
Research report 2017:01

A Computer Code for Sensitivity
Analysis and Multiobjective
Optimization: SAMO Tutorial

Seyed Milad Mousavi Bideleh and Viktor Berbyuk

Department of Mechanics and Maritime Sciences
C H A L M E R S U N I V E R S I T Y O F T E C H N O L O G Y
Göteborg, Sweden 2017

Research report 2017:01

A Computer Code for
Sensitivity Analysis and

Multiobjective Optimization:
SAMO Tutorial

by

Seyed Milad Mousavi Bideleh and Viktor Berbyuk

Department of Mechanics and Maritime Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, 2017

A Computer Code for Sensitivity Analysis and
Multiobjective Optimization: SAMO Tutorial

SEYED MILAD MOUSAVI BIDELEH AND VIKTOR BERBYUK

© SEYED MILAD MOUSAVI BIDELEH AND VIKTOR BERBYUK , 2017

Research report 2017:01

Department of Mechanics and Maritime Sciences
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31 772 1000

1

Table of Contents
Abstract ... 3

Preface ... 5

1. SAMO .. 7

1.1. Getting starting with SAMO ...7

1.1.1. Format of the input data files .. 8

1.1.2. Format of the multibody dynamics code ... 9

1.2. Example: Wheel torque/travel time optimization of a vehicle ..10

Annex A: Examples .. 15

Example 1: Eigen values of a spring-mass system ...15

Example 2: Thermally induced stress intensity factor ..20

Example 3: Ride comfort and safety of a quarter car vehicle model ..23

Example 4: GSA of a high speed bogie dynamics w.r.t. suspension components28

Example 5: GSA of a one car railway vehicle dynamics w.r.t. suspension components34

Annex B: Theory .. 36

B.1. Sensitivity analysis ...36

B1.1. Local sensitivity analysis ... 36

B1.2. Global sensitivity analysis ... 36

B1.3. GSA using ANOVA decomposition .. 37

 B1.3.1 Basic concepts .. 37

 B1.3.2 Simplified sensitivity indices ... 38

 B1.3.3 Choosing the cut center .. 39

B.2. Multiobjective optimization using GA ...40

B2.1. Genetic algorithm .. 40

 B2.1.1 Chromosome encoding ... 41

 B2.1.2 Fitness .. 41

 B2.1.3 Selection ... 41

 B2.1.4 Recombination ... 42

 B2.1.5 Evolution .. 43

References ... 44

2

3

ABSTRACT

SAMO stands for Sensitivity Analysis and Multiobjective Optimization and is a computer code

implemented in MATLAB to carry out a computationally efficient global sensitivity analysis and

multiobjective optimization with many design applications. Current report is prepared to support SAMO

users. Several case studies are considered including application of SAMO in global sensitivity analysis

of bogie dynamics with respect to suspension components which in fact shows how SAMO can be used

in a co-simulation environment with commercial multibody softwares like SIMPACK to solve

complicated global sensitivity analysis and multiobjective optimization problems. The global sensitivity

analysis works based on the multiplicative dimensional reduction method which significantly reduces

the computational efforts required to evaluate sensitivity indices in comparison with to the ordinary

methods. Furthermore, genetic algorithm is employed to carry out the multiobjective optimization. At

the end, the theories behind global sensitivity analysis and multiobjective optimization approaches used

to develop SAMO are given.

Keywords: Global sensitivity analysis, multiobjective optimization, multiplicative dimensional

reduction method, genetic algorithm.

4

5

PERFACE

This work has been accomplished during October 2016 until June 2017 at the Department of Applied

Mechanics, (since May 1, 2017 - Department of Mechanics and Maritime Sciences), Chalmers

University of Technology, Gothenburg, Sweden. This report is for the work done on extension of SD9

project of the Chalmers railway mechanics center of excellence (CHARMEC).

The project is financially supported by the Ekman family foundation which is gratefully acknowledged.

This report covers SAMO computer code and some application examples. The computer codes for

different examples can be downloaded via the following link:

https://chalmersuniversity.box.com/s/00otvu52231rxeih5dgfrdp03pv63er8

Please be aware a password is required to access the codes. Contact the authors to receive the password.

Please report any bugs in the codes to the authors.

Seyed Milad Mousavi Bideleh (bideleh@gmail.com),

Viktor Berbyuk (viktor.berbyuk@chalmers.se)

June 2017, Gothenburg.

https://chalmersuniversity.box.com/s/00otvu52231rxeih5dgfrdp03pv63er8
mailto:bideleh@gmail.com
mailto:viktor.berbyuk@chalmers.se

6

7

1. SAMO

SAMO is a computer code developed in MATLAB for global sensitivity analysis (GSA) and

multiobjective optimization with different applications. The GSA is carried out using the multiplicative

dimensional reduction method (M-DRM). The code is capable to proceed to multiobjective optimization

which is done by using the genetic algorithm (GA). Based on the results of global sensitivity analysis,

the user can decide the desired design parameters for multiobjective optimization. The optimization

results are then presented in terms of Pareto set and Pareto front. The general overview of SAMO is

shown in Fig. 1.

Fig. 1: Structure of SAMO.

1.1 Getting starting with SAMO

In order to start working with SAMO, three computer files are required as shown in Fig. 2. It is important

to have these files in the working directory of MATLAB. It should also be noted that the names of the

files should not be changed. The excel file “InputParms.xls” includes the input settings for GSA and

multiobjective optimization problems. The M-file “MBSD.m” includes the multibody dynamics

formulations of the system and finally the protected M-file “SAMO” is the main code that should be

executed to run the global sensitivity analysis and multiobjective optimization. The structure of these

files are discussed in details in the subsequent sections.

Fig. 2: Required files for running SAMO.

8

1.1.1 Format of the input data files

The format of the input settings for global sensitivity analysis and multiobjective optimization in

“InputParams.xls” is shown in Fig. 3 for a general case. The first row denotes the design parameters

index. As an example, there are six design parameters d1-d6 as shown in Fig. 3. It should be noted that

users can include as many input design parameters as they want by simply adding or reducing some

columns into the InputParams file. In the second row, the mean values of the design parameters (d10-

d60) should be entered which is in fact the cut center c introduced in the annex B.

Fig. 3: Format of the input settings for global sensitivity analysis and multiobjective optimization.

The third row includes the coefficient of variation (COV) of each design parameter. Number of

integration abscissas and distribution of the input design parameters are given in the fourth and fifth

rows, respectively. It should be noted that the number of points for Gaussian quadrature integration must

be an integer. Furthermore, the user can use either “n” or “N” to generate a normal distribution or enter

“l” or “L” to create a lognormal distribution. If the file includes a non-integer number for number of

integration points or some other letters than “n”, “N”, “l”, or “L” for the distribution, the code gives an

error to user.

The GA settings including lower and upper bounds for variations of the design parameters, population

size, number of generations, elite count, and Pareto fraction are also given in the corresponding rows of

the InputParams.xls file. More details on GA settings is found in the MATLAB documentation for

gamultiobj function [1].

As aforementioned, the number of columns could be variable and it does not affect the generality of the

code, but it is important to fill out the respective data in rows 2-7 in the input data file. Moreover, the

order and format of the file should not be changed as well. For example, it is not allowed to enter the

COV in the second row or mean values in the third row.

9

1.1.2 Format of the multibody dynamics code

The objective functions should be calculated in the “MBSD.m” file. The general format is shown in Fig.

