥ does not seem to make any difference. Only above the
critical threshold where KBM is destabilised does parallel δB∥ fluctuations start to
matter. Since the 73224 discharge is at βref = 0.0033, we note from Fig. 4.4 that
δB⊥ fluctuations are, in our case, most important to include.

Two crucial fast ion parameters are their high density and temperature gra-
dients. The effects of these parameters were already presented in Section 3.3.3 in
the previous chapter but there without including magnetic fluctuations. Our obser-
vations were compared with the analytical model derived by Liljeström [19] which
was in agreement with our findings. From the main ion temperature gradient scan
in Fig. 3.7 we concluded a stabilising effect on the growth rates because of the fast
ion temperature gradient, as it increases the critical value of the main ion temper-
ature gradient which generates the non-zero growth rates of the ITG instability.
Increasing the density gradient on the other hand, reduced the threshold for insta-
bility, as was shown in Fig. 3.7. In other words, the density gradient of fast ions is
destabilising. In this section these electrostatic findings are generalised by including
magnetic fluctuations and by investigating the role of the fast ion gradients on the
β-stabilisation.

Let us begin with the fast ion temperature gradient. In Fig. 4.5(a) a scan
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Figure 4.4: Scan in βref for two cases. The first includes only perpendicular mag-
netic fluctuations (orange squares) while the second also contains parallel magnetic
field fluctuations (cyan pentagons). Below βref = 0.007 the two cases are practically
indistinguishable.

in β is shown for three values of fast helium temperature gradients: a/LT,He = 0,
a/LT,He = 1.5, a/LT,He = 4.0. The fast deuterium temperature gradient is kept
fixed, and the density gradient is set to zero for both species. At βref = 0 the
temperature gradient is stabilising as seen in previous electrostatic scans. Increasing
β leads to an even stronger stabilising effect because of the fast helium temperature
gradient. A similar scan, with varying fast ion density gradient in Fig. 4.5(b) shows
a completely different behaviour. We show results for three values of fast deuterium
density gradients: a/Ln,FD = 0, a/Ln,FD = 4.0, a/Ln,FD = 6.0. Higher values of the
fast ion density gradients compared to fast ion temperature gradients are required
to observe a clear change in the growth rates. The fast helium density gradient is
kept fixed, and the temperature gradient is set to zero for both energetic species.

At β = 0, without magnetic fluctuations, the fast ion density gradient is
clearly destabilising as previously discussed in Section 3.3.3. But this role changes
for higher β. Above βref ≈ 0.003 the fast ion density gradients leaves the growth
rates unchanged and for higher βref it even becomes stabilising.

Overall it is possible to conclude that the fast ion temperature and density
gradients enhance finite β stabilisation, in the sense that increasing the fast ion
gradients leads to a greater reduction in the growth rates, for a given change in
β below the threshold of the KBM instability. Having a larger β is of particular
interest for NBI generated fast ion with high density gradients. If these fast ions
are destabilising at low β their role is reversed at higher β and together with ICRH
generated fast ions they contribute in significantly reducing growth rates of ITG.

4.1.2 Contrasting fast ions with thermal impurities

In addition to their high gradients, the fast ion population is characterised by a
large temperature. In electromagnetic simulations, when β is included, the effect
of temperature is to increase the pressure, which propagates to an increase in β
and reduced growth rates (if β is not too high). The temperature of the fast ion
population is important also for other reasons.
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Figure 4.5: Left figure: Scan in βref for several values of the fast ion tempera-
ture gradients: a/LT,He = 0 (orange circles), a/LT,He = 1.5 (cyan triangles) and
a/LT,He = 4 (purple pentagons). The fast deuterium parameters are kept fixed and
the density gradient has been removed for both energetic species. Right figure: same
scan but for several values of the fast ion density gradients instead: a/Ln,FD = 0,
a/Ln,FD = 4 and a/Ln,FD = 6. The fast helium parameters are kept fixed and the
temperature gradient has been removed for both energetic species.

The analytical predictions in Section 3.3.3 and all our numerical results have
shown a different role of the fast ion temperature gradient in contrast to the main
ion temperature gradient. The first leads to a decrease in the growth rates, while the
second is what drives ITG unstable and increases the growth rates. Because of their
high temperature it has been suggested that energetic ions do not participate in the
dynamics of ITG [43] and an increase in their temperature gradient should therefore
not necessarily complement the main ion temperature gradient in increasing the
growth rates of the instability. This claim is assessed in this section. To prevent
β from overshadowing other possible effects of increasing the temperature, we keep
only electrostatic fluctuations using β = 0.

