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ABSTRACT 

SAMO stands for Sensitivity Analysis and Multiobjective Optimization and is a computer code 

implemented in MATLAB to carry out a computationally efficient global sensitivity analysis and 

multiobjective optimization with many design applications. Current report is prepared to support SAMO 

users. Several case studies are considered including application of SAMO in global sensitivity analysis 

of bogie dynamics with respect to suspension components which in fact shows how SAMO can be used 

in a co-simulation environment with commercial multibody softwares like SIMPACK to solve 

complicated global sensitivity analysis and multiobjective optimization problems. The global sensitivity 

analysis works based on the multiplicative dimensional reduction method which significantly reduces 

the computational efforts required to evaluate sensitivity indices in comparison with to the ordinary 

methods. Furthermore, genetic algorithm is employed to carry out the multiobjective optimization. At 

the end, the theories behind global sensitivity analysis and multiobjective optimization approaches used 

to develop SAMO are given.    

 

Keywords: Global sensitivity analysis, multiobjective optimization, multiplicative dimensional 

reduction method, genetic algorithm.   



4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

PERFACE 

This work has been accomplished during October 2016 until June 2017 at the Department of Applied 

Mechanics, (since May 1, 2017 - Department of Mechanics and Maritime Sciences), Chalmers 

University of Technology, Gothenburg, Sweden. This report is for the work done on extension of SD9 

project of the Chalmers railway mechanics center of excellence (CHARMEC). 

The project is financially supported by the Ekman family foundation which is gratefully acknowledged. 

This report covers SAMO computer code and some application examples. The computer codes for 

different examples can be downloaded via the following link: 

https://chalmersuniversity.box.com/s/00otvu52231rxeih5dgfrdp03pv63er8 

Please be aware a password is required to access the codes. Contact the authors to receive the password. 

Please report any bugs in the codes to the authors. 

 

 

 

Seyed Milad Mousavi Bideleh (bideleh@gmail.com),   

Viktor Berbyuk (viktor.berbyuk@chalmers.se) 
 

June 2017, Gothenburg. 

https://chalmersuniversity.box.com/s/00otvu52231rxeih5dgfrdp03pv63er8
mailto:bideleh@gmail.com
mailto:viktor.berbyuk@chalmers.se
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1. SAMO 

SAMO is a computer code developed in MATLAB for global sensitivity analysis (GSA) and 

multiobjective optimization with different applications. The GSA is carried out using the multiplicative 

dimensional reduction method (M-DRM). The code is capable to proceed to multiobjective optimization 

which is done by using the genetic algorithm (GA). Based on the results of global sensitivity analysis, 

the user can decide the desired design parameters for multiobjective optimization. The optimization 

results are then presented in terms of Pareto set and Pareto front. The general overview of SAMO is 

shown in Fig. 1.      

 

Fig. 1: Structure of SAMO. 

1.1 Getting starting with SAMO 

In order to start working with SAMO, three computer files are required as shown in Fig. 2. It is important 

to have these files in the working directory of MATLAB. It should also be noted that the names of the 

files should not be changed. The excel file “InputParms.xls” includes the input settings for GSA and 

multiobjective optimization problems. The M-file “MBSD.m” includes the multibody dynamics 

formulations of the system and finally the protected M-file “SAMO” is the main code that should be 

executed to run the global sensitivity analysis and multiobjective optimization. The structure of these 

files are discussed in details in the subsequent sections.   

 

Fig. 2: Required files for running SAMO. 
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1.1.1 Format of the input data files 

The format of the input settings for global sensitivity analysis and multiobjective optimization in 

“InputParams.xls” is shown in Fig. 3 for a general case. The first row denotes the design parameters 

index. As an example, there are six design parameters d1-d6 as shown in Fig. 3. It should be noted that 

users can include as many input design parameters as they want by simply adding or reducing some 

columns into the InputParams file. In the second row, the mean values of the design parameters (d10-

d60) should be entered which is in fact the cut center c introduced in the annex B.  

 

Fig. 3: Format of the input settings for global sensitivity analysis and multiobjective optimization. 

The third row includes the coefficient of variation (COV) of each design parameter. Number of 

integration abscissas and distribution of the input design parameters are given in the fourth and fifth 

rows, respectively. It should be noted that the number of points for Gaussian quadrature integration must 

be an integer. Furthermore, the user can use either “n” or “N” to generate a normal distribution or enter 

“l” or “L” to create a lognormal distribution. If the file includes a non-integer number for number of 

integration points or some other letters than “n”, “N”, “l”, or “L” for the distribution, the code gives an 

error to user. 

The GA settings including lower and upper bounds for variations of the design parameters, population 

size, number of generations, elite count, and Pareto fraction are also given in the corresponding rows of 

the InputParams.xls file. More details on GA settings is found in the MATLAB documentation for 

gamultiobj function [1]. 

As aforementioned, the number of columns could be variable and it does not affect the generality of the 

code, but it is important to fill out the respective data in rows 2-7 in the input data file. Moreover, the 

order and format of the file should not be changed as well. For example, it is not allowed to enter the 

COV in the second row or mean values in the third row.  
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1.1.2 Format of the multibody dynamics code 

The objective functions should be calculated in the “MBSD.m” file. The general format is shown in Fig. 

4. In fact, the user should implement his own multibody dynamics code in a way that the code reads 

vector of input design parameters X and delivers the vector of respective objective functions OF as 

shown by the block diagram in Fig. 4. It should be noted that the vector OF which includes the values 

of objective functions for each set of the design parameters X, should be saved in a column wise manner 

such that each column indicates respective values of each of the objective functions. It is also 

recommended not to make any change in the rest of the code shown in Fig. 4. Some examples are shown 

in the annex A to clarify this part more. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

function OF = MBSD(X) 

global m indx indxOF d0 iter optresult 

iter 

  

if length(X) == m 

%%%%%%%%%%%%%%%%%%%%%%%% 

%% This part is for GSA 

%%%%%%%%%%%%%%%%%%%%%%%%     

    d = X; 

    iter = iter+1; 

else 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% This part is for Multiobj Optimization 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

    d = d0; 

    for i = 1:length(X) 

        d(indx(i)) = X(i);  

    end 

end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%% The MBSD code should be written here 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

 
 

if length(X) ~= m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% This part is for Multiobj Optimization 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
OFOpt = zeros(1,length(indxOF)); 
  
   for i = 1:length(indxOF) 
        OFOpt(i) = OF((indxOF(i)));  
   end 
  
optresult(iter,:) = [X OF]; 
 
OF = OFOpt; 
iter = iter+1; 
xlswrite('optresults.xls',optresult); 
end 

Fig. 4: Format of the “MBSD.m” code. 
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1.2. Example: Wheel torque/travel time optimization of a vehicle 

The aim of this example is to study the sensitivity of wheel torque and travel time with respect to 

different design parameters. A bi-objective optimization problem is also solved to yield the tradeoff 

solutions of the wheel torque/travel time optimization problem. 

