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A three-dimensional (3D) direct numerical simulation (DNS) study of the propagation of a reaction wave
in forced, constant-density, statistically stationary, homogeneous, isotropic turbulence is performed by solving
Navier-Stokes and reaction-diffusion equations at various (from 0.5 to 10) ratios of the rms turbulent velocity
U ′ to the laminar wave speed, various (from 2.1 to 12.5) ratios of an integral length scale of the turbulence to
the laminar wave thickness, and two Zeldovich numbers Ze = 6.0 and 17.1. Accordingly, the Damköhler and
Karlovitz numbers are varied from 0.2 to 25.1 and from 0.4 to 36.2, respectively. Contrary to an earlier DNS study
of self-propagation of an infinitely thin front in statistically the same turbulence, the bending of dependencies
of the mean wave speed on U ′ is simulated in the case of a nonzero thickness of the local reaction wave. The
bending effect is argued to be controlled by inefficiency of the smallest scale turbulent eddies in wrinkling the
reaction-zone surface, because such small-scale wrinkles are rapidly smoothed out by molecular transport within
the local reaction wave.

DOI: 10.1103/PhysRevE.95.063101

I. INTRODUCTION

The critical point of the theory of turbulent reacting flows
stems from averaging reaction rates subject to fluctuations in
the local concentrations and temperature T . The problem is
particularly severe in the case of premixed burning, because
(i) the rates of reactions that control heat release depend
on T in a highly nonlinear manner, (ii) the magnitudes
of the temperature fluctuations are typically large, and (iii)
these fluctuations exhibit a wide range of length and time
scales [1–3]. Accordingly, even most advanced models of a
highly nonlinear multiscale problem such as the influence
of turbulence on premixed combustion invoke a number of
simplifications, i.e., highlight certain local effects but ignore
many others. Such models are commonly assessed by (i)
applying them to Reynolds-averaged Navier-Stokes (RANS)
or large eddy simulation (LES) of an experiment and (ii)
comparing obtained numerical results with measured data.
However, such a test does not offer an opportunity to scrutinize
the model foundations, e.g., to reveal a particular assumption
that causes eventual disagreement between the numerical and
experimental data.

Recent research trends in the field of turbulent burning
indicate that a breakthrough in assessing and ranking various
models by scrutinizing their foundations becomes possible
thanks to the rapid development of computer hardware and
software, which has made direct numerical simulation (DNS)
of turbulent reacting flows feasible. Progress made in this area
over the past years was very impressive. In particular, the lead-
ing research groups succeeded already in 3D DNSs of highly
turbulent premixed flames by allowing for density variations
and complex combustion chemistry [4–10]. Moreover, DNS
of laboratory flames were also performed [11,12]. However,
while advancement to simulations of increasingly challenging
problems was in the focus of the numerical combustion
community over the past decade, unique opportunities offered

by DNS for scrutinizing foundations of turbulent combustion
models did not seem to be exploited in full measure.

The point is that the vast majority of models of the influence
of turbulence on premixed combustion (i) deal with single-step
chemistry and (ii) neglect density variations, with a few
exceptions [13–16]. Accordingly, to explore foundations of
such models, heavy DNS with complex chemistry are not
necessary, but extension of the range of studied conditions
appears to be of paramount importance. Indeed, several
recent DNS studies of variable-density single-step-chemistry
turbulent premixed flames [17–22] aimed at assessing mod-
els of premixed turbulent burning and exploring physical
mechanisms of turbulent combustion. However, to perform
a target-directed investigation of many models, DNS of a
constant-density reacting flow makes sense, because problems
addressed by the models and simulations are as close as
possible in such a case. Nevertheless, DNS of a constant-
density turbulent reacting flow was beyond the focus of the
combustion community in this century.

The goal of the present work is to fill this gap by
highlighting and discussing certain effects, which are observed
in constant-density DNS, but appear to be of importance for
understanding and modeling premixed turbulent flames. In the
first two papers of the present series [23,24], we explored such
effects by analyzing DNS data obtained in computations of
self-propagation of an infinitely thin interface in homogeneous
isotropic turbulence. The present work extends the previous
study by (i) considering a reaction wave of a nonzero thickness,
with all other things being equal, and (ii) investigating the
influence of the thickness on the mean wave characteristics
such as its speed and thickness, turbulent scalar transport
within the mean wave, etc. Such an extension of the previous
work appears to be a reasonable second step in a step-by-step
study of a role played by various phenomena (self-propagation
of an infinitely thin front, nonzero thickness of a reaction
wave, Lewis number and preferential diffusion effects, density
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variations, and, finally, complex chemistry) in premixed
turbulent combustion.1

The present paper is organized as follows. In the next two
sections, governing equations are briefly summarized and DNS
attributes are reported. The obtained results are discussed in
Sec. IV, followed by our conclusions.

In order to stress the difference between constant-density
turbulent flow and turbulent burning accompanied by signifi-
cant density variations, we will avoid terms flame and flamelet
when discussing constant-density DNS data in the rest of the
paper. For instance, a statistically planar spatial region that
envelops all local reaction waves at a single instant will be
called a mean wave or mean wave brush. The mean speed of
this mean wave brush with respect to the mean flow will be
called a mean wave speed. Nevertheless, because the present
study aims at clarifying basic issues associated with premixed
turbulent combustion, the same symbol δT will designate both
a mean flame brush thickness and a mean wave thickness
obtained in the present DNS. Similarly, the same symbol
ST will designate both a turbulent flame speed or burning
velocity and a mean wave speed obtained in the present DNS.
Furthermore, the speed of the self-propagation of the wave
will be designated with symbol SL, which is associated with
the laminar flame speed in the combustion literature. Finally,
we will use words combustion and flame when comparing the
present DNS results with various models of premixed turbulent
burning or experimental and DNS data obtained from flames.

II. GOVERNING EQUATIONS

The background turbulent flow is described by the constant-
density continuity

∇·u = 0 (1)

and Navier-Stokes

∂u
∂t

+ (u·∇)u = −ρ−1∇p + ν∇2u + f (2)

equations, where t is time; u is the flow velocity vector; ρ,
ν, and p are the density, kinematic viscosity, and pressure,
respectively; and a vector function f is added in order to
maintain constant turbulence intensity by using energy forcing
at low wave numbers.

Propagation of a reaction wave of a nonzero thickness
is modeled by the following convection-diffusion-reaction
equation:

∂c

∂t
+ u·∇c = D∇2c + W (3)

1As kindly noted by a reviewer, the first three steps were already
passed for a simpler relevant problem, i.e., propagation of a
hydrodynamically passive reaction wave through a stationary two-
dimensional (2D) array of single-scale vortices [25–28]. However,
Kagan and Sivashinsky [26] noted that certain results computed
by them might not “hold for turbulent combustion” and suggested
to extend their “study over multiscale, time-dependent and random
velocity fields” (p. 229). The present work responds to such a request
in the 3D case.

for a scalar field c, which is equal to zero and unity in fresh
reactants and products, respectively. The molecular diffusivity
D is set to be constant and the reaction rate

W = 1

1 + τ

1 − c

τR

exp

[
−Ze(1 + τ )2

τ (1 + τc)

]
(4)

depends on c in a highly nonlinear manner. Here, τR is a
constant reaction time scale, τ = 6, and the parameter Ze,
called the Zeldovich number via an analogy with premixed
combustion, is specified in Tables II and III in Sec. III. To
further draw the analogy with combustion, (i) a sum (1 +
τ ) is counterpart of the density ratio ρu/ρb in a premixed
flame, where subscripts u and b designate unburned and burned
gas, respectively, and (ii) the scalar c is associated with the
combustion progress variable, which is equal to 1 − y/yu =
(T − Tu)/(Tb − Tu) if the Lewis number Le = a/D = 1. Here,
y is the mass fraction of the deficient reactant, and a is the
molecular heat diffusivity of the mixture.

In the present work, DNS cases were set up by specifying
(i) Ze, (ii) the speed SL of the steady propagation of the planar
reaction wave in quiescent flow, and (iii) the wave thickness
δF = D/SL. To do so, the diffusivity D and time scale τR were
tuned in simulations of planar one-dimensional (1D) laminar
waves in order to obtain required SL and δF .

Results obtained in the present DNS will be compared
with recent DNS data [24] computed by solving the level-set
equation [29]

∂G

∂t
+ u · ∇G = SL|∇G| (5)

instead of Eq. (3), with all other things being equal. Here, G is a
signed distance function to the closest interface associated with
G(x,t) = 0, the field of c(x,t) = H [G(x,t)] is the counterpart
of the c field modeled using Eq. (3) in the present work, and
H (z) is the Heaviside function. The interface speed SL was
kept constant by Yu et al. [24].

III. NUMERICAL METHOD AND
SIMULATION CONDITIONS

The computational domain is a fully periodic rectangular
box of size of Lx × Ly × Lz with Lx = 4Ly = 4Lz = 4L.
The domain is discretized using a uniform staggered Carte-
sian grid of Nx × Ny × Nz cells with Nx = 4Ny = 4Nz.
Most results reported in the present paper were obtained
using three different domains (three different L), but retain-
ing the same spatial resolution �x = �y = �z = Lx/Nx =
Ly/Ny = Lz/Nz. In all cases, the viscosity ν is kept constant
and equal to 1.56 × 10−4 m2/s.

Simulations were performed using a simplified in-house
DNS solver [30] developed for low-Mach-number reacting
flows and equipped with a standalone stiff chemistry solver for
a general kinetic mechanism. The solver was already applied
to various reacting flow systems [31–34]. In the original solver,
the temporal integration of the governing equations is based
on a second-order symmetrical Strang splitting algorithm. In
the present work, the solver is simplified because the source
term W (c) given by Eq. (4) is not stiff. In particular, when
numerically integrating Eq. (3), temporal advancement is per-
formed for a full time-step (�t = tn+1 − tn = 0.029�x/U ′)
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using the Adams-Bashforth method in multiple subtime steps,
i.e., �t∗ = �t/K = t k+1

∗ − t k∗ , k = 0, . . . ,K , t0
∗ = tn, K > 1.

Accordingly,

c(t k+1
∗ ) − c(t k∗ )

�t∗
= 3

2
D(t k∗ ) − 1

2
D(t k−1

∗ ) + (1 + ak)H(tn)

− akH(tn−1), (6)

where ak = (k + 1/2)/K is an interpolation coefficient and
D = D∇2c and H = −u·∇c + W are the diffusion term and
the sum of the convection and reaction terms, respectively.
In order to reduce the computational costs, the H term is
evaluated for the full time step. Such a solution is feasible,
because the stability of the numerical scheme is mainly
controlled by the diffusion term.

The convection term is discretized using a fifth-order
weighted essentially nonoscillatory (WENO) scheme [35],
whereas all other spatial terms are discretized using sixth-order
center schemes.

The constant-density flow solver is largely identical to the
solver used by us earlier [23,24], but the multigrid solver [36]
for the constant-coefficient Poisson equation with periodic
boundaries is replaced with an accurate spectrum solver using
an open-source, parallel version of FFTW3 (mpi-fftw). The
DNS code is implemented in a vector form enabling 1D, 2D,
and 3D simulations.