In Fig. 4.6 a scan in the fast helium temperature is shown for the range 2Te ≤
THe3 ≤ 15Te. All the other parameters are of the reference case in Table 3.2 and
once again with kyρi = 0.4. In the beginning of the figure, increasing the fast helium
temperature is destabilising as is indicated by the increase in the growth rates for
THe < 3Te. At THe = 3Te a peak of γ ≈ 0.3 cs/a is reached and afterwards the
growth rates are effectively reduced until THe ≈ 14Te where they saturate around
γ = 0.1 cs/a. Apart from β, the high energy of the fast ions (in the nominal case
THe = 6.9Te) is stabilising by itself. The result in Fig. 4.6 suggest that the effect of
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Figure 4.6: Growth rates for increasing fast helium temperature. Below THe ≈ 3Te

increasing the fast helium temperature is destabilising. For higher values growth
rates start to reduce until THe ≈ 14Te is reached, where they seem to saturate around
a value of γ = 0.1 cs/a. The simulations have not included magnetic fluctuations.

helium is first similar to the main ions (destabilising) but after T ≈ 3Te the helium
impurity has to be treated differently from the other, thermal ions.

Let us examine how the role of the helium temperature gradient changes with
the temperature. In Fig. 4.7 we present a scan in the fast helium temperature
gradient for two cases: one where THe is the nominal value (THe ≫ Te) and a second
case with THe = Te.
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Figure 4.7: Scan in the helium ion temperature gradient for two cases. One (cyan
pentagons) with a helium ion temperature equal to the electron temperature (in
which case the fast ion is no longer fast) and a second (orange circles) with the
original, high temperature of helium (THe = 6.9Te). In contrast to previous findings
we now find the temperature gradient to be destabilising.

There is a distinct difference between the growth rates for the two cases. In-
creasing the helium temperature gradient leads to lower growth rates for THe ≫ Te,
while for THe = Te the growth rates are increased. This shows that fast ions have
a completely different role compared to thermal impurities. A question to ask is:
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is the distinction between thermal and energetic ions possible to make also when
magnetic fluctuations are considered? In Section 4.1.1 we found the stabilising effect
of the fast helium temperature gradient to be enhanced in the high β regime, while
the main ion temperature gradient remains destabilising (see for example Fig. 4.2).
Therefore the interpretation of Fig. 4.7 is expected to remain also when magnetic
fluctuations have been included.

To this point the effects of the fast ion gradients and temperature have been
analysed. The latter both in terms of the contribution to total β and also in the
coupling to the temperature gradient of the energetic species. This leaves the fast
ion density and charge, which are discussed in the next section.

4.1.3 Isotope effects

The model discussed in Section 3.3.3 predicts the charge to enhance the stabilising
(or destabilising) effects of the fast ion temperature or density gradients. Because of
their different parameters, we separate between NBI and ICRH generated fast ions.
These have all the parameters of fast deuterium and fast helium respectively, except
for the charge which we will vary. In Fig. 4.8(a) a scan in the ion temperature
gradient for ZNBI = 1, ZNBI = 2 and ZNBI = 3, is presented. The fast helium
parameters (ICRH) are kept fixed. The same but for varying ICRH charge and
constant fast deuterium parameters is shown in 4.8(b). We obtain the reference
case (Table 3.2) when ZNBI = 1 and ZICRH = 2 in the two figures respectively. For
simplicity, all scans in this section are electrostatic (β = 0).
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Figure 4.8: The effect of charge on the stiffness and critical threshold. Each scan
is separately performed for NBI (left) and ICRH (right) heated fast ions, using the
parameters of fast deuterium and fast helium respectively (except for the charge).

Increasing the charge of NBI heated fast ion enhances the destabilising effect of
the density gradient as is seen by the stronger reduction in the critical threshold in
Fig. 4.8(a). This confirms the idea of the charge multiplying the destabilising effect
of the density gradient. The same conclusion cannot be drawn for the high fast ion

48



gyrokinetic simulations

temperature gradient (ICRH). In the step from ZICRH = 1 to ZICRH = 2 the growth
rates are more or less unchanged. We might recall the discussion in Section 3.3
where it was suggested that the stronger effect of the helium temperature gradient
compared to the fast deuterium density gradient could be explained by the double
charge of helium. Given the conclusions in this section this statement does not seem
to hold, rather it is indeed the temperature gradient itself which is more important
in changing the ITG growth rates compared to the fast ion density gradient.

Let us proceed with performing a similar scan but for varying isotope mass
of NBI and ICRH generated fast ions. In Fig. 4.9(a) we vary the mass of NBI
generated fast ions, again using all the parameters of fast deuterium in Table 3.2,
but the mass. Similarly in Fig. 4.9(b) we vary the mass of ICRH generated fast
ions. In both cases, the other hot ion species parameters are kept constant just as
in Fig. 4.8.
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Figure 4.9: The effect of mass on the stiffness and critical threshold. Each scan
is separately performed for NBI (left) and ICRH (right) heated fast ions, using the
parameters of fast deuterium and fast helium respectively (except for the mass).

The result is the same for both NBI and ICRH generated fast ions: increasing
the fast ion mass leads to lower growth rates indicated by increasing the threshold
in the ion temperature gradient. The stabilising effect is larger in the case of ICRH,
Fig. 4.9(b) as compared to NBI in Fig. 4.9(a).