The free body diagram of the vehicle is shown in Fig. 5. 

 

Fig. 5: Free body diagram of a vehicle on a ramp. 

The motor traction force can be approximated as: 

 MT=RR+GR+FA . (1) 

Here, RR is the rolling resistance given by  

 RR=m×g×Cr . (2) 

The gravitational resistance force GR is  

 GR=m×g×sinθ . (3) 

Acceleration force (FA) is expressed as 

 FA=m×amax . (4) 

The time required to achieve the maximum speed is 

 max
a

max

V
t

a
= ,  (5) 

where, Vmax is the maximum speed and amax is the maximum acceleration. 

The wheel torque (TW) is approximated as 

 W T W fT M R R= × × ,  (6) 

where, RW is the wheel radius and Rf is the resistance factor. 
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Task: It is desired to shorten the journey time and reduce fuel consumption. This can be done by 

minimizing the wheel torque (TW) and the time required to achieve maximum speed (ta). Therefore, TW 

and ta are the two objective functions. A GSA is carried out first to study the effects of different design 

parameters on these objective functions. The input data file is shown in Fig. 6. 

 

 

Fig. 6: Input data file. 

It can be seen that there are 7 design parameters. The mean values and variation bounds are chosen from 

[2]. The MBSD.mat code is shown in Fig. 7. The design parameters are updated using the following 

lines in the MBSD code: 

mv = d(1); 
cr = d(2); 
alpha = d(3); 
vm = d(4); 
am = d(5); 
Rw = d(6); 
Rf = d(7); 

Based on the updated design parameters the objective functions are calculated using Eqs. (5, 6). See, 

Fig. 7. 

Tw = mv*9.81*(cr+sin(alpha)+am/9.81)*Rw*Rf; 
tm = vm/am; 
OF = [tm;Tw]'; 
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To run the GSA, one should type SAMO in the MATLAB workspace. The SAMO function reads the 

InputData file and performs the GSA based on the multibody dynamics of the system. The GSA results 

in terms of the total sensitivity indices of different objective functions with respect to design parameters 

are shown in Fig. 8. Each color bar indicates a number which shows the sensitivity. Higher number in 

function OF = MBSD(X) 

global m indx indxOF d0 iter optresult 

iter 

  

if length(X) == m 

%%%%%%%%%%%%%%%%%%%%%%%% 

%% This part is for GSA 

%%%%%%%%%%%%%%%%%%%%%%%%     

    d = X; 

    iter = iter+1; 

else 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% This part is for Multiobj Optimization 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

    d = d0; 

    for i = 1:length(X) 

        d(indx(i)) = X(i);  

    end 

end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%% The MBSD code should be written here 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
mv = d(1); 
cr = d(2); 
alpha = d(3); 
vm = d(4); 
am = d(5); 
Rw = d(6); 
Rf = d(7); 
  
Tw = mv*9.81*(cr+sin(alpha)+am/9.81)*Rw*Rf; 
tm = vm/am; 
 
OF = [tm;Tw]'; 
 
if length(X) ~= m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% This part is for Multiobj Optimization 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
OFOpt = zeros(1,length(indxOF)); 
  
   for i = 1:length(indxOF) 
        OFOpt(i) = OF((indxOF(i)));  
   end 
  
optresult(iter,:) = [X OF]; 
 
OF = OFOpt; 
iter = iter+1; 
 
xlswrite('optresults.xls',optresult); 
 
end 
 
 
 
Fig. 7: MBSD code for wheel torque/travel time optimization example 
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the color bar reflect more sensitivity. SAMO also automatically plots the GSA results of each objective 

function separately which are not shown here. 

 

Fig. 8: Sensitivity indices. 

After the GSA, SAMO asks user whether or not to proceed with optimization: 

To proceed to optimization press Y, to return press N? 

The code ends by pressing “n” or “N”. But if the user press “y” or “Y”, the code asks for the design 

parameter indices for optimization: 

Please enter the design parameters index number for optimization in 

an ascending order and vector form.  

E.g. [1 3 4 7] 

Assume that mass (m), maximum speed (Vmax), maximum acceleration (amax), and the wheel radius (RW) 

are chosen as the design parameters to minimize the wheel torque (TW) and the time required to achieve 

maximum speed (ta). Therefore, the user should enter [1 4 5 6] in the MATLAB command line. 

Please enter the objective functions index number for optimization in 

an ascending order and vector form.  

E.g. [1 3 4 7] 

Since both objective functions Tw and ta are desired to be optimized the user should enter [1 2] in the 

MATLAB command line. The multiobjective optimization is then carried out using GA and the 

prescribed settings in the InputData file. The Pareto optimized results are shown in terms of Pareto sets 
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and Pareto fronts. SAMO automatically provides 2D plots for all the Pareto sets and Pareto fronts in a 

two by two basis. 

The Pareto set and Pareto front are also saved on “Pareto Set.xls” and “Pareto Front.xls” files, 

respectively. These excel files can be used to plot the normalized and absolute Pareto fronts that are 

shown in Fig. 9. The value associated with the initial guess is shown by the red cross (×). 

The optimized values of the design parameters are shown in Fig. 10. 

 

Fig. 9: Pareto front: a) Normalized objective functions; b) Absolute values. 

It can be seen that increasing the wheel radius and reducing maximum speed minimizes the accelerating 

time. In contradict, reducing the wheel radius and increasing maximum speed minimizes the wheel 

torque. 

 

Fig. 10: Pareto set. 
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Annex A 

Examples 

 

Example 1: Eigen values of a spring-mass system 

This example is taken from section 4.7 of [3]. Consider the 3 degree of freedom (DOF) mass-spring 

system shown in Fig. A1.  

 

Fig. A1: Linear 3 DOF mass-spring system. 

