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Abstract. We consider the time-dependent Gross–Pitaevskii equation describing the dynamics
of rotating Bose–Einstein condensates and its discretization with the finite element method. We
analyze a mass conserving Crank–Nicolson-type discretization and prove corresponding a priori er-
ror estimates with respect to the maximum norm in time and the L2- and energy-norm in space.
The estimates show that we obtain optimal convergence rates under the assumption of additional
regularity for the solution to the Gross–Pitaevskii equation. We demonstrate the performance of the
method in numerical experiments.
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1. Introduction. When a dilute gas of a certain type of bosons is trapped by
a potential and afterwards cooled down to extremely low temperatures close to the
absolute minimum of 0 Kelvin, a so-called Bose–Einstein condensate (BEC) is formed
[19, 24, 27, 49]. Such a condensate consists of particles that occupy the same quantum
state. That means that they are no more distinguishable from each other and that
they behave in their collective like one single “superatom.” Recent overviews on the
mathematics for BECs are given in [11, 10].

In this work, we focus on the specific case of BECs in a rotational frame [29]. One
of the interesting features of a BEC is its superfluid behavior. In order to distinguish a
superfluid from a normal fluid at the quantum level, one needs to verify the formation
of vortices with a quantized circulation (cf. [2] for an introduction in the context of
BECs). In experimental setups the formation of such vortices may be triggered by
rotating the condensate. This can be achieved by using a stirring potential which is
generated by imposing laser beams on the magnetic trap (cf. [4, 44, 43, 54, 45, 53]).
If the rotational speed is sufficiently large, the vortices can be detected (cf. [1]).
In particular, the equilibrium velocity of the BEC can no longer be identified with
a solid body rotation and it can be observed that the rotational symmetry breaks
(cf. [52] for an analytical proof). The number of vortices strongly depends on the
rotation frequency. However, if the rotational speed is too low, no vortices arise, and
if the rotational speed is too large (relative to the strength of the trapping potential),
the BEC can be destroyed by centrifugal forces. Analytical results concerning the
formation, or lack, of vortices, their stability, types, and structures depending on the
rotational speeds and trapping potentials are found in [3, 18, 23, 40, 50, 52]. Detailed
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numerical investigations are given in [14, 18].
The formation and the dynamics of BECs are typically modeled by the Gross–

Pitaevskii equation (GPE) which is a Schrödinger equation with an additional nonlin-
ear term that accounts for particle-particle interactions [33, 41, 48]. To account for a
rotating BEC, it is common to extend this model by an angular momentum term. Let
D ⊂ Rd, d = 2, 3, be a bounded convex Lipschitz domain, and let [0, T ] ⊂ R be a time
interval. We consider the dimensionless time-dependent Gross–Pitaevskii equation.
For the case d = 3 we seek the complex-valued wave function u : D× [0, T ]→ C that
describes the quantum state of the condensate. It is the solution with initial state
u(·, 0) = u0 to the nonlinear Schrödinger equation

i∂tu = −1

2
4u+ V u+ iΩ · (x×∇)u+ β|u|2u in D,(1)

u = 0 on ∂D,

where we denote x = (x, y, z) ∈ R3. Here, V characterizes the magnetic trapping
potential that confines the system (by adjusting V to some trap frequencies) and
the nonlinear term β|u|2u describes the species of the bosons and how they interact
with each other. In particular, β depends on the number of bosons, their individual
mass, and their scattering length. We assume that β is strictly positive (which means
that we have a repulsive interaction between the particles). The term iΩ · (x×∇)u
characterizes the angular rotation of the condensate, where Ω ∈ R3 defines the angular
velocity. As usual, the operator L = (Lx,Ly,Lz) := −i (x×∇) = x × P describes
the angular momentum, with P = −i∇ denoting the momentum operator.

In the following, we assume that the rotation is around the z-axis, which leads to
the simplification iΩ·(x×∇) = −ΩLz, where Lz = −i (x∂y − y∂x) is the z-component
of the angular momentum. With this simplification the weak formulation of problem
(1) (resp., its dimension reduced version in 2d) reads: find u ∈ C0([0, T ), H1

0 (D)) and
∂tu ∈ C0([0, T ), H−1(D)) such that u(·, 0) = u0 and

i〈∂tu(·, t), φ〉L2(D) =
1

2
〈∇u(·, t),∇φ〉L2(D)(2)

+〈V u(·, t), φ〉L2(D) − Ω〈Lzu(·, t), φ〉L2(D) + β〈|u(·, t)|2u(·, t), φ〉L2(D)

for all φ ∈ H1
0 (D) and almost every t ∈ (0, T ). Here, 〈·, ·〉L2(D) denotes the standard

L2-scalar product for complex valued functions, i.e., 〈v, w〉L2(D) =
∫
D v(x)w(x) dx for

v, w ∈ L2(D).
A recent existence and uniqueness result concerning the solution of (2) can be

found in [8] for the case of the three dimensional Cauchy problem, i.e., for the case
D = R3 (see also [36] for an earlier work). A general comprehensive overview on
existence and uniqueness of nonlinear Schrödinger equations can be found in the
book by Cazenave [22].

The literature on the numerical treatment of (2) is rather limited for the case
Ω 6= 0. Very efficient methods that exploit Fourier expansions were proposed in
[17, 15, 16]: in [15] a time-splitting method is proposed that is based on the scaled
generalized-Laguerre, Fourier, and Hermite functions, whereas in [16] it is suggested
to discretize (2) in rotating Lagrangian coordinates. A finite difference discretization
is discussed in [12]. A comparative overview on different time-discretization is given
in [6]. Concerning the numerical treatment of the eigenvalue problem associated with
(2), we refer to [7, 25].
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Even though spectral and pseudospectral methods (such as the explicit methods
proposed in [17, 15, 16]) are typically computationally cheaper than a pure finite ele-
ment based approach as proposed in this paper; they generally require a high smooth-
ness of the magnetic potential to work. Nonsmooth potentials can, for instance, arise
in the context of investigating Josephson effects (cf. [58, 59]) or experiments involving
very rough disorder potentials (cf. [47]). In corresponding numerical simulations, the
usage of finite elements seems to be unavoidable for an efficient method. Another ad-
vantage of finite elements is that they can be easily combined with mesh adaptivity,
as it is helpful to resolve localized vortices.

There are some results concerning the convergence of numerical methods with
respect to the space discretization. Concerning P1 finite elements and for the par-
ticular case that V = 0, Ω = 0, and that the spatial mesh is quasi-uniform, a priori
error estimates can be found in [5, 38, 39, 51, 56, 57, 60]. We describe those results
in chronological order.

The first results were obtained by Sanz-Serna [51] who considered a modified
Crank–Nicolson scheme that conserves the mass and the energy. For the case d = 1
and a periodic boundary condition, optimal L2-error estimates were derived with a
quadratic order convergence in time. A necessary condition for the analysis was that
the time step size τ can be bounded by the mesh size h, i.e., the time step size is
constrained by τ = O(h).

In [5], Akrivis, Dougalis, and Karakashian generalize the a priori L2-error es-
timates of [51] to d = 1, 2, 3 and to the case of a homogenous Dirichlet boundary
condition. Furthermore, they could relax the constraint for the time step size to the
condition τ = O(hd/4). Besides the modified Crank–Nicolson scheme, the authors also
study a one-stage Gauss–Legendre implicit Runge–Kutta scheme (IRK) that we will
also consider in this paper. The IRK is still mass conservative, but does no longer
conserve the energy. However, as we will see numerically, the energy deviation is
marginal. Again, the condition τ = O(hd/4) is required. Furthermore, the authors
propose and analyze a Newton-scheme for solving the nonlinear problems that arise
in each time step.

In [56], Tourigny investigates the case of optimal L∞- and H1-error estimates.
He analyzes the same IRK scheme as considered in [5] and recovers the constraint
τ = O(hd/4). Furthermore, he investigates a classical backward-Euler discretization
for which the more severe constraint τ = O(hd/2) is required. However, as we will
see in our analysis below, both constraints are not optimal. For instance, for the
backward-Euler scheme, for any s > 1, we can improve it to τ = O(| lnh|−s/2) for
d = 2 and to τ = O(hs/2) for d = 3 (see Theorem 3.5).

Concerning higher order schemes (without conservation properties), a space-time
finite element method was proposed and analyzed in [38, 39] for the case d = 2 and
for graded meshes. Here, [38] is devoted to the case of a discontinuous Galerkin
time discretization and [39] is devoted to a continuous Galerkin time discretization.
Optimal error estimates in L2 and H1 are derived. Here the constraint (for d = 2)
reads as τp = O(| lnh|−s) for some s > 1 and where p denotes the polynomial degree
used for the time discretization. Hence, it excludes lowest order schemes such as the
backward-Euler scheme for which p = 0.

In [60], Zouraris considers a mass conservative linearly implicit two-step finite
element method. Zouraris proves optimal order L2- and H1-error estimates under the
mild time step conditions τ = O(| lnh|−1/3) for d = 2 and τ = O(h1/3) for d = 3.

In a recent work [57], Wang studies a new type of a linearized Crank–Nicolson
discretization which is mass but not energy conservative. Again, optimal order L2-
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error estimates are derived, however, with the breakthrough that no constraints for
the coupling between time step size and mesh size are required. The condition of
quasi-uniformity is still necessary.

Concerning the convergence of space discretizations for the nonlinear GPE eigen-
value problem (again for Ω = 0), we refer to [21] for optimal convergence rates in
Fourier and finite elements spaces and to [37] for a two-level discretization technique
based on suitable orthogonal decompositions. Regarding the GPE with rotation term
(i.e., Ω 6= 0), we are only aware of the work by Bao and Cai [12] where optimal error
estimates for the finite difference method are proved. So far, there seems to be no
results concerning finite element approximations.

In this work we present an error analysis for a Crank–Nicolson-type finite element
approximation of the time-dependent GPE with rotation. More precisely, we analyze
the one-stage Gauss–Legendre IRK scheme earlier considered by Akrivis, Dougalis,
and Karakashian [5] and Tourigny [56]. We generalize these works with respect to
two points: we consider the equation with potential and with an angular momentum
rotation, and for arbitrary s > 1 we show that the time step constrained τ = O(hd/4)
can be relaxed to τ = O(| lnh|−s/4) for d = 2 and to τ = O(hs/4) for d = 3. We
do not consider Fourier approaches here (even though they can be computationally
more efficient in many applications), since they require smoothness of the trapping
potential, whereas the strength of finite element approaches lies in the fact that they
do not require such smoothness and that it can be easily combined with adaptive
mesh refinement strategies. This might be necessary in experiments involving disorder
potentials.

