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Chemisorption of air CO2 on cellulose: an overlooked
feature of the cellulose/NaOH(aq) dissolution system
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Abstract A natural abundance of the air CO2 in

NaOH(aq) at low temperature was investigated in

terms of cellulose-CO2 interactions upon cellulose

dissolution in this system. An organic superbase,

namely 1,8-diazabicyclo[5.4.0]undec-7-ene, DBU,

known for its ability to incorporate CO2 in carbohy-

drates, was employed in order to shed light on this

previously overlooked feature of NaOH(aq) at low

temperature. The chemisorption of CO2 onto cellulose

was investigated using spectroscopic methods in

combination with suitable regeneration procedures.

ATR-IR and NMR characterisation of regenerated

celluloses showed that chemisorption of CO2 onto

cellulose during its dissolution in NaOH(aq) takes

place both with and without employment of the CO2-

capturing superbase. The chemisorption was also

observed to be reversible upon addition of water:

CO2 desorbed when water was used as regenerating

agent but could be preserved when instead ethanol was

used. This finding could be an important parameter to

take into consideration when developing processes for

dissolution of cellulose based on this system.

Keywords Cellulose � CO2 � Chemisorption �
NaOH(aq) � Dissolution � ATR-IR � NMR � DBU

Introduction

The production of textile fibres is currently a growing

market as the extensive use of textiles continues to

increase worldwide. Oil-based fibres represent, at

62.1%, the majority of all the textile fibres produced,

whilst cotton-based fibres stand for 25.1% (Lenzing

2015). Only 6.4% of the market share is wood-based

cellulose fibres, although this is category predicted to

increase substantially due not only to the increasing

world population but also to the severe environmental

problems associated with the cultivation and process-

ing of cotton, such as the use of vast amounts of water

and pesticide (Hämmerle 2011).

The most difficult challenge facing the production

of textile fibres from wood is the inability of cellulose

to dissolve in common solvents: its unique morphol-

ogy, with a semi-crystalline supramolecular structure,

requires solvents capable of overcoming the complex

intramolecular interactions within it. There is a
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number of currently available solvent systems—both

aqueous and non-aqueous (e.g. ionic liquids, amine

oxides, combinations of organic solvents with salts,

NaOH(aq), etc.)—capable of that. However, most of

them, suffer from various drawbacks, such as narrow

dissolution windows, hazardous components and poor

recyclability, and only a few are feasible in large scale

processes. Two commercially successful routes in this

context are the viscose and the Lyocell process. The

former is based on a carbon disulphide mediated

derivatisation of cellulose to form the NaOH(aq)-

soluble cellulose xanthogenate and suffers from the

hazardous properties of carbon disulfide and the

limited mechanical performance of the textile fibres.

The latter process relies on cellulose dissolution in a

direct non-derivatising solvent N-methylmorpholine

N-oxide (NMMO), with the drawback of yielding a

chemically unstable, potentially explosive spinning

dope and offering fibres with fibrillation issues. For a

more sustainable textile production based on wood

feedstock, new non–hazardous processes providing a

broader range of fibre properties are required, which

implies a strong urge to search for new solvent systems

for cellulose.

Undoubtedly one of the most attractive alternative

systems is NaOH(aq), which has been extensively

studied since the early 1930s in terms of dissolution

conditions (Davidson 1934; Sobue et al. 1939),

dissolution mechanism (Kamide et al. 1992), the

structure of the dissolved state (Yamashiki et al. 1988;

Roy et al. 2001) and, more recently, additives capable

of enhancing the dissolution (Budtova and Navard

2015). In spite of these efforts, the exact mechanism of

cellulose dissolution in NaOH(aq) is not fully under-

stood to this day. This study, however, highlights a

property of this system that has been overlooked: its

inherent ability to capture CO2 due to low tempera-

tures and high alkalinity (Lucile et al. 2012). The

presence and action of CO2 in NaOH(aq) during the

dissolution of cellulose could be of considerable

importance when considering the numerous studies

reporting on CO2 as a solvent component or a

derivatising agent for cellulose. These include a

CO2-mediated synthesis of cellulose carbonate in

different solvents as an intermediate step towards

improved dissolution in NaOH(aq) (Oh et al.

