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ABSTRACT

Quantum optics in superconducting circuits, known as circuit QED, studies
the interaction of photons at microwave frequencies with artificial atoms made
of Josephson junctions. Although quite young, remarkable progress has been
made in this field over the past decade, especially given the interest in building
a quantum computer using superconducting circuits. In this thesis based on
the appended papers, we look at generation, engineering and detection of mi-
crowave photons using superconducting circuits. We do this by taking advantage
of the strong coupling, on-chip tunability and huge nonlinearity available in
superconducting circuits.

First, we present the strong photon-photon interaction measured experimentally,
as shown in the giant cross-Kerr effect. In this work, conditional phase shift of
about 20 degrees per photon was measured between two coherent fields at single
photon level. Given this strong interaction, we propose and analyze a cascaded
setup based on the cross-Kerr effect to detect itinerant microwave photons, a long
outstanding problem with only recent experimental realizations. We show that a
nondestructive detection of microwave photons is possible with few cascaded
transmons. The on-chip tunability of Superconducting Quantum Interference
Device (SQUID) is exploited to create a tunable superconducting resonator in
the next presented experimental work. Finally, we show that by placing the
atom at the end of a transmission line, microwave photons can be generated
efficiently and on-demand. We also present a setup that can generate the photons
in arbitrary wave packets.

Keywords: Quantum optics, superconducting circuits, circuit QED, single photon
source, single photon detector, cross-Kerr effect.
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“In the beginning there was nothing.
God said, ‘Let there be light!’ And there was light.
There was still nothing, but you could see it a whole lot better.”

Attributed to Ellen DeGeneres

1
Introduction

The birth of quantum theory at the beginning of the 20th century revolutionized
our understanding of the universe and along with Einstein’s theory of relativity
form the basis of our modern view on how nature works. This development of
quantum mechanics now referred to as the “first quantum revolution", led to both
fundamental scientific progress and several important applications. Currently,
there is a huge drive to develop technologies based on quantum principles
such as superposition and entanglement. This activity, termed as the "second
quantum revolution" or quantum 2.0, is expected to have significant impact
in computing, communications and metrology among others [1]. Research in
this regard is driven by several countries and regions around the world with
significant participation from industry.

While one may envision building these quantum devices top-down, a preferred
approach has been to start from the mastery of individual quantum systems and
build up. This can also be seen as pragmatic as the complexity of a quantum
system grows exponentially with size and one would like to understand/control
smaller setups before scaling up. During the initial development of quantum
mechanics, control of individual quantum systems was only possible in gedanken
experiments. However, with significant progress over the past several decades we
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can now routinely address single quantum systems in labs around the world. For
their pioneering work in this direction, Serge Haroche and David Wineland were
awarded the Nobel Prize in Physics in 2012. Wineland’s group traps individual
ions using electric fields in ultrahigh vacuum and probes them with laser light
[2]. Haroche’s group takes the opposite approach, where the field at microwave
frequency is trapped in a cavity and is studied by sending highly excited atoms
called Rydberg atoms through the cavity [2].

The above experiments of Wineland and Haroche fall under the broad topic of
quantum optics, where one studies the interaction between light and matter at the
fundamental level. Specifically, the approach used in Haroche’s experiments falls
under the field called cavity quantum electrodynamics (cavity QED), where light-
matter interactions are studied inside a cavity [3, 4]. While tremendous progress
has been made in using both ions and natural atoms to build quantum devices
[5], alternate approaches using solid state systems have also been developed
recently. These include systems such as quantum dots, NV centers in diamond
and superconducting circuits, each of which have their own pros and cons [6].

In this thesis, we will focus on superconducting circuits which has recently
emerged as a promising candidate in the race to build quantum devices [7, 8]. In
these devices, artificial atoms made of superconducting circuits replace real atoms
and they interact with microwave photons routed through one-dimensional
waveguides. Analogous to cavity QED, this area of research is known as cir-
cuit QED. As these setups are made on chip using standard microfabrication
techniques, they offer a number of advantages such as tunability, scalability and
mechanical stability over the traditional laser-real atom case. Due to the con-
finement of the field to one dimension, these systems also show large coupling
between the field and the artificial atom [9]. Such advantages have enabled
a plethora of experiments covering a wide range of areas such as microwave
quantum optics [10], quantum information processing [7, 11, 12] and relativistic
quantum mechanics [13].

In quantum information processing with superconducting circuits, one usually
thinks of the artificial atoms as the quantum bits (qubits). The microwave photons
are then used to manipulate and transfer information between the qubits. One
can take an alternate viewpoint, where the information is always in the photons
(referred to as flying qubits), and the atoms are used as photonic devices that op-
erate on these qubits. As photons have low decoherence and can be transmitted
over distance, using them as qubits is advantageous. Indeed, several proposals
exist for quantum information processing using photons [14–16] including those
specific to superconducting circuits [17, 18]. For such photonic quantum appli-
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cations, one has to be able to generate photons on demand, manipulate them,
store and retrieve them from a memory and finally detect them. In this thesis,
based on the appended papers, we look at some of the solutions for achieving
the above goals at microwave frequencies.

1.1 Photon sources

Photons were hypothesised by Planck as quantum packets of energy to calculate
the spectrum of blackbody radiation [19]. In one of his seminal papers of 1905,
Einstein used the concept of these quanta to explain the photoelectric effect [20].
This effect was already observed in the photomultiplier tubes, which we can
consider as a precursor to single photon detectors. The first sources of single
photons were realized in the 1970s using cascaded emission [21].

Current photon sources can be broadly put into two categories, probabilistic and
deterministic [22]. The probabilistic sources include those based on parametric
down-conversion and four-wave mixing. In these sources, photons from a strong
pump field are converted to signal and idler photons. While this conversion pro-
cess is stochastic, the emitted photon pairs are correlated such that the detection
of an idler photon heralds the presence of a signal photon.

Deterministic photon sources are based on either single atomic or ensemble
emitters. In a single atomic source, when a photon is needed, the atom is excited
using an external drive. The atomic decay to the ground state leads to the
emission of a single photon. As the atom decays in all available modes, usually
one embeds the atom in a cavity to improve collection efficiency. In ensemble
sources, instead of using a single atomic level, collective excitation of all the
atoms in the ensemble is used to generate the desired photons.

Current research in single photon sources is pushed by applications in quantum
computation and in quantum communication which include quantum key distri-
bution and quantum repeaters [22, 23]. Other applications in combination with
single photon detectors include random number generation [24].

Microwave photons have been generated using superconducting qubits coupled
to transmission line resonators [25–27], including in shaped photon wave packets
[28, 29]. While the use of resonators provide better collection efficiency, they also
limit the bandwidth of operation. To generate photons at different frequencies,
one needs tune both the qubit and cavity frequencies with good control. A cavity
free setup for generating microwave photons using two transmission lines was
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Stationary
qubit
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qubit

Tunable
coupling

QND
photon
detector

Figure 1.1: A possible implementation of a quantum internet inspired by a figure from
[32]. The stationary qubits are used to process quantum information which is then sent
out as photons (flying qubits). A QND photon detector detects the incoming photon and
"opens or closes" a cavity to efficiently capture the incoming signal.

proposed in [30] and was experimentally realized in [31]. In paper V, we show
how to generate single photons efficiently using an atom in front of a mirror.

An ideal single photon source generates indistinguishable photons on demand,
with a fast repetition rate [22]. That is, the source would produce a single photon
with 100% probability and have 0% probability for all other photon number states.
Calculating or measuring these probabilities provides a way to determine the
efficiency of the proposed setup. In paper V, we calculate these probabilities from
correlation functions, which are described in chapter IV.

1.2 Storage and retrieval of photons

The setup presented in paper V and other similar schemes, can in principle
generate any arbitrary superposition of 0 and 1 photons. This would be a form
of photonic qubit that can be written as α |0〉+ β |1〉, where α and β are complex
numbers with |α|2 + |β|2 = 1. An on-demand generation of such photonic qubits
could have applications in quantum communication. Assume for instance that
Alice generates one such qubit and sends it to Bob. Bob then has to catch the
qubit and process the information. This would form a simple transaction over a
quantum network (Fig. 1.1).

The quantum internet, a distributed quantum network, is one of the long term
goals of quantum information and quantum communication [32]. In this setup,
analogous to the "classical internet", individual quantum nodes are connected via
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quantum channels for performing distributed quantum computing and commu-
nication. The individual nodes where the processing of information takes place
are ideally made of atoms (artificial or real), while the quantum information is
communicated using photons, playing the role of flying qubits. As one could
imagine, a quantum memory that would store the incoming photon and retrieve
it for later processing becomes an essential part of this setup. Proposals for setups
that would "catch and release" [33] photons on demand exist based on atomic
ensembles [34] and superconducting circuits [28, 35]. In papers III and VI, we
look at one such proposal in circuit QED, where a coherent field is stored and
retrieved from a tunable cavity. Apart from the use as a quantum memory, such
tunable cavities can potentially be also used for generating single photon wave
packets of arbitrary shapes [28, 29].

1.3 Photon-photon interaction

While photons are carriers of electromagnetic interaction, they rarely interact
with each other in vacuum. While this property makes them great carriers of
information, it also makes it harder to manipulate them. Effective photon-photon
interactions can however be engineered using non-linear materials. One such
effective interaction is the so called Kerr effect, which is the change in refractive
index of a material due to an applied electric field. While a dc field can be the
source of the Kerr effect, we are more interested in the ac or optical Kerr effect,
where an intense beam of light changes the refractive index of the medium. The
total refractive index of such a medium as seen by the intense control field is
given as [36]

n(c) = n(c)
0 + n(c)

2 I(c), (1.1)

where n(c)
0 is the normal (low intensity) refractive index and I(c) is the intensity

of the incoming control field. n2 is referred to as the second order refractive
index or the non-linear Kerr index. It can be shown that this non-linear effect
comes from the third order susceptibility χ(3) of the medium [36]. The change
of refractive index gives rise to an intensity dependent non-linear phase shift
to the field over and above the one due to just n0. This is usually referred to
as self-phase modulation (SPM). We are interested in cross-phase modulation
(XPM), which is the phase shift experienced by a weak probe field due to this
change caused by an intense field. Assuming that the probe is weak enough to
not induce non-linearity on its own, the refractive index seen by the weaker probe
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field is given by [36, 37]
n(p) = n(p)

0 + n(p)
2 I(c). (1.2)

This is similar to the previous case, with the non-linear term depending on the
intensity of the strong field. This leads to modulation of the phase of the weaker
field and is also known as the cross-Kerr effect.

Traditionally, such cross-Kerr interactions are mediated using nonlinear medium
such as crystals, which are several wavelengths long and are composed of a huge
number of atoms. Other setups where the Kerr nonlinearity was demonstrated
include cold atoms using an EIT (electromagnetically induced transparency)
scheme [38]. Whether such an interaction can be mediated by just a single atom
is the question addressed in paper I. In this experimental work, two coherent
fields, control and probe, are scattered off a superconducting artificial atom, the
transmon. The conditional phase shift in the probe field due to the presence of
the control field is measured and shown to be much higher than those obtained
in the optical regime using setups such as crystal fibers [39]. Hence the title, giant
cross-Kerr effect. However, it has to be noted that a single atom can only process
one excitation per lifetime of the transition. So the phase change doesn’t increase
as one continuously increases the intensity of the control field as in the above
discussion. The giant phase shift shown in paper I occurs when both the control
and probe field are in the single photon regime. This is the most interesting
regime for quantum optics and quantum information processing. The effect
could however be further improved by cascading several of these atoms [40].

Kerr non-linearities have previously been used in several proposals for quantum
information processing to make quantum gates [41–44]. There have been several
studies in the literature discussing the feasibility of implementing a controlled
phase gate using cross-Kerr nonlinearity [45, 46], with recent results suggesting
that it is indeed possible [47]. Cross-Kerr nonlinearities have also been proposed
as a way to nondestructively detect photons [37, 48–50]. We turn to this particular
problem in the next subsection.

1.4 Single photon detection

Now that we have looked at generating, storing and engineering photons, let
us turn our attention to detecting a single photon. Due to research and devel-
opment over the past several decades, single photon detectors based on many
different technologies exist in the optical regime [22, 51], and are even available
commercially. Current research in this field continues to push the efficiency of
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these detectors. Apart from quantum information processing and quantum com-
munications, such single photon detectors have applications in biology, medicine,
remote sensing and ranging, spectroscopy and metrology to name a few [22, 24].

Detecting a propagating single photon at microwave frequency has however
been particularly challenging. This can be attributed to the fact that the energy
of microwave photons are 4 to 5 orders of magnitude lower than that of optical
photons. Over the past few years, several novel proposals have been put forth
to address this problem [52–58] (also paper II) including a few experimental
demonstrations [59–61]. A pedagogical review of some of these proposals is
presented in paper IV. A itinerant single microwave photon detector has been
realized recently [62] with an impedence matched lambda system. Given the
popularity of superconducting circuits as a platform for quantum information
processing, single microwave photon detectors would add significant flexibility
to the toolbox. Apart from other applications similar to those in the optical regime,
microwave photon detectors could also be useful in the search of dark matter [63,
64].

1.4.1 Quantum nondemolition detection

Traditional photon detectors such as photodiodes, are destructive. Typically they
absorb the photon and convert it into an electrical signal, which is then measured
(possibly after amplification). Such schemes complicate the use of photons as
carriers of quantum information. For example, if the information is stored in the
polarization of the photon, the detection of the photon destroys this information.
A nondestructive kind of detector would allow us to process the photons, after
we detect their presence (as in Fig. 1.1 for example).

Measurement back-action, the change in the state of the system due to measure-
ment, is an inherent property of quantum mechanics. Along with the Heisen-
berg’s uncertainty principle, this leads to limitations in repeated measurements
as follows [37]. Consider two non-commuting operators of a system, such as
position x and momentum p. The uncertainty principle states that the values of
these two operators cannot be simultaneously established to arbitrary precision,
the lower bound in their uncertainity being ∆x∆p = 1

2 h̄. Any precise measure-
ment of x, leads to a large uncertainity in p. If the system evolution depends on
momentum, a second measurement of x even after a short time interval could
lead to a different result [65].

Quantum nondemolition (QND) measurements were introduced in the 1970s
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to circumvent the above restrictions imposed by the uncertainty principle [65–
70], by using clever measurement schemes such that the uncertainity in the con-
jugate variable does not lead to disturbance of the measured quantity. These
schemes were first devised to measure mechanical oscillators that would de-
tect gravitational-waves, with the aim of repeating the measurements without
perturbing the oscillators. The ideas were however well suited for the field of
quantum optics, leading to the successful implementations of QND measure-
ments of photon flux in the optical regime [37]. These schemes have since then
been extended to microwave quantum optics, initially in cavity QED [71] and
now in circuit QED [59, 72–75].

The cross-phase modulation (XPM) offered by a Kerr medium leads us to one
such scheme of nondestructive photon detection [37, 48–50]. Instead of having
an intense field changing the refractive index of the medium and causing a phase
shift in the probe field, we would like a single photon to have such an effect.
Then, by measuring the phase shift of the probe, one might infer the presence of
the single photon. The single photon survives this process, making the scheme
nondestructive. Given that the setup in paper I shows a giant cross-Kerr phase
shift in the single photon regime, we explore if it could be used as a photon
detector. We then propose a scheme using this effect in paper II and show that it
overcomes the noise arising from vacuum fluctuations.

1.5 Structure of the thesis

In the next few chapters, we will briefly review the ingredients that form the
basis of the appended papers. We start in chapter 2 and look at the quantum
mechanical description of superconducting circuits. We will focus on how to
derive the Hamiltonian of a superconducting artificial atom, the single Cooper
pair box, leading towards a discussion of the transmon qubit. We will also look
at transmission lines and transmission line resonators. As all of the appended
papers are either experiments in circuit QED or theoretical proposals primarily
aimed at experiments in circuit QED, this chapter provides a background to the
physical setups used.

In chapter 3, we abstract away the physical setups used and look at the evolution
of a generic quantum system coupled to an environment. We will review the
derivation of the master equation that describes the evolution of such an open
system. We will also look at the input-output formalism which describes how to
calculate the scattered field from the atom. We will use these relations to calculate
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the amplitudes and correlation functions of the output field. The theoretical
part of all of the appended papers rely on the above master equations and the
input-output formalism.

In chapter 4, we focus on the evolution of a quantum system under measurement.
We look at the stochastic master equations describing the evolution under direct
photodetection and homodyne detection. We will also add a few comments
on QND measurements. Stochastic master equations are used in paper II to
characterize and calculate the efficiency of the proposed microwave photon
detector.

In chapter 5, we move beyond the domain of single quantum systems and look
at composite setups that consists of cascaded/stacked quantum subsystems. We
look at the (S,L,H) formalism that makes it easier to derive the master equation for
such a composite system and apply it to a few example problems. The (S, L, H)
formalism is used in paper II to derive the master equation of a chain of cascaded
three level atoms. This formalism can also be used to get the master equation for
an atom in front of a mirror [76], a setup that is used in paper V.