4. In fact, the user should implement his own multibody dynamics code in a way that the code reads

vector of input design parameters X and delivers the vector of respective objective functions OF as

shown by the block diagram in Fig. 4. It should be noted that the vector OF which includes the values

of objective functions for each set of the design parameters X, should be saved in a column wise manner

such that each column indicates respective values of each of the objective functions. It is also

recommended not to make any change in the rest of the code shown in Fig. 4. Some examples are shown

in the annex A to clarify this part more.

function OF = MBSD(X)

global m indx indxOF d0 iter optresult

iter

if length(X) == m

%%%%%%%%%%%%%%%%%%%%%%%%

%% This part is for GSA

%%%%%%%%%%%%%%%%%%%%%%%%

 d = X;

 iter = iter+1;

else
%%%

%% This part is for Multiobj Optimization

%%%

 d = d0;

 for i = 1:length(X)

 d(indx(i)) = X(i);

 end

end
%%
%%%%%% The MBSD code should be written here
%%

if length(X) ~= m

%%%

%% This part is for Multiobj Optimization

%%%
OFOpt = zeros(1,length(indxOF));

 for i = 1:length(indxOF)
 OFOpt(i) = OF((indxOF(i)));
 end

optresult(iter,:) = [X OF];

OF = OFOpt;
iter = iter+1;
xlswrite('optresults.xls',optresult);
end

Fig. 4: Format of the “MBSD.m” code.

10

1.2. Example: Wheel torque/travel time optimization of a vehicle

The aim of this example is to study the sensitivity of wheel torque and travel time with respect to

different design parameters. A bi-objective optimization problem is also solved to yield the tradeoff

solutions of the wheel torque/travel time optimization problem.

The free body diagram of the vehicle is shown in Fig. 5.

Fig. 5: Free body diagram of a vehicle on a ramp.

The motor traction force can be approximated as:

 MT=RR+GR+FA . (1)

Here, RR is the rolling resistance given by

 RR=m×g×Cr . (2)

The gravitational resistance force GR is

 GR=m×g×sinθ . (3)

Acceleration force (FA) is expressed as

 FA=m×amax . (4)

The time required to achieve the maximum speed is

 max
a

max

V
t

a
= , (5)

where, Vmax is the maximum speed and amax is the maximum acceleration.

The wheel torque (TW) is approximated as

 W T W fT M R R= × × , (6)

where, RW is the wheel radius and Rf is the resistance factor.

11

Task: It is desired to shorten the journey time and reduce fuel consumption. This can be done by

minimizing the wheel torque (TW) and the time required to achieve maximum speed (ta). Therefore, TW

and ta are the two objective functions. A GSA is carried out first to study the effects of different design

parameters on these objective functions. The input data file is shown in Fig. 6.

Fig. 6: Input data file.

It can be seen that there are 7 design parameters. The mean values and variation bounds are chosen from

[2]. The MBSD.mat code is shown in Fig. 7. The design parameters are updated using the following

lines in the MBSD code:

mv = d(1);
cr = d(2);
alpha = d(3);
vm = d(4);
am = d(5);
Rw = d(6);
Rf = d(7);

Based on the updated design parameters the objective functions are calculated using Eqs. (5, 6). See,

Fig. 7.

Tw = mv*9.81*(cr+sin(alpha)+am/9.81)*Rw*Rf;
tm = vm/am;
OF = [tm;Tw]';

12

To run the GSA, one should type SAMO in the MATLAB workspace. The SAMO function reads the

InputData file and performs the GSA based on the multibody dynamics of the system. The GSA results

in terms of the total sensitivity indices of different objective functions with respect to design parameters

are shown in Fig. 8. Each color bar indicates a number which shows the sensitivity. Higher number in

function OF = MBSD(X)

global m indx indxOF d0 iter optresult

iter

if length(X) == m

%%%%%%%%%%%%%%%%%%%%%%%%

%% This part is for GSA

%%%%%%%%%%%%%%%%%%%%%%%%

 d = X;

 iter = iter+1;

else
%%%

%% This part is for Multiobj Optimization

%%%

 d = d0;

 for i = 1:length(X)

 d(indx(i)) = X(i);

 end

end
%%
%%%%%% The MBSD code should be written here
%%

mv = d(1);
cr = d(2);
alpha = d(3);
vm = d(4);
am = d(5);
Rw = d(6);
Rf = d(7);

Tw = mv*9.81*(cr+sin(alpha)+am/9.81)*Rw*Rf;
tm = vm/am;

OF = [tm;Tw]';

if length(X) ~= m

%%%

%% This part is for Multiobj Optimization

%%%
OFOpt = zeros(1,length(indxOF));

 for i = 1:length(indxOF)
 OFOpt(i) = OF((indxOF(i)));
 end

optresult(iter,:) = [X OF];

OF = OFOpt;
iter = iter+1;

xlswrite('optresults.xls',optresult);

end

Fig. 7: MBSD code for wheel torque/travel time optimization example

13

the color bar reflect more sensitivity. SAMO also automatically plots the GSA results of each objective

function separately which are not shown here.

Fig. 8: Sensitivity indices.

After the GSA, SAMO asks user whether or not to proceed with optimization:

To proceed to optimization press Y, to return press N?

The code ends by pressing “n” or “N”. But if the user press “y” or “Y”, the code asks for the design

parameter indices for optimization:

Please enter the design parameters index number for optimization in

an ascending order and vector form.

E.g. [1 3 4 7]

Assume that mass (m), maximum speed (Vmax), maximum acceleration (amax), and the wheel radius (RW)

are chosen as the design parameters to minimize the wheel torque (TW) and the time required to achieve

maximum speed (ta). Therefore, the user should enter [1 4 5 6] in the MATLAB command line.

Please enter the objective functions index number for optimization in

an ascending order and vector form.

E.g. [1 3 4 7]

Since both objective functions Tw and ta are desired to be optimized the user should enter [1 2] in the

MATLAB command line. The multiobjective optimization is then carried out using GA and the

prescribed settings in the InputData file. The Pareto optimized results are shown in terms of Pareto sets

14

and Pareto fronts. SAMO automatically provides 2D plots for all the Pareto sets and Pareto fronts in a

two by two basis.

The Pareto set and Pareto front are also saved on “Pareto Set.xls” and “Pareto Front.xls” files,

respectively. These excel files can be used to plot the normalized and absolute Pareto fronts that are

shown in Fig. 9. The value associated with the initial guess is shown by the red cross (×).

The optimized values of the design parameters are shown in Fig. 10.

Fig. 9: Pareto front: a) Normalized objective functions; b) Absolute values.

It can be seen that increasing the wheel radius and reducing maximum speed minimizes the accelerating

time. In contradict, reducing the wheel radius and increasing maximum speed minimizes the wheel

torque.

Fig. 10: Pareto set.

15

Annex A

Examples

Example 1: Eigen values of a spring-mass system

This example is taken from section 4.7 of [3]. Consider the 3 degree of freedom (DOF) mass-spring

system shown in Fig. A1.

Fig. A1: Linear 3 DOF mass-spring system.