The initial turbulence field is generated by synthesizing
prescribed Fourier waves [37] with an initial rms velocity
U ′

0 and a turbulence length scale �0 = L/4. As a special
case by Lamorgese et al. [38], the forcing function f (x,t) =∑

κ f̂ κ (t) exp(iκ · x) is invoked in order to maintain statically
stationary turbulence. Here,

f̂ κ (t) = 〈ε〉 1κ−κ r (t)

ûκ (t) · û∗
κ (t)

ûκ (t) (7)

is the Fourier mode of f in the wave-number κ space,

ε = 2νSijSij = ν

2

(
∂ui

∂xj

+ ∂uj

∂xi

)(
∂ui

∂xj

+ ∂uj

∂xi

)
(8)

is the dissipation rate, and the bracket 〈·〉 designates av-
eraging over entire domain. The caret operator designates
the complex Fourier mode q̂κ (t) = 〈q(x,t) exp(−iκ · x)〉
for any q, a superscript star denotes a complex conju-
gate, 1κ−κ r

= 1 when κ = κ r or vanishes otherwise, κ r =
{2πmx/Lx,2πmy/Ly,2πmz/Lz} is a randomly selected (at
each time step) nonzero wave-number vector within a user-
specified lower wave-number band, i.e., |κ r | � κf , and m is a
random integer vector. By adopting the same forcing technique
with κf /κ0 = 3, where κ0 = 2π/L, Yu et al. [23,24] showed
that (i) the rms velocity U ′ was maintained as the initial
value, i.e., U ′ = U ′

0, (ii) the normalized averaged dissipation
rate (�0/U

′
0

3)〈ε〉 fluctuated slightly above 3/2 after a short
period (t < τ 0

t = �0/U ′
0) of rapid transition from the initial

artificially synthesized flow to developed turbulence, (iii)
the forced turbulence achieved statistical homogeneity and
isotropy over the entire domain (see also Fig. 1), and (iv)
the energy spectrum showed a sufficiently wide range of the
Kolmogorov scaling (−5/3) at Re0 = U ′

0�0/ν = 200.
Most present results were obtained at the same ratio of

κf /κ0 = 3. In such a case, three basic turbulence fields were
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FIG. 1. Longitudinal autocorrelation functions Ru
11 (black), Rv

11

(red), and Rw
11 (blue) obtained from statistically stationary turbulence

maintained using three forcing radii; κf /κ0 = 1 (solid lines), 3
(dashed-dotted lines), and 6 (dashed lines). Re0 = 200.

generated by specifying three different values Re0 = 50, 100,
or 200 of the initial turbulent Reynolds number, which was
increased by increasing the domain size L. The first three
lines in Table I show characteristics of these three fields,
calculated after the forced turbulence reached statistical
stationarity, i.e., at t > 5τ 0

t . Here, L11 = ∫ L/2
0 Ru

11(r)dr ≈∫ L/2
0 Rv

11(r)dr ≈ ∫ L/2
0 Rw

11(r)dr and τt = L11/U ′ are the
longitudinal integral length scale and the corresponding time
scale, respectively, η = (ν3/〈ε〉)1/4 and τη = (ν/〈ε〉)1/2 are
the Kolmogorov length and time scales, respectively, 〈ε〉 is the
dissipation rate averaged both over the computational domain
and time, � = (3U ′2/2)

3/2
/〈ε〉 is another turbulence length

scale, which is often used in DNS papers, and Ret = U ′L11/ν

and Re� = U ′�/ν are the Reynolds numbers based on the
length scales L11 and �, respectively. The autocorrelation
functions Ru

11(r) = 〈u(x,y,z)u(x + r,y,z)〉/U ′2,
Rv

11(r) = 〈v(x,y,z)v(x,y + r,z)〉/U ′2, and Rw
11(r) =

〈w(x,y,z)v(x,y,z+r)〉/U ′2, averaged over the transverse
coordinates and time, are shown in dot-dashed lines in Fig. 1,
which indicates the isotropy of the generated turbulence.

Because a reaction wave does not affect turbulence in the
case of constant ρ and ν, the flow statistics were the same in
all cases that had different SL, but the same Re0 and the same
κf /κ0. Statistically, the same turbulence fields were used by
Yu et al. [23,24] in the previous DNS study of self-propagation
of an infinitely thin interface.

TABLE I. Mean flow characteristics of forced maintained
turbulence.

Re0 Nx × Ny × Nz
κf

κ0

�

Ly
Re�

L11
Ly

Ret
η

�x

τt

τ0
t

τt

τη

L11
η

50 256 × 642 3 0.20 41 0.13 26 0.68 0.51 5.5 12
100 512 × 1282 3 0.26 105 0.12 48 0.87 0.47 6.2 17
200 1024 × 2562 3 0.30 241 0.11 86 1.07 0.42 7.4 25
200 1024 × 2562 1 0.71 566 0.20 158 1.32 0.79 9.1 38
200 1024 × 2562 6 0.14 114 0.06 50 0.88 0.25 6.4 18
50∗ 1024 × 2562 3 0.20 41 0.13 26 2.69 0.51 5.5 12
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TABLE II. Basic DNS cases.

Case Re0 κf /κ0 L11/Ly Ze U ′/SL L11/δF Da Ka δF /η δT /L11 ST /U ′

05-21 50 3 0.13 6.0 0.5 2.1 4.1 1.3 5.9 1.43 2.18
1-21 50 3 0.13 6.0 1.0 2.1 2.1 2.7 5.9 2.05 1.31
2-21 50 3 0.13 6.0 2.0 2.1 1.0 5.4 5.9 2.86 0.90
5-21 50 3 0.13 6.0 5.0 2.1 0.4 13.4 5.9 3.99 0.57
10-21 50 3 0.13 6.0 10.0 2.1 0.2 26.9 5.9 5.22 0.40
05-37 100 3 0.12 6.0 0.5 3.7 7.5 0.8 4.6 1.57 2.45
1-37 100 3 0.12 6.0 1.0 3.7 3.7 1.7 4.6 2.43 1.69
2-37 100 3 0.12 6.0 2.0 3.7 1.9 3.3 4.6 3.22 1.27
5-37 100 3 0.12 6.0 5.0 3.7 0.7 8.4 4.6 4.28 0.80
10-37 100 3 0.12 6.0 10.0 3.7 0.4 16.7 4.6 4.99 0.55
05-67 200 3 0.11 6.0 0.5 6.7 13.5 0.6 3.8 1.78 2.77
1-67 200 3 0.11 6.0 1.0 6.7 6.7 1.1 3.8 2.69 2.06
2-67 200 3 0.11 6.0 2.0 6.7 3.4 2.2 3.8 3.43 1.61
5-67 200 3 0.11 6.0 5.0 6.7 1.3 5.5 3.8 4.34 1.11
10-67 200 3 0.11 6.0 10.0 6.7 0.7 11.0 3.8 4.74 0.76
05-125 200 1 0.20 6.0 0.5 12.5 25.1 0.4 3.0 1.47 3.00
1-125 200 1 0.20 6.0 1.0 12.5 12.5 0.7 3.0 2.15 2.23
2-125 200 1 0.20 6.0 2.0 12.5 6.3 1.4 3.0 2.77 1.80
5-125 200 1 0.20 6.0 5.0 12.5 2.5 3.6 3.0 3.69 1.42
10-125 200 1 0.20 6.0 10.0 12.5 1.3 7.2 3.0 4.27 1.00

In the present work, two more turbulence fields were
generated by setting κf /κ0 equal to 1 or 6, see the fourth
and fifth lines in Table I, in order to change ratios of L11/L

and �/L by retaining the same U ′ and ν [39]. As shown in
Fig. 1, a smaller forcing radius yields wider autocorrelation
functions and, therefore, larger L11.

It is worth stressing that the fields obtained at (i) Re0 =
100 and κf /κ0 = 3 and (ii) Re0 = 200 and κf /κ0 = 6 are
characterized by almost equal Ret or L11, but a ratio of
L11/L is larger by a factor of about two in the former case.
Accordingly, these two turbulence fields were used in order
to gain insight into eventual influence of the relative width
L/L11 of the computational domain on obtained results, with
all other things being approximately equal. As will be shown
later, such an influence is weak, because the autocorrelation
functions vanish (if κf /κ0 � 3) at distance r equal to half the
width of the computational domain; see Fig. 1.

In the five aforementioned cases, the Kolmogorov length
scale η was on the order of the grid cell size �x, thus implying
sufficient grid resolution. Nevertheless, in order to assess
sensitivity of computed results to numerical resolution, highly
resolved simulations, see the bottom line in Table I, were also
run.

Table II reports characteristics2 of 20 basic DNS cases
studied in the present work. There are four sets of five
cases each, with the first, second, third, and fourth sets being
associated with the four turbulence fields addressed in the
four first lines in Table I, respectively. The first three sets
are characterized by the same κf /κ0 = 3 and L11/L ≈ 0.1,
whereas the fourth set is characterized by κf /κ0 = 1 and
L11/L ≈ 0.06. Moreover, all 20 cases are characterized by
the same Zeldovich number Ze and the same laminar wave

2The fully developed mean wave thickness δT and speed ST ,
reported in the last two columns, will be discussed in Sec. IV.

thickness δF . These cases cover four different values of Ret ,
four different values of L11/δF , and five different values of
U ′/SL, which was changed by varying SL, i.e., τR and D in
Eq. (4). Each basic case is named using two numbers, a ratio
of U ′/SL and a ratio of L11/δF . For instance, the name 05-21
or 10-125 of the first or last case, respectively, means that
U ′/SL = 0.5 or 10, respectively and L11/δF = 2.1 or 12.5,
respectively.

Within each set, all five cases are characterized by the
same Ret , the same L11/δF , but U ′/SL and the Karlovitz
number Ka = (δF /SL)(〈ε〉/ν)1/2 are increased from the first
to the last case, whereas the Damköhler number Da =
(L11/U ′)/(δF /SL) is decreased. Each of the four cases is
characterized by the same U ′/SL, but increasing L11/δF is
characterized by increasing Ret and Da, but decreasing Ka.
Thus, these 20 cases allow us to independently explore the
influence of (i) U ′/SL and (ii) L11/δF (or Ret ) on turbulent
reaction waves.

However, variations in L11/δF and Ret in the basic cases are
linked, with all these 20 reaction waves being characterized by
different Da or Ka. Accordingly, to gain insight into effects
caused by variations in Ret under conditions of constant
U ′/SL, L11/δF , and Da, cases 05-21-4δ and 10-21-4δ, see
Table III, are designed to be counterparts of the basic cases
05-21 and 10-21, respectively. For this purpose, the thickness
δF is increased by a factor of about 3.3 by changing τR and D
in Eq. (4). This factor is less than four, because L11/Ly = 0.13
and 0.11 at Re0 = 50 (cases 05-21 and 10-21) and Re0 = 200
(cases 05-21-4δ and 10-21-4δ), respectively; see Table I. In
addition, (i) case 10-21-4δ−Ze, which is counterpart of case
10-21-4δ, and (ii) cases 10-21∗ and 10-21∗-Ze are set to explore
the influence of Ze on the computed results. Moreover, a
comparison of results obtained in cases 10-21 and 10-21∗
offers an opportunity to assess the sensitivity of numerical
data to mesh resolution, because the mesh size Nx is larger
by a factor of four in the latter case; see the bottom line

063101-4



DIRECT NUMERICAL SIMULATION STUDY OF . . . PHYSICAL REVIEW E 95, 063101 (2017)

TABLE III. Other DNS cases.

Case Re0 κf /κ0 L11/Ly Ze U ′/SL L11/δF Da Ka δF /η δT /L11 ST /U ′

05-21-4δ 200 3 0.11 6.0 0.5 2.1 4.1 1.8 12.3 1.52 2.19
10-21-4δ 200 3 0.11 6.0 10.0 2.1 0.2 36.2 12.3 5.67 0.42
10-21-4δ-Ze 200 3 0.11 17.1 10.0 2.1 0.2 36.2 12.3 5.21 0.41
10-21∗ 50 3 0.13 6.0 10.0 2.1 0.2 27.7 5.9 4.89 0.41
10-21∗-Ze 50 3 0.13 17.1 10.0 2.1 0.2 27.7 5.9 5.15 0.41
10-40-L11/L 200 6 0.11 6.0 10.0 4.0 0.4 16.1 4.5 5.28 0.58
10-G 200 3 0.06 ∞ 10.0 ∞ ∞ 0 0 5.18 1.90

in Table I. Furthermore, as already noted, comparison of
results computed in the basic case 10-37 and 10-40-L11/L

(see the next to the last lines in Tables I and III, respectively)
offers an opportunity to gain insight into eventual influence
of the width of the computational domain on the obtained
results. Finally, simulations with Re0 = 200, κf /κ0 = 3, and
U ′/SL = 10 were also performed by solving Eq. (5), see
case 10-G in Table III, in order to check consistency of the
previous [24] and present simulations.

All in all, the present DNS study addresses turbulent reac-
tion waves, which are characterized by significantly different
Damköhler (0.2 � Da � 25.1) and Karlovitz (0.4 � Ka �
36.2) numbers and, therefore, are associated with different
regimes of the wave propagation, e.g., “wrinkled flamelet”
(U ′ < SL, Da > 1, and Ka < 1) and “thin reaction zone”
(Ka > 1) regimes of premixed combustion [1].

It is worth stressing that, in the present work, certain scaling
relations widely used in combustion literature, e.g., Ret ∝
(U ′L11)/(SLδF ) and Ka2Da2 ∝ Ret , do not hold, because vari-
ations in SL and δF result not only from variations in the time
scale τR but also from variations in the diffusivity D, with the
kinematic viscosity retaining the same value in all simulations.
Thus, in order to vary a ratio of L11/δF by retaining the same
U ′/SL and the same turbulence characteristics, the Schmidt
number ν/D is varied.

By processing a profile of cL(x), obtained from a planar
laminar wave, e.g., see Fig. 2, several wave thicknesses can
be introduced in addition to δF used above. In particular, first,
δL = 1/ max(|∇c|) characterizes the thickness of a zone asso-
ciated with significant variations in cL(x) and a similar quantity
is widely used to evaluate laminar flame thickness. Second,
δr = |x(c2) − x(c1)| characterizes thickness of a reaction zone
and is equal to distance between points x(c1) and x(c2)
such that c1 < c2 and W (c1) = W (c2) = W (c∗)/2, where
c∗ is associated with the peak W ∗ = W (c∗) = max{W (c)}.
Third, the reaction-zone thickness can be characterized by
another length scale δr

F = δr/(c2 − c1) or by inverse gradi-
ent 〈|∇c|−1〉|c1<c<c2 = δ−1

r

∫ x(c2)
x(c1) | ∂

∂x
cL|−1dx averaged of the

zone. Under conditions of the present study, δL = 1.3δF ,
δr = 0.28δF , δr

F = 2.2δF , and 〈|∇c|−1〉|c1<c<c2 = 3.3δF if
Ze = 17.1 (cases 10-21-4δ-Ze and 10-21∗-Ze) or δL = 1.7δF ,
δr = 0.72δF , δr

F = 2.5δF , and 〈|∇c|−1〉|c1<c<c2 = 3.1δF if
Ze = 6 (other cases).