Outline. In section 2 we establish our model problem and state the basic prelim-
inaries. The main results are presented in section 3, where we state a Crank–Nicolson-
type time and P1 finite element space discretization of the GPE. Furthermore, corre-
sponding a priori error estimates in the L∞(L2)-norm and in the L∞(H1)-norm are
given. The proof of these estimates takes place in several steps. First, we introduce
a general framework and some auxiliary results by investigating the fully continuous
problem in weak formulation. This is done in section 4. In section 5 we show well-
posedness of the numerical scheme presented in section 3. Furthermore, we introduce
a regularized discrete auxiliary problem which will turn out to produce the same so-
lutions as the considered Crank–Nicolson-type finite element scheme (under suitable
assumptions). Finally, in section 6 we derive an error identity and estimate the arising
terms. At the end of this section, all results are combined to finish the proof of the
main theorem. We conclude the paper with numerical experiments in section 7.

2. Model problem and preliminaries. Let d = 2, 3 denote the space dimen-
sion. In order to keep our analysis as general as possible, we subsequently consider a
slightly generalized Gross–Pitaevskii model. Before stating the problem and a corre-
sponding set of assumptions, we introduce our basic notation.

By x we denote the complex conjugate of a complex number x ∈ C, by x · y
we denote the Euclidean scalar product between x,y ∈ Cd (i.e., x · y :=

∑d
i=1 xiyi),

and by |x| :=
√

x · x we denote the corresponding norm. The real part of a complex
number is denoted by <, and its imaginary part by =. We, furthermore, use the
standard notation for the Sobolev spaces W k,p(D) (for 0 ≤ k < ∞ and 1 ≤ p ≤ ∞)
equipped with the norm

‖v‖Wk,p(D) :=


(∑

|α|≤k ‖∂αv‖
p
Lp(D)

)1/p
for 1 ≤ p <∞,

max|α|≤k ‖∂αv‖L∞(D) for p =∞.
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For p = 2 we write as usual Hk(D) := W k,2(D). The seminorms on Hk(D) are
denoted by

|v|Hk(D) :=

∑
|α|=k

‖∂αv‖2L2(D)

1/2

.

We consider the following model problem.

Definition 2.1 (model problem). We consider the (smooth) linear differential
operator L : H1

0 (D)→ H−1(D) that is associated with the following bilinear form:

〈L(v), w〉H−1(D),H1(D)(3)

:=

∫
D
A(x)∇v(x) · ∇w(x) + ib(x) · ∇v(x)w(x) + c(x)v(x)w(x) dx.

With this we seek u ∈ L∞([0, T ), H1
0 (D)) and ∂tu ∈ L∞([0, T ), H−1(D)) such that

u(·, 0) = u0 and

i〈∂tu(·, t), w〉L2(D)(4)

= 〈L(u(·, t)), w〉H−1(D),H1(D) + 〈(κ(·) + β|u(·, t)|2)u(·, t), w〉L2(D)

for all w ∈ H1
0 (D) and almost every t ∈ (0, T ). Note that any such solution automat-

ically fulfills u ∈ C0([0, T ), L2(D)) so that u(·, 0) = u0 makes sense.

Here we make the following assumptions.
(A1) The computational domain D ⊂ Rd (for d = 2, 3) is a convex bounded poly-

hedron.
(A2) The coefficients A, b, and c are real valued, smooth, and bounded (i.e., L

represents the smooth linear part of the problem). On the other hand, we
assume κ ∈ L∞(D,C) ∩W 1,3(D,C); β ∈ R≥0 and u0 ∈ H2(D) ∩H1

0 (D).
(A3) The real matrix-valued coefficient A = A(x) is symmetric and there exist

positive constants γmin > 0 and γmax ≥ γmin such that

(5) γmin|ξ|2 ≤ A(x)ξ · ξ ≤ γmax|ξ|2 ∀ (ξ,x) ∈ Rd ×D.

By the properties of A there exists a pointwise invertible matrix-valued co-
efficient A1/2 such that A1/2A1/2 = A. We denote its inverse by A−1/2 :=
(A1/2)−1.

(A4) The real vector-valued coefficient b = b(x) is divergence free, i.e., ∇ · b = 0.
(A5) It holds <(κ) ≥ 0 and the real coefficient c = c(x) is such that there exist

real-valued constants ζ0 > 0 and ζ1 > 1 with

4c(x)− (2 + ζ1)|A−1/2(x)b(x)|2 ≥ 4ζ0 > 0 ∀ x ∈ D.

We note that assumptions (A1)–(A4) are trivially fulfilled for the GPE (2). In prac-
tice, A is typically just a constant, whereas b describes the angular momentum rotation
like in (2). The term c describes any kind of real-valued nonnegative smooth potential
such as harmonic potentials of the structure c(x) = γ2xx

2 + γ2yy
2 + γ2zz

2 with scaled
trapping frequencies γx, γy, γz ∈ R. The coefficient κ can be used to model arrays of
quantum wells for investigating Josephson oscillations (see [58, 59]) or any other type
of rough potential. Furthermore, κ can be also used to describe imaginary poten-
tials; see, for instance, the complex double-well potential in [30] or applications with
phenomenological damping.
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Observe that (A4) implies that the operator L is self-adjoint. Assumption (A5)
is an additional (often crucial) physical constraint, which says that the rotational
speed Ω should be balanced by the trapping potential V in the sense that V −
3/2|Ω|2

(
x2 + y2

)
≥ ζ0 > 0 on D. The physical interpretation is that the trapping

potential should be stronger than the arising centrifugal forces. Otherwise, particles
can escape from the trap and the BEC is destroyed (hence there exist no physically
meaningful solutions). As we will see later, the differential operator L is elliptic, but
degenerates for the cases ζ0 = 0 and ζ1 = 1, which just resembles the instability.

Remark 2.2. Observe that assumption (A5) allows one to balance c and κ in a
suitable way. For instance, if we only have c ≥ 0 but 4<(κ)−(2+ζ1)|A−1/2b|2 ≥ 4ζ0 >
0, we can define κnew(x) := κ(x) − 4−1(2 + ζ1)|A−1/2(x)b(x)|2 − ζ0 and accordingly
cnew(x) := c(x) + ζ0 + 4−1(2 + ζ1)|A−1/2(x)b(x)|2, which again suit our assumptions
above. Also note that we can hide any imaginary part of c in κ (which is allowed to
be imaginary without constraints).

Remark 2.3 (existence and uniqueness). In the cases A(x) = 1, b(x) = 0, c(x) =
0, κ ∈ L∞(D,R) and u0 ∈ H1

0 (D), equation (4) admits at least one solution for
any time T > 0. The corresponding results can be found, e.g., in [22, Theorem
3.3.5, Theorem 3.4.1, and Corollary 3.4.2]. If d = 2, the solution is also unique (cf.
[22, Theorem 3.6.1, Remark 3.6.4, and Corollary 4.3.3]). Even though we are not
aware of an explicit result that guarantees existence of a solution to problem (4)
under the more general assumptions (A1)–(A5), at least for =(κ) = 0 it appears
straightforward to derive it by exploiting Galerkin’s method and compactness results
via energy conservation (cf. [22] or [28, Chapters 7.1 and 7.2]).

3. Discretization and main result. In this section we propose a space-time
discretization of problem (4) and we state corresponding a priori error estimates in
L∞(L2) and L∞(H1).

3.1. Space discretization. In the following, we denote by Th a conforming
family of partitions of D ⊂ Rd that consists of simplicial elements and which are
shape regular, i.e., there exists an h-independent shape regularity parameter ρ > 0
such that (for all Th) it holds that

diam(BK) ≥ ρ diam(K)(6)

for all K ∈ Th, where BK denotes the largest ball contained in K. The diameter of an
element K ∈ Th is denoted by hK ; the maximum diameter by hmax := maxK∈TH hK
and the minimum diameter by hmin := minK∈TH hK . Finally, by h : D → R>0 we de-
note the corresponding mesh function with h(x) := hK if x ∈ K. For brevity, we subse-

quently write ‖hv‖Hk(D) for some v ∈ Hk(D) to abbreviate
(∑

K∈Th h
2
K‖v‖2Hk(K)

)1/2
.

The considered P1 Lagrange finite element space Sh ⊂ H1
0 (D) is given by

Sh := {v ∈ H1
0 (D) | ∀K ∈ Th, v|K is complex-valued polynomial of total degree ≤ 1}.

(7)

By {λ1, . . . , λNh} we denote an ordered (Lagrange) basis of Sh. In particular, we
denote by Nh =dim(Sh) the number of degrees of freedom in Sh (which is twice the
number of interior nodes in Th). On Sh, we introduce the corresponding L2-projection
and the Ritz-projection associated with L.

Definition 3.1 (L2-projection). The projection PL2 : H1
0 (D)→ Sh is given by

for v ∈ H1
0 (D) : 〈PL2(v), wh〉L2(D) = 〈v, wh〉L2(D) ∀ wh ∈ Sh.
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Definition 3.2 (Ritz-projection). For v ∈ H1
0 (D) the Ritz-projection Ph(v) ∈ Sh

associated with L is given as the unique solution to the problem

〈L(v − Ph(v)), wh〉H−1(D),H1(D) = 0 ∀ wh ∈ Sh.(8)

Existence and uniqueness of Ph(v) follow from Conclusion 4.3.

In order to derive the final a priori error estimates, we require further assumptions
on the grid Th, which will be posed indirectly in the following way exploiting the
projections.