To conclude our findings in this and previous sections we compare the overall
difference in the growth rates for a scan in the ion temperature gradient, when using
either fast deuterium or only fast helium. In Fig. 4.10(a) the growth rates obtained
when using the parameters from Table 3.2 and removing fast helium from the list
(orange circles) or fast deuterium (cyan pentagons), is shown. Again, fluctuations
in the magnetic field are not considered. Fig. 4.10(a) was discussed already in Sec-
tion 3.3.3 where the slightly destabilising effect of fast deuterium (even compared
to the case without fast ions (nf = 0) was pointed out. The suggested reason is the
high density gradient of the species. Fast helium, because of the large temperature
gradient increases the critical ion temperature gradient threshold and is stabilising
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Figure 4.10: Comparison of growth rate and mode frequency for two cases: (1)
only including fast deuterium in the simulations (orange circles) and (2) only fast
helium (cyan pentagons). Results are shown without δB fluctuations (left) and with
(right).

the ITG mode. We proceed with comparing this electrostatic result with the equiv-
alent cases when magnetic fluctuations are also included, presented in Fig. 4.10(b).
Again, the high temperature gradient species (He) is most effective in reducing the
growth rates. The role of magnetic fluctuations and β is to increase the critical
threshold even further, from a/LT,i ≈ 1.5 (electrostatic) to a/LT,i ≈ 2.0 (electro-
magnetic). In agreement with the scan in βref in Fig. 4.5(a) including magnetic
fluctuations enhances the stabilising influence of the fast ion temperature gradient.
The critical ion temperature gradient threshold for the high density gradient species
(FD) is more or less unchanged when magnetic fluctuations are also considered. In
fact it is slightly reduced suggesting that the NBI generated FD ions are even more
destabilising compared to the case with only electrostatic fluctuations. This state-
ment seem to hold for small values of the ion temperature gradient but as soon as
larger values are reached, a stabilising influence of FD can be observed. For com-
parison we show the case with electromagnetic fluctuations but without fast ions
nf = 0 (black dashed line). Including FD has reduced the slope of the linear fit
and leads therefore to a stabilising influence for sufficiently high ion temperature
gradient. For the nominal parameters of the 73224 discharge, a/LT,i = 3.56 and FD
is therefore contributing in reducing the ITG growth rates.

Apart from the gradients, it should be noted that our ICRH generated fast
ions have a slightly larger density, mass, temperature and charge as compared to our
NBI generated fast ions. All these effects, as we have seen, contribute to enhancing
the stabilisation even further. Their difference in density and temperature leads to
a different contribution to the total pressure and therefore a different contribution
to total β. In the end, this implies a further stabilising effect when transitioning
from the electrostatic cases in Fig. 4.10(a) and electromagnetic in Fig. 4.10(b), as
is indicated by the increase in the slope.
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4.1.4 Role of secondary effects
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Figure 4.11: Illustration of the various secondary changes which has to be included
for a change in the fast ion parameters. These are the electron density, density
gradient, Zeff, collision frequencies ν, β and its radial derivative. If we keep all the
secondary changes because of the presence of fast ions, but remove them from the
list of species in the GS2 simulation, we get dilution.

In the previous section when the parameters of the fast ions were changed, we
also needed to recalculate the electron density and its gradient (to satisfy quasineu-
trality), the collision frequency, the effective charge Zeff, the radial derivative of β,
and β itself. We call the changes in all these parameters as the secondary effects of
the fast ions. The secondary effects of fast ions can equally well be accounted for
by varying the electron and/or ion parameters without actually having to include
the fast ion species in the simulation. Only including the secondary effects of the
fast ions is known as dilution and is illustrated in Fig. 4.11. In this section we will
determine the role of dilution in the reduction of the ITG growth rates observed in
the previous sections.

The role of dilution in stabilising ITG can be evaluated by comparing the
growth rates obtained for the reference (nf = 0.13ne) and the case when all the
secondary effects (presented in Fig. 4.11) are included, but the fast ion themselves
are removed as an active species. Electromagnetic results are shown in Fig. 4.12 for
a scan in kyρi. We show dilution (denoted by the ∼ symbol) ñf = 0.13ne, when the
fast ions have been removed, but their secondary effects remains. The other case
with nf = 0.13ne is the same, but now with fast ions as an active kinetic species.
For comparison we also present growth rates obtained without including fast ions
at all, nf = 0 (see initial Fig. 4.1) which includes removing their secondary effects.