Using a resolution of four grid cells per δF (this resolution
was used in all cases in Table II characterized by Ze = 6),
the inner reaction zone (δr ) is resolved with around three
grid points. Such a resolution (four cells per δF ) was used in
recent 2D simulations of development of the hydrodynamic

instability [40,41] of a laminar premixed flame in a wide
computational domain [42] and was shown to be sufficient
in that case. The fact that this resolution is sufficient for the
goals of the present study is also confirmed by good agreement
between DNS results obtained in cases 10-21 and 10-21∗; see
the last two columns in Tables II and III. Moreover, comparison
of results shown in solid and dashed lines in Fig. 2(b) indicates
that the used numerical grids allow us to resolve well not only
smooth spatial variations in c but also spatial variations in the
molecular diffusion and reaction terms in Eq. (3).

FIG. 2. Profiles of c, normalized molecular transport and reaction
terms, obtained in 1D simulations of laminar waves. (a) Effect of
the Zeldovich number Ze, with spatial resolution being the same
(cases 10-21-4δ-Ze and 10-21-4δ). Axial coordinate is normalized
using �x. (b) Effect of spatial resolution, with Ze being the same
(cases 10-21 and 10-21∗). Axial coordinate is normalized using δF /4.
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In the first three (05-21-4δ, 10-21-4δ, and 10-21-
4δ-Ze) and the next two (10-21∗ and 10-21∗-4δ) cases in
Table III, a ratio of δF /�x is larger (13 and 16, respectively),
because either δF is larger, but �x is standard (the three cases
characterized by Re0 = 200), or �x is smaller (cases 10-21∗
and 10-21∗-4δ).

In order to study a fully developed reaction wave, a planar
wave c(x,t = 0) = cL(ξ ) was initially (t = 0) released at x0 =
Lx/2 such that

∫ 0
−∞ cL(ξ )dξ = ∫ ∞

0 [1 − cL(ξ )]dξ and ξ =
x − x0. Here, cL(ξ ) is the precomputed laminar-wave profile.
Subsequently, evolution of this field c(x,t) was simulated by
solving Eq. (3). To enable periodic propagation of c field
along the x direction, the field is extrapolated outside the axial
boundaries of the computational domain at each time step
tn as follows: c(x ′,y,z,tn) = c(x,z,tn), where x ′ = x + ILx

and I is an arbitrary (positive or negative) integer number.
Subsequently, Eq. (6) is solved at x ′ ∈ [ζ (tn) − �,ζ (tn) + �],
where ζ (tn) is the mean coordinate of a reaction wave on
the x ′ axis and � = 0.45Lx in order to avoid numerical
artifacts in the vicinity of x ′ = ζ (tn) ± 0.5Lx . In two re-
maining sections, i.e., x ′ ∈ [ζ (tn) − 0.5Lx,ζ (tn) − �] and
x ′ ∈ [ζ (tn) + �,ζ (tn) + 0.5Lx], the scalar c(tn) is set equal
to zero (fresh reactants) and unity (products), respectively,
because the entire flame brush is always kept within the interval
of x ′ ∈ [ζ (tn) − �,ζ (tn) + �] in the present simulations.
Finally, the obtained solution c(x ′,y,z,tn) is translated back
to the x coordinate.3

Computations of fully developed statistics with sampling
every 100�t were started after the forced turbulence reached
statistical stationarity at t = t∗ = 6000�t > 3.5τ 0

t . Here,
τ 0
t = �0/U ′ is the initial turbulence eddy turn over time. In

all cases, the total sampling duration was larger than 50τ 0
t . It

is worth remembering that the statistically stationary forced
turbulence was characterized by 0.25τ 0

t � τt < 0.8τ 0
t ; see

Table I.
Statistics were sampled using the following methods. First,

for each characteristic q(x,t) of the reaction wave c(x,t),
its statistically stationary mean value q(x) was evaluated by
averaging the DNS data over transverse (y and z) coordinates
and over time at t > t∗. Second, the x coordinate was mapped
to a c(x) coordinate to yield q(c), as discussed in detail in
Ref. [24].

Moreover, when analyzing the DNS data in the present
paper, we will deal with a few4 quantities q conditioned to the
reaction zone, i.e., c1 < c < c2 such that W (c1) = W (c2) =
max{W (c)}/2, at various c̄(x). Such conditioned quantities are
found using 3D probability density functions (PDFs) P (q,c,c̄)
and the following expressions:

〈q〉f (c̄) =
∫ +∞

−∞

∫ c2

c1

qP (q,c,c̄)dcdq

/
∫ +∞

−∞

∫ c2

c1

P (q,c,c̄)dcdq. (9)

3See texts around Eq. (3.3) in Ref. [24] for a more detailed
description of the implementation of the x periodicity.

4Similar data obtained for a wide set of other, more than 15, local
characteristics of reaction wave and turbulent flow will be analyzed
in subsequent publications.

It is worth noting that, in order to improve the statistical
convergence of reported results, the 3D PDFs P (q,c,c̄) are
evaluated in the run-time regime; i.e., each grid cell and each
sampling time step contribute to the PDF.

More specifically, the 3D PDFs are determined as follows.
First, boundaries qmin and qmax of expected variations of a
quantity q(x,t) are found in a test prerun and an interval
bounded by qmin and qmax is uniformly cut into 100 discrete
bins. Second, an interval of 0 � c(x,t) � 1 is uniformly cut
into 100 discrete bins. Subsequently, at each time step tn of the
simulations, (i) negligible values of probabilities of q < qmin

and q > qmax are checked and (ii) the set of q(x,t), c(x,t), and
xi = i�x is sampled over the entire computational domain;
i.e., if the values of q(xi,yj ,zk,t

n) and c(xi,yj ,zk,t
n) belong

to the lth q bin and mth c bin, respectively, then unity is
added to the {l,m,i}-th element of the 3D q-sampling array.
Finally, at the postprocessing stage, P (q,c,c̄) is obtained by
(i) renormalizing all elements of the 3D sampling array in
order for their sum to be equal to unity and (ii) translating
the x dependence into c̄ dependence using the monotonous
function c̄(x).

IV. RESULTS AND DISCUSSION

The 3D images of the reaction zone surface, obtained in the
present DNS, look similar to the 3D images of an infinitely
thin self-propagating interface, obtained by solving Eq. (5);
see Fig. 3 in Yu et al. [24]. To provide insight into the structure
of the reaction zone in the present DNS, typical instantaneous
W [c(x,t)] fields are shown in Fig. 3. In case 05-67 (bottom
row), characterized by the lowest Ka, the reaction zone is
weakly perturbed and moderately wrinkled, with distance
between isosurfaces of c(x,t) = c1 and c(x,t) = c2 being
weakly varied. In case 10-67 (top row), characterized by a
high Ka = 11.0 and a low Da = 0.7, the reaction zone is
still predominantly thin, but is strongly wrinkled. In cases
10-21-4δ and 10-21-4δ-Ze (two middle rows), characterized
by the highest Ka = 36.2 and the lowest Da = 0.2, substantial
perturbations of the reaction zone are clearly visible, with
both distributed and sufficiently thin reaction zones being
simultaneously observed in different spatial regions.

Figure 3 is consistent with contemporary knowledge on the
structure of reaction zones in highly turbulent premixed flames.
First, as reviewed elsewhere [3,43], recent experimental and
DNS data indicate that reaction zones remain thin and retain
their laminar structure even in intense turbulence associated
with high Ka. Images reported in top and bottom rows in Fig. 3
are qualitatively consistent with such data. Second, 2D images
of reaction zones, obtained in a few very recent experimental
studies [44–46] of premixed turbulent flames characterized by
very high Ka, showed that such “zones exhibited regions of
both relatively thin and distributed reactions” [44] (p. 4089).
A similar behavior of reaction zones is shown in the second
row in Fig. 3. Recent DNS of premixed flames in very intense
turbulence also indicated transition from thin to distributed
reaction zones at very high Ka [10,47].

However, values of Ka associated with such a transition
in the present simulations are significantly lower than the
counterpart values of Ka reported in the cited experimental
and DNS papers. This quantitative difference can be attributed

063101-6



DIRECT NUMERICAL SIMULATION STUDY OF . . . PHYSICAL REVIEW E 95, 063101 (2017)

FIG. 3. Typical 2D images of the normalized reaction rate W (c)/ max{W (c)} in y-slice planes (left column) and x-slice planes (right
column). The rate is normalized using the maximum value max{W (c)} of function W (c) given by Eq. (4) provided that τ , τR , and Ze are kept
constant. Black dashed and solid lines show boundaries of the reaction zone, i.e., c(x,t) = c1 and c2, respectively. All cases are characterized by
Re0 = 200, but different U ′/SL = 10, L11/δF = 6.7, Da = 0.7, and Ka = 11.0 (case 10-67, top row); U ′/SL = 10, L11/δF = 2.1, Da = 0.2,
and Ka = 36.2 (cases 10-21-4δ and 10-21-4δ-Ze, two middle rows); U ′/SL = 0.5, L11/δF = 6.7, Da = 13.5, and Ka = 0.6 (case 05-67, bottom
row).

to the lack of thermal expansion effects in the present
computations. In the case of premixed combustion, small-scale
eddies are known to be inefficient in wrinkling reaction-zone

surface [48,49], in particular, because they rapidly disappear
due to dilatation and an increase in viscosity within the
flame preheat zone. However, because these two phenomena
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vanish in a constant-density flow, reaction waves do not
destroy the smallest-scale turbulent eddies and, therefore,
do not reduce the highest local rates of stretch of reaction
zones under conditions of the present DNS. Accordingly, in a
constant-density turbulent flow, an “efficient” Ka experienced
by a reaction wave appears to be significantly higher than an
“efficient” Ka experienced by a premixed flame in statistically
the same incoming flow of unburned reactants.

A. Mean characteristics of turbulent reaction wave

It is worth remembering that the key difference between
the present and previous [24] DNSs consists in substituting
Eq. (5) with Eq. (3), which describe propagation of an
infinitely thin reaction zone and a reaction zone of a nonzero
thickness, respectively. Therefore, in order to gain insight into
the influence of the reaction zone thickness on the speed
and structure of the mean reaction wave, exactly the same
quantities were extracted from the previous [24] and present
DNS databases, followed by comparison of these quantities.
Accordingly, the structure of the present subsection is as
follows. In Sec. IV A 1, we will briefly summarize results that
are basically similar in the two DNS series. In Sec. IV A 2, we
will report and discuss a significant effect of the reaction zone
thickness on the mean reaction wave speed.

1. Mean wave thickness and turbulent diffusivity

This section is restricted to a summary of results that are
similar to results obtained by Yu et al. [24] by solving Eq. (5).
The reader interested in a detail presentation of such results is
referred to Secs. 4.2–4.4 and Figs. 6–16 in the cited paper.

Let us consider fully developed mean wave brush thickness
evaluated as follows:

δT = 1

max |∇c| . (10)

Values of δT normalized using L11 are reported in the next to
the right column in Tables II and III. Comparison of cases 10-
21 and 10-21∗ in Tables II and III, respectively, indicates that
an increase in spatial resolution of the local wave thickness by
a factor of 4 weakly affects δT . Comparison of cases 10-21-4δ

and 10-21-4δ-Ze or 10-21∗ and 10-21∗−Ze in Table III shows
that an increase in Ze by a factor of about 3 weakly affects δT .
Accordingly, in the rest of the present section, discussion will
be restricted to cases characterized by the same Ze = 6.0.

Fully developed δT obtained in these cases are plotted
in black symbols in Fig. 4(a), whereas the counterpart red
symbols show results obtained earlier [24] by tracking an
infinitely thin self-propagating interface in statistically the
same turbulence. Comparison of the black and red symbols
indicates that a nonzero thickness of a reaction wave weakly
affects fully developed δT .

In order to explore dependence of the computed δT on basic
mixture and turbulence characteristics, the fits

Y = aXb (11)

were applied to the present DNS data obtained in 20 basic
cases, see Table II, and cases 05-21-4δ and 10-21-4δ, see
Table III. Here, Y = {δT /L11,δT /δF ,(δT − δL)/L11,(δT −
δL)/δF } and X = {U ′/SL,Da,Ka,Da Ka,(U ′/SL)(L11/δF )q}.
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FIG. 4. Fully developed mean turbulent wave thickness. (a)
δT /L11 vs U ′/SL. DNS data obtained in cases (i) 05-21 to 10-
21 (Re0 = 50), (ii) 05-37 to 10-37 (Re0 = 100), (iii) 05-67 to
10-67 (Re0 = 200), (iv) 05-125 to 10-125, see Table II, and (v)
05-21-4δ and 10-21-4δ, see Table III, are shown in black (i)
circles, (ii) squares, (iii) diamonds, (iv) stars, and (v) triangles,
respectively. Filled red circles, triangles, and diamonds show results
obtained earlier [24] by tracking an infinitely thin self-propagating
interface in statistically the same turbulence generated at (i)
Re0 = 50, (ii) Re0 = 100, and (iii) Re0 = 200, respectively. (b)
Best fits to the present DNS data; X = U ′/SL and Y = δT /L11

(black circles and line), X = (U ′/SL)(L11/δF )−0.17 and Y = δT /L11

(red squares and line), X = (U ′/SL)(L11/δF )3.15 and Y = δT /δF

(blue triangles and line, which show ln(Y )/3 vs ln(X)/3). Filled
symbols show data obtained in five cases associated with κf /κ0=1;
see Table II. Open symbols show data obtained in the other 17 cases.