The equations of motion are given by Eqs. (A1):

()

()
()

1 1 1 4 6 1 4 2 6 3

2 2 4 1 2 4 5 2 5 3

3 3 6 1 5 2 3 5 6 3

0

0

0

M x k k k x k x k x

M x k x k k k x k x

M x k x k x k k k x

+ + + − − =

− + + + − =

− − + + + =







, (A1)

or in matrix form:

 0M K+ =x x . (A2)

Here, mass (M) and stiffness (K) matrices are defined by Eqs. (A3, A4), respectively:

1

2

3

0 0
0 0
0 0

M
M M

M

 
 =  
  

, (A3)

1 4 6 4 6

4 2 4 5 5

6 5 3 5 6

k k k k k
K k k k k k

k k k k k

+ + − − 
 = − + + − 
 − − + + 

 . (A4)

The target is to study the GSA of the system’s eigen values with respect to the design parameters.

The input data file (“InputParams.xls”) for GSA is shown in Fig. A2. There are 9 design parameters (3

masses and 6 stiffnesses) with mean, COV, and number of integration abscissas given in [3]. A

lognormal distribution of the input data is considered.

16

Fig. A2: Input data file for GSA.

SAMO reads the input data file and based on the provided setting creates the simulation matrix which

is saved as a text file (“InputData.txt”) shown in Fig. A3.

Fig. A3: Simulation matrix for GSA.

17

Each column in the simulation matrix represents variations of a particular design parameter based on

the order given in Fig. A2. The system response and objective functions (eigen values in this example)

should be evaluated for design inputs given by each row of the simulation matrix. Therefore, the number

of function evaluations is equal to the number of rows of the simulation matrix, i.e. n×N (9 design

parameters × 5 integration abscissas = number of simulations 45).

To calculate the objective functions (3 eigen values), it is necessary to modify the multibody system

dynamics (MBSD) code in MATLAB. As explained before, the MBSD code reads the simulation matrix

and for each particular row of this matrix updates the design parameters and calculates the objective

functions, see Fig. A4. It should be noted that the objective functions should be stored column-wised.

As an example, the first, second, and third eigen values of the system are calculated and saved in a

column-wised manner as shown in Fig. A5. This file is then stored and will be used later on by the main

code to calculate the total GSA indices.

The sensitivity of the first, second, and third eigen values with respect to different design parameters are

shown in Figs. A6 (a-c). The mapping between the design parameters and the total global sensitivity

indices are also summarized in Fig. A7 in which assigns a color to each sensitivity index. The higher

value on the color bar represents higher sensitivity.

The results are in excellent agreement with those reported in [3].

After the GSA, the code asks user whether or not continue with multiobjective optimization:

To proceed to optimization press Y, to return press N?

The code ends by pressing “n” or “N”. But if the user enter “y” or “Y”, the code asks for the design

parameter indices for optimization:

Please enter the design parameters index number for optimization in

an ascending order and vector form.

E.g. [1 3 4 7]

Assume that M1, M2, M3, K4, and K6 are chosen for optimization. So, the input vector is [1 2 3 7 9]

Please enter the objective functions index number for optimization in

an ascending order and vector form.

E.g. [1 3 4 7]

All three objective functions (first, second, and third eigen values) can be assumed as the objective

functions to be used in multiobjective optimization. Therefore, the user can enter [1 2 3] to take into

account all three objective functions.

18

Fig. A4: Function MBSD.mat to calculate the

objective functions.

Fig. A5: First, second, and third eigen values

corresponding to each row of the simulation matrix.

function OF = MBSD(X)

global m indx indxOF d0 iter optresult

iter

if length(X) == m

%%%%%%%%%%%%%%%%%%%%%%%%

%% This part is for GSA

%%%%%%%%%%%%%%%%%%%%%%%%

 d = X;

 iter = iter+1;

else
%%%

%% This part is for Multiobj Optimization

%%%

 d = d0;

 for i = 1:length(X)

 d(indx(i)) = X(i);

 end

end
%%
%%%%%% The MBSD code should be written here
%%
 M = diag([d(1),d(2),d(3)]);
 K = [d(4)+d(7)+d(9) -d(7) -d(9);-d(7)
d(5)+d(7)+d(8) -d(8);-d(9) -d(8) d(6)+d(8)+d(9)];

 E = eig(K,M);
 e1 = sqrt(E(1));
 e2 = sqrt(E(2));
 e3 = sqrt(E(3));

OF = [e1;e2;e3]';

if length(X) ~= m
%%%
%% This part is for Multiobj Optimization
%%%
OFOpt = zeros(1,length(indxOF));

 for i = 1:length(indxOF)
 OFOpt(i) = OF((indxOF(i)));
 end

optresult(iter,:) = [X OF];

OF = OFOpt;
iter = iter+1;

xlswrite('optresults.xls',optresult);

end

19

Fig. A6: Sensitivity indices of different objective function with respect to the design parameters: a) First eigen

value; b) Second eigen value; c) Third eigen value.

Fig. A7: Sensitivity indices.

The multiobjective optimization starts based on the lower and upper bounds of the parameters,

population size, number of generations, elite count, and Pareto fraction settings shown in Fig. A2. The

optimization results i.e. Pareto front and Pareto set are automatically saved on excel sheets “Pareto

Front.xls” and “Pareto Set.xls”, respectively. Pareto optimized results are also automatically plotted on

a 2D basis. Furthermore, the minimum value of each objective function together with the corresponding

Pareto sets are being displayed on the screen.

Run the exemplary computer files associated with this example to see more details.

20

Example 2: Thermally induced stress intensity factor

This example is taken from [3, 4]. A cracked plate under thermal loading is shown in Fig. A8.

Fig. A8: Cracked plate under thermal loading [4].

The analytical expression for the thermally induced intensity factor of the rectangular plate with a crack

size of a is given as follows:

 () () ()

2 4

IC 0 1 0.025 0.06
cos 4 2 2

a a aK E T T
a B B B

πα
π

    = − − − +    
     

X . (A5)

The definition of the parameters and respective values are given in Table A1.

Table A1: Mean and COV of different parameters for GSA.

Variable Description Distribution Mean COV

T0 Initial hot temperature Lognormal 100 ºC 0.2

T Amphibian cool temperature Lognormal 20 ºC 0.2

a Crack size Lognormal 10 mm 0.2

B Width of plate Lognormal 200 mm 0.2

E Young’s module Lognormal 210 GPa 0.2

α Thermal expansion coefficient Deterministic 12.5×10-6 ºC-1 -

The target is to study GSA of the thermally induced intensity factor with respect to the parameters listed

in Table A1 and use the GSA results to minimize the thermally induced intensity factor. The input

parameters file is shown in Fig. A9.

21

Fig. A9: Input parameters for GSA and optimization of KIC.

The MBSD code for this example is shown in Fig. A10:

 Fig. A10: The MBSD code for thermally induced stress intensity factor example.

function OF = MBSD(X)
global m indx indxOF d0 iter optresult
iter

if length(X) == m
%%%%%%%%%%%%%%%%%%%%%%%%
%% This part is for GSA
%%%%%%%%%%%%%%%%%%%%%%%%
 d = X;
 iter = iter+1;
else
%%%
%% This part is for Multiobj Optimization
%%%
 d = d0;
 for i = 1:length(X)
 d(indx(i)) = X(i);
 end
end
%%
%%%%%% The MBSD code should be written here
%%
T0 = d(1);
T = d(2);
a = d(3);
B = d(4);
E = d(5);
Alpha = 12.5e-6;
KIC = -Alpha*E*(T-T0)*sqrt(pi*a/cos(pi*a/(4*B)))*(1-
0.025*(a/(2*B))^2+0.06*(a/(2*B))^4);
OF = KIC';

if length(X) ~= m
%%%
%% This part is for Multiobj Optimization
%%%
OFOpt = zeros(1,length(indxOF));

 for i = 1:length(indxOF)
 OFOpt(i) = OF((indxOF(i)));
 end

optresult(iter,:) = [X OF];
OF = OFOpt;
iter = iter+1;

xlswrite('optresults.xls',optresult);
end

22

By running the SAMO, the total sensitivity index shown in Fig. A11 is obtained.