We will briefly discuss and highlight the salient points from the attached papers
in chapter 6 and conclude with a summary in chapter 7.





"Resistance is futile."

The Borg
Star Trek: The Next Generation

2
Superconducting quantum circuits

The field of circuit QED is concerned with the study of light matter interaction
using superconducting circuits. As already mentioned in the previous chapter,
these systems are now also prime candidates for implementing quantum tech-
nologies. As this thesis falls under the domain of circuit QED, we will briefly
look into the same in this chapter. Our main goal will be to understand how these
macroscopic circuits can be described using quantum mechanics.

2.1 Circuits as quantum systems

While initially envisioned for mechanical systems, it has been known for a long
time that electrical circuits can also be analyzed using the Lagrangian formalism
[78]. In such an analysis, one chooses either charge or flux (defined below) as
a generalized coordinate to calculate the energies stored in the different circuit
elements, resulting in a Lagrangian of the total circuit. This, then allows us to
extend the canonical quantization procedure to electrical circuits as described in
references [79–81].
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From
microwave

source

To
amplifiers

and
detectors

Figure 2.1: Schematic setup of a circuit QED experiment depicting the interaction of
microwave photons with an artificial atom (transmon, shown in green). The microwaves
are routed through a transmission line (shown in blue). Figure adapted from [77]. The
circuit diagrams for a transmission line and a transmon are shown in figures 2.6 and
2.4b respectively.

Circuit
element

Symbol
Current-Voltage

relation
Energy

Capacitance

C
Φ1 Φ2

I = CV̇ TC = 1
2 CΦ̇2

Inductance

LΦ1 Φ2
V = Lİ UL = 1

2L Φ2

Josephson
element

EJ

Φ1 Φ2

I = IC sin φ

dφ

dt
=

2e
h̄

V

φ = 2π
Φ
Φ0

UJ = EJ

[
1− cos

(
2π Φ

Φ0

)]

Table 2.1: Common superconducting circuit elements with the corresponding
symbol, current-voltage relation and energy. The energies are written in terms
of the flux drop across the circuit element Φ = Φ1 − Φ2, where Φ1/2 are the
node fluxes (defined in the text). T and U denote kinetic and potential energies
respectively.
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C L

Φ

Figure 2.2: Circuit diagram of an LC oscillator, with the
bottom node grounded. Φ is the flux associated with the top
node.

For superconducting circuits, it is advantageous to work with node fluxes as the
generalized coordinates (due to Josephson junctions). These are defined as the
time integral of the voltages as

Φn =
∫ t

−∞
Vn(t′)dt′, (2.1)

where Vn is the voltage at node n. Using the current-voltage relationships, we can
calculate the energies stored in the element at time t as E(t) =

∫ t
−∞ V(t′)I(t′)dt′.

We list the energies of common superconducting circuit elements in table 2.1
using flux as the generalized coordinate. Analogous to classical mechanics, we
denote energies that are function of the coordinate Φ itself as potential energies
U, while the ones that are function of the velocity Φ̇ as kinetic energies T.

Using the energies of the different components, we can write down the La-
grangian of an arbitrary circuit. The simplest of such a combination is the LC
oscillator (see Fig. 2.2), where we have grounded the lower node. The Lagrangian
of the circuit is

L = TC −UL =
1
2

CΦ̇2 − 1
2L

Φ2. (2.2)

From the Lagrangian, we can derive the Hamiltonian using the Legendre trans-
formation. In order to do this, we need the momentum conjugate to the flux Φ
given by

q =
∂L

∂Φ̇
= CΦ̇, (2.3)

which has the units of charge and in this case, corresponds to the charge on the
capacitor. Now the Hamiltonian is given by,

H = qΦ̇−L

=
q2

2C
+

Φ2

2L
, (2.4)

which is analogous to the Hamiltonian of a harmonic oscillator of the form
p2

2m + 1
2 mω2x, with m = C and ω =

√
1/LC. So far we have considered everything
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classically. To get to the quantum description, we now promote q and Φ to
operators satisfying the commutation relation,

[Φ̂, q̂] = ih̄, (2.5)

where we have for the first and last time explicitly included the hats to identify
the operators. We can then define the ladder operators a and a† as

Φ =

√
h̄

2Cω
(a + a†), (2.6)

q = −i

√
h̄Cω

2
(a− a†), (2.7)

which satisfy the commutation relation [a, a†] = 1. In terms of these operators,
the Hamiltonian can be rewritten as

H = h̄ω

(
a†a +

1
2

)
. (2.8)

The striking feature of the harmonic potential (U ∝ x2) is its equidistant energy
spectrum, which means we cannot address individual energy transitions like for
instance in a Coulomb potential (U ∝ 1/x). Thus to mimic real atoms, we have
to include a non-linearity in our circuit that would provide anharmonicity to
the spectrum. In superconducting circuits, this is naturally given by Josephson
junctions.

The Josephson junction is a device made of two superconductors separated by a
small tunnel barrier. It is modelled as a capacitor CJ in parallel to a Josephson
element characterized by its energy EJ (circuit diagram shown in Fig. 2.3a). Such
junctions follow the DC and AC Josephson effects [82, 83] given by the relations

I(t) = IC sin φ(t), (2.9)
dφ

dt
=

2e
h̄

V(t), (2.10)

where φ is the phase difference between the order parameters of the two super-
conductors. The phase difference is related to the flux drop across the junction as
φ = 2πΦ/Φ0 = 2π(Φ1 −Φ2)/Φ0, where Φ0 = h/2e is the flux quantum. IC is
the critical current, i.e. the maximum supercurrent that the junction can conduct.

Combining Eq. (2.9) and Eq. (2.10), we can write (suppressing the time argument
for clarity)

İ =
(

2π

Φ0
Ic cos φ

)
V ≡ 1

LJ
V (2.11)
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J = EJ CJ

(a)

⊗

Φext

EJ,1

CJ,1

EJ,2

CJ,2

(b)

Figure 2.3: Circuit diagrams of (a) a Josephson junction and (b) a dc-SQUID. The
Josephson junction is characterized by its Josephson energy EJ and capacitance CJ . The
dc-SQUID consists of a superconducting loop interrupted by two Josephson junctions.
An external flux through the loop Φext can be used to tune the effective Josephson energy
of the SQUID.

which shows that the Josephson junction acts as a nonlinear inductor with in-
ductance LJ =

(
Φ0
2π

)
1

Ic cos φ . Thus in the flux basis, the Josephson junction gives a
potential energy contribution to the Lagrangian as

UJ =
∫ t

−∞
I(t′)V(t′)dt′ =

h̄
2e

IC

∫ t

−∞
sin φ(t′)

dφ

dt′
dt′ = EJ(1− cos φ), (2.12)

where we have defined the Josephson energy EJ = h̄
2e IC. This is indeed an

anharmonic potential that can be exploited to make artificial atoms. The above
potential energy corresponds to that of the pure Josephson element. Adding
the kinetic energy from the capacitance of the junction CJ , we can write the
Lagrangian of the Josephson junction as

L =
1
2

CJΦ̇2 + EJ cos
(

2π

Φ0
Φ
)

, (2.13)

where we have dropped the constant term.

Placing the Josephson junctions in a loop to make a superconducting quantum
interference device (SQUID), offers additional on-chip tunability. In this thesis,
we will focus only on what is called a dc-SQUID, which is made of two Josephson
junctions in parallel (see Fig. 2.3b). By using an external coil, one can now thread
a flux Φext through the loop containing the Josephson junctions. We will see how
this allows us to realize an effective Josephson junction with a tunable Josephson
energy in the following.

The condition that the superconducting order parameter must be single valued,
leads to fluxoid quantization [83] which can be written in the case of the SQUID
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as [84, 85]

Φ1 −Φ2 + Φext + Φind = nΦ0 (2.14)

where Φind is the flux induced by the circulating current in the loop and n is
an integer. We will consider a small loop whose inductance is much smaller
than the inductance of the Josephson junctions and neglect this term. The flux
drops across the Josephson junctions are related to the phase difference across
the junctions as before i.e. Φ1/2 = Φ0

2π φ1/2. Without any loss of generality, we take
the number of flux quanta in the loop to be 0. With this constraint, we can define

Φ1 = Φ− 1
2

Φext, (2.15)

Φ2 = Φ +
1
2

Φext. (2.16)

Considering also that the Josephson junctions are identical with CJ,1 = CJ,2 =
CJ/2 and EJ,1 = EJ,2 = EJ/2, the Lagrangian of the SQUID becomes

L =
1
2

CJ,1Φ̇2
1 +

1
2

CJ,2Φ̇2
2 + EJ,1 cos

(
2π

Φ0
Φ1

)
+ EJ,2 cos

(
2π

Φ0
Φ2

)
(2.17)

=
1
2

CJΦ̇2 + EJ(Φext) cos
(

2π

Φ0
Φ
)

, (2.18)

where EJ(Φext) = EJ cos
(

πΦext
Φ0

)
. To obtain the above expressions, we have also

neglected the terms that only depends on Φext. Comparing with Eq. (2.13), we
see that the Lagrangian of the SQUID is analogous to that of a Josephson junction
whose Josephson energy EJ(Φext) can be tuned using an external flux. As we
already saw, the Josephson element acts like a nonlinear inductor with inductance

LJ =
(

Φ0
2π

)2
1

EJ cos φ . By replacing the Josephson junction with a SQUID, we can
tune this inductance using Φext.

The tunability provided by a SQUID had been exploited in several experiments in
circuit QED to either change the frequency of the artificial atoms [76] or to change
the boundary conditions of a field [13]. In papers III and VI, we use a SQUID to
tune the resonant frequency of the coupling cavity. We also take advantage of
the tunability of the SQUID in paper V, where we propose generation of single
photons in arbitrary wave packets by either changing the qubit frequency or by
changing the boundary condition.
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Cg

EJ CJ

+
−Vg

ΦJ

(a)

Cg

CS

+
−VgJ1 J2

(b)

Figure 2.4: Circuit diagram of (a) single Cooper pair box (SCB) and (b) transmon, a
capacitively shunted Cooper pair box. We have also replaced the Josephson junction in (b)
with a SQUID to make the transmon’s frequency tunable.

2.2 Single Cooper pair box

Now that we have looked at the description of some of the basic elements of
superconducting circuits, let us proceed to describe how to engineer an artificial
atom. In this thesis, we primarily focus on the transmon qubit [86], which is a
variant of the single Cooper pair box (SCB) [87–89]. The SCB consists of a small
island made of superconducting metal (such as aluminium) that is connected
to a bigger metallic plate (reservoir of Cooper pairs) via a Josephson junction.
The island is also capacitively coupled to a gate voltage Vg, through which the
tunneling of Cooper pairs to or from the island can be controlled. Fig. 2.4a shows
the circuit diagram of a SCB. From this we can write the Lagrangian of the circuit
as

L =
1
2

CJΦ̇2
J +

1
2

Cg(Φ̇J + Vg)
2 + EJ cos

(
2π

ΦJ

Φ0

)
, (2.19)

where ΦJ = (Φ0/2π)φ is once again the flux connected to the phase difference φ
across the Josephson junction. The conjugate momentum,

qJ =
∂L

∂Φ̇J
= CJΦ̇J + Cg(Φ̇J + Vg) = 2en, (2.20)
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where n is the number of Cooper pairs on the island. Using the Legendre trans-
formation, we get the SCB Hamiltonian as

H = 4EC(n− ng)
2 − EJ cos

(
2π

ΦJ

Φ0

)
, (2.21)

where EC ≡ e2/2(Cg + CJ) is the charging energy of the island and ng = CgVg/2e
is the number of Cooper pairs induced by the gate. We can then follow the
quantization procedure and promote n and ΦJ to be operators that satisfy the
commutation relation [90],

[exp
(

i2π
ΦJ

Φ0

)
, n] = − exp

(
i2π

ΦJ

Φ0

)
. (2.22)

Using this commutation relation, we can show that

e±i2π
ΦJ
Φ0 |n〉 = |n± 1〉 , (2.23)

where |n〉 represents the charge basis which are the eigenstates of the number
operator such that n̂ |n〉 = n |n〉. We can then write the Hamiltonian in the charge
basis, by using the completeness relation (i.e. ∑n |n〉 〈 n| = 1) and by expanding
the cosine term as sum of two exponentials as

H = ∑
n

{
4EC(n̂− ng)

2 |n〉 〈 n| − 1
2

EJ

(
|n + 1〉 〈 n|+ |n− 1〉 〈 n|

)}
. (2.24)

By diagonalizing the above Hamiltonian we can plot the energy levels of the SCB
as a function of ng for different values of the parameters EC and EJ . The first
three energy levels are shown in Fig. 2.5 for different values of these parameters.
We see that at low ratios of EJ/EC, the transition energies between the levels
vary significantly as a function of the gate charge ng. Any fluctuations in ng (i.e.
charge noise) leads to variations in transition frequencies that after averaging
manifests itself as dephasing. As can be seen from the figure, the wiggles in
the energy spectrum reduces as one increases the ratio of EJ/EC. However,
this change has a negative side-effect in reducing the anharmonicity, which is
crucial to address individual transitions. Fortunately we can find values of EJ/EC
where a useful trade-off between the charge noise and anharmonicity can be
achieved. The value of EJ/EC can be modified by shunting the SCB with a large
capacitor. The capacitively shunted Cooper pair box is known as a transmon [86]
(schematically presented in Fig. 2.1). A simplified circuit diagram in shown in
Fig. 2.4b. The insensitivity of transmons to charge noise has made them a popular
superconducting qubit for implementing quantum information processing [8].
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Figure 2.5: First three eigen-energies for a SCB normalized to the energy difference E01

at ng = 0. As seen in the figures, increasing the value of EJ/EC reduces the wiggles in
the energy spectrum but also reduces the anharmonicity.

We note that, there are several other types of superconducting qubits proposed
and experimentally realized [88, 91–96]. In this thesis, we will consider only the
transmon and hence we will not go into the details of the rest of the qubits.

2.3 Transmission line

As mentioned previously, in circuit QED one studies the interaction of mi-
crowaves with superconducting artificial atoms such as the transmon. The mi-
crowaves are routed through a transmission line to which we turn our attention
now. Microwave transmission lines consist of a central conductor separated by a
dielectric to the ground plane (Fig. 2.1). They can be modeled as coupled LC os-
cillators as shown in Fig. 2.6, where C0 and L0 are the capacitance and inductance
per unit length of the transmission line. By discretizing the transmission line with
a small length ∆x and using the node fluxes as the generalized coordinates we
can write the Lagrangian of the transmission line as

L = ∑
n

1
2

C0∆xΦ̇2
n −

1
2
(Φn −Φn−1)

2

L0∆x
. (2.25)
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∆xL0 Φn−1

· · · ∆xC0

∆xL0 Φn

∆xC0

∆xL0 Φn+1

∆xC0

∆xL0

· · ·

Figure 2.6: Circuit diagram of an infinite transmission line. C0 and L0 are the capaci-
tance and inductance per unit length of the line. The fluxes in blue are the generalized
coordinates.

The conjugate momenta,

qn =
∂L

∂Φ̇n
= C0∆xΦ̇n, (2.26)

is the charge at node n. With this, we can write down the Hamiltonian as

H = ∑
n

1
2

q2
n

C0∆x
+

1
2
(Φn −Φn−1)

2

L0∆x
, (2.27)

which in the continuous limit gives,

H =
1
2

∫ [
q(x, t)2

C0
+

1
L0

(
∂Φ(x, t)

∂x

)2
]

dx. (2.28)

We now promote q(x, t) and Φ(x, t) as the quantum mechanical field operators
obeying the equal time commutation relations [q(x, t), q(x′, t)] = [Φ(x, t), Φ(x′, t)] =
0 and [Φ(x, t), q(x′, t)] = iδ(x− x′). The flux field Φ(x, t) satisfies the massless
Klein-Gordon equation

∂2Φ(x, t)
∂t2 − v2 ∂2Φ(x, t)

∂x2 = 0, (2.29)

where v = 1/
√

L0C0 is the propagation velocity. A general solution of the above
equation

Φ(x, t) = ΦL(kx + ωt) + ΦR(−kx + ωt) (2.30)
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consists of left and right moving parts, which can be expanded as [79, 97]

ΦR(−kx + ωt) =

√
h̄Z0

4π

∫ ∞

0

dω√
ω

(
aR(ω)e−i(−kx+ωt) + h.c.

)
, (2.31)

ΦL(kx + ωt) =

√
h̄Z0

4π

∫ ∞

0

dω√
ω

(
aL(ω)e−i(kx+ωt) + h.c.

)
, (2.32)

where k = ω/v and Z0 =
√

L0/C0 is the characteristic impedance of the trans-
mission line. The annihilation (a) and creation (a†) operators in the above ex-
pansion satisfy the commutation relation [aα(ω), a†

α′(ω
′)] = δ(ω−ω′)δαα′ where

α = L/R.