2002, 2005); dissolution of cellulose in switchable

ionic liquids based on interactions between CO2 and

strong organic bases (Zhang et al. 2013; Xie et al.

2014) and activation of cellulose by CO2 for a

subsequent acetylation (Yang et al. 2015). Moreover,

in terms of NaOH(aq), the presence of dissolved CO2

is likely to affect the properties of the solvent system

itself by consuming the hydroxide ions in well-known

conversions to HCO3
- and CO3

2- (Yoo et al. 2013)

and should as such be taken into account. Aqueous

hydroxide sorbents, in itself, have been widely studied

for direct capture of CO2 from air (Sanz-Pérez et al.

2016), but the only notation of possible effects of CO2

on cellulose in an alkaline aqueous system could be

found in a work of Pakshver and Kipershlak, dealing

with effects of carbonate ions on xanthogenation and

dissolution (Pakshver and Kipershlak 1980).

Although no specific incorporation of CO2 in

cellulose (such as carbonation) has been reported for

aqueous systems, this study—initiated by intricate

findings when employing a CO2-capturing superbase

as an activator for dissolution of cellulose in

NaOH(aq)–points out that possibility. Our early

attempts to activate cellulose fibres upon dissolution

with the superbase 1,8-diazabicyclo[5.4.0]undec-7-

ene (DBU) resulted in enhanced swelling/dissolution.

As seen in Fig. 1, when DBU was used at a ratio of

0.5 mol per mol AGU, treated fibres were more visibly

swelled compared to untreated fibres after 15 min in

8 wt% NaOH(aq) at -5�. Additionaly, an increased

tendency of gelation during the actual dissolution

process was observed when cellulose was pre-treated

with DBU prior to dissolution (see supplementary

information). This observation can be indicative of

specific cellulose-superbase-CO2 interactions leading

to enhanced dissolution and possibly an altered

structure of the dissolved state.

Based on the literature and these preliminary

findings, the feasibility of cellulose-CO2 interactions

occurring in NaOH(aq) at low temperature was inves-

tigated. A particular focus was placed on the possible

chemisorption of CO2 onto cellulose, reminiscent of a

carbonation-like reaction, during dissolution, whereas

the questions addressing quantitative effects on disso-

lution behaviour, dissolved state structure and stability

as a consequence of these interactions, as well as the

role of DBU will be addressed in upcoming studies.

ATR-IR and NMR spectroscopy were used to inves-

tigate structural changes upon the dissolution and

regeneration of cellulose.
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Materials and methods

Materials and chemicals

Microcrystalline cellulose Avicel PH-101, with a

degree of polymerisation of 350, was purchased from

FMC BioPolymer and used without further treatment.

NaOH and 1,8-diazabicyclo[5.4.0]undec-7-ene

(DBU) were purchased from Sigma-Aldrich and also

used as received. All other chemicals were purchased

from commercial sources and used without further

treatment.

Dissolution and regeneration method

Cellulose was dispersed in deionised water with the

addition of DBU ranging from 0 to 3 mol DBU per

mol AGU to give a final solution concentration of

3 wt% and placed in a refrigerator at ?5�C until cool.

The pre-cooled cellulose suspension was added to a

30 mL sample tube containing NaOH(aq), with a final

solution concentration of 8 wt%, at -5 �C and the

mixture was stirred for 1 h. Thereafter, the cellulose

dope was quenched and regenerated by the addition of

10 mL ethanol. The precipitate was then washed with

ethanol until neutral, filtered off and freeze dried to

maintain a porous structure.

Henceforth, the cellulose dissolved and regenerated

from NaOH(aq) is referred to as ‘‘regenerated cellu-

lose’’ and the cellulose dissolved and regenerated from

NaOH(aq) after pre-treatment with DBU as ‘‘pre-

treated regenerated cellulose’’ in the characterisation.