It is worth remembering that the Schmidt number ν/D was
varied in the present study in order to vary L11/δF by retaining
the same U ′/SL and the same turbulence characteristics.
Therefore, a function of U ′/SL and L11/δF is not reduced
to a function of Da and Ka.

When applying Eq. (11) to the present data, parameters
a and b were calculated using least square fit in logarithmic
coordinates. A coefficient of determination

R2 = 1 −
⎡
⎣ N∑

j=1

(
Yj − aXb

j

)2

⎤
⎦

⎡
⎣ N∑

j=1

(
Yj − 1

N

N∑
k=1

Yk

)2
⎤
⎦

−1

(12)
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TABLE IV. Results of fitting the DNS data on δT : 17 cases are
characterized by κf /κ0 = 3 and L11/L ≈ 0.12, and 22 cases include
five more cases characterized by κf /κ0 = 1 and L11/L = 0.2.

22 cases 17 cases

Y X q ln a b R2 q ln a b R2

δT

L11

U ′
SL

0.79 0.38 0.93 0.80 0.39 0.95

δT

L11

U ′
SL

(
L11
δF

)q − 0.17 0.88 0.38 0.94 0.02 0.79 0.39 0.95

δT

δF

U ′
SL

(
L11
δF

)q
3.15 0.77 0.33 0.96 3.76 0.60 0.32 0.96

was also evaluated. When using X = (U ′/SL)(L11/δF )q , the
exponent q was varied from −4 to 4 with a step of 0.01 and
the value of q that yielded the highest R2 was selected.

Parameters of three best fits characterized by R2 > 0.90 are
listed in Table IV, with these fits being plotted in Fig. 4(b).
It is worth noting that results calculated for δT − δL are not
reported in Table IV, because subtraction of δL from δT reduces
R2, i.e., impedes fitting, for all X. Moreover, approximations of
(i) 17 DNS cases characterized by κf = κ0 = 3 and L11/L ≈
0.12, see open symbols in Fig. 4(b), and (ii) 22 DNS cases,
which include five more cases characterized by κf = κ0 = 1
and L11/L = 0.2, see filled symbols in Fig. 4(b), are close
to one another, thus implying a minor influence of the relative
width L/L11 of the computational domain on the simulated δT .

Table IV shows that δT is substantially increased by U ′/SL,
is almost proportional to L11, and depends weakly on δF .
As discussed by Yu et al. [24], such a dependence of fully
developed mean flame brush thickness on U ′/SL has never
been predicted by a model of premixed turbulent combustion.
It is worth noting, however, that expressions obtained by
Klimov [50] yield δT,∞ ∝ L11(U ′/SL)q with q ≈ 0.5. This
power exponent is not very far from b ≈ 0.4 reported for
δT /L11 as a function of U ′/SL in Table IV.

Let us consider fully developed turbulent diffusivity evalu-
ated as follows:

DT ≡ − u′c′

∇x c̄
. (13)

Similar to results computed by Yu et al. [24] by solving the
G equation, Eq. (5), DT obtained in the present DNS (i) is
always positive, in line with the concept of turbulent diffusion,
(ii) depends weakly on c̄, but (iii) is reduced by SL/U ′; see
Fig. 5.

Due to weak dependence of DT on c̄, Yu et al. [24]
suggested characterizing the influence of chemical reactions
on turbulent diffusivity using a single averaged diffusivity,

D∗
T ≡

∫ 1

0
DT dc̄ = −

∫ 1

0

u′c′

∇x c̄
dc̄ = −

∫ Lx

0
u′c′dx. (14)

In line with the DNS study by Yu et al. [24], D∗
T depends

weakly on L11/L, which was varied by varying either Re0 or
κf /κ0 in the present study, and is decreased with decreasing
U ′/SL; see Fig. 6(a). Figure 6(b) shows a substantial reduction
of the magnitude of the effect due to substitution of the length
scale L11 with the thickness δT when normalizing DT .

A decrease in turbulent diffusivity due to chemical reactions
in constant-density flows, shown in Fig. 6(a), is well known
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FIG. 5. Dependencies of normalized fully developed turbulent
diffusivity DT /(U ′L11) evaluated using Eq. (13) on c̄ obtained at (a)
L11/L = 2.1 and (b) L11/L = 6.7.

after the seminal work by Corrsin [51]. For instance, such
an effect results straightforwardly from transport equations
for velocities conditioned to reactants or products [3,52].
Moreover, a theory that yields such an effect was recently
developed [53]. The effect stems from inability of large-scale
turbulent eddies to fully contribute to mixing if the reactant is
consumed by a chemical reaction during the eddy lifetime [53].
Nevertheless, the effect is often ignored by the combustion
community.

Comparison of open black and filled red symbols in
Fig. 6(a) reveals only a slight influence of a nonzero thickness
of reaction wave on D∗

T /(U ′L11). The effect is less pronounced
at higher U ′/SL at Re0 = 50, see circles, or at higher Re0

(other black symbols). However, scatter of the same DNS data
reported in a form of D∗

T /(U ′δT ) vs U ′/SL is increased due to
the nonzero thickness, cf. open and filled symbols in Fig. 6(b),
with the effect being more pronounced at lower U ′/SL.

Finally, comparisons of DT /(U ′L11) = 0.395 and 0.384,
obtained in cases 10-21-4δ and 10-21-4δ-Ze, respectively, or
DT /(U ′L11) = 0.366, 0.379, and 0.365, evaluated in cases
10-21, 10-21∗, and 10-21∗-Ze, respectively, do not show a
notable effect of either Ze or numerical resolution on the fully
developed averaged diffusivity.
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FIG. 6. Fully developed averaged diffusivity D∗
T normalized

using (a) U ′L11 and (b) U ′δT vs U ′/SL. Symbol legends are explained
in caption to Fig. 4.

2. Turbulent wave speed

Fully developed turbulent wave speeds ST were evaluated
(i) by differentiating time dependencies of the axial coordinate
xf (t) of a plane x = xf (t), where the value 〈c〉 of c(x,t),
averaged over transverse coordinates, was equal to 0.5, and
(ii) by averaging the obtained ST (t) over time at t > t∗.
Fully developed turbulent consumption velocities UT were
computed by averaging

UT (t) = 1

LyLz

∫ Lx,Ly,Lz

0,0,0
W [c(x,t)]dx (15)

over time at t > t∗. Because the obtained values of ST (t) and
UT (t) are always close to one another, we will address ST in
the rest of the paper.

Values of ST normalized using U ′ are reported in the right
columns in Tables II and III. Comparison of cases 10-21 and
10-21∗ indicates that an increase in spatial resolution of the
local wave thickness by a factor of four weakly affects ST .
Comparison of cases 10-21-4δ and 10-21-4δ-Ze or 10-21∗ and
10-21∗−Ze, see Table III, shows that an increase in Ze by a
factor of about three weakly affects ST . Accordingly, in the
rest of the present subsection, discussion will be restricted to
20 basic cases, see Table II, and cases 05-21-4δ and 100-21-4δ,
see Table III, characterized by the same Ze.
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FIG. 7. Fully developed turbulent wave speeds. (a) ST /SL vs
U ′/SL. Blue crosses, pentagons, and pluses show DNS data computed
by Wenzel and Peters [54,55] using Sc = ∞, 0.25, and 0.50,
respectively. Other symbol legends are explained in caption to Fig. 4.
(b) Best fits to the present DNS data; X = Ka and Y = ST /U ′ (black
circles and line), X = (U ′/SL)(L11/δF )−0.51 and Y = ST /U ′ (red
squares and line), X = (U ′/SL)(L11/δF )0.85, and Y = ST /SL (blue
triangles and line). Filled symbols show data obtained in five cases
associated with κf /κ0=1; see Table II. Open symbols show data
obtained in other 17 cases.

Black symbols in Fig. 7(a) show normalized fully developed
mean wave speeds ST /SL, computed in the present work.
Filled red symbols show ST /SL simulated in our previous
DNS study [24] of self-propagation of an infinitely thin front
in statistically the same turbulence. Blue crosses, pentagons,
and pluses show ST /SL obtained by Wenzel and Peters [54,55]
in 3D DNS of self-propagation of an infinitely thin front
in constant-density turbulence. These authors solved the G

equation (5) and allowed for the linear dependence SL =
S0

L − νh/Sc of the local front speed SL on its local curvature
h = −∇ · (∇G/|∇G|). The sensitivity of the local front speed
to its local curvature was varied by changing the Schmidt
number Sc. The case of Sc = ∞ corresponds to a constant SL,
i.e. this case is basically similar to the problem studied by Yu
et al. [24].

Figure 7(a) shows that, first, a nonzero thickness of the
reaction wave reduces ST /SL when compared to an infinitely
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thin front, cf. open black and filled red symbols. Second,
ST /SL is increased by L11/δF , cf. black circles, squares, and
diamonds. Third, in cases 10-21 and 10-21-4δ or 05-21 and
05-21-4δ, characterized by different Ret or Ka, but the same
L11/δF or Da, the normalized wave speeds ST /SL are close to
one another, cf. black circles and triangles.

Fourth, a well-pronounced bending effect, i.e., a decrease
in the slope dST /dU ′ with U ′/SL, is shown both by the
present DNS data, see black symbols, and by the DNS data
by Wenzel and Peters [54,55], see blue pentagons or pluses.
Moreover, the values of ST /SL obtained at U ′ > 2SL in the
two studies are sufficiently close to one another. However,
the data by Wenzel and Peters [54,55] indicate leveling off of
ST (U ′) curves, whereas the slope dST /dU ′ is always positive
under conditions of the present DNS. This difference could
be attributed not only to the use of the G equation in the
former case, but also to the fact that a ratio of the axial length
of the computational domain to U ′3/〈ε〉 was about six in the
simulations by Wenzel and Peters [54,55], but was as large as
about 24 in the present cases characterized by κf /κ0 = 3.

The bending effect will further be discussed in Sec. IV B.
Before doing so, let us explore dependencies of the com-
puted ST on basic mixture and turbulence characteris-
tics, such as U ′/SL, L11/δF , Da, and Ka. For these pur-
poses, the present DNS data were fitted using Eq. (11),
where Y = {ST /U ′,(ST − SL)/U ′,ST /SL,ST /SL − 1} and
X = {U ′/SL,Da,Ka,Da Ka,(U ′/SL)(L11/δF )q}. It is worth
remembering that the Schmidt number ν/D was varied in the
present study in order to vary a ratio of L11/δF by retaining
the same U ′/SL and the same turbulence characteristics (Ret ,
U ′, L11, etc.). Therefore, a function of U ′/SL and L11/δF is
not reduced to a function of Da and Ka.

When using X = (U ′/SL)(L11/δF )q to fit the DNS data, the
power exponent q was varied from −4 to 4 with a step of 0.01.
Then, parameters a and b were evaluated using a least square
fit in logarithmic coordinates for each value of q. Finally, the
value of q that yielded the highest R2 evaluated using Eq. (12)
was selected.

Parameters of the five best fits for ST /U ′ and ST /SL are
listed in Table V and the three best fits characterized by the
largest R2 are plotted in Fig. 7(b). Results calculated for ST −
SL are not reported, because subtraction of SL from ST reduces
R2, i.e., impedes fitting, for all X. This trend is consistent with

TABLE V. Results of fitting the DNS data on ST : 17 cases
are characterized by κf = κ0 = 3 and L11/L ≈ 0.12, and 22 cases
include five more cases characterized by κf = κ0 = 1 and L11/L =
0.2.

22 cases 17 cases

Y X q ln a b R2 q ln a b R2

ST

U ′
U ′
SL

0.60 −0.47 0.82 0.53 −0.50 0.89
Da −0.10 0.44 0.88 −0.09 0.49 0.94

Ka 0.79 −0.47 0.93 0.83 −0.50 0.95
U ′
SL

(
L11
δF

)q −0.51 0.23 −0.49 0.96 −0.56 0.18 −0.52 0.98
ST

SL
0.85 −0.05 0.51 0.98 1.01 0.08 0.48 0.99

results of fitting various experimental databases on turbulent
flame speeds [56].