The Klein-Gordon field can also be expanded in terms of the wave vector k instead
of the frequency as above. Using such an expansion, the Hamiltonian of the field
can be shown to be of the form [85, 98]

H =
∫ ∞

−∞
dk h̄ωk

(
a†

k ak +
1
2
[ak, a†

k ]

)
(2.33)

where ωk = v|k|. The above Hamiltonian is that of a continuum of harmonic
oscillators whose modes are defined by k, with their creation and annihilation op-
erators satisfying the commutation relation [ak, a†

k′ ] = δ(k− k′). The transmission
line acts as a bath or environment to the artificial atoms and we will model such
an environment as a collection of harmonic oscillators in the following chapters.

2.3.1 Resonators

So far we have considered an infinite transmission line that supports propagating
photons. We could also make cavities or resonators that support standing modes.
This can be achieved by terminating a segment of transmission line either with
a short to ground or an open circuit. Depending on the choice made, we get
different boundary conditions resulting in different types of resonators. If both
the ends of the resonator are either open (i.e.) connected to a capacitor or shorted
to ground, we have a λ/2 resonator. If one end of the resonator is open and the
other is grounded, we get a λ/4 resonators. Figures 2.7 and 2.8 show the circuit
diagram of quarter and half wavelength resonators along with their first two
modes. The boundary conditions restrict our spectrum from continuous mode to
discrete multimode. The Hamiltonian becomes

H = ∑
m

h̄ωm

(
a†(ωm)a(ωm) +

1
2

)
, (2.34)



22 Superconducting quantum circuits

∆xL0 Φ1 ΦN−2

∆xC0

∆xL0 ΦN−1

∆xC0

∆xL0 ΦN

∆xC0

Cc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1
−0.5

0
0.5

1

x/d

Φ
/

Φ
m

ax

Figure 2.7: Circuit diagram for a λ/4 resonator grounded at x = 0. Shown below the
circuit are the first two modes with normalized amplitude along the length of the cavity d.

where ωm = mπv/d for λ/2 resonators and ωm = (m − 1
2 )πv/d for λ/4 res-

onators with m ∈ {1, 2, 3...}. v = 1/
√

L0C0 is the velocity of photons in the
transmission line and d is the length of the cavity. Most often, we are only inter-
ested in the fundamental mode with m = 1. In this case, we get back to a single
mode picture, with the Hamiltonian similar to that of an LC oscillator

H = h̄ω

(
a†a +

1
2

)
, (2.35)

where ω is the fundamental frequency.

Resonators or cavities play an important role in the study of quantum optics,
where several experimets use atoms interacting with cavity fields and the sub-
field is known as cavity QED [4]. In circuit QED too resonators are routinely used,
especially for reading out qubits. In paper III and VI, we look at experimental
realizations of a tunable cavity. The effective cavity is made of two cavities, one
of them is a λ/4 resonator called the storage cavity and the other one, called the
coupling cavity is a λ/2 resonator. The λ/2 resonator has a SQUID in its center.
By tuning the flux through the SQUID loop, we can tune the frequency that the
cavity supports [99, 100]. It is then shown that this scheme is effectively the same
as tuning the coupling of the storage cavity to the external transmission line.
Such cavities with tunable coupling can be used to generate photon pulses with
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Figure 2.8: Circuit diagram for a λ/2 resonator. Shown below the circuit are the first
two modes with normalized amplitude along the length of the cavity d.

different wave packets [28, 29] and to catch incoming photons of known shapes
[35]. Such a tunable cavity is used in paper II as a model source of single photons
enveloped in wave packets that are either Gaussian or exponentially decaying or
rising.

2.4 Rounding up

Now that we have seen that using superconducting circuits, we can create artifi-
cial atoms, waveguides and resonators, it is time to motivate why not just use
real atoms and optical light. While nature is rich and bountiful, it is also limited
in a certain sense. Although natural atoms or ions are readily available, they
have preset properties that are not widely tunable. With the advent of micro-
fabrication methods and nanotechnology, there has been significant progress in
tweaking these "God given" restrictions. Artificial atoms such as transmons built
from bottom-up, give us access to different parameter regimes with wider in-situ
tunability that are not readily available in nature. Also by confining photons to
one dimension like in a transmission line we can more easily reach the strong-
coupling regime which is difficult to attain in 3D space [9, 101, 102]. Apart from
the traditional quantum optics related problems, these setups have been recently
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used to probe for relativistic effects such as the dynamical Casimir effect [13]
which is in principle impossible to attain in traditional setups with real mirrors.
The downside of superconducting circuits is of course the need of cryogenics. It
is also very difficult to get two superconducting qubits with exactly the same
parameters. Apart from these, we also have to convert microwave photons to
optical photons if we need to transmit quantum information across a network.
However, the potential advantages seem to outweigh the drawbacks and circuit
QED has emerged as one of the front runners for the implementation of quantum
information processing [7, 8].



The wheels on the bus go round and round,
Round and round,
Round and round,

Round and round ...

Popular children’s song that doesn’t stop playing (earworm)

3
Open quantum systems

In the last chapter, we looked at how superconducting circuits with Josephson
junctions can be used as qubits. These artificial atoms are manipulated by routing
microwave photons through a transmission line to which the atoms are coupled.
The transmission line which can be modeled as a collection of harmonic oscillators
acts as an environment for the atom. We would now like to describe how such
an atom coupled to an environment evolves in time. While we are specifically
interested in circuit QED setups, the formalism that we will use applies to a
general quantum system. These are the master equations and we will review the
same in this chapter.

An isolated quantum system evolves according to the Schrödinger equation [103]

ih̄
∂

∂t
|ψ〉 = H |ψ〉 , (3.1)

where the system is described by a state vector |ψ〉 that evolves under the Hamil-
tonian H. The dimensions are taken care of by h̄, a fundamental constant that
we will set to 1 henceforth. While the Schrödinger equation was in itself a break-
through of sorts, not all quantum mechanical systems can be described by a state
vector. A more general formalism that allows for both pure and mixed states is
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using the density matrix ρ ≡ ∑i pi |ψi〉 〈ψi|, where pi is the probability for the
system to be in state |ψi〉. From Eq. (3.1) and its conjugate bra version, we can
derive the quantum Liouville or the von Neumann equation [104]

ρ̇ = −i[H, ρ]. (3.2)

Both of these equations of motion are valid for isolated or closed systems, which
means we have to take into account enough degrees of freedom (if not the whole
universe) in order to use them. However, as we are interested in only a certain
part of the universe that is under observation (viz. the system such as the artificial
atom) and do not care about the rest (viz. the environment), we would like to
get an equation of motion for the system alone. We do this by tracing out the
environment’s degrees of freedom from the Liouville equation. This leads us to
the master equation, which describes the evolution of an open quantum system.
The master equation is derived in many references including [104, 105]. We will
review this derivation in the next section based on these references.

3.1 Master equation

We start with the Liouville equation rewritten as

ρ̇tot = −i[Htot, ρtot] (3.3)

with the Hamiltonian
Htot = Hsys + Hbath + Hint, (3.4)

where we have identified the internal Hamiltonian of the system Hsys, the bath
(environment) Hbath and their interaction Hint. The interaction Hamiltonian gives
the effect of the bath on the system and vice versa. It is helpful to go to the
interaction picture by using the unitary transformation U(t) = exp{i(Hsys +
Hbath)t}. With this transformation, Eq. (3.3) becomes,

ρ̇I(t) = −i[Hint(t), ρI(t)], (3.5)

where we have defined Hint(t) = U(t)HintU†(t) and ρI(t) = U(t)ρtot(t)U†(t).
By iterating the above equation (i.e by substituting the solution back into the
right hand side of the equation), we get

ρ̇I(t) = −i[Hint(t), ρI(0)]−
[

Hint(t),
∫ t

0
[Hint(t′), ρI(t′)]dt′

]
. (3.6)
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The equations are exact up to this point. We now make some assumptions and
approximations to simplify the derivation. First, we assume that the bath is
very large and that the coupling between the system and the bath is weak. This
means that the interaction between the system and the bath does not significantly
affect the bath density matrix (Born approximation). By starting with an initial
condition ρtot(0) = ρsys(0)⊗ ρbath, the weak coupling assumption then leads us
to

ρtot(t) ≈ ρsys(t)⊗ ρbath (3.7)

where the system density matrix that we are after, ρsys(t) = Trbath{ρtot(t)}. By
inserting this condition and tracing over the bath degrees of freedom in Eq. (3.6),
we have

ρ̇I
sys(t) = −

∫ t

0
dt′ Trbath

{[
Hint(t), [Hint(t′), ρI

sys(t
′)⊗ ρbath]

]}
(3.8)

where we have also assumed Trbath{Hint(t)ρI(0)} = 0.

To proceed further, we will consider the interaction Hamiltonian to be of the
form A(t)B(t), where A and B are the system and bath operators respectively.
In the case of atoms coupled to the electromagnetic field, this is usually given
by the dipole approximation which takes the form i ∑(σij + σji)(b†

k − bk), i.e.
the product of the lowering+raising operators of the atom with the creation-
annihilation operators of the bath. Such an interaction gives us terms such as
Trbath{B(t)B(t′)ρbath} in the above equation. These are nothing but the correlation
functions of the bath which decay over a typical correlation time, say τbath. Our
previous assumptions of the bath having a large number of degrees of freedom
and the weak coupling means that τbath is much smaller compared to the time
scales at which the system in the interaction picture evolves (say, τsys). This lets
us to make the following approximations :

. Markov approximation: Take ρ(t′) → ρ(t), as the system would not have
evolved much in the time scales dictated by τbath.

. Substituting t′ → t− s, we can extend the upper limit for the time difference s
to ∞. This is also justified by the fact that τbath � τsys and hence the integrand
anyways goes to zero for any time s� τbath.

With these, we have a Markovian master equation,

ρ̇I
sys(t) = −

∫ ∞

0
ds Trbath

{[
Hint(t), [Hint(t− s), ρI

sys(t)⊗ ρbath]
]}

. (3.9)

The above equation is valid for general systems subject to the approximations
we have made (together known as the Born-Markov approximations). We are
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however interested in the quantum optical master equation. In this case, the
environment is the electromagnetic field which can be modeled as a collection of
harmonic oscillators similar to that of the transmission line in superconducting
circuits. This implies, we can write the Hamiltonians as

Hbath = ∑
k

ωkb†
k bk (3.10)

and
Hint = A⊗ B = A† ⊗ B†, (3.11)

where A and B are the Hermitian system and bath operators, which in the
interaction picture become AI(t) and BI(t). With this interaction Hamiltonian in
Eq. (3.9), we get

ρ̇I
sys(t) =

∫ ∞

0
ds 〈BI(t)BI(t− s)〉

{
AI(t− s)ρI

sys(t)AI(t)− AI(t)AI(t− s)ρI
sys(t)

}

+ 〈BI(t− s)BI(t)〉
{

AI(t)ρI
sys(t)AI(t− s)− ρI

sys(t)AI(t− s)AI(t)
}

,

(3.12)

where 〈BI(t)BI(t′)〉 ≡ Trbath{BI(t)BI(t′)ρbath}. The time evolution of the system
operators can be written explicitly by expanding the operators in the energy
eigenbasis of the system Hamiltonian as

AI(t) = ∑
m,n

eiωmt |m〉 〈m| A |n〉 〈 n| e−iωnt = ∑
m,n

Amn |m〉 〈 n| eiωmnt ≡ ∑
m,n

Ãmneiωmnt,

(3.13)
where Hsys |m〉 = ωm |m〉 and ωmn = ωm − ωn. We have also defined the tilde
operators Ãmn = Amn |m〉 〈 n| to keep the notations simple in the following
equations. With this form of the system operators, one can get the master equation
as

ρ̇I
sys(t) = ∑

m,n
∑

m′,n′
Γmnei(ωm′n′−ωmn)t

{
Ã†

mnρI
sys(t)Ãm′n′ − Ãm′n′ Ã†

mnρI
sys(t)

}
+ h.c.,

(3.14)
where we have defined

Γmn =
∫ ∞

0
ds 〈BI(t)BI(t− s)〉 eiωmns. (3.15)

Assuming the bath to be in its stationary state with [Hbath, ρbath] = 0, we can show
that the bath correlators 〈BI(t)BI(t− s)〉 depend only on the time difference s
and not on the time t itself [104] . Thus, we have

Γmn =
∫ ∞

0
ds 〈BI(s)BI(0)〉 eiωmns. (3.16)
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Now we come to the next set of approximations, that is either called the secular
approximation [106] or the rotating wave approximation [104, 105]. In this, we
discard the fast rotating terms in the sum (i.e.) all the terms except those that
have ωmn −ωm′n′ = 0, as they average out to zero on the time scales that we are
interested in. In our case, this condition can be met for two cases: either m = m′

and n = n′ or m = n and m′ = n′. Keeping only these terms, we get,

ρ̇I
sys(t) = ∑

m,n
Γmn

{
Ã†

mnρI
sys(t)Ãmn − Ãmn Ã†

mnρI
sys(t)

}

+ ∑
m,n

Γmm

{
Ã†

mmρI
sys(t)Ãnn − Ãnn Ã†

mmρI
sys(t)

}
+ h.c. (3.17)

Substituting Γmn = 1
2 γmn + iSmn and noting that Γmm is independent of the energy

levels (as ωmm = 0), we get

ρ̇I
sys(t) = ∑

mn

(
γmn

(
Ã†

mnρI
sys(t)Ãmn −

1
2

{
Ãmn Ã†

mn, ρI
sys(t)

})

− iSmn

[
Ãmn Ã†

mn, ρI
sys(t)

]

+ γmm

(
Ã†

mmρI
sys(t)Ãnn −

1
2

{
Ãnn Ã†

mm, ρI
sys(t)

})

− iSmm

[
Ãnn Ã†

mm, ρI
sys(t)

])
. (3.18)

The above can be written more succinctly by defining a Hamiltonian

HLS ≡∑
mn

(Smn Ãmn Ã†
mn + Smm Ãnn Ã†

mm)

= ∑
mn

Smn|Amn|2 |m〉 〈m|+ ∑
m

Smm|Amm|2 |m〉 〈m| (3.19)

and a dissipation super-operator

DρI
sys(t) ≡ ∑

mn
γmn

(
Ã†

mnρI
sys(t)Ãmn −

1
2

{
Ãmn Ã†

mn, ρI
sys(t)

})

+ ∑
mn

γmm

(
Ã†

mmρI
sys(t)Ãnn −

1
2

{
Ãnn Ã†

mm, ρI
sys(t)

})
. (3.20)

The master equation then becomes

ρ̇I
sys(t) = −i[HLS, ρI

sys(t)] +DρI
sys(t). (3.21)
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The Hamiltonian HLS leads to a renormalization of the system eigenfrequencies
and is usually referred to as Lamb shift. As it commutes with Hsys, it can be
added to the same but it is usually neglected as it only leads to a small shift of
eigenenergies. Going back to the system’s frame from the interaction picture, we
get

ρ̇sys(t) = −i[Hsys, ρsys(t)] +Dρsys(t), (3.22)

where the first term is the same as that from the Liouville equation for the system
alone. The second term leads to an irreversible decay of the initial state of the
system and hence the name dissipator. By explicitly writing the frequencies
involved in the γ terms, we see that

γmn = Γmn + Γ∗mn =
∫ ∞

−∞

〈
B†

I (s)BI(0)
〉

eiωmns (3.23)

and
γmm =

∫ ∞

−∞

〈
B†

I (s)BI(0)
〉

ei0s (3.24)

are nothing but the power spectral density of the bath at the frequencies ωmn and
0 respectively (Wiener-Khinchin theorem) [107].

It is instructive to look at the master equation for a two-level system (2LS) in a
thermal bath as this is the most relevant case for this thesis. As the name suggests,
we have only two levels which we label the ground state |0〉 ≡ (1 0)T and the
excited state |1〉 ≡ (0 1)T. If this is an atomic system such as a transmon, the
higher transitions are neglected assuming they are well separated in frequency
from the lower transition and also assuming that we will not drive the system
strongly as that would lead to excitation of the higher levels. Thus we have
an effective two-level system which can be mapped to a spin-1

2 particle in a
magnetic field and we can write our system operators using the Pauli matrices.
The system Hamiltonian Hsys = −∆

2 σz, where ∆ = ω1 − ω0 is the transition
frequency between the ground and excited state. The interaction Hamiltonian
can be written as

Hint(t) = iAI(t)∑
k

gk

[
bk(t)− b†

k (t)
]

, (3.25)

where gk is the coupling between the kth mode of the bath and the system. For a
thermal bath in equilibrium at temperature T, we have the average number of
photons in mode k as (Planck distribution)

N(ωk) =
1

exp(βωk)− 1
(3.26)
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where β = 1/kBT. With this we have,
〈

B†
I (s)BI(0)

〉
= ∑

k
g2

k

(
N(ωk)eiωks +

[
1 + N(ωk)

]
e−iωks

)
. (3.27)

Going to the continuum limit by replacing ∑k in the above with
∫

dω J(ω), where
J(ω) is the density of states, it can be shown that

γmn = 2Real[Γmn] = γ0

{
1 + N(ωmn) for ωmn > 0
N(ωmn) for ωmn < 0

(3.28)

where γ0 = 2π J(|ωmn|)g(|ωmn|)2 is the rate of spontaneous decay. To get to the
above result, we have used the formula

∫ ∞

0
dseiωs = πδ(ω)− iP 1

ω
, (3.29)

where P is the Cauchy principal value.