The equations of motion are given by Eqs. (A1):  

 
( )

( )
( )

1 1 1 4 6 1 4 2 6 3

2 2 4 1 2 4 5 2 5 3

3 3 6 1 5 2 3 5 6 3

0

0

0

M x k k k x k x k x

M x k x k k k x k x

M x k x k x k k k x

+ + + − − =

− + + + − =

− − + + + =







,  (A1) 

or in matrix form: 

 0M K+ =x x . (A2) 

Here, mass (M) and stiffness (K) matrices are defined by Eqs. (A3, A4), respectively: 

 
1

2

3

0 0
0 0
0 0

M
M M

M

 
 =  
  

,  (A3) 

 
1 4 6 4 6

4 2 4 5 5

6 5 3 5 6

k k k k k
K k k k k k

k k k k k

+ + − − 
 = − + + − 
 − − + + 

 . (A4) 

The target is to study the GSA of the system’s eigen values with respect to the design parameters.  

The input data file (“InputParams.xls”) for GSA is shown in Fig. A2. There are 9 design parameters (3 

masses and 6 stiffnesses) with mean, COV, and number of integration abscissas given in [3]. A 

lognormal distribution of the input data is considered. 
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Fig. A2: Input data file for GSA. 

SAMO reads the input data file and based on the provided setting creates the simulation matrix which 

is saved as a text file (“InputData.txt”) shown in Fig. A3. 

 

Fig. A3: Simulation matrix for GSA. 
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Each column in the simulation matrix represents variations of a particular design parameter based on 

the order given in Fig. A2. The system response and objective functions (eigen values in this example) 

should be evaluated for design inputs given by each row of the simulation matrix. Therefore, the number 

of function evaluations is equal to the number of rows of the simulation matrix, i.e. n×N (9 design 

parameters × 5 integration abscissas = number of simulations 45).   

To calculate the objective functions (3 eigen values), it is necessary to modify the multibody system 

dynamics (MBSD) code in MATLAB. As explained before, the MBSD code reads the simulation matrix 

and for each particular row of this matrix updates the design parameters and calculates the objective 

functions, see Fig. A4. It should be noted that the objective functions should be stored column-wised. 

As an example, the first, second, and third eigen values of the system are calculated and saved in a 

column-wised manner as shown in Fig. A5. This file is then stored and will be used later on by the main 

code to calculate the total GSA indices. 

The sensitivity of the first, second, and third eigen values with respect to different design parameters are 

shown in Figs. A6 (a-c). The mapping between the design parameters and the total global sensitivity 

indices are also summarized in Fig. A7 in which assigns a color to each sensitivity index. The higher 

value on the color bar represents higher sensitivity. 

The results are in excellent agreement with those reported in [3]. 

After the GSA, the code asks user whether or not continue with multiobjective optimization: 

To proceed to optimization press Y, to return press N? 

The code ends by pressing “n” or “N”. But if the user enter “y” or “Y”, the code asks for the design 

parameter indices for optimization: 

Please enter the design parameters index number for optimization in 

an ascending order and vector form.  

E.g. [1 3 4 7] 

Assume that M1, M2, M3, K4, and K6 are chosen for optimization. So, the input vector is [1 2 3 7 9]  

Please enter the objective functions index number for optimization in 

an ascending order and vector form.  

E.g. [1 3 4 7] 

All three objective functions (first, second, and third eigen values) can be assumed as the objective 

functions to be used in multiobjective optimization. Therefore, the user can enter [1 2 3] to take into 

account all three objective functions.  
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Fig. A4: Function MBSD.mat to calculate the 

objective functions. 

 

 

Fig. A5: First, second, and third eigen values 

corresponding to each row of the simulation matrix. 

function OF = MBSD(X) 

global m indx indxOF d0 iter optresult 

iter 

  

if length(X) == m 

%%%%%%%%%%%%%%%%%%%%%%%% 

%% This part is for GSA 

%%%%%%%%%%%%%%%%%%%%%%%%     

    d = X; 

    iter = iter+1; 

else 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% This part is for Multiobj Optimization 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

    d = d0; 

    for i = 1:length(X) 

        d(indx(i)) = X(i);  

    end 

end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%% The MBSD code should be written here 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        M = diag([d(1),d(2),d(3)]); 
        K = [d(4)+d(7)+d(9) -d(7) -d(9);-d(7) 
d(5)+d(7)+d(8) -d(8);-d(9) -d(8) d(6)+d(8)+d(9)];        
  
        E = eig(K,M); 
        e1 = sqrt(E(1)); 
        e2 = sqrt(E(2)); 
        e3 = sqrt(E(3)); 
 
OF = [e1;e2;e3]'; 
 
if length(X) ~= m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% This part is for Multiobj Optimization 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
OFOpt = zeros(1,length(indxOF)); 
  
   for i = 1:length(indxOF) 
        OFOpt(i) = OF((indxOF(i)));  
   end 
  
optresult(iter,:) = [X OF]; 
 
OF = OFOpt; 
iter = iter+1; 
 
xlswrite('optresults.xls',optresult); 
 
end 
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Fig. A6: Sensitivity indices of different objective function with respect to the design parameters: a) First eigen 

value; b) Second eigen value; c) Third eigen value. 

 

Fig. A7: Sensitivity indices. 

The multiobjective optimization starts based on the lower and upper bounds of the parameters, 

population size, number of generations, elite count, and Pareto fraction settings shown in Fig. A2. The 

optimization results i.e. Pareto front and Pareto set are automatically saved on excel sheets “Pareto 

Front.xls” and “Pareto Set.xls”, respectively. Pareto optimized results are also automatically plotted on 

a 2D basis. Furthermore, the minimum value of each objective function together with the corresponding 

Pareto sets are being displayed on the screen.  

Run the exemplary computer files associated with this example to see more details. 
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Example 2: Thermally induced stress intensity factor 

This example is taken from [3, 4]. A cracked plate under thermal loading is shown in Fig. A8. 

 

Fig. A8: Cracked plate under thermal loading [4].  

The analytical expression for the thermally induced intensity factor of the rectangular plate with a crack 

size of a is given as follows: 

 ( ) ( ) ( )

2 4

IC 0 1 0.025 0.06
cos 4 2 2

a a aK E T T
a B B B

πα
π

    = − − − +    
     

X .  (A5) 

The definition of the parameters and respective values are given in Table A1. 

 

Table A1: Mean and COV of different parameters for GSA. 