(A6) We assume that the L2-projection is H1-stable, i.e.. there exists a constant
CL2 that is h-independent such that

‖PL2(v)‖H1(D) ≤ CL2‖v‖H1(D) ∀ v ∈ H1
0 (D).(9)

(A7) For µ > d, we assume that the Ritz-projection given by (8) is W 1,∞-stable
for functions in W 2,µ(D), i.e., there exists a constant CW 1,∞ (independent of
h) such that

‖∇Ph(w)‖L∞(D) ≤ CW 1,∞‖∇w‖L∞(D)(10)

for all w ∈ H1
0 (D)∩W 2,µ(D). Note that since D is a convex domain, we have

the embedding W 2,µ(D) ↪→W 1,∞(D).
Both assumptions (A6) and (A7) can be fulfilled by making suitable assumptions

on Th. In this paper we directly assume stability of the projections to avoid compli-
cated mesh assumptions. Concerning (A6), recent results on the H1-stability of PL2

on adaptively refined grids can be found in [9, 31]. Concerning (A7), we refer to [20,
Theorem 8.1.11] where the result is established for quasi-uniform meshes. For results
on graded meshes we refer to [34, 26]. We note that the results on graded (locally
quasi-uniform) meshes are only proved for the Laplacian operator, i.e., L = −4, and
its generalization to general elliptic operators is still open. However, it seems to be
crucial that the operator L is sufficiently smooth for (A7) to hold on graded meshes,
this is why it might be important that κ is not included in L (in this context, see
also the Hölder-estimates for the Green’s functions proved in [34] and the necessary
regularity assumptions made in [46]).

3.2. Time discretization, method, and main result. In this paper we as-
sume that the time interval [0, T ] is divided into 0 =: t0 < t1 < · · · < tN := T .
Accordingly, we define the nth time interval by In := (tn−1, tn], the nth time step
by τn := tn − tn−1, and step size function τ ∈ L∞(0, T ) by τ|In := τn. For sim-
plicity, we subsequently only write 〈·, ·〉 := 〈·, ·〉H−1(D),H1(D) for the dual pairing on
H1(D). We consider the following one-stage Gauss–Legendre IRK scheme (which is
of Crank–Nicolson type). The scheme is mass conservative provided that =(κ) = 0.

Definition 3.3 (IRK method for GPE). Let u0h := Ih(u0) ∈ Sh be the Lagrange
interpolation of u0. For n ≥ 1, we seek the approximation unh ∈ Sh with

〈un−1h , vh〉L2(D)(11)

= 〈unh, vh〉L2(D) + τn i 〈L(u
n− 1

2

h ), vh〉+ τn i 〈(κ+ β|un−
1
2

h |2)u
n− 1

2

h , vh〉L2(D)

for all vh ∈ Sh and where u
n− 1

2

h := (unh + un−1h )/2.
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Alternative time-discretizations based on operator splitting for nonlinear Schrödin-
ger equations with a cubic nonlinearity are discussed in [42, 32] for the case without
rotation, and in [6] for the case with rotation. More general approaches are discussed
in [35].

We note that the IRK scheme given by (11) is mass conservative if =(κ) = 0.
The mass conservation, i.e., ‖unh‖L2(D) = ‖u0h‖L2(D) for all n ≥ 0, is immediately seen

by testing with u
n− 1

2

h in (11) and taking the real part. Note that the conservation
property implies that the scheme is unconditionally L2-stable.

The following proposition follows from Lemma 5.5 and the proof of Theorem 3.5
below.

Proposition 3.4 (existence and uniqueness). If (A1)–(A5) are fulfilled and if h
and τn are small enough, such that `h(hmax + τ2n)→ 0 for h, τn → 0, then there exists
a solution unh of (11). If =(κ) = 0 and if τn is sufficiently small compared to h (in
the sense of Lemma 5.5), then the solution is also unique.

The main result of the work is the following a priori error estimate, which we
prove in section 6. Recall assumptions (A1)–(A5) from section 2 and (A6)–(A7) from
section 3.1.

Theorem 3.5 (error estimates for the IRK discretization). Let assumptions
(A1)–(A7) be fulfilled, let u ∈W 2,∞(0, T ;H3(D)) denote a solution of (4), and let h
and τn be such that `h(hmax + τ2n)→ 0 for h, τn → 0 and where

`h :=

{
| lnhmin|1/2 for d = 2,

|hmin|−1/2 for d = 3.

Then, if h and τn are small enough, there exist generic constants C = C(u) that are
independent of h, τn, and T such that for a solution uNh of (3.3) and for m ∈ {0, 1}
it holds that

‖u(·, T )− uNh ‖Hm(D) ≤ C|h2−mu(·, T )|H2(D) + CeCT |h2−mu0|H2(D)

+ CeCT
(
‖h2−m∂tu‖L2(0,T,H2(D))

)
+ CeT

(
n∑
k=1

τk‖h2−mu‖2L∞(Ik,H2(D))

)1/2

+ CeT

(
n∑
k=1

τk

(
‖τ2∂ttu‖2L∞(Ik,H2+m(D)) + ‖τ2u‖2W 2,∞(Ik,Hm(D))

))1/2

.

We observe that the method yields optimal convergence rates, i.e., it is of quadratic
order in space and time for the L2-error and of linear order in space for the H1-error.
Details on the arising constants in Theorem 3.5 can be found in Lemmas 6.6 and 6.7.

Remark 3.6. It is surprising that the L∞(H1)-estimate in Theorem 3.5 requires
the higher regularity ∂ttu(·, t) ∈ H3(D). A similar observation has already been made
by Karakashian and Makridakis [38, Remark 4.3] for the simpler equation i∂tu =
−4u+ β|u|2u. It should be investigated in the future if it is possible to weaken this
regularity assumption.

Finally, let us state the corresponding result that can be derived for the backward-
Euler method. This result is rather for comparison, since the backward-Euler is
practically not desirable since it lacks both mass and energy conservation.
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Theorem 3.7 (error estimates for a backward-Euler discretization). Assume (A1)
–(A7), u ∈W 1,2(0, T ;H3(D)) and h and τn such that `h(hmax+τn)→ 0 for h, τn → 0.
Further, let u0h := Ih(u0) ∈ Sh. Then, for all small enough h and τn, there exists
unh ∈ Sh with

〈un−1h , vh〉L2(D)(12)

= 〈unh, vh〉L2(D) + τn i 〈L(unh), vh〉+ τn i 〈(κ+ β|unh|2)unh, vh〉L2(D)

for all vh ∈ Sh and there exist generic constants C = C(u) that are independent of h,
τn and T such that for m ∈ {0, 1}

‖u(·, T )− uNh ‖Hm(D) ≤ C|h2−mu(·, T )|H2(D) + CeCT |h2−mu0|H2(D)

+ CeCT
(
‖h2−m∂tu‖L2(0,T,H2(D)) + ‖h2−mu‖L2(0,T,H2(D))

)
+ CeCT

(
‖τ∂tu(·, t)‖L2(0,T,Hm+1(D)) +

n∑
k=1

τk‖h2−mu(·, tk)‖H2(D)

)
.

The proof of this theorem exploits the same techniques as the one of Theorem
3.5, which is why we will not present it here.

4. Reformulation of the continuous problem. In this section, we establish
some auxiliary results and preliminaries concerning the model problem (4). In partic-
ular, we introduce a suitable scalar product on H1(D) which can be associated with
the operator L and which is more convenient for the analysis in the following sections.

If clear from the context, we subsequently leave out the integration variable in
our integrals. For instance, we write

∫
D v for

∫
D v(x) dx. In order to analyze problem

(4) properly, we require some additional definitions and auxiliary results.

Definition 4.1. For any subdomain ω ⊂ D we define the sesquilinear form
(·, ·)E(ω) by

(v, w)E(ω) :=

∫
ω

(
A1/2∇v − i2−1A−1/2bv

)
·
(
A1/2∇w − i2−1A−1/2bw

)
+

∫
ω

(c− (1/4)|A−1/2b|2)vw

for v, w ∈ H1(ω). Note that c − (1/4)|A−1/2b|2 is positive by (A5). Accordingly, we
define the norm ‖ · ‖E(ω) by ‖v‖E(ω) :=

√
(v, v)E(ω).

Lemma 4.2. Let ω ⊂ Ω be a subdomain. Under assumptions (A1)–(A5), the
sesquilinear form (·, ·)E(ω) is a scalar product on H1(ω) and the induced norm ‖v‖E(ω)

is equivalent to the standard H1-norm ‖ · ‖H1(ω). In particular, we have for all v ∈
H1(ω),

‖v‖2E(ω) ≥ (1− ζ−11 )‖A1/2∇v‖2L2(ω) + ζ0‖v‖2L2(ω).

Proof. Obviously, (·, ·)E(ω) is a symmetric sesquilinear form on H1
0 (ω). Hence, it

only remains to show the existence of constants cE and CE such that

cE‖v‖2H1(ω) ≤ (v, v)E(ω) ≤ CE‖v‖2H1(ω) ∀ v ∈ H1(ω).
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The upper bound is straightforward using the boundedness of the coefficients. To
verify the lower bound, we first observe with Young’s inequality for any ε > 0 that∫

ω

|A1/2∇v − i2−1A−1/2bv|2

≥
∫
ω

A∇v · ∇v −
∫
ω

|A−1/2b||v||A1/2∇v| − 1

4

∫
ω

|A−1/2b|2|v|2

≥
(
1− ε−1

) ∫
ω

A∇v · ∇v − 1 + ε

4

∫
ω

|A−1/2b|2|v|2.

Hence

(v, v)E(ω) ≥
(
1− ε−1

) ∫
ω

A∇v · ∇v − 2 + ε

4

∫
ω

|A−1/2b|2|v|2 +

∫
ω

c|v|2.

Choosing ε = ζ1 together with (A5) finishes the result (where we assumed ζ1 > 1).
Also observe that ζ1 ≤ 1 leads to degeneracies.

Conclusion 4.3. The differential operator L is uniformly elliptic and continuous
on H1

0 (D). In particular, it holds that

(v, w)E(D) = 〈L(v), w〉 ∀ v, w ∈ H1
0 (D).(13)

Observe that Lemma 4.2 and Conclusion 4.3 imply that the operator L degenerates
for ζ0 = 0 and ζ1 = 1.

Proof of Conclusion 4.3. Let v, w ∈ H1
0 (D), we observe that∫

D

(
A1/2∇v − i2−1A−1/2bv

)
·
(
A1/2∇w − i2−1A−1/2bw

)
=

∫
D
A∇v · ∇w − i2−1

(∫
D
vb · ∇w −

∫
D
wb · ∇v

)
+

1

4

∫
D
|A−1/2b|2vw

=

∫
D
A∇v · ∇w +

∫
D
wib · ∇v +

1

4

∫
D
|A−1/2b|2vw,

where we used that ∇ · b = 0. Hence we have

(v, w)E(D) =

∫
D
A∇v · ∇w +

∫
D
wib · ∇v +

∫
D
cvw.(14)

Assumption (A4) finishes the proof of (13). The continuity and ellipticity of L hence
follow using Lemma 4.2.