Table V shows that two best fits associated with the
largest R2 yield ST ∝ (U ′SL)0.5. Moreover, the best fit yields
ST ∝ (L11/δF )s with s17 = 0.49 if 17 cases characterized by
κf /κ0 = 3 and L11/L ≈ 0.12 are analyzed, but s22 = 0.43 if
five more cases characterized by κf /κ0 = 1 and L11/L = 0.2
are also analyzed. A similar trend (s22 < s17) is shown by
three other fits for ST /U ′ as a function of Da, Ka, or
(U ′/SL)(L11/δF )q .

At first glance, this difference in s17 and s22 might be
attributed to the influence of the width of the computational
domain. However, it is also worth noting that any of these
fits holds in a bounded range of mixture and turbulence
characteristics and should not be extrapolated to L11/δF →
∞. For instance, in the case of infinitely large ratio of L11/δF ,
the scaling of ST ∝ U ′ has been obtained by numerically
solving the G equation (5) with SL = S0

L [24,54,55]; see the
red filled symbols and blue crosses in Fig. 7(a). Accordingly,
a decrease in the exponent s with increasing L11/δF may be
assumed. This is in line with the DNS data, because the five
extra cases that affect s22 < s17 are characterized by the largest
L11/δF = 12.5; see Table II. Bearing in mind that (i) neither
L11/δF , see Fig. 4(b), nor κf /κ0 (or L11/L), see Table IV,
substantially affects δT under conditions of the present DNS,
but (ii) both L11/δF and L11/L affect ST , s22 < s17 is
associated with the decrease in s with increasing L11/δF .

The scaling for fully developed mean turbulent wave speed,
resulting from the present DNS, i.e., ST ∝ (U ′SL)0.5(L11/δF )q

with 0.4 < q � 0.5, is sufficiently close5 to ST ∝ U ′Da1/2 and
is similar (if Sc = const) to scaling ST ∝ SLRe1/2 yielded by
several models of premixed turbulent combustion [57–59].
A similar scaling was documented in various experiments,
e.g., ST ∝ SLRe1/2 [60], ST ∝ U ′Da1/2 [61], ST ∝ U ′Da0.44,
see data by Kido et al. [62] fitted by Lipatnikov and
Chomiak [56], ST ∝ U ′0.63

S0.37
L (L11/δF )0.58 [63], or ST ∝

U ′0.67
S0.33

L (L11/δF )0.41, see data by Kobayashi et al. [64,65]
fitted by Lipatnikov and Chomiak [56].

Nevertheless, there are experimental databases on turbulent
flame speeds that support other power-law fits. In particular,
as shown by Lipatnikov and Chomiak [56], the three most
extensive experimental databases obtained from expanding
statistically spherical premixed flames [66–68] are reason-
ably well fitted with ST ∝ U ′Ka−1/3 or ST ∝ U ′Da1/4 and,
therefore, indicate a less pronounced dependence of ST /U ′
on Ka or Da when compared to the present DNS. Differences
between these measured data and the present DNS results
could be attributed to a number of factors, such as (i) thermal
expansion effects, reviewed elsewhere [69,70], (ii) differences
between experimental and numerical flame configurations, (iii)
differences between methods adopted to evaluate ST in the
experiments and simulations [71], etc.

B. Bending effect

While the bending effect is well documented in ex-
periments with premixed turbulent flames, as reviewed

5Data that support this scaling are reported in the appendix.
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elsewhere [56,72], explanation and modeling of this effect
is still the grand challenge to the combustion community.

Because the sole difference between the previous [24] and
present DNS consists in substituting the G equation (5) with
Eq. (3), the obtained difference between the linear and bent
ST (U ′) curves cannot be attributed to the exploited method
of turbulence generation, numerical resolution or scheme,
insufficiently large width of the computational domain, etc.
For instance, cases 10-37 and 10-40-L11/L are characterized
by significantly different (by a factor of two) ratios of L11/L,
see Table I, with all other things being approximately equal,
but, in spite of the difference in L11/L, the values of δT /L11 or
ST /U ′, computed in the two cases, are approximately equal,
see the last two columns in Tables II and III. Therefore, the
difference between the ST (U ′) curves [or filled red and open
black symbols in Fig. 7(a)] is straightforwardly associated
with a nonzero local thickness of the reaction wave, which
was addressed in the present DNS, but was neglected in
the previous simulations, with all other things being equal.
Accordingly, explanation of the bending effect shown in
Fig. 7(a) should be based on physical mechanisms that stem
from the nonzero δF .

In the rest of the present subsection, a role played by three
such physical mechanisms is considered. It is worth stressing
that we will solely discuss physical mechanisms that might
eventually explain the difference between the linear and bent
ST (U ′) curves computed in the previous [24] and present
DNS. For the sake of brevity, this difference will be called
the bending effect in the rest of the present subsection.

1. Local reaction extinction?

In the combustion literature, deviation of dependencies of
flame speed on rms turbulent velocity from a straight line is
most often attributed to local decrease in burning rate and
local combustion quenching due to high stretch rates created
by small-scale turbulent eddies [73–75].

At first glance, such a physical mechanism is not relevant
to the conditions of the present DNS. For instance, in the case
of (i) single-step chemistry, (ii) Le = 1, and (iii) adiabatic
burning, high stretch rates cannot cause local combustion ex-
tinction, i.e., holes in a flame surface. Indeed, due to continuity
of a c field and continuous, single-valued (in the considered
case) dependence of the rate W on c, any curve that connects a
point in products (c = 1) and a point in fresh reactants (c = 0)
inevitably crosses a reaction zone c1 � c � c2, where the re-
action rate is high [13]. Moreover, within the framework of the
asymptotic (Ze → ∞) theory of weakly stretched, adiabatic
laminar premixed flames [76,77], consumption velocity uc,
i.e., the reaction rate W integrated along the local normal to
the reaction wave, is not affected by flame stretch rate if Le = 1
and chemistry is single step. However, local variations in uc

can occur in the case of a nonzero thickness of the reaction
zone, i.e., at large but finite Ze [78]. Therefore, a role played
eventually by such a physical mechanism under conditions of
the present DNS should be addressed.

A straightforward way to assessing a role played by this
physical mechanism consists in processing DNS data on the
local uc. However, in intense turbulence, topology of reaction
zone is so complicated, see Fig. 3, that application of this
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FIG. 8. Dependencies of (a) the relative area increase δA given
by Eq. (16) and (b) a ratio of SLδA/ST on U ′/SL. Symbol legends
are explained in caption to Fig. 4.

method is difficult. Accordingly, here, the issue is addressed
using an indirect method.

To characterize an increase δA = AT /AL in the area of the
surface of a reaction zone in a turbulent flow when compared
to the laminar wave, the following ratio is invoked:

δA =
∫ Lx

0 〈|∇c|〉f [c̄(x)]dx∫ x(c2)
x(c1) |∇c|Ldx

, (16)

where the symbol 〈·〉f (c̄) designates value of flame surface
density |∇c| [2] conditioned to the reaction zone, as defined
by Eq. (9), and the denominator is evaluated by integrating
the laminar profile cL(x) over the reaction zone, i.e., at
c1 � c � c2.

Figure 8(a) shows that the bending of the δA(U ′/SL) curves
is well pronounced. Moreover, these curves look similar to the
ST /SL(U ′/SL) curves plotted in Fig. 7(a), thus implying that
the bending of the latter curves is mainly controlled by the
bending of the former curves. Indeed, a ratio of (SLδA)/UT ,
shown in Fig. 8(b), is close to unity, thus further supporting
statistically negligible variations in uc under conditions of
the present DNS. Furthermore, contrary to eventual increase
in (SLδA)/UT by U ′/SL due to eventual reduction in ūc

by turbulent stretching, the ratio of (SLδA)/UT is slightly
decreased when U ′/SL is increased. This effect could be
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attributed to (i) an increase in the burning rate integrated
over mixing zones (c < c1), as such zones are expanded by
small-scale turbulent eddies [57], or (ii) an increase in the
local burning rate in the vicinity of cusps [79]. In any case,
the increase in (SLδA)/UT by U ′/SL does not contribute to
the bending effect, but weakly resists it.

Thus, the discussed bending of ST (U ′) curves appears to
be controlled by reduction of the rate of an increase in the
area of reaction-zone surface with increasing U ′/SL. This
conclusion is consistent with earlier DNS studies by Wenzel
and Peters [54,55] and Nivarti and Cant [21]. In the next two
subsubsections, two physical mechanisms apparently relevant
to such a behavior of the reaction-zone surface area are
addressed.

2. Restriction of wave propagation by high strain rates?

By considering premixed turbulent combustion at high
Karlovitz numbers, Kuznetsov and Sabelnikov [13] have
hypothesized that influence of turbulent strain rates on local
burning can manifest itself not only in the local flame
extinction but also in pushing the flame out spatial regions
characterized by high strain rates. Such a phenomenon may
bound the flame expansion, impede growing its surface area,
and therefore reduce ST . Law and Sung [80] also emphasized
that a flame can survive by moving out spatial regions
characterized by high strain rates.

In order to assess a role played eventually by such a physical
mechanism, we computed PDF P (S2) by analyzing the entire
flow field and the counterpart PDF

P f (S2) =
∫ 1

0

∫ c2

c1

P (S2,c,c̄)dcdc̄

/
∫ +∞

−∞

∫ 1

0

∫ c2

c1

P (S2,c,c̄)dcdc̄dS2 (17)

conditioned to the reaction zone. Here, S2 = SijSij is the total
strain. Results reported in Fig. 9 show that, at high values of
S2, the conditioned PDF is larger than the unconditioned one;

0 1 2 3 4 5 6 7 8

10-2

10-1

100

FIG. 9. PDFs for the total strain S2 normalized using 〈ε〉/(2ν).
Gray thick solid line shows the unconditioned P (S2). Red dashed and
blue dot-dashed lines show the conditioned PDFs P f (S2) obtained in
cases 05-67 and 10-67, respectively; see Table II.

cf. the curve shown by the broken line with the curve shown by
the thick solid gray line. The difference is more pronounced at
U ′/SL = 10, see curve shown in blue dot-dashed line, when
compared to U ′/SL = 0.5, see curve shown in red dashed
line. Accordingly, Fig. 9 does not indicate that reaction zones
bypass regions characterized by high strain rates.

Moreover, the sign of the displacement speed [1,2]

Sd = D∇2c + W

|∇c| (18)

conveys some information about eventual restriction of
propagation of reaction zones. Indeed, a locally negative
value of conditioned 〈Sd |c1 � c � c2〉 is associated with
reduced capability of the reaction zone to enter this spatial
region. Accordingly, we extracted 4D PDFs P (Sd,S

2,c,c̄) and
P (Sd,km,c,c̄) from the DNS data and computed probability

Pf,Sd<0(S2) =
∫ 0

−∞

∫ 1

0

∫ c2

c1

P (S2,Sd,c,c̄)dcdc̄dSd

/
∫ +∞

−∞

∫ 1

0

∫ c2

c1

P (S2,Sd,c,c̄)dcdc̄dSd (19)

or

Pf,Sd<0(km) =
∫ 0

−∞

∫ 1

0

∫ c2

c1

P (km,Sd,c,c̄)dcdc̄dSd

/
∫ +∞

−∞

∫ 1

0

∫ c2

c1

P (km,Sd,c,c̄)dcdc̄dSd, (20)

of finding negative Sd , conditioned to the local total strain S2

or curvature km = ∇ · n of reaction-zone surface, respectively.
Here, n = −∇c/|∇c| is the unit normal vector. A method of
extracting 4D PDFs P (q1,q2,c,c̄) was basically similar to the
sampling method of extracting 3D PDFs P (q,c,c̄), described
in Sec. III. However, the former PDFs were obtained by
processing 20 stored statistically independent fields of c(x,tm),
u(x,tm), and p(x,tm). Here, m = 1, 2,..., 20, t1 > t∗, and
tm > tm−1 + τ 0

t .
Figure 10(a) shows that the probability of finding negative

Sd depends weakly on total strain even if S2 is so large that the
probability of finding such a value of S2 is very low, cf. Figs. 9
and 10(a). This result implies that turbulent strain rates affect
propagation of the reaction zone with respect to the local flow
weakly from the statistical viewpoint.

All in all, Figs. 9 and 10(a) do not evidence that reaction
zone is pushed out regions characterized by high strain rates.
On the contrary, Fig. 10(b) implies an important role played
by the local curvature of the reaction zone, as discussed in the
next section.

3. Smoothing mechanism

Due to molecular transport processes, a wave of a nonzero-
thickness δF smooths out local wrinkles whose length scale is
sufficiently small. For instance, applications of fractal analysis
to instantaneous flame surfaces have indicated that the lowest
scale of the surface wrinkles is controlled by δF [3,81].

To illustrate such a smoothing mechanism by considering
a simple case following Zeldovich et al. [82], let us rewrite
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FIG. 10. Probabilities of negative displacement speeds condi-
tioned to the reaction zone and either (a) total strain S2 normalized
using 〈ε〉/(2ν) or (b) curvature km normalized using the laminar wave
thickness δF . Black dashed line and red circles show results obtained
in cases 10-67-4δ and 10-67-4δ-Ze, see Table III, which are associated
with the most pronounced bending effect.