Characterisation

Cellulose and regenerated cellulose samples were

examined using Fourier Transform Infrared (FT-IR)

spectroscopy collected on a PerkinElmer Frontier

equipped with an Attenuated Total Reflectance (ATR)

sampling accessory, PIKE Technologies GladiATR.

Samples were placed on top of the ATR crystal and

secured using a metal clamp to ensure consistent

pressure; they were measured with a resolution of

4 cm-1 and 32 scans. All spectra were corrected

against air, normalised to the highest band and shown

without an absorbance scale.

Nuclear Magnetic Resonance (NMR) spectra were

recorded using an 800 MHz magnet equipped with a

Bruker Avance HDIII console and a CP TXO 800S7

C/N-H-D-05 Z LT cryoprobe. The one-dimensional
13C spectra were recorded using a z-restored spin-echo

sequence (Xia et al. 2008) with a relaxation delay (d1)

of 3.0 s, at 298 K and a total of 2048 scans.

Measurements were recorded for a 30 mg sample in

dimethyl sulphoxide (DMSO d6) with five drops of

1-ethyl-3-methylimidazolium acetate (EMIMAc) as

solvent. EMIMAc was chosen because it dissolves

cellulose and shows no chemical shifts in the region of

60–110 ppm, where the cellulose carbon signals

appear. It has been reported that the solvent effect of

DMSO on the chemical shifts of EMIMAc is minor

(Hesse-Ertelt et al. 2010). The chemical structures of

cellulose and EMIMAc are shown in Fig. 2, in which

cellulose carbons are labelled with a small c for

cellulose to distinguish them from the EMIMAc

carbons.

Fig. 1 Dissolution of cellulose fibres in 8 wt% NaOH(aq) at -5 �C a) untreated, b) pre-treated with 0.5 mol DBU/mol AGU
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Results and discussion

Initial dissolution and regeneration studies

A series of cellulose dissolution experiments with and

without DBU pre-treatment was performed, followed

by regeneration with ethanol or water. Descriptions of

the visual appearance during dissolution and regener-

ation of all the samples are given in the supplementary

information.

The dissolution process of untreated cellulose

appeared to differ from that of cellulose pre-treated

with DBU, where the latter gave a solution visibly

containing gas bubbles and had a tendency to gel much

faster than the former during dissolution; when the

amount of DBU in the pre-treatment was increased,

gelation occurred even faster. In the light of the

extensively reported ability of DBU to capture CO2 in

the presence of H-donors (Heldebrant et al.

2005, 2008; Jessop et al. 2005; Yang et al. 2011;

Mizuno et al. 2012; Carrera et al. 2015; Rajamanickam

et al. 2015), these observations could be interpreted as

indicative of CO2 interactions with cellulose/NaO-

H(aq) along with changes in the dissolved state

stability.

Indeed, a thermal treatment analysis (monitored by

Diffuse Reflectance Infrared Fourier Transform Spec-

troscopy, DRIFT with mass spectrometry) of one of

the pre-treated and ethanol regenerated samples could

confirm desorption of CO2 along with water during a

temperature ramping (see supplementary

information).

Chemical structures of dissolved and regenerated

cellulose

The chemical structure of the reference and the

regenerated samples was evaluated using ATR-IR

and NMR spectroscopy. Figure 3 shows the ATR-IR

spectra for the reference cellulose together with the

dissolved and ethanol regenerated cellulose (both

untreated and DBU pre-treated). The most prominent

change in the ATR-IR bands upon DBU pre-treatment,

followed by subsequent dissolution and regeneration,

was the appearance of a new band at 1593 cm-1. The

origin of this band is commonly attributed to a cellu-

lose bound carbonate ion (Zhbankov 1966; Oh et al.

2005) and might indicate the chemisorption of CO2

during the dissolution of cellulose in NaOH(aq) pre-

treated with DBU.

Surprisingly, the same carbonate absorption band

could be observed for the ethanol regenerated samples

dissolved without the DBU pre-treatment. In the case

of the DBU pre-treated samples, the band at

1028 cm-1 had a slightly changed intensity, corre-

sponding to the CH2-OH primary alcohol (Santiago

Cintrón and Hinchliffe 2015).