Without fast ions the peak growth rates are γ ≈ 0.25 cs/a. With fast ions this
drops down to γ ≈ 0.1 cs/a. Dilution reduces the peak growth rate to γ ≈ 0.13 cs/a
which corresponds to 85 % of the total stabilising effect of the fast ions. Dilution
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Figure 4.12: Scan in kyρi for three sets of input parameters. The first (purple
triangles) is the reference case including both the direct and secondary effects of the
fast ions. The second (ñf = 0.13ne, orange circles) only keeps the secondary effects
of the fast ions and finally in nf = 0 (dashed black line) fast ions have been entirely
removed.

alone does not quite account for all of the observed stabilisation, but for the given
case it seems to be dominating. It should be mentioned that Fig. 4.12 is slightly mis-
leading since two fast ions of different characteristics are considered. Both contribute
to stabilise the growth rate in terms of dilution but their kinetic effects modify the
growth rates in different ways. A better evaluation is to consider each fast ion species
independently. For this purpose the same three cases as in Fig. 4.12 are repeated
but only including either FD (Fig. 4.13(a)) or He (Fig. 4.13(b)). Secondary and
direct effects of FD reduces the growth rate only slightly (from γ ≈ 0.25 cs/a down
to γ ≈ 0.2 cs/a). Dilution on the other hand brings the growth rates further down
to γ ≈ 0.18 cs/a. While the secondary effects are stabilising the ITG growth rates,
the direct effects of FD seems to be destabilising. The simulations have included
magnetic fluctuations using βref = 0.0033 such that from Fig. 4.5(b) we would expect
a very small, but slightly stabilising influence of the fast deuterium density gradi-
ent. On the other hand, it should be pointed out that while in Fig. 4.5(b) He (but
without the temperature gradient) was also present, in Fig. 4.13(a) this species has
been removed entirely. Removing He from the simulations performed previously in
Fig. 4.5(b) might make the the density gradient of FD slightly destabilising. Apart
from the density gradient there is also the direct effects of fast ion density and charge
which have not been studied here, and might lead to a slight increase in the growth
rates as is seen in Fig. 4.13(a) when comparing the dilution and full FD case.

Including only He leads to the different result shown in Fig. 4.13(b). Again
dilution reduces the growth rates. For He this reduction is slightly less compared to
FD in Fig. 4.13(a). A possible explanation is the higher temperature of FD which
leads to a larger contribution in total β. Including also the direct, kinetic effects of
fast He leads to a large drop in the growth rate. Given all the results to this point
and associated discussions, we explain the large reduction when direct effects of He
are included with the large He temperature gradient.

Combining these two separate studies a more correct evaluation of the role
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Figure 4.13: Scan in kyρi for three sets of input parameters. Left: no fast ions
(dashed black line), with FD (orange circles) and dilution using the parameters of
FD only (cyan circles). He has been completely removed. Right: same but using
He and completely removing FD. Simulations have included magnetic fluctuations.

of dilution in Fig. 4.12 can be done. Both FD and He provide with a roughly
equal contribution to dilution which stabilises ITG and reduces the growth rates.
For FD this is the main stabilising effect, while its direct effects lead to a slight
increase in the growth rates. With both dilution and kinetic effects FD contributes
to only ∼ 25% of the total stabilisation by fast ions. The rest comes from the ICRH
generated He fast ions. A significant part is again because of dilution, but of equal
(if not greater) importance is the large temperature gradient of He. Adding both
the small reduction because of FD (∆γ ≈ 0.05 cs/a) and the much larger reduction
because of He (∆γ ≈ 0.14 cs/a) we obtain the total reduction of the fast ions as seen
in Fig. 4.12. Once again the fact that ICRH generated fast ions are most important
in stabilising the ITG growth rates, has been confirmed.

Dilution in effect encapsulates a range of parameters shown in Fig. 4.11. We
have confirmed a small effect because of the change in Zeff and collision frequencies.
Also the fast ion contribution to the total radial derivative of β only leads to a
slight decrease in the critical threshold and does not affect the growth rates of ITG
much. The latter is demonstrated in Fig. 4.14 where a scan in the ion temperature
gradient with and without the fast ion contribution to β′, is shown. Here βf =
βrefnfTf/nrefTref . The effect from the fast ion contribution to β itself, is more
important.

We compare the reference case with and without fast ion contribution to β in
Fig. 4.15. The scan in kyρi is shown in Fig. 4.15(a) and for the ion temperature
gradient in Fig. 4.15(b). Comparing with the reference nf = 0.13ne, βf ̸= 0 reveals
roughly a 40 % reduction in the growth rates due to the fast ion contribution to
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Figure 4.14: Scan in the ion temperature gradient. Results are shown including all
secondary effects (purple pentagons) and without fast ion contribution to β′ (orange
circles). A slight shift in the critical threshold is seen when β′

f is included.

total β alone. In Fig. 4.2 it is seen that βf increases the critical threshold of the
ITG instability and reduces the slope of the linear fit. Most of the stabilising effect
because of dilution in Fig. 4.12 is because of βf and thus electromagnetic effects.

The analysis of dilution is complete by examining the role of quasineutrality.