The coupling of the bath to the system can be categorized into longitudinal (along
the direction of quantization) and transverse (perpendicular to the direction of
quantization). They lead to different kinds of decoherence of the system as we
will see below.

• Transverse coupling

Assuming the coupling of the bath to the qubit is along the x-direction, we have
the system part of the interaction Hamiltonian as AI(t) = σx(t) = σ+ei∆t +
σ−e−i∆t where σ− = |0〉 〈 1| and σ+ = σ†

−. This means only the off-diagonal
elements are non-zero and we have Ãmn = (1− δmn) |m〉 〈 n| where m, n ∈
{0, 1}. Combining this along with Eq. (3.20) and Eq. (3.28), we get

Dρ = γ0(N + 1)
(

σ−ρσ+ −
1
2
{σ+σ−, ρ}

)
+ γ0N

(
σ+ρσ− −

1
2
{σ−σ+, ρ}

)
,

(3.30)
where N ≡ N(ωmn), the average number of thermal photons in the bath with
frequency equal to the transition frequency ωmn = ∆. At T = 0, we have no
thermal photons in the bath on average i.e. N = 0 and this further reduces the
dissipator to a form that we write as

D
[√

Γσ−
]

ρ ≡ Γ
(

σ−ρσ+ −
1
2
{σ+σ−, ρ}

)
. (3.31)

The dissipators that we will use in the following sections and in the appended
papers are of this kind, as we will assume to work at 0 K. We have changed
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the notation of the relaxation rates to Γ = γ0 to be consistent with the attached
papers.

• Longitudinal coupling

For the coupling along the quantization axis, we have AI(t) = σz(t) =
|0〉 〈 0| eiω00t − |1〉 〈 1| eiω11t, where ω00 = ω11 = 0. We now only have the diag-
onal terms in the dissipator with Ãmn = (−1)mδmn |m〉 〈 n| where m, n ∈ {0, 1}.
Defining the pure dephasing rates 2Γφ = γ00 + γ11, we once again rewrite the
dissipator in the form

D
[√

Γφ

2
σz

]
ρ =

Γφ

2

(
σzρσz −

1
2
{σzσz, ρ}

)

=
Γφ

2
(σzρσz − ρ) . (3.32)

In general the master equation of the two level system coupled to a thermal bath
at 0 K can be written as,

ρ̇ = −i[−∆
2

σz, ρ] +D [L] ρ +D
[
Lφ

]
ρ, (3.33)

where we have defined the so called Lindblad operators L =
√

Γσ− and Lφ =√
Γφ

2 σz. The first term on the RHS gives a Liouvillian evolution of the system
under its own Hamiltonian. The second term leads not only to the decay of excited
state population (relaxation) but also to decay of the off-diagonal elements of the
density matrix (dephasing). The third term affects only the off-diagonal elements
(and hence the rate is called pure dephasing). We can see this from the solution
of the above master equation which starting from a density matrix ρ(0) at t = 0,
is given as

ρ(t) =
(

1− ρ11(0)e−Γt ρ01(0)ei∆te−γt

ρ10(0)e−i∆te−γt ρ11(0)e−Γt

)
, (3.34)

where γ = Γ/2 + Γφ is called the total decoherence rate. At this point we note
that in the appended papers, we use a shorthand notation for the master equation
by defining a Liouvillian superoperator L such that

ρ̇ = Lρ. (3.35)
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3.2 Input and Output

The master equation presented in the previous section describes the evolution of
an open quantum system such as a transmon coupled to a transmission line. To
learn about the properties of the transmon or to manipulate the qubit, we scatter
microwave photons on it and measure the output radiation. Alternatively, we
might also be interested in the effect of the transmon on the microwave photons.
For all of these reasons, we use the input-output theory that gives the relationship
between the incoming and the scattered field. We will review the derivation of
this relation based on the reference [108].

We once again begin with the total Hamiltonian of our system coupled to a bath
as

H = Hsys + Hbath + Hint (3.36)

Hbath =
∫ ∞

0
dωωb†

ωbω (3.37)

Hint = i
∫ ∞

0
dωg(ω)

(
b†

ωa− a†bω

)
(3.38)

where a is a system operator and g(ω) is the coupling strength between the
bath and the system. The bath operators obey the usual commutation relation
[bω, b†

ω′ ] = δ(ω −ω′). The interaction Hamiltonian is written after the rotating
wave approximation (RWA), which is valid in the weak coupling regimes that
we consider. As a next step, we extend the lower limits in the integrals of Hbath
and Hint to −∞. This approximation is valid if the operators a are off-diagonal
in the eigenbasis of Hsys and evolve as a(t) = a exp(iωst). Then the terms in the
integrals that are far off-resonance from ωs are negligibly small. In this thesis,
we assume that we have interactions of the above type. For example, for a qubit
coupled to a transmission line with Hsys = − 1

2 ωqbσz, we consider only the dipole
coupling to the transmission line. This means the interaction term involves only
the off-diagonal σx = σ− + σ+ operator as mentioned in the previous section. We
also assume that the coupling is slowly varying around the system frequency ωs.
This lets us to approximate g(ω) =

√
Γ/2π.

With these we have the Hamiltonians as

Hbath =
∫ ∞

−∞
dωωb†

ωbω, (3.39)

Hint = i

√
Γ

2π

∫ ∞

−∞
dω
(

b†
ωa− a†bω

)
. (3.40)



34 Open quantum systems

Using these Hamiltonians, we can write down the Heisenberg’s equations of
motion

ḃω = −iωbω +

√
Γ

2π
a, (3.41)

Ẋ = i[Hsys, X]−
√

Γ
2π

∫ ∞

−∞
dω
(

b†
ω[a, X]− [a†, X]bω

)
, (3.42)

where X is an arbitrary system operator. Solving Eq. (3.41) with initial condition
at t0 < t, we get

bω(t) = e−iω(t−t0)bω(t0) +

√
Γ

2π

∫ t

t0

dt′eiω(t′−t)a(t′), (3.43)

where bω(t0) is the state of the field at t0. Substituting the solution in Eq. (3.42)
and defining

bin(t) =
1√
2π

∫ ∞

−∞
dωe−iω(t−t0)bω(t0) (3.44)

we get

Ẋ(t) = i[Hsys, X(t)]−
(√

Γb†
in(t) +

Γ
2

a†(t)
)
[a(t), X(t)]

+

(√
Γbin(t) +

Γ
2

a(t)
)
[a†(t), X(t)]. (3.45)

The above equation is known as the quantum Langevin equation. We inter-
pret bin(t) as the input field that interacts with our system at time t. From the
commutation relation of the bath operators, we see that [bin(t), b†

in(t
′)] = δ(t− t′).

Solving Eq. (3.41) with a final condition at a later time t1 > t, we get

bω(t) = e−iω(t−t1)bω(t1)−
√

Γ
2π

∫ t1

t
dt′eiω(t′−t)a(t′), (3.46)

where bω(t1) is the state of the field at t1. Defining the output field as

bout(t) =
1√
2π

∫ ∞

−∞
dωe−iω(t−t1)bω(t1) (3.47)

and substituting the above solution in Eq. (3.42), we get

Ẋ(t) = i[Hsys, X(t)]−
(√

Γb†
out(t)−

Γ
2

a†(t)
)
[a(t), X(t)]

+

(√
Γbout(t)−

Γ
2

a(t)
)
[a†(t), X(t)]. (3.48)
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We interpret bout(t) as the output field that leaves the system at time t. Comparing
Eq. (3.45) and Eq. (3.48), we have

bout(t) = bin(t) +
√

Γa(t), (3.49)

which gives us the relation between the input and output. By solving the system
dynamics for a(t) and by specifying an input field, we can calculate the output
field. For a qubit that is driven by a coherent field, we can write the coherent
output field as

αout(t) = αin(t) +
√

Γ 〈σ−(t)〉 , (3.50)

where αin/out(t) = 〈bin/out(t)〉 is the complex amplitude of the coherent in-
put/output fields and 〈σ−(t)〉 = Tr[σ−ρsys(t)]. In this case, we have assumed
that the atom is connected to the bath or environment through a single port. This
situation corresponds to having an atom in front of a mirror. In superconducting
circuits, this means we have an artificial atom at the end of a semi-infinite trans-
mission line. The above input-output relations can be extended to the situation
where we have a system coupled to an open 1-D transmission line as

bL
out(t) = bL

in(t) +

√
Γ
2

a(t), (3.51)

bR
out(t) = bR

in(t) +

√
Γ
2

a(t), (3.52)

where bL/R
in/out are the left and right moving input/output fields. We have kept the

total decay rate of the system at Γ. Driving a two-level atom only from the left
with a coherent field of amplitude αin, now gives the coherent outputs as

αL
out(t) = αin(t) +

√
Γ
2
〈σ−(t)〉 , (3.53)

αR
out(t) =

√
Γ
2
〈σ−(t)〉 . (3.54)

In this case, αL
out(t) is the transmitted field and αR

out(t) is the reflected field. Most
often, we are interested in the steady-state or the stationary outputs. In this case,
one can drop the time arguments in the above equations and the atomic term
becomes 〈σ−〉ss = Tr[σ−ρss], where ρss is the steady state solution of the master
equation. In such a situation, we can define the reflection and transmission
coefficients as r = αR

out/αin and t = αL
out/αin = 1 + r.
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3.3 Coherence functions

As the input-output relations give us the total output field, we can also calculate
coherence functions of the output field. Also known as correlation functions, they
tell us about the statistics of the outcoming radiation.

The first order correlation function of the output field is defined as

G(1)(t1, t2) =
〈

b†
out(t1)bout(t2)

〉
, (3.55)

which is usually given normalized as

g(1)(t1, t2) =

〈
b†

out(t1)bout(t2)
〉

√〈
b†

out(t1)bout(t1)
〉 〈

b†
out(t2)bout(t2)

〉 . (3.56)

In the case of stationary fields, the above correlation depends only on the time
difference t1 − t2 = τ as

g(1)(τ) =
〈
b†

out(t)bout(t + τ)
〉

〈
b†

out(t)bout(t)
〉 . (3.57)

These correlation functions can be calculated using [105]
〈

b†
out(t1)bout(t2)

〉
= Tr

[
b†

outP(t1, t2)
{

boutρ(t2)
}]

for t1 > t2, (3.58)
〈

b†
out(t1)bout(t2)

〉
= Tr

[
boutP(t2, t1)

{
ρ(t2)b†

out
}]

for t2 > t1, (3.59)

where the propagator P(t, t′) evolves everything on its right from time t′ to t.
As we require this to be true for the density matrix as well, we have ρ(t) =
P(t, t′)ρ(t′). Differentiating this with respect to t, and using the master equation
ρ̇(t) = L(t)ρ(t), we end up with a differential equation for the propagator
Ṗ(t, t′) = L(t)P(t, t′) with the initial condition P(t′, t′) = 1 [30]. From the
solution of this differential equation, we can calculate the correlation function as
above.

The first order correlation function is an amplitude-amplitude correlation func-
tion and can be measured using a Mach–Zehnder interferometer [109]. The
normalized first order correlation, also known as degree of first order coherence,
has values such that 0 ≤ |g(1)(t1, t2)| ≤ 1. The value of 1 corresponds to a fully
first-order coherent light and the value 0 means that the radiation is incoherent.
Both quantum and classical fields satisfy these limits.
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A more interesting quantity is the second order correlation function, which is
an intensity-intensity correlation that is measured using a Hanbury Brown and
Twiss interferometer [109]. It is defined as

G(2)(t1, t2) =
〈

b†
out(t2)b†

out(t1)bout(t1)bout(t2)
〉

, (3.60)

and is normalized as

g(2)(t1, t2) =

〈
b†

out(t2)b†
out(t1)bout(t1)bout(t2)

〉
〈
b†

out(t1)bout(t1)
〉 〈

b†
out(t2)bout(t2)

〉 . (3.61)

In the case of stationary fields, the above correlation once again depends only on
the time difference t1 − t2 = τ as

g(2)(τ) =
〈
b†

out(t)b†
out(t + τ)bout(t + τ)bout(t)

〉
〈
b†

out(t)bout(t)
〉2 . (3.62)

The numerator can be calculated as [105],
〈

b†
out(t2)b†

out(t1)bout(t1)bout(t2)
〉
= Tr

[
b†

outboutP(t1, t2)
{

boutρ(t2)b†
out
}]

. (3.63)

The second order correlation function is used to determine if the radiation
is "nonclassical". Using a classical theory, the lower limit for g(2)(0) is 1 and
g(2)(τ) ≤ g(2)(0). However, in the quantum version both of these conditions
can be violated and we can have 0 ≤ g(2)(0) ≤ 1. Any output radiation that
leads to g(2)(0) < 1 is said to have sub-Poissonian statistics and radiations with
g(2)(τ) > g(2)(0) are called antibunched [110].

The g(2)(τ) can be thought of as the conditional probability for detecting a photon
at time τ if a photon was detected at time t. The output field from an ideal single
photon source has g(2)(0) = 0. However g(2)(0) = 0 alone may not be a full
measure of the efficiency of a single photon source as it only means that there are
no more than 1 photon at the same time in the output. Consider for example a
qubit coupled to an open transmission line driven by a coherent field αin from the
left. The reflected field (as in Eq. (3.54) but without the average) has g(2)(0) = 0.
However, as shown in [30], the probability to have a single photon in the reflected
field by exciting the qubit with a π-pulse has a maximum of 50%. This is because
the qubit can equally radiate in the left and right moving fields and does this
with 50 % probability. Thus, to calculate the full efficiency of the source we have
to calculate the probability distribution for the number of photons in the output
field, which can be done also using the correlation functions.
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Moving from the first and second order coherence functions, we define a general
mth order correlation function as

G(m)(t1, t2, ..., tm) =
〈

b†
out(t1)b†

out(t2)...b†
out(tm)bout(tm)...bout(t2)bout(t1)

〉

= Tr

[
boutP(tm, tm−1)

{
...P(t3, t2)

{
boutP(t2, t1)

{
boutρ(t1)b†

out
}

b†
out

}
...
}

b†
out

]
,

(3.64)

where the propagators act on the braces immediately on their right. From the mth

order correlation function, we can calculate photon m-tiples and the probability
to have m photons in the output as outlined in reference [30].

3.4 Master equation for Fock state input

As mentioned in the introduction, recent progress in quantum optics and quan-
tum information depend on manipulation of single photons. Such a single photon
state in a continuous mode is given by [109]

∣∣1ξ

〉
=
∫

dωξ̃(ω)b†(ω) |0〉 , (3.65)

where ξ̃(ω) is the spectral density function (SDF) or the wave packet in frequency
space. The Fourier transform of the SDF gives a wave packet in the time domain
ξ(t), which satisfies the normalization condition

∫
dt|ξ(t)|2 = 1. We can then

define a photon wave packet creation operator

a†
ξ =

∫
dtξ(t)a†(t) (3.66)

such that
∣∣1ξ

〉
= a†

ξ |0〉. Any arbitrary number state
∣∣Nξ

〉
can be created by

applying the operator N times on the vacuum state and taking care of the nor-
malization.

We would like to describe the evolution of a system driven by such a single
photon Fock state. The absorption of the single photon by the system leaves
the field in an entirely different state as opposed to the case for a coherent field.
As the single photon starts interacting with the system, it also gets entangled
with the same. Unlike in the derivation of the master equation, one has to keep
track of all of the system-field correlations [111]. To address this issue, one can
take two approaches. In the first one, we can include the source of the photons
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(usually a cavity) in our picture, and use the Markovian master equations. The
other approach is to derive master equations explicitly considering Fock state
inputs. The second approach previously calculated by different authors for
specific scenarios [112–114], was unified and extended to a general situation
in reference [115]. We will briefly describe the formalism here and refer to the
original paper for more details.