Interesting to note was that the samples regenerated

with water, displayed in Fig. 4, showed no band at

1590 cm-1 thus suggesting a reversible CO2

chemisorption disfavoured by the extensive addition

of water, strongly reminiscent of behaviour of alkyl

carbonates (see the discussion below).

Other spectral changes observed relative to the

reference sample (e.g. shift of the band arising from

the hydrogen-bonded OH from 3331 cm-1 in the

reference to 3370–3380 cm-1 in the regenerated

samples, as well as the shift and intensity change of

the bands at 1315 and 896–899 cm-1) can be

attributed to expected crystalline rearrangements from

cellulose I to cellulose II upon dissolution and

regeneration (Nelson and O’Connor 1964; Oh et al.

2005).

Further studies were carried out using both 1D and

2DNMR spectroscopy. Chemical shifts obtained from
1H to 13C NMR spectra for the solvent, reference

cellulose and regenerated samples are shown in

Table 1. Figure 5 shows the 13C NMR spectrum for

the reference cellulose together with dissolved and

ethanol regenerated cellulose (both untreated and

DBU pre-treated). A new signal, commonly assigned

to a carbonate incorporated in an organic structure

Fig. 2 Chemical structures

of cellulose (numbers

followed by the subscript c

for cellulose) and EMIMAc
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(Elschner and Heinze 2015) appeared at 154.3 ppm

for the samples regenerated with ethanol, thereby

confirming the findings from the ATR-IR spec-

troscopy analysis. In addition, new signals could be

observed at 66.6 and 69.4 ppm in the cellulose area.

Based on previously reported assignments (Kono

2013a, b) of cellulose carbon signals and related

intramolecular interactions encountered in

derivatives, these new signals could be assumed to

originate from the carbons at the 6c (C6c) and 2c (C2c)

positions that are affected by the chemisorption of

CO2. It is possible that the signal at 66.6 ppm

represents the C6c becoming deshielded by the

incorporated CO2 (e.g. similar a carbonate-like com-

plex (Kosugi et al. 2000)) and therefore appears at a

new shift moved downfield. When the hydrogen
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Fig. 3 ATR-IR spectra of reference, regenerated cellulose and pre-treated regenerated cellulose (both regenerated in ethanol) from a)
400–4000 cm-1 and b) magnified in the zone of 500–1800 cm-1
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Fig. 4 ATR-IR spectra of reference, ethanol regenerated cellulose and water regenerated cellulose a) 400–4000 cm-1 and b)
magnified in the zone of 400–1800 cm-1
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bonding between the hydroxyl groups on these

carbons is altered, the signal at 69.4 ppm would then

be recognised as the C2c, and results in the chemical

shift of C2c being moved upfield. The signals at 66.6

and 69.4 ppm are henceforth referred to as C6c’ and

C2c’ respectively.

Furthermore, in addition to the new signals in the

cellulose area, all carbons in the EMIM cation

(EMIM?) were also clearly affected for the ethanol

regenerated cellulose samples: exhibiting a new

resonance structure and thus indicating specific inter-

action with the new cellulose structure. Signals at

120.6, 122.5 and 141.5 ppm in particular seemed to be

affected significantly by this specific interaction (see

supplementary information). The same phenomenon

of a new resonance structure was found in the 1HNMR

spectra for samples regenerated with ethanol.