Variable Description Distribution Mean COV 

T0 Initial hot temperature Lognormal 100 ºC 0.2 

T Amphibian cool temperature Lognormal 20 ºC 0.2 

a Crack size Lognormal 10 mm 0.2 

B Width of plate Lognormal 200 mm 0.2 

E Young’s module Lognormal 210 GPa 0.2 

α Thermal expansion coefficient Deterministic 12.5×10-6 ºC-1 - 

 

The target is to study GSA of the thermally induced intensity factor with respect to the parameters listed 

in Table A1 and use the GSA results to minimize the thermally induced intensity factor. The input 

parameters file is shown in Fig. A9. 
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Fig. A9: Input parameters for GSA and optimization of KIC. 

The MBSD code for this example is shown in Fig. A10: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. A10: The MBSD code for thermally induced stress intensity factor example. 

function OF = MBSD(X) 
global m indx indxOF d0 iter optresult 
iter 
  
if length(X) == m 
%%%%%%%%%%%%%%%%%%%%%%%% 
%% This part is for GSA 
%%%%%%%%%%%%%%%%%%%%%%%%     
    d = X; 
    iter = iter+1; 
else 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% This part is for Multiobj Optimization 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
    d = d0; 
    for i = 1:length(X) 
        d(indx(i)) = X(i);  
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%% The MBSD code should be written here 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
T0 = d(1); 
T = d(2); 
a = d(3); 
B = d(4); 
E = d(5); 
Alpha = 12.5e-6; 
KIC = -Alpha*E*(T-T0)*sqrt(pi*a/cos(pi*a/(4*B)))*(1-
0.025*(a/(2*B))^2+0.06*(a/(2*B))^4); 
OF = KIC'; 
 
if length(X) ~= m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% This part is for Multiobj Optimization 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
OFOpt = zeros(1,length(indxOF)); 
  
   for i = 1:length(indxOF) 
        OFOpt(i) = OF((indxOF(i)));  
   end 
  
optresult(iter,:) = [X OF]; 
OF = OFOpt; 
iter = iter+1; 
 
xlswrite('optresults.xls',optresult); 
end 
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By running the SAMO, the total sensitivity index shown in Fig. A11 is obtained. 

 

Fig. A11: Total sensitivity index for KIC. 

It can be seen that there is an excellent agreement with the values reported in [3]. 

To minimize the stress intensity factor KIC, one can continue with SAMO to carry out the optimization. 

This is done by entering “y” or “Y” in the MATLAB command line as follows: 

To proceed to optimization press Y, to return press N? y 

Please enter the design parameters index number for optimization in 

an ascending order and vector form.  

E.g. [1 3 4 7] 

Assume that T0, a, and E (parameters number 1, 3, and 5) are chosen as the design parameters for 

optimization of KIC. Therefore, the input vector of design parameters is [1 3 5]. 

Please enter the objective functions index number for optimization in 

an ascending order and vector form.  

E.g. [1 3 4 7] 

There is only one objective function here, so the user should enter [1] 

The optimization results are shown in Fig. A12. It can be seen that the stress intensity factor KIC can be 

significantly reduced by reducing the initial temperature, crack size, and modulus of elasticity of the 

plate. 
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Fig. A12: Optimization results: a) Initial temperature; b) Crack size; c) Modulus of elasticity; d) Stress intensity 

factor. 

Example 3: Ride comfort and safety of a quarter car vehicle model 

This example is taken from [5]. A quarter car vehicle model is shown in Fig. A13. The equations of 

motion in matrix form for this vehicle model are given as: 

 M C K+ + =x x x F  ,  (A6) 

where, x=[xu,xs]T, and 𝑥̇𝑥, 𝑥̈𝑥 are the respective time derivatives. The mass matrix (M), damping matrix 

(C), stiffness matrix (K), and vector of external forces (F) are given as: 

 u

s

0
0

M
M

M
 

=  
 

,  (A7) 

 t s s

s s

c c c
C

c c
+ − 

=  − 
,  (A8) 

 t s s

s s

k k k
K

k k
+ − 

=  − 
,  (A9) 

 t 0 t 0

0
k x c x+ 

=  
 

F


.  (A10) 

Here, Ms (Mu), ks (kt), and cs (ct) are the sprung (unsprung) mass, stiffness, and damping, respectively.  
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Fig. A13: A quarter car vehicle model. 

The road irregularities are modeled as: 

 0 0( ) sin( )x t a tω= , 02 /v Lω π= ,  (A11) 

The following objective functions are considered to evaluate the suspension system performance: 

 ( )s s
s

1 RMS
sxF M x

M g
=



 ,  (A12) 

 ( ) ( )( )t u 0 t u 0
s

1 RMSfF k x x c x x
M g

= − + −  .  (A13) 

Here, 𝐹𝐹𝑥̈𝑥s is the root mean square (RMS) of the sprung mass accelerations and indicates ride comfort. 

While, 𝐹𝐹𝑓𝑓 is the weighted RMS of the force between the tire and ground and its inverse (1/Ff) represents 

running safety. The structural parameters and problem inputs are given in Table A2. 

Table A2: Structural parameters and problem inputs. 

Ms [kg] Mu [kg] ks [kN/m] kt [kN/m] cs [Ns/m] ct [Ns/m] v0 [m/s] L [m] a0 [m] 

375 60 15 20 1425 7 15 10 0.07 

 

The input parameters are shown in Fig. A14. To calculate the objective functions, the MBSD file should 

be updated as shown in Fig. A15. The equations of motion of the system in the state space form are 

implemented in the function Quartcar.m. It should be noted that the objective functions are normalized 

with respect to their initial values. More details can be found in MBSD.m and Quartcar.m files in the 

appended computer files for this example. 
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Fig. A14: Input parameters for GSA of quarter car vehicle model. 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%% The MBSD code should be written here 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global inFun1 inFun2 K M C Kt Ct Mu 
  
Ms = d(1); 
Mu = d(2); 
Ks = d(3); 
Kt = d(4); 
Cs = d(5); 
Ct = d(6); 
v0 = d(7); 
L = d(8); 
a0 = d(9); 
g = 9.81; 
  
M = [Mu 0;0 Ms]; 
K = [Kt+Ks -Ks;-Ks Ks]; 
C = [Ct+Cs -Cs;-Cs Cs]; 
  
T = linspace(0,10,100); 
z0 = zeros(1,4); 
  
inFun1 = @(t)(a0*sin(2*pi*v0/L.*t)); 
inFun2 = @(t)(a0*2*pi*v0/L*cos(2*pi*v0/L.*t)); 
  