Consider a system interacting with a input field in state
∣∣Nξ

〉
. As before, we

assume that initially at time t = 0, the system and the field are uncorrelated and
can be represented as a product state

ρ(0) = ρsys ⊗
∣∣Nξ

〉 〈
Nξ

∣∣ . (3.67)

The evolution of the system is then given by the time evolution of the asymmetric
reduced density matrices defined as

ρm,n(t) ≡ Trfield

[
U(t)(ρsys ⊗

∣∣mξ

〉 〈
nξ

∣∣)U†(t)
]
, (3.68)

where m, n label the Fock subspaces that run from 0 to N. The time evolution
of the total state is given by the unitary operator U(t). The master equation for
these reduced density matrices is then shown to be

ρ̇m,n = −i[H, ρm,n] +D [L] ρm,n +
√

mξ(t)[ρm−1,n, L†] +
√

nξ∗(t)[L, ρm,n−1],
(3.69)

with the initial condition ρm,n(0) = ρsys(0)δmn. The first term in the above
equation gives the evolution of the system under the Hamiltonian H. The second
term leads to dissipation due to the presence of the environment. These two terms
are very similar to that of the master equation derived in the previous sections.
The last two terms describe the coupling of the single photon to the system
and contribute whenever ξ(t) 6= 0 (i.e.) when the N-photon wave packet starts
interacting with the system. As can be seen from the equation, these coupling
terms however involve the reduced density matrix of lower-levels. Thus we
have to solve a (thankfully finite) set of (N + 1)2 master equations, that couple
downwards from ρN,N to ρ0,0. Using the fact that the total density matrix has to
be Hermitian, which leads us to the conclusion ρn,m = ρ†

m,n, we can reduce the
number of equations to be solved to 1

2 (N + 1)(N + 2).

It is also interesting to look at the output field quantities - the mean photon flux
and the integrated photon flux. Here too we get a system of coupled equations.
The mean photon flux is given by

fout(t) = Em,n[L†L] +
√

mξ∗(t)Em−1,n[L] +
√

nξ(t)Em,n−1[L†] +
√

mn|ξ(t)|2,
(3.70)
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Figure 3.1: (a) Gaussian wave packets of different width given by Γph. (b) Integrated
photon flux (Ftr) in the transmitted field for these different wave packets.

where Em,n[O] ≡ Tr[ρ†
m,nO]. The integrated flux output till time t is F(t) =∫ t

0 fout(t′)dt′.

3.4.1 Example: Scattering of a two photon wave packet on a two level
system

As an example, let us consider scattering a two photon state on a two level system
coupled to an open transmission line. The Fock state is enclosed in a Gaussian
wave packet given by

ξ(t) =

(
Γ2

ph

2π

)1/4

exp

(
−

Γ2
ph(t− Tph)

2

4

)
, (3.71)

where Γph is the width of the wave packet and Tph is the time of arrival of the
peak of the wave packet at the two level system. The Fock state master equations
in this case are

ρ̇m,n = − i[−∆
2

σz, ρm,n] + ΓqbD [σ−] ρm,n

+
√

m

√
Γqb

2
ξ(t)[ρm−1,n, σ+] +

√
n

√
Γqb

2
ξ(t)[σ−, ρm,n−1], (3.72)
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where ∆ is the energy difference between the ground and excited state of the
qubit, Γqb is the coupling rate of the qubit to the transmission line. The indices
m, n ∈ {0, 1, 2}. We numerically solve these coupled equation for three different
widths of the wave packet and show the result in Fig. 3.1. The first panel shows
the input photon wave packets with Tph = 15. The second panel shows the
integrated flux in the transmitted field. As can be seen from the figure, a wider
pulse in time is mostly reflected by the qubit. As the wave packets become
sharper in time, they become broader in frequency and are not close to resonance
of the transition. Also as the pulse contains more than 1 photon, the qubit gets
saturated quickly. So we see most of the field getting transmitted.





(possibly written between 4th to 1st BCE [116])

In everything of every kind whatsoever,
Wisdom perceives Truth in that thing.

Thirukkural - 355
(English Translation - Himalayan Academy [117])

4
Measurement

In the previous chapter, we studied the evolution of a quantum system in the
presence of an environment. In this regard, we started from a unitary evolution
given by the quantum Liouville equation. A quantum system can also undergo a
different kind of evolution - the one under measurement. Consider a quantum
state |ψ〉, say that of a quantum harmonic oscillator. We would like to measure
the number of excitations in the oscillator. As per the postulates of quantum
mechanics, such an observable is represented by a Hermitian operator, say N,
with eigenstates |n〉 which form a complete orthonormal basis in the system
Hilbert space 1. In this basis, we can expand |ψ〉 to ∑n cn |n〉, where cn = 〈n|ψ〉.
As introduced in the elementary quantum mechanics courses, the effect of a mea-
surement is to "collapse" the above state into an eigenstate of the corresponding
measurement operator, N in our example. Suppose the measurement result is
n, then the state after measurement is |ψ′〉 = |n〉 = 1

cn
|n〉 〈n|ψ〉. Starting with

a density matrix ρ, which can now also include mixed states, the state after the
measurement is

ρ′ =
ΠnρΠn

Tr (ΠnρΠn)
, (4.1)

1We assume a non-degenerate spectrum for simplicity.
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where Πn = |n〉 〈 n| is known as the projection operator. The above collapse
model is known as the von Neumann projection postulate [104]. We note that the
projectors obey Π†

n′Πn = δnn′Πn and ∑n Π†
nΠn = 1.

As introduced above, measurements cause instantaneous non-unitary evolution
of the system. In experiments however, measurements take time during which the
system can also evolve according to some unitary dynamics. In some cases, for
example to do feedback, a continuous monitoring of the system is required. We
would also like to have the back action of the measurement on the system as small
as possible. All of this is possible by coupling a second quantum system, called
probe to our original system of interest and then performing a measurement on
the probe [118]. In circuit QED and other setups, the state of a qubit is read by
scattering photons on the qubit and then measuring the photons, which act as the
probe system. The aim of paper II is to build a photon detector, i.e to measure the
state of the control field to see if it contains either 0 or 1 photon. To achieve this,
we use a coherent field as a probe and measure the scattered field continuously
using a homodyne detector. The interaction between the control and probe fields
is mediated by a three-level atom. For this, we require a description of continuous
measurement of probe quantum systems. We will look at this problem in this
chapter.

Before starting with the full development of master equations under measure-
ment, we will look at a simple example to explain a few salient points. Let us
take a qubit in state |ψ〉 = α |0〉+ β |1〉 as our system, with |α|2 + |β|2 = 1. The
simplest probe is another qubit which we initialize in the state |0〉. The system
and probe now evolve by some unitary dynamics. We take as an example the
unitary operator [119],

UCNOT(θ) = exp(−iθUCNOT) = cos θ 1− i sin θ UCNOT (4.2)

where UCNOT = |0〉 〈 0| ⊗ 1 + |1〉 〈 1| ⊗ σx. UCNOT is the CNOT gate that flips the
state of the probe qubit if the system qubit is in state |1〉. After the interaction, we
have the total state of the system and probe as

|ψ〉tot = cos θ (α |00〉+ β |10〉)− i sin θ (α |00〉+ β |11〉) . (4.3)

Having θ = π/2, gives a fully entangled state (neglecting the global phase)
|ψ〉tot = α |00〉+ β |11〉. In such a case, measuring the probe (in the σz basis) as |0〉
or |1〉 fully projects the system to the corresponding state. Such a measurement is
then termed as a "strong" measurement and we have full information about the
state of the system after measurement. Instead let us suppose θ � 1. Expanding
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the state in Eq. (4.3) for small θ, we have

|ψ〉tot ≈
1√

1 + θ2
[α(1− iθ) |00〉+ β |10〉 − iθβ |11〉] . (4.4)

Measuring the probe in the σz basis now give the following outcomes. If we
measure the probe to be in state |0〉, the system is in state

∣∣ψ′
〉

0 =
α(1− iθ) |0〉+ β |1〉√
|α(1− iθ)|2 + |β|2

. (4.5)

This measurement result occurs with probability p0 = (|α(1− iθ)|2 + |β|2)/(1 +
θ2) (close to 1). Instead if we measure the probe to be in state |1〉, the system is in
state

∣∣ψ′
〉

1 = |1〉 . (4.6)

The above result occurs with probability p1 = |β|2θ2/(1 + θ2). Thus in this case
we see that, while most of the time there is very little information gained about
the system (i.e. when we measure the probe to be in state |0〉), every now and
then there is a "jump" with a small probability during which the system collapses
to state |1〉.
Instead if we choose to measure the probe in the σx basis, we get the following
states for the system qubit

∣∣ψ′
〉
+
= α |0〉+ β |1〉 (4.7)

∣∣ψ′
〉
− = α |0〉+ βe2iφ |1〉 , φ = arctan(θ) (4.8)

for the measurement results +/−, which occur with equal probabilities. This
measurement however does not give any information about the state of the
system, but gives a phase kick to the system depending on the results. The
above kind of measurements where the information gain about the system and
corresponding backaction is small are known as weak measurements [119]. In the
above examples, θ can be thought of as the parameter that quantifies the strength
of the measurement. It could be a function of parameters such as the strength
of the coupling between the system and the probe and the time period during
which the system and the probe were coupled.

Moving from these examples, let us proceed to describe these indirect measure-
ments in general, following references [104] and [120]. Consider that we would
like to measure a quantum system in the state ρsys. We couple a probe in the
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initial state |ψ〉 to the system and let them evolve under a unitary U for time t.
The total state at time t is

ρtot(t) = U(t)
(
ρsys(0)⊗ |ψ〉 〈ψ|

)
U†(t), (4.9)

where ρsys(0) is the initial state of the system and we use the shorthand U(t) for
U(t, 0). We then perform a projective measurement on the probe. Assume that
we find that the probe is in state |i〉. The system is then in the state

ρsys,i(t) =
1
pi
〈 i|U(t)

(
ρsys(0)⊗ |ψ〉p 〈ψ|p

)
U†(t) |i〉

≡ 1
pi

Ωi(t)ρsys(0)Ω†
i (t) (4.10)

where we have defined the measurement operators Ωi(t) = 〈 i|U(t) |ψ〉 and
the probabilities pi =

〈
Ω†

i (t)Ωi(t)
〉
= Tr[Ωi(t)ρsys(0)Ω†

i (t)]. As opposed to
projection operators, we can see from the definition that Ω†

i Ωj 6= δijΩi. However,
we still have ∑i Ω†

i Ωi = 1, which ensures that the probabilities sum to 1. If we
ignore the measurement results, we get the unconditional system state [118]

ρuc
sys = ∑

i
Ωi(t)ρsys(0)Ω†

i (t) (4.11)

which is usually a mixed state. This state would be the same as the one obeying
the unconditional master equations similar to those described in the previous
chapter. Thus, we have a connection between open quantum systems and mea-
surement.

Our aim now is to get a differential equation for the state of the system while we
continuously measure the probe. This can be derived using Eq. (4.10) for short
time scales dt as

ρsys,i(t + dt) =
1
pi

Ωi(dt)ρsys(t)Ω†
i (dt). (4.12)

Due to the probabilistic nature of the measurement (and the corresponding back
action), this differential equation will be stochastic in nature. As one can imagine,
the equations also depend on the type of measurement that is performed. In the
microwave domain, and thus also in the appended papers, the measurement of
choice and necessity is the homodyne detection. A homodyne detector is usually
modeled using two photodetectors as will be shown in the following section
(Fig. 4.3). Thus, we will start with the problem of getting a stochastic master
equation for a system under photodetection and then proceed to homodyne
detection. In either of these cases we will only outline the derivation and refer
the reader to other sources for detailed calculations.



4.1 Photon detection 47

4.1 Photon detection

Let us start with a physical model similar to those considered in the previous
chapter - a qubit coupled to a bath of harmonic oscillators. We then follow
references [104, 120] to derive a stochastic master equation. The Hamiltonian of
the total system is

H = Hsys + Hbath + Hint, (4.13)

where we have

Hsys =
1
2

ωqbσz, (4.14)

Hbath = ∑
k

ωkb†
k bk, (4.15)

Hint = ∑
k

gk

(
bk + b†

k

)
σx + Hdrive, (4.16)

where gk is the coupling strength of the qubit to the mode k. The Hamiltonian
Hdrive contains other qubit only terms such as a Rabi drive of the form ΩRσx.
Going to the rotating frame with R = exp

(
i ∑k ωkb†

k bkt− 1
2 iωqbσzt

)
, we have

the total Hamiltonian after neglecting the fast rotating terms (rotating wave
approximation) as

H̃ = σ+B(t) + σ−B†(t) + H̃drive, (4.17)

where we have defined B(t) = ∑k gkbke−i(ωk−ωqb)t for brevity. Considering small
time step dt, the unitary operator to second order is

U(dt) ≡ U(t + dt, t) ≈ 1− i
∫ t+dt

t
dt1H̃(t1)−

∫ t+dt

t
dt1

∫ t1

t
dt2H̃(t1)H̃(t2).

(4.18)
Measuring the bath in the Fock basis gives the following measurement operators

Ω0(dt) = 〈 0|U(t + dt, t) |0〉 = 1− iH̃drivedt− g0σ+σ− (4.19)
Ω1,k(dt) = 〈 1k|U(t + dt, t) |0〉 = fkσ− (4.20)

with the corresponding probabilities pi = 〈Ω†
i Ωi〉. The operator Ω1,k corresponds

to measuring a photon in mode k while Ω0 corresponds to the measurement
result of not detecting any photon in any of the modes k. The parameters fk and
g0 are the integrals defined as

g0 =
∫ t+dt

t
dt1

∫ t1

t
dt2 ∑

k
g2

ke−i(ωk−ωqb)(t1−t2), (4.21)

fk = −i
∫ t+dt

t
dt1gkei(ωk−ωqb)t1 . (4.22)
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From ρ1,k(t + dt, t) = Ω1,kρ(t)Ω†
1,k/

〈
Ω1,kΩ†

1,k

〉
, we see that the normalized con-

ditioned state for photon detection doesn’t depend on fk. Thus we can treat
detection in any mode k as equivalent for the dynamics of the system. A photon
detection in any mode k happens with the probability, p1 = ∑k

〈
Ω1,kΩ†

1,k

〉
=

∑k | fk|2〈σ+σ−〉. Furthermore, it can be shown that ∑k | fk|2 = Γdt and g0 = 1
2 Γdt,

where Γ is the decay rate of the qubit [104, 120]. Using all of these, the qubit states
conditioned on the measurement results can be written as

ρ0(t + dt) =
1
p0

Ω0ρ(t)Ω†
0

=
1
p0

(
ρ(t)− i[H̃drive, ρ(t)]dt− 1

2
Γ{σ+σ−, ρ(t)}dt

)

= ρ(t)− i[H̃drive, ρ(t)]dt− 1
2

Γ{σ+σ−, ρ(t)}dt + Γ〈σ+σ−〉ρ(t)dt,

(4.23)

ρ1(t + dt) =
1
p1

Ω1ρ(t)Ω†
1

=
σ−ρ(t)σ+
〈σ+σ−〉

, (4.24)

where we have only kept the terms to first order in dt. The above equations can
be combined into a single master equation by defining a measurement record
N(t) that counts the number of photons detected over time. The corresponding
increment dN(t) = N(t + dt)− N(t) has the properties dN2(t) = dN(t) (i.e. we
detect only 0 or 1 photons in the time interval dt) and E[dN(t)] = Γ〈σ+σ−〉dt,
where E[·] is the classical average. With this the evolution of the qubit can be
written as

dρ = −i[H̃drive, ρ]dt− 1
2

Γ{σ+σ−, ρ}dt + Γ〈σ+σ−〉ρdt +
(

σ−ρσ+
〈σ+σ−〉

− ρ

)
dN(t).

(4.25)

This is the stochastic master equation (SME) that we were after. The solution of
the above equation is called a quantum trajectory, which gives the path taken by
the system under measurement [118]. Averaging over several trajectories (ideally
infinitely many) gives back the evolution described by the unconditional master
equation similar to the ones discussed in the previous chapter. In deriving the
above SME, we assumed that all the photons in the bath were detected. In case of
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Figure 4.1: Probability of excitation Pexc of a qubit under direct photon detection as a
function of time, for n trajectories. The qubit is initially in the excited state. The solid
red lines are the averages over n trajectories En[Pexc]. The dashed lines correspond to the
average evolution from the unconditional master equation. We see from the individual
trajectories (orange traces) that the qubit stays in the excited state until a jump takes it to
the ground state.

inefficient detection, the SME is modified to be [118]

dρ = −i[H̃drive, ρ]dt− 1
2

ηΓ{σ+σ−, ρ}dt + ηΓ〈σ+σ−〉ρdt + (1− η)ΓD [σ−] ρdt

+

(
σ−ρσ+
〈σ+σ−〉

− ρ

)
dN(t) (4.26)

with E[dN(t)] = ηΓ〈σ+σ−〉dt and 0 ≤ η ≤ 1 is the detection efficiency. In figures
4.1 and 4.2, we show simulation results based on the above SME for a qubit
initially in state |1〉 and state 1√

2
(|0〉+ |1〉). The simulations were performed

using QuTip [121]. While the unconditional dynamics look similar in both the
cases (exponential decay), we can see qualitative differences in the individual
trajectories. In the case where we know that the atom is in the excited state with
100% probability, a change in the quantum state does not happen unless there is
a photodetection. However, if we have a superposition of |0〉 and |1〉 and don’t
detect a photon for a long time, this would imply that the qubit was more likely
to have been in the ground state. Thus, not detecting a photon is also a signal
and the state of the qubit is updated based on this measurement result [122].
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Figure 4.2: Probability of excitation Pexc of a qubit under direct photon detection as a
function of time, for n trajectories.. The qubit is initially in an equal superposition of
ground and excited state. The solid red lines are the averages over n trajectories En[Pexc].
The dashed lines are the average evolution from the unconditional master equation. We
see from the individual trajectories (orange traces) that even in the absence of any jump
the state of the qubit decays.