Fig. A11: Total sensitivity index for KIC.

It can be seen that there is an excellent agreement with the values reported in [3].

To minimize the stress intensity factor KIC, one can continue with SAMO to carry out the optimization.

This is done by entering “y” or “Y” in the MATLAB command line as follows:

To proceed to optimization press Y, to return press N? y

Please enter the design parameters index number for optimization in

an ascending order and vector form.

E.g. [1 3 4 7]

Assume that T0, a, and E (parameters number 1, 3, and 5) are chosen as the design parameters for

optimization of KIC. Therefore, the input vector of design parameters is [1 3 5].

Please enter the objective functions index number for optimization in

an ascending order and vector form.

E.g. [1 3 4 7]

There is only one objective function here, so the user should enter [1]

The optimization results are shown in Fig. A12. It can be seen that the stress intensity factor KIC can be

significantly reduced by reducing the initial temperature, crack size, and modulus of elasticity of the

plate.

23

Fig. A12: Optimization results: a) Initial temperature; b) Crack size; c) Modulus of elasticity; d) Stress intensity

factor.

Example 3: Ride comfort and safety of a quarter car vehicle model

This example is taken from [5]. A quarter car vehicle model is shown in Fig. A13. The equations of

motion in matrix form for this vehicle model are given as:

 M C K+ + =x x x F  , (A6)

where, x=[xu,xs]T, and 𝑥̇𝑥, 𝑥̈𝑥 are the respective time derivatives. The mass matrix (M), damping matrix

(C), stiffness matrix (K), and vector of external forces (F) are given as:

 u

s

0
0

M
M

M
 

=  
 

, (A7)

 t s s

s s

c c c
C

c c
+ − 

=  − 
, (A8)

 t s s

s s

k k k
K

k k
+ − 

=  − 
, (A9)

 t 0 t 0

0
k x c x+ 

=  
 

F


. (A10)

Here, Ms (Mu), ks (kt), and cs (ct) are the sprung (unsprung) mass, stiffness, and damping, respectively.

24

Fig. A13: A quarter car vehicle model.

The road irregularities are modeled as:

 0 0() sin()x t a tω= , 02 /v Lω π= , (A11)

The following objective functions are considered to evaluate the suspension system performance:

 ()s s
s

1 RMS
sxF M x

M g
=



 , (A12)

 () ()()t u 0 t u 0
s

1 RMSfF k x x c x x
M g

= − + −  . (A13)

Here, 𝐹𝐹𝑥̈𝑥s is the root mean square (RMS) of the sprung mass accelerations and indicates ride comfort.

While, 𝐹𝐹𝑓𝑓 is the weighted RMS of the force between the tire and ground and its inverse (1/Ff) represents

running safety. The structural parameters and problem inputs are given in Table A2.

Table A2: Structural parameters and problem inputs.

Ms [kg] Mu [kg] ks [kN/m] kt [kN/m] cs [Ns/m] ct [Ns/m] v0 [m/s] L [m] a0 [m]

375 60 15 20 1425 7 15 10 0.07

The input parameters are shown in Fig. A14. To calculate the objective functions, the MBSD file should

be updated as shown in Fig. A15. The equations of motion of the system in the state space form are

implemented in the function Quartcar.m. It should be noted that the objective functions are normalized

with respect to their initial values. More details can be found in MBSD.m and Quartcar.m files in the

appended computer files for this example.

25

Fig. A14: Input parameters for GSA of quarter car vehicle model.

%%
%%%%%% The MBSD code should be written here
%%
global inFun1 inFun2 K M C Kt Ct Mu

Ms = d(1);
Mu = d(2);
Ks = d(3);
Kt = d(4);
Cs = d(5);
Ct = d(6);
v0 = d(7);
L = d(8);
a0 = d(9);
g = 9.81;

M = [Mu 0;0 Ms];
K = [Kt+Ks -Ks;-Ks Ks];
C = [Ct+Cs -Cs;-Cs Cs];

T = linspace(0,10,100);
z0 = zeros(1,4);

inFun1 = @(t)(a0*sin(2*pi*v0/L.*t));
inFun2 = @(t)(a0*2*pi*v0/L*cos(2*pi*v0/L.*t));

[t,z] = ode45(@Quartcar,T,z0);
zdot = zeros(size(z));

for i = 1:length(t)
 zdot(i,:) = Quartcar(t(i),z(i,:)')';
end

Facc = 1/(Ms*g)*sqrt(1/(t(end) - t(1)) * trapz(t,Ms*zdot(:,4).^2));

Fsaf = 1/(Ms*g)*sqrt(1/(t(end) - t(1)) * trapz(t,(Kt*(z(:,1)-
a0*sin(2*pi*v0/L*t))+Ct*(z(:,3)-(a0*2*pi*v0/L*cos(2*pi*v0/L.*t)))).^2));

OF = [Facc/0.011547434;(1/Fsaf)/4.551818206]';

 Fig. A15: Implementing the multibody dynamics required to evaluate comfort and safety of

the quarter car model.

26

To proceed to optimization press Y, to return press N? y

Please enter the design parameters index number for optimization in

an ascending order and vector form.

E.g. [1 3 4 7]

The total sensitivity indices are shown in Fig. A16. The sprung mass parameters Ms, Ks, and Cs are

considered as inputs for optimization.

Therefore, the input to optimization is [1 3 5].

Please enter the objective functions index number for optimization in

an ascending order and vector form.

E.g. [1 3 4 7]

To improve ride comfort and safety simultaneously, both objective functions are chosen for

optimization, so the input is [1 2].

Fig. A16: Total sensitivity indices for the quarter car vehicle model.

The Pareto optimized results are shown in Figs. A17, A18.

27

Fig. A17: Pareto front.

Fig. A18: Pareto set.

28

Example 4: GSA of a high speed bogie dynamics w.r.t. suspension components

This example is chosen to show the usage of SAMO in co-simulation with other software like multibody

dynamics software SIMPACK. Similar approach might be used for other commercial software that are

able to communicate with MATLAB or MATLAB/SIMULINK in a co-simulation interface.

In this example, effects of suspension system components of a bogie system of a high speed train on

vehicle dynamics is investigated using SAMO. The bogie in question is shown in Fig. A19. It constitutes

of two wheelsets, four axle boxes, and a bogie frame. All these components are rigid and have six DOFs

except for the axle boxes that only allow a single rotation around the wheelset axle. Therefore, the bogie

has a total of 22 DOFs.

Fig. A19: Bogie model.

In addition to the rigid components, the bogie contains a set of flexible primary suspension elements

that are listed in Table A3. All springs and dampers are modeled as point to point linear stiffness and

damping, respectively. It should be noted that there are two parallel and equal vertical and lateral

suspension spring and damper components. As an example, the stiffness of each of the vertical springs

is equal to Kpz/2.