Remark 4.4. Let ω ⊂ D be a subdomain, and let v, w ∈ H1(ω) be arbitrary.
Under assumptions (A1)–(A5) we see that there exists a constant C (only depending
on A, b, and c) such that∣∣∣∣∫

ω

A∇v · ∇w + b∇v · w + cvw

∣∣∣∣ ≤ C‖v‖H1(ω)‖w‖H1(ω).

Using the norm equivalence of Lemma 4.2 we hence also have∣∣∣∣∫
ω

A∇v · ∇w + b∇v · w + cvw

∣∣∣∣ ≤ CE‖v‖E(ω)‖w‖E(ω),(15)

with CE = CE(A, b, c). However, note that we do not have the equality (v, w)E(ω) =
〈L(v), w〉H−1(ω),H1(ω) for arbitrary v, w ∈ H1(ω).
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5. Existence and uniqueness of discrete solutions. In this section we con-
sider the existence and uniqueness of discrete solutions. For that, we require the
following well known result which can be found, e.g., in the book by Thomée [55,
Lemma 6.4]. It can be easily proved using Sobolev embeddings with an inverse in-
equality.

Lemma 5.1. Let D ⊂ Rd be a convex domain. Then there exists some constant
C∞ such that for all vh ∈ Sh,

‖vh‖L∞(D) ≤ C∞`h‖∇vh‖L2(D),

where

`h :=

{
| lnhmin|1/2 for d = 2,

|hmin|−1/2 for d = 3.

We treat the existence of discrete solutions unh of (11) together with the solutions
of some regularized auxiliary problem. This auxiliary problem is essential for the
analysis of (11). For this purpose, we recall a lemma that was basically proved in [38].

Lemma 5.2. Let M ∈ R be given by

M := ‖u‖W 1,∞(In,W 1,∞(D)) + CW 1,∞(diam(D) + 1)‖∇u‖L∞(In×D),(16)

where CW 1,∞ is the constant from (A7). Then, there exists a function fM : C → C
and a constant cM > 0 such that

fM (z) = |z|2z if |z| ≤M,(17)

〈fM (z), z〉 ∈ R≥0 ∀ z ∈ C,(18)

|fM (z)| ≤ 2M2|z| ∀ z ∈ C,(19)

|fM (z)− fM (w)| ≤ 10M2|z − w| ∀ z, w ∈ C,(20)

‖fM (z)− fM (w)‖E(D) ≤ cM‖z − w‖E(D)(21)

∀ z, w ∈ H1
0 (D) with ‖w‖W 1,∞(D) ≤M.

The above lemma is a slightly generalized version of [38, Lemma 4.1] in the sense
that we are more precise about the constants in (19) and (20), condition (18) is new,
and condition (21) is formulated with a different norm. The latter two points are
obvious; therefore we only prove (19) and (20).

Proof. Let us define θ := M2, g(s) := 3θ−4s5 − 7θ−3s4 + 4θ−2s3 + s, and the
curve γ : R→ R by

γ(s) :=


s for s ≤ θ,
g(s− θ) + θ for s ∈ [θ, 2θ],

2θ for s ≥ 2θ.

It can be verified that γ ∈ C2(R) and we can hence define fM (z) := γ(|z|2)z for z ∈ C.
In order to verify the properties of fM it is sufficient to check the behavior of g on
[0, θ]. It holds that

g′(s) = (15θ−4s2 + 2θ−3s+ θ−2)(s− θ)2
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which is obviously strictly positive on [0, θ). Hence g is monotonically increasing and
so is γ. Furthermore, we have

g′′(s) = 60θ−4s(θ − s)(2θ/5− s),

which implies that g′ has a maximum in 2θ/5 with g′(2θ/5) ≤ 2. We observe |g′′(s)| ≤
60θ−1. Combining these properties of g allows us to derive (19) and (20), with the
constants as given in Lemma 5.2. Property (18) is obvious since γ is monotonically
increasing and hence nonnegative on [0,∞). Condition (21) is stated in [38, Lemma
4.1] with the H1-seminorm, but follows directly by the norm equivalence that we
showed earlier.

Using the previously introduced function fM , we can now state the regularized
problem. As we will see later, the solution to the regularized problem is a solution of
the discrete problem (11) for sufficiently small time steps.

Definition 5.3 (discrete auxiliary problem). Let fM denote a function with the
properties depicted in Lemma 5.2. Furthermore, we let U0 = u0h ∈ Sh with u0h being
the initial value used for problem (11). For n ≥ 1 we let Un ∈ Sh denote the solution
of

〈Un−1, vh〉L2(D)(22)

= 〈Un, vh〉L2(D) + τn i
(
〈L(Un−

1
2 ), vh〉+ 〈κUn− 1

2 + βfM (Un−
1
2 ), vh〉L2(D)

)
for all vh ∈ Sh and where we defined Un−

1
2 := (Un + Un−1)/2.

In order to show existence of the solutions of problem (11) and (22) we require
the following lemma, which is a well-known conclusion from Brouwer’s fixed point
theorem.

Lemma 5.4. Let N ∈ N, and let B1(0) := {α ∈ CN | |α| ≤ 1} denote the closed
unit disk in CN . Then every continuous function g : CN → CN with <〈g(α),α〉 ≥ 0
for all α ∈ ∂B1(0) has a zero in B1(0), i.e., a point α0 ∈ B1(0) with g(α0) = 0.

If there exits no α0 ∈ B1(0) with g(α0) = 0, then ĝ(α) := −g(α)/|g(α)| (in-
terpreted as a function ĝ : R2N → R2N ) has a fixed point α∗ ∈ B1(0) by Brouwer’s
fixed point theorem. Hence 1 = |ĝ(α∗)|2 = 〈ĝ(α∗),α∗〉 = −〈g(α∗),α∗〉/|g(α∗)| =
−<〈g(α∗),α∗〉/|g(α∗)| < 0, which is a contradiction.

Lemma 5.5. For every n ≥ 1 there exists a solution Un ∈ Sh of problem (22). If

the time step size is such that τn < 2
(
‖=(κ)‖L∞(D) + β10M2

)−1
, then the solution

Un ∈ Sh is also unique. Recall that M is the constant appearing in Lemma 5.2.
Furthermore, if =(κ) = 0 and if τn and h are such that τnh

−d
min → 0 for τn, h → 0,

then the solution unh ∈ Sh of problem (11) is unique for sufficiently small τn as well.

Proof. We start with the existence result for the solution Un of problem (22).
First, recall that Nh =dim(Sh) and that λm denotes the mth Lagrange basis function.
We want to apply Lemma 5.4 and define g : CNh → CNh for α ∈ CNh by

g`(α) := −τ−1n i

Nh∑
m=1

αm〈λm, λ`〉L2(D)

+
1

2

Nh∑
m=1

αm 〈L(λm), λ`〉+

〈
(κId + βfM )

(
1

2
Un−1 +

1

2

Nh∑
m=1

αmλm

)〉
λ` + F`,
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where F ∈ CNh is defined by

F` :=
1

2
〈L(Un−1), λ`〉+ 〈τ−1n iUn−1, λ`〉L2(D).

To show the existence of some α0 with g(α0) = 0, it is sufficient (by scaling
arguments) to show that there exists some K ∈ R>0 so that <〈g(α),α〉 ≥ 0 for

all α ∈ CNh with |α| = K. For brevity, let us denote α :=
∑Nh
m=1 αmλm. Since

<
(
τ−1n i〈α, α〉L2(D)

)
= 0, (α, α)E(D) = 〈L(α), α〉, and by construction of fM

<

(〈
(κId + βfM )

(
α+ Un−1

2

)
,
α+ Un−1

2

〉
L2(D)

)
≥ 0,

we obtain

<〈g(α),α〉

≥ 1

2
‖α‖2E(D) + <〈F,α〉 −

〈
(κId + βfM )

(
1

2
Un−1 +

1

2

Nh∑
m=1

αmλm

)
Un−1

〉
≥ 1

2
‖α‖2E(D) − ‖τ

−1
n Un−1‖L2(D)‖α‖L2(D) −

1

2
‖α‖E(D)‖Un−1‖E(D)

−1

2

(
‖κ‖L∞(D) + β2M2

)
‖Un−1‖L2(D)

(
‖α‖L2(D) + ‖Un−1‖L2(D)

)
≥ ‖α‖E(D)

(
C1‖α‖E(D) − C2

)
− C3,

where we used the Poincaré–Friedrichs inequality in the last step and where C1, C2,
and C3 are appropriate α-independent positive constants. Consequently, for all α
with ‖α‖E(D) ≥ C2/C1 +

√
(C2/C1)2 + C3/C1 we have <〈g(α),α〉 ≥ 0 and hence,

by norm equivalence in finite dimensional spaces, there exists a sufficiently large K
such that <〈g(α),α〉 ≥ 0 for all α with |α| = K. This gives us existence of a discrete
solution of (22).