Moreover, corresponding cellulose samples regen-

erated using water show neither the carbonate signal at

154.3 ppm nor the new signals anticipated as origi-

nating from the cellulose carbons and EMIM? struc-

tures involved in interactions with CO2 (Fig. 6). This

indicates that the incorporation of CO2 into cellulose

under the conditions studied is reversible and not

Table 1 1H- and 13C-NMR chemical shifts in ppm of cellulose and EMIMAc in DMSO d6/EMIMAc

H1c H2c H2c
0 H3c H4c H5c H6c H6c

0

Reference 4.39 2.98 – 3.37 3.30 3.23 3.60

3.69

–

RC 4.39 2.99 3.60 3.37 3.31 3.23 3.60

3.69

3.17

3.26

PRC 4.39 2.98 3.59 3.36 3.30 3.22 3.60

3.69

3.17

3.26

C1c C2c C2c
0 C3c C4c C5c C6c C6c

0 CO (carbonyl)

13C-NMR chemical shift of cellulose [ppm]

Reference 107.7 73.5 – 74.8 79.0 75.6 60.1 – –

RC 102.7 73.5 69.4 74.8 78.9 75.5 60.0 66.6 154.3

PRC 102.7 73.4 69.3 74.8 78.9 75.5 60.0 66.6 154.3

H1 H2 H3 H4 H5 H6 H7

1H-NMR chemical shifts of EMIMAc [ppm] (the signals affected by the CO2 chemisorption are highlighted)

Solvent 7.85 7.95 10.26 3.88 4.22/4.21

4.24/4.23

4.23/4.22

1.40 1.39 1.38 1.58

Reference 7.81 7.90 9.99 3.87 4.21/4.20

4.23/4.22

1.40 1.39 1.38 1.60

RC 7.90 7.80 9.95 3.87 4.21/4.20

4.23/4.22

1.40 1.39 1.38 1.59

PRC 7.89 7.79 9.93 3.87 4.21/4.20 1.40 1.39 1.38 1.59

C1 C2 C3 C4 C5 C6 C7 C8

13C-NMR chemical shifts of EMIMAc [ppm]

Solvent 123.5 122.0 137.8 35.4 43.9 15.2 26.2 173.2

Reference 123.5 122.0 137.5 35.5 43.9 15.2 25.8 173.8

RC 123.5 122.0 137.4 35.5 44.0 15.2 25.9 173.9

PRC 123.5 122.0 137.4 35.5 44.0 15.2 25.9 173.9

RC regenerated cellulose (ethanol)

PRC pre-treated regenerated cellulose (ethanol)

2432 Cellulose (2017) 24:2427–2436
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favoured when the alkalinity of the system is

decreased by the extensive addition of water, which

is a behaviour (reported as hydrolysability) expected

of alkyl carbonates when brought into aqueous

conditions (Franchimont 1910). Regeneration with

ethanol, on the other hand, can be assumed to facilitate

a fast aggregation of cellulose chains, as it has been

shown that dissolved cellulose contracts strongly in

alcohol when compared to water (Gavillon and

Budtova 2007). This strong contraction could then

be the reason for ethanol being able to preserve the

chemisorbed CO2 i.e. it does not come into contact

with pure water and thereby avoids undergoing the

reversible chemisorption process, which could also be

observed with ATR-IR spectroscopy.

The origin of the new signals in the cellulose area

was investigated with 2D NMR using Heteronuclear

Single Quantum Coherence (HSQC), as this enables

the structural assignment of each carbon in the

cellulose repeating unit despite overlapping multiplets

in the proton spectrum. An example of a HSQC

spectrum for a sample regenerated using ethanol is

shown in Fig. 7. This spectrum confirms that the new

signal at 66.6 ppm couples to protons of a CH2 group

6065707580859095100105140145150155160165

(a)

(b)

(c)

δ (ppm)

Fig. 5 13C NMR spectra of a) reference cellulose b) untreated
cellulose dissolved in NaOH(aq) and regenerated in ethanol and

c) pre-treated cellulose dissolved in NaOH(aq) and regenerated

in ethanol. All measurements were recorded at room temper-

ature in DMSO d6/EMIMAc

6065707580859095100105140145150155160165

(a)

(b)

(c)

δ (ppm)

Fig. 6 13C NMR spectra of a) reference cellulose, b) pre-

treated cellulose dissolved in NaOH(aq) and regenerated with

ethanol and c) pre-treated cellulose dissolved in NaOH and

regenerated with water. All measurements were recorded at

room temperature in DMSO d6/EMIMAc
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with chemical shifts of 3.17 and 3.26 ppm,which are in

a reasonable range for protons attached to a substituted

C6 and, thus, further supports the implication that this

signal originates from a substituted C6c position.