Table A3: Suspension components.

1 Kpx Long prim stiffness

2 Cpx Long prim damping

3 Kpy Lat prim stiffness

4 Cpy Lat prim damping

5 Kpz Vert prim stiffness

6 Cpz Vert prim damping

The input data file is given in Fig. A20. The lower and upper bounds for optimization are considered as

-20% and +20% variation around the mean value, respectively.

29

Fig. A20: Input data file.

The MBSD MATLAB file is given in Fig. A21.

MATLAB function SubvarUpd is implemented to update the sub-variables of the bogie model (the

six parameters listed in Table A3). The output of the SubvarUpd function is shown in Fig. A22. Note

that the format of this file is compatible with the multibody dynamics software SIMPACK and changing

the standard format might make this file unreadable. It is clear that suitable input file formats should be

generated once dealing with other commercial softwares. It should also be noted that this file should be

saved in the directory of SIMPACK model. So, the address of the file in the SubvarUpd function

should be updated based on the working folder. As an example, the file address in the enclosed help file

is:

C:\Users\bideleh\Desktop\SAMO SIMPACK Example\PrimarySusp.subvar

This line in the SubvarUpd function should be updated based on the desired working folder.

Furthermore, the generated sub-variable file should be linked to the SubVar files in the SIMPACK

model as shown in Fig. A23. Additional settings in the SIMPACK model’s search path might also be

necessary. See, SIMPACK documentation for more details [6].

At this stage, the design parameters are updated and it is time to run the SIMPACK model and get the

dynamics response of the system to be able to evaluate the objective functions. This is done in a

MATLAB-SIMPACK co-simulation interface with the aid of the simat module in

MATLAB/SIMULINK.

To use this interface, enter simat in MATLAB workspace. In older MATLAB versions, it might be

necessary to add simat module to MATLAB by clicking on file/set path/Add Folder…

In the popped-up window select simat from simpack-2017/partners/mathworks

See SIMPACK documentation for more details.

30

Fig. A21: The MBSD file.

function OF = MBSD(X)

global m indx indxOF d0 iter optresult

iter

if length(X) == m
%%%%%%%%%%%%%%%%%%%%%%%%

%% This part is for GSA

%%%%%%%%%%%%%%%%%%%%%%%%

 d = X;

 iter = iter+1;

else
%%%

%% This part is for Multiobj Optimization

%%%

 d = d0;

 for i = 1:length(X)

 d(indx(i)) = X(i);

 end

end
%%

%%%%%% The MBSD code should be written here

%%
SubvarUpd(d); % Update SIMPACK model SubVar file (design parameters)

sim('BogieSimModel.mdl'); % Run Simpack model using simat module in simulink

result = load ('C:\Users\bideleh\Desktop\SMOR SIMPACK Example\output\Bogie_Result.mat');
% Load the results from SIMPACK model. Note: The file address must be updated based on the
current folder
t = result.timeInt.time.values; % Integration time

LatAcc = result.timeInt.sensorAccTrans.SS_Bogie.y.values; % Lateral accelerations of Bogie

Q = result.timeInt.RS_result.SRS_RWT_Wheelset.ch_001.values; % Vertical Contact
force acting on the wheelset (Note: This must be updated for different SIMPACK models)

Y = result.timeInt.RS_result.SRS_RWT_Wheelset.ch_002.values; % Lateral Contact
force acting on the wheelset (Note: This must be updated for different SIMPACK models)

LatDisp = result.timeInt.RS_result.SRS_RWT_Wheelset.ch_004.values; % Lateral
displacement of the wheelset (Note: This must be updated for different SIMPACK models)

RMSA = sqrt(1/(t(end) - t(1)) * trapz(t,LatAcc.^2));
RMSQ = sqrt(1/(t(end) - t(1)) * trapz(t,Q.^2));
RMSY = sqrt(1/(t(end) - t(1)) * trapz(t,Y.^2));
RMSd = sqrt(1/(t(end) - t(1)) * trapz(t,LatDisp.^2));

OF = [RMSA RMSQ RMSY RMSd];

if length(X) ~= m
%%%

%% This part is for Multiobj Optimization

%%%
OFOpt = zeros(1,length(indxOF));

 for i = 1:length(indxOF)
 OFOpt(i) = OF((indxOF(i)));
 end
optresult(iter,:) = [X OF];

OF = OFOpt;
iter = iter+1;

xlswrite('optresults.xls',optresult);
end

31

Fig. A22: SIMPACK sub-variable file.

Fig. A23: Link the sub-variable file to the SIMPACK model.

It should be noted that MATLAB function pathdef.m will be generated once simat is added to

MATLAB directory. This file must be removed if you are using MATLAB version 2012 or higher. The

simat module in SIMULINK is shown in Fig. A24.

To prepare the SIMPACK model for a co-simulation, in SIMPACK GUI select

Solver/Co-Simulation/Start Command Server

32

Getting back to the simat module in SIMULINK (Fig. A24), by double clicking on the block the

address of the bogie model file in SIMPACK should be linked to the address tab of the simat block.

See, BogieSimModel.mdl and SIMPACK documentation for more details on running co-

simulations in MATLAB/SIMULINK-SIMPACK interface.

Fig. A24: MATLAB/SIMULINK-SIMPACK co-simulation interface.

MATLAB command sim('BogieSimModel.mdl') runs the co-simulation from the MBSD file, see

Fig. A21.

Based on the desired objective functions, user should decide which parameters should be measured. This

can be done online in SIMULINK by sending SIMPACK outputs to the MATLAB workspace and make

post-processing in MATLAB. As an alternative, the results (SIMPACK outputs) can be saved on a mat

file which is the case considered here. User can decide where to save the mat file.

Once the current co-simulation is done, it is time to evaluate the objective functions. The mat file

Bogie_Result.mat is loaded as follows (see also Fig. A21) and of course the file address must be

linked to the location of the results file.

result = load ('C:\Users\bideleh\Desktop\SAMO SIMPACK Example\...

output\Bogie_Result.mat');

Simulation time (t), lateral accelerations of bogie frame (LatAcc), vertical contact force (Q) of the

leading axle, lateral contact force (Y) of the leading axle, and lateral displacements of the leading

wheelset (LatDisp) are then extracted from the respective channels. SIMPACK sbr file can be used to

find the respective channel of each parameter in an easier way.

The RMS value of the lateral accelerations of bogie frame (Γa), vertical contact force (ΓQ), lateral contact

force (ΓY), and lateral displacements of the wheelset (Γd) are chosen as four objective functions.

SAMO evaluates the total global sensitivity indices that are shown in Fig. A25.

33

Fig. A25: Sensitivity indices.

After GSA, SAMO asks user to proceed to optimization or not.

To proceed to optimization press Y, to return press N? y

Please enter the design parameters index number for optimization in

an ascending order and vector form.

E.g. [1 3 4 7]

Here, parameters [2 3 4] i.e. longitudinal damping, lateral stiffness, and lateral damping are used as the

design parameters for optimization.

The code also asks for the desired objective functions for optimization

Please enter the objective functions index number for optimization in

an ascending order and vector form.

E.g. [1 3 4 7]

Here, objective functions [1 3] i.e. the RMS of lateral accelerations of bogie frame (Γa) and RMS of the

lateral contact forces (ΓY) acting on the leading axle are chosen for optimization.