Eq. (3) in the spherical coordinate system

∂c

∂t
+ 1

r2

∂

∂r
(r2u) − 2D

r

∂c

∂r
= D ∂2c

∂r2
+ W. (21)

For an expanding reaction wave, the last term on the left-hand
side reduces the wave speed when compared to the counterpart
planar wave. If the local radius rc of the wave curvature is on the
order of the Kolmogorov length scale η < δF , the magnitude
D/rc of the negative speed resulting from the considered term
is on the order of the Kolmogorov velocity [if Sc = O(1) or
even larger if Sc is low] and can be much larger than SL if
Ka 
 1. This curvature-induced speed is negative (positive)
for a local wrinkle with curvature center in products (reactants)
and, therefore, tends to smooth out the wrinkle. This physical
mechanism is controlled by the molecular diffusion and acts
even if the local consumption velocity uc does not depend on
rc. Moreover, while a turbulent eddy whose length scale is
significantly smaller than δF perturbs the local wave surface
during a short lifetime of the eddy, the considered mechanism
can smooth out the perturbation even after the disappearance

of the eddy untilD/rc = O(SL) and rc = O(δF ). Accordingly,
if η � δF , the small-scale range of the entire turbulence
spectrum may be inefficient in wrinkling the wave surface
and this inefficient range expands to smaller length scales
when U ′ is increased. This physical mechanism acts to impede
increasing wave surface area and ST with increasing U ′.

Indeed, Fig. 10(b) shows that, in cases 10-67-4δ and
10-67-4δ-Ze, associated with the most pronounced bending
effect, see black triangles in Fig. 7(a), the probability of finding
negative Sd is strongly increased by km if |kmδF | < 1. The
probability is larger than 70% if kmδF > 2. Accordingly, if the
local curvature of a reaction zone is positive and sufficiently
high (km > δ−1

F ), the zone statistically tends (i) to move to
products, i.e., to the curvature center, and therefore (ii) to
smooth out the local wrinkle of the zone surface. If the local
curvature of a reaction zone is negative and sufficiently high
(km < −δ−1

F ), the zone moves to unburned gas [the probability
of finding positive Sd is almost equal to unity; see Fig. 10(b)],
i.e., to the curvature center, and therefore smooths out the local
wrinkle of the zone surface again.

Moreover, Fig. 11(a) shows that the probability

Pf (|km| > k∗
m) = 1 −

∫ k∗
m

−k∗
m

∫ c2

c1

∫ 1

0
P (km,c,c̄)dcdc̄dkm

(22)

of finding highly wrinkled reaction zones characterized by
|km| > k∗

m = bη−1 at c1 < c < c2, where b is a positive
number of unity order, is significantly increased when the
laminar wave thickness δF is decreased, cf. results computed
in cases 100-21-4δ, 10-21, or by solving the G equation (5), but
depends weakly on Ze, cf. cases 10-21-4δ and 10-21-4δ-Ze.

Figure 11(b) indicates that the probability of finding highly
wrinkled reaction zones characterized by |km| > k∗

m = bδ−1
F

is weakly affected by variations in Re0, Ka, δF /η, and Ze,
provided that U ′/SL and L11/δF are kept constant. In the cases
addressed in Fig. 11(b), variations in the thickness δF = D/SL

are controlled by variations in the diffusivity D. Consequently,
significant (weak) dependence of the discussed probability on
δF (Ze and, hence, the reaction zone thickness) implies that the
molecular transport impedes wrinkling reaction-zone surface
by small-scale eddies in intense turbulence.

Thus, the above analysis of the present DNS data indicates
that the bending of ST /U ′ curves, computed in the case of a
nonzero local thickness of reaction wave, is controlled by the
bending of the mean area of reaction-zone surface as a function
of U ′/SL; see Fig. 8(a). The latter bending is controlled by the
following physical mechanism: When a reaction front has a
negligible thickness, see the red symbols in Fig. 7(a), turbulent
eddies of various scales can wrinkle the front surface, increase
its area, and hence increase ST , e.g., the red solid curve in
Fig. 11(a). However, if the local thickness δF of a reaction wave
is comparable with or larger than the Kolmogorov length scale
η, the local molecular transport efficiently smooths out small-
scale wrinkles of the wave surface, cf. other results shown
in Fig. 11(a) with results shown by the magenta solid curve.
Therefore, the local molecular transport impedes increasing
the surface area due to the highest local stretch rates created
by the smallest turbulent eddies. Consequently, ST is reduced
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FIG. 11. Cumulative probability that the normalized absolute
value of local curvature of reaction zone is larger than a positive
number b. (a) Curvature is normalized using Kolmogorov length
scale. All results were obtained in cases associated with the same
turbulence (Re0 = 200 and U ′/SL = 10), but different L11/δF = 2.1
(short-dashed line, case 10-21-4δ or red circles, case 10-21-4δ-Ze),
6.7 (long-dashed line, case 10-67), and ∞ (solid line, G equation). (b)
Curvature is normalized using δF = D/SL. All results were obtained
in cases associated with the same L11/δF , but different Ze and
different turbulent flow fields. Dashed line, circles, pluses, and dotted
line show results obtained in cases 10-21-4δ, 10-21-4δ-Ze, 10-21∗-Ze,
and 10-21∗, respectively.

when compared to the case of an infinitely thin reaction wave,
cf. black and red symbols in Fig. 7(a).

The present simulations show that this physical mechanism
plays an important role even in the case of a reaction wave that
does not affect the flow. Therefore, this physical mechanism
differs fundamentally from the well-known reduction of the
influence of the small-scale turbulent stretching on a premixed
flame, which (reduction) stems from destruction of the smallest
turbulent eddies due to combustion-induced dilatation and an
increase in the viscosity [48,49].

Under conditions of the present DNS, the highlighted
physical mechanism appears to play a role in all cases
characterized by a nonzero δF , because δF > η in all these
cases; see Tables II and III. Under conditions of a typical
experiment with premixed turbulent flames, such a mechanism

can reduce turbulent flame speed ST if the turbulence length
scale L11 is sufficiently small or the rms velocity U ′ is
sufficiently large. For instance, if L11 
 δF is kept constant
and U ′ is increased starting from a sufficiently low value such
that η 
 δF , then the discussed mechanism does not seem to
play a role at low U ′, but reduces ST when U ′ reaches a critical
value such that η ≈ δF .

V. CONCLUSIONS

A DNS study of propagation of a thin reaction wave
in forced, constant-density, statistically stationary, homoge-
neous, isotropic turbulence was performed by solving Navier-
Stokes and reaction-diffusion equations under a wide range
of conditions that covers various (from 0.5 to 10.0) ratios of
the rms turbulent velocity U ′ to the laminar wave speed SL,
various (from 2.1 to 12.5) ratios of the integral length scale
L11 of the turbulence to the laminar wave thickness δF , and
two Zeldovich numbers, Ze = 6.0 and 17.1. Accordingly, the
Damköhler Da and Karlovitz Ka numbers were varied from 0.2
to 25.1 and from 0.4 to 36.2, respectively. Computed data were
compared with previous DNS results [24] obtained by tracking
an infinitely thin (Ze = Da = L11/δF = ∞, whereas Ka = 0)
self-propagating front in statistically the same turbulence.

On the one hand, comparison of the present and previous
DNS data does not show a substantial effect of the local
wave thickness δF on the mean wave thickness or the mean
turbulent flux u′c′ of a reaction progress variable c. In
particular, the following effects simulated in the present work
are similar to effects revealed in the previous DNS study [24] of
self-propagation of an infinitely thin front in the statistically
the same turbulence. First, the normalized fully developed
mean wave thickness δT /L11 is increased by U ′/SL, i.e.,
δT ∝ L11(U ′/SL)b, where b is close to 0.4; see Fig. 4 and
Table IV. Second, the fully developed flux u′c′ is affected by
the chemical reaction. In particular, diffusivity D∗

T associated
with the flux and averaged over the fully developed wave brush
is decreased when a ratio of U ′/SL is decreased; see Fig. 6(a).
On the contrary, a ratio of D∗

T /(U ′δT ) depends weakly on
U ′/SL; see Fig. 6(b).

On the other hand, the mean wave speed is significantly
reduced when δF /L11 is increased. The mean wave speed
computed in the present study scales as follows: ST ∝
(U ′SL)0.5(L11/δF )q , with q being close to 0.5. In particular,
the obtained DNS data are well fitted with ST ∝ U ′Da1/2,
thus highlighting the chemical time scale τc = δF /SL to be
the mixture characteristic that controls the fully developed
mean turbulent wave speed. Moreover, the following results
obtained in the present work stem from a nonzero thickness
δF of the reaction wave.

First, the computed ST /SL(U ′/SL) curves show bending;
see Fig. 7(a). The bending effect is increased by δF /L11, but
vanishes in the case of an infinitely thin front.

Second, under conditions of the present study, the bending
effect is controlled by a decrease in the rate of an increase δA

in the reaction-zone surface area with increasing U ′/SL; see
Fig. 8. In its turn, the bending of the δA(U ′/SL) curves stems
from inefficiency of small-scale turbulent eddies in wrinkling
the reaction-zone surface, because small-scale wrinkles are
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smoothed out by molecular transport within the local reaction
wave; see Figs. 10(b) and 11. Such a smoothing effect was not
observed in the DNS of self-propagation of an infinitely thin
front at a constant speed SL [24].

Finally, the mean wave thickness and speed are weakly
affected by an increase in the Zeldovich number Ze from 6.0
to 17.1; see the last two columns in Tables II and III.

It is worth stressing that simulations discussed in the
present paper are the second step in an ongoing DNS
series aiming at improving understanding of the governing
physical mechanisms of premixed turbulent combustion by
investigating a set of basic problems starting from the simplest
ones addressed in previous work [24] and the present work.
Subsequently, we plan (i) to complicate the problem step by
step by allowing for preferential diffusion and Lewis number
effects, density variations, and finally complex combustion
chemistry and (ii) to reveal a role played by each of these
effects by straightforwardly comparing data obtained in two
subsequent sets of the DNS series.
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APPENDIX: BENDING EFFECT AT LARGER
VALUES OF U ′/SL

After submission of the first version of the present paper,
new simulations were run in cases characterized by larger
values of U ′/SL; see Table VI. Those cases were based on a
turbulence field, which was slightly modified when compared
to the field addressed in the third line of Table I. The point
is that the computed turbulent wave brush was wide at high
U ′/SL; cf. the column δT /L11 in Tables VI and II. Accordingly,
in order for the computational domain to include the entire
wave brush, the axial length Lx of the domain and the number
Nx of grid cells in the x direction were doubled; i.e., a

FIG. 12. Normalized turbulent flame speed ST /U ′ vs Damköhler
number Da. Circles show DNS data. Line shows the following fitting
ST /U ′ = 0.9Da1/2.

rectangular box of Lx = 8Ly = 8Lz was resolved using a
uniform staggered Cartesian grid of 2056 × 2562 cells. This
modification did not change the turbulence statistics when
compared to the statistics reported in the third line of Table I.

The DNS data reported in the next-to-last column in
Table VI clearly show the bending effect, i.e., a decrease in
ST /U ′ with increasing U ′/SL. Moreover, these data agree well
with a scaling of ST ∝ U ′Da1/2, which fits to the DNS data
computed at U ′/SL � 10 and is discussed in the main body
of the present paper. First, this scaling can be rewritten in the
form ST ∝ SLPe1/2, where Pe = u′L11/(SLδF ) is the Péclet
number, which is equal to 69 in the four new cases, as well as
in the basic case 10-67 addressed in the 15th row in Table II.
Accordingly, a ratio of ST /SL is expected to be the same in the
five (the basic and four new) cases. Indeed, the last column in
Table VI shows that this ratio retains approximately the same
value (7.6 in the basic case) when increasing U ′/SL and Ka,
decreasing L11/δF and Da, but retaining the same value of Pe.

Second, the obtained equality of the normalized speeds
ST /SL computed at the same Pe is consistent with approxi-
mately equal values of ST /U ′ or ST /SL simulated in cases
05-21 and 05-21-δ or 10-21 and 10-21-δ. Indeed, two cases
05-21 and 05-21-δ are characterized by the same Pe = 1.05
and two cases 10-21 and 10-21-δ are also characterized by the
same Pe = 21.

Third, Fig. 12 indicates that the scaling of ST ∝ SLPe1/2 ∝
U ′Da1/2 fits the new DNS data well. These and other new DNS
data will be discussed in detail in subsequent papers.

TABLE VI. Four new DNS cases.

Case Re0 κf /κ0 L11/Ly Ze U ′/SL L11/δF Da Ka δF /η δT /L11 ST /U ′ ST /SL

20-35 200 3 0.11 6.0 20.0 3.46 0.17 43.3 7.44 6.19 0.38 7.6
30-24 200 3 0.11 6.0 30.0 2.35 0.08 97.4 11.2 7.16 0.25 7.5
40-18 200 3 0.11 6.0 40.0 1.76 0.04 173. 14.9 8.67 0.19 7.6
60-12 200 3 0.11 6.0 60.0 1.16 0.02 390. 22.3 11.7 0.13 7.8

063101-16



DIRECT NUMERICAL SIMULATION STUDY OF . . . PHYSICAL REVIEW E 95, 063101 (2017)

[1] N. Peters, Turbulent Combustion (Cambridge University Press,
Cambridge, UK, 2000).