For uniqueness in (22) we use an L2-contraction argument. Let us compare two
solutions Un(1) and Un(2) of problem (22). Using the equation and testing with Un(1)−U

n
(2)

we get

‖Un(1) − U
n
(2)‖

2
L2(D)

= −τn
2

i
(
〈L(Un(1) − U

n
(2)), U

n
(1) − U

n
(2)〉+ 〈κ(Un(1) − U

n
(2)), U

n
(1) − U

n
(2)〉L2(D)

)
− 2τn i β

〈
fM

(
Un(1) + Un−1

2

)
− fM

(
Un(2) + Un−1

2

)
Un(1) + Un−1

2
−
Un(2) + Un−1

2

〉
=

1

2
〈τn=(κ)(Un(1) − U

n
(2)), U

n
(1) − U

n
(2)〉L2(D)

+ 2τn β =
〈
fM

(
Un(1) + Un−1

2

)
− fM

(
Un(2) + Un−1

2

)
Un(1) + Un−1

2
−
Un(2) + Un−1

2

〉
(20)

≤ 1

2
τn
(
‖=(κ)‖L∞(D) + β10M2

)
‖Un(1) − U

n
(2)‖

2
L2(D).

Since we assumed τn
(
‖=(κ)‖L∞(D) + β10M2

)
< 2 we conclude ‖Un(1)−U

n
(2)‖L2(D) = 0

and hence have uniqueness.
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For two solutions unh,(1) and unh,(2) of the original IRK scheme (11), we use the

additional assumption =(κ) = 0 to conclude with the mass conservation that

‖unh,(1)‖L2(D) = ‖unh,(2)‖L2(D) = ‖u0h‖L2(D) = ‖Ih(u0)‖L2(D) ≤ C‖u0‖H2(D),

where we used the stability estimate ‖Ih(v)‖L2(D) ≤ C‖v‖H2(D) for v ∈ H2(D) for the
Lagrange interpolation operator Ih. With this, we can proceed as before to obtain

‖unh,(1) − u
n
h,(2)‖

2
L2(D)

≤ τn
8
β =
〈(∣∣∣unh,(1) + un−1h

∣∣∣2 − ∣∣∣unh,(2) + un−1h

∣∣∣2) (unh,(2) + un−1h )unh,(1) − u
n
h,(2)

〉
≤ τn

4
β

∫
D

(∣∣∣unh,(1) + un−1h

∣∣∣2 +
∣∣∣unh,(2) + un−1h

∣∣∣2) |unh,(1) − unh,(2)|2
≤ τn β C‖u0‖2H2(D)‖u

n
h,(1) − u

n
h,(2)‖

2
L∞(D).

With the inverse estimate ‖unh,(1) − u
n
h,(2)‖L∞(D) ≤ Ch

−d/2
min ‖unh,(1) − u

n
h,(2)‖L2(D) we

conclude that for an appropriate positive constant

‖unh,(1) − u
n
h,(2)‖

2
L2(D) ≤ C(β, ‖u0‖H2(D)) τnh

−d
min‖unh,(1) − u

n
h,(2)‖

2
L2(D)

we have that unh,(1) = unh,(2) for sufficiently small τn.

6. A priori error estimates. In the following we assume that u denotes a
solution of (4) with sufficient regularity. In this section we derive an a priori error
estimate for the discrete solutions. However, instead of taking (11) as our reference
problem we follow the ideas of [38] and take the auxiliary problem (22) as our reference.
In this context, note that by the definitions of u and fM we have

〈u(·, tn), vh〉L2(D) + i

∫
In

(
〈L(u), vh〉+ 〈κu+ βfM (u), vh〉L2(D)

)
= 〈u(·, tn−1), vh〉L2(D)

(23)

for all vh ∈ Sh. Since u is continuous in time we can define un := u(·, tn).
For simplicity (and slightly abusing the notation), we write for v ∈ H2(D)∩H1

0 (D)

Lv := −∇ · (A∇v) + b · ∇v + cv,

so that

(v, w)E(D) = 〈Lv,w〉L2(D) ∀ v, w ∈ H1
0 (D) ∩H2(D).(24)

In order to derive the a priori error estimates, we first derive an error identity and
then estimate the various terms in the identity.

Before starting, recall Definition 3.1, i.e., the definition of the Ritz-projection
associated with L. Note that we do not include the term (κv, φh) in the Ritz-projection
since we want L to be a smooth and self-adjoint operator. Since κ can be imaginary,
(13) would not be valid any longer.

Finally, we also recall a standard result (which follows from the best approxi-
mation property of Ph with respect to the H1-norm and an Aubin–Nitsche duality
argument).
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Lemma 6.1. Assume (A1)–(A5). There exist generic positive constants C1 and
C2 such that

‖v − Ph(v)‖L2(D) ≤ C1|h2v|H2(D) and ‖v − Ph(v)‖E(D) ≤ C2|hv|H2(D)(25)

for all v ∈ H2(D) ∩H1
0 (D).

In the first step, we establish an error identity.

Lemma 6.2 (error identity). We introduce the abbreviation f̂(v) := κv+βfM (v).
For n ∈ N, n ≥ 1 we define the error splitting by

enh := (Unh − Ph(un))︸ ︷︷ ︸
=: En

h ∈ Sh

+ (Ph(un)− un)(26)

and the error contributions by

ξ(1)n :=

∫
In

(Ph − Id)∂tu(·, t) dt, ξ(2)n := τni

(
f̂

(
Ph(un)+Ph(un−1)

2

)
− f̂
(
Un+Un−1

2

))
,

ξ(3)n := i

∫
In

f̂(u(·, t))− f̂
(
Ph(un) + Ph(un−1)

2

)
dt, ξ(4)n := i

∫
In

u(·, t)− u
n + un−1

2
dt.

With these notations the following L2-norm identity holds for Enh :

‖Enh‖2L2(D) = ‖En−1h ‖2L2(D)(27)

+ <
(
〈ξ(1)n + ξ(2)n + ξ(3)n , Enh + En−1h 〉L2(D) + 〈L(ξ(4)n ), Enh + En−1h 〉

)
and the following energy-norm identity:

‖Enh‖2E(D) = ‖En−1h ‖2E(D) + <〈L(Enh + En−1h ), PL2(ξ(1)n + ξ(2)n + ξ(3)n )〉(28)

+ <
(

i

〈
L(Enh + En−1h ),

∫
In

PL2(Lu(·, t))− PL2(Lun) + PL2(Lun−1)

2
dt

〉)
.

Proof. For brevity we write 〈·, ·〉 instead of 〈·, ·〉L2(D) since its usage is clear from
the context. Recalling the definition of Un we have for all vh ∈ Sh

〈Un − Un−1, vh〉+ τn i

〈
L

(
Un + Un−1

2

)
, vh

〉
= −τn i

〈
f̂

(
Un + Un−1

2

)
vh

〉
.(29)

Subtracting the term 〈Ph(un)−Ph(un−1), vh〉+ τn i 〈L(Ph(u
n)+Ph(u

n−1)
2 ), vh〉 on both
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sides of (29) gives us

〈Enh − En−1h , vh〉+
1

2
τni 〈L(Enh + En−1h ), vh〉

= 〈Ph(un−1), vh〉 − 〈Ph(un), vh〉 − τn i

〈
L

(
Ph(un) + Ph(un−1)

2

)
, vh

〉
− τn i 〈f̂

(
Un + Un−1

2

)
, vh〉

= 〈Ph(un−1), vh〉 − 〈Ph(un), vh〉 − τn i

〈
L

(
un + un−1

2

)
, vh

〉
+ τn i

(〈
f̂

(
Ph(un) + Ph(un−1)

2

)
− f̂
(
Un + Un−1

2

)
− f̂
(
Ph(un) + Ph(un−1)

2

)
vh

〉)
(23)
= 〈Ph(un−1)− un−1, vh〉 − 〈Ph(un)− un, vh〉

+ i

〈∫
In

L(u)(·, t) dt− τnL
(
un + un−1

2

)
, vh

〉
+ i

〈∫
In

f̂(u(·, t)) dt− τnf̂
(
Ph(un) + Ph(un−1)

2

)
, vh

〉
L2(D)

+ τn i

(〈
f̂

(
Ph(un) + Ph(un−1)

2

)
− f̂

(
Un + Un−1

2

)
vh

〉)
.

(30)

Testing with vh = Enh + En−1h and using only the real part of the equation gives us

‖Enh‖2L2(D)

= τn <
(

i

〈
f̂

(
Ph(un) + Ph(un−1)

2

)
− f̂

(
Un + Un−1

2

)
Enh + En−1h

〉)
+ ‖En−1h ‖2L2(D)

+<
(
〈Ph(un−1)− un−1, Enh + En−1h 〉

)
−<

(
〈Ph(un)− un, Enh + En−1h 〉

)
+<

(
i

〈∫
In

L(u)(·, t) dt− τnL
(
un + un−1

2

)
, Enh + En−1h

〉)
+<

(
i

〈∫
In

f̂(u(·, t)) dt− τnf̂
(
Ph(un) + Ph(un−1)

2

)
, Enh + En−1h

〉
L2(D)

)
.

The simplification

<
(
〈Ph(un−1)− un−1, Enh + En−1h 〉

)
−<

(
〈Ph(un)− un, Enh + En−1h 〉

)
= <

(〈∫
In

Ph(∂tu(·, t))− ∂tu(·, t) dtEnh + En−1h

〉)
finishes the proof of the L2-norm identity.

To derive the energy-norm identity we use the L2-Riesz representer Gnh ∈ Sh of
the error functional 〈L(Enh ), ·〉. The Riesz representer Gnh ∈ Sh is characterized by
the equation

〈vh, Gnh〉L2(D) = 〈L(Enh + En−1h ), vh〉 ∀ vh ∈ Sh.(31)
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Testing with vh = Gnh in (30) and using 〈L(Enh +En−1h ), Gnh〉 = ‖Gnh‖2L2(D), we obtain

〈L(Enh + En−1h ), Enh − En−1h 〉+ τni
1

2
‖Gnh‖2L2(D)(32)

= 〈Ph(un−1)− un−1, Gnh〉L2(D) − 〈Ph(un)− un, Gnh〉L2(D)

+ i

∫
In

〈L(u)(·, t)− L
(
un + un−1

2

)
, Gnh〉 dt

+ i〈
∫
In

f̂(u(·, t)) dt− τnf̂
(
Ph(un) + Ph(un−1)

2

)
, Gnh〉L2(D)

+ τn i

〈
f̂

(
Ph(un) + Ph(un−1)

2

)
− f̂

(
Un + Un−1

2

)
Gnh

〉
.

Using that <〈L(Enh + En−1h ), Enh − E
n−1
h 〉 = ‖Enh‖2E(D) − ‖E

n−1
h ‖2E(D) and that

<〈v,Gnh〉L2(D) = <〈L(Enh + En−1h ), PL2(v)〉 ∀ v ∈ H1
0 (D)

and taking the real part of (32) yields

‖Enh‖2E(D) = ‖En−1h ‖2E(D) + <〈L(Enh + En−1h ), PL2(ξ(1)n + ξ(2)n + ξ(3)n )〉

+ <
(

i

〈
L(Enh + En−1h ),

∫
In

PL2(Lu(·, t))− PL2(Lun) + PL2(Lun−1)

2
dt

〉)
and finishes the proof.