The optimization is carried out based on the settings given in the InputData.xls file. The normalized

Pareto front is shown in Fig. A26. It can be seen that with the aid of the Pareto optimized solutions it is

possible to improve ride comfort and lateral stability of the vehicle model in questions.

The normalized Pareto set is shown on Fig. A27.

34

Fig. A26: Normalized Pareto front.

Fig. A27: Normalized Pareto set.

Example 5: GSA of a one car railway vehicle dynamics w.r.t. suspension components

The GSA and multiobjective optimization approach considered in SAMO has been also applied to a full

scale nonlinear one car railway vehicle model with realistic structural parameters and input data. The

GSA results are shown in Fig. A28.

Here, 𝑆𝑆𝛤𝛤W
T , 𝑆𝑆𝛤𝛤C

T , 𝑆𝑆𝛤𝛤TS
T , 𝑆𝑆𝛤𝛤St

T , and 𝑆𝑆𝛤𝛤RD
T indicate the total sensitivity index of wear, ride comfort, track shift

force, stability, and risk of derailment, respectively.

35

More details on GSA and multiobjective optimization of a one car railway vehicle model suspension

system using the proposed methods can be found in [7-12].

Fig. A28: GSA results for a one car railway vehicle model running with maximum admissible speed on a) R=300

m; b) R=600 m; c) R=1000 m; d) R=3200 m; e) Straight track.

36

Annex B

Theory

The theories behind GSA and multiobjective optimization approaches used in SAMO are described in

details in this section.

B1. Sensitivity analysis

Sensitivity analysis can be carried out either locally or globally. In the following a brief introduction

about these two approaches is given.

B1.1 Local sensitivity analysis

In the local methods the effects of design inputs on system response is approximated as partial derivative

of an objective function (Γ) with respect to the design parameter (xi) which is taken around a fixed point

x0. Such methods only take into account the variation of an objective function with respect to a single

design parameter at a time. Furthermore, the domain of the input design variables might not be

appropriately scanned using the local methods.

B1.2 Global sensitivity analysis

Global sensitivity analysis (GSA) is one of the most prominent steps in design and optimization of

multibody systems that can provide informative design insights. In this section, some basic concepts on

the GSA formulation are given. In general, different objective functions can be expressed as functions

of a set of m independent random variables, i.e. design parameters 1 2[, ,...]T
md d d= ∈d Ω , through the

respective deterministic functional relationship ()Γ = d . Where, Ω is the domain of input design

variables. The mean (μ) and variance (V) of Γ are defined as [3]:

2 2 2

[] () ()

[()] {[()] }

E f

V E E

µ δ

µ µ
Γ

Γ Γ Γ

 = Γ =


= Γ − = −

∫d dd

d d

d d d

d




, (B1)

where, E[.] is the expectation operator, and ()fd d is the joint density of d. Assume that i−d is a m-1

dimensional sub-vector of d, in which contains all the elements of d except di. Therefore, one can define

the following conditional expectation:

 [|] (,) ()
i

i
i i i i i iE d d f δ

−
−

− − − −Γ = ∫ dd
d d d , (B2)

The primary (Si) and total (STi) sensitivity indices are defined by Eqs. (B3) and (B4), respectively. See

e.g. [3, 13, 14] for more details.

 [(|)]i i i
i

V E dS
V

−

Γ

Γ
= , (B3)

 [(|)]i i i
Ti

E VS
V

− −

Γ

Γ
=

d , (B4)

37

It is clear that in order to achieve the global sensitivity indices, multilayer integrals have to be evaluated.

This process demands a heavy computational effort. Therefore, it is vital to apply an efficient algorithm

to increase the computational proficiency. The M-DRM method can approximate the global sensitivity

indices in an efficient and accurate manner.

B1.3 GSA using ANOVA decomposition

The variance-based sensitivity analysis approach applied in SAMO is discussed in this section. After a

brief introduction about the method, the simplified sensitivity indices are given.

B1.3.1 Basic concepts

In general, different objective functions (Γ) can be expressed as functions of a set of n independent

random design variables []1 2, ,..., nx x x= TX , through the respective functional relationship ()Γ = X .

Based on the ANOVA decomposition concept [15, 16], the function ()X can be represented as:

 () () () ()0 12...
1 2, ... , ,...,i ij n

i i j n
i i j

x x x x x x
<

= + + + +∑ ∑X     , (B5)

if the function components in (B5) are orthogonal and can be expressed as integrals of ()X . The

following relations can be defined by squaring (B5) and integrating over the domain of input variables

[17]:

 () ()22 0dV = −∫ X   , (B6)

and

 ()1

1 1

2...
... d ...ds

s s

i i
i i i iV x x= ∫  , (B7)

where, 11 ... si i n≤ < < ≤ . The constants V , and
1... si iV are called variances of  , and 1... si i , respectively.

The global sensitivity indices are defined as follows:

 1

1

...
...

s

s

i i
i i

V
S

V
=



, (B8)

The integer s is usually referred as the order or dimension of the sensitivity index. It should be noted

that:

1

1

...
1 ...

s

s

n n

i i
s i i

V V
= < <

=∑ ∑ , (B9)

In a similar manner, the variance and global sensitivity index corresponding to a subset

1 2

T
= , ,...,

zj j jx x x ′ ⊆ X X , 11 ... zj j n≤ < < ≤ are defined by Eqs. (B10) and (B11), respectively.

38

()

1

1

...
1 ...

s

s

z

i i
s i i J

V V′
= < < ∈

=∑ ∑X , (B10)

VS
V

′
′ = X

X


, (B11)

Here, []1,..., zJ j j= . Assume that ′′X is an absolute complement of ′X , the total variance and sensitivity

index associated with the subset ′X , are then defined as follows [17]:

 TV V V′ ′′= −X X , (B12)

and

T

T VS
V

′
′ = X

X


, (B13)

where, T0 1S S′ ′≤ ≤ ≤X X . The total sensitivity index reflects the total influence of a specific parameter on

the system output, including all the possible interactions between that parameter and all the others [18].

B1.3.2 Simplified sensitivity indices

The sensitivity indices expressed based on the HDMR method (ANOVA decomposition) require high-

dimensional integrals evaluation. This could be a tough task, especially for complex systems. Therefore,

an appropriate approximation is often used to improve the computational efficiency. One of the most

effective approaches is cut-HDMR in which the function ()Γ = X is expressed as a superposition of

its values on lines, planes and hyperplanes passing through a fixed reference point (cut center) with

coordinates []T1,..., nc c=c , see e.g. [15]. Based on this concept, Zhang and Pandey, proposed a

multiplicative dimensional reduction method (M-DRM) in which a deterministic function ()Γ = X is

approximated as follows [3, 19]:

 () () ()1

1

. ,
nn

i i
i

x
−

−
=

≈    ∏X c c   , (B14)

where, ()c is a constant, and (),i ix −c denotes the function value for the case that all inputs except

ix , are fixed at their respective cut point coordinates. M-DRM (Eq. (B14)) is capable to approximate

the function ()Γ = X with a satisfactory level of accuracy [3, 19] and is particularly useful for

approximating the integrals required for evaluation of the sensitivity indices described in the previous

section. Using M-DRM and following the procedure described in [3], the primary and higher order

sensitivity indices (Eqs. (B11) and (B8), respectively) can be approximated as follows:

()

2

2
1

1

1
i i

i n
k kk

S
β α

β α
=

−
≈

−∏
, (B15)

39

and

()

()1

2
1

... 2
1

1

1

k k

s

s
ik i

i i n
k kk

S
β α

β α

=

=

−
≈

−

∏
∏

, (B16)

where, kα , and kβ are defined as the mean and mean square of the kth univariate function, respectively

and represented as [3]:

()

()

1

2

1

,

,

N

k kl kl kl
l

N

k kl kl kl
l

w x

w x

α

β

−
=

−
=


≈


 ≈   

∑

∑

c

c




, (B17)

where, N is the total number of integration points, klx , and klw are the lth Gaussian integration abscissas,

and the corresponding weight, respectively.