[t,z] = ode45(@Quartcar,T,z0); 
zdot = zeros(size(z)); 
 
for i = 1:length(t) 
 zdot(i,:) = Quartcar(t(i),z(i,:)')'; 
end 
  
Facc = 1/(Ms*g)*sqrt( 1/(t(end) - t(1)) * trapz(t,Ms*zdot(:,4).^2) ); 
 
Fsaf = 1/(Ms*g)*sqrt( 1/(t(end) - t(1)) * trapz(t,(Kt*(z(:,1)-
a0*sin(2*pi*v0/L*t))+Ct*(z(:,3)-(a0*2*pi*v0/L*cos(2*pi*v0/L.*t)))).^2) ); 
  
OF = [Facc/0.011547434;(1/Fsaf)/4.551818206]'; 
 
 Fig. A15: Implementing the multibody dynamics required to evaluate comfort and safety of 

the quarter car model. 
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To proceed to optimization press Y, to return press N? y 

Please enter the design parameters index number for optimization in 

an ascending order and vector form.  

E.g. [1 3 4 7] 

The total sensitivity indices are shown in Fig. A16. The sprung mass parameters Ms, Ks, and Cs are 

considered as inputs for optimization.  

Therefore, the input to optimization is [1 3 5]. 

Please enter the objective functions index number for optimization in 

an ascending order and vector form.  

E.g. [1 3 4 7] 

To improve ride comfort and safety simultaneously, both objective functions are chosen for 

optimization, so the input is [1 2]. 

 

Fig. A16: Total sensitivity indices for the quarter car vehicle model. 

The Pareto optimized results are shown in Figs. A17, A18. 
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Fig. A17: Pareto front. 

 

  

 

 

Fig. A18: Pareto set. 
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Example 4: GSA of a high speed bogie dynamics w.r.t. suspension components  

This example is chosen to show the usage of SAMO in co-simulation with other software like multibody 

dynamics software SIMPACK. Similar approach might be used for other commercial software that are 

able to communicate with MATLAB or MATLAB/SIMULINK in a co-simulation interface.  

In this example, effects of suspension system components of a bogie system of a high speed train on 

vehicle dynamics is investigated using SAMO. The bogie in question is shown in Fig. A19. It constitutes 

of two wheelsets, four axle boxes, and a bogie frame. All these components are rigid and have six DOFs 

except for the axle boxes that only allow a single rotation around the wheelset axle. Therefore, the bogie 

has a total of 22 DOFs. 

 

 

Fig. A19: Bogie model. 

In addition to the rigid components, the bogie contains a set of flexible primary suspension elements 

that are listed in Table A3. All springs and dampers are modeled as point to point linear stiffness and 

damping, respectively. It should be noted that there are two parallel and equal vertical and lateral 

suspension spring and damper components. As an example, the stiffness of each of the vertical springs 

is equal to Kpz/2. 

Table A3: Suspension components. 

1 Kpx Long prim stiffness 

2 Cpx Long prim damping 

3 Kpy Lat prim stiffness 

4 Cpy Lat prim damping 

5 Kpz Vert prim stiffness 

6 Cpz Vert prim damping 

 

The input data file is given in Fig. A20. The lower and upper bounds for optimization are considered as 

-20% and +20% variation around the mean value, respectively. 
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Fig. A20: Input data file. 

The MBSD MATLAB file is given in Fig. A21. 

MATLAB function SubvarUpd is implemented to update the sub-variables of the bogie model (the 

six parameters listed in Table A3). The output of the SubvarUpd function is shown in Fig. A22. Note 

that the format of this file is compatible with the multibody dynamics software SIMPACK and changing 

the standard format might make this file unreadable. It is clear that suitable input file formats should be 

generated once dealing with other commercial softwares. It should also be noted that this file should be 

saved in the directory of SIMPACK model. So, the address of the file in the SubvarUpd function 

should be updated based on the working folder. As an example, the file address in the enclosed help file 

is:  

C:\Users\bideleh\Desktop\SAMO SIMPACK Example\PrimarySusp.subvar 

This line in the SubvarUpd function should be updated based on the desired working folder. 

Furthermore, the generated sub-variable file should be linked to the SubVar files in the SIMPACK 

model as shown in Fig. A23. Additional settings in the SIMPACK model’s search path might also be 

necessary. See, SIMPACK documentation for more details [6]. 

At this stage, the design parameters are updated and it is time to run the SIMPACK model and get the 

dynamics response of the system to be able to evaluate the objective functions. This is done in a 

MATLAB-SIMPACK co-simulation interface with the aid of the simat module in 

MATLAB/SIMULINK. 

To use this interface, enter simat in MATLAB workspace. In older MATLAB versions, it might be 

necessary to add simat module to MATLAB by clicking on file/set path/Add Folder… 

In the popped-up window select simat from simpack-2017/partners/mathworks 

See SIMPACK documentation for more details.  
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Fig. A21: The MBSD file. 

function OF = MBSD(X) 

global m indx indxOF d0 iter optresult 

 

iter 

  

if length(X) == m 
%%%%%%%%%%%%%%%%%%%%%%%% 

%% This part is for GSA 

%%%%%%%%%%%%%%%%%%%%%%%%     

    d = X; 

    iter = iter+1; 

else 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% This part is for Multiobj Optimization 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

    d = d0; 

    for i = 1:length(X) 

        d(indx(i)) = X(i);  

    end 

end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%% The MBSD code should be written here 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
SubvarUpd(d);             % Update SIMPACK model SubVar file (design parameters) 
  
sim('BogieSimModel.mdl');           % Run Simpack model using simat module in simulink 
  
result = load ('C:\Users\bideleh\Desktop\SMOR SIMPACK Example\output\Bogie_Result.mat');    
% Load the results from SIMPACK model. Note: The file address must be updated based on the 
current folder 
t = result.timeInt.time.values;                  % Integration time 
  
LatAcc = result.timeInt.sensorAccTrans.SS_Bogie.y.values; % Lateral accelerations of Bogie 
  
Q = result.timeInt.RS_result.SRS_RWT_Wheelset.ch_001.values;           % Vertical Contact 
force acting on the wheelset (Note: This must be updated for different SIMPACK models) 
  
Y = result.timeInt.RS_result.SRS_RWT_Wheelset.ch_002.values;            % Lateral Contact 
force acting on the wheelset (Note: This must be updated for different SIMPACK models) 
  