The next lemma is central for estimating the f̂ -terms in the error identities.

Lemma 6.3. Recall M from (16) and let f(z) := |z|2z. It holds (a.e. in D) that

∣∣∣∣∣
∫ tn

tn−1

f(u(·, t)) dt− τnf
(
un + un−1

2

)∣∣∣∣∣ ≤ τnM
(

3

4
|un − un−1|2 + τ2nM‖u‖W 2,∞(In)

)(33)

and

∣∣∣∣∣∇
(∫ tn

tn−1

f(u(·, t)) dt− τnf
(
un + un−1

2

))∣∣∣∣∣
(34)

≤ 4τnM
(
|un − un−1|2 + |∇un −∇un−1|2

)
+ τ3nM

2
(
‖u‖W 2,∞(In) + ‖∇u‖W 2,∞(In)

)
.

Proof. We decompose the error under considerations into(∫ tn

tn−1

f(u(·, t)) dt−τnf
(
un+un−1

2

))
=

(∫ tn

tn−1

f(u(x, t)) dt−τn
f(un)+f(un−1)

2

)

+ τn

(
f(un) + f(un−1)

2
− f

(
un + un−1

2

))
.

With f(u) = |u|2u, the first term in (6) can be estimated using the trapezoidal-rule
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to obtain

∣∣∣∣∣
∫ tn

tn−1

|u|2u− τn
|un|2un + |un−1|2un−1

2

∣∣∣∣∣
≤ 1

4
τ3n‖u‖L∞(In)

(
2‖∂tu‖2L∞(In)

+ ‖∂ttu‖L∞(In)‖u‖L∞(In)

)
≤ τ3nM2‖u‖W 2,∞(In).(35)

For the second term in (6), let ζn : [0, 1] → [un−1, un] denote the complex valued
(linear) curve given by ζn(s) := (1 − s)un−1 + sun for s ∈ [0, 1]. We have ζ ′n(z) =
un−un−1 (and ζ ′′n = 0). With that, we get with the trapezoidal-rule and the midpoint
rule that

∣∣∣∣f(un) + f(un−1)

2
− f

(
un + un−1

2

)∣∣∣∣
≤
∣∣∣∣ (f ◦ ζn)(0) + (f ◦ ζn)(1)

2
−
∫ 1

0

(f ◦ ζn)(s) ds

∣∣∣∣
+

∣∣∣∣∫ 1

0

(f ◦ ζn)(s) ds− f
(
ζn(0) + ζn(1)

2

)∣∣∣∣
≤ 1

12
‖(f ◦ ζn)′′‖L∞(0,1) +

1

24
‖(f ◦ ζn)′′‖L∞(0,1) =

1

8
‖(f ◦ ζn)′′‖L∞(0,1)

≤ 3

4
|un − un−1|2‖ζn‖L∞(0,1) ≤

3

4
|un − un−1|2‖u‖L∞(In).(36)

Combining the estimates (35) and (36) with (6) finishes the proof of (33). Estimate
(35) can be derived analogously by applying the trapezoidal-rule and midpoint-rule
to the function g(s) := 2|(1−s)un−1 + sun|2((1−s)∇un−1 + s∇un) + ((1−s)un−1 +
sun)2(1−s)∇un−1 + s∇un.

Lemma 6.4 (L2-error estimate for Enh ). Consider n ≥ 1 and Enh = Un−Ph(un).
Let M denote the constant in Lemma 5.2. There exists a constant CM that only
depends on M , D, κ, β, CW 1,∞ , and C1 (cf. the L2-estimate (25)) such that for all
τn < (2CM )−1 it holds that

‖Enh‖2L2(D) ≤
(1 + CMτn)

(1− CMτn)
‖En−1h ‖2L2(D) + CM‖h2∂tu‖2L2(In,H2(D))

(37)

+CMτn

(
‖τ2L(∂ttu)‖2L∞(In,L2(D)) + ‖τ2u‖2W 2,∞(In,L2(D)) + ‖h2u‖2L∞(In,H2(D))

)
.

Proof. In the following, CM denotes any constant that depends generically on M ,
D, κ, β, CW 1,∞ , and C1. We estimate the terms on the right-hand side of the error



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FEM FOR BOSE–EINSTEIN CONDENSATES 941

identity (26) and start with <
(
〈ξ(1)n , Enh + En−1h 〉L2(D)

)
. We obtain

∣∣∣∣<(〈ξ(1)n , Enh + En−1h 〉L2(D)

) ∣∣∣∣
‖Enh + En−1h ‖L2(D)

≤ ‖ξ(1)n ‖L2(D)

(38)

=

∥∥∥∥∫
In

Ph(∂tu(·, t))− ∂tu(·, t) dt
∥∥∥∥
L2(D)

≤
∫
In

‖Ph(∂tu(·, t))− ∂tu(·, t)‖L2(D) dt

(25)

≤ C1

∫
In

‖h2∂tu(·, t))‖H2(D) dt ≤ C1τ
1/2
n ‖h2∂tu‖L2(In,H2(D)).

Hence ∣∣∣∣<(〈ξ(1)n , Enh + En−1h 〉L2(D)

) ∣∣∣∣
≤ 2τn

(
‖Enh‖2L2(D) + ‖En−1h ‖2L2(D)

)
+

1

4
C2

1‖h2∂tu‖2L2(In,H2(D)).

Next we bound the term depending on ξ
(2)
n = τni

(
f̂(Ph(u

n)+Ph(u
n−1)

2 )− f̂(U
n+Un−1

2 )
)
.

Recalling that Enh = Un − Ph(un) we obtain∣∣∣∣<(〈ξ(2)n , Enh + En−1h 〉L2(D)

) ∣∣∣∣
≤ τn‖f̂

(
Ph(un) + Ph(un−1)

2

)
− f̂

(
Un + Un−1

2

)
‖L2(D)‖Enh + En−1h ‖L2(D)

(20)

≤
(
‖κ‖L∞(D) + 10M2β

)
τn

(
‖Enh‖2L2(D) + ‖En−1h ‖2L2(D)

)
.(39)

Recall f̂(z) = κz+βfM (z). To treat ξ
(3)
n = i(f̂(u)−f̂

(
1
2 (Ph(un) + Ph(un−1)

)
, 1)L2(In),

we use that fM (z) = |z|2z for |z| ≤ M and the facts that ‖u‖L∞(In×D) ≤ M and
‖Ph(un)‖L∞(D) ≤ CW 1,∞diam(D)‖∇un‖L∞(D) ≤M to conclude that

∣∣∣∣<(〈ξ(3)n , Enh + En−1h 〉L2(D)

) ∣∣∣∣
‖Enh + En−1h ‖L2(D)

≤ ‖κ‖L∞(D)‖
∫
In

u(·, t)− Ph(un) + Ph(un−1)

2
dt‖L2(D)

(40)

+β

∥∥∥∥∫
In

f(u(·, t))− f
(
Ph(un) + Ph(un−1)

2

)
dt

∥∥∥∥
L2(D)

,

where f(z) := |z|2z. To estimate this further, we decompose the last term, i.e.,

‖
∫
In
f(u(·, t))− f(Ph(u

n)+Ph(u
n−1)

2 ) dt‖L2(D), into∥∥∥∥∫
In

f(u(·, t))− f
(
un + un−1

2

)
dt

∥∥∥∥
L2(D)︸ ︷︷ ︸

I
ξ
(3)
n

+ τn

∥∥∥∥f (un + un−1

2

)
− f

(
Ph(un) + Ph(un−1)

2

)∥∥∥∥
L2(D)︸ ︷︷ ︸

II
ξ
(3)
n

.
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For the first term we use (33) to get

|I
ξ
(3)
n
| ≤ τ3nM2‖u‖W 2,∞(In,L2(D)) + τn

3

4
M‖un − un−1‖2L4(D)

= τ3nM
2‖u‖W 2,∞(In,L2(D)) + τn

3

4
M

∥∥∥∥∫
In

∂tu(·, t) dt
∥∥∥∥2
L4(D)

≤ τ3nM2‖u‖W 2,∞(In,L2(D)) + τ3nCM‖u‖W 1,∞(In,L2(D)).

For the term II
ξ
(3)
n

we get in the usual manner

|III
ξ
(3)
n
| = τn‖f

(
un + un−1

2

)
− f

(
Ph(un) + Ph(un−1)

2

)
‖L2(D)

(25)

≤ τnCM‖h2u‖L∞(In,H2(D)).

Combining the estimates for I
ξ
(3)
n

and II
ξ
(3)
n

with (40) yields∣∣∣∣<(〈ξ(3)n , Enh + En−1h 〉L2(D)

) ∣∣∣∣
‖Enh + En−1h ‖L2(D)

≤ CMτn
(
‖τ2u‖W 2,∞(In,L2(D)) + ‖h2u‖L∞(In,H2(D))

)
and hence the final estimate for the ξ

(3)
n -term∣∣∣∣<(〈ξ(3)n , Enh + En−1h 〉L2(D)

) ∣∣∣∣ ≤ τn (‖Enh‖2L2(D) + ‖En−1h ‖2L2(D)

)
(41)

+τnCM
(
‖τ2u‖W 2,∞(In,L2(D)) + ‖h2u‖L∞(In,H2(D))

)2
.

Next, we bound the term 〈L(ξ
(4)
n ), Enh 〉. It holds that

|<〈L(ξ
(4)
n ), Enh + En−1h 〉|

‖Enh + En−1h ‖L2(D)

(24)

≤ ‖L(ξ(4)n )‖L2(D)(42)

=

∥∥∥∥∫
In

L

(
un + un−1

2
− u(·, t)

)
dt

∥∥∥∥
L2(D)

≤ 1

12
τ3n‖L(∂ttu)‖L∞(In,L2(D)).

Combining the estimates (38)–(42) with the error identity (27) proves the lemma.