Finally, the total sensitivity index (given by Eq. (B13)) corresponding to the ith parameter (ix) can be

expressed as:

()

2
T

2
1

1

1
i i

i n
k kk

S α β

α β
=

−
≈

− ∏
, (B18)

The total sensitivity index given by Eq. (B18) is used in SAMO to reflect the sensitivity.

The accuracy of the sensitivity indices introduced earlier depends on the number of integration points

and a convergence study should be accomplished to yield the suitable number of integration points [3,

19]. It should be noted that the total number of function evaluations required for calculating the

sensitivity indices using this method is only n×N. Where, n is the number of design parameters.

Consequently, in order to accomplish the sensitivity analysis of a system output with respect to an input

parameter iX , a suitable cut point together with a probability distribution have to be chosen. Closed

form expressions given by Eqs. (B16), (B17), and (B18) are then utilized to attain the sensitivity indices.

The efficiency and applicability of this methodology is already proven through some mathematical and

mechanical examples [3].

B1.3.3 Choosing the cut center

An interesting aspect of the cut-HDMR is that in most of the applications with well-defined physical

systems, if the cut-HDMR yields a satisfactory level of convergence, the results are independent of the

choice of the cut center c [15]. However, in practice it is more convenient to consider in service or

optimized values of the design parameters as the cut center.

40

B2. Multiobjective Optimization Using GA

In general, the optimization problem of m design parameters 1 2[, ,...]T
md d d= ∈d Ω (where, Ω is the domain

of input design variables) with respect to a vector of objective functions Γ=(d), that is evaluated from

the multibody dynamics response, can be stated as follows:

Determine d* and x*(t) such that

 * *(, (t))=min ((t)), ∈*d x d,x d  Ω , (B19)

subject to

 Γj (d) = j (d) ≤ 𝛤𝛤𝑗𝑗max, (B20)

in which, 𝛤𝛤𝑗𝑗max, j=1, 2,…, n denote the threshold values, x(t) is the vector of the design parameters.

Genetic algorithm based multiobjective optimization routine in MATLAB is utilized in SAMO to solve

the optimization problems. The procedure can be described as follows: in each iteration, MATLAB

updates the design parameters file as an input to the multibody dynamics model developed in the

MBSD.m file, the dynamic response of the system is then evaluated and the respective objective

functions are accordingly attained after a post-processing stage. At this step, the thresholds might be

checked to make sure if all the objective functions are within the admissible limits. If at least one of the

objective functions violated the thresholds, the vector of the objective functions is penalized to assure

that all the Pareto optimized results satisfy the problem constraints. This procedure continues until

convergence or the maximum number of generations achieved. In the case of multiobjective

optimization problems, the results can be plotted in terms of Pareto set and Pareto front graphs. See e.g.

[8, 9, 11] for more details.

B2.1 Genetic algorithm

Genetic algorithm (GA) is an optimization technique which has biological origins and works based on

the probabilistic searching. The GA is successfully applied to the multiobjective optimization problem

of a variety of complex nonlinear multibody systems such as bogie suspension of high speed trains, see

e.g. [20-26].

A GA is generally consists of the following main steps [27]:

• chromosome encoding

• fitness

• selection

• recombination

41

• evolution

In contradict to the natural GAs which have to follow certain laws observed in nature, the characteristics

of the abovementioned steps in a GA with optimization applications are determined by the designer and

based on the design requirements.

The ordinary optimization techniques such as Newtown-Raphson and its variants are mostly suitable for

convex optimization problems. Such methods utilize local information and as a result might fail to find

the global minima. The GA is known to be a method which attains reasonably good global solutions in

many applications. However, the initial guess, number of generations, population size, and other settings

have to be carefully selected to be able to achieve satisfactory results.

In a multiobjective optimization problem, if no weighting coefficient act on the vector of the objective

functions, the GA minimizes every single objective function. Indeed, all the objective functions are

treated the same way and there is no need to normalize the objective functions in that case.

When it comes to the complex nonlinear models, it is difficult to impose constraints to the optimization

algorithm using MATLAB routine. To overcome such a problem, in the case of a violation of the

constraints a penalty factor can be imposed to the objective functions to make sure that the Pareto

optimized results remain within the constraints. See, e.g. [8, 9, 11] for more details.

B2.1.1 Chromosome encoding

After selecting the design parameters for optimization, the GA encodes the design parameters. Each

encoded design parameter is known as a gene. The complete set of genes (design parameters) that

uniquely describe an individual is referred to as a chromosome. Indeed, gene is a particular position or

locus in a chromosome.

The particular string representations used for a given problem is known as the GA encoding of the

problem. Therefore, the encoded chromosomes are string representations of the solutions to a particular

problem. The classical GA uses a bit-string representation to encode the solutions. Bit-string

chromosomes composed of a string of genes which contains 0 or 1 characters, see e.g. [27] for more

details.

B2.1.2 Fitness

The quality of a chromosome as a solution to a particular problem is determined by the fitness function.

Each objective function considered for the optimization problem or a combination of the objective

functions can be considered as the fitness function. It is necessary to evaluate the fitness of each

particular chromosome. The fitness information are then used to bias the next generations based on the

better genes.

B2.1.3 Selection

42

Based on the fitness, the chromosomes should be selected for recombination and to construct the next

generations. In general, the chromosomes which resulted in a better fitness function should have a higher

chance to be selected. This might lead to a more highly fit solutions by the upcoming generations. It

should be noted that highly fit chromosomes might have a chance to be selected twice or more or even

recombined with themselves.

Fitness proportional also known as the roulette wheel is one of the common selection methods. The

probability of parenthood (to be selected) in this method is proportional to the fitness. There are many

different selection methods such as random stochastic selection, tournament selection, and truncation

selection. More details on the selection schemes can be found in [27].

B2.1.4 Recombination

In the recombination, the chromosome of the child is being created using the chromosomes of the parents

selected earlier. The main operators of the recombination are known as crossover and mutation. An

example of the crossover is shown in Fig. B1. The child properties depend on the crossover point. For

instance, in Fig. B1 (a) the child has similar ears to the parent 1 and similar eyes to the parent 2, but in

Fig. B1 (b) the child has similar ears to the parent 1 but different eyes from both parents.

Fig. B1: The crossover example.

Once the child chromosome is generated by the crossover, the GA applies the mutation operator on the

resulting chromosome to change one or more properties, see Fig. B2 for example.

Fig. B2: The mutation example.

43

How to decide for the crossover and mutation methods to achieve more fitted results depends on the GA

settings.

B2.1.5 Evolution

The chromosomes obtained from the previous stages are diverted into the so called successor population.