[2] T. Poinsot and D. Veynante, Theoretical and Numerical Com-
bustion (Edwards, Philadelphia, PA, 2005).

[3] A. Lipatnikov, Fundamentals of Premixed Turbulent Combus-
tion (CRC Press, Boca Raton, FL, 2012)

[4] H. Kolla, E. R. Hawkes, A. R. Kerstein, N. Swaminathan, and
J. H. Chen, J. Fluid Mech. 754, 456 (2014).

[5] B. Yenerdag, N. Fukushima, M. Shimura, M. Tanahashi, and T.
Miyauchi, Proc. Combust. Inst. 35, 1277 (2015).

[6] H. Carlsson, R. Yu, and X.-S. Bai, Proc. Combust. Inst. 35, 1425
(2015).

[7] S. Chaudhuri, Phys. Rev. E 91, 021001(R) (2015).
[8] D. Cecere, E. Giacomazzi, N. M. Arcidiacono, and F. R. Picchia,

Combust. Flame 165, 384 (2016).
[9] A. J. Aspden, M. S. Day, and J. B. Bell, Combust. Flame 166,

266 (2016).
[10] S. Lapointe and G. Blanquart, Combust. Flame 167, 294 (2016).
[11] M. Day, S. Tachibana, J. Bell, M. Lijewski, V. Beckner, and R.

K. Cheng, Combust. Flame 162, 2148 (2015).
[12] H. Wang, E. R. Hawkes, B. Zhou, J. H. Chen, Z. Li, and M.

Aldén, Proc. Combust. Inst. 36, 2045 (2017).
[13] V. R. Kuznetsov and V. A. Sabelnikov, Turbulence and Com-

bustion (Hemisphere, New York, 1990).
[14] V. Bychkov, Phys. Rev. E 68, 066304 (2003).
[15] F. Creta, R. Lamioni, P. E. Lapenna, and G. Troiani, Phys. Rev.

E 94, 053102 (2016).
[16] N. Fogla, F. Creta, and M. Matalon, Combust. Flame 175, 155

(2017).
[17] C. Dopazo, L. Cifuentes, J. Martin, and C. Jimenez, Combust.

Flame 162, 1729 (2015).
[18] A. N. Lipatnikov, J. Chomiak, V. A. Sabelnikov, S. Nishiki, and

T. Hasegawa, Proc. Combust. Inst. 35, 1401 (2015).
[19] A. Y. Poludnenko, Phys. Fluids 27, 014106 (2015).
[20] C. A. Z. Towery, A. Y. Poludnenko, J. Urzay, J. O’Brien, M.

Ihme, and P. E. Hamlington, Phys. Rev. E 93, 053115 (2016).
[21] G. Nivarti and S. Cant, Proc. Combust. Inst. 36, 1903 (2017).
[22] S. H. Kim, Proc. Combust. Inst. 36, 2017 (2017).
[23] R. Yu, A. N. Lipatnikov, and X. S. Bai, Phys. Fluids 26, 085104

(2014).
[24] R. Yu, X.-S. Bai, and A. N. Lipatnikov, J. Fluid Mech. 772, 127

(2015).
[25] R. C. Aldredge, Combust. Flame 106, 29 (1996).
[26] L. Kagan and G. Sivashinky, Combust. Flame 120, 222 (2000).
[27] L. Kagan, P. D. Ronney, and G. Sivashinky, Combust. Theory

Modelling 6, 479 (2002).
[28] L. Kagan and G. Sivashinky, Combust. Flame 142, 235 (2005).
[29] A. R. Kerstein, W. T. Ashurst, and F. A. Williams, Phys. Rev. A

37, 2728 (1988).
[30] R. Yu, J. Yu, and X.-S. Bai, J. Comput. Phys. 231, 5504 (2012).
[31] F. Zhang, R. Yu, and X.-S. Bai, Int. J. Hydrog. Energy 37, 17285

(2012).
[32] R. Yu and X.-S. Bai, Combust. Flame 160, 1706 (2013).
[33] J. F. Yu, R. Yu, X. Q. Fan, M. Christensen, A. A. Konnov, and

X.-S. Bai, Combust. Flame 160, 1276 (2013).
[34] H. Carlsson, R. Yu, and X.-S. Bai, Int. J. Hydrog. Energy 39,

20216 (2014).
[35] G.-S. Jiang and C.-W. Shu, J. Comput. Phys. 126, 202 (1996).
[36] R. Yu and X.-S. Bai, Int. J. Num. Methods Fluids 71, 13 (2013).
[37] R. Yu and X.-S. Bai, J. Comput. Phys. 256, 234 (2014).

[38] A. G. Lamorgese, D. A. Caughey, and S. B. Pope, Phys. Fluids
17, 015106 (2005).

[39] V. Eswaran and S. B. Pope, Comput. Fluids 16, 257 (1988).
[40] G. Darrieus, “Propagation d’un front de flamme,” presented

at LaTechnique Moderne (Paris), and in 1945 at Congres de
Mecanique Appliquee (Paris) (unpublished).

[41] L. D. Landau, Acta Physicochim. USSR 19, 77 (1944).
[42] R. Yu, X.-S. Bai, and V. Bychkov, Phys. Rev. E 92, 063028

(2015).
[43] J. F. Driscoll, Prog. Energy Combust. Sci. 34, 91 (2008).
[44] A. W. Skiba, T. M. Wabel, J. E. Temme, and J. F. Driscoll, in

51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando,
FL (AIAA, Reston, VA, 2015), p. 4089.

[45] B. Zhou, C. Brackmann, Z. Li, M. Aldén, and X.-S. Bai, Proc.
Combust. Inst. 35, 1409 (2015).

[46] T. M. Wabel, A. W. Skiba, J. E. Temme, and J. F. Driscoll, Proc.
Combust. Inst. 36, 1809 (2017).

[47] A. J. Aspden, M. S. Day, and J. B. Bell, J. Fluid Mech. 680, 287
(2011).

[48] T. Poinsot, D. Veynante, and S. Candel, J. Fluid Mech. 228, 561
(1991).

[49] W. L. Roberts, J. F. Driscoll, M. C. Drake, and L. P. Goss,
Combust. Flame 94, 58 (1993).

[50] A. M. Klimov, Dokl. Akad. Nauk SSSR 221, 56 (1975).
[51] S. Corrsin, Adv. Geophysics 18, 25 (1975).
[52] A. N. Lipatnikov, Proc. Combust. Inst. 33, 1489 (2011).
[53] T. Elperin, N. Kleeorin, M. Liberman, and I. Rogachevskii, Phys.

Rev. E 90, 053001 (2014).
[54] H. Wenzel and N. Peters, Combust. Sci. Technol. 158, 273

(2000).
[55] H. Wenzel and N. Peters, Combust. Sci. Technol. 177, 1095

(2005).
[56] A. N. Lipatnikov and J. Chomiak, Prog. Energy Combust. Sci.

28, 1 (2002).
[57] G. Damköhler, Ber. Bunsen-Ges. Phys. Chem. 46, 601 (1940).
[58] S. Chaudhuri, V. Akkerman, and C. K. Law, Phys. Rev. E 84,

026322 (2011).
[59] S. Chaudhuri, F. Wu, and C. K. Law, Phys. Rev. E 88, 033005

(2013).
[60] K. O. Smith and F. C. Gouldin, AIAA J. 17, 1243 (1979).
[61] C.-C. Liu, S. S. Shy, M.-W. Peng, C.-W. Chiu, and Y.-C. Dong,

Combust. Flame 159, 2608 (2012).
[62] H. Kido, T. Kitagawa, K. Nakashima, and K. Kato, Memoirs of

the Faculty of Engineering, Kyushu University 49, 229 (1989).
[63] S. Daniele, P. Jansohn, J. Mantzaras, and K. Boulouchos, Proc.

Combust. Inst. 33, 2937 (2011).
[64] H. Kobayashi, T. Tamura, K. Maruta, T. Niioka, and F.

A. Williams, in Symposium (International) on Combustion,
Vol. 26 (Elsevier, Amsterdam, Neth., 1996), pp. 389–396.

[65] H. Kobayashi, Y. Kawabata, and K. Maruta, in Symposium
(International) on Combustion, Vol. 27 (Elsevier, Amsterdam,
Neth., 1998), pp. 941–948.

[66] V. P. Karpov and E. S. Severin, Combust., Explosion, Shock
Waves 16, 41 (1980).

[67] Ö. L. Gülder, in Symposium (International) on Combustion,
Vol. 23 (Elsevier, Amsterdam, Neth., 1991), pp. 743–750.

[68] D. Bradley, A. K. C. Lau, and M. Lawes, Philos. Trans. R. Soc.
London, Ser. A 338, 359 (1992).

[69] A. N. Lipatnikov and J. Chomiak, Prog. Energy Combust. Sci.
36, 1 (2010).