Recall that according to Lemma 4.2 and the Poincaré–Friedrichs inequality there
exist positive constants cE and CE such that

cE‖∇v‖2L2(D) ≤ ‖v‖
2
E(D) ≤ CE‖∇v‖

2
L2(D) ∀ v ∈ H1

0 (D).(43)

Lemma 6.5 (energy-error estimate for Enh ). Consider n ≥ 1 and Enh = Un −
Ph(un). Let M denote the constant in Lemma 5.2. There exists a constant CM that
only depends on M , D, d, the data L, κ, β, the norm-equivalence constants CE and
cE , and the stability constants CW 1,∞ , CL2 , and C1 such that for all τn < (2CM )−1

it holds that

‖Enh‖2E(D) ≤
(1 + CMτn)

(1− CMτn)
‖En−1h ‖2E(D) + CM‖h∂tu‖2L2(In,H2(D))

(44)

+ CMτn

(
‖τ2L(∂ttu)‖2L∞(In,H1(D)) + ‖τ2u‖2W 2,∞(In,H1(D)) + ‖hu‖2L∞(In,H2(D))

)
.
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Proof. We proceed analogously to the proof of Lemma 6.4. Starting from the
energy error identity (28) we obtain the following estimates for the various terms.
Using (13) we get

|<
(
〈L(Enh + En−1h ), PL2(ξ

(1)
n )〉

)
|

‖Enh + En−1h ‖E(D)

(9)

≤ CL2‖ξ(1)n ‖E(D) ≤ CL2C1τ
1/2
n ‖h∂tu‖L2(In,H2(D)).

(45)

Second, using ‖Ph(un)‖W 1,∞(D) ≤ CW 1,∞(diam(D) + 1)‖∇un‖L∞(D) ≤ M (cf. (A7))
we get∣∣∣∣<(〈L(Enh + En−1h ), PL2(ξ(2)n )〉

) ∣∣∣∣
(9)

≤ CL2τn‖f̂
(
Ph(un) + Ph(un−1)

2

)
− f̂

(
Un + Un−1

2

)
‖E(D)‖Enh + En−1h ‖E(D)

(20)

≤ CL2

(
cMβτn(‖Enh‖2E(D) + ‖En−1h ‖2E(D))

+ τn

n∑
k=n−1

‖κ(Ph(uk)− Uk)‖E(D)‖Enh + En−1h ‖E(D)

)
(43)

≤ CL2

(
cMβτn(‖Enh‖2E(D) + ‖En−1h ‖2E(D))

+ 2CSobolev

√
CE√
cE

τn‖κ‖W 1,3(D)(‖Enh‖2E(D) + ‖En−1h ‖2E(D))

)
.(46)

In the last step we also used the following inequality (based on Sobolev embeddings)
which holds for any v ∈ H1(D):

‖∇(κv)‖L2(D) ≤ ‖(∇κ)v‖L2(D) + ‖κ(∇v)‖L2(D)

≤ ‖∇κ‖L3(D)‖v‖L6(D) + ‖κ‖L∞(D)‖v‖H1(D)

≤
(
CSobolev‖κ‖W 1,3(D) + ‖κ‖L∞(D)

)
‖v‖H1(D).

For the ξ
(3)
n we use again that ‖u‖L∞(In×D) ≤M and ‖Ph(un)‖L∞(D) ≤M in combi-

nation with fM (z) = |z|2z for |z| ≤M . This yields∣∣∣∣<(〈L(Enh + En−1h ), PL2(ξ
(3)
n )〉

) ∣∣∣∣
‖Enh + En−1h ‖E(D)

≤ CL2

√
CE√
cE
‖∇ξ(3)n ‖L2(D)(47)

≤ CL2

√
CE√
cE
‖∇
(∫

In

κ(u(·, t)−
(
Ph(un) + Ph(un−1)

2

)
dt

)
‖L2(D)︸ ︷︷ ︸

I
ξ
(3)
n

+βCL2

√
CE√
cE
‖∇
(∫

In

f(u(·, t))− f
(
Ph(un) + Ph(un−1)

2

)
dt

)
‖L2(D)︸ ︷︷ ︸

II
ξ
(3)
n

.

The regularity of κ (and the fact that we can hide ‖κ‖W 1,3(D) and ‖κ‖L∞(D) in
CM ) allows us to estimate the first term by I

ξ
(3)
n
≤ CMτn(‖τ2∂ttu‖L∞(In,H1(D)) +
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‖hu‖L∞(In,H2(D))). For the second term we get

II
ξ
(3)
n
≤ βCL2

√
CE√
cE
‖∇
(∫

In

f(u(·, t))− f
(
un + un−1

2

)
dt

)
‖L2(D)︸ ︷︷ ︸

i
ξ
(3)
n

+τnβCL2

√
CE√
cE
‖∇
(
f

(
un + un−1

2

)
− f

(
Ph(un) + Ph(un−1)

2

))
‖L2(D)︸ ︷︷ ︸

ii
ξ
(3)
n

,

where we can use (34) to obtain

i
ξ
(3)
n
≤ τ3nCM‖u‖W 1,∞(In,H1(D)) + τ3nCM‖u‖W 2,∞(In,H1(D))

and where we can use ‖un‖W 1,∞(D), ‖Ph(un)‖W 1,∞(D) ≤M to get

ii
ξ
(3)
n
≤ CMτn‖hu‖L∞(In,H2(D)).

Combining the estimates for I
ξ
(3)
n

, II
ξ
(3)
n

, i
ξ
(3)
n

, and ii
ξ
(3)
n

with (47) yields

∣∣∣∣<(〈L(Enh + En−1h ), PL2(ξ
(3)
n )〉

)∣∣∣∣
‖Enh + En−1h ‖E(D)

≤ CMτn
(
‖τ2u‖W 2,∞(In,H1(D)) +‖hu‖L∞(In,H2(D))

)
.

(48)

For the last term in the error identity (28) we get

∣∣∣∣<(i〈L(Enh + En−1h ),
∫
In

PL2 (Lu
n)+PL2 (Lu

n−1)

2 − PL2(Lu(·, t)) dt〉
) ∣∣∣∣

‖Enh + En−1h ‖E(D)

(49)

≤ ‖PL2

(∫
In

Lun + Lun−1

2
− Lu(·, t) dt

)
‖E(D) ≤ τ3nCL2‖L(∂ttu)‖L∞(In,E(D)).

Combining estimates (45)–(49) and plugging them into the error identity (28) finishes
the proof.

Lemma 6.6 (full L2-error estimate for Enh ). We use the notation and the as-
sumptions of Lemma 6.4. Then it holds with cnM := e4CM tn

‖Enh‖2L2(D) ≤ c
n
M

(
‖E0

h‖2L2(D) +CM

(
‖h2∂tu‖2L2(0,tn,H2(D)) +

n∑
k=1

τk‖h2u‖2L∞(Ik,H2(D))

))

+CMc
n
M

n∑
k=1

τk

(
‖τ2L(∂ttu)‖2L∞(Ik,L2(D)) + ‖τ2u‖2W 2,∞(Ik,L2(D))

)
.

Proof. First we note that if an, bn, αn is a sequence of positive real numbers that
is related via an+1 ≤ (1 + αn)an + bn, then it holds that

an+1 ≤ e
∑n
i=0 αi

(
a0 +

n∑
i=0

bi

)
.(50)
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Next, we use (37) to obtain

‖Enh‖2L2(D) ≤ (1 + αn)‖En−1h ‖2L2(D) + bn,(51)

where αn := 2CMτn
(1−CMτn) and

bn := CM‖h2∂tu‖2L2(In,H2(D))

+ CMτn

(
‖τ2L(∂ttu)‖2L∞(In,L2(D)) + ‖τ2u‖2W 2,∞(In,L2(D)) + ‖h2u‖2L∞(In,H2(D))

)
.

Combining (51) with (50) and CMτn ≤ 1/2 yields

e−
∑n
k=1 αk‖Enh‖2L2(D) ≤ ‖E

0
h‖2L2(D) + CM

n∑
k=1

‖h2∂tu‖2L2(Ik,H2(D))

+CM

n∑
k=1

τk

(
‖τ2L(∂ttu)‖2L∞(Ik,L2(D)) + ‖τ2u‖2W 2,∞(Ik,L2(D)) + ‖h2u‖2L∞(Ik,H2(D))

)
.

The inequality
∑n
k=1 αk ≤ 4CM tn finishes the proof.

Lemma 6.7 (full energy-error estimate for Enh ). We use the notation and the
assumptions of Lemma 6.5. It holds with cnM := e4CM tn that

‖Enh‖2E(D) ≤ c
n
M

(
‖E0

h‖2E(D) + CM

(
‖h∂tu‖2L2(0,tn,H2(D)) +

n∑
k=1

τk‖hu‖2L∞(Ik,H2(D))

))

+CMc
n
M

n∑
k=1

τk

(
‖τ2L(∂ttu)‖2L∞(Ik,H1(D)) + ‖τ2u‖2W 2,∞(Ik,H1(D))

)
.

Proof. The proof is analogous to the proof of Lemma 6.6 by combining (50) with
Lemma 6.5.

Following the ideas of [38], we want to show that the solution unh of the original
discrete problem (11) is identical to the solution Unh of the auxiliary problem (22)
implying that the estimates in Lemmas 6.6 and 6.7 hold equally for unh. For that
purpose, we want to show that if τn is sufficiently small, it holds that ‖Unh ‖L∞(D) ≤M
for all n ≥ 0. Then, by the properties of fM , we obtain equality of unh and Unh .
To show the desired boundedness we can use again Lemma 5.1, which guarantees
‖vh‖L∞(D) ≤ C∞`h‖∇vh‖L2(D) for all vh ∈ Sh.

Conclusion 6.8. Let assumptions (A1)–(A7) be fulfilled, and let h and τn be
such that `h(hmax + τ2n)→ 0 for h, τn → 0. Then, for all small enough h and τn, the
corresponding solution Unh (i.e., the solution for fM as specified in Lemma 5.2) fulfills

‖Unh ‖L∞(D) ≤M.

Proof. We have Unh = Enh + Ph(un). Using (43) and Lemma 5.1 we get

‖Unh ‖L∞(D) ≤ ‖Ph(un)‖L∞(D) + C∞
√
CE`h‖Enh‖E(D).

The term Ph(un) is uniformly bounded by (A7) and the Poincaré–Friedrichs inequality
with ‖Ph(un)‖L∞(D) ≤ CW 1,∞diam(D)‖∇un‖L∞(D). Let us hence consider the second
term. Fixing the model problem (and assuming (A1)–(A7)), the only variables are h
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and τn. With this, we can write Lemma 6.7 as follows: there exists a constant C(M),
which is independent of h and τn such that

‖Enh‖E(D) ≤ C(M)
(
hmax + max

1≤n≤N
τ2n

)
.