LatDisp = result.timeInt.RS_result.SRS_RWT_Wheelset.ch_004.values;         % Lateral 
displacement of the wheelset (Note: This must be updated for different SIMPACK models) 
  
RMSA = sqrt( 1/(t(end) - t(1)) * trapz(t,LatAcc.^2) ); 
RMSQ = sqrt( 1/(t(end) - t(1)) * trapz(t,Q.^2) ); 
RMSY = sqrt( 1/(t(end) - t(1)) * trapz(t,Y.^2) ); 
RMSd = sqrt( 1/(t(end) - t(1)) * trapz(t,LatDisp.^2) ); 
  
OF = [RMSA RMSQ RMSY RMSd]; 

if length(X) ~= m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% This part is for Multiobj Optimization 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
OFOpt = zeros(1,length(indxOF)); 
 
   for i = 1:length(indxOF) 
        OFOpt(i) = OF((indxOF(i)));  
   end 
optresult(iter,:) = [X OF]; 
 
OF = OFOpt; 
iter = iter+1; 
 
xlswrite('optresults.xls',optresult); 
end 
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Fig. A22: SIMPACK sub-variable file. 

 

 

 

Fig. A23: Link the sub-variable file to the SIMPACK model. 

It should be noted that MATLAB function pathdef.m will be generated once simat is added to 

MATLAB directory. This file must be removed if you are using MATLAB version 2012 or higher. The 

simat module in SIMULINK is shown in Fig. A24. 

To prepare the SIMPACK model for a co-simulation, in SIMPACK GUI select 

Solver/Co-Simulation/Start Command Server 
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Getting back to the simat module in SIMULINK (Fig. A24), by double clicking on the block the 

address of the bogie model file in SIMPACK should be linked to the address tab of the simat block. 

See, BogieSimModel.mdl and SIMPACK documentation for more details on running co-

simulations in MATLAB/SIMULINK-SIMPACK interface. 

 

Fig. A24: MATLAB/SIMULINK-SIMPACK co-simulation interface. 

MATLAB command sim('BogieSimModel.mdl') runs the co-simulation from the MBSD file, see 

Fig. A21. 

Based on the desired objective functions, user should decide which parameters should be measured. This 

can be done online in SIMULINK by sending SIMPACK outputs to the MATLAB workspace and make 

post-processing in MATLAB. As an alternative, the results (SIMPACK outputs) can be saved on a mat 

file which is the case considered here. User can decide where to save the mat file. 

Once the current co-simulation is done, it is time to evaluate the objective functions. The mat file 

Bogie_Result.mat is loaded as follows (see also Fig. A21) and of course the file address must be 

linked to the location of the results file. 

result = load ('C:\Users\bideleh\Desktop\SAMO SIMPACK Example\... 

output\Bogie_Result.mat');      

Simulation time (t), lateral accelerations of bogie frame (LatAcc), vertical contact force (Q) of the 

leading axle, lateral contact force (Y) of the leading axle, and lateral displacements of the leading 

wheelset (LatDisp) are then extracted from the respective channels. SIMPACK sbr file can be used to 

find the respective channel of each parameter in an easier way.      

The RMS value of the lateral accelerations of bogie frame (Γa), vertical contact force (ΓQ), lateral contact 

force (ΓY), and lateral displacements of the wheelset (Γd) are chosen as four objective functions. 

SAMO evaluates the total global sensitivity indices that are shown in Fig. A25. 
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Fig. A25: Sensitivity indices. 

After GSA, SAMO asks user to proceed to optimization or not. 

To proceed to optimization press Y, to return press N? y 

Please enter the design parameters index number for optimization in 

an ascending order and vector form.  

E.g. [1 3 4 7] 

Here, parameters [2 3 4] i.e. longitudinal damping, lateral stiffness, and lateral damping are used as the 

design parameters for optimization. 

The code also asks for the desired objective functions for optimization 

Please enter the objective functions index number for optimization in 

an ascending order and vector form.  

E.g. [1 3 4 7] 

Here, objective functions [1 3] i.e. the RMS of lateral accelerations of bogie frame (Γa) and RMS of the 

lateral contact forces (ΓY) acting on the leading axle are chosen for optimization.  

The optimization is carried out based on the settings given in the InputData.xls file. The normalized 

Pareto front is shown in Fig. A26. It can be seen that with the aid of the Pareto optimized solutions it is 

possible to improve ride comfort and lateral stability of the vehicle model in questions. 

The normalized Pareto set is shown on Fig. A27. 
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Fig. A26: Normalized Pareto front. 

 

 

 

Fig. A27: Normalized Pareto set. 

 

Example 5: GSA of a one car railway vehicle dynamics w.r.t. suspension components  

The GSA and multiobjective optimization approach considered in SAMO has been also applied to a full 

scale nonlinear one car railway vehicle model with realistic structural parameters and input data. The 

GSA results are shown in Fig. A28. 

Here, 𝑆𝑆𝛤𝛤W
T , 𝑆𝑆𝛤𝛤C

T , 𝑆𝑆𝛤𝛤TS
T , 𝑆𝑆𝛤𝛤St

T , and 𝑆𝑆𝛤𝛤RD
T  indicate the total sensitivity index of wear, ride comfort, track shift 

force, stability, and risk of derailment, respectively. 
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More details on GSA and multiobjective optimization of a one car railway vehicle model suspension 

system using the proposed methods can be found in [7-12]. 

 

Fig. A28: GSA results for a one car railway vehicle model running with maximum admissible speed on a) R=300 

m; b) R=600 m; c) R=1000 m; d) R=3200 m; e) Straight track. 
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Annex B 

Theory 

The theories behind GSA and multiobjective optimization approaches used in SAMO are described in 

details in this section. 

B1. Sensitivity analysis 

Sensitivity analysis can be carried out either locally or globally. In the following a brief introduction 

about these two approaches is given.  

B1.1 Local sensitivity analysis 

In the local methods the effects of design inputs on system response is approximated as partial derivative 

of an objective function (Γ) with respect to the design parameter (xi) which is taken around a fixed point 

x0. Such methods only take into account the variation of an objective function with respect to a single 

design parameter at a time. Furthermore, the domain of the input design variables might not be 

appropriately scanned using the local methods.  