4.2 Homodyne detection

Now that we have looked at the evolution of a qubit under photon detection, let
us move towards homodyne detection. A schematic setup for the same is shown
in Fig. 4.3. In this setup, the output field from the system, a is mixed with a strong
coherent field β (in mode b) from a local oscillator (LO) using a beam splitter. We
will consider a 50:50 beam splitter (balanced homodyne detection) including a
π/2 phase shift for the reflected field. The output fields from such a beam splitter
is given by (

c
d

)
=

1√
2

(
1 i
i 1

)(
a
b

)
. (4.27)

Detectors D1 and D2, measure the photocurrent in the fields output from the
beam splitter, c and d. The difference in the measured photocurrents gives the
homodyne current j(t).

As in the previous section, we start with the Hamiltonian in the rotating frame
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Figure 4.3: A schematic setup of homodyne detection. We are interested in measuring
the output from the system, a. This field is mixed with a very (ideally infinitely) strong
coherent field β from the local oscillator at a beam splitter. The output fields from the beam
splitter are measured by the photodetectors D1 and D2. The difference in the measured
photocurrents gives the homodyne current j(t).

that now includes the local oscillator field as

H̃ = σ−A†(t) + σ+A(t) + βB†(t) + β∗B(t) + H̃drive, (4.28)

where we have defined A(t) = ∑k gkake−i(ωk−ωqb)t and B(t) = ∑k gkbke−i(ωk−ωqb)t

similar to previous section. From the second order perturbation theory, we can
write the unitary operator U(t + dt, t) also as before.

The detectors D1 and D2 lead to three measurement outcomes - no photon de-
tected (corresponding to Ω0) and a single photon detected in either of the detector
(corresponding to Ω1,c/d). The detectors measure modes c and d which are linear
combinations of the modes a and b according to the beam splitter equation above.
Defining two measurement records N1/2(t) for the two detectors along with their
corresponding increments, one can arrive at an SME for the evolution of the qubit
state. Taking the limit |β| → ∞, the SME for homodyne detection can be shown
to be of the form [118, 120]

dρ = −i[H̃drive, ρ]dt + ΓD [σ−] ρdt +
√

ηΓM [σ−] ρ dW(t), (4.29)

where dW(t) is a Wiener increment with E[dW(t)] = 0 and E[dW(t)2] = dt. The
measurement super-operatorM [c] ρ ≡ (eiφcρ + e−iφρc†)−

〈
eiφc + e−iφc†〉 ρ and

0 ≤ η ≤ 1 is the measurement efficiency. In this limit, the homodyne current
becomes

j(t)dt =
√

ηΓ
〈

σ−e−iφ + σ+eiφ
〉

dt + dW(t). (4.30)
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Figure 4.4: Probability of excitation Pexc of a qubit under homodyne detection as a
function of time, for n trajectories. The qubit is initially in an equal superposition of
ground and excited state. The solid red lines are the averages over n trajectories En[Pexc].
The dashed lines are the average evolution from the unconditional master equation.
Individual trajectories are in orange.

The phase angle φ defines the quadrature of measurement. In particular, for the
above case, φ = 0 (usually called the in-phase component) gives information
about σx and φ = π/2 (known as the quadrature) is proportional to σy of the
qubit. From the above properties of the Wiener increment we see that taking the
classical expectation value of the whole equation just gives us back the master
equation as expected.

To compare with the results from direct photon detection, we show the trajectories
from homodyne detection in figures 4.4 and 4.5. The simulations were performed
using QuTip [121]. We take the qubit to be initially in an equal superposition of
|0〉 and |1〉. There is no external driving of the qubit and we will also assume no
pure dephasing. As compared to direct photon detection, we see no jumps in
the evolution and the state of the system follows a diffusive trajectory [123]. We
could also see what the measurement record itself would look like by plotting the
homodyne current. The results are shown for in-phase measurement (φ = 0). So,
we are just measuring the projection on the x-axis of the Bloch sphere as j(t)dt =√

Γ 〈σ− + σ+〉 dt + dW(t). As we can see from the figure, while the individual
measurements just look like noise, a clear pattern emerges after averaging over
several runs.
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Homodyne current j(t)
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Figure 4.5: Homodyne current j for n trajectories as a function of time. The qubit is
initially in an equal superposition of ground and excited state. The solid green lines are
the averages over n trajectories En[j]. The dashed lines are the average evolution from the
unconditional master equation. Individual trajectories are in cyan, which we don’t show
in (c) for clarity. We have taken φ = 0, which corresponds to measuring σx in this case.

In the absence of a photon detector at microwave frequencies, homodyne detec-
tors have been the go-to measurement setup for superconducting circuits. The
setup however is different from the above (due to the absence of photo-detectors)
which is just a theoretical model. In circuit QED experiments, the signal to be mea-
sured is mixed with a local oscillator signal and amplified using linear amplifiers.
These amplified signals are then down-converted to a DC signal and measured as
a voltage [124, 125]. Such detectors have been used in the experiments of papers
I, III and VI. In paper II, we use homodyne detectors as part of the proposal to do
single photon detection at microwave frequencies. Stochastic master equations
such as the above one play an important role in the analysis of the proposed
setup.

4.3 Quantum Nondemolition (QND) measurements

Quantum measurements as introduced in the first quantum mechanics courses
and textbooks are not only ideal projective measurements, they are also ideal
QND measurements. Take the typical example of a Stern-Gerlach measurement.
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A stream of spin-1
2 particles is measured in one of the Pauli basis, say σz. The

measurement projects the spin into the state |↑〉 or |↓〉. If we then have a sec-
ond measurement device also measuring the projection along the z-axis, the
measurement result is expected to be exactly same as the previous result (100%
correlated). This is possible under the following considerations. The first is that
the measurable does not change in between the two measurements. In other
words, the observable (say A) being measured is a constant of motion under
free evolution i.e. [Hsys, A] = 0. The second assumption is that the interaction
between the system and the measurement apparatus does not modify the ob-
servable. If we once again consider that the measurement is done using a probe
system, this assumption implies that the interaction Hamiltonian between the
probe and system commutes with the observable i.e. [Hint, A] = 0. The above
condition that the observable commutes with the total Hamiltonian is sufficient
but not necessary. A more general condition that is necessary and sufficient is
to demand [A, U(t, 0)] |ψ〉 = 0, where the unitary operator U(t, 0) gives the total
evolution of the system and the probe which is in the initial state |ψ〉 [104].

Let us look at a typical system in quantum optics - a two level atom coupled
to a single mode cavity. The dynamics of such a system after the rotating wave
approximation (RWA) is given by the Jaynes-Cummings Hamiltonian [126]

H =
1
2

ωqbσz + ωcav

(
a†a +

1
2

)
+ g(aσ+ + a†σ−) (4.31)

where ωqb/cav is the frequency of the qubit/cavity and g is the coupling strength
between them. As we can see [H, σz] 6= 0 due to the form of the interaction
Hamiltonian. Thus if we perform a measurement in the σz eigenbasis of the qubit
(to determine the excitation probability), a second measurement might not give
the same result. To use such a setup for qubit readouts, we have to choose the
parameter regime where the energy exchange between the qubit and the cavity is
suppressed. This is the dispersive limit with |∆| = |ωqb −ωcav| � g. Choosing
this parameter regime and applying the unitary transformation

U = exp
[ g

∆

(
aσ+ − a†σ−

)]
(4.32)

we end up with the dispersive Hamiltonian

Hdisp ≈
1
2
(ωqb + χ)σz + ωcava†a + χσza†a (4.33)

where χ = g2/∆ and we have kept terms only up to second order in g/∆. Now
we see that [Hdisp, σz] = 0 and we can have a QND measurement of the qubit
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population. The above Hamiltonian can be rewritten as 1
2 (ωqb + χ)σz + (ωcav +

χσz)a†a, where the cavity frequency now depends on σz of the qubit. If we are
in the strong dispersive regime with χ > κ, the bandwidth of the cavity, we can
measure this change in frequency from a reflection measurement.

It has to be noted however that there is still a "collapse" of the wavefunction even
in a QND measurement. In the words of Braginsky and Khalili [49],

The origin of the term “quantum nondemolition” translates from the inten-
tion to emphasize the following basic property: if, before a measurement,
an object is not in one of the eigenstates of the measured value, the QND
measurement destroys this state but does not demolish it. For example, if an
oscillator is initially in the coherent quantum state, the QND measurement of
energy will destroy this state and create N-state, although this measurement
does not include demolition, as in classical photodetectors.

For instance in the above example, if the qubit is not in the eigenstate of σz,
the above dispersive measurement will project it to either state |0〉 or |1〉. The
QND nature of the measurement then guarantees that we get the same result on
repeating the measurement. This can also be used for instance to reset the qubit
to the ground state before starting an experiment as it might be excited due to
thermal fluctuations.

As mentioned in the above quote, usual photon detectors such as photomultiplier
tubes are destructive in nature. They absorb the photon and generate an electrical
signal which is measured. To have a non-destructive or QND photon detection,
we require the interaction Hamiltonian to commute with the number operator.
One such Hamiltonian is the Kerr Hamiltonian written as Hint = gncnp, where
nc/p is the number operator for control/probe fields. Measuring the change
in the probe field due to the presence/absence of a photon in the control field
leads to a photon detector. In paper I, we look at a system where such a kind of
interaction is effectively mediated. Using this effect, we propose in paper II, a
setup to nondestructively detect microwave photons.





I have yet to see any problem, however complicated, which,
when you looked at it the right way, did not become still more
complicated.

Attributed to Poul Anderson

5
Connecting quantum systems

Over the past decade the coherence times of superconducting qubits have been
exponentially increasing [7], mimicking the well known Moore’s law. The "long"
coherence times that is shown by current transmon qubits has placed them as
a qubit of choice for building scalable quantum computers [8]. Many groups
around the world are actively pushing towards setups with several transmon
type qubits (for example see [127–131]). This implies that we need to develop
tools and formalisms to describe such complex quantum systems. Apart from
applications in quantum computation, such formalisms would also be useful in
other quantum devices where we have more than one quantum subsystem.

Let us start by looking at a typical example where the output of one quantum
system becomes the input of the next system. Such a setup, known as a cascaded
quantum system, was first looked at in references [132, 133]. While the master
equation is derived starting from a Hamiltonian in [132], we will here briefly
review the approach taken in [105]. We look at an example setup shown in
Fig. 5.1, where we have two qubits connected to an unidirectional field. This can
be implemented in circuit QED by placing a transmon at the end of a transmission
line and by using circulators. As shown in the figure, the output field from qubit
1 drives the qubit 2 after a time τ.
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b(1)in (t− τ) b(1)out(t− τ) b(2)in (t) b(2)out(t)

Qubit 1 Qubit 2

Figure 5.1: A schematic setup of two qubits cascaded.

Writing out the input-output relation (Eq. (3.49)) for the qubits, we have

b(1)out(t) = b(1)in (t) + L(1)(t) (5.1)

b(2)out(t) = b(2)in (t) + L(2)(t) = b(1)in (t− τ) + L(1)(t− τ) + L(2)(t) (5.2)

where we have defined L(1/2) =
√

Γ1/2σ
(1/2)
− . Considering two system operators

X1 and X2 belonging to qubits 1 and 2 respectively, we can write the quantum
Langevin equations (Eq. (3.45))

Ẋi(t) = i[H(i)
sys, Xi(t)]−

(√
Γib

(i)
in

†(t) +
Γi

2
σ
(i)
+ (t)

)
[σ

(i)
− (t), Xi(t)]

+

(√
Γib

(i)
in (t) +

Γi

2
σ
(i)
− (t)

)
[σ

(i)
+ (t), Xi(t)], (5.3)

for i = 1, 2. Now considering an operator X belonging to either of the two qubits,
we can combine the two equations above as

Ẋ(t) = i[Hsys, X(t)]−
(√

Γ1b†
in(t) +

Γ1

2
σ
(1)
+ (t)

)
[σ

(1)
− (t), X(t)]

+

(√
Γ1bin(t) +

Γ1

2
σ
(1)
− (t)

)
[σ

(1)
+ (t), X(t)]

−
(√

Γ2b†
in(t− τ) +

√
Γ1Γ2σ

(1)
+ (t− τ) +

Γ2

2
σ
(2)
+ (t)

)
[σ

(2)
− (t), X(t)]

+

(√
Γ2bin(t− τ) +

√
Γ1Γ2σ

(1)
− (t− τ) +

Γ2

2
σ
(2)
− (t)

)
[σ

(2)
+ (t), X(t)], (5.4)

where Hsys = H(1)
sys + H(2)

sys. To get to the above result, we have used b(2)in (t) =

b(1)in (t− τ) + L(1)(t− τ) and have replaced b(1)in with just bin. The above equation
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contains operators at two times t and t− τ which makes it difficult to solve. In
the case of unidirectional flow, such as the example we are considering here,
we can redefine the operators of the second system to take care of this time
difference [105]. In this chapter, we will however make an approximation and
take τ → 0 even in the case of bidirectional flow including the case of feedback.
This means we assume the propagation time between the different subsytems
is negligible compared to the evolution of the subsystems. This approximation
is also related to the fact that we have made the weak coupling approximation
while deriving the Langevin equations and the input-output equations[134]. With
this approximation, we have

Ẋ(t) = i[Hsys, X(t)]−
(√

Γ1b†
in(t) +

Γ1

2
σ
(1)
+ (t)

)
[σ

(1)
− (t), X(t)]

+

(√
Γ1bin(t) +

Γ1

2
σ
(1)
− (t)

)
[σ

(1)
+ (t), X(t)]

−
(√

Γ2b†
in(t) +

√
Γ1Γ2σ

(1)
+ (t) +

Γ2

2
σ
(2)
+ (t)

)
[σ

(2)
− (t), X(t)]

+

(√
Γ2bin(t) +

√
Γ1Γ2σ

(1)
− (t) +

Γ2

2
σ
(1)
− (t)

)
[σ

(2)
+ (t), X(t)]. (5.5)

The output from the total system in this approximation is then bout(t) = bin(t) +
L(1)(t) + L(2)(t), which implies that the effective coupling of the system is L(1) +
L(2). Rewriting the above equation as,

Ẋ(t) = i[Hsys +
i
2

(
L(1)†L(2) − L(2)†L(1)

)
, X(t)]

−
(

b†
in(t) +

1
2
(L(1)† + L(2)†)

)
[L(1) + L(2), X(t)]

+

(
bin(t) +

1
2
(L(1) + L(2))

)
[L(1)† + L(2)†, X(t)] (5.6)

and comparing with the quantum Langevin equation for a single system (Eq. (3.45)),
we can see that the total system acts with an effective Hamiltonian and coupling
operator given as

Heff = H(1)
sys + H(2)

sys +
i
2

(
L(1)†L(2) − L(2)†L(2)

)
(5.7)

Leff = L(1) + L(2). (5.8)

By using the fact that Tr[Ẋρ] = Tr[Xρ̇], one can write down the master equation
for the total system of two qubits. Considering that the bath is in vacuum the
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(a) Cascade (b) Stack (c) Feedback

Figure 5.2: Connecting quantum systems - The series product, the concatenation product
and the feedback.

master equation can be shown to be [132]

ρ̇ = −i[Hsys, ρ] +D
[

L(1)
]

ρ +D
[

L(2)
]

ρ− [L(2)†, L(1)ρ]− [ρL(1)†, L(2)] (5.9)

which is the same as
ρ̇ = −i[Heff, ρ] +D [Leff] ρ. (5.10)

While it is possible to extend the above method, one can imagine that it becomes
tedious if we have a complex network with many subsystems and several con-
nections. A modular approach that makes the derivation of the master equations
easier has been proposed in [135, 136] and is known as the (S, L, H) formalism.
We will look at an introduction to this formalism and apply it to a few systems of
interest in this chapter. For more details, we refer to a recent review [134] that
provides a good pedagogical overview and discusses the history and applications
of the formalism.

