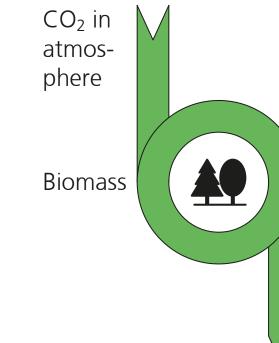
CHALMERS

Division of Energy Technology Department of Energy and Environment CHALMERS UNIVERSITY OF TECHNOLOGY

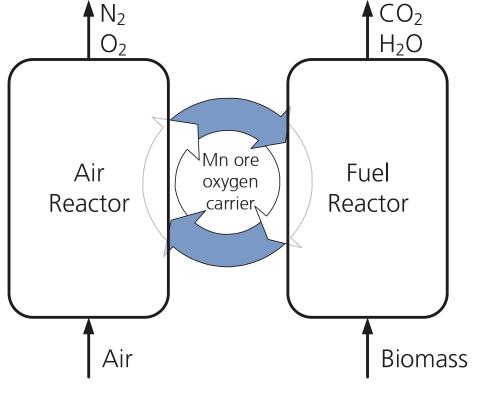
CO₂ Capture from Combustion of Biomass Volatiles with a Chemical-Looping Combustion Process


Patrick Moldenhauer*, Max Biermann, Tobias Mattisson, Carl Linderholm[†]

Chalmers University of Technology, Division of Energy Technology, Gothenburg, Sweden

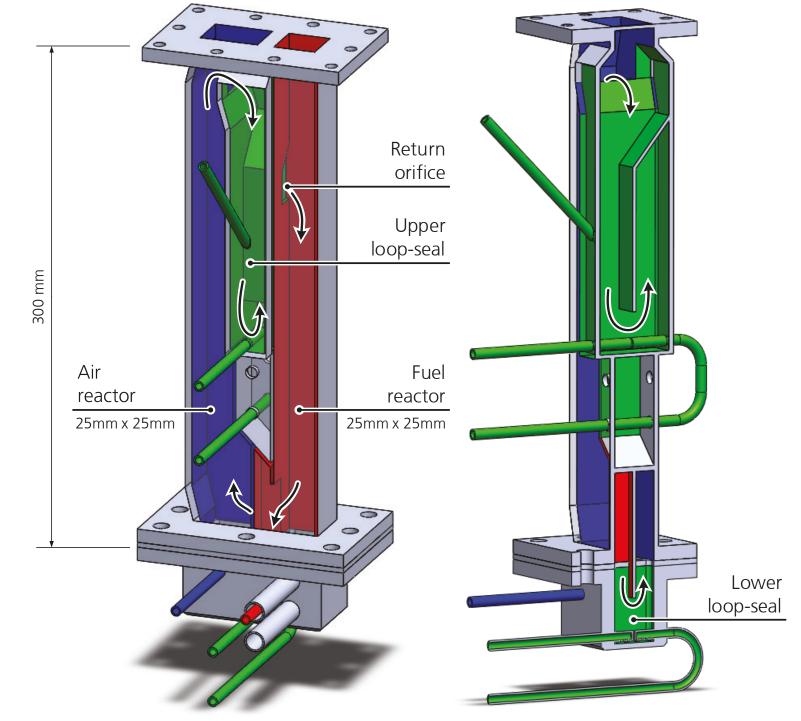
* Corresponding author (patrick.moldenhauer@chalmers.se) † Presenting author (carl.linderholm@chalmers.se)

Summary



Apture and storage of CO₂ from combustion of biomass, i.e., bio-energy carbon capture and storage (BECCS), makes it possible to ✓obtain so-called negative emissions – the atmosphere is cleansed from carbon dioxide. In this study, five manganese ores are investigated as oxygen carriers in chemical-looping combustion of biomass fuels. A laboratory-scale chemical-looping combustion (CLC) system was used, which has a nominal fuel input of 300 W_{th}. The aims were to investigate the reactivity of these oxygen carriers towards biomass fuels as well as their mechanical stability. A synthetic "biomass volatiles" gas – representing the gas generated during devolatilization of a wood-based fuel – was used as fuel in this study, and it was studied how the different gas components react with the oxygencarrier particles. Additional experiments were conducted with methane and a syngas. Parameter studies concerning temperature and specific fuel-reactor bed mass (in kg/MW_{th}) were carried out. With the synthetic biomass volatiles, conversion of fuel carbon to CO_2 as high as 97.6% was achieved. For a majority of the investigated ores, essentially all C2 and C3 hydrocarbons were converted, as well as a very high fraction of the CO. Reactivity towards CH₄ on the other hand was generally lower, but improved at higher temperatures.

Storage


Chemical-looping combustion

- Two interconnected fluidized-bed reactors
- No exchange of gas between reactors, i.e., air and fuel are not mixed.
- Oxygen is transported to the fuel by a solid oxygen carrier, which is cyclically oxidized and reduced.
- Net heat of reaction is the same as for regular air combustion, i.e., there is no energy penalty for separation of CO_2 .