Similarly, the signal at 69.4 ppm shows a correlation

with a single proton at 3.59 ppm which, in turn,

supports the assignment of this signal as a shifted C2c.

Heteronuclear Multiple-Bond Correlation (HBMC)

was used in an attempt to investigate a possible

correlation between the signal observed at 154.3 ppm,

(anticipated as originating from the chemisorbed CO2)

and cellulose since it commonly detects correlations

across two, three and up to four bonds in conjugated

systems arising from so-called long-range couplings.

Unfortunately, no coupling was detected between the

carbonate signal at 154.3 ppm and any of the carbons

that could be seen in the cellulose area, most likely due

to weak couplings (Bubb 2003). Aminor coupling was

nevertheless found between the carbonate signal and

the two new signals at 122.7 and 141.7 ppm which, in

turn, could be correlated to the new resonance structure

for the EMIM? described above. This new resonance

structure is likely to originate from a subsequent

chemisorption between EMIMAc and CO2 due to the

ability of EMIMAc to form a carbene (Kelemen et al.

2011). These findings indicate that a possible reaction

takes place between the cellulose-sorbed CO2 and the

EMIM?, yielding a carboxylated EMIM? with char-

acteristic NMR signals (Besnard et al. 2012; Kortunov

et al. 2015) coincident with the signals observed at

154.3 and 141.5 ppm. It is, however, important to bear

in mind that the carbonate band seen in the ATR-IR

spectroscopy in which no EMIMAcwas present shows

that the signal at 154.3 ppmdoes not originate from the

EMIMAc but is introduced during the dissolution of

cellulose in NaOH(aq).

The new signals detected in the cellulose area could

then be interpreted as being either the result of changes

in the hydrogen bonding pattern occurring after the

reversed chemisorption of CO2 by EMIM?, or the fact

that there is a residual CO2 chemisorbed onto the

cellulose that affects the chemical shifts in a manner

similar to the impact of substitution.

The specific carboxylation reaction between CO2

and EMIM? has been reported previously by Besnard

et al. (2012) and Kortunov et al. (2015), who showed

that the signal at 141.5 ppm corresponds to the

carboxylated C3 position in EMIM?. The protons at

the position H1-H3 in EMIM?, highlighted in Table 1,

are also clearly influenced by the carboxylation

reaction. This result supports the hypothesis that

CO2 is chemisorbed on cellulose during dissolution

in NaOH(aq) at low temperature forming a carbonate-

like cellulose-CO2 complex that is preserved during

2.83.03.23.43.63.84.04.24.44.6
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Fig. 7 1H-13C HSQC NMR

spectrum of pre-treated

regenerated cellulose

recorded at room

temperature in DMSO d6/

EMIMAc
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subsequent regeneration in ethanol and further rear-

ranged to EMIM?-CO2- cellulose during dissolution

in DMSO d6/EMIMAc.

Conclusions

Specific interactions of CO2 with cellulose is a

parameter to take into consideration when cellulose

is dissolved in NaOH(aq) at low temperature.

Although these interactions may be promoted by the

presence of so-called ‘‘CO2-capturing superbases’’

(such as DBU), they are generally present in the

cellulose/NaOH(aq) system. The chemisorption of

CO2 onto cellulose in this solvent system was

confirmed by ATR-IR (as a new band in the cellulose

spectrum commonly attributed to an organic carbon-

ate-ion) and NMR spectroscopy (a new signal

attributed to a carbonate originating from CO2 incor-

porated in cellulose). The process is reversible, as CO2

desorbs upon regeneration with water. Regeneration

with ethanol, on the other hand, preserves the

chemisorbed CO2. These results provide new knowl-

edge on the dissolution of cellulose in NaOH(aq) and

will be explored further regarding the potential of

utilizing cellulose-CO2 interactions to control the

dissolution and regeneration processes in this system.
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University of Technology. The authors are grateful to the
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