Consequently, for each given ε > 0, we can pick h(M) and τn(M) small enough so
that

`h(M)‖Enh‖E(D) ≤ C(M)`h(M)(hmax(M)) + max
1≤n≤N

τ2n(M) ≤ ε.

With h and τn small enough so that C∞
√
CE`h(M)‖Enh‖E(D) ≤ ‖u‖W 1,∞(In,W 1,∞(D))

we obtain ‖Unh ‖L∞(D) ≤M as desired.

Observe that Conclusion 6.8 proves Proposition 3.4. We are now prepared to
conclude the proof of Theorem 3.5.

Proof of Theorem 3.5. We pick h(M) and τn(M) small enough so that the bound
in Conclusion 6.8 holds true. Since ‖Unh ‖L∞(D) ≤ M we obtain from the properties
of fM (see Lemma 5.2) that Unh must be identical to the solution unh of (11) for every
time step n ≥ 1. Hence, we obtain the splitting

unh − un = Enh + (Ph(un)− un),

where Enh can be estimated by Lemma 6.6, respectively Lemma 6.7, and where the
term (Ph(un)− un) can be estimated in the usual matter. A Lagrange-interpolation
error estimate for the initial value u0 ∈ H2(D) concludes the proof.

7. Numerical experiments. In this section we investigate the performance of
the one-stage Gauss–Legendre IRK scheme stated in Definition 3.3 and compare it
with the approximations obtained with the backward-Euler method (12) to stress
the importance of the discrete mass conservation. We consider the computational
domain D := [−6, 6]2 and the time interval [0, Tmax] := [0, 100]. We seek a solution
u ∈ C0([0, T ), H1

0 (D)) to the time-dependent GPE

i∂tu = −1

2
4u+ V u− ΩLzu+ β|u|2u in D,(52)

where we recall Lz = −i (x∂y − y∂x). We use the following configuration. We chose
β = 100, Ω = 0.8, and the harmonic potential

V (x) :=
γ2xx

2 + γ2yy
2

2

with trapping frequencies γx = 0.9 and γx = 1.1. The initial value u0 = u(·, 0) is
chosen as the L2-normalized ground state eigenvector of the Gross–Pitaevskii operator
G0(v) := − 1

24v+V0 v−0.8Lzv+100|v|2v with V0(x) = 1
2 (x2+y2) and corresponding

ground state energy E0 = 3.1938 (cf. [18]). We computed this ground state using
the discrete normalized gradient flow method proposed in [13]. Starting from this
setting, we wish to simulate the dynamics of u0 in the anisotropic trap V , i.e., we
solve (52) numerically. The problem is picked in such a way that vortices, i.e., density
singularities, are formed in the condensate (see Figures 1 and 2). We define the energy
by

E(v) := (v, v)E(D) +

∫
D

(
κ|v|2 +

β

2
|v|4
)
,
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Fig. 1. The figures depict numerical approximations for the particle density ρ(·, T ) := |u(·, T )|2
at T = 1. The left approximation is a backward-Euler approximation computed with time step size
τ = 10−2, whereas the IRK approximation on the right is computed in one time step, i.e., with
τ = 1.

Fig. 2. The figures show the approximations for the particle density obtained with the IRK
scheme for large time steps τ = 0.1 at times t = 0, t = 20, t = 40, t = 60, t = 80, and t = 100. We
observe a reduction of the number of vortices. The mass is fully preserved and the energy up to a
relative error of 0.026%.

which is a conservative property of (52).
We demonstrate the efficiency of the Crank–Nicolson type IRK scheme (as stated

in Definition 3.3) by showing that large time steps are allowed, thanks to the mass
conservation property. The backward-Euler approach, on the other hand (despite
being unconditionally stable), does not allow large time steps, since this results in a
severe loss of mass which lets the corresponding approximations vanish quickly. In all
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our computations we use a uniformly refined triangular mesh Th with 66.049 nodes.
That means that the discrete space Sh contains 132.098 degrees of freedom (minus the
ones from the boundary condition). We use uniform time steps and denote τ := τn
for simplicity.

We note that the computational complexity of the IRK scheme (11) and the
backward-Euler scheme (12) is roughly the same in our implementation. Since both
schemes are implicit, they require an iterative Newton method in each time step
where we observe a comparable number of iterations to reach a given tolerance. In
the following, we shall denote backward-Euler approximations by unh,BE and IRK
approximations by unh,IRK .

Due to the structure of the problem, we could use exact integration when assem-
bling the system matrices and load vector for our problem. Furthermore, all linear
systems were solved with an UMFPACK direct solver. The only reason why we were
not computationally exact (up to machine precision), was that we prescribed a resid-
ual tolerance of order O(10−8) for the Newton algorithm to abort. This inexactness
did not have an observable effect on the conservation of mass for the IRK in any of
the computations. Concerning the energy, a small deviation from the exact energy
was observable over time for the IRK; however, in a negligible range. For instance,
for large steps τ = 1, the energy was still preserved up to an error of 5.3% at T = 100.
For slightly smaller time steps with τ = 0.1 the conservation of energy already im-
proved to a relative error of below 0.03% which is insignificant considering that the
reference energy (at t = 0) is typically already polluted by discretization errors. Using
a time step size τ = 0.1 we simulated the dynamics of the particle density on the time
interval [0, 100]. The corresponding results are depicted in Figure 2. We observe that
the condensate with initially seven vortices collapses to a condensate with six vortices
at T = 100.

This is in strong contrast to the backward-Euler scheme that, though uncondi-
tionally stable, suffers from a major loss of energy and mass. This is clearly shown in
Table 1. For time step sizes of order τ = 1, basically all energy and mass is lost after
100 time steps. In our example the situation gradually improves with decreasing time
steps sizes; however, to obtain an acceptable loss of mass and energy after 100 time
steps, the backward-Euler method requires time steps sizes of at least τ = 10−3. The
significance of the preservation properties is further emphasized in Figure 3. Here we
compare backward-Euler and IRK approximations for large time steps τ = 1. We
can see that even though |unh,IRK |2 is not particularly accurate, it still preserves the

structure of the condensate, whereas |unh,BE |2 quickly collapses into a vanishing mass
that fully contradicts the correct physical behavior.

Table 1
The table shows the loss in energy and mass of the backward-Euler scheme after 100 time

steps for different time step sizes τ, compared with the corresponding quantities obtained with the
Crank–Nicolson type IRK scheme. Recall that the IRK always conserves the mass.

τ T ‖uNh,BE‖L2(D) ‖uNh,IRK‖L2(D) E(uNh,BE) E(uNh,IRK)

1 100 2.6 · 10−17 1.0 6.9 · 10−34 3.36455

10−1 10 0.13275 1.0 0.02309 3.19203

10−2 1 0.91676 1.0 2.52235 3.19383

10−3 0.1 0.99905 1.0 3.18549 3.19383
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Fig. 3. The figures show the approximations for the particle density obtained with the backward-
Euler (upper row) and the IRK scheme (lower row) for the time step size τ = 1 at times t = 20 and
t = 40.

Finally, in Figure 1 we compare the IRK approximation after one single step of
order τ = 1 with the backward-Euler approximation at the same time (T = 1) but
using 100 time steps with size τ = 10−2 each. Even though the costs for the backward-
Euler scheme are a 100 times higher as for the IRK approach to obtain a comparable
result, the approximation |unh,BE |2 clearly does not yet have the quality of |unh,IRK |2.

Remark 7.1. By approximating the nonlinearity in the IRK method (11) alter-
natively by (|unh|2 + |un−1h |2)(unh + un−1h )/4, the arising discretizations will not only
conserve the mass, but they will also conserve the energy of the initial state. This
modification might hence be a preferable alternative for long time simulations, where
the energy loss of the IRK scheme could become significant. Investigating this issue
is left open for future research. It should be mentioned that the H1-error analysis
presented in this paper does not appear to be transferable to the energy-conserving
discretization, so that we cannot make any definite statements on the H1-accuracy of
the arising approximations. However, for short times, we could numerically observe
that the performance and accuracy of the energy-conserving method is comparable to
the IRK method. For long times, the L2-error estimates (for the energy-conserving
discretization) obtained in [51, 5] show a scaling factor of order ecT in front of the
convergence rates in h and τ . Hence, due to this possible exponential pollution, the
reliability of the arising approximations for long times appears at least questionable,
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independent of a possible energy conservation.

In summary, we conclude that even though the backward-Euler scheme seems to
be unconditionally stable, the loss of mass and energy has a tremendous impact on
the quality of the obtained approximations if the time-step size is not chosen very
small. The IRK scheme of Crank–Nicolson type, on the other hand, does not appear
to have such restrictions.
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[37] P. Henning, A. Målqvist, and D. Peterseim, Two-level discretization techniques for ground
state computations of Bose–Einstein condensates, SIAM J. Numer. Anal., 52 (2014),
pp. 1525–1550, https://doi.org/10.1137/130921520.

https://doi.org/10.1137/130911111
https://doi.org/10.1137/130911111
https://doi.org/10.1016/j.jcp.2006.01.020
http://projecteuclid.org/euclid.cms/1111095641
http://projecteuclid.org/euclid.cms/1111095641
https://doi.org/10.1007/BF01327326
https://doi.org/10.1007/BF01327326
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1007/s10915-010-9358-1
https://doi.org/10.1007/s00220-013-1697-y
https://doi.org/10.1007/s00220-013-1697-y
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1137/100782115
https://doi.org/10.1090/S0025-5718-2011-02546-9
http://dx.doi.org/10.1090/S0025-5718-2011-02546-9
http://dx.doi.org/10.1090/S0025-5718-2011-02546-9
https://doi.org/10.1103/PhysRevLett.86.564
https://doi.org/10.1103/PhysRevA.89.063608
https://doi.org/10.1093/imanum/drv044
https://doi.org/10.1093/imanum/drp041
https://doi.org/10.1007/s00211-009-0213-y
https://doi.org/10.1017/S0962492902000144
https://doi.org/10.1017/S0962492902000144
https://doi.org/10.1063/1.2795218
https://doi.org/10.1137/130921520


 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

952 PATRICK HENNING AND AXEL MÅLQVIST
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