Quasineutrality

To account for a change in fast ion density and its gradient the density profiles of
electrons and/or ions has to be modified for remaining quasineutral. To this point
we have modified the electron parameters with

ne = −
∑

j ̸=e,f njZj + Zfnf

Ze

,
a

Ln,e

= −
∑

j ̸=e,f njZj
a

Ln,j
+ Zf

a
Ln,f

nf

Zene

, (4.1)

where the sum is over all species excluding electrons and fast ions. As discussed in
Chapter 2 another possibility could have been to change the main ion parameters.
Since electrons and main ions have different roles in the dynamics of ITG, using
ions for satisfying quasineutrality instead might change our results. We evaluate the
difference between using either case in Fig. 4.16 where a scan in the ion temperature
gradient is shown. The fast ion density is set to zero (nf = 0) and density profiles
of either main ions (orange circles) or electrons (purple pentagons) are recalculated
for remaining quasineutral (along with the other secondary effects in Fig. 4.11).
In Fig. 4.16(a) only electrostatic fluctuations are included while Fig. 4.16(b) also
includes fluctuations in the magnetic field. Using ions leads to a lower value of the
critical ion temperature gradient threshold as expected, since there are now more
ions that contribute in driving ITG unstable. Electrons are surprisingly not that
different. Given the change of the slope in the linear fit when magnetic fluctuations
have been included in Fig. 4.15 an even smaller difference is expected for higher
main ion temperature gradients. Since the reference discharge has a/Lt,i = 3.56
using ions for satisfying quasineutrality instead of electrons, should not change our
results.
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Figure 4.15: Scan in kyρi (left) and ion temperature gradient (right) for varying
fast ion density, but without their contribution to total β, (βf = 0). For comparison
we repeat the reference case with nf = 0.13ne and βf = 0 (purple circles) including
fast ion contribution to total β (dashed black line)

4.2 quasi-linear prediction of the nonlinear diffu-
sion coefficients

We have investigated the role of fast ions in reducing ITG growth rates but the ulti-
mate goal is to explain the large reduction in the nonlinear heat flux demonstrated
by Citrin et al. [13]. For this purpose the exponential growth γ of ITG has to be
linked to the saturated value of the heat flux. This can be done with quasi-linear
theory.

A quasi-linear model predicts the nonlinear saturated value of the electro-
static potential which is used to estimate nonlinear diffusion coefficients and heat
fluxes. It is of particular interest in transport models used in the design of fusion
reactors which requires an accurate description of particle and heat transport. Com-
putationally complex and time consuming nonlinear gyrokinetic simulations are not
feasible and instead these tools rely on the quasi-linear model for predicting the
turbulent transport of heat and particles. The QuaLiKiz predictive tool [18] is a
well known example which implements a quasi-linear model. In this section we will
use a quasi-linear model in the attempt of generalising the deduced role of fast ions
in stabilising ITG growth rates to their nonlinear reduction of the heat flux. The
quasi-linear model based on the work done by Casati et al. [17] is reviewed.

In the quasi-linear model considered in this thesis, the maximal perpendicular
diffusion coefficient, measuring the transport of particles across flux surfaces, is
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Figure 4.16: Scan in the ion temperature gradient, using the parameters of the
reference discharge in Table 3.2 but without fast ions. To remain quasineutral
we have recalculated the main ion (orange circles) and electron (cyan pentagons)
parameters respectively.

estimated with

D⊥,max ≈
γk⊥,max⟨
k2

⊥,max

⟩ . (4.2)

In a simple random walk model the diffusion coefficient is the ratio between the step
size squared, and the step time. For turbulence this can be thought of as the time
and length a turbulent structure can propagate in the plasma before it dissipates
and mixes with the environment. The quasi-linear model uses the mixing-length
assumption to assume a time step equal to the growth γk⊥,max of the unstable mode
and the step length is the associated averaged perpendicular wavenumber⟨

k2
⊥

⟩
= k2

y

(
1 + (ŝ− α)2

⟨
θ2
⟩)

, (4.3)

and the poloidal extent of the mode structure is characterised by the quantity

⟨
θ2
⟩

=
∫
θ2 |φ|2 dθ∫
|φ|2 dθ

. (4.4)

In Eq. (4.2) we use the value of the averaged perpendicular wavenumber k⊥,max and
the associated growth γk⊥,max that maximises the diffusion coefficient. In Eq. (4.3)
the parameter α is defined through [44]

α = q2∑
j

βj

(
R

Ln,j

+ R

LT,j

)
, (4.5)

where the sum runs over all (five) species in the plasma. The diffusion coefficient
in Eq. (4.2) is directly related to the nonlinear saturated electrostatic potential
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φsat which in turn is used to estimate nonlinear heat fluxes. With the growth
rates, the associated ky wavenumbers and the electrostatic potentials from our linear
simulations we can evaluate the role of fast ions in reducing diffusion coefficients,
the saturated value of the electrostatic potential and consequently the heat fluxes.