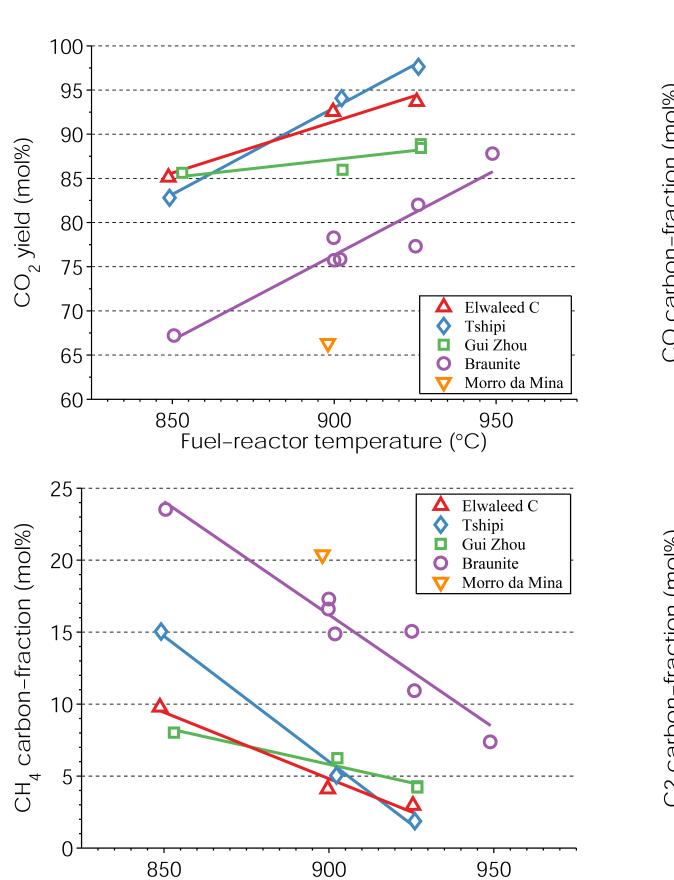
Conclusions

- It is possible to remove CO₂ efficiently from the atmosphere through a chemicallooping combustion process with biomass as fuel. The use of manganese ores has the potential to keep the costs of the CLC process low.
- The properties of the five manganese ores investigated differed significantly and, hence, it is likely that other ores exist that are even better suited.
- The attrition resistance of two of the materials was higher than for the other Mn ores tested. Their attrition was similar to that of ilmenite (Fe-Ti-based mineral).
- All of the manganese ores also showed oxygen uncoupling, which could be an advantage in large boilers, with inadequate mixing.

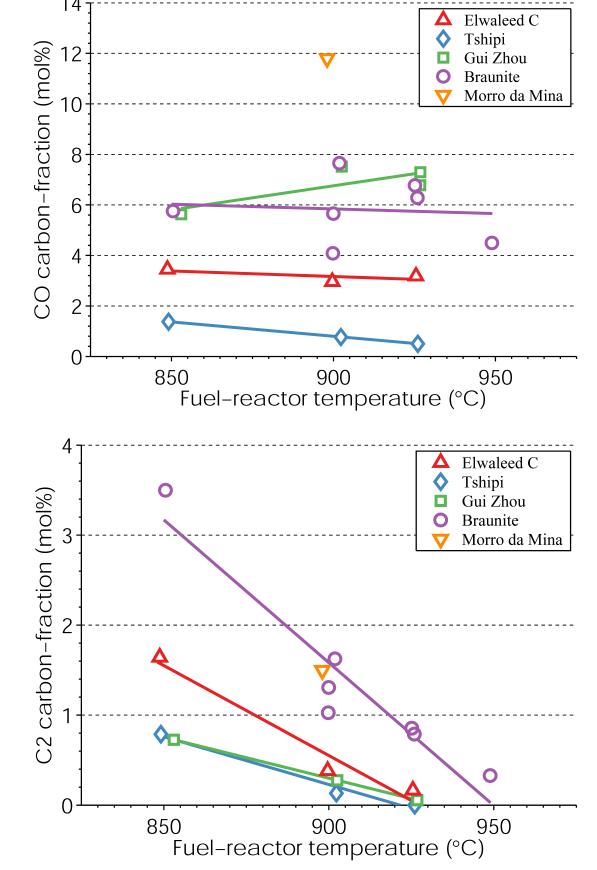
Result

	Mechnical attrition	Redox attrition	Biomass reactivity	Methane reactivity	Syngas reactivity
Elwaleed C		+	+	_	+
Tshipi	0		+	n/a	++
Gui Zhou	+	++	+	0	++
Braunite	+	+	0	_	++
Morro da Mina	+	_	_	n/a	n/a
+ favorable property		 average property 		– unfavorable property	

Key results summarized (table above)


- Gui Zhou Mn ore has the best overall properties.
- All ores tested have higher reactivity towards CO than towards CH₄.
- Attrition under redox condition differs

Fuel conversion (figures below)


- *CO*₂ yield/carbon fractions: molar amount of fuel carbon converted to $CO_2/CO, CH_4$ *or C2.*
- No C3-species were detected within the conditions investigated.

Experimental details

from mechanical attrition. Redox attrition is more significant.

- Strong decrease of CH₄ and C2 when increasing temperature.
- No clear temperature trend for CO fraction as long as CH₄ and C2 exist. CO is probably an intermediate reaction product.
- Clear increase in CO₂ yield when increasing temperature.

300 W chemical-looping reactor

	CLOU	→ Biomass - volatiles	• Methane	\rightarrow Syngas $-$ (CO/H ₂)	→ CLOU
Elwaleed C	×	15 h	4 h	9 h	×
Tshipi	×	14 h	n/a	3 h	n/a
Gui Zhou	×	11 h	15 h	6 h	n/a
Braunite	×	16 h	3 h	10 h	×
Morro da Mina	×	7 h	n/a	n/a	n/a

Experiments

Component	Fraction (vol%)	Carbon fraction (atomic %)	LHV (MJ/m _n ³)
СО	43	55.1	12.6
H_2	30	_	10.8
CH_4	20	25.6	35.8
C_2H_4	6	15.4	59.0
C_3H_6	1	3.8	85.9
Total	100	99.9	20.2

Fuel composition

The research leading to these results received fundings from Stiftelsen ÅForsk (project 14-379) and from the European Research Council (ERC) under the European Union's Seventh Framework Programme (FP7/2007-2013) (grant agreement No 291235).