The selection and recombination steps are then repeated until a complete successor population achieved

which is going to be considered as the next generation. The GA repeats this process through a number

of generations until certain convergence to a best fitness solution or maximum number of iterations

achieved.

The evolutionary schemes determine which chromosomes from the source population are eligible to

remain unchanged when passing to the successor population. It is vital to employ an appropriate

evolutionary scheme. This is usually decided based on the nature of the domain of the input design

parameters being searched. One of the most well-known schemes is replacement with elitism. To create

the successor population, this scheme preserves the best one or two individuals from the source

population and generates the rest through selection and recombination. This method assures that

solutions of the highest relative fitness will be appear in the next generation through the selection

process, see [27] for more details. The GA flowchart is plotted in Fig. B3.

Fig. B3: The GA flowchart.

44

References

[1] MATLAB Documentation: https://se.mathworks.com/help/gads/gamultiobj.html?s_tid=gn_loc_drop.

[2] Chauhan, S., Motor torque calculations for electric vehicle, International journal of scientific &

technology research, 2015, 4(8): pp. 126-127.

[3] Zhang, X. and Pandey, M.D., An effective approximation for variance-based global sensitivity analysis,

Reliability Engineering and System Safety, 2014, 121: pp. 164-174.

[4] Mohamed, A., Lemaire, M., Mitteau, J.-C., and Meister, E., Finite element and reliability: a method

for compound variables — application on a cracked heating system, Nuclear Engineering and Design

1998, 185: pp. 185-202.

[5] Berbyuk, V., Structural dynamics control. 2014, Gothenburg, Sweden: Chalmers University of

Technology.

[6] SIMPACK V9.3 documentation. 2013, INTEC GMBH. Wessling, Germany.

[7] Mousavi Bideleh, S.M., Multiobjective optimisation and active control of bogie suspension. 2016,

Gothenburg, Sweden: Chalmers University of Technology.

[8] Mousavi Bideleh, S.M. and Berbyuk, V., Global sensitivity analysis of bogie dynamics with respect to

suspension components, Multibody System Dynamics, 2016, 37(2): pp. 145-174, DOI: 10.1007/s11044-

015-9497-0.

[9] Mousavi Bideleh, S.M., Berbyuk, V., and Persson, R., Wear/comfort Pareto optimisation of bogie

suspension, Vehicle System Dynamics, 2016, 54(8): pp. 1053-1076, DOI:

10.1080/00423114.2016.1180405.

[10] Mousavi Bideleh, S.M., Mei, T.X., and Berbyuk, V., Robust control and actuator dynamics compensation

for railway vehicles, Vehicle System Dynamics, 2016, 54(12): pp. 1762-1784, DOI:

10.1080/00423114.2016.1234627.

[11] Mousavi-Bideleh, S.M. and Berbyuk, V., Multiobjective optimisation of bogie suspension to boost speed

on curves, Vehicle System Dynamics, 2016, 54(1): pp. 58-85, DOI: 10.1080/00423114.2015.1114655.

[12] Mousavi Bideleh, S.M., Robustness analysis of bogie suspension components Pareto optimised values,

Vehicle System Dynamics, 2017, 55(8): pp. 1189–1205, DOI: 10.1080/00423114.2017.1305115.

[13] Oakley, J. and O'Hagan, A., Probabilistic sensitivity analysis of complex models:a Bayesian approach,

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2004, 66(3): pp. 751-69.

[14] Saltelli, A. and Sobol', I., About the use of rank transformation in sensitivity analysis of model output,

Reliability Engineering and System Safety, 1995, 50(3): pp. 225-239.

[15] Rabitz, H. and Alıs, O.F., General foundations of high-dimensional model representations, Journal of

Mathematical Chemistry, 1999, 25: pp. 197-233.

[16] Sobol', I.M., Theorems and examples on high dimensional model representation, Reliability Engineering

and System Safety, 2003, 79: pp. 187-193.

[17] Sobol', I.M., Global sensitivity indices for nonlinear mathematical models and their Monte Carlo

estimates, Mathematics and Computers in Simulation, 2001, 55: pp. 271-280.

https://se.mathworks.com/help/gads/gamultiobj.html?s_tid=gn_loc_drop

45

[18] Homma, T. and Saltelli, A., Importance measures in global sensitivity analysis of nonlinear models,

Reliability Engineering and System Safety, 1996, 52: pp. 1-17.

[19] Zhang, X. and Pandey, M.D., Structural reliability analysis based on the concepts of entropy, fractional

moment and dimensional reduction method, Structural Safety, 2013, 43: pp. 28-40.

[20] Mei, T.X., Foo, T.H.E., and Goodall, R.M. Genetic Algorithms for Optimising Active Controls in

Railway Vehicles, in Inst. Elect. Eng. Colloq. Optimization Contr.: Methods Applicat. 1998. London, U.

K., (98/521).

[21] He, Y. and Mcphee, J., Design optimization of rail vehicles with passive and active suspensions: A

combined approach using genetic algorithms and multibody dynamics, Vehicle System Dynamics, 2002,

37: pp. 397–408.

[22] Mei, T.X. and Goodall, R.M., Use of multiobjective genetic algorithms to optimize inter-vehicle active

suspensions, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid

Transit, 2002, 216: pp. 53-63.

[23] He, Y. and McPhee, J., A design methodology for mechatronic vehicles: application of multidisciplinary

optimization, multibody dynamics and genetic algorithms, Vehicle System Dynamics, 2005, 43(10): pp.

697-733.

[24] Mousavi Bideleh, S.M. and Berbyuk, V. Multiobjective optimization of a railway vehicle dampers using

genetic algorithm, in the ASME 2013 International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference IDETC/CIE, Paper DETC2013-12988. 2013.

Portland, Oregon, USA. DOI: 10.1115/DETC2013-12988.

[25] Mousavi Bideleh, S.M. and Berbyuk, V. Optimization of a bogie primary suspension damping to reduce

wear in railway operations, in The ECCOMAS Multibody Dynamics, pp. 1025-1034. 2013. University of

Zagreb, Croatia.

[26] Nejlaoui, M., Houidi, A., Affi, Z., and Romdhane, L., Multiobjective robust design optimization of rail

vehicle moving in short radius curved tracks based on the safety and comfort criteria, Simulation

Modelling Practice and Theory, 2013, 30: pp. 21-34.

[27] McCall, J., Genetic algorithms for modelling and optimisation, Journal of Computational and Applied

Mathematics, 2005, 184(2005): pp. 205-222.

	SAMO Help File updated-V170530.pdf
	Abstract
	Perface
	1. SAMO
	1.1 Getting starting with SAMO
	1.1.1 Format of the input data files
	1.1.2 Format of the multibody dynamics code

	B1. Sensitivity analysis
	B2.1 Genetic algorithm

	SAMO Help File updated-V170530.pdf
	Abstract
	Perface
	1. SAMO
	1.1 Getting starting with SAMO
	1.1.1 Format of the input data files
	1.1.2 Format of the multibody dynamics code

	B1. Sensitivity analysis
	B2.1 Genetic algorithm

	SAMO Help File updated-170531_Pcodes.pdf
	Abstract
	Perface
	1. SAMO
	1.1 Getting starting with SAMO
	1.1.1 Format of the input data files
	1.1.2 Format of the multibody dynamics code

	B1. Sensitivity analysis
	B2.1 Genetic algorithm