Consider Fig. 4.1 and take the growth rates for the case without fast ions
(nf = 0) and with fast ions (nf = 0.13ne). The real and imaginary part of the
electrostatic potential as a function of θ for the peak growth rates of the two cases are
depicted in Fig. 4.17. We integrate the absolute value of the electrostatic potential
φ = Re(φ) + iIm(φ) according to Eq. (4.4), calculate α with Eq. (4.5) and compute
the averaged wavenumber in Eq. 4.3. The geometrical parameters, ŝ, q and the
gradient scale lengths are as before taken from Table 3.2. We use Eq. (4.2) and
evaluate the maximum value of the diffusion coefficient for the two cases, with
and without fast ions to obtain D⊥,max,with FI/D⊥,max,no FI ≈ 0.41. The quasi-linear
model predicts 59% reduction in the maximum diffusion coefficient, while for the
saturated nonlinear heat flux reported by Citrin et al. [13] it is approximately 85
%. The quasi-linear model predicts a large stabilising effect on the heat fluxes
because of the fast ions but the estimate is significantly smaller compared to the
actual reduction obtained from the nonlinear gyrokinetic simulations. A large part
of the stabilisation by fast ions for the 73224 JET discharge is due to nonlinear
interactions which cannot be fully explained with linear physics. This is a discovery
shown previously by Citrin et al. [13]. It appears that to fully capture the role of
fast ions in reducing the heat fluxes for this discharge, nonlinear simulations are
required. Nevertheless, our findings for the reduction of the ITG growth rates can
be used for designing desired nonlinear simulations and fully explain the role of fast
ions in reducing the nonlinear heat flux.

We want to stress that the quasi-linear model is in essence an electrostatic
theory since only the electrostatic potential is taken into account in calculating
averaged perpendicular wavenumbers in Eq. (4.3). Citrin on the other hand, in-
cluded electromagnetic fluctuations in the nonlinear simulations of the heat flux.
The comparison between the electrostatic quasi-linear model in predicting nonlinear
electromagnetic stabilisation of the heat flux is therefore not entirely equitable. A
proper comparison would require a more general quasi-linear model to be developed
where also the magnetic potential is taken into account in Eq. (4.4).
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Figure 4.17: Real and imaginary parts of the normalised electrostatic potential
as a function of the angle θ including fast ions (solid orange) and without fast ions
(dashed purple). A dominant peak at θ = 0 can be seen. In a tokamak plasma this
corresponds to the outboard midplane where the ITG instability is the worst, as
discussed in Section 3.3.

58



5Summary and Discussion

In this work the role of fast ions in stabilising the ion temperature gradient mode
(ITG) is investigated. We discuss the properties of this energetic species and how,
as a consequence of their high contribution to the total pressure, they change the
magnetic geometry. We find a negligible impact on most of the shaping parameters
but a change in the derivative of the Shafranov shift and safety factor profile, which
both affect the linear growth rates of the ITG instability. The growth rates are com-
puted by solving the linear gyrokinetic equation numerically, using the gyrokinetic
continuum code GS2. The reference input parameters to GS2 is a model of the 73224
discharge from the JET tokamak, motivated by the strong fast ion stabilisation
effect in reducing the nonlinear heat fluxes. The discharge contains two different
types of fast ions: fast deuterium with a high density gradient, and fast helium with
a high temperature gradient. These are used to model NBI and ICRH heated fast
particles respectively.

Using this reference case an in depth study of the ITG stabilisation is per-
formed. We isolate each parameter of the energetic species and study their effects
on the growth rates separately. Results reveal the fast ion temperature gradient to
be stabilising for high temperatures of the energetic species. The role of the fast
ion density gradient depends on plasma β. For small β the fast ion density gradi-
ent is destabilising while for larger β it becomes stabilising instead. Therefore, at
equal pressure, we find ICRH generated fast ions to be more efficient in reducing
the growth rates as compared to NBI injected fast ions. The findings are compared
with an electrostatic dispersion relation which includes the response of electrons,
ions and fast ions. This approximate model successfully predicts the role of the fast
ion gradients, at low β.

The stabilising role of the fast ions is most pronounced at the critical β where
the kinetic ballooning mode (KBM) is destabilised. In this linear treatment we
also find parallel magnetic fluctuations to be negligible compared with including
perpendicular magnetic fluctuation for value of β below the threshold of KBM.

The influence of fast ion dilution of the thermal species, is investigated. Dilu-
tion explains most of the reduction in growth rates for NBI generated fast ions, but
for ICRH the temperature gradient is of equal, if not greater importance. Most of
the stabilising influence from dilution comes from the fast ion contribution to the
total β.