B1.2 Global sensitivity analysis 

Global sensitivity analysis (GSA) is one of the most prominent steps in design and optimization of 

multibody systems that can provide informative design insights. In this section, some basic concepts on 

the GSA formulation are given. In general, different objective functions can be expressed as functions 

of a set of m independent random variables, i.e. design parameters 1 2[ , ,... ]T
md d d= ∈d Ω , through the 

respective deterministic functional relationship ( )Γ = d . Where, Ω is the domain of input design 

variables. The mean (μ) and variance (V) of Γ are defined as [3]:  

 
2 2 2

[ ] ( ) ( )

[( ) ] {[ ( )] }

E f

V E E

µ δ

µ µ
Γ

Γ Γ Γ

 = Γ =


= Γ − = −

∫d dd

d d

d d d

d




,  (B1) 

where, E[.] is the expectation operator, and ( )fd d is the joint density of d. Assume that i−d is a m-1 

dimensional sub-vector of d, in which contains all the elements of d except di. Therefore, one can define 

the following conditional expectation: 
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The primary (Si) and total (STi) sensitivity indices are defined by Eqs. (B3) and (B4), respectively. See 

e.g. [3, 13, 14] for more details. 
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It is clear that in order to achieve the global sensitivity indices, multilayer integrals have to be evaluated. 

This process demands a heavy computational effort. Therefore, it is vital to apply an efficient algorithm 

to increase the computational proficiency. The M-DRM method can approximate the global sensitivity 

indices in an efficient and accurate manner. 

B1.3 GSA using ANOVA decomposition 

The variance-based sensitivity analysis approach applied in SAMO is discussed in this section. After a 

brief introduction about the method, the simplified sensitivity indices are given.  

B1.3.1 Basic concepts 

In general, different objective functions (Γ) can be expressed as functions of a set of n independent 

random design variables [ ]1 2, ,..., nx x x= TX , through the respective functional relationship ( )Γ = X .   

Based on the ANOVA decomposition concept [15, 16], the function ( )X  can be represented as: 

 ( ) ( ) ( ) ( )0 12...
1 2, ... , ,...,i ij n

i i j n
i i j

x x x x x x
<

= + + + +∑ ∑X     ,  (B5) 

if the function components in (B5) are orthogonal and can be expressed as integrals of ( )X .  The 

following relations can be defined by squaring (B5) and integrating over the domain of input variables 

[17]: 

 ( ) ( )22 0dV = −∫ X   ,  (B6) 

and 

 ( )1

1 1

2...
... d ...ds

s s

i i
i i i iV x x= ∫  ,  (B7) 

where, 11 ... si i n≤ < < ≤ . The constants V , and 
1... si iV  are called variances of  , and 1... si i , respectively. 

The global sensitivity indices are defined as follows: 
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The integer s is usually referred as the order or dimension of the sensitivity index. It should be noted 

that: 
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V V
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In a similar manner, the variance and global sensitivity index corresponding to a subset 

1 2

T
= , ,...,

zj j jx x x ′ ⊆ X X , 11 ... zj j n≤ < < ≤  are defined by Eqs. (B10) and (B11), respectively. 
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Here, [ ]1,..., zJ j j= . Assume that ′′X  is an absolute complement of ′X , the total variance and sensitivity 

index associated with the subset ′X , are then defined as follows [17]: 

 TV V V′ ′′= −X X ,  (B12) 

and 

 
T

T VS
V

′
′ = X

X


,  (B13) 

where, T0 1S S′ ′≤ ≤ ≤X X . The total sensitivity index reflects the total influence of a specific parameter on 

the system output, including all the possible interactions between that parameter and all the others [18].  

B1.3.2 Simplified sensitivity indices 

The sensitivity indices expressed based on the HDMR method (ANOVA decomposition) require high-

dimensional integrals evaluation. This could be a tough task, especially for complex systems. Therefore, 

an appropriate approximation is often used to improve the computational efficiency. One of the most 

effective approaches is cut-HDMR in which the function ( )Γ = X  is expressed as a superposition of 

its values on lines, planes and hyperplanes passing through a fixed reference point (cut center) with 

coordinates [ ]T1,..., nc c=c , see e.g. [15]. Based on this concept, Zhang and Pandey, proposed a 

multiplicative dimensional reduction method (M-DRM) in which a deterministic function ( )Γ = X  is 

approximated as follows [3, 19]: 
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where, ( )c  is a constant, and ( ),i ix −c  denotes the function value for the case that all inputs except 

ix , are fixed at their respective cut point coordinates. M-DRM (Eq. (B14)) is capable to approximate 

the function ( )Γ = X with a satisfactory level of accuracy [3, 19] and is particularly useful for 

approximating the integrals required for evaluation of the sensitivity indices described in the previous 

section. Using M-DRM and following the procedure described in [3], the primary and higher order 

sensitivity indices (Eqs. (B11) and (B8), respectively) can be approximated as follows:  
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and 
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where, kα , and kβ  are defined as the mean and mean square of the kth univariate function, respectively 

and represented as [3]: 

 
( )

( )

1

2

1

,

,

N

k kl kl kl
l

N

k kl kl kl
l

w x

w x

α

β

−
=

−
=


≈


 ≈   

∑

∑

c

c




,  (B17) 

where, N is the total number of integration points, klx , and klw  are the lth Gaussian integration abscissas, 

and the corresponding weight, respectively.  

Finally, the total sensitivity index (given by Eq. (B13)) corresponding to the ith parameter ( ix ) can be 

expressed as: 
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The total sensitivity index given by Eq. (B18) is used in SAMO to reflect the sensitivity. 

The accuracy of the sensitivity indices introduced earlier depends on the number of integration points 

and a convergence study should be accomplished to yield the suitable number of integration points [3, 

19]. It should be noted that the total number of function evaluations required for calculating the 

sensitivity indices using this method is only n×N. Where, n is the number of design parameters. 

Consequently, in order to accomplish the sensitivity analysis of a system output with respect to an input 

parameter iX , a suitable cut point together with a probability distribution have to be chosen. Closed 

form expressions given by Eqs. (B16), (B17), and (B18) are then utilized to attain the sensitivity indices. 

The efficiency and applicability of this methodology is already proven through some mathematical and 

mechanical examples [3].   