5.1 (S, L, H) formalism

In this formalism, each subsystem is described by a triplet G ≡ (S, L, H), where S
is the scattering matrix, L is the vector of coupling operators of the subsystem and
H is the Hamiltonian of the subsystem. Some examples of the (S, L, H) triplets are
given in table 5.1. Once the triplets are identified for each of the subsystem, the
total triplet for the composite system can be written using the following products
(also see Fig. 5.2). The series product / of the triplets describes feeding the output
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System (S, L, H) triplet

50:50 beam splitter GBS =

(
1√
2

[
1 i
i 1

]
,

[
0
0

]
, 0

)

Phase shifter Gφ =
(
eiφ, 0, 0

)

Qubit with one input
and output port (Atom

in front of a mirror)
Gqb =

(
1,
√

Γσ−,− 1
2 ωqbσz

)

Qubit connected to an
open transmission line

Gqb =

(
1,

[ √
Γ/2σ−√
Γ/2σ−

]
,− 1

2 ωqbσz

)

Table 5.1: Examples of some (S, L, H) triplets.

from one subsystem into another

G2 / G1 =

(
S2S1, S2L1 + L2, H1 + H2 +

1
2i

(
L†

2S2L1 − L†
1S†

2 L2

))
. (5.11)

The concatenation product � is used for composing subsystems into a system
with stacked channels

G2� G1 =

([
S2 0
0 S1

]
,
[

L2
L1

]
, H2 + H1

)
. (5.12)

Lastly, we have feedback, written as [(S, L, H)]k→l = (S̃, L̃, H̃), where the output
from the kth port of the system is fed back as the input through the lth port of the
same system. The triplet is given by [137]

S̃ = S[��k,l] +




S1,l
...

Sk−1,l
Sk+1,l

...
Sn,l




(1− Sk,l)
−1 (Sk,1 . . . Sk,l−1 Sk,l+1 . . . Sk,n

)
,
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L̃ = L[�k]
+




S1,l
...

Sk−1,l
Sk+1,l

...
Sn,l




(1− Sk,l)
−1 Lk,

H̃ = H +
1
2i

((
n

∑
j=1

L†
j Sj,l

)
(1− Sk,l)

−1 Lk − h.c.

)
, (5.13)

where S[��k,l] and L[�k]
are the original scattering matrix and coupling vector with

row k and column l removed.

Using the above defined products, we can write down the (S, L, H) triplet for the
whole system

Gtot =


Stot,




L1
...

Ln


 , Htot


 , (5.14)

from which we can extract the corresponding master equation as

ρ̇ = −i [Htot, ρ] +
n

∑
i=1
D [Li] ρ, (5.15)

where the dissipation super-operator is given by D [c] ρ = cρc† − 1
2 c†cρ− 1

2 ρc†c
as in previous chapters. The output from the ith channel is just given by Li. At
this point, we once again note that the above rules work in the Markov limit and
assume that the propagation time between the different subsystems is negligible
[134]. Systems that involve appreciable time delays between subsystems and in
the feedback loop are considered using other approaches, for example [138, 139].

5.2 Cascaded quantum systems

As a first example, let us relook at the cascaded setup in Fig. 5.1. We will derive
the master equation now via the (S, L, H) formalism considering no input fields.
The total (S, L, H) triplet in this case, assuming that no phase is gained by the
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field in between the two qubits, is

Gqb
tot = G(2)

qb C G(1)
qb

=
(

1, L(1) + L(2), Htot

)
(5.16)

where the total Hamiltonian is

Hqb
tot = H(1)

qb + H(2)
qb +

1
2i

(
L(2)†L(1) − L(1)†L(2)

)
(5.17)

with H(i)
qb = − 1

2 ωqbσ
(i)
z and the Lindblad operator L(i) =

√
Γiσ

(i)
− . The master

equation from Gtot is

ρ̇ = −i[Hqb
tot, ρ] +D

[
L(1) + L(2)

]
ρ, (5.18)

which can be rewritten as

ρ̇ = −i[H(1)
qb + H(2)

qb , ρ] +D
[

L(1)
]

ρ +D
[

L(2)
]

ρ− C
[

L(1), L(2)
]

ρ, (5.19)

where we have defined a coupling super-operator

C [c1, c2] ρ ≡
[
c†

2, c1ρ
]
+
[
ρ c†

1, c2

]
. (5.20)

The above equations are the same as in Eq. (5.9). Now we will extend the system
to the case where the chain of qubits is driven by a cavity output from the left.
The (S, L, H) triple for a tunable cavity is given as

Gcav =

(
1, Lcav =

√
κ(t)a, Hcav = ωcava†a

)
. (5.21)

The total (S, L, H) is now

Gtot = G(2)
qb C G(1)

qb C Gcav

=
(

1, Lcav + L(1) + L(2), Htot

)
, (5.22)

where the total Hamiltonian

Htot = Hcav + H(1)
qb + H(2)

qb +
1
2i

(
L(2)†L(1) − L(1)†L(2)

)

+
1
2i

(
Lcav(L(1)† + L(2)†)− (L(1) + L(2))L†

cav

)
. (5.23)
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Figure 5.3: Probability of excitation of two cascaded qubits driven by a cavity output.
The initial cavity state contains (a) 1 photon, (b) 2 photons and (c) a coherent state with
an average of 1 photon. The coupling rates are such that Γ1 = Γph and Γ2 = 2Γ1. Both
the qubits are on resonance with the incoming field. The photon shape ξ(t) is plotted for
reference.

Writing the master equation from the above (S, L, H) triple and expanding the
dissipator terms, we end up with

ρ̇ = −i[Heff, ρ] +D [Lcav] ρ +D
[

L(1)
]

ρ +D
[

L(2)
]

ρ

− C
[

L(1), L(2)
]

ρ− C
[

Lcav, L(1) + L(2)
]

ρ, (5.24)

where Heff = Hcav + H(1)
tr + H(2)

tr .

We will consider the cases where we start the cavity in a Fock state with one or
two photons and a coherent state. We tune the coupling of the cavity such that
the output photon is in a Gaussian wave packet (Eq. (3.71)) [114]. We numerically
solve the master equation and show the results in Fig. 5.3. The first two panels (a)
and (b) show the probability of excitation of the two qubits when we start with
ncav = 1 and ncav = 2 Fock states in the cavity. For the ncav = 1 case, we see that
the second qubit gets excited appreciably by the field that is coming from the
relaxation of the first qubit as expected. In contrast, for the ncav = 2 case, both the
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α α + L(1)
eiφ

(α + L(1)) eiφ(α + L(1)) + L(2)Transmon 1

L(1) + eiφL(2) eiφL(2) L(2)

Transmon 2

φ

Figure 5.4: A schematic setup of two transmon qubits separated by a distance. We send
in a coherent signal of amplitude α from the left and look at the transmitted and reflected
part.

qubits get excited almost simultaneously. This can be attributed to the saturation
of the first qubit and so the rest of the field is transmitted to the second qubit
which then gets excited. In the third panel (c), we see the excitation of the qubits
when the cavity is loaded with a coherent field with average number of photons
n̄cav = 1. As the coherent state has a Poisson distribution of photon numbers, we
see that the second qubit gets excited appreciably at the same time as the first
qubit, compared to the case with only a single photon in the cavity.

5.3 Coupled quantum systems

Now, let us look at the scenario where we have two transmons coupled to an
open transmission line. We consider only the two lowest levels of the transmons
i.e. essentially qubits. The distance between the two transmons is modeled as a
phase gained by the field. However as mentioned before, we have assumed that
the traveling time of the field between the two qubits is negligible, i.e. it is much
smaller than the time of evolution of the system. The setup is driven from the left
by a coherent field of strength α. A schematic setup is shown in the Fig. 5.4.

As each transmon can both reflect and transmit the incoming fields, it is conve-
nient to write the right going and left going parts of the equations separately
and then stack them using the concatenation product. In this case, the (S, L, H)
triplets of the individual transmons can be written as,

G(i)
tr = G(i)

Ltr� G(i)
Rtr (5.25)

where

G(i)
Rtr =

(
1, L(i), H(i)

tr

)
,

G(i)
Ltr =

(
1, L(i), 0

)
, (5.26)
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with L(i) =
√

Γi/2 σ
(i)
− as before. The Hamiltonian of the individual transmons

in the frame rotating with the frequency of the incoming drive ωd is given by
H(i)

tr = −(∆(i)/2) σ
(i)
z , where ∆(i) = ω

(i)
01 − ωd is the detuning of the i-th qubit

and σz is the third Pauli matrix. The incoming signal in its own rotating frame is
represented by the triplet

Gα = (1, α, 0) (5.27)

and the phase gained between the qubits by

Gφ =
(

eiφ, 0, 0
)

. (5.28)

With these, we can write the total triplet for the above setup using the series and
concatenation products as,

Gtot =
(

G(2)
Rtr C Gφ C G(1)

Rtr C Gα

)
�
(

G(1)
Ltr C Gφ C G(2)

Ltr

)

=

([
eiφ 0
0 eiφ

]
,

[
eiφ
(

α + L(1)
)
+ L(2)

L(1) + eiφL(2)

]
, Htot

)
(5.29)

where

Htot = H(1)
tr + H(2)

tr +
1
2i

(
L(1)†α− α∗L(1)

)
+

1
2i

(
eiφL(2)†α− e−iφα∗L(2)

)

+ sin φ
(

L(1)†L(2) + L(2)†L(1)
)

. (5.30)

The first two terms in the above Hamiltonian are that of the bare qubits, while
the next two give the interaction of the field with the qubits. The last term is
usually referred to as exchange interaction that is mediated by virtual photons.
The master equation can be written from the total (S, L, H) triplet as

ρ̇ = −i[Htot, ρ] +D
[
eiφ
(

α + L(1)
)
+ L(2)

]
ρ +D

[
L(1) + eiφL(2)

]
ρ. (5.31)

Such a master equation was also derived in [140] for N-atoms with M levels using
a different formalism. As a special case, they also look at two qubits separated
by an arbitrary distance. To compare our results with the above reference, we
rewrite the above master equation by expanding the dissipation super-operators
as

ρ̇ = −i[Heff, ρ] +
2

∑
i,j=1

Υi,j

(
σ
(i)
− ρσ

(j)†
− − 1

2

{
σ
(j)†
− σ

(i)
− , ρ

})
, (5.32)

introducing the matrix

Υ ≡
(

Γ1 cos φ
√

Γ1Γ2
cos φ

√
Γ1Γ2 Γ2

)
(5.33)



5.3 Coupled quantum systems 67

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

α

|r|

d = 0

d = λ/8

d = λ/4

Figure 5.5: Absolute value of the reflection coefficient for the setup in Fig. 5.4 for different
distances between the qubits. Both the qubits are on resonance with the incoming coherent
field and also have the same coupling rates (Γ) to the transmission line.
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Figure 5.6: Reflection (solid lines) and transmission (dashed lines) coefficient as a
function of qubit detuning ∆(1) = ∆(2) = ∆ at low input power. Both the qubits have
the same coupling rates (Γ) to the transmission line. Plots (a) and (c) agree with the
results shown in [140] for the case of d = λ and d = 3λ/4 respectively.
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and the effective Hamiltonian

Heff = H(1)
tr + H(2)

tr −
1
2i

(
α∗L(1) − αL(1)†

)
− 1

2i

(
α∗e−iφL(2) − αeiφL(2)†

)
. (5.34)

The master equation can be written in diagonal form, by diagonalizing the Υ
matrix. By this procedure, we get the coupling rate of the dressed states (labeled
B and D following [140]) as

ΓB/D =
Γ1 + Γ2

2
± 1

2

√
(Γ1)

2 + (Γ2)
2 + 2 cos 2φ Γ1Γ2 (5.35)

and the dressed lowering operators given by

σ
µ
− =

(Γµ − Γ2)σ
(1)
− + cos φ

√
Γ1Γ2σ

(2)
−√

(Γµ − Γ2)2 + Γ1Γ2 cos2 φ
(5.36)

where µ = B/D. Using these, we can write the master equation as

ρ̇ = −i[Heff, ρ] +D [LB] ρ +D [LD] ρ, (5.37)

where Lµ=B/D =
√

Γµσ
µ
−. From the steady state solution of the above equation,

we can get the coherently transmitted and reflected fields at steady state as

αtr =
〈

eiφ
(

α + L(1)
)
+ L(2)

〉
ss

, (5.38)

αref =
〈

L(1) + eiφL(2)
〉

ss
. (5.39)

From these, the reflection (r = αref/α) and transmission coefficients (t = αtr/α)
can be calculated. We plot |r| for three different values of distance between the
qubits d = φλ/2π in Fig. 5.5. As can be seen from the figure, at low power
(α� 1) almost all of the field is reflected by the qubits. As the power is increased,
the qubits get saturated and more and more of the incoming field gets transmitted.
Thus the reflection coefficient goes to 0 at higher powers. We also plot the |r|2
and |t|2 as a function of the detuning ∆ in Fig. 5.6 at low input power. In this
regime, we have fully coherent scattering with |r|2 + |t|2 = 1. We can compare
the results in subplots (a) and (c) to the results shown in [140] for the case of
d = λ and d = 3λ/4 respectively. We also show the results for an intermediate
distance of d = λ/8.
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Figure 5.7: Schematic of a two level system in front of a mirror.

5.4 Feedback

At the beginning of this chapter, we looked at the case of having qubits coupled
unidirectionally. One key requirement in that case was to have only one input-
output port. In superconducting circuits, we can achieve this by placing the qubit
(transmon) at the end of a transmission line which can either be open or shorted
to ground. This boundary condition acts as a mirror for the field. In this section,
we explicitly look at the master equation for a two level system that is in front of
a mirror. A schematic is shown in Fig. 5.7, where the distance between the qubit
and the mirror is once again modeled as a phase gained by the field. The field
reflected from the mirror is fed back to the qubit and we can use the feedback
operation of the (S, L, H) formalism to derive the master equation as in [76]. In
this case, the triplet for the qubit-mirror without any drive is given by

G = (S̃, L̃, H̃) = [(Gφ � I) / Gtr]1→2 (5.40)

where the triplets Gtr and Gφ are same as in Eq. (5.25) and Eq. (5.28) respectively.
We have to concatenate an identity triple I = (1, 0, 0) to keep the dimensions
intact. Using the feedback rules given in Eq. (5.13), we get

S̃ = eiφ, (5.41)

L̃ = (1 + eiφ)L, (5.42)

H̃ = Htr + sin φL†L, (5.43)

where Htr = −(ω0/2)σz and L =
(√

γ/2
)

σ−. With this triplet, we can now
include the drive which could be either a coherent state or a Fock state. In this
example, we will assume a coherent input specified by a triplet Gα as in Eq. (5.27).
The total triplet is then

Gtot = (S̃, L̃, H̃) / Gα (5.44)
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Figure 5.8: Absolute value of the reflection coefficient |r| as a function of input field
strength for different distances between the qubit and the mirror. The qubit is on resonance
with the incoming field and the coupling rate γ = 1.

which gives the master equation

ρ̇ = −i[Htot, ρ] +D
[
eiφα + (1 + eiφ)L

]
ρ, (5.45)

where the Hamiltonian Htot = −(∆/2)σz + sin φL†L + 1
2i

(
αL†(eiφ + 1)− h.c.

)
.

The Hamiltonian is in the the rotating frame of the incoming field with ∆ =
ω0 −ωd. We can expand the dissipator and simplify the master equation to get

ρ̇ = −i[Heff, ρ] + 2(1 + cos φ)D [L] ρ, (5.46)

where the effective Hamiltonian now is

Heff = −(∆/2)σz + sin φL†L− i
(

αL†(eiφ + 1)− h.c.
)

. (5.47)

For φ = 0, we see that the master equation can be rewritten as

ρ̇ = −i[Htr − i(αL′† − L′α∗)] +D
[
L′
]

ρ (5.48)

by defining L′ = 2L =
√

2γσ− ≡
√

Γσ−. Here we have defined a renormalized
coupling rate Γ that is twice the original relaxation rate γ. This is the coupling rate
that is used in the previous sections and also in paper II. As an example, let us look
at the scattering property of this setup by calculating the reflection coefficients r
for different distances between the mirror and the qubit. The absolute value of
r = 〈αout〉 /α, where αout = eiφα + (1 + eiφ)L, is plotted in Fig. 5.8. Note that the
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phase φ is gained by the field over the entire trip between the qubit and the mirror
(i.e. back and forth). We can convert this into distance in terms of wavelength of
the field as d = φ λ

4π . As we have an open end, the field is maximum at the mirror
and the qubit couples maximally to the field at this point. At d = λ/4, the field
goes to zero and we do not see any effect of the qubit on the reflected field, as
expected. We get intermediate results for d = λ/8. Such an setup has also been
tested experimentally recently (but with a slightly different boundary condition)
and the results are presented in [76].





"You probably think this paper’s about you: narcissists’ perceptions
of their personality and reputation.",
Carlson, E. N., Vazire, S. and Oltmanns, T. F. ,
Journal of Personality and Social Psychology 101, 185–201 (2011).

Listed in Scientists’ Silly, Dark, and Sometimes Inappropriate Humor,
Slate.com

6
Overview of the articles

In this chapter, we provide a brief summary of the appended papers on which the
thesis is based on. In particular, we will highlight the salient points of the articles
and show how the framework developed in the previous chapters is connected
to the work presented.