Finally the quasi-linear model is applied in the attempt of using linear results
to explain the fast ion stabilisation of heat fluxes. We find the quasi-linear prediction
to not be sufficient in explaining the order-of magnitude decrease in the nonlinear
heat fluxes.
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5.1 outlook

Naturally, this work has involved many simplifications which have to be addressed
in the future. First of all, the findings presented here are only for one particular
discharge and at one radial position. We have treated the problem locally, but equiv-
alent investigations with global geometry should be done to extrapolate our findings
to real tokamak scenarios. Next, although it is concluded that the change in the
magnetic geometry because of fast ions should not be neglected entirely, we perform
all of our gyrokinetic simulations keeping the geometry fixed. Corresponding cases
using real geometry which matches the given pressure profiles, could yield very dif-
ferent results. On a similar note, we have mostly isolated the effect of individual
parameters, such as fast ions density, temperature, their gradients and contribution
to total β in our scans, but combinations thereof are equally important and more
experimentally relevant.

Another simplification is that the fast ion species is described with a Maxwellian
distribution function, which might be incorrect. We know that the gradient of the
distribution function appears in the gyrokinetic equation. Upon calculating this
term we find the energy dependence in the Maxwellian distribution function to
be coupled to the temperature gradient of the species. Our finding that the fast
ion temperature gradient is important for stabilisation motivates the need to use a
proper distribution function when describing the fast particle population. A per-
haps better choice could be to use a slowing down distribution function [45]. In
any case, GS2 is a natural choice for such numerical studies, as its “alphas” branch
can be used to calculate the turbulent transport of fast ions with arbitrary energy
distributions [46, 47]. We note that NBI and ICRH fast ions can develop significant
velocity space anisotropies, which affect their transport, although it is not accounted
for here, for simplicity. These anisotropies can also generate poloidal asymmetries
with implications for the transport of highly charged impurities [48–50].

The quasi-linear model was applied for predicting nonlinear diffusion coeffi-
cients and heat-fluxes. Even if the stabilisation is less strong, the linear dependencies
of ITG growth rates on various fast ion parameters may provide insight and ideas for
running nonlinear simulations, where the large computational cost prevents equiva-
lent parameter scans to be performed. From our findings the fast ion temperature
gradients should correspondingly decrease the diffusion, while the fast ion density
gradient should lead to stronger transport (at low β). But again, the accuracy in
the quasi-linear estimate may be limited given the much stronger stabilising effect
observed nonlinearly. There are beta sensitive phenomena, such as zonal flows [51],
which may play a role in the nonlinear stabilisation of ITG turbulence. Additional
nonlinear simulations are required and welcome to verify our linear results.

Finally, this study is relevant because of the present, but especially future im-
portance of fast ions and their role in successfully operating fusion reactors. Injected
fast ions are used to heat the plasma, but are also important for the formation
of internal transport barriers (ITBs) which significantly improve the confinement
time [43]. Other fast ions which we do not explicitly study here are the products
of deuterium-tritium fusion reactions, the energetic alpha particles. These particles
are essential for reaching ignition and are the main source of heat in a self-sustaining
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plasma [1]. The high energetic alpha particles will therefore have an important role
already in ITER and future fusion devices. The characteristics of the alpha particles
is similar to NBI, having a high-density gradient. But since their density is signifi-
cantly smaller the role of dilution is not equally important. Given the dependence of
fast ion density gradients with β we may however, to some extent, expect the alpha
particles to stabilise ITG turbulence at the higher β regime, and therefore improve
the confinement time.

Many questions remain to be answered, but with this work we have, once again,
confirmed the importance of fast ions in stabilising the turbulence. We increased the
knowledge of how and why these fast particles affect ITG turbulence and provided
insight into possible nonlinear and perhaps even experimental role of fast ions on
ITG turbulence.
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AGlobal effects

A.1 input parameters to chease

The non-default input parameters used for running CHEASE are presented in Ta-
ble A.1. For definitions and values of default parameters we refer to the complete
manuscript [26].

Table A.1: Values of chease_namelist variables for computing the toroidal MHD
equilibrium.

nsurf 6 ns 30 nmeshd 1 nideal 9

nppfun 4 nt 30 npoidd 1 epslon 1e−8

nfunc 4 nrbox 400 dplace −1.5707 ninsca 20

neqdsk 1 nzbox 400 dwidth 0.157 ninmap 20

npsi 40 niso 200 solpdd 0.6 nsym 1

A.2 effect of miller parameters on the growth rates

The gyrokinetic simulations for evaluating the role of the Miller parameters on ITG
growth rates are presented in this section. To obtain a reasonable starting point
the reference Miller parameters for the 73224 JET discharge presented in Table 3.2,
are used. For convenience we summarise these reference values in Table A.2. The
gyrokinetic simualtions are performed in the neighbourhood of these values. All
scans include both electric and magnetic fluctuations.

Table A.2: The reference values of the Miller parameters used in the simulations
presented in this section. All values are taken from the model of the 73224 JET
discharge presented in Table A.2.

κ δ sδ sκ q ŝ ∆

1.26 0.030 0.088 0.08 1.74 0.523 -0.14

Growth rates for varying δ, κ and their derivatives are shown in Fig. A.1.
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Figure A.1: Growth rates for varying δ (a), sδ (b), κ (c) and sκ (d) respectively.
The scans are performed in the neighbourhood of the reference parameters presented
in Table A.2.