B1.3.3 Choosing the cut center 

An interesting aspect of the cut-HDMR is that in most of the applications with well-defined physical 

systems, if the cut-HDMR yields a satisfactory level of convergence, the results are independent of the 

choice of the cut center c [15]. However, in practice it is more convenient to consider in service or 

optimized values of the design parameters as the cut center. 
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B2. Multiobjective Optimization Using GA 

In general, the optimization problem of m design parameters 1 2[ , ,... ]T
md d d= ∈d Ω  (where, Ω is the domain 

of input design variables) with respect to a vector of objective functions Γ=(d), that is evaluated from 

the multibody dynamics response, can be stated as follows: 

Determine d* and x*(t) such that  

 * *( , (t))=min ( (t)), ∈*d x d,x d  Ω ,  (B19) 

subject to  

 Γj (d) = j (d) ≤ 𝛤𝛤𝑗𝑗max,  (B20) 

in which, 𝛤𝛤𝑗𝑗max, j=1, 2,…, n denote the threshold values, x(t) is the vector of the design parameters. 

Genetic algorithm based multiobjective optimization routine in MATLAB is utilized in SAMO to solve 

the optimization problems. The procedure can be described as follows: in each iteration, MATLAB 

updates the design parameters file as an input to the multibody dynamics model developed in the 

MBSD.m file, the dynamic response of the system is then evaluated and the respective objective 

functions are accordingly attained after a post-processing stage. At this step, the thresholds might be 

checked to make sure if all the objective functions are within the admissible limits. If at least one of the 

objective functions violated the thresholds, the vector of the objective functions is penalized to assure 

that all the Pareto optimized results satisfy the problem constraints. This procedure continues until 

convergence or the maximum number of generations achieved. In the case of multiobjective 

optimization problems, the results can be plotted in terms of Pareto set and Pareto front graphs. See e.g. 

[8, 9, 11] for more details. 

B2.1 Genetic algorithm  

Genetic algorithm (GA) is an optimization technique which has biological origins and works based on 

the probabilistic searching. The GA is successfully applied to the multiobjective optimization problem 

of a variety of complex nonlinear multibody systems such as bogie suspension of high speed trains, see 

e.g. [20-26]. 

A GA is generally consists of the following main steps [27]: 

• chromosome encoding 

• fitness 

• selection 

• recombination 
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• evolution 

In contradict to the natural GAs which have to follow certain laws observed in nature, the characteristics 

of the abovementioned steps in a GA with optimization applications are determined by the designer and 

based on the design requirements.  

The ordinary optimization techniques such as Newtown-Raphson and its variants are mostly suitable for 

convex optimization problems. Such methods utilize local information and as a result might fail to find 

the global minima. The GA is known to be a method which attains reasonably good global solutions in 

many applications. However, the initial guess, number of generations, population size, and other settings 

have to be carefully selected to be able to achieve satisfactory results.  

In a multiobjective optimization problem, if no weighting coefficient act on the vector of the objective 

functions, the GA minimizes every single objective function. Indeed, all the objective functions are 

treated the same way and there is no need to normalize the objective functions in that case.  

When it comes to the complex nonlinear models, it is difficult to impose constraints to the optimization 

algorithm using MATLAB routine. To overcome such a problem, in the case of a violation of the 

constraints a penalty factor can be imposed to the objective functions to make sure that the Pareto 

optimized results remain within the constraints. See, e.g. [8, 9, 11] for more details. 

B2.1.1 Chromosome encoding 

After selecting the design parameters for optimization, the GA encodes the design parameters. Each 

encoded design parameter is known as a gene. The complete set of genes (design parameters) that 

uniquely describe an individual is referred to as a chromosome. Indeed, gene is a particular position or 

locus in a chromosome.  

The particular string representations used for a given problem is known as the GA encoding of the 

problem. Therefore, the encoded chromosomes are string representations of the solutions to a particular 

problem. The classical GA uses a bit-string representation to encode the solutions. Bit-string 

chromosomes composed of a string of genes which contains 0 or 1 characters, see e.g. [27] for more 

details.  

B2.1.2 Fitness 

The quality of a chromosome as a solution to a particular problem is determined by the fitness function. 

Each objective function considered for the optimization problem or a combination of the objective 

functions can be considered as the fitness function. It is necessary to evaluate the fitness of each 

particular chromosome. The fitness information are then used to bias the next generations based on the 

better genes.   

B2.1.3 Selection 



42 
 

Based on the fitness, the chromosomes should be selected for recombination and to construct the next 

generations. In general, the chromosomes which resulted in a better fitness function should have a higher 

chance to be selected. This might lead to a more highly fit solutions by the upcoming generations. It 

should be noted that highly fit chromosomes might have a chance to be selected twice or more or even 

recombined with themselves. 

Fitness proportional also known as the roulette wheel is one of the common selection methods. The 

probability of parenthood (to be selected) in this method is proportional to the fitness. There are many 

different selection methods such as random stochastic selection, tournament selection, and truncation 

selection. More details on the selection schemes can be found in [27]. 

B2.1.4 Recombination 

In the recombination, the chromosome of the child is being created using the chromosomes of the parents 

selected earlier. The main operators of the recombination are known as crossover and mutation. An 

example of the crossover is shown in Fig. B1. The child properties depend on the crossover point. For 

instance, in Fig. B1 (a) the child has similar ears to the parent 1 and similar eyes to the parent 2, but in 

Fig. B1 (b) the child has similar ears to the parent 1 but different eyes from both parents. 

 

Fig. B1: The crossover example.  

Once the child chromosome is generated by the crossover, the GA applies the mutation operator on the 

resulting chromosome to change one or more properties, see Fig. B2 for example. 

 

Fig. B2: The mutation example. 
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How to decide for the crossover and mutation methods to achieve more fitted results depends on the GA 

settings. 

B2.1.5 Evolution 

The chromosomes obtained from the previous stages are diverted into the so called successor population. 

The selection and recombination steps are then repeated until a complete successor population achieved 

which is going to be considered as the next generation. The GA repeats this process through a number 

of generations until certain convergence to a best fitness solution or maximum number of iterations 

achieved. 

The evolutionary schemes determine which chromosomes from the source population are eligible to 

remain unchanged when passing to the successor population. It is vital to employ an appropriate 

evolutionary scheme. This is usually decided based on the nature of the domain of the input design 

parameters being searched. One of the most well-known schemes is replacement with elitism. To create 

the successor population, this scheme preserves the best one or two individuals from the source 

population and generates the rest through selection and recombination. This method assures that 

solutions of the highest relative fitness will be appear in the next generation through the selection 

process, see [27] for more details. The GA flowchart is plotted in Fig. B3. 

 

Fig. B3: The GA flowchart. 
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