063101-17

https://doi.org/10.1017/jfm.2014.392
https://doi.org/10.1017/jfm.2014.392
https://doi.org/10.1017/jfm.2014.392
https://doi.org/10.1017/jfm.2014.392
https://doi.org/10.1016/j.proci.2014.05.153
https://doi.org/10.1016/j.proci.2014.05.153
https://doi.org/10.1016/j.proci.2014.05.153
https://doi.org/10.1016/j.proci.2014.05.153
https://doi.org/10.1016/j.proci.2014.09.002
https://doi.org/10.1016/j.proci.2014.09.002
https://doi.org/10.1016/j.proci.2014.09.002
https://doi.org/10.1016/j.proci.2014.09.002
https://doi.org/10.1103/PhysRevE.91.021001
https://doi.org/10.1103/PhysRevE.91.021001
https://doi.org/10.1103/PhysRevE.91.021001
https://doi.org/10.1103/PhysRevE.91.021001
https://doi.org/10.1016/j.combustflame.2015.12.024
https://doi.org/10.1016/j.combustflame.2015.12.024
https://doi.org/10.1016/j.combustflame.2015.12.024
https://doi.org/10.1016/j.combustflame.2015.12.024
https://doi.org/10.1016/j.combustflame.2016.01.027
https://doi.org/10.1016/j.combustflame.2016.01.027
https://doi.org/10.1016/j.combustflame.2016.01.027
https://doi.org/10.1016/j.combustflame.2016.01.027
https://doi.org/10.1016/j.combustflame.2016.01.035
https://doi.org/10.1016/j.combustflame.2016.01.035
https://doi.org/10.1016/j.combustflame.2016.01.035
https://doi.org/10.1016/j.combustflame.2016.01.035
https://doi.org/10.1016/j.combustflame.2015.01.013
https://doi.org/10.1016/j.combustflame.2015.01.013
https://doi.org/10.1016/j.combustflame.2015.01.013
https://doi.org/10.1016/j.combustflame.2015.01.013
https://doi.org/10.1016/j.proci.2016.07.104
https://doi.org/10.1016/j.proci.2016.07.104
https://doi.org/10.1016/j.proci.2016.07.104
https://doi.org/10.1016/j.proci.2016.07.104
https://doi.org/10.1103/PhysRevE.68.066304
https://doi.org/10.1103/PhysRevE.68.066304
https://doi.org/10.1103/PhysRevE.68.066304
https://doi.org/10.1103/PhysRevE.68.066304
https://doi.org/10.1103/PhysRevE.94.053102
https://doi.org/10.1103/PhysRevE.94.053102
https://doi.org/10.1103/PhysRevE.94.053102
https://doi.org/10.1103/PhysRevE.94.053102
https://doi.org/10.1016/j.combustflame.2016.06.023
https://doi.org/10.1016/j.combustflame.2016.06.023
https://doi.org/10.1016/j.combustflame.2016.06.023
https://doi.org/10.1016/j.combustflame.2016.06.023
https://doi.org/10.1016/j.combustflame.2014.11.034
https://doi.org/10.1016/j.combustflame.2014.11.034
https://doi.org/10.1016/j.combustflame.2014.11.034
https://doi.org/10.1016/j.combustflame.2014.11.034
https://doi.org/10.1016/j.proci.2014.06.081
https://doi.org/10.1016/j.proci.2014.06.081
https://doi.org/10.1016/j.proci.2014.06.081
https://doi.org/10.1016/j.proci.2014.06.081
https://doi.org/10.1063/1.4905298
https://doi.org/10.1063/1.4905298
https://doi.org/10.1063/1.4905298
https://doi.org/10.1063/1.4905298
https://doi.org/10.1103/PhysRevE.93.053115
https://doi.org/10.1103/PhysRevE.93.053115
https://doi.org/10.1103/PhysRevE.93.053115
https://doi.org/10.1103/PhysRevE.93.053115
https://doi.org/10.1016/j.proci.2016.07.076
https://doi.org/10.1016/j.proci.2016.07.076
https://doi.org/10.1016/j.proci.2016.07.076
https://doi.org/10.1016/j.proci.2016.07.076
https://doi.org/10.1016/j.proci.2016.07.119
https://doi.org/10.1016/j.proci.2016.07.119
https://doi.org/10.1016/j.proci.2016.07.119
https://doi.org/10.1016/j.proci.2016.07.119
https://doi.org/10.1063/1.4891735
https://doi.org/10.1063/1.4891735
https://doi.org/10.1063/1.4891735
https://doi.org/10.1063/1.4891735
https://doi.org/10.1017/jfm.2015.211
https://doi.org/10.1017/jfm.2015.211
https://doi.org/10.1017/jfm.2015.211
https://doi.org/10.1017/jfm.2015.211
https://doi.org/10.1016/0010-2180(95)00240-5
https://doi.org/10.1016/0010-2180(95)00240-5
https://doi.org/10.1016/0010-2180(95)00240-5
https://doi.org/10.1016/0010-2180(95)00240-5
https://doi.org/10.1016/S0010-2180(99)00090-5
https://doi.org/10.1016/S0010-2180(99)00090-5
https://doi.org/10.1016/S0010-2180(99)00090-5
https://doi.org/10.1016/S0010-2180(99)00090-5
https://doi.org/10.1088/1364-7830/6/3/306
https://doi.org/10.1088/1364-7830/6/3/306
https://doi.org/10.1088/1364-7830/6/3/306
https://doi.org/10.1088/1364-7830/6/3/306
https://doi.org/10.1016/j.combustflame.2005.03.010
https://doi.org/10.1016/j.combustflame.2005.03.010
https://doi.org/10.1016/j.combustflame.2005.03.010
https://doi.org/10.1016/j.combustflame.2005.03.010
https://doi.org/10.1103/PhysRevA.37.2728
https://doi.org/10.1103/PhysRevA.37.2728
https://doi.org/10.1103/PhysRevA.37.2728
https://doi.org/10.1103/PhysRevA.37.2728
https://doi.org/10.1016/j.jcp.2012.05.006
https://doi.org/10.1016/j.jcp.2012.05.006
https://doi.org/10.1016/j.jcp.2012.05.006
https://doi.org/10.1016/j.jcp.2012.05.006
https://doi.org/10.1016/j.ijhydene.2012.08.076
https://doi.org/10.1016/j.ijhydene.2012.08.076
https://doi.org/10.1016/j.ijhydene.2012.08.076
https://doi.org/10.1016/j.ijhydene.2012.08.076
https://doi.org/10.1016/j.combustflame.2013.03.025
https://doi.org/10.1016/j.combustflame.2013.03.025
https://doi.org/10.1016/j.combustflame.2013.03.025
https://doi.org/10.1016/j.combustflame.2013.03.025
https://doi.org/10.1016/j.combustflame.2013.02.011
https://doi.org/10.1016/j.combustflame.2013.02.011
https://doi.org/10.1016/j.combustflame.2013.02.011
https://doi.org/10.1016/j.combustflame.2013.02.011
https://doi.org/10.1016/j.ijhydene.2014.09.173
https://doi.org/10.1016/j.ijhydene.2014.09.173
https://doi.org/10.1016/j.ijhydene.2014.09.173
https://doi.org/10.1016/j.ijhydene.2014.09.173
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1002/fld.3644
https://doi.org/10.1002/fld.3644
https://doi.org/10.1002/fld.3644
https://doi.org/10.1002/fld.3644
https://doi.org/10.1016/j.jcp.2013.08.055
https://doi.org/10.1016/j.jcp.2013.08.055
https://doi.org/10.1016/j.jcp.2013.08.055
https://doi.org/10.1016/j.jcp.2013.08.055
https://doi.org/10.1063/1.1833415
https://doi.org/10.1063/1.1833415
https://doi.org/10.1063/1.1833415
https://doi.org/10.1063/1.1833415
https://doi.org/10.1016/0045-7930(88)90013-8
https://doi.org/10.1016/0045-7930(88)90013-8
https://doi.org/10.1016/0045-7930(88)90013-8
https://doi.org/10.1016/0045-7930(88)90013-8
https://doi.org/10.1103/PhysRevE.92.063028
https://doi.org/10.1103/PhysRevE.92.063028
https://doi.org/10.1103/PhysRevE.92.063028
https://doi.org/10.1103/PhysRevE.92.063028
https://doi.org/10.1016/j.pecs.2007.04.002
https://doi.org/10.1016/j.pecs.2007.04.002
https://doi.org/10.1016/j.pecs.2007.04.002
https://doi.org/10.1016/j.pecs.2007.04.002
https://doi.org/10.1016/j.proci.2014.06.107
https://doi.org/10.1016/j.proci.2014.06.107
https://doi.org/10.1016/j.proci.2014.06.107
https://doi.org/10.1016/j.proci.2014.06.107
https://doi.org/10.1016/j.proci.2016.08.065
https://doi.org/10.1016/j.proci.2016.08.065
https://doi.org/10.1016/j.proci.2016.08.065
https://doi.org/10.1016/j.proci.2016.08.065
https://doi.org/10.1017/jfm.2011.164
https://doi.org/10.1017/jfm.2011.164
https://doi.org/10.1017/jfm.2011.164
https://doi.org/10.1017/jfm.2011.164
https://doi.org/10.1017/S0022112091002823
https://doi.org/10.1017/S0022112091002823
https://doi.org/10.1017/S0022112091002823
https://doi.org/10.1017/S0022112091002823
https://doi.org/10.1016/0010-2180(93)90019-Y
https://doi.org/10.1016/0010-2180(93)90019-Y
https://doi.org/10.1016/0010-2180(93)90019-Y
https://doi.org/10.1016/0010-2180(93)90019-Y
https://doi.org/10.1016/S0065-2687(08)60451-3
https://doi.org/10.1016/S0065-2687(08)60451-3
https://doi.org/10.1016/S0065-2687(08)60451-3
https://doi.org/10.1016/S0065-2687(08)60451-3
https://doi.org/10.1016/j.proci.2010.06.138
https://doi.org/10.1016/j.proci.2010.06.138
https://doi.org/10.1016/j.proci.2010.06.138
https://doi.org/10.1016/j.proci.2010.06.138
https://doi.org/10.1103/PhysRevE.90.053001
https://doi.org/10.1103/PhysRevE.90.053001
https://doi.org/10.1103/PhysRevE.90.053001
https://doi.org/10.1103/PhysRevE.90.053001
https://doi.org/10.1080/00102200008947337
https://doi.org/10.1080/00102200008947337
https://doi.org/10.1080/00102200008947337
https://doi.org/10.1080/00102200008947337
https://doi.org/10.1080/00102200590927003
https://doi.org/10.1080/00102200590927003
https://doi.org/10.1080/00102200590927003
https://doi.org/10.1080/00102200590927003
https://doi.org/10.1016/S0360-1285(01)00007-7
https://doi.org/10.1016/S0360-1285(01)00007-7
https://doi.org/10.1016/S0360-1285(01)00007-7
https://doi.org/10.1016/S0360-1285(01)00007-7
https://doi.org/10.1103/PhysRevE.84.026322
https://doi.org/10.1103/PhysRevE.84.026322
https://doi.org/10.1103/PhysRevE.84.026322
https://doi.org/10.1103/PhysRevE.84.026322
https://doi.org/10.1103/PhysRevE.88.033005
https://doi.org/10.1103/PhysRevE.88.033005
https://doi.org/10.1103/PhysRevE.88.033005
https://doi.org/10.1103/PhysRevE.88.033005
https://doi.org/10.2514/3.61305
https://doi.org/10.2514/3.61305
https://doi.org/10.2514/3.61305
https://doi.org/10.2514/3.61305
https://doi.org/10.1016/j.combustflame.2012.04.006
https://doi.org/10.1016/j.combustflame.2012.04.006
https://doi.org/10.1016/j.combustflame.2012.04.006
https://doi.org/10.1016/j.combustflame.2012.04.006
https://doi.org/10.1016/j.proci.2010.05.057
https://doi.org/10.1016/j.proci.2010.05.057
https://doi.org/10.1016/j.proci.2010.05.057
https://doi.org/10.1016/j.proci.2010.05.057
https://doi.org/10.1007/BF00756242
https://doi.org/10.1007/BF00756242
https://doi.org/10.1007/BF00756242
https://doi.org/10.1007/BF00756242
https://doi.org/10.1098/rsta.1992.0012
https://doi.org/10.1098/rsta.1992.0012
https://doi.org/10.1098/rsta.1992.0012
https://doi.org/10.1098/rsta.1992.0012
https://doi.org/10.1016/j.pecs.2009.07.001
https://doi.org/10.1016/j.pecs.2009.07.001
https://doi.org/10.1016/j.pecs.2009.07.001
https://doi.org/10.1016/j.pecs.2009.07.001


RIXIN YU AND ANDREI N. LIPATNIKOV PHYSICAL REVIEW E 95, 063101 (2017)

[70] V. A. Sabelnikov and A. N. Lipatnikov, Annu. Rev. Fluid Mech.
49, 91 (2017).

[71] S. Verma and A. N. Lipatnikov, Combust. Flame 173, 77 (2016).
[72] A. N. Lipatnikov and J. Chomiak, Prog. Energy Combust. Sci.

31, 1 (2005).
[73] R. G. Abdel-Gayed, K. J. Al-Khishali, and D. Bradley, Proc. R.

Soc. London, Ser. A 391, 393 (1984).
[74] K. N. C. Bray and R. S. Cant, Proc. R. Soc. London, Ser. A 434,

217 (1991).
[75] D. Bradley, in Symposium (International) on Combustion,

Vol. 24 (Elsevier, Amsterdam, Neth., 1992), pp. 247–262.
[76] P. Clavin, Prog. Energy Combust. Sci. 11, 1 (1985).

[77] M. Matalon, Annu. Rev. Fluid Mech. 39, 163 (2007).
[78] A. M. Klimov, Zhournal Prikladnoi Mekchaniki i Tekhnicheskoi

Fiziki 4, 49 (1963).
[79] A. Y. Poludnenko and E. S. Oran, Combust. Flame 158, 301

(2011).
[80] C. K. Law and C. J. Sung, Prog. Energy Combust. Sci. 26, 459

(2000).
[81] Ö. L. Gülder and G. J. Smallwood, Combust. Flame 103, 107

(1995).
[82] I. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G.

M. Makhviladze, Mathematical Theory of Combustion and
Explosions (Consultants Bureau, New York, 1985).

063101-18

https://doi.org/10.1146/annurev-fluid-010816-060104
https://doi.org/10.1146/annurev-fluid-010816-060104
https://doi.org/10.1146/annurev-fluid-010816-060104
https://doi.org/10.1146/annurev-fluid-010816-060104
https://doi.org/10.1016/j.combustflame.2016.08.018
https://doi.org/10.1016/j.combustflame.2016.08.018
https://doi.org/10.1016/j.combustflame.2016.08.018
https://doi.org/10.1016/j.combustflame.2016.08.018
https://doi.org/10.1016/j.pecs.2004.07.001
https://doi.org/10.1016/j.pecs.2004.07.001
https://doi.org/10.1016/j.pecs.2004.07.001
https://doi.org/10.1016/j.pecs.2004.07.001
https://doi.org/10.1098/rspa.1984.0019
https://doi.org/10.1098/rspa.1984.0019
https://doi.org/10.1098/rspa.1984.0019
https://doi.org/10.1098/rspa.1984.0019
https://doi.org/10.1098/rspa.1991.0090
https://doi.org/10.1098/rspa.1991.0090
https://doi.org/10.1098/rspa.1991.0090
https://doi.org/10.1098/rspa.1991.0090
https://doi.org/10.1016/0360-1285(85)90012-7
https://doi.org/10.1016/0360-1285(85)90012-7
https://doi.org/10.1016/0360-1285(85)90012-7
https://doi.org/10.1016/0360-1285(85)90012-7
https://doi.org/10.1146/annurev.fluid.38.050304.092153
https://doi.org/10.1146/annurev.fluid.38.050304.092153
https://doi.org/10.1146/annurev.fluid.38.050304.092153
https://doi.org/10.1146/annurev.fluid.38.050304.092153
https://doi.org/10.1016/j.combustflame.2010.09.002
https://doi.org/10.1016/j.combustflame.2010.09.002
https://doi.org/10.1016/j.combustflame.2010.09.002
https://doi.org/10.1016/j.combustflame.2010.09.002
https://doi.org/10.1016/S0360-1285(00)00018-6
https://doi.org/10.1016/S0360-1285(00)00018-6
https://doi.org/10.1016/S0360-1285(00)00018-6
https://doi.org/10.1016/S0360-1285(00)00018-6
https://doi.org/10.1016/0010-2180(95)00073-F
https://doi.org/10.1016/0010-2180(95)00073-F
https://doi.org/10.1016/0010-2180(95)00073-F
https://doi.org/10.1016/0010-2180(95)00073-F