Neither δ (Fig. A.1(a)), sδ (Fig. A.1(b)) nor sκ (Fig. A.1(d)) change the growth
rates for the selected range of parameter values. Below κ = 1 in Fig. A.1(c) there is
a significant increase in the growth rates. Further inspection of the corresponding
real frequencies in Fig. A.2 indicates a change in the dominant mode for small values
of κ. In equivalent simulations (not shown) without magnetic fluctuations the large
increase in both real and imaginary frequencies could not be discovered. The mode
leading to the almost discontinuous step in both growth rates (Fig. A.1(c)) and mode
frequencies, is electromagnetic, similarly to the kinetic ballooning mode (mentioned
in Section 4.1.1).

A change in the growth rate can be discovered for varying safety factor and
magnetic shear in Figs. A.3(a), A.3(b) respectively. Increasing the safety factor from
the nominal value q = 1.74 stabilises first the growth rates, but for q > 2.6 they
start to increase instead. Increasing the magnetic shear is destabilising the ITG
mode. Finally, we consider a change in the radial derivative of the Shafranov shift,
∂r∆ shown in Fig. A.4. Increasing the shift leads to a decrease in the growth rates.

Given the influence of fast ions with a density nf = 0.05ne on the shaping
parameters presented in Section 2.5 and their effects on the growth rates shown in
Fig. A.1 we obtain a negligible effect of δ, κ, sδ or sκ. Fast ions slightly reduce the
Shafranov shift and according to Fig. A.4 this leads to an increase in the growth
rates. Finally, the energetic ions slightly decrease the safety factor and increase
the magnetic shear which from Fig. A.3 leads to an increase in the growth rates.
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Figure A.2: Real frequencies for varying κ. Above κ = 1 ITG is the dominant
mode leading to the nonzero growth rates seen in Fig. A.1(c).
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Figure A.3: Growth rates for varying safety factor (a) and magnetic shear (b).
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Figure A.4: Growth rates for varying radial derivative of the Shafranov shift.
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Summing up each individual contribution given the change in the various Miller
parameters because of fast ions we obtain ∼ 25% increase in γ.
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BStudying turbulence and the ITG mode

B.1 scan in the resolution parameters

In this section gyrokinetic simulations of ITG growth rates for varying values of
the resolution parameters are presented. The result is used in the discussion in
Section 3.2.2 where the values of these parameters, used in all simulations in this
work, are presented. For each scan we vary only one of the five resolution parameters
while keeping the others fixed with the values presented in Table B.1. Since the role
of ntheta is closely linked to nperiod the scan in this parameter is performed at a
high value of nperiod = 11 where the growth rates are relatively well resolved.

Table B.1: Values of the seven resolution parameters used as default in the simu-
lations presented in this section.

nperiod omegatol delt
[
a/vt,i

]
ntheta ngauss negrid

3 2e−3 1.0 16 8 9

Ideally, we seek to find values of the resolution parameters such that, if they
are further increased, no change in the growth rates should be seen. Given the
computational cost of running even linear simulations with higher resolution we
relax the requirement and investigate when the growth rates seem to saturate. For
all scans we present the result in terms of growth rates divided by γlow. This is the
growth rate obtained when using all the parameter values presented in Table B.1.

Increasing the parameter ngauss as shown in Fig. B.1(a) does not change the
growth rates at all and a low value of ngauss = 8 is therefore sufficient to use.
Increasing the number of energy grid points negrid in Fig. B.1(b) has first a strong
influence on the growth rates, but then seem to saturate at negrid ≈ 36. The length
along the magnetic field, selected with nperiod has a strange influence on the growth
rates as seen in Fig. B.1(c). First there is a strong reduction, then increase and then
a slightly smaller reduction in the growth rates again. A proper investigation would
require even higher values of nperiod to make sure the growth rates do not change,
but given the large increase in the computational time for a unit increase in nperiod
we suffice with a value of nperiod = 11. At this value of nperiod we increase ntheta
and obtain Fig. B.1(d). This parameter leads to an increase in the growth rates but
seems to saturate around ntheta = 58.
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Figure B.1: Rescaled growth rates for a scan in ngauss (top left) negrid (top
right) nperiod (bottom left) and ntheta (bottom right). Growth rates have been
rescaled by the initial value, at low resolution as presented in Table B.1. These
constant values are used for all cases, except for the scan in ntheta, where a higher
value nperiod = 11 has been used.

Finally a scan in delt, the parameter governing the time resolution important
to resolve physics on small time scales, is shown in Fig. B.2. Even a small reduction
in this parameter also leads to a large increase in the computation time, explaining
the few values of delt shown in Fig. B.2. It is clear that delt < 0.1 would provide
completely wrong values of the growth rates. Above this value the growth rates
seems to oscillate. We choose to use delt = 0.03 a/vt,i to obtain relatively well
resolved values.
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Figure B.2: Same as in Fig. B.1 but for a scan in delt.
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