6.1 Cross-Kerr Effect for propagating microwaves

In paper I, we look at inducing photon-photon interaction at microwave frequen-
cies for propagating photons. As discussed in the introduction, photons rarely
interact with each other in vacuum and such interactions are usually engineered
using a nonlinear material. In this experimental work, an effective photon-photon
interaction is mediated using the lowest three levels of an artificial atom, the
superconducting transmon. Two coherent fields, control and probe, close to
resonance with these two transition frequencies, are scattered off of the transmon.
The interaction effectively induces a phase change in the probe field due to the
presence of the control field à la the cross-Kerr effect.

In the article, two setups are investigated. In one, the transmon is coupled to an
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open transmission line and in another it is placed at the end of a semi-infinite
transmission line. The second setup corresponds to having an atom in front of
a mirror and has only one input-output port, thus reducing the loss of signal in
the reflected field. The output fields scattered from the transmons are measured
using a homodyne detector.

The input-output relations are different for the two setups as we already saw in
Chapter 3. In the case of the transmon connected to an open transmission line,
only the transmitted field is measured. Combining these two cases we can write
the average output in the steady-state for both the fields as [141]

α
(c)
out = α

(c)
in +

√
Γ01

kn

〈
σ01
−
〉

ss
, (6.1)

α
(p)
out = α

(p)
in +

√
Γ12

kn

〈
σ12
−
〉

ss
, (6.2)

where kn is the number of output channels i.e. kn = 1 for atom in front of a mirror
and kn = 2 for an atom in an open transmission line. The lowering operators are
given by σ01

− = |0〉 〈 1| and σ12
− = |1〉 〈 2|. The expectation values are calculated

by solving the master equation of the system as discussed in Chapter 3. The
Hamiltonian of the three level system in the rotating frame of the two drives
can be written as Htr = −∆c |0〉 〈 0| + ∆p |2〉 〈 2|, where the detuning between
the transition frequencies and the drive frequencies are given as ∆c = ω10 −ωc
and ∆p = ω21 − ωp. The coherent drives can be included in the Hamiltonian
as Hdrive = −i

√
Γ01/kn(αcσ01

−
† − h.c.)− i

√
Γ12/kn(αpσ12

−
† − h.c.). With these, the

master equation without including dephasing can be written as

ρ̇ = −i[Htr + Hdrive, ρ] + Γ01D
[
σ01
−
]

ρ + Γ12D
[
σ12
−
]

ρ. (6.3)

The setup in the experiment is slightly different, where the probe was close to
the resonance of the 0− 1 transition and the control was close to the resonance
of the 1− 2 transition. The above model however gives a more intuitive picture.
In this case, starting with a transmon in the ground state, the probe is scattered
from the transmon only when the control field is on. Thus the phase shift in the
absence of control field is 0. As it is more straightforward to interpret, we will use
this model in the next section as well, where we look at photon detection using a
three level atom.

From the measurement results, we see that an average conditional phase change
of 10 and 20 degrees is induced in the probe field using setup 1 and 2 respectively.
The input signals are in the single photon range, i.e the average number of
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Figure 6.1: Schematic of setup proposed in paper II for microwave photon detection.

photons per interaction time is around one for both control and probe fields. The
observed phase shifts are much larger than what is realized in traditional Kerr
medium without cavities [39, 142] and hence the title giant cross-Kerr effect.

6.2 Quantum nondemolition detection of a propagating mi-
crowave photon

Using the cross-Kerr effect for quantum nondemolition (QND) measurements
have been discussed for some time in literature[37, 48–50]. Given that a single
transmon can induce a large conditional phase shift, the setup discussed in paper
I naturally lends itself to the problem of QND detection of a single photon. Such
a setup was theoretically analyzed for photon detection in reference [143]. It was
shown there that the effect induced on the probe field by a single photon using
a single transmon is not sufficient to overcome the fundamental vacuum noise.
Intuitively, this can be understood as follows. A single atom can process only one
excitation at a time. This means that even with a perfect absorption of the single
photon by a transmon, it can at most scatter one photon from the coherent probe
field. The coherent field in itself has half a photon of noise in the quadratures.
Also, the presence of probe field in the 1− 2 transition reduces the probability of
absorption of the control photon by the transmon as shown in paper IV. Thus, a
single transmon without a cavity does not lead to distinguishable outputs with
and without a photon and so does not help for the purpose of photon detection.
It was also found that coupling many transmons close to each other or separated
across wavelengths didn’t improve the signal-to-noise ratio to rise above 1.

In paper II, we propose a setup that is able to overcome these limitations. The
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key ingredient is to couple the transmons unidirectionally i.e. to cascade them
using circulators as shown in Fig. 6.1. In such a setup, we can show that using
two coherent drives, similar to the previous section, the conditional phase change
in the probe accumulates over several transmons [40]. In the article, we check the
performance of the setup for photon detection.

We take two different approaches to model the input single photon that is even-
tually needed to be detected by our setup. In one, we consider a tunable cavity as
the source as in section 5.2. In the other approach, we use the Fock state formalism
discussed in section 3.4. The control field that will contain the single photon is
on resonance with the 0− 1 transition of all the transmons. This control field
and a coherent probe field (on resonance with the 1− 2 transition) are scattered
on the chain of cascaded transmons. The output probe field is then measured
using a homodyne detector as in the previous section. If the control field has a
photon at some time t, the effect on the probe field is seen from the measured
homodyne current. We integrate the homodyne current over a time period T and
this integrated current becomes our signal. The single photon itself survives this
measurement process, making the scheme non-destructive.

To evaluate the performance of the setup, we take two approaches. In one, we
solve the unconditional master equations and from the average dynamics calcu-
late the signal-to-noise ratio (SNR). In another approach, we simulate quantum
trajectories using the stochastic master equation for homodyne detection, similar
to the ones shown in section 4.2. From these, we get the histograms of the signal
measured with and without a single photon in the control field. From the mean
and variance of the histogram, we calculate the signal-to-noise ratio (SNR) of the
proposed detector. From the simulation results, we also see that as we increase
the number of transmons, the signal distribution (histogram) does not remain
Gaussian in the case of having a single photon in the control field. To take this
into account we define a better measure, detection fidelity. As shown in the article,
we can overcome the noise (i.e. get a SNR above 1) and detect the presence of a
single photon with a 90% fidelity in certain parameter regimes.

Furthermore, we also consider imperfections such as dephasing of the transmons,
power loss in circulators and imperfect homodyne detection. We conclude that
for small imperfections the signal survives and we can still detect the photon.
Comparing with experimentally available performance of these devices, it should
be possible (probably with some effort) to build such a device with currently
available resources. The major difficulty comes from circulators which are bulky
devices that are off-chip. Apart from cooling down these bulky devices, we also
have to worry about impedance matching the lines when we go on and off chips.
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Figure 6.2: Schematic setup for coupled cavities considered in papers III and VI.

Our proposed scheme looks more attractive with the development of on-chip
circulators [144]. Chiral quantum optics might also be a solution for realizing the
proposed setup [145]. Further to this work, reference [55] shows how to improve
the maximum signal that one can get from a single transmon by using a cavity
for the probe field and by using more sophisticated filtering techniques. The
signal can be further improved by once again cascading these individual units
(transmon+cavity).

The proposal in paper II is one of the many proposals[52–61, 146, 147] for solving
the long standing problem of detecting single itinerant microwave photon. In
paper IV, we review some of the above proposals, which can be broadly classified
as destructive or nondestructive type of detectors. The destructive microwave
photon detectors are predominantly mapped as a Λ system. Such a Λ system can
be realized using a current biased Josephson junction with a suitable bias current.
It was shown theorectically in reference [53] that a photon detection of 100% is
possible by one of these current biased junctions at the end of a transmission
line. A more recent proposal for photon detection uses impedence matched Λ
systems implemented by driving a qubit coupled to a resonator [146, 147]. Such
a setup was also experimentally realized recently [62]. As these results were
published quite close to the submission of paper IV, they are not reviewed in the
same. Apart from these destructive schemes, in paper IV, we mainly present a
pedagogical review of the nondestructive photon detector proposals based on
Paper II and [55].

6.3 Coupled superconducting resonators

In one of the approaches of paper II, we consider a cavity with tunable coupling
as a source of single photons. By tuning the coupling of the cavity, photon wave
packets of desirable shapes (a gaussian, for example) can be created [28, 29, 114].
In paper III, we consider one such implementation of a tunable cavity that could
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lead to the shaping of photon wave packets in the future. The tunable cavity
in this case is made up of two cavities - a λ/4 resonator that acts as the storage
cavity and a λ/2 resonator that acts as a coupling cavity. We have a SQUID at
the current anti-node of the coupling cavity i.e. at its middle (see Fig. 6.2). By
threading flux through the SQUID loop, we can modify the total inductance of
the resonator and hence its mode frequencies.

The device can be analyzed following the circuit model presented in chapter 2.
For the coupling cavity alone, we can write down the Lagrangian and from it the
Euler-Lagrange equation of motion for the flux. From an approximate solution
of this equation, we can find the resonant frequency of the coupling cavity as a
function of the flux through the SQUID [148, 149]. The analysis can be extended
by including the storage cavity and the coupling to the transmission line. By
considering only the two lowest modes of the coupling and storage cavities, we
end up with two normal modes. As is well known in any such coupled oscillator
systems, we can have either an under, over or critically damped system. This
is characterized by the ratio of the coupling to the transmission line κ to the
coupling between the the cavities g.

The results presented in paper III can be understood as follows. The effective
coupling of the storage cavity is via the coupling cavity, which acts like a barrier
between the transmission line and the storage cavity. By bringing the coupling
cavity on and off resonance with the storage cavity (similar to lowering and
raising of a potential barrier), we can effectively tune the coupling of the storage
cavity to the transmission line. In the sample discussed in the paper III, the
coupling can be tuned by three orders of magnitude. This is seen from the
lifetime of the field stored in the cavity which is shown to vary from 14ns to
18µs. Also by varying the detuning of the coupling cavity, it is shown that we can
release the field in exponentially decaying wave packets of different widths. The
above experiments were done when the cavity was filled with a coherent state
that has on average 80 photons. However, the results suggests that by loading
the cavity with a single photon and by modulating the coupling, we should be
able to get single photon wave packets of different shapes. As mentioned in
the introduction, such sources of single photons are of importance not only for
quantum optics but also for quantum computing and communication.

In paper VI, a similar device but operating at a different parameter regime is
presented. In the device presented in paper III, the energy relaxation rate set
by κ was larger than the energy exchange rate between the cavities. Thus, we
could understand the results as in the above paragraph. In paper VI however,
the damping to the transmission line is much smaller than the energy exchange
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rate between the cavities, which means there is significant energy oscillation
between the cavities while there is also decay to the transmission line. This
parameter scheme however allows us to demonstrate a different scheme for
catching and releasing microwave photons. In this case, we can start with the
coupling cavity completely decoupled from the storage cavity. The incoming
signal is then captured in the coupling cavity and then swapped into the storage
cavity by bringing them both on resonance. The excitation can then be stored in
the resonator cavity and released either directly by tuning the coupling as in paper
III or by doing a swap back into the coupling cavity. This protocol thus allows
us to catch and release photons at a wide range of frequencies (corresponding
to that of the tunable coupling cavity) and we are no longer restricted to the
frequency range of the storage cavity. We hope that such devices can play the
role of photonic memories in the microwave domain. We once again note that
this initial demonstration is with coherent fields and further work is needed to
show that the setup works for non-classical fields as well.

6.4 Generating single photons on demand

As the final topic, we look at generating single photons on demand. As mentioned
in the introduction, several cavity based schemes for generating single microwave
photons exist [25–29]. However, the use of cavities limit the bandwidth of op-
eration and requires full control of both the qubit and the cavity. A cavity free
approach was theoretically studied in [30] and experimentally demonstrated
in [31]. In this setup, an atom is asymmetrically coupled to two transmission
lines. The coupling of the atom to the control line is much weaker compared to
the emission line. A π pulse from the weakly coupled control line excites the
qubit which then preferably emits in the emission line. However, as noted in [31],
there is also a direct coupling between the transmission line which might lead
to leakage of photons from the incoming π pulse into the emission line and one
needs to separate these from the emission of the atom. Also, it might be difficult
in such a setup to get the photons in desired wave packet shapes.

In paper V, we propose two different setups to generate single photons on de-
mand. Both of these use atom in front a mirror, which is crucial for getting
high efficiency. As we already discussed in chapter 3, an excited atom in an
open transmission line emits a photon in the left and right moving modes with
equal probability. By placing the atom in front of a mirror, we collect all the
emission from the atom. However, the coherent pulse used to excite the atom
also comes out through the same port. Thus, we have to separate it from the
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(a) (b)

Figure 6.3: Schematic setups to generate single photons (a) Using a beam splitter (b)
Using tunable coupling.

atomic decay. We can see this from the input-output relation which is given as
αout(t) = αin(t) +

√
Γσ−(t), where Γ is the effective coupling rate of the qubit

to the transmission line. αin(t) is the input π-pulse. We propose two different
methods to separate the atomic decay from αin(t).

In the first method (Fig. 6.3a), we use an unbalanced beam splitter with reflection
coefficient r → 1. It can be shown that such a beam splitter can be used to
implement a displacement operator by using a strong coherent beam [150]. We
use this to "undisplace" the coherent part of the output field and separate the
atomic decay in one of the output channels. This can also be seen from the beam
splitter input-output relations as shown in the article.

To characterize the efficiency of this method, we calculate Pn, the probability of
having n photons in the output field (d(t) in Fig. 6.3a). This is done by calculating
the mth order coherence function of the output (Eq. (3.64)). From the correlation
function, we can calculate the photon m-tiples and the probabilities Pn [30]. The
probability of having exactly one photon in the output becomes the measure of
efficiency of our setup. We show that using experimentally realizable values for
the beam splitter, a photon generation efficiency of 97% is straightforward to
achieve.

In method two (Fig. 6.3b), we take advantage of the on-chip tunability of su-
perconducting circuits as follows. The coupling between a transmon and the
transmission line depends on the value of voltage at the coupling point. An
open boundary condition at the end of the transmission line (d = 0), imposes the
condition that the voltage is maximum at this point for all the allowed modes. A
qubit at d = 0 thus has a maximum coupling to the transmission line. The mode
structure due to the boundary condition imposes a node at a distance d = λ/4
for each of the mode. A qubit at this distance with the corresponding frequency
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is completely decoupled from the transmission line. By changing the boundary
condition i.e. by moving the mirror, we can go from a qubit that is maximally
coupled to completely decoupled from the transmission line. A tunable boundary
condition with a SQUID at the end of the transmission line, thus leads to a tunable
coupling [151]. An alternative is to place the qubit at a finite distance from the
mirror and tune the frequency of the qubit, which also leads to tunable coupling
[76]. As we discussed in the previous section, the advantage of such a tunable
system is to shape the output photon in desirable wave packets.

The photon generation in the second method is as follows. We start with the
qubit coupled to the transmission and tune the coupling to be very close to 0. We
send a strong π-pulse and excite the qubit. At the end of the pulse, we tune the
coupling to 0. This can be done fast as we started at a very low coupling before
the pulse. Now, a single excitation is trapped in the qubit which can be then
released as needed in a desirable wave packet by tuning the coupling accordingly.
In this case, we once again calculate the photon generation efficiency as before
and find that with current technologies it can reach above 97%.

Given that the above setups are quite simple, one can imagine extending it
to generate either correlated or entangled photons. As all of the ingredients
required to test the proposals are readily available, we hope to see experimental
realizations of the schemes presented in the near future.





Cuius rei demonstrationem mirabilem sane detexi hanc
marginis exiguitas non caperet.

(I have discovered a truly remarkable proof of this theorem
which this margin is too small to contain.)

Pierre de Fermat

7
Summary

Linear optical quantum computing (LOQC) is an approach to develop a quantum
computer primarily using linear elements such as beam splitters along with
single photon sources and detectors. However, to perform universal quantum
computing, some nonlinearity is required [15, 17]. Superconducting circuits
have the advantage of possessing a strong low loss nonlinearity that comes from
the Josephson junction, which can enable development of all-optical quantum
computing at microwave frequencies [17]. This however requires efficient single
photon devices in the microwave regime, especially a single microwave photon
detector, a first implementation of which has only been recently realized. In this
thesis, we look at our proposals for microwave single photon devices based on
the appended papers.

One of the main results of the thesis, is the proposal for a nondestructive detector
for propagating single microwave photons as presented in paper II. The detec-
tor is based on the large photon-photon interaction mediated by a three level
superconducting transmon, as shown in paper I. We also show how to efficiently
generate single microwave photons on demand by using an atom in front of a
mirror in paper V. In paper III and VI, we present experimental results on coupled
cavities which could serve the purpose of a photonic quantum memory. While
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the proposals are primarily aimed at circuit QED setups, we believe they could be
extended to other systems where atoms are strongly coupled to one-dimensional
waveguides. These include superconducting qubits coupled to surface acoustic
waves [152], quantum dots coupled to photonic waveguides [153] or surface
plasmons [